1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "hw/qdev.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "trace.h" 26 27 #define DRC_CONTAINER_PATH "/dr-connector" 28 #define DRC_INDEX_TYPE_SHIFT 28 29 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 30 31 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) 32 { 33 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 34 35 return 1 << drck->typeshift; 36 } 37 38 uint32_t spapr_drc_index(sPAPRDRConnector *drc) 39 { 40 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 41 42 /* no set format for a drc index: it only needs to be globally 43 * unique. this is how we encode the DRC type on bare-metal 44 * however, so might as well do that here 45 */ 46 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 47 | (drc->id & DRC_INDEX_ID_MASK); 48 } 49 50 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) 51 { 52 switch (drc->state) { 53 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 54 return RTAS_OUT_SUCCESS; /* Nothing to do */ 55 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 56 break; /* see below */ 57 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 58 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 59 default: 60 g_assert_not_reached(); 61 } 62 63 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 64 65 if (drc->unplug_requested) { 66 uint32_t drc_index = spapr_drc_index(drc); 67 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 68 spapr_drc_detach(drc); 69 } 70 71 return RTAS_OUT_SUCCESS; 72 } 73 74 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) 75 { 76 switch (drc->state) { 77 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 78 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 79 return RTAS_OUT_SUCCESS; /* Nothing to do */ 80 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 81 break; /* see below */ 82 default: 83 g_assert_not_reached(); 84 } 85 86 /* cannot unisolate a non-existent resource, and, or resources 87 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 88 * 13.5.3.5) 89 */ 90 if (!drc->dev) { 91 return RTAS_OUT_NO_SUCH_INDICATOR; 92 } 93 94 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 95 drc->ccs_offset = drc->fdt_start_offset; 96 drc->ccs_depth = 0; 97 98 return RTAS_OUT_SUCCESS; 99 } 100 101 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) 102 { 103 switch (drc->state) { 104 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 105 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 106 return RTAS_OUT_SUCCESS; /* Nothing to do */ 107 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 108 break; /* see below */ 109 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 110 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 111 default: 112 g_assert_not_reached(); 113 } 114 115 /* 116 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 117 * belong to a DIMM device that is marked for removal. 118 * 119 * Currently the guest userspace tool drmgr that drives the memory 120 * hotplug/unplug will just try to remove a set of 'removable' LMBs 121 * in response to a hot unplug request that is based on drc-count. 122 * If the LMB being removed doesn't belong to a DIMM device that is 123 * actually being unplugged, fail the isolation request here. 124 */ 125 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 126 && !drc->unplug_requested) { 127 return RTAS_OUT_HW_ERROR; 128 } 129 130 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 131 132 /* if we're awaiting release, but still in an unconfigured state, 133 * it's likely the guest is still in the process of configuring 134 * the device and is transitioning the devices to an ISOLATED 135 * state as a part of that process. so we only complete the 136 * removal when this transition happens for a device in a 137 * configured state, as suggested by the state diagram from PAPR+ 138 * 2.7, 13.4 139 */ 140 if (drc->unplug_requested) { 141 uint32_t drc_index = spapr_drc_index(drc); 142 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 143 spapr_drc_detach(drc); 144 } 145 return RTAS_OUT_SUCCESS; 146 } 147 148 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) 149 { 150 switch (drc->state) { 151 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 152 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 153 return RTAS_OUT_SUCCESS; /* Nothing to do */ 154 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 155 break; /* see below */ 156 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 