1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "hw/qdev.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "trace.h" 26 27 #define DRC_CONTAINER_PATH "/dr-connector" 28 #define DRC_INDEX_TYPE_SHIFT 28 29 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 30 31 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) 32 { 33 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 34 35 return 1 << drck->typeshift; 36 } 37 38 uint32_t spapr_drc_index(sPAPRDRConnector *drc) 39 { 40 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 41 42 /* no set format for a drc index: it only needs to be globally 43 * unique. this is how we encode the DRC type on bare-metal 44 * however, so might as well do that here 45 */ 46 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 47 | (drc->id & DRC_INDEX_ID_MASK); 48 } 49 50 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) 51 { 52 switch (drc->state) { 53 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 54 return RTAS_OUT_SUCCESS; /* Nothing to do */ 55 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 56 break; /* see below */ 57 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 58 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 59 default: 60 g_assert_not_reached(); 61 } 62 63 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 64 65 if (drc->unplug_requested) { 66 uint32_t drc_index = spapr_drc_index(drc); 67 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 68 spapr_drc_detach(drc); 69 } 70 71 return RTAS_OUT_SUCCESS; 72 } 73 74 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) 75 { 76 switch (drc->state) { 77 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 78 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 79 return RTAS_OUT_SUCCESS; /* Nothing to do */ 80 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 81 break; /* see below */ 82 default: 83 g_assert_not_reached(); 84 } 85 86 /* cannot unisolate a non-existent resource, and, or resources 87 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 88 * 13.5.3.5) 89 */ 90 if (!drc->dev) { 91 return RTAS_OUT_NO_SUCH_INDICATOR; 92 } 93 94 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 95 drc->ccs_offset = drc->fdt_start_offset; 96 drc->ccs_depth = 0; 97 98 return RTAS_OUT_SUCCESS; 99 } 100 101 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) 102 { 103 switch (drc->state) { 104 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 105 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 106 return RTAS_OUT_SUCCESS; /* Nothing to do */ 107 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 108 break; /* see below */ 109 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 110 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 111 default: 112 g_assert_not_reached(); 113 } 114 115 /* 116 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 117 * belong to a DIMM device that is marked for removal. 118 * 119 * Currently the guest userspace tool drmgr that drives the memory 120 * hotplug/unplug will just try to remove a set of 'removable' LMBs 121 * in response to a hot unplug request that is based on drc-count. 122 * If the LMB being removed doesn't belong to a DIMM device that is 123 * actually being unplugged, fail the isolation request here. 124 */ 125 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 126 && !drc->unplug_requested) { 127 return RTAS_OUT_HW_ERROR; 128 } 129 130 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 131 132 /* if we're awaiting release, but still in an unconfigured state, 133 * it's likely the guest is still in the process of configuring 134 * the device and is transitioning the devices to an ISOLATED 135 * state as a part of that process. so we only complete the 136 * removal when this transition happens for a device in a 137 * configured state, as suggested by the state diagram from PAPR+ 138 * 2.7, 13.4 139 */ 140 if (drc->unplug_requested) { 141 uint32_t drc_index = spapr_drc_index(drc); 142 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 143 spapr_drc_detach(drc); 144 } 145 return RTAS_OUT_SUCCESS; 146 } 147 148 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) 149 { 150 switch (drc->state) { 151 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 152 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 153 return RTAS_OUT_SUCCESS; /* Nothing to do */ 154 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 155 break; /* see below */ 156 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 157 