1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 Error *err = NULL; 306 int fdt_offset_next, fdt_offset, fdt_depth; 307 void *fdt; 308 309 if (!drc->fdt) { 310 visit_type_null(v, NULL, &null, errp); 311 qobject_unref(null); 312 return; 313 } 314 315 fdt = drc->fdt; 316 fdt_offset = drc->fdt_start_offset; 317 fdt_depth = 0; 318 319 do { 320 const char *name = NULL; 321 const struct fdt_property *prop = NULL; 322 int prop_len = 0, name_len = 0; 323 uint32_t tag; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 visit_start_struct(v, name, NULL, 0, &err); 331 if (err) { 332 error_propagate(errp, err); 333 return; 334 } 335 break; 336 case FDT_END_NODE: 337 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 338 g_assert(fdt_depth > 0); 339 visit_check_struct(v, &err); 340 visit_end_struct(v, NULL); 341 if (err) { 342 error_propagate(errp, err); 343 return; 344 } 345 fdt_depth--; 346 break; 347 case FDT_PROP: { 348 int i; 349 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 350 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 351 visit_start_list(v, name, NULL, 0, &err); 352 if (err) { 353 error_propagate(errp, err); 354 return; 355 } 356 for (i = 0; i < prop_len; i++) { 357 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 358 if (err) { 359 error_propagate(errp, err); 360 return; 361 } 362 } 363 visit_check_list(v, &err); 364 visit_end_list(v, NULL); 365 if (err) { 366 error_propagate(errp, err); 367 return; 368 } 369 break; 370 } 371 default: 372 error_report("device FDT in unexpected state: %d", tag); 373 abort(); 374 } 375 fdt_offset = fdt_offset_next; 376 } while (fdt_depth != 0); 377 } 378 379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp) 380 { 381 trace_spapr_drc_attach(spapr_drc_index(drc)); 382 383 if (drc->dev) { 384 error_setg(errp, "an attached device is still awaiting release"); 385 return; 386 } 387 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 388 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 389 390 drc->dev = d; 391 392 object_property_add_link(OBJECT(drc), "device", 393 object_get_typename(OBJECT(drc->dev)), 394 (Object **)(&drc->dev), 395 NULL, 0); 396 } 397 398 static void spapr_drc_release(SpaprDrc *drc) 399 { 400 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 401 402 drck->release(drc->dev); 403 404 drc->unplug_requested = false; 405 g_free(drc->fdt); 406 drc->fdt = NULL; 407 drc->fdt_start_offset = 0; 408 object_property_del(OBJECT(drc), "device", &error_abort); 409 drc->dev = NULL; 410 } 411 412 void spapr_drc_detach(SpaprDrc *drc) 413 { 414 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 415 416 trace_spapr_drc_detach(spapr_drc_index(drc)); 417 418 g_assert(drc->dev); 419 420 drc->unplug_requested = true; 421 422 if (drc->state != drck->empty_state) { 423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 424 return; 425 } 426 427 spapr_drc_release(drc); 428 } 429 430 void spapr_drc_reset(SpaprDrc *drc) 431 { 432 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 433 434 trace_spapr_drc_reset(spapr_drc_index(drc)); 435 436 /* immediately upon reset we can safely assume DRCs whose devices 437 * are pending removal can be safely removed. 438 */ 439 if (drc->unplug_requested) { 440 spapr_drc_release(drc); 441 } 442 443 if (drc->dev) { 444 /* A device present at reset is ready to go, same as coldplugged */ 445 drc->state = drck->ready_state; 446 /* 447 * Ensure that we are able to send the FDT fragment again 448 * via configure-connector call if the guest requests. 449 */ 450 drc->ccs_offset = drc->fdt_start_offset; 451 drc->ccs_depth = 0; 452 } else { 453 drc->state = drck->empty_state; 454 drc->ccs_offset = -1; 455 drc->ccs_depth = -1; 456 } 457 } 458 459 static bool spapr_drc_unplug_requested_needed(void *opaque) 460 { 461 return spapr_drc_unplug_requested(opaque); 462 } 463 464 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 465 .name = "spapr_drc/unplug_requested", 466 .version_id = 1, 467 .minimum_version_id = 1, 468 .needed = spapr_drc_unplug_requested_needed, 469 .fields = (VMStateField []) { 470 VMSTATE_BOOL(unplug_requested, SpaprDrc), 471 VMSTATE_END_OF_LIST() 472 } 473 }; 474 475 bool spapr_drc_transient(SpaprDrc *drc) 476 { 477 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 478 479 /* 480 * If no dev is plugged in there is no need to migrate the DRC state 481 * nor to reset the DRC at CAS. 482 */ 483 if (!drc->dev) { 484 return false; 485 } 486 487 /* 488 * We need to reset the DRC at CAS or to migrate the DRC state if it's 489 * not equal to the expected long-term state, which is the same as the 490 * coldplugged initial state, or if an unplug request is pending. 