1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "hw/qdev.h" 20 #include "qapi/visitor.h" 21 #include "qemu/error-report.h" 22 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 24 #include "trace.h" 25 26 #define DRC_CONTAINER_PATH "/dr-connector" 27 #define DRC_INDEX_TYPE_SHIFT 28 28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 29 30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) 31 { 32 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 33 34 return 1 << drck->typeshift; 35 } 36 37 uint32_t spapr_drc_index(sPAPRDRConnector *drc) 38 { 39 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 40 41 /* no set format for a drc index: it only needs to be globally 42 * unique. this is how we encode the DRC type on bare-metal 43 * however, so might as well do that here 44 */ 45 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 46 | (drc->id & DRC_INDEX_ID_MASK); 47 } 48 49 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) 50 { 51 /* if the guest is configuring a device attached to this DRC, we 52 * should reset the configuration state at this point since it may 53 * no longer be reliable (guest released device and needs to start 54 * over, or unplug occurred so the FDT is no longer valid) 55 */ 56 g_free(drc->ccs); 57 drc->ccs = NULL; 58 59 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; 60 61 /* if we're awaiting release, but still in an unconfigured state, 62 * it's likely the guest is still in the process of configuring 63 * the device and is transitioning the devices to an ISOLATED 64 * state as a part of that process. so we only complete the 65 * removal when this transition happens for a device in a 66 * configured state, as suggested by the state diagram from PAPR+ 67 * 2.7, 13.4 68 */ 69 if (drc->awaiting_release) { 70 uint32_t drc_index = spapr_drc_index(drc); 71 if (drc->configured) { 72 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 73 spapr_drc_detach(drc, DEVICE(drc->dev), NULL); 74 } else { 75 trace_spapr_drc_set_isolation_state_deferring(drc_index); 76 } 77 } 78 drc->configured = false; 79 80 return RTAS_OUT_SUCCESS; 81 } 82 83 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) 84 { 85 /* cannot unisolate a non-existent resource, and, or resources 86 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 87 * 13.5.3.5) 88 */ 89 if (!drc->dev) { 90 return RTAS_OUT_NO_SUCH_INDICATOR; 91 } 92 93 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; 94 95 return RTAS_OUT_SUCCESS; 96 } 97 98 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) 99 { 100 /* if the guest is configuring a device attached to this DRC, we 101 * should reset the configuration state at this point since it may 102 * no longer be reliable (guest released device and needs to start 103 * over, or unplug occurred so the FDT is no longer valid) 104 */ 105 g_free(drc->ccs); 106 drc->ccs = NULL; 107 108 /* 109 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 110 * belong to a DIMM device that is marked for removal. 111 * 112 * Currently the guest userspace tool drmgr that drives the memory 113 * hotplug/unplug will just try to remove a set of 'removable' LMBs 114 * in response to a hot unplug request that is based on drc-count. 115 * If the LMB being removed doesn't belong to a DIMM device that is 116 * actually being unplugged, fail the isolation request here. 117 */ 118 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 119 && !drc->awaiting_release) { 120 return RTAS_OUT_HW_ERROR; 121 } 122 123 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; 124 125 /* if we're awaiting release, but still in an unconfigured state, 126 * it's likely the guest is still in the process of configuring 127 * the device and is transitioning the devices to an ISOLATED 128 * state as a part of that process. so we only complete the 129 * removal when this transition happens for a device in a 130 * configured state, as suggested by the state diagram from PAPR+ 131 * 2.7, 13.4 132 */ 133 if (drc->awaiting_release) { 134 uint32_t drc_index = spapr_drc_index(drc); 135 if (drc->configured) { 136 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 137 spapr_drc_detach(drc, DEVICE(drc->dev), NULL); 138 } else { 139 trace_spapr_drc_set_isolation_state_deferring(drc_index); 140 } 141 } 142 drc->configured = false; 143 144 return RTAS_OUT_SUCCESS; 