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 158 default: 159 g_assert_not_reached(); 160 } 161 162 /* Move to AVAILABLE state should have ensured device was present */ 163 g_assert(drc->dev); 164 165 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 166 drc->ccs_offset = drc->fdt_start_offset; 167 drc->ccs_depth = 0; 168 169 return RTAS_OUT_SUCCESS; 170 } 171 172 static uint32_t drc_set_usable(sPAPRDRConnector *drc) 173 { 174 switch (drc->state) { 175 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 176 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 177 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 178 return RTAS_OUT_SUCCESS; /* Nothing to do */ 179 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 180 break; /* see below */ 181 default: 182 g_assert_not_reached(); 183 } 184 185 /* if there's no resource/device associated with the DRC, there's 186 * no way for us to put it in an allocation state consistent with 187 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 188 * result in an RTAS return code of -3 / "no such indicator" 189 */ 190 if (!drc->dev) { 191 return RTAS_OUT_NO_SUCH_INDICATOR; 192 } 193 if (drc->unplug_requested) { 194 /* Don't allow the guest to move a device away from UNUSABLE 195 * state when we want to unplug it */ 196 return RTAS_OUT_NO_SUCH_INDICATOR; 197 } 198 199 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 200 201 return RTAS_OUT_SUCCESS; 202 } 203 204 static uint32_t drc_set_unusable(sPAPRDRConnector *drc) 205 { 206 switch (drc->state) { 207 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 208 return RTAS_OUT_SUCCESS; /* Nothing to do */ 209 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 210 break; /* see below */ 211 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 212 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 213 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 214 default: 215 g_assert_not_reached(); 216 } 217 218 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 219 if (drc->unplug_requested) { 220 uint32_t drc_index = spapr_drc_index(drc); 221 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 222 spapr_drc_detach(drc); 223 } 224 225 return RTAS_OUT_SUCCESS; 226 } 227 228 static const char *spapr_drc_name(sPAPRDRConnector *drc) 229 { 230 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 231 232 /* human-readable name for a DRC to encode into the DT 233 * description. this is mainly only used within a guest in place 234 * of the unique DRC index. 235 * 236 * in the case of VIO/PCI devices, it corresponds to a "location 237 * code" that maps a logical device/function (DRC index) to a 238 * physical (or virtual in the case of VIO) location in the system 239 * by chaining together the "location label" for each 240 * encapsulating component. 241 * 242 * since this is more to do with diagnosing physical hardware 243 * issues than guest compatibility, we choose location codes/DRC 244 * names that adhere to the documented format, but avoid encoding 245 * the entire topology information into the label/code, instead 246 * just using the location codes based on the labels for the 247 * endpoints (VIO/PCI adaptor connectors), which is basically just 248 * "C" followed by an integer ID. 249 * 250 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 251 * location codes as documented by PAPR+ v2.7, 12.3.1.5 252 */ 253 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 254 } 255 256 /* 257 * dr-entity-sense sensor value 258 * returned via get-sensor-state RTAS calls 259 * as expected by state diagram in PAPR+ 2.7, 13.4 260 * based on the current allocation/indicator/power states 261 * for the DR connector. 262 */ 263 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) 264 { 265 /* this assumes all PCI devices are assigned to a 'live insertion' 266 * power domain, where QEMU manages power state automatically as 267 * opposed to the guest. present, non-PCI resources are unaffected 268 * by power state. 