1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "migration/vmstate.h" 20 #include "qapi/qapi-events-qdev.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static void spapr_drc_release(SpaprDrc *drc) 54 { 55 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 56 57 drck->release(drc->dev); 58 59 drc->unplug_requested = false; 60 g_free(drc->fdt); 61 drc->fdt = NULL; 62 drc->fdt_start_offset = 0; 63 object_property_del(OBJECT(drc), "device"); 64 drc->dev = NULL; 65 } 66 67 static uint32_t drc_isolate_physical(SpaprDrc *drc) 68 { 69 switch (drc->state) { 70 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 71 return RTAS_OUT_SUCCESS; /* Nothing to do */ 72 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 73 break; /* see below */ 74 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 75 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 76 default: 77 g_assert_not_reached(); 78 } 79 80 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 81 82 if (drc->unplug_requested) { 83 uint32_t drc_index = spapr_drc_index(drc); 84 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 85 spapr_drc_release(drc); 86 } 87 88 return RTAS_OUT_SUCCESS; 89 } 90 91 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 92 { 93 switch (drc->state) { 94 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 95 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 96 return RTAS_OUT_SUCCESS; /* Nothing to do */ 97 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 98 break; /* see below */ 99 default: 100 g_assert_not_reached(); 101 } 102 103 /* cannot unisolate a non-existent resource, and, or resources 104 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 105 * 13.5.3.5) 106 */ 107 if (!drc->dev) { 108 return RTAS_OUT_NO_SUCH_INDICATOR; 109 } 110 111 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 112 drc->ccs_offset = drc->fdt_start_offset; 113 drc->ccs_depth = 0; 114 115 return RTAS_OUT_SUCCESS; 116 } 117 118 static uint32_t drc_isolate_logical(SpaprDrc *drc) 119 { 120 switch (drc->state) { 121 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 122 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 123 return RTAS_OUT_SUCCESS; /* Nothing to do */ 124 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 125 break; /* see below */ 126 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 127 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 128 default: 129 g_assert_not_reached(); 130 } 131 132 /* 133 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 134 * belong to a DIMM device that is marked for removal. 135 * 136 * Currently the guest userspace tool drmgr that drives the memory 137 * hotplug/unplug will just try to remove a set of 'removable' LMBs 138 * in response to a hot unplug request that is based on drc-count. 139 * If the LMB being removed doesn't belong to a DIMM device that is 140 * actually being unplugged, fail the isolation request here. 141 */ 142 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 143 && !drc->unplug_requested) { 144 return RTAS_OUT_HW_ERROR; 145 } 146 147 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 148 149 return RTAS_OUT_SUCCESS; 150 } 151 152 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 153 { 154 SpaprMachineState *spapr = NULL; 155 156 switch (drc->state) { 157 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 158 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 159 /* 160 * Unisolating a logical DRC that was marked for unplug 161 * means that the kernel is refusing the removal. 162 */ 163 if (drc->unplug_requested && drc->dev) { 164 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) { 165 spapr = SPAPR_MACHINE(qdev_get_machine()); 166 167 spapr_memory_unplug_rollback(spapr, drc->dev); 168 } 169 170 drc->unplug_requested = false; 171 172 if (drc->dev->id) { 173 error_report("Device hotunplug rejected by the guest " 174 "for device %s", drc->dev->id); 175 } 176 177 qapi_event_send_device_unplug_guest_error(drc->dev->id, 178 drc->dev->canonical_path); 179 } 180 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 183 break; /* see below */ 184 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 185 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 186 default: 187 g_assert_not_reached(); 188 } 189 190 /* Move to AVAILABLE state should have ensured device was present */ 191 g_assert(drc->dev); 192 193 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 194 drc->ccs_offset = drc->fdt_start_offset; 195 drc->ccs_depth = 0; 