145 } 146 147 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) 148 { 149 /* cannot unisolate a non-existent resource, and, or resources 150 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 151 * 13.5.3.5) 152 */ 153 if (!drc->dev || 154 drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) { 155 return RTAS_OUT_NO_SUCH_INDICATOR; 156 } 157 158 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; 159 160 return RTAS_OUT_SUCCESS; 161 } 162 163 static uint32_t drc_set_usable(sPAPRDRConnector *drc) 164 { 165 /* if there's no resource/device associated with the DRC, there's 166 * no way for us to put it in an allocation state consistent with 167 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 168 * result in an RTAS return code of -3 / "no such indicator" 169 */ 170 if (!drc->dev) { 171 return RTAS_OUT_NO_SUCH_INDICATOR; 172 } 173 if (drc->awaiting_release && drc->awaiting_allocation) { 174 /* kernel is acknowledging a previous hotplug event 175 * while we are already removing it. 176 * it's safe to ignore awaiting_allocation here since we know the 177 * situation is predicated on the guest either already having done 178 * so (boot-time hotplug), or never being able to acquire in the 179 * first place (hotplug followed by immediate unplug). 180 */ 181 return RTAS_OUT_NO_SUCH_INDICATOR; 182 } 183 184 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; 185 drc->awaiting_allocation = false; 186 187 return RTAS_OUT_SUCCESS; 188 } 189 190 static uint32_t drc_set_unusable(sPAPRDRConnector *drc) 191 { 192 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE; 193 if (drc->awaiting_release) { 194 uint32_t drc_index = spapr_drc_index(drc); 195 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 196 spapr_drc_detach(drc, DEVICE(drc->dev), NULL); 197 } 198 199 return RTAS_OUT_SUCCESS; 200 } 201 202 static const char *spapr_drc_name(sPAPRDRConnector *drc) 203 { 204 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 205 206 /* human-readable name for a DRC to encode into the DT 207 * description. this is mainly only used within a guest in place 208 * of the unique DRC index. 209 * 210 * in the case of VIO/PCI devices, it corresponds to a "location 211 * code" that maps a logical device/function (DRC index) to a 212 * physical (or virtual in the case of VIO) location in the system 213 * by chaining together the "location label" for each 214 * encapsulating component. 215 * 216 * since this is more to do with diagnosing physical hardware 217 * issues than guest compatibility, we choose location codes/DRC 218 * names that adhere to the documented format, but avoid encoding 219 * the entire topology information into the label/code, instead 220 * just using the location codes based on the labels for the 221 * endpoints (VIO/PCI adaptor connectors), which is basically just 222 * "C" followed by an integer ID. 223 * 224 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 225 * location codes as documented by PAPR+ v2.7, 12.3.1.5 226 */ 227 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 228 } 229 230 /* 231 * dr-entity-sense sensor value 232 * returned via get-sensor-state RTAS calls 233 * as expected by state diagram in PAPR+ 2.7, 13.4 234 * based on the current allocation/indicator/power states 235 * for the DR connector. 236 */ 237 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) 238 { 239 /* this assumes all PCI devices are assigned to a 'live insertion' 240 * power domain, where QEMU manages power state automatically as 241 * opposed to the guest. present, non-PCI resources are unaffected 242 * by power state. 243 */ 244 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 245 : SPAPR_DR_ENTITY_SENSE_EMPTY; 246 } 247 248 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) 249 { 250 if (drc->dev 251 && (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) { 252 return SPAPR_DR_ENTITY_SENSE_PRESENT; 253 } else { 254 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 255 } 256 } 257 258 static void prop_get_index(Object *obj, Visitor *v, const char *name, 259 void *opaque, Error **errp) 260 { 261 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 262 uint32_t value = spapr_drc_index(drc); 263 visit_type_uint32(v, name, &value, errp); 264 } 265 266 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 267 void *opaque, Error **errp) 268 { 269 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 270 Error *err = NULL; 271 int fdt_offset_next, fdt_offset, fdt_depth; 272 void *fdt; 273 274 if (!drc->fdt) { 275 visit_type_null(v, NULL, errp); 276 return; 277 } 278 279 fdt = drc->fdt; 280 fdt_offset = drc->fdt_start_offset; 281 fdt_depth = 0; 282 283 do { 284 const char *name = NULL; 285 const struct fdt_property *prop = NULL; 286 int prop_len = 0, name_len = 0; 287 uint32_t tag; 288 289 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 290 switch (tag) { 291 case FDT_BEGIN_NODE: 292 fdt_depth++; 293 name = fdt_get_name(fdt, fdt_offset, &name_len); 294 visit_start_struct(v, name, NULL, 0, &err); 295 if (err) { 296 error_propagate(errp, err); 297 return; 298 } 299 break; 300 case FDT_END_NODE: 301 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 302 g_assert(fdt_depth > 0); 303 visit_check_struct(v, &err); 304 visit_end_struct(v, NULL); 305 if (err) { 306 error_propagate(errp, err); 307 return; 308 } 309 fdt_depth--; 310 break; 311 case FDT_PROP: { 312 int i; 313 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 314 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 315 visit_start_list(v, name, NULL, 0, &err); 316 if (err) { 317 error_propagate(errp, err); 318 return; 319 } 320 for (i = 0; i < prop_len; i++) { 321 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 322 if (err) { 323 error_propagate(errp, err); 324 return; 325 } 326 } 327 visit_check_list(v, &err); 328 visit_end_list(v, NULL); 329 if (err) { 330 error_propagate(errp, err); 331 return; 332 } 333 break; 334 } 335 default: 336 error_setg(&error_abort, "device FDT in unexpected state: %d", tag); 337 } 338 fdt_offset = fdt_offset_next; 339 } while (fdt_depth != 0); 340 } 341 342 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, 343 int fdt_start_offset, Error **errp) 344 { 345 trace_spapr_drc_attach(spapr_drc_index(drc)); 346 347 if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) { 348 error_setg(errp, "an attached device is still awaiting release"); 349 return; 350 } 351 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) { 352 g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE); 353 } 354 g_assert(fdt); 355 356 drc->dev = d; 357 drc->fdt = fdt; 358 drc->fdt_start_offset = fdt_start_offset; 359 360 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { 361 drc->awaiting_allocation = true; 362 } 363 364 object_property_add_link(OBJECT(drc), "device", 365 object_get_typename(OBJECT(drc->dev)), 366 (Object **)(&drc->dev), 367 NULL, 0, NULL); 368 } 369 370 static void spapr_drc_release(sPAPRDRConnector *drc) 371 { 372 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 373 374 drck->release(drc->dev); 375 376 drc->awaiting_release = false; 377 g_free(drc->fdt); 378 drc->fdt = NULL; 379 drc->fdt_start_offset = 0; 380 object_property_del(OBJECT(drc), "device", NULL); 381 drc->dev = NULL; 382 } 383 384 void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp) 385 { 386 trace_spapr_drc_detach(spapr_drc_index(drc)); 387 388 if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) { 389 trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc)); 390 drc->awaiting_release = true; 391 return; 392 } 393 394 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI && 395 drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) { 396 trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc)); 397 drc->awaiting_release = true; 398 return; 399 } 400 401 if (drc->awaiting_allocation) { 402 drc->awaiting_release = true; 403 trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc)); 404 return; 405 } 406 407 spapr_drc_release(drc); 408 } 409 410 static bool release_pending(sPAPRDRConnector *drc) 411 { 412 return drc->awaiting_release; 413 } 414 415 static void drc_reset(void *opaque) 416 { 417 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque); 418 419 trace_spapr_drc_reset(spapr_drc_index(drc)); 420 421 g_free(drc->ccs); 422 drc->ccs = NULL; 423 424 /* immediately upon reset we can safely assume DRCs whose devices 425 * are pending removal can be safely removed. 