491 */ 492 return drc->state != drck->ready_state || 493 spapr_drc_unplug_requested(drc); 494 } 495 496 static bool spapr_drc_needed(void *opaque) 497 { 498 return spapr_drc_transient(opaque); 499 } 500 501 static const VMStateDescription vmstate_spapr_drc = { 502 .name = "spapr_drc", 503 .version_id = 1, 504 .minimum_version_id = 1, 505 .needed = spapr_drc_needed, 506 .fields = (VMStateField []) { 507 VMSTATE_UINT32(state, SpaprDrc), 508 VMSTATE_END_OF_LIST() 509 }, 510 .subsections = (const VMStateDescription * []) { 511 &vmstate_spapr_drc_unplug_requested, 512 NULL 513 } 514 }; 515 516 static void realize(DeviceState *d, Error **errp) 517 { 518 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 519 Object *root_container; 520 gchar *link_name; 521 char *child_name; 522 523 trace_spapr_drc_realize(spapr_drc_index(drc)); 524 /* NOTE: we do this as part of realize/unrealize due to the fact 525 * that the guest will communicate with the DRC via RTAS calls 526 * referencing the global DRC index. By unlinking the DRC 527 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 528 * inaccessible by the guest, since lookups rely on this path 529 * existing in the composition tree 530 */ 531 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 532 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 533 child_name = object_get_canonical_path_component(OBJECT(drc)); 534 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 535 object_property_add_alias(root_container, link_name, 536 drc->owner, child_name); 537 g_free(child_name); 538 g_free(link_name); 539 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 540 drc); 541 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 542 } 543 544 static void unrealize(DeviceState *d, Error **errp) 545 { 546 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 547 Object *root_container; 548 gchar *name; 549 550 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 551 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 552 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 553 name = g_strdup_printf("%x", spapr_drc_index(drc)); 554 object_property_del(root_container, name, errp); 555 g_free(name); 556 } 557 558 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 559 uint32_t id) 560 { 561 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 562 char *prop_name; 563 564 drc->id = id; 565 drc->owner = owner; 566 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 567 spapr_drc_index(drc)); 568 object_property_add_child(owner, prop_name, OBJECT(drc)); 569 object_unref(OBJECT(drc)); 570 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 571 g_free(prop_name); 572 573 return drc; 574 } 575 576 static void spapr_dr_connector_instance_init(Object *obj) 577 { 578 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 579 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 580 581 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 582 object_property_add(obj, "index", "uint32", prop_get_index, 583 NULL, NULL, NULL); 584 object_property_add(obj, "fdt", "struct", prop_get_fdt, 585 NULL, NULL, NULL); 586 drc->state = drck->empty_state; 587 } 588 589 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 590 { 591 DeviceClass *dk = DEVICE_CLASS(k); 592 593 dk->realize = realize; 594 dk->unrealize = unrealize; 595 /* 596 * Reason: it crashes FIXME find and document the real reason 597 */ 598 dk->user_creatable = false; 599 } 600 601 static bool drc_physical_needed(void *opaque) 602 { 603 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 