196 197 return RTAS_OUT_SUCCESS; 198 } 199 200 static uint32_t drc_set_usable(SpaprDrc *drc) 201 { 202 switch (drc->state) { 203 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 204 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 205 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 206 return RTAS_OUT_SUCCESS; /* Nothing to do */ 207 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 208 break; /* see below */ 209 default: 210 g_assert_not_reached(); 211 } 212 213 /* if there's no resource/device associated with the DRC, there's 214 * no way for us to put it in an allocation state consistent with 215 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 216 * result in an RTAS return code of -3 / "no such indicator" 217 */ 218 if (!drc->dev) { 219 return RTAS_OUT_NO_SUCH_INDICATOR; 220 } 221 if (drc->unplug_requested) { 222 /* Don't allow the guest to move a device away from UNUSABLE 223 * state when we want to unplug it */ 224 return RTAS_OUT_NO_SUCH_INDICATOR; 225 } 226 227 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 228 229 return RTAS_OUT_SUCCESS; 230 } 231 232 static uint32_t drc_set_unusable(SpaprDrc *drc) 233 { 234 switch (drc->state) { 235 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 236 return RTAS_OUT_SUCCESS; /* Nothing to do */ 237 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 238 break; /* see below */ 239 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 240 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 241 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 242 default: 243 g_assert_not_reached(); 244 } 245 246 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 247 if (drc->unplug_requested) { 248 uint32_t drc_index = spapr_drc_index(drc); 249 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 250 spapr_drc_release(drc); 251 } 252 253 return RTAS_OUT_SUCCESS; 254 } 255 256 static char *spapr_drc_name(SpaprDrc *drc) 257 { 258 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 259 260 /* human-readable name for a DRC to encode into the DT 261 * description. this is mainly only used within a guest in place 262 * of the unique DRC index. 263 * 264 * in the case of VIO/PCI devices, it corresponds to a "location 265 * code" that maps a logical device/function (DRC index) to a 266 * physical (or virtual in the case of VIO) location in the system 267 * by chaining together the "location label" for each 268 * encapsulating component. 269 * 270 * since this is more to do with diagnosing physical hardware 271 * issues than guest compatibility, we choose location codes/DRC 272 * names that adhere to the documented format, but avoid encoding 273 * the entire topology information into the label/code, instead 274 * just using the location codes based on the labels for the 275 * endpoints (VIO/PCI adaptor connectors), which is basically just 276 * "C" followed by an integer ID. 277 * 278 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 279 * location codes as documented by PAPR+ v2.7, 12.3.1.5 280 */ 281 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 282 } 283 284 /* 285 * dr-entity-sense sensor value 286 * returned via get-sensor-state RTAS calls 287 * as expected by state diagram in PAPR+ 2.7, 13.4 288 * based on the current allocation/indicator/power states 289 * for the DR connector. 290 */ 291 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 292 { 293 /* this assumes all PCI devices are assigned to a 'live insertion' 294 * power domain, where QEMU manages power state automatically as 295 * opposed to the guest. present, non-PCI resources are unaffected 296 * by power state. 297 */ 298 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 299 : SPAPR_DR_ENTITY_SENSE_EMPTY; 300 } 301 302 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 303 { 304 switch (drc->state) { 305 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 306 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 307 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 308 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 309 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 310 g_assert(drc->dev); 311 return SPAPR_DR_ENTITY_SENSE_PRESENT; 312 default: 313 g_assert_not_reached(); 314 } 315 } 316 317 static void prop_get_index(Object *obj, Visitor *v, const char *name, 318 void *opaque, Error **errp) 319 { 320 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 321 uint32_t value = spapr_drc_index(drc); 322 visit_type_uint32(v, name, &value, errp); 323 } 324 