426 */ 427 if (drc->awaiting_release) { 428 spapr_drc_release(drc); 429 } 430 431 drc->awaiting_allocation = false; 432 433 if (drc->dev) { 434 /* A device present at reset is coldplugged */ 435 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; 436 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { 437 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; 438 } 439 drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 440 } else { 441 /* Otherwise device is absent, but might be hotplugged */ 442 drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; 443 if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { 444 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE; 445 } 446 drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 447 } 448 } 449 450 static bool spapr_drc_needed(void *opaque) 451 { 452 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; 453 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 454 bool rc = false; 455 sPAPRDREntitySense value = drck->dr_entity_sense(drc); 456 457 /* If no dev is plugged in there is no need to migrate the DRC state */ 458 if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) { 459 return false; 460 } 461 462 /* 463 * If there is dev plugged in, we need to migrate the DRC state when 464 * it is different from cold-plugged state 465 */ 466 switch (spapr_drc_type(drc)) { 467 case SPAPR_DR_CONNECTOR_TYPE_PCI: 468 case SPAPR_DR_CONNECTOR_TYPE_CPU: 469 case SPAPR_DR_CONNECTOR_TYPE_LMB: 470 rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) && 471 (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) && 472 drc->configured && !drc->awaiting_release); 473 break; 474 case SPAPR_DR_CONNECTOR_TYPE_PHB: 475 case SPAPR_DR_CONNECTOR_TYPE_VIO: 476 default: 477 g_assert_not_reached(); 478 } 479 return rc; 480 } 481 482 static const VMStateDescription vmstate_spapr_drc = { 483 .name = "spapr_drc", 484 .version_id = 1, 485 .minimum_version_id = 1, 486 .needed = spapr_drc_needed, 487 .fields = (VMStateField []) { 488 VMSTATE_UINT32(isolation_state, sPAPRDRConnector), 489 VMSTATE_UINT32(allocation_state, sPAPRDRConnector), 490 VMSTATE_UINT32(dr_indicator, sPAPRDRConnector), 491 VMSTATE_BOOL(configured, sPAPRDRConnector), 492 VMSTATE_BOOL(awaiting_release, sPAPRDRConnector), 493 VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector), 494 VMSTATE_END_OF_LIST() 495 } 496 }; 497 498 static void realize(DeviceState *d, Error **errp) 499 { 500 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 501 Object *root_container; 502 char link_name[256]; 503 gchar *child_name; 504 Error *err = NULL; 505 506 trace_spapr_drc_realize(spapr_drc_index(drc)); 507 /* NOTE: we do this as part of realize/unrealize due to the fact 508 * that the guest will communicate with the DRC via RTAS calls 509 * referencing the global DRC index. By unlinking the DRC 510 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 511 * inaccessible by the guest, since lookups rely on this path 512 * existing in the composition tree 513 */ 514 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 515 snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc)); 516 child_name = object_get_canonical_path_component(OBJECT(drc)); 517 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 518 object_property_add_alias(root_container, link_name, 519 drc->owner, child_name, &err); 520 if (err) { 521 error_report_err(err); 522 object_unref(OBJECT(drc)); 523 } 524 g_free(child_name); 525 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 526 drc); 527 qemu_register_reset(drc_reset, drc); 528 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 529 } 530 531 static void unrealize(DeviceState *d, Error **errp) 532 { 533 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 534 Object *root_container; 535 char name[256]; 536 Error *err = NULL; 537 538 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 539 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 540 snprintf(name, sizeof(name), "%x", spapr_drc_index(drc)); 541 object_property_del(root_container, name, &err); 542 if (err) { 543 error_report_err(err); 544 object_unref(OBJECT(drc)); 545 } 546 } 547 548 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, 549 uint32_t id) 550 { 551 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); 552 char *prop_name; 553 554 drc->id = id; 555 drc->owner = owner; 556 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 557 spapr_drc_index(drc)); 558 object_property_add_child(owner, prop_name, OBJECT(drc), NULL); 559 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 