157 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 158 default: 159 g_assert_not_reached(); 160 } 161 162 /* Move to AVAILABLE state should have ensured device was present */ 163 g_assert(drc->dev); 164 165 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 166 drc->ccs_offset = drc->fdt_start_offset; 167 drc->ccs_depth = 0; 168 169 return RTAS_OUT_SUCCESS; 170 } 171 172 static uint32_t drc_set_usable(sPAPRDRConnector *drc) 173 { 174 switch (drc->state) { 175 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 176 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 177 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 178 return RTAS_OUT_SUCCESS; /* Nothing to do */ 179 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 180 break; /* see below */ 181 default: 182 g_assert_not_reached(); 183 } 184 185 /* if there's no resource/device associated with the DRC, there's 186 * no way for us to put it in an allocation state consistent with 187 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 188 * result in an RTAS return code of -3 / "no such indicator" 189 */ 190 if (!drc->dev) { 191 return RTAS_OUT_NO_SUCH_INDICATOR; 192 } 193 if (drc->unplug_requested) { 194 /* Don't allow the guest to move a device away from UNUSABLE 195 * state when we want to unplug it */ 196 return RTAS_OUT_NO_SUCH_INDICATOR; 197 } 198 199 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 200 201 return RTAS_OUT_SUCCESS; 202 } 203 204 static uint32_t drc_set_unusable(sPAPRDRConnector *drc) 205 { 206 switch (drc->state) { 207 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 208 return RTAS_OUT_SUCCESS; /* Nothing to do */ 209 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 210 break; /* see below */ 211 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 212 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 213 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 214 default: 215 g_assert_not_reached(); 216 } 217 218 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 219 if (drc->unplug_requested) { 220 uint32_t drc_index = spapr_drc_index(drc); 221 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 222 spapr_drc_detach(drc); 223 } 224 225 return RTAS_OUT_SUCCESS; 226 } 227 228 static const char *spapr_drc_name(sPAPRDRConnector *drc) 229 { 230 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 231 232 /* human-readable name for a DRC to encode into the DT 233 * description. this is mainly only used within a guest in place 234 * of the unique DRC index. 235 * 236 * in the case of VIO/PCI devices, it corresponds to a "location 237 * code" that maps a logical device/function (DRC index) to a 238 * physical (or virtual in the case of VIO) location in the system 239 * by chaining together the "location label" for each 240 * encapsulating component. 241 * 242 * since this is more to do with diagnosing physical hardware 243 * issues than guest compatibility, we choose location codes/DRC 244 * names that adhere to the documented format, but avoid encoding 245 * the entire topology information into the label/code, instead 246 * just using the location codes based on the labels for the 247 * endpoints (VIO/PCI adaptor connectors), which is basically just 248 * "C" followed by an integer ID. 249 * 250 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 251 * location codes as documented by PAPR+ v2.7, 12.3.1.5 252 */ 253 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 254 } 255 256 /* 257 * dr-entity-sense sensor value 258 * returned via get-sensor-state RTAS calls 259 * as expected by state diagram in PAPR+ 2.7, 13.4 260 * based on the current allocation/indicator/power states 261 * for the DR connector. 262 */ 263 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) 264 { 265 /* this assumes all PCI devices are assigned to a 'live insertion' 266 * power domain, where QEMU manages power state automatically as 267 * opposed to the guest. present, non-PCI resources are unaffected 268 * by power state. 