604 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 605 606 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 607 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 608 return false; 609 } 610 return true; 611 } 612 613 static const VMStateDescription vmstate_spapr_drc_physical = { 614 .name = "spapr_drc/physical", 615 .version_id = 1, 616 .minimum_version_id = 1, 617 .needed = drc_physical_needed, 618 .fields = (VMStateField []) { 619 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 620 VMSTATE_END_OF_LIST() 621 } 622 }; 623 624 static void drc_physical_reset(void *opaque) 625 { 626 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 627 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 628 629 if (drc->dev) { 630 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 631 } else { 632 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 633 } 634 } 635 636 static void realize_physical(DeviceState *d, Error **errp) 637 { 638 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 639 Error *local_err = NULL; 640 641 realize(d, &local_err); 642 if (local_err) { 643 error_propagate(errp, local_err); 644 return; 645 } 646 647 vmstate_register(VMSTATE_IF(drcp), 648 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 649 &vmstate_spapr_drc_physical, drcp); 650 qemu_register_reset(drc_physical_reset, drcp); 651 } 652 653 static void unrealize_physical(DeviceState *d, Error **errp) 654 { 655 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 656 Error *local_err = NULL; 657 658 unrealize(d, &local_err); 659 if (local_err) { 660 error_propagate(errp, local_err); 661 return; 662 } 663 664 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 665 qemu_unregister_reset(drc_physical_reset, drcp); 666 } 667 668 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 669 { 670 DeviceClass *dk = DEVICE_CLASS(k); 671 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 672 673 dk->realize = realize_physical; 674 dk->unrealize = unrealize_physical; 675 drck->dr_entity_sense = physical_entity_sense; 676 drck->isolate = drc_isolate_physical; 677 drck->unisolate = drc_unisolate_physical; 678 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 679 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 680 } 681 682 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 683 { 684 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 685 686 drck->dr_entity_sense = logical_entity_sense; 687 drck->isolate = drc_isolate_logical; 688 drck->unisolate = drc_unisolate_logical; 689 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 690 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 691 } 692 693 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 694 { 695 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 696 697 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 698 drck->typename = "CPU"; 699 drck->drc_name_prefix = "CPU "; 700 drck->release = spapr_core_release; 701 drck->dt_populate = spapr_core_dt_populate; 702 } 703 704 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 705 { 706 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 707 708 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 709 drck->typename = "28"; 710 drck->drc_name_prefix = "C"; 711 drck->release = spapr_phb_remove_pci_device_cb; 712 drck->dt_populate = spapr_pci_dt_populate; 713 } 714 715 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 716 { 717 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 718 719 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 720 drck->typename = "MEM"; 721 drck->drc_name_prefix = "LMB "; 722 drck->release = spapr_lmb_release; 723 drck->dt_populate = spapr_lmb_dt_populate; 724 } 725 726 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 727 { 728 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 729 730 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 731 drck->typename = "PHB"; 732 drck->drc_name_prefix = "PHB "; 733 drck->release = spapr_phb_release; 734 drck->dt_populate = spapr_phb_dt_populate; 735 } 736 737 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 738 { 739 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 740 741 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 742 drck->typename = "PMEM"; 743 drck->drc_name_prefix = "PMEM "; 744 drck->release = NULL; 745 drck->dt_populate = spapr_pmem_dt_populate; 746 } 747 748 static const TypeInfo spapr_dr_connector_info = { 749 .name = TYPE_SPAPR_DR_CONNECTOR, 750 .parent = TYPE_DEVICE, 751 .instance_size = sizeof(SpaprDrc), 752 .instance_init = spapr_dr_connector_instance_init, 753 .class_size = sizeof(SpaprDrcClass), 754 .class_init = spapr_dr_connector_class_init, 755 .abstract = true, 756 }; 757 758 static const TypeInfo spapr_drc_physical_info = { 759 .name = TYPE_SPAPR_DRC_PHYSICAL, 760 .parent = TYPE_SPAPR_DR_CONNECTOR, 761 .instance_size = sizeof(SpaprDrcPhysical), 762 .class_init = spapr_drc_physical_class_init, 763 .abstract = true, 764 }; 765 766 static const TypeInfo spapr_drc_logical_info = { 767 .name = TYPE_SPAPR_DRC_LOGICAL, 768 .parent = TYPE_SPAPR_DR_CONNECTOR, 769 .class_init = spapr_drc_logical_class_init, 770 .abstract = true, 771 }; 772 773 static const TypeInfo spapr_drc_cpu_info = { 774 .name = TYPE_SPAPR_DRC_CPU, 775 .parent = TYPE_SPAPR_DRC_LOGICAL, 776 .class_init = spapr_drc_cpu_class_init, 777 }; 778 779 static const TypeInfo spapr_drc_pci_info = { 780 .name = TYPE_SPAPR_DRC_PCI, 781 .parent = TYPE_SPAPR_DRC_PHYSICAL, 782 .class_init = spapr_drc_pci_class_init, 783 }; 784 785 static const TypeInfo spapr_drc_lmb_info = { 786 .name = TYPE_SPAPR_DRC_LMB, 787 .parent = TYPE_SPAPR_DRC_LOGICAL, 788 .class_init = spapr_drc_lmb_class_init, 789 }; 790 791 static const TypeInfo spapr_drc_phb_info = { 792 .name = TYPE_SPAPR_DRC_PHB, 793 .parent = TYPE_SPAPR_DRC_LOGICAL, 794 .instance_size = sizeof(SpaprDrc), 795 .class_init = spapr_drc_phb_class_init, 796 }; 797 798 static const TypeInfo spapr_drc_pmem_info = { 799 .name = TYPE_SPAPR_DRC_PMEM, 800 .parent = TYPE_SPAPR_DRC_LOGICAL, 801 .class_init = spapr_drc_pmem_class_init, 802 }; 803 804 /* helper functions for external users */ 805 806 SpaprDrc *spapr_drc_by_index(uint32_t index) 807 { 808 Object *obj; 809 gchar *name; 810 811 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 812 obj = object_resolve_path(name, NULL); 813 g_free(name); 814 815 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 816 } 817 818 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 819 { 820 SpaprDrcClass *drck 821 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 822 823 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 824 | (id & DRC_INDEX_ID_MASK)); 825 } 826 827 /** 828 * spapr_dt_drc 829 * 830 * @fdt: libfdt device tree 831 * @path: path in the DT to generate properties 832 * @owner: parent Object/DeviceState for which to generate DRC 833 * descriptions for 834 * @drc_type_mask: mask of SpaprDrcType values corresponding 835 * to the types of DRCs to generate entries for 836 * 837 * generate OF properties to describe DRC topology/indices to guests 838 * 839 * as documented in PAPR+ v2.1, 13.5.2 840 */ 841 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 842 { 843 Object *root_container; 844 ObjectProperty *prop; 845 ObjectPropertyIterator iter; 846 uint32_t drc_count = 0; 847 GArray *drc_indexes, *drc_power_domains; 848 GString *drc_names, *drc_types; 849 int ret; 850 851 /* the first entry of each properties is a 32-bit integer encoding 852 * the number of elements in the array. we won't know this until 853 * we complete the iteration through all the matching DRCs, but 854 * reserve the space now and set the offsets accordingly so we 855 * can fill them in later. 