560 g_free(prop_name); 561 562 /* PCI slot always start in a USABLE state, and stay there */ 563 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) { 564 drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; 565 } 566 567 return drc; 568 } 569 570 static void spapr_dr_connector_instance_init(Object *obj) 571 { 572 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 573 574 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 575 object_property_add(obj, "index", "uint32", prop_get_index, 576 NULL, NULL, NULL, NULL); 577 object_property_add(obj, "fdt", "struct", prop_get_fdt, 578 NULL, NULL, NULL, NULL); 579 } 580 581 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 582 { 583 DeviceClass *dk = DEVICE_CLASS(k); 584 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 585 586 dk->realize = realize; 587 dk->unrealize = unrealize; 588 drck->release_pending = release_pending; 589 /* 590 * Reason: it crashes FIXME find and document the real reason 591 */ 592 dk->user_creatable = false; 593 } 594 595 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 596 { 597 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 598 599 drck->dr_entity_sense = physical_entity_sense; 600 drck->isolate = drc_isolate_physical; 601 drck->unisolate = drc_unisolate_physical; 602 } 603 604 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 605 { 606 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 607 608 drck->dr_entity_sense = logical_entity_sense; 609 drck->isolate = drc_isolate_logical; 610 drck->unisolate = drc_unisolate_logical; 611 } 612 613 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 614 { 615 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 616 617 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 618 drck->typename = "CPU"; 619 drck->drc_name_prefix = "CPU "; 620 drck->release = spapr_core_release; 621 } 622 623 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 624 { 625 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 626 627 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 628 drck->typename = "28"; 629 drck->drc_name_prefix = "C"; 630 drck->release = spapr_phb_remove_pci_device_cb; 631 } 632 633 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 634 { 635 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 636 637 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 638 drck->typename = "MEM"; 639 drck->drc_name_prefix = "LMB "; 640 drck->release = spapr_lmb_release; 641 } 642 643 static const TypeInfo spapr_dr_connector_info = { 644 .name = TYPE_SPAPR_DR_CONNECTOR, 645 .parent = TYPE_DEVICE, 646 .instance_size = sizeof(sPAPRDRConnector), 647 .instance_init = spapr_dr_connector_instance_init, 648 .class_size = sizeof(sPAPRDRConnectorClass), 649 .class_init = spapr_dr_connector_class_init, 650 .abstract = true, 651 }; 652 653 static const TypeInfo spapr_drc_physical_info = { 654 .name = TYPE_SPAPR_DRC_PHYSICAL, 655 .parent = TYPE_SPAPR_DR_CONNECTOR, 656 .instance_size = sizeof(sPAPRDRConnector), 657 .class_init = spapr_drc_physical_class_init, 658 .abstract = true, 659 }; 660 661 static const TypeInfo spapr_drc_logical_info = { 662 .name = TYPE_SPAPR_DRC_LOGICAL, 663 .parent = TYPE_SPAPR_DR_CONNECTOR, 664 .instance_size = sizeof(sPAPRDRConnector), 665 .class_init = spapr_drc_logical_class_init, 666 .abstract = true, 667 }; 668 669 static const TypeInfo spapr_drc_cpu_info = { 670 .name = TYPE_SPAPR_DRC_CPU, 671 .parent = TYPE_SPAPR_DRC_LOGICAL, 672 .instance_size = sizeof(sPAPRDRConnector), 673 .class_init = spapr_drc_cpu_class_init, 674 }; 675 676 static const TypeInfo spapr_drc_pci_info = { 677 .name = TYPE_SPAPR_DRC_PCI, 678 .parent = TYPE_SPAPR_DRC_PHYSICAL, 679 .instance_size = sizeof(sPAPRDRConnector), 680 .class_init = spapr_drc_pci_class_init, 681 }; 682 683 static const TypeInfo spapr_drc_lmb_info = { 684 .name = TYPE_SPAPR_DRC_LMB, 685 .parent = TYPE_SPAPR_DRC_LOGICAL, 686 .instance_size = sizeof(sPAPRDRConnector), 687 .class_init = spapr_drc_lmb_class_init, 688 }; 689 690 /* helper functions for external users */ 691 692 sPAPRDRConnector *spapr_drc_by_index(uint32_t index) 693 { 694 Object *obj; 695 char name[256]; 696 697 snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index); 698 obj = object_resolve_path(name, NULL); 699 700 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 