269 */ 270 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 271 : SPAPR_DR_ENTITY_SENSE_EMPTY; 272 } 273 274 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) 275 { 276 switch (drc->state) { 277 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 278 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 279 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 280 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 281 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 282 g_assert(drc->dev); 283 return SPAPR_DR_ENTITY_SENSE_PRESENT; 284 default: 285 g_assert_not_reached(); 286 } 287 } 288 289 static void prop_get_index(Object *obj, Visitor *v, const char *name, 290 void *opaque, Error **errp) 291 { 292 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 293 uint32_t value = spapr_drc_index(drc); 294 visit_type_uint32(v, name, &value, errp); 295 } 296 297 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 298 void *opaque, Error **errp) 299 { 300 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 301 QNull *null = NULL; 302 Error *err = NULL; 303 int fdt_offset_next, fdt_offset, fdt_depth; 304 void *fdt; 305 306 if (!drc->fdt) { 307 visit_type_null(v, NULL, &null, errp); 308 QDECREF(null); 309 return; 310 } 311 312 fdt = drc->fdt; 313 fdt_offset = drc->fdt_start_offset; 314 fdt_depth = 0; 315 316 do { 317 const char *name = NULL; 318 const struct fdt_property *prop = NULL; 319 int prop_len = 0, name_len = 0; 320 uint32_t tag; 321 322 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 323 switch (tag) { 324 case FDT_BEGIN_NODE: 325 fdt_depth++; 326 name = fdt_get_name(fdt, fdt_offset, &name_len); 327 visit_start_struct(v, name, NULL, 0, &err); 328 if (err) { 329 error_propagate(errp, err); 330 return; 331 } 332 break; 333 case FDT_END_NODE: 334 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 335 g_assert(fdt_depth > 0); 336 visit_check_struct(v, &err); 337 visit_end_struct(v, NULL); 338 if (err) { 339 error_propagate(errp, err); 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 visit_start_list(v, name, NULL, 0, &err); 349 if (err) { 350 error_propagate(errp, err); 351 return; 352 } 353 for (i = 0; i < prop_len; i++) { 354 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 355 if (err) { 356 error_propagate(errp, err); 357 return; 358 } 359 } 360 visit_check_list(v, &err); 361 visit_end_list(v, NULL); 362 if (err) { 363 error_propagate(errp, err); 364 return; 365 } 366 break; 367 } 368 default: 369 error_setg(&error_abort, "device FDT in unexpected state: %d", tag); 370 } 371 fdt_offset = fdt_offset_next; 372 } while (fdt_depth != 0); 373 } 374 375 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, 376 int fdt_start_offset, Error **errp) 377 { 378 trace_spapr_drc_attach(spapr_drc_index(drc)); 379 380 if (drc->dev) { 381 error_setg(errp, "an attached device is still awaiting release"); 382 return; 383 } 384 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 385 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 386 g_assert(fdt); 387 388 drc->dev = d; 389 drc->fdt = fdt; 390 drc->fdt_start_offset = fdt_start_offset; 391 392 object_property_add_link(OBJECT(drc), "device", 393 object_get_typename(OBJECT(drc->dev)), 394 (Object **)(&drc->dev), 395 NULL, 0, NULL); 396 } 397 398 static void spapr_drc_release(sPAPRDRConnector *drc) 399 { 400 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 401 402 drck->release(drc->dev); 403 404 drc->unplug_requested = false; 405 g_free(drc->fdt); 406 drc->fdt = NULL; 407 drc->fdt_start_offset = 0; 408 object_property_del(OBJECT(drc), "device", &error_abort); 409 drc->dev = NULL; 410 } 411 412 void spapr_drc_detach(sPAPRDRConnector *drc) 413 { 414 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 415 416 trace_spapr_drc_detach(spapr_drc_index(drc)); 417 418 g_assert(drc->dev); 419 420 drc->unplug_requested = true; 421 422 if (drc->state != drck->empty_state) { 423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 424 return; 425 } 426 427 spapr_drc_release(drc); 428 } 429 430 void spapr_drc_reset(sPAPRDRConnector *drc) 431 { 432 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 433 434 trace_spapr_drc_reset(spapr_drc_index(drc)); 435 436 /* immediately upon reset we can safely assume DRCs whose devices 437 * are pending removal can be safely removed. 438 */ 439 if (drc->unplug_requested) { 440 spapr_drc_release(drc); 441 } 442 443 if (drc->dev) { 444 /* A device present at reset is ready to go, same as coldplugged */ 445 drc->state = drck->ready_state; 446 /* 447 * Ensure that we are able to send the FDT fragment again 448 * via configure-connector call if the guest requests. 