269 */ 270 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 271 : SPAPR_DR_ENTITY_SENSE_EMPTY; 272 } 273 274 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) 275 { 276 switch (drc->state) { 277 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 278 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 279 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 280 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 281 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 282 g_assert(drc->dev); 283 return SPAPR_DR_ENTITY_SENSE_PRESENT; 284 default: 285 g_assert_not_reached(); 286 } 287 } 288 289 static void prop_get_index(Object *obj, Visitor *v, const char *name, 290 void *opaque, Error **errp) 291 { 292 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 293 uint32_t value = spapr_drc_index(drc); 294 visit_type_uint32(v, name, &value, errp); 295 } 296 297 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 298 void *opaque, Error **errp) 299 { 300 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 301 QNull *null = NULL; 302 Error *err = NULL; 303 int fdt_offset_next, fdt_offset, fdt_depth; 304 void *fdt; 305 306 if (!drc->fdt) { 307 visit_type_null(v, NULL, &null, errp); 308 qobject_unref(null); 309 return; 310 } 311 312 fdt = drc->fdt; 313 fdt_offset = drc->fdt_start_offset; 314 fdt_depth = 0; 315 316 do { 317 const char *name = NULL; 318 const struct fdt_property *prop = NULL; 319 int prop_len = 0, name_len = 0; 320 uint32_t tag; 321 322 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 323 switch (tag) { 324 case FDT_BEGIN_NODE: 325 fdt_depth++; 326 name = fdt_get_name(fdt, fdt_offset, &name_len); 327 visit_start_struct(v, name, NULL, 0, &err); 328 if (err) { 329 error_propagate(errp, err); 330 return; 331 } 332 break; 333 case FDT_END_NODE: 334 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 335 g_assert(fdt_depth > 0); 336 visit_check_struct(v, &err); 337 visit_end_struct(v, NULL); 338 if (err) { 339 error_propagate(errp, err); 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 visit_start_list(v, name, NULL, 0, &err); 349 if (err) { 350 error_propagate(errp, err); 351 return; 352 } 353 for (i = 0; i < prop_len; i++) { 354 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 355 if (err) { 356 error_propagate(errp, err); 357 return; 358 } 359 } 360 visit_check_list(v, &err); 361 visit_end_list(v, NULL); 362 if (err) { 363 error_propagate(errp, err); 364 return; 365 } 366 break; 367 } 368 default: 369 error_report("device FDT in unexpected state: %d", tag); 370 abort(); 371 } 372 fdt_offset = fdt_offset_next; 373 } while (fdt_depth != 0); 374 } 375 376 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, 377 int fdt_start_offset, Error **errp) 378 { 379 trace_spapr_drc_attach(spapr_drc_index(drc)); 380 381 if (drc->dev) { 382 error_setg(errp, "an attached device is still awaiting release"); 383 return; 384 } 385 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 386 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 387 g_assert(fdt); 388 389 drc->dev = d; 390 drc->fdt = fdt; 391 drc->fdt_start_offset = fdt_start_offset; 392 393 object_property_add_link(OBJECT(drc), "device", 394 object_get_typename(OBJECT(drc->dev)), 395 (Object **)(&drc->dev), 396 NULL, 0, NULL); 397 } 398 399 static void spapr_drc_release(sPAPRDRConnector *drc) 400 { 401 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 402 403 drck->release(drc->dev); 404 405 drc->unplug_requested = false; 406 g_free(drc->fdt); 407 drc->fdt = NULL; 408 drc->fdt_start_offset = 0; 409 object_property_del(OBJECT(drc), "device", &error_abort); 410 drc->dev = NULL; 411 } 412 413 void spapr_drc_detach(sPAPRDRConnector *drc) 414 { 415 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 416 417 trace_spapr_drc_detach(spapr_drc_index(drc)); 418 419 g_assert(drc->dev); 420 421 drc->unplug_requested = true; 422 423 if (drc->state != drck->empty_state) { 424 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 425 return; 426 } 427 428 spapr_drc_release(drc); 429 } 430 431 void spapr_drc_reset(sPAPRDRConnector *drc) 432 { 433 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 434 435 trace_spapr_drc_reset(spapr_drc_index(drc)); 436 437 /* immediately upon reset we can safely assume DRCs whose devices 438 * are pending removal can be safely removed. 439 */ 440 if (drc->unplug_requested) { 441 spapr_drc_release(drc); 442 } 443 444 if (drc->dev) { 445 /* A device present at reset is ready to go, same as coldplugged */ 446 drc->state = drck->ready_state; 447 /* 448 * Ensure that we are able to send the FDT fragment again 449 * via configure-connector call if the guest requests. 