701 } 702 703 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) 704 { 705 sPAPRDRConnectorClass *drck 706 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 707 708 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 709 | (id & DRC_INDEX_ID_MASK)); 710 } 711 712 /** 713 * spapr_drc_populate_dt 714 * 715 * @fdt: libfdt device tree 716 * @path: path in the DT to generate properties 717 * @owner: parent Object/DeviceState for which to generate DRC 718 * descriptions for 719 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding 720 * to the types of DRCs to generate entries for 721 * 722 * generate OF properties to describe DRC topology/indices to guests 723 * 724 * as documented in PAPR+ v2.1, 13.5.2 725 */ 726 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, 727 uint32_t drc_type_mask) 728 { 729 Object *root_container; 730 ObjectProperty *prop; 731 ObjectPropertyIterator iter; 732 uint32_t drc_count = 0; 733 GArray *drc_indexes, *drc_power_domains; 734 GString *drc_names, *drc_types; 735 int ret; 736 737 /* the first entry of each properties is a 32-bit integer encoding 738 * the number of elements in the array. we won't know this until 739 * we complete the iteration through all the matching DRCs, but 740 * reserve the space now and set the offsets accordingly so we 741 * can fill them in later. 742 */ 743 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 744 drc_indexes = g_array_set_size(drc_indexes, 1); 745 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 746 drc_power_domains = g_array_set_size(drc_power_domains, 1); 747 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 748 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 749 750 /* aliases for all DRConnector objects will be rooted in QOM 751 * composition tree at DRC_CONTAINER_PATH 752 */ 753 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 754 755 object_property_iter_init(&iter, root_container); 756 while ((prop = object_property_iter_next(&iter))) { 757 Object *obj; 758 sPAPRDRConnector *drc; 759 sPAPRDRConnectorClass *drck; 760 uint32_t drc_index, drc_power_domain; 761 762 if (!strstart(prop->type, "link<", NULL)) { 763 continue; 764 } 765 766 obj = object_property_get_link(root_container, prop->name, NULL); 767 drc = SPAPR_DR_CONNECTOR(obj); 768 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 769 770 if (owner && (drc->owner != owner)) { 771 continue; 772 } 773 774 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 775 continue; 776 } 777 778 drc_count++; 779 780 /* ibm,drc-indexes */ 781 drc_index = cpu_to_be32(spapr_drc_index(drc)); 782 g_array_append_val(drc_indexes, drc_index); 783 784 /* ibm,drc-power-domains */ 785 drc_power_domain = cpu_to_be32(-1); 786 g_array_append_val(drc_power_domains, drc_power_domain); 787 788 /* ibm,drc-names */ 789 drc_names = g_string_append(drc_names, spapr_drc_name(drc)); 790 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 791 792 /* ibm,drc-types */ 793 drc_types = g_string_append(drc_types, drck->typename); 794 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 795 } 796 797 /* now write the drc count into the space we reserved at the 798 * beginning of the arrays previously 799 */ 800 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 801 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 802 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 803 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 804 805 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", 806 drc_indexes->data, 807 drc_indexes->len * sizeof(uint32_t)); 808 if (ret) { 809 error_report("Couldn't create ibm,drc-indexes property"); 810 goto out; 811 } 812 813 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", 814 drc_power_domains->data, 815 drc_power_domains->len * sizeof(uint32_t)); 816 if (ret) { 817 error_report("Couldn't finalize ibm,drc-power-domains property"); 818 goto out; 819 } 820 821 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", 822 drc_names->str, drc_names->len); 823 if (ret) { 824 error_report("Couldn't finalize ibm,drc-names property"); 825 goto out; 826 } 827 828 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", 829 drc_types->str, drc_types->len); 830 if (ret) { 831 error_report("Couldn't finalize ibm,drc-types property"); 832 goto out; 833 } 834 835 out: 836 g_array_free(drc_indexes, true); 