449 */ 450 drc->ccs_offset = drc->fdt_start_offset; 451 drc->ccs_depth = 0; 452 } else { 453 drc->state = drck->empty_state; 454 drc->ccs_offset = -1; 455 drc->ccs_depth = -1; 456 } 457 } 458 459 bool spapr_drc_needed(void *opaque) 460 { 461 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; 462 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 463 464 /* If no dev is plugged in there is no need to migrate the DRC state */ 465 if (!drc->dev) { 466 return false; 467 } 468 469 /* 470 * We need to migrate the state if it's not equal to the expected 471 * long-term state, which is the same as the coldplugged initial 472 * state */ 473 return (drc->state != drck->ready_state); 474 } 475 476 static const VMStateDescription vmstate_spapr_drc = { 477 .name = "spapr_drc", 478 .version_id = 1, 479 .minimum_version_id = 1, 480 .needed = spapr_drc_needed, 481 .fields = (VMStateField []) { 482 VMSTATE_UINT32(state, sPAPRDRConnector), 483 VMSTATE_END_OF_LIST() 484 } 485 }; 486 487 static void realize(DeviceState *d, Error **errp) 488 { 489 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 490 Object *root_container; 491 gchar *link_name; 492 gchar *child_name; 493 Error *err = NULL; 494 495 trace_spapr_drc_realize(spapr_drc_index(drc)); 496 /* NOTE: we do this as part of realize/unrealize due to the fact 497 * that the guest will communicate with the DRC via RTAS calls 498 * referencing the global DRC index. By unlinking the DRC 499 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 500 * inaccessible by the guest, since lookups rely on this path 501 * existing in the composition tree 502 */ 503 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 504 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 505 child_name = object_get_canonical_path_component(OBJECT(drc)); 506 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 507 object_property_add_alias(root_container, link_name, 508 drc->owner, child_name, &err); 509 g_free(child_name); 510 g_free(link_name); 511 if (err) { 512 error_propagate(errp, err); 513 return; 514 } 515 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 516 drc); 517 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 518 } 519 520 static void unrealize(DeviceState *d, Error **errp) 521 { 522 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 523 Object *root_container; 524 gchar *name; 525 526 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 527 vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc); 528 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 529 name = g_strdup_printf("%x", spapr_drc_index(drc)); 530 object_property_del(root_container, name, errp); 531 g_free(name); 532 } 533 534 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, 535 uint32_t id) 536 { 537 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); 538 char *prop_name; 539 540 drc->id = id; 541 drc->owner = owner; 542 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 543 spapr_drc_index(drc)); 544 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort); 545 object_unref(OBJECT(drc)); 546 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 547 g_free(prop_name); 548 549 return drc; 550 } 551 552 static void spapr_dr_connector_instance_init(Object *obj) 553 { 554 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 555 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 556 557 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 558 object_property_add(obj, "index", "uint32", prop_get_index, 559 NULL, NULL, NULL, NULL); 560 object_property_add(obj, "fdt", "struct", prop_get_fdt, 561 NULL, NULL, NULL, NULL); 562 drc->state = drck->empty_state; 563 } 564 565 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 566 { 567 DeviceClass *dk = DEVICE_CLASS(k); 568 569 dk->realize = realize; 570 dk->unrealize = unrealize; 571 /* 572 * Reason: it crashes FIXME find and document the real reason 573 */ 574 dk->user_creatable = false; 575 } 576 577 static bool drc_physical_needed(void *opaque) 578 { 579 sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque; 580 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp); 581 582 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 583 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 584 return false; 585 } 586 return true; 587 } 588 589 static const VMStateDescription vmstate_spapr_drc_physical = { 590 .name = "spapr_drc/physical", 591 .version_id = 1, 592 .minimum_version_id = 1, 593 .needed = drc_physical_needed, 594 .fields = (VMStateField []) { 595 VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical), 596 VMSTATE_END_OF_LIST() 597 } 598 }; 599 600 static void drc_physical_reset(void *opaque) 601 { 602 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque); 603 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 604 605 if (drc->dev) { 606 