450 */ 451 drc->ccs_offset = drc->fdt_start_offset; 452 drc->ccs_depth = 0; 453 } else { 454 drc->state = drck->empty_state; 455 drc->ccs_offset = -1; 456 drc->ccs_depth = -1; 457 } 458 } 459 460 bool spapr_drc_needed(void *opaque) 461 { 462 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; 463 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 464 465 /* If no dev is plugged in there is no need to migrate the DRC state */ 466 if (!drc->dev) { 467 return false; 468 } 469 470 /* 471 * We need to migrate the state if it's not equal to the expected 472 * long-term state, which is the same as the coldplugged initial 473 * state */ 474 return (drc->state != drck->ready_state); 475 } 476 477 static const VMStateDescription vmstate_spapr_drc = { 478 .name = "spapr_drc", 479 .version_id = 1, 480 .minimum_version_id = 1, 481 .needed = spapr_drc_needed, 482 .fields = (VMStateField []) { 483 VMSTATE_UINT32(state, sPAPRDRConnector), 484 VMSTATE_END_OF_LIST() 485 } 486 }; 487 488 static void realize(DeviceState *d, Error **errp) 489 { 490 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 491 Object *root_container; 492 gchar *link_name; 493 gchar *child_name; 494 Error *err = NULL; 495 496 trace_spapr_drc_realize(spapr_drc_index(drc)); 497 /* NOTE: we do this as part of realize/unrealize due to the fact 498 * that the guest will communicate with the DRC via RTAS calls 499 * referencing the global DRC index. By unlinking the DRC 500 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 501 * inaccessible by the guest, since lookups rely on this path 502 * existing in the composition tree 503 */ 504 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 505 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 506 child_name = object_get_canonical_path_component(OBJECT(drc)); 507 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 508 object_property_add_alias(root_container, link_name, 509 drc->owner, child_name, &err); 510 g_free(child_name); 511 g_free(link_name); 512 if (err) { 513 error_propagate(errp, err); 514 return; 515 } 516 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 517 drc); 518 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 519 } 520 521 static void unrealize(DeviceState *d, Error **errp) 522 { 523 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 524 Object *root_container; 525 gchar *name; 526 527 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 528 vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc); 529 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 530 name = g_strdup_printf("%x", spapr_drc_index(drc)); 531 object_property_del(root_container, name, errp); 532 g_free(name); 533 } 534 535 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, 536 uint32_t id) 537 { 538 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); 539 char *prop_name; 540 541 drc->id = id; 542 drc->owner = owner; 543 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 544 spapr_drc_index(drc)); 545 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort); 546 object_unref(OBJECT(drc)); 547 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 548 g_free(prop_name); 549 550 return drc; 551 } 552 553 static void spapr_dr_connector_instance_init(Object *obj) 554 { 555 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 556 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 557 558 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 559 object_property_add(obj, "index", "uint32", prop_get_index, 560 NULL, NULL, NULL, NULL); 561 object_property_add(obj, "fdt", "struct", prop_get_fdt, 562 NULL, NULL, NULL, NULL); 563 drc->state = drck->empty_state; 564 } 565 566 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 567 { 568 DeviceClass *dk = DEVICE_CLASS(k); 569 570 dk->realize = realize; 571 dk->unrealize = unrealize; 572 /* 573 * Reason: it crashes FIXME find and document the real reason 574 */ 575 dk->user_creatable = false; 576 } 577 578 static bool drc_physical_needed(void *opaque) 579 { 580 sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque; 581 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp); 582 583 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 584 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 585 return false; 586 } 587 return true; 588 } 589 590 static const VMStateDescription vmstate_spapr_drc_physical = { 591 .name = "spapr_drc/physical", 592 .version_id = 1, 593 .minimum_version_id = 1, 594 .needed = drc_physical_needed, 595 .fields = (VMStateField []) { 596 VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical), 597 VMSTATE_END_OF_LIST() 598 } 599 }; 600 601 static void drc_physical_reset(void *opaque) 602 { 603 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque); 604 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 605 606 if (drc->dev) { 607 