837 g_array_free(drc_power_domains, true); 838 g_string_free(drc_names, true); 839 g_string_free(drc_types, true); 840 841 return ret; 842 } 843 844 /* 845 * RTAS calls 846 */ 847 848 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 849 { 850 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 851 sPAPRDRConnectorClass *drck; 852 853 if (!drc) { 854 return RTAS_OUT_NO_SUCH_INDICATOR; 855 } 856 857 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 858 859 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 860 861 switch (state) { 862 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 863 return drck->isolate(drc); 864 865 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 866 return drck->unisolate(drc); 867 868 default: 869 return RTAS_OUT_PARAM_ERROR; 870 } 871 } 872 873 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 874 { 875 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 876 877 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 878 return RTAS_OUT_NO_SUCH_INDICATOR; 879 } 880 881 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 882 883 switch (state) { 884 case SPAPR_DR_ALLOCATION_STATE_USABLE: 885 return drc_set_usable(drc); 886 887 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 888 return drc_set_unusable(drc); 889 890 default: 891 return RTAS_OUT_PARAM_ERROR; 892 } 893 } 894 895 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 896 { 897 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 898 899 if (!drc) { 900 return RTAS_OUT_PARAM_ERROR; 901 } 902 903 trace_spapr_drc_set_dr_indicator(idx, state); 904 drc->dr_indicator = state; 905 return RTAS_OUT_SUCCESS; 906 } 907 908 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 909 uint32_t token, 910 uint32_t nargs, target_ulong args, 911 uint32_t nret, target_ulong rets) 912 { 913 uint32_t type, idx, state; 914 uint32_t ret = RTAS_OUT_SUCCESS; 915 916 if (nargs != 3 || nret != 1) { 917 ret = RTAS_OUT_PARAM_ERROR; 918 goto out; 919 } 920 921 type = rtas_ld(args, 0); 922 idx = rtas_ld(args, 1); 923 state = rtas_ld(args, 2); 924 925 switch (type) { 926 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 927 ret = rtas_set_isolation_state(idx, state); 928 break; 929 case RTAS_SENSOR_TYPE_DR: 930 ret = rtas_set_dr_indicator(idx, state); 931 break; 932 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 933 ret = rtas_set_allocation_state(idx, state); 934 break; 935 default: 936 ret = RTAS_OUT_NOT_SUPPORTED; 937 } 938 939 out: 940 rtas_st(rets, 0, ret); 941 } 942 943 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 944 uint32_t token, uint32_t nargs, 945 target_ulong args, uint32_t nret, 946 target_ulong rets) 947 { 948 uint32_t sensor_type; 949 uint32_t sensor_index; 950 uint32_t sensor_state = 0; 951 sPAPRDRConnector *drc; 952 sPAPRDRConnectorClass *drck; 953 uint32_t ret = RTAS_OUT_SUCCESS; 954 955 if (nargs != 2 || nret != 2) { 956 ret = RTAS_OUT_PARAM_ERROR; 957 goto out; 958 } 959 960 sensor_type = rtas_ld(args, 0); 961 sensor_index = rtas_ld(args, 1); 962 963 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 964 /* currently only DR-related sensors are implemented */ 965 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 966 sensor_type); 967 ret = RTAS_OUT_NOT_SUPPORTED; 968 goto out; 969 } 970 971 drc = spapr_drc_by_index(sensor_index); 972 if (!drc) { 973 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 974 ret = RTAS_OUT_PARAM_ERROR; 975 goto out; 976 } 977 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 978 sensor_state = drck->dr_entity_sense(drc); 979 980 out: 981 rtas_st(rets, 0, ret); 982 rtas_st(rets, 1, sensor_state); 983 } 984 985 /* configure-connector work area offsets, int32_t units for field 986 * indexes, bytes for field offset/len values. 