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 607 } else { 608 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 609 } 610 } 611 612 static void realize_physical(DeviceState *d, Error **errp) 613 { 614 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 615 Error *local_err = NULL; 616 617 realize(d, &local_err); 618 if (local_err) { 619 error_propagate(errp, local_err); 620 return; 621 } 622 623 vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 624 &vmstate_spapr_drc_physical, drcp); 625 qemu_register_reset(drc_physical_reset, drcp); 626 } 627 628 static void unrealize_physical(DeviceState *d, Error **errp) 629 { 630 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 631 Error *local_err = NULL; 632 633 unrealize(d, &local_err); 634 if (local_err) { 635 error_propagate(errp, local_err); 636 return; 637 } 638 639 vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp); 640 qemu_unregister_reset(drc_physical_reset, drcp); 641 } 642 643 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 644 { 645 DeviceClass *dk = DEVICE_CLASS(k); 646 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 647 648 dk->realize = realize_physical; 649 dk->unrealize = unrealize_physical; 650 drck->dr_entity_sense = physical_entity_sense; 651 drck->isolate = drc_isolate_physical; 652 drck->unisolate = drc_unisolate_physical; 653 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 654 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 655 } 656 657 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 658 { 659 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 660 661 drck->dr_entity_sense = logical_entity_sense; 662 drck->isolate = drc_isolate_logical; 663 drck->unisolate = drc_unisolate_logical; 664 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 665 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 666 } 667 668 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 669 { 670 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 671 672 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 673 drck->typename = "CPU"; 674 drck->drc_name_prefix = "CPU "; 675 drck->release = spapr_core_release; 676 } 677 678 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 679 { 680 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 681 682 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 683 drck->typename = "28"; 684 drck->drc_name_prefix = "C"; 685 drck->release = spapr_phb_remove_pci_device_cb; 686 } 687 688 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 689 { 690 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 691 692 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 693 drck->typename = "MEM"; 694 drck->drc_name_prefix = "LMB "; 695 drck->release = spapr_lmb_release; 696 } 697 698 static const TypeInfo spapr_dr_connector_info = { 699 .name = TYPE_SPAPR_DR_CONNECTOR, 700 .parent = TYPE_DEVICE, 701 .instance_size = sizeof(sPAPRDRConnector), 702 .instance_init = spapr_dr_connector_instance_init, 703 .class_size = sizeof(sPAPRDRConnectorClass), 704 .class_init = spapr_dr_connector_class_init, 705 .abstract = true, 706 }; 707 708 static const TypeInfo spapr_drc_physical_info = { 709 .name = TYPE_SPAPR_DRC_PHYSICAL, 710 .parent = TYPE_SPAPR_DR_CONNECTOR, 711 .instance_size = sizeof(sPAPRDRCPhysical), 712 .class_init = spapr_drc_physical_class_init, 713 .abstract = true, 714 }; 715 716 static const TypeInfo spapr_drc_logical_info = { 717 .name = TYPE_SPAPR_DRC_LOGICAL, 718 .parent = TYPE_SPAPR_DR_CONNECTOR, 719 .class_init = spapr_drc_logical_class_init, 720 .abstract = true, 721 }; 722 723 static const TypeInfo spapr_drc_cpu_info = { 724 .name = TYPE_SPAPR_DRC_CPU, 725 .parent = TYPE_SPAPR_DRC_LOGICAL, 726 .class_init = spapr_drc_cpu_class_init, 727 }; 728 729 static const TypeInfo spapr_drc_pci_info = { 730 .name = TYPE_SPAPR_DRC_PCI, 731 .parent = TYPE_SPAPR_DRC_PHYSICAL, 732 .class_init = spapr_drc_pci_class_init, 733 }; 734 735 static const TypeInfo spapr_drc_lmb_info = { 736 .name = TYPE_SPAPR_DRC_LMB, 737 .parent = TYPE_SPAPR_DRC_LOGICAL, 738 .class_init = spapr_drc_lmb_class_init, 739 }; 740 741 /* helper functions for external users */ 742 743 sPAPRDRConnector *spapr_drc_by_index(uint32_t index) 744 { 745 Object *obj; 746 gchar *name; 747 748 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 749 obj = object_resolve_path(name, NULL); 750 g_free(name); 751 752 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 753 } 754 755 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) 