325 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 326 void *opaque, Error **errp) 327 { 328 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 329 QNull *null = NULL; 330 int fdt_offset_next, fdt_offset, fdt_depth; 331 void *fdt; 332 333 if (!drc->fdt) { 334 visit_type_null(v, NULL, &null, errp); 335 qobject_unref(null); 336 return; 337 } 338 339 fdt = drc->fdt; 340 fdt_offset = drc->fdt_start_offset; 341 fdt_depth = 0; 342 343 do { 344 const char *name = NULL; 345 const struct fdt_property *prop = NULL; 346 int prop_len = 0, name_len = 0; 347 uint32_t tag; 348 bool ok; 349 350 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 351 switch (tag) { 352 case FDT_BEGIN_NODE: 353 fdt_depth++; 354 name = fdt_get_name(fdt, fdt_offset, &name_len); 355 if (!visit_start_struct(v, name, NULL, 0, errp)) { 356 return; 357 } 358 break; 359 case FDT_END_NODE: 360 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 361 g_assert(fdt_depth > 0); 362 ok = visit_check_struct(v, errp); 363 visit_end_struct(v, NULL); 364 if (!ok) { 365 return; 366 } 367 fdt_depth--; 368 break; 369 case FDT_PROP: { 370 int i; 371 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 372 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 373 if (!visit_start_list(v, name, NULL, 0, errp)) { 374 return; 375 } 376 for (i = 0; i < prop_len; i++) { 377 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 378 errp)) { 379 return; 380 } 381 } 382 ok = visit_check_list(v, errp); 383 visit_end_list(v, NULL); 384 if (!ok) { 385 return; 386 } 387 break; 388 } 389 default: 390 error_report("device FDT in unexpected state: %d", tag); 391 abort(); 392 } 393 fdt_offset = fdt_offset_next; 394 } while (fdt_depth != 0); 395 } 396 397 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 398 { 399 trace_spapr_drc_attach(spapr_drc_index(drc)); 400 401 g_assert(!drc->dev); 402 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 403 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 404 405 drc->dev = d; 406 407 object_property_add_link(OBJECT(drc), "device", 408 object_get_typename(OBJECT(drc->dev)), 409 (Object **)(&drc->dev), 410 NULL, 0); 411 } 412 413 void spapr_drc_unplug_request(SpaprDrc *drc) 414 { 415 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 416 417 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 418 419 g_assert(drc->dev); 420 421 drc->unplug_requested = true; 422 423 if (drc->state != drck->empty_state) { 424 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 425 return; 426 } 427 428 spapr_drc_release(drc); 429 } 430 431 bool spapr_drc_reset(SpaprDrc *drc) 432 { 433 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 434 bool unplug_completed = false; 435 436 trace_spapr_drc_reset(spapr_drc_index(drc)); 437 438 /* immediately upon reset we can safely assume DRCs whose devices 439 * are pending removal can be safely removed. 440 */ 441 if (drc->unplug_requested) { 442 spapr_drc_release(drc); 443 unplug_completed = true; 444 } 445 446 if (drc->dev) { 447 /* A device present at reset is ready to go, same as coldplugged */ 448 drc->state = drck->ready_state; 449 /* 450 * Ensure that we are able to send the FDT fragment again 451 * via configure-connector call if the guest requests. 452 */ 453 drc->ccs_offset = drc->fdt_start_offset; 454 drc->ccs_depth = 0; 455 } else { 456 drc->state = drck->empty_state; 457 drc->ccs_offset = -1; 458 drc->ccs_depth = -1; 459 } 460 461 return unplug_completed; 462 } 463 464 static bool spapr_drc_unplug_requested_needed(void *opaque) 465 { 466 return spapr_drc_unplug_requested(opaque); 467 } 468 469 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 470 .name = "spapr_drc/unplug_requested", 471 .version_id = 1, 472 .minimum_version_id = 1, 473 .needed = spapr_drc_unplug_requested_needed, 474 .fields = (VMStateField []) { 475 VMSTATE_BOOL(unplug_requested, SpaprDrc), 476 VMSTATE_END_OF_LIST() 477 } 478 }; 479 480 static bool spapr_drc_needed(void *opaque) 481 { 482 SpaprDrc *drc = opaque; 483 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 484 485 /* 486 * If no dev is plugged in there is no need to migrate the DRC state 487 * nor to reset the DRC at CAS. 488 */ 489 if (!drc->dev) { 490 return false; 491 } 492 493 /* 494 * We need to reset the DRC at CAS or to migrate the DRC state if it's 495 * not equal to the expected long-term state, which is the same as the 496 * coldplugged initial state, or if an unplug request is pending. 