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 608 } else { 609 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 610 } 611 } 612 613 static void realize_physical(DeviceState *d, Error **errp) 614 { 615 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 616 Error *local_err = NULL; 617 618 realize(d, &local_err); 619 if (local_err) { 620 error_propagate(errp, local_err); 621 return; 622 } 623 624 vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 625 &vmstate_spapr_drc_physical, drcp); 626 qemu_register_reset(drc_physical_reset, drcp); 627 } 628 629 static void unrealize_physical(DeviceState *d, Error **errp) 630 { 631 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 632 Error *local_err = NULL; 633 634 unrealize(d, &local_err); 635 if (local_err) { 636 error_propagate(errp, local_err); 637 return; 638 } 639 640 vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp); 641 qemu_unregister_reset(drc_physical_reset, drcp); 642 } 643 644 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 645 { 646 DeviceClass *dk = DEVICE_CLASS(k); 647 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 648 649 dk->realize = realize_physical; 650 dk->unrealize = unrealize_physical; 651 drck->dr_entity_sense = physical_entity_sense; 652 drck->isolate = drc_isolate_physical; 653 drck->unisolate = drc_unisolate_physical; 654 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 655 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 656 } 657 658 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 659 { 660 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 661 662 drck->dr_entity_sense = logical_entity_sense; 663 drck->isolate = drc_isolate_logical; 664 drck->unisolate = drc_unisolate_logical; 665 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 666 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 667 } 668 669 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 670 { 671 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 672 673 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 674 drck->typename = "CPU"; 675 drck->drc_name_prefix = "CPU "; 676 drck->release = spapr_core_release; 677 } 678 679 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 680 { 681 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 682 683 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 684 drck->typename = "28"; 685 drck->drc_name_prefix = "C"; 686 drck->release = spapr_phb_remove_pci_device_cb; 687 } 688 689 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 690 { 691 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 692 693 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 694 drck->typename = "MEM"; 695 drck->drc_name_prefix = "LMB "; 696 drck->release = spapr_lmb_release; 697 } 698 699 static const TypeInfo spapr_dr_connector_info = { 700 .name = TYPE_SPAPR_DR_CONNECTOR, 701 .parent = TYPE_DEVICE, 702 .instance_size = sizeof(sPAPRDRConnector), 703 .instance_init = spapr_dr_connector_instance_init, 704 .class_size = sizeof(sPAPRDRConnectorClass), 705 .class_init = spapr_dr_connector_class_init, 706 .abstract = true, 707 }; 708 709 static const TypeInfo spapr_drc_physical_info = { 710 .name = TYPE_SPAPR_DRC_PHYSICAL, 711 .parent = TYPE_SPAPR_DR_CONNECTOR, 712 .instance_size = sizeof(sPAPRDRCPhysical), 713 .class_init = spapr_drc_physical_class_init, 714 .abstract = true, 715 }; 716 717 static const TypeInfo spapr_drc_logical_info = { 718 .name = TYPE_SPAPR_DRC_LOGICAL, 719 .parent = TYPE_SPAPR_DR_CONNECTOR, 720 .class_init = spapr_drc_logical_class_init, 721 .abstract = true, 722 }; 723 724 static const TypeInfo spapr_drc_cpu_info = { 725 .name = TYPE_SPAPR_DRC_CPU, 726 .parent = TYPE_SPAPR_DRC_LOGICAL, 727 .class_init = spapr_drc_cpu_class_init, 728 }; 729 730 static const TypeInfo spapr_drc_pci_info = { 731 .name = TYPE_SPAPR_DRC_PCI, 732 .parent = TYPE_SPAPR_DRC_PHYSICAL, 733 .class_init = spapr_drc_pci_class_init, 734 }; 735 736 static const TypeInfo spapr_drc_lmb_info = { 737 .name = TYPE_SPAPR_DRC_LMB, 738 .parent = TYPE_SPAPR_DRC_LOGICAL, 739 .class_init = spapr_drc_lmb_class_init, 740 }; 741 742 /* helper functions for external users */ 743 744 sPAPRDRConnector *spapr_drc_by_index(uint32_t index) 745 { 746 Object *obj; 747 gchar *name; 748 749 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 750 obj = object_resolve_path(name, NULL); 751 g_free(name); 752 753 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 754 } 755 756 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) 