756 { 757 sPAPRDRConnectorClass *drck 758 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 759 760 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 761 | (id & DRC_INDEX_ID_MASK)); 762 } 763 764 /** 765 * spapr_drc_populate_dt 766 * 767 * @fdt: libfdt device tree 768 * @path: path in the DT to generate properties 769 * @owner: parent Object/DeviceState for which to generate DRC 770 * descriptions for 771 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding 772 * to the types of DRCs to generate entries for 773 * 774 * generate OF properties to describe DRC topology/indices to guests 775 * 776 * as documented in PAPR+ v2.1, 13.5.2 777 */ 778 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, 779 uint32_t drc_type_mask) 780 { 781 Object *root_container; 782 ObjectProperty *prop; 783 ObjectPropertyIterator iter; 784 uint32_t drc_count = 0; 785 GArray *drc_indexes, *drc_power_domains; 786 GString *drc_names, *drc_types; 787 int ret; 788 789 /* the first entry of each properties is a 32-bit integer encoding 790 * the number of elements in the array. we won't know this until 791 * we complete the iteration through all the matching DRCs, but 792 * reserve the space now and set the offsets accordingly so we 793 * can fill them in later. 794 */ 795 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 796 drc_indexes = g_array_set_size(drc_indexes, 1); 797 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 798 drc_power_domains = g_array_set_size(drc_power_domains, 1); 799 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 800 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 801 802 /* aliases for all DRConnector objects will be rooted in QOM 803 * composition tree at DRC_CONTAINER_PATH 804 */ 805 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 806 807 object_property_iter_init(&iter, root_container); 808 while ((prop = object_property_iter_next(&iter))) { 809 Object *obj; 810 sPAPRDRConnector *drc; 811 sPAPRDRConnectorClass *drck; 812 uint32_t drc_index, drc_power_domain; 813 814 if (!strstart(prop->type, "link<", NULL)) { 815 continue; 816 } 817 818 obj = object_property_get_link(root_container, prop->name, NULL); 819 drc = SPAPR_DR_CONNECTOR(obj); 820 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 821 822 if (owner && (drc->owner != owner)) { 823 continue; 824 } 825 826 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 827 continue; 828 } 829 830 drc_count++; 831 832 /* ibm,drc-indexes */ 833 drc_index = cpu_to_be32(spapr_drc_index(drc)); 834 g_array_append_val(drc_indexes, drc_index); 835 836 /* ibm,drc-power-domains */ 837 drc_power_domain = cpu_to_be32(-1); 838 g_array_append_val(drc_power_domains, drc_power_domain); 839 840 /* ibm,drc-names */ 841 drc_names = g_string_append(drc_names, spapr_drc_name(drc)); 842 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 843 844 /* ibm,drc-types */ 845 drc_types = g_string_append(drc_types, drck->typename); 846 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 847 } 848 849 /* now write the drc count into the space we reserved at the 850 * beginning of the arrays previously 851 */ 852 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 853 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 854 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 855 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 856 857 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", 858 drc_indexes->data, 859 drc_indexes->len * sizeof(uint32_t)); 860 if (ret) { 861 error_report("Couldn't create ibm,drc-indexes property"); 862 goto out; 863 } 864 865 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", 866 drc_power_domains->data, 867 drc_power_domains->len * sizeof(uint32_t)); 868 if (ret) { 869 error_report("Couldn't finalize ibm,drc-power-domains property"); 870 goto out; 871 } 872 873 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", 874 drc_names->str, drc_names->len); 875 if (ret) { 876 error_report("Couldn't finalize ibm,drc-names property"); 877 goto out; 878 } 879 880 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", 881 drc_types->str, drc_types->len); 882 if (ret) { 883 error_report("Couldn't finalize ibm,drc-types property"); 884 goto out; 885 } 886 887 out: 888 g_array_free(drc_indexes, true); 889 g_array_free(drc_power_domains, true); 890 g_string_free(drc_names, true); 891 g_string_free(drc_types, true); 892 893 return ret; 894 } 895 896 /* 897 * RTAS calls 898 */ 899 900 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 