856 */ 857 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 858 drc_indexes = g_array_set_size(drc_indexes, 1); 859 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 860 drc_power_domains = g_array_set_size(drc_power_domains, 1); 861 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 862 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 863 864 /* aliases for all DRConnector objects will be rooted in QOM 865 * composition tree at DRC_CONTAINER_PATH 866 */ 867 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 868 869 object_property_iter_init(&iter, root_container); 870 while ((prop = object_property_iter_next(&iter))) { 871 Object *obj; 872 SpaprDrc *drc; 873 SpaprDrcClass *drck; 874 char *drc_name = NULL; 875 uint32_t drc_index, drc_power_domain; 876 877 if (!strstart(prop->type, "link<", NULL)) { 878 continue; 879 } 880 881 obj = object_property_get_link(root_container, prop->name, NULL); 882 drc = SPAPR_DR_CONNECTOR(obj); 883 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 884 885 if (owner && (drc->owner != owner)) { 886 continue; 887 } 888 889 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 890 continue; 891 } 892 893 drc_count++; 894 895 /* ibm,drc-indexes */ 896 drc_index = cpu_to_be32(spapr_drc_index(drc)); 897 g_array_append_val(drc_indexes, drc_index); 898 899 /* ibm,drc-power-domains */ 900 drc_power_domain = cpu_to_be32(-1); 901 g_array_append_val(drc_power_domains, drc_power_domain); 902 903 /* ibm,drc-names */ 904 drc_name = spapr_drc_name(drc); 905 drc_names = g_string_append(drc_names, drc_name); 906 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 907 g_free(drc_name); 908 909 /* ibm,drc-types */ 910 drc_types = g_string_append(drc_types, drck->typename); 911 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 912 } 913 914 /* now write the drc count into the space we reserved at the 915 * beginning of the arrays previously 916 */ 917 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 918 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 919 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 920 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 921 922 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 923 drc_indexes->data, 924 drc_indexes->len * sizeof(uint32_t)); 925 if (ret) { 926 error_report("Couldn't create ibm,drc-indexes property"); 927 goto out; 928 } 929 930 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 931 drc_power_domains->data, 932 drc_power_domains->len * sizeof(uint32_t)); 933 if (ret) { 934 error_report("Couldn't finalize ibm,drc-power-domains property"); 935 goto out; 936 } 937 938 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 939 drc_names->str, drc_names->len); 940 if (ret) { 941 error_report("Couldn't finalize ibm,drc-names property"); 942 goto out; 943 } 944 945 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 946 drc_types->str, drc_types->len); 947 if (ret) { 948 error_report("Couldn't finalize ibm,drc-types property"); 949 goto out; 950 } 951 952 out: 953 g_array_free(drc_indexes, true); 954 g_array_free(drc_power_domains, true); 955 g_string_free(drc_names, true); 956 g_string_free(drc_types, true); 957 958 return ret; 959 } 960 961 /* 962 * RTAS calls 963 */ 964 965 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 966 { 967 SpaprDrc *drc = spapr_drc_by_index(idx); 968 SpaprDrcClass *drck; 969 970 if (!drc) { 971 return RTAS_OUT_NO_SUCH_INDICATOR; 972 } 973 974 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 975 976 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 977 978 switch (state) { 979 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 980 return drck->isolate(drc); 981 982 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 983 return drck->unisolate(drc); 984 985 default: 986 return RTAS_OUT_PARAM_ERROR; 987 } 988 } 989 990 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 991 { 992 SpaprDrc *drc = spapr_drc_by_index(idx); 993 994 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 995 return RTAS_OUT_NO_SUCH_INDICATOR; 996 } 997 998 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 999 1000 switch (state) { 1001 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1002 return drc_set_usable(drc); 1003 1004 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1005 return drc_set_unusable(drc); 1006 1007 default: 1008 return RTAS_OUT_PARAM_ERROR; 1009 } 1010 } 1011 1012 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1013 { 1014 SpaprDrc *drc = spapr_drc_by_index(idx); 1015 1016 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1017 return