757 { 758 sPAPRDRConnectorClass *drck 759 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 760 761 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 762 | (id & DRC_INDEX_ID_MASK)); 763 } 764 765 /** 766 * spapr_drc_populate_dt 767 * 768 * @fdt: libfdt device tree 769 * @path: path in the DT to generate properties 770 * @owner: parent Object/DeviceState for which to generate DRC 771 * descriptions for 772 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding 773 * to the types of DRCs to generate entries for 774 * 775 * generate OF properties to describe DRC topology/indices to guests 776 * 777 * as documented in PAPR+ v2.1, 13.5.2 778 */ 779 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, 780 uint32_t drc_type_mask) 781 { 782 Object *root_container; 783 ObjectProperty *prop; 784 ObjectPropertyIterator iter; 785 uint32_t drc_count = 0; 786 GArray *drc_indexes, *drc_power_domains; 787 GString *drc_names, *drc_types; 788 int ret; 789 790 /* the first entry of each properties is a 32-bit integer encoding 791 * the number of elements in the array. we won't know this until 792 * we complete the iteration through all the matching DRCs, but 793 * reserve the space now and set the offsets accordingly so we 794 * can fill them in later. 795 */ 796 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 797 drc_indexes = g_array_set_size(drc_indexes, 1); 798 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 799 drc_power_domains = g_array_set_size(drc_power_domains, 1); 800 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 801 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 802 803 /* aliases for all DRConnector objects will be rooted in QOM 804 * composition tree at DRC_CONTAINER_PATH 805 */ 806 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 807 808 object_property_iter_init(&iter, root_container); 809 while ((prop = object_property_iter_next(&iter))) { 810 Object *obj; 811 sPAPRDRConnector *drc; 812 sPAPRDRConnectorClass *drck; 813 uint32_t drc_index, drc_power_domain; 814 815 if (!strstart(prop->type, "link<", NULL)) { 816 continue; 817 } 818 819 obj = object_property_get_link(root_container, prop->name, NULL); 820 drc = SPAPR_DR_CONNECTOR(obj); 821 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 822 823 if (owner && (drc->owner != owner)) { 824 continue; 825 } 826 827 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 828 continue; 829 } 830 831 drc_count++; 832 833 /* ibm,drc-indexes */ 834 drc_index = cpu_to_be32(spapr_drc_index(drc)); 835 g_array_append_val(drc_indexes, drc_index); 836 837 /* ibm,drc-power-domains */ 838 drc_power_domain = cpu_to_be32(-1); 839 g_array_append_val(drc_power_domains, drc_power_domain); 840 841 /* ibm,drc-names */ 842 drc_names = g_string_append(drc_names, spapr_drc_name(drc)); 843 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 844 845 /* ibm,drc-types */ 846 drc_types = g_string_append(drc_types, drck->typename); 847 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 848 } 849 850 /* now write the drc count into the space we reserved at the 851 * beginning of the arrays previously 852 */ 853 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 854 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 855 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 856 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 857 858 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", 859 drc_indexes->data, 860 drc_indexes->len * sizeof(uint32_t)); 861 if (ret) { 862 error_report("Couldn't create ibm,drc-indexes property"); 863 goto out; 864 } 865 866 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", 867 drc_power_domains->data, 868 drc_power_domains->len * sizeof(uint32_t)); 869 if (ret) { 870 error_report("Couldn't finalize ibm,drc-power-domains property"); 871 goto out; 872 } 873 874 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", 875 drc_names->str, drc_names->len); 876 if (ret) { 877 error_report("Couldn't finalize ibm,drc-names property"); 878 goto out; 879 } 880 881 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", 882 drc_types->str, drc_types->len); 883 if (ret) { 884 error_report("Couldn't finalize ibm,drc-types property"); 885 goto out; 886 } 887 888 out: 889 g_array_free(drc_indexes, true); 890 g_array_free(drc_power_domains, true); 891 g_string_free(drc_names, true); 892 g_string_free(drc_types, true); 893 894 return ret; 895 } 896 897 /* 898 * RTAS calls 899 */ 900 901 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 