901 { 902 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 903 sPAPRDRConnectorClass *drck; 904 905 if (!drc) { 906 return RTAS_OUT_NO_SUCH_INDICATOR; 907 } 908 909 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 910 911 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 912 913 switch (state) { 914 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 915 return drck->isolate(drc); 916 917 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 918 return drck->unisolate(drc); 919 920 default: 921 return RTAS_OUT_PARAM_ERROR; 922 } 923 } 924 925 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 926 { 927 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 928 929 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 930 return RTAS_OUT_NO_SUCH_INDICATOR; 931 } 932 933 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 934 935 switch (state) { 936 case SPAPR_DR_ALLOCATION_STATE_USABLE: 937 return drc_set_usable(drc); 938 939 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 940 return drc_set_unusable(drc); 941 942 default: 943 return RTAS_OUT_PARAM_ERROR; 944 } 945 } 946 947 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 948 { 949 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 950 951 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 952 return RTAS_OUT_NO_SUCH_INDICATOR; 953 } 954 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 955 && (state != SPAPR_DR_INDICATOR_ACTIVE) 956 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 957 && (state != SPAPR_DR_INDICATOR_ACTION)) { 958 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 959 } 960 961 trace_spapr_drc_set_dr_indicator(idx, state); 962 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 963 return RTAS_OUT_SUCCESS; 964 } 965 966 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 967 uint32_t token, 968 uint32_t nargs, target_ulong args, 969 uint32_t nret, target_ulong rets) 970 { 971 uint32_t type, idx, state; 972 uint32_t ret = RTAS_OUT_SUCCESS; 973 974 if (nargs != 3 || nret != 1) { 975 ret = RTAS_OUT_PARAM_ERROR; 976 goto out; 977 } 978 979 type = rtas_ld(args, 0); 980 idx = rtas_ld(args, 1); 981 state = rtas_ld(args, 2); 982 983 switch (type) { 984 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 985 ret = rtas_set_isolation_state(idx, state); 986 break; 987 case RTAS_SENSOR_TYPE_DR: 988 ret = rtas_set_dr_indicator(idx, state); 989 break; 990 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 991 ret = rtas_set_allocation_state(idx, state); 992 break; 993 default: 994 ret = RTAS_OUT_NOT_SUPPORTED; 995 } 996 997 out: 998 rtas_st(rets, 0, ret); 999 } 1000 1001 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1002 uint32_t token, uint32_t nargs, 1003 target_ulong args, uint32_t nret, 1004 target_ulong rets) 1005 { 1006 uint32_t sensor_type; 1007 uint32_t sensor_index; 1008 uint32_t sensor_state = 0; 1009 sPAPRDRConnector *drc; 1010 sPAPRDRConnectorClass *drck; 1011 uint32_t ret = RTAS_OUT_SUCCESS; 1012 1013 if (nargs != 2 || nret != 2) { 1014 ret = RTAS_OUT_PARAM_ERROR; 1015 goto out; 1016 } 1017 1018 sensor_type = rtas_ld(args, 0); 1019 sensor_index = rtas_ld(args, 1); 1020 1021 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1022 /* currently only DR-related sensors are implemented */ 1023 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1024 sensor_type); 1025 ret = RTAS_OUT_NOT_SUPPORTED; 1026 goto out; 1027 } 1028 1029 drc = spapr_drc_by_index(sensor_index); 1030 if (!drc) { 1031 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1032 ret = RTAS_OUT_PARAM_ERROR; 1033 goto out; 1034 } 1035 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1036 sensor_state = drck->dr_entity_sense(drc); 1037 1038 out: 1039 rtas_st(rets, 0, ret); 1040 rtas_st(rets, 1, sensor_state); 1041 } 1042 1043 /* configure-connector work area offsets, int32_t units for field 1044 * indexes, bytes for field offset/len values. 