497 */ 498 return drc->state != drck->ready_state || 499 spapr_drc_unplug_requested(drc); 500 } 501 502 static const VMStateDescription vmstate_spapr_drc = { 503 .name = "spapr_drc", 504 .version_id = 1, 505 .minimum_version_id = 1, 506 .needed = spapr_drc_needed, 507 .fields = (VMStateField []) { 508 VMSTATE_UINT32(state, SpaprDrc), 509 VMSTATE_END_OF_LIST() 510 }, 511 .subsections = (const VMStateDescription * []) { 512 &vmstate_spapr_drc_unplug_requested, 513 NULL 514 } 515 }; 516 517 static void drc_realize(DeviceState *d, Error **errp) 518 { 519 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 520 g_autofree gchar *link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 521 Object *root_container; 522 const char *child_name; 523 524 trace_spapr_drc_realize(spapr_drc_index(drc)); 525 /* NOTE: we do this as part of realize/unrealize due to the fact 526 * that the guest will communicate with the DRC via RTAS calls 527 * referencing the global DRC index. By unlinking the DRC 528 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 529 * inaccessible by the guest, since lookups rely on this path 530 * existing in the composition tree 531 */ 532 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 533 child_name = object_get_canonical_path_component(OBJECT(drc)); 534 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 535 object_property_add_alias(root_container, link_name, 536 drc->owner, child_name); 537 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 538 drc); 539 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 540 } 541 542 static void drc_unrealize(DeviceState *d) 543 { 544 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 545 g_autofree gchar *name = g_strdup_printf("%x", spapr_drc_index(drc)); 546 Object *root_container; 547 548 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 549 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 550 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 551 object_property_del(root_container, name); 552 } 553 554 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 555 uint32_t id) 556 { 557 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 558 g_autofree char *prop_name = NULL; 559 560 drc->id = id; 561 drc->owner = owner; 562 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 563 spapr_drc_index(drc)); 564 object_property_add_child(owner, prop_name, OBJECT(drc)); 565 object_unref(OBJECT(drc)); 566 qdev_realize(DEVICE(drc), NULL, NULL); 567 568 return drc; 569 } 570 571 static void spapr_dr_connector_instance_init(Object *obj) 572 { 573 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 574 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 575 576 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 577 object_property_add(obj, "index", "uint32", prop_get_index, 578 NULL, NULL, NULL); 579 object_property_add(obj, "fdt", "struct", prop_get_fdt, 580 NULL, NULL, NULL); 581 drc->state = drck->empty_state; 582 } 583 584 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 585 { 586 DeviceClass *dk = DEVICE_CLASS(k); 587 588 dk->realize = drc_realize; 589 dk->unrealize = drc_unrealize; 590 /* 591 * Reason: DR connector needs to be wired to either the machine or to a 592 * PHB in spapr_dr_connector_new(). 593 */ 594 dk->user_creatable = false; 595 } 596 597 static bool drc_physical_needed(void *opaque) 598 { 599 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 600 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 601 602 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 603 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 604 return false; 605 } 606 return true; 607 } 608 609 static const VMStateDescription vmstate_spapr_drc_physical = { 610 .name = "spapr_drc/physical", 611 .version_id = 1, 612 .minimum_version_id = 1, 613 .needed = drc_physical_needed, 614 .fields = (VMStateField []) { 615 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 616 VMSTATE_END_OF_LIST() 617 } 618 }; 619 620 static void drc_physical_reset(void *opaque) 621 { 622 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 623 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 624 625 if (drc->dev) { 626 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 627 } else { 628 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 629 } 630 } 631 632 static void realize_physical(DeviceState *d, Error **errp) 633 { 634 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 635 Error *local_err = NULL; 636 637 drc_realize(d, &local_err); 638 if (local_err) { 639 error_propagate(errp, local_err); 640 return; 641 } 642 