987 * 988 * as documented by PAPR+ v2.7, 13.5.3.5 989 */ 990 #define CC_IDX_NODE_NAME_OFFSET 2 991 #define CC_IDX_PROP_NAME_OFFSET 2 992 #define CC_IDX_PROP_LEN 3 993 #define CC_IDX_PROP_DATA_OFFSET 4 994 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 995 #define CC_WA_LEN 4096 996 997 static void configure_connector_st(target_ulong addr, target_ulong offset, 998 const void *buf, size_t len) 999 { 1000 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1001 buf, MIN(len, CC_WA_LEN - offset)); 1002 } 1003 1004 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1005 sPAPRMachineState *spapr, 1006 uint32_t token, uint32_t nargs, 1007 target_ulong args, uint32_t nret, 1008 target_ulong rets) 1009 { 1010 uint64_t wa_addr; 1011 uint64_t wa_offset; 1012 uint32_t drc_index; 1013 sPAPRDRConnector *drc; 1014 sPAPRConfigureConnectorState *ccs; 1015 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1016 int rc; 1017 1018 if (nargs != 2 || nret != 1) { 1019 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1020 return; 1021 } 1022 1023 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1024 1025 drc_index = rtas_ld(wa_addr, 0); 1026 drc = spapr_drc_by_index(drc_index); 1027 if (!drc) { 1028 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1029 rc = RTAS_OUT_PARAM_ERROR; 1030 goto out; 1031 } 1032 1033 if (!drc->fdt) { 1034 trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index); 1035 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1036 goto out; 1037 } 1038 1039 ccs = drc->ccs; 1040 if (!ccs) { 1041 ccs = g_new0(sPAPRConfigureConnectorState, 1); 1042 ccs->fdt_offset = drc->fdt_start_offset; 1043 drc->ccs = ccs; 1044 } 1045 1046 do { 1047 uint32_t tag; 1048 const char *name; 1049 const struct fdt_property *prop; 1050 int fdt_offset_next, prop_len; 1051 1052 tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next); 1053 1054 switch (tag) { 1055 case FDT_BEGIN_NODE: 1056 ccs->fdt_depth++; 1057 name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL); 1058 1059 /* provide the name of the next OF node */ 1060 wa_offset = CC_VAL_DATA_OFFSET; 1061 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1062 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1063 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1064 break; 1065 case FDT_END_NODE: 1066 ccs->fdt_depth--; 1067 if (ccs->fdt_depth == 0) { 1068 sPAPRDRIsolationState state = drc->isolation_state; 1069 uint32_t drc_index = spapr_drc_index(drc); 1070 /* done sending the device tree, don't need to track 1071 * the state anymore 1072 */ 1073 trace_spapr_drc_set_configured(drc_index); 1074 if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) { 1075 drc->configured = true; 1076 } else { 1077 /* guest should be not configuring an isolated device */ 1078 trace_spapr_drc_set_configured_skipping(drc_index); 1079 } 1080 g_free(ccs); 1081 drc->ccs = NULL; 1082 ccs = NULL; 1083 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1084 } else { 1085 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1086 } 1087 break; 1088 case FDT_PROP: 1089 prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset, 1090 &prop_len); 1091 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1092 1093 /* provide the name of the next OF property */ 1094 wa_offset = CC_VAL_DATA_OFFSET; 1095 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1096 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1097 1098 /* provide the length and value of the OF property. data gets 1099 * placed immediately after NULL terminator of the OF property's 1100 * name string 1101 */ 1102 wa_offset += strlen(name) + 1, 1103 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1104 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1105 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1106 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1107 break; 1108 case FDT_END: 1109 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1110 default: 1111 /* keep seeking for an actionable tag */ 1112 break; 1113 } 1114 if (ccs) { 1115 ccs->fdt_offset = fdt_offset_next; 1116 } 1117 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1118 1119 rc = resp; 1120 out: 1121 rtas_st(rets, 0, rc); 1122 } 1123 1124 static void spapr_drc_register_types(void) 1125 { 1126 type_register_static(&spapr_dr_connector_info); 1127 type_register_static(&spapr_drc_physical_info); 1128 type_register_static(&spapr_drc_logical_info); 1129 type_register_static(&spapr_drc_cpu_info); 1130 type_register_static(&spapr_drc_pci_info); 1131 type_register_static(&spapr_drc_lmb_info); 1132 1133 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1134 rtas_set_indicator); 1135 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1136 rtas_get_sensor_state); 1137 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1138 rtas_ibm_configure_connector); 1139 } 1140 type_init(spapr_drc_register_types) 1141