1045 * 1046 * as documented by PAPR+ v2.7, 13.5.3.5 1047 */ 1048 #define CC_IDX_NODE_NAME_OFFSET 2 1049 #define CC_IDX_PROP_NAME_OFFSET 2 1050 #define CC_IDX_PROP_LEN 3 1051 #define CC_IDX_PROP_DATA_OFFSET 4 1052 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1053 #define CC_WA_LEN 4096 1054 1055 static void configure_connector_st(target_ulong addr, target_ulong offset, 1056 const void *buf, size_t len) 1057 { 1058 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1059 buf, MIN(len, CC_WA_LEN - offset)); 1060 } 1061 1062 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1063 sPAPRMachineState *spapr, 1064 uint32_t token, uint32_t nargs, 1065 target_ulong args, uint32_t nret, 1066 target_ulong rets) 1067 { 1068 uint64_t wa_addr; 1069 uint64_t wa_offset; 1070 uint32_t drc_index; 1071 sPAPRDRConnector *drc; 1072 sPAPRDRConnectorClass *drck; 1073 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1074 int rc; 1075 1076 if (nargs != 2 || nret != 1) { 1077 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1078 return; 1079 } 1080 1081 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1082 1083 drc_index = rtas_ld(wa_addr, 0); 1084 drc = spapr_drc_by_index(drc_index); 1085 if (!drc) { 1086 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1087 rc = RTAS_OUT_PARAM_ERROR; 1088 goto out; 1089 } 1090 1091 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1092 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1093 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1094 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1095 /* 1096 * Need to unisolate the device before configuring 1097 * or it should already be in configured state to 1098 * allow configure-connector be called repeatedly. 1099 */ 1100 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1101 goto out; 1102 } 1103 1104 g_assert(drc->fdt); 1105 1106 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1107 1108 do { 1109 uint32_t tag; 1110 const char *name; 1111 const struct fdt_property *prop; 1112 int fdt_offset_next, prop_len; 1113 1114 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1115 1116 switch (tag) { 1117 case FDT_BEGIN_NODE: 1118 drc->ccs_depth++; 1119 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1120 1121 /* provide the name of the next OF node */ 1122 wa_offset = CC_VAL_DATA_OFFSET; 1123 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1124 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1125 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1126 break; 1127 case FDT_END_NODE: 1128 drc->ccs_depth--; 1129 if (drc->ccs_depth == 0) { 1130 uint32_t drc_index = spapr_drc_index(drc); 1131 1132 /* done sending the device tree, move to configured state */ 1133 trace_spapr_drc_set_configured(drc_index); 1134 drc->state = drck->ready_state; 1135 /* 1136 * Ensure that we are able to send the FDT fragment 1137 * again via configure-connector call if the guest requests. 1138 */ 1139 drc->ccs_offset = drc->fdt_start_offset; 1140 drc->ccs_depth = 0; 1141 fdt_offset_next = drc->fdt_start_offset; 1142 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1143 } else { 1144 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1145 } 1146 break; 1147 case FDT_PROP: 1148 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1149 &prop_len); 1150 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1151 1152 /* provide the name of the next OF property */ 1153 wa_offset = CC_VAL_DATA_OFFSET; 1154 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1155 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1156 1157 /* provide the length and value of the OF property. data gets 1158 * placed immediately after NULL terminator of the OF property's 1159 * name string 1160 */ 1161 wa_offset += strlen(name) + 1, 1162 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1163 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1164 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1165 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1166 break; 1167 case FDT_END: 1168 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1169 default: 1170 /* keep seeking for an actionable tag */ 1171 break; 1172 } 1173 if (drc->ccs_offset >= 0) { 1174 drc->ccs_offset = fdt_offset_next; 1175 } 1176 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1177 1178 rc = resp; 1179 out: 1180 rtas_st(rets, 0, rc); 1181 } 1182 1183 static void spapr_drc_register_types(void) 1184 { 1185 type_register_static(&spapr_dr_connector_info); 1186 type_register_static(&spapr_drc_physical_info); 1187 type_register_static(&spapr_drc_logical_info); 1188 type_register_static(&spapr_drc_cpu_info); 1189 type_register_static(&spapr_drc_pci_info); 1190 type_register_static(&spapr_drc_lmb_info); 1191 1192 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1193 rtas_set_indicator); 1194 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1195 rtas_get_sensor_state); 1196 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1197 rtas_ibm_configure_connector); 1198 } 1199 type_init(spapr_drc_register_types) 1200