RTAS_OUT_NO_SUCH_INDICATOR; 1018 } 1019 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1020 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1021 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1022 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1023 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1024 } 1025 1026 trace_spapr_drc_set_dr_indicator(idx, state); 1027 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1028 return RTAS_OUT_SUCCESS; 1029 } 1030 1031 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1032 uint32_t token, 1033 uint32_t nargs, target_ulong args, 1034 uint32_t nret, target_ulong rets) 1035 { 1036 uint32_t type, idx, state; 1037 uint32_t ret = RTAS_OUT_SUCCESS; 1038 1039 if (nargs != 3 || nret != 1) { 1040 ret = RTAS_OUT_PARAM_ERROR; 1041 goto out; 1042 } 1043 1044 type = rtas_ld(args, 0); 1045 idx = rtas_ld(args, 1); 1046 state = rtas_ld(args, 2); 1047 1048 switch (type) { 1049 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1050 ret = rtas_set_isolation_state(idx, state); 1051 break; 1052 case RTAS_SENSOR_TYPE_DR: 1053 ret = rtas_set_dr_indicator(idx, state); 1054 break; 1055 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1056 ret = rtas_set_allocation_state(idx, state); 1057 break; 1058 default: 1059 ret = RTAS_OUT_NOT_SUPPORTED; 1060 } 1061 1062 out: 1063 rtas_st(rets, 0, ret); 1064 } 1065 1066 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1067 uint32_t token, uint32_t nargs, 1068 target_ulong args, uint32_t nret, 1069 target_ulong rets) 1070 { 1071 uint32_t sensor_type; 1072 uint32_t sensor_index; 1073 uint32_t sensor_state = 0; 1074 SpaprDrc *drc; 1075 SpaprDrcClass *drck; 1076 uint32_t ret = RTAS_OUT_SUCCESS; 1077 1078 if (nargs != 2 || nret != 2) { 1079 ret = RTAS_OUT_PARAM_ERROR; 1080 goto out; 1081 } 1082 1083 sensor_type = rtas_ld(args, 0); 1084 sensor_index = rtas_ld(args, 1); 1085 1086 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1087 /* currently only DR-related sensors are implemented */ 1088 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1089 sensor_type); 1090 ret = RTAS_OUT_NOT_SUPPORTED; 1091 goto out; 1092 } 1093 1094 drc = spapr_drc_by_index(sensor_index); 1095 if (!drc) { 1096 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1097 ret = RTAS_OUT_PARAM_ERROR; 1098 goto out; 1099 } 1100 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1101 sensor_state = drck->dr_entity_sense(drc); 1102 1103 out: 1104 rtas_st(rets, 0, ret); 1105 rtas_st(rets, 1, sensor_state); 1106 } 1107 1108 /* configure-connector work area offsets, int32_t units for field 1109 * indexes, bytes for field offset/len values. 1110 * 1111 * as documented by PAPR+ v2.7, 13.5.3.5 1112 */ 1113 #define CC_IDX_NODE_NAME_OFFSET 2 1114 #define CC_IDX_PROP_NAME_OFFSET 2 1115 #define CC_IDX_PROP_LEN 3 1116 #define CC_IDX_PROP_DATA_OFFSET 4 1117 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1118 #define CC_WA_LEN 4096 1119 1120 static void configure_connector_st(target_ulong addr, target_ulong offset, 1121 const void *buf, size_t len) 1122 { 1123 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1124 buf, MIN(len, CC_WA_LEN - offset)); 1125 } 1126 1127 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1128 SpaprMachineState *spapr, 1129 uint32_t token, uint32_t nargs, 1130 target_ulong args, uint32_t nret, 1131 target_ulong rets) 1132 { 1133 uint64_t wa_addr; 1134 uint64_t wa_offset; 1135 uint32_t drc_index; 1136 SpaprDrc *drc; 1137 SpaprDrcClass *drck; 1138 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1139 int rc; 1140 1141 if (nargs != 2 || nret != 1) { 1142 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1143 return; 1144 } 1145 1146 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1147 1148 drc_index = rtas_ld(wa_addr, 0); 1149 drc = spapr_drc_by_index(drc_index); 1150 if (!drc) { 1151 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1152 rc = RTAS_OUT_PARAM_ERROR; 1153 goto out; 1154 } 1155 1156 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1157 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1158 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1159 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1160 /* 1161 * Need to unisolate the device before configuring 1162 * or it should already be in configured state to 1163 * allow configure-connector be called repeatedly. 