902 { 903 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 904 sPAPRDRConnectorClass *drck; 905 906 if (!drc) { 907 return RTAS_OUT_NO_SUCH_INDICATOR; 908 } 909 910 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 911 912 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 913 914 switch (state) { 915 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 916 return drck->isolate(drc); 917 918 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 919 return drck->unisolate(drc); 920 921 default: 922 return RTAS_OUT_PARAM_ERROR; 923 } 924 } 925 926 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 927 { 928 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 929 930 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 931 return RTAS_OUT_NO_SUCH_INDICATOR; 932 } 933 934 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 935 936 switch (state) { 937 case SPAPR_DR_ALLOCATION_STATE_USABLE: 938 return drc_set_usable(drc); 939 940 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 941 return drc_set_unusable(drc); 942 943 default: 944 return RTAS_OUT_PARAM_ERROR; 945 } 946 } 947 948 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 949 { 950 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 951 952 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 953 return RTAS_OUT_NO_SUCH_INDICATOR; 954 } 955 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 956 && (state != SPAPR_DR_INDICATOR_ACTIVE) 957 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 958 && (state != SPAPR_DR_INDICATOR_ACTION)) { 959 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 960 } 961 962 trace_spapr_drc_set_dr_indicator(idx, state); 963 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 964 return RTAS_OUT_SUCCESS; 965 } 966 967 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 968 uint32_t token, 969 uint32_t nargs, target_ulong args, 970 uint32_t nret, target_ulong rets) 971 { 972 uint32_t type, idx, state; 973 uint32_t ret = RTAS_OUT_SUCCESS; 974 975 if (nargs != 3 || nret != 1) { 976 ret = RTAS_OUT_PARAM_ERROR; 977 goto out; 978 } 979 980 type = rtas_ld(args, 0); 981 idx = rtas_ld(args, 1); 982 state = rtas_ld(args, 2); 983 984 switch (type) { 985 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 986 ret = rtas_set_isolation_state(idx, state); 987 break; 988 case RTAS_SENSOR_TYPE_DR: 989 ret = rtas_set_dr_indicator(idx, state); 990 break; 991 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 992 ret = rtas_set_allocation_state(idx, state); 993 break; 994 default: 995 ret = RTAS_OUT_NOT_SUPPORTED; 996 } 997 998 out: 999 rtas_st(rets, 0, ret); 1000 } 1001 1002 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 1003 uint32_t token, uint32_t nargs, 1004 target_ulong args, uint32_t nret, 1005 target_ulong rets) 1006 { 1007 uint32_t sensor_type; 1008 uint32_t sensor_index; 1009 uint32_t sensor_state = 0; 1010 sPAPRDRConnector *drc; 1011 sPAPRDRConnectorClass *drck; 1012 uint32_t ret = RTAS_OUT_SUCCESS; 1013 1014 if (nargs != 2 || nret != 2) { 1015 ret = RTAS_OUT_PARAM_ERROR; 1016 goto out; 1017 } 1018 1019 sensor_type = rtas_ld(args, 0); 1020 sensor_index = rtas_ld(args, 1); 1021 1022 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1023 /* currently only DR-related sensors are implemented */ 1024 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1025 sensor_type); 1026 ret = RTAS_OUT_NOT_SUPPORTED; 1027 goto out; 1028 } 1029 1030 drc = spapr_drc_by_index(sensor_index); 1031 if (!drc) { 1032 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1033 ret = RTAS_OUT_PARAM_ERROR; 1034 goto out; 1035 } 1036 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1037 sensor_state = drck->dr_entity_sense(drc); 1038 1039 out: 1040 rtas_st(rets, 0, ret); 1041 rtas_st(rets, 1, sensor_state); 1042 } 1043 1044 /* configure-connector work area offsets, int32_t units for field 1045 * indexes, bytes for field offset/len values. 