1164 */ 1165 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1166 goto out; 1167 } 1168 1169 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1170 1171 if (!drc->fdt) { 1172 Error *local_err = NULL; 1173 void *fdt; 1174 int fdt_size; 1175 1176 fdt = create_device_tree(&fdt_size); 1177 1178 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1179 &local_err)) { 1180 g_free(fdt); 1181 error_free(local_err); 1182 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1183 goto out; 1184 } 1185 1186 drc->fdt = fdt; 1187 drc->ccs_offset = drc->fdt_start_offset; 1188 drc->ccs_depth = 0; 1189 } 1190 1191 do { 1192 uint32_t tag; 1193 const char *name; 1194 const struct fdt_property *prop; 1195 int fdt_offset_next, prop_len; 1196 1197 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1198 1199 switch (tag) { 1200 case FDT_BEGIN_NODE: 1201 drc->ccs_depth++; 1202 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1203 1204 /* provide the name of the next OF node */ 1205 wa_offset = CC_VAL_DATA_OFFSET; 1206 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1207 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1208 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1209 break; 1210 case FDT_END_NODE: 1211 drc->ccs_depth--; 1212 if (drc->ccs_depth == 0) { 1213 uint32_t drc_index = spapr_drc_index(drc); 1214 1215 /* done sending the device tree, move to configured state */ 1216 trace_spapr_drc_set_configured(drc_index); 1217 drc->state = drck->ready_state; 1218 /* 1219 * Ensure that we are able to send the FDT fragment 1220 * again via configure-connector call if the guest requests. 1221 */ 1222 drc->ccs_offset = drc->fdt_start_offset; 1223 drc->ccs_depth = 0; 1224 fdt_offset_next = drc->fdt_start_offset; 1225 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1226 } else { 1227 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1228 } 1229 break; 1230 case FDT_PROP: 1231 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1232 &prop_len); 1233 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1234 1235 /* provide the name of the next OF property */ 1236 wa_offset = CC_VAL_DATA_OFFSET; 1237 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1238 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1239 1240 /* provide the length and value of the OF property. data gets 1241 * placed immediately after NULL terminator of the OF property's 1242 * name string 1243 */ 1244 wa_offset += strlen(name) + 1, 1245 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1246 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1247 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1248 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1249 break; 1250 case FDT_END: 1251 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1252 default: 1253 /* keep seeking for an actionable tag */ 1254 break; 1255 } 1256 if (drc->ccs_offset >= 0) { 1257 drc->ccs_offset = fdt_offset_next; 1258 } 1259 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1260 1261 rc = resp; 1262 out: 1263 rtas_st(rets, 0, rc); 1264 } 1265 1266 static void spapr_drc_register_types(void) 1267 { 1268 type_register_static(&spapr_dr_connector_info); 1269 type_register_static(&spapr_drc_physical_info); 1270 type_register_static(&spapr_drc_logical_info); 1271 type_register_static(&spapr_drc_cpu_info); 1272 type_register_static(&spapr_drc_pci_info); 1273 type_register_static(&spapr_drc_lmb_info); 1274 type_register_static(&spapr_drc_phb_info); 1275 type_register_static(&spapr_drc_pmem_info); 1276 1277 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1278 rtas_set_indicator); 1279 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1280 rtas_get_sensor_state); 1281 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1282 rtas_ibm_configure_connector); 1283 } 1284 type_init(spapr_drc_register_types) 1285