1046 * 1047 * as documented by PAPR+ v2.7, 13.5.3.5 1048 */ 1049 #define CC_IDX_NODE_NAME_OFFSET 2 1050 #define CC_IDX_PROP_NAME_OFFSET 2 1051 #define CC_IDX_PROP_LEN 3 1052 #define CC_IDX_PROP_DATA_OFFSET 4 1053 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1054 #define CC_WA_LEN 4096 1055 1056 static void configure_connector_st(target_ulong addr, target_ulong offset, 1057 const void *buf, size_t len) 1058 { 1059 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1060 buf, MIN(len, CC_WA_LEN - offset)); 1061 } 1062 1063 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1064 sPAPRMachineState *spapr, 1065 uint32_t token, uint32_t nargs, 1066 target_ulong args, uint32_t nret, 1067 target_ulong rets) 1068 { 1069 uint64_t wa_addr; 1070 uint64_t wa_offset; 1071 uint32_t drc_index; 1072 sPAPRDRConnector *drc; 1073 sPAPRDRConnectorClass *drck; 1074 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1075 int rc; 1076 1077 if (nargs != 2 || nret != 1) { 1078 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1079 return; 1080 } 1081 1082 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1083 1084 drc_index = rtas_ld(wa_addr, 0); 1085 drc = spapr_drc_by_index(drc_index); 1086 if (!drc) { 1087 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1088 rc = RTAS_OUT_PARAM_ERROR; 1089 goto out; 1090 } 1091 1092 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1093 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1094 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1095 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1096 /* 1097 * Need to unisolate the device before configuring 1098 * or it should already be in configured state to 1099 * allow configure-connector be called repeatedly. 1100 */ 1101 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1102 goto out; 1103 } 1104 1105 g_assert(drc->fdt); 1106 1107 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1108 1109 do { 1110 uint32_t tag; 1111 const char *name; 1112 const struct fdt_property *prop; 1113 int fdt_offset_next, prop_len; 1114 1115 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1116 1117 switch (tag) { 1118 case FDT_BEGIN_NODE: 1119 drc->ccs_depth++; 1120 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1121 1122 /* provide the name of the next OF node */ 1123 wa_offset = CC_VAL_DATA_OFFSET; 1124 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1125 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1126 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1127 break; 1128 case FDT_END_NODE: 1129 drc->ccs_depth--; 1130 if (drc->ccs_depth == 0) { 1131 uint32_t drc_index = spapr_drc_index(drc); 1132 1133 /* done sending the device tree, move to configured state */ 1134 trace_spapr_drc_set_configured(drc_index); 1135 drc->state = drck->ready_state; 1136 /* 1137 * Ensure that we are able to send the FDT fragment 1138 * again via configure-connector call if the guest requests. 1139 */ 1140 drc->ccs_offset = drc->fdt_start_offset; 1141 drc->ccs_depth = 0; 1142 fdt_offset_next = drc->fdt_start_offset; 1143 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1144 } else { 1145 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1146 } 1147 break; 1148 case FDT_PROP: 1149 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1150 &prop_len); 1151 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1152 1153 /* provide the name of the next OF property */ 1154 wa_offset = CC_VAL_DATA_OFFSET; 1155 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1156 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1157 1158 /* provide the length and value of the OF property. data gets 1159 * placed immediately after NULL terminator of the OF property's 1160 * name string 1161 */ 1162 wa_offset += strlen(name) + 1, 1163 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1164 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1165 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1166 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1167 break; 1168 case FDT_END: 1169 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1170 default: 1171 /* keep seeking for an actionable tag */ 1172 break; 1173 } 1174 if (drc->ccs_offset >= 0) { 1175 drc->ccs_offset = fdt_offset_next; 1176 } 1177 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1178 1179 rc = resp; 1180 out: 1181 rtas_st(rets, 0, rc); 1182 } 1183 1184 static void spapr_drc_register_types(void) 1185 { 1186 type_register_static(&spapr_dr_connector_info); 1187 type_register_static(&spapr_drc_physical_info); 1188 type_register_static(&spapr_drc_logical_info); 1189 type_register_static(&spapr_drc_cpu_info); 1190 type_register_static(&spapr_drc_pci_info); 1191 type_register_static(&spapr_drc_lmb_info); 1192 1193 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1194 rtas_set_indicator); 1195 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1196 rtas_get_sensor_state); 1197 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1198 rtas_ibm_configure_connector); 1199 } 1200 type_init(spapr_drc_register_types) 1201