643 vmstate_register(VMSTATE_IF(drcp), 644 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 645 &vmstate_spapr_drc_physical, drcp); 646 qemu_register_reset(drc_physical_reset, drcp); 647 } 648 649 static void unrealize_physical(DeviceState *d) 650 { 651 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 652 653 drc_unrealize(d); 654 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 655 qemu_unregister_reset(drc_physical_reset, drcp); 656 } 657 658 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 659 { 660 DeviceClass *dk = DEVICE_CLASS(k); 661 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 662 663 dk->realize = realize_physical; 664 dk->unrealize = unrealize_physical; 665 drck->dr_entity_sense = physical_entity_sense; 666 drck->isolate = drc_isolate_physical; 667 drck->unisolate = drc_unisolate_physical; 668 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 669 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 670 } 671 672 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 673 { 674 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 675 676 drck->dr_entity_sense = logical_entity_sense; 677 drck->isolate = drc_isolate_logical; 678 drck->unisolate = drc_unisolate_logical; 679 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 680 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 681 } 682 683 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 684 { 685 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 686 687 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 688 drck->typename = "CPU"; 689 drck->drc_name_prefix = "CPU "; 690 drck->release = spapr_core_release; 691 drck->dt_populate = spapr_core_dt_populate; 692 } 693 694 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 695 { 696 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 697 698 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 699 drck->typename = "28"; 700 drck->drc_name_prefix = "C"; 701 drck->release = spapr_phb_remove_pci_device_cb; 702 drck->dt_populate = spapr_pci_dt_populate; 703 } 704 705 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 706 { 707 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 708 709 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 710 drck->typename = "MEM"; 711 drck->drc_name_prefix = "LMB "; 712 drck->release = spapr_lmb_release; 713 drck->dt_populate = spapr_lmb_dt_populate; 714 } 715 716 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 717 { 718 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 719 720 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 721 drck->typename = "PHB"; 722 drck->drc_name_prefix = "PHB "; 723 drck->release = spapr_phb_release; 724 drck->dt_populate = spapr_phb_dt_populate; 725 } 726 727 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 728 { 729 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 730 731 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 732 drck->typename = "PMEM"; 733 drck->drc_name_prefix = "PMEM "; 734 drck->release = NULL; 735 drck->dt_populate = spapr_pmem_dt_populate; 736 } 737 738 static const TypeInfo spapr_dr_connector_info = { 739 .name = TYPE_SPAPR_DR_CONNECTOR, 740 .parent = TYPE_DEVICE, 741 .instance_size = sizeof(SpaprDrc), 742 .instance_init = spapr_dr_connector_instance_init, 743 .class_size = sizeof(SpaprDrcClass), 744 .class_init = spapr_dr_connector_class_init, 745 .abstract = true, 746 }; 747 748 static const TypeInfo spapr_drc_physical_info = { 749 .name = TYPE_SPAPR_DRC_PHYSICAL, 750 .parent = TYPE_SPAPR_DR_CONNECTOR, 751 .instance_size = sizeof(SpaprDrcPhysical), 752 .class_init = spapr_drc_physical_class_init, 753 .abstract = true, 754 }; 755 756 static const TypeInfo spapr_drc_logical_info = { 757 .name = TYPE_SPAPR_DRC_LOGICAL, 758 .parent = TYPE_SPAPR_DR_CONNECTOR, 759 .class_init = spapr_drc_logical_class_init, 760 .abstract = true, 761 }; 762 763 static const TypeInfo spapr_drc_cpu_info = { 764 .name = TYPE_SPAPR_DRC_CPU, 765 .parent = TYPE_SPAPR_DRC_LOGICAL, 766 .class_init = spapr_drc_cpu_class_init, 767 }; 768 769 static const TypeInfo spapr_drc_pci_info = { 770 .name = TYPE_SPAPR_DRC_PCI, 771 .parent = TYPE_SPAPR_DRC_PHYSICAL, 772 .class_init = spapr_drc_pci_class_init, 773 }; 774 775 static const TypeInfo spapr_drc_lmb_info = { 776 .name = TYPE_SPAPR_DRC_LMB, 777 .parent = TYPE_SPAPR_DRC_LOGICAL, 778 .class_init = spapr_drc_lmb_class_init, 779 }; 780 781 static const TypeInfo spapr_drc_phb_info = { 782 .name = TYPE_SPAPR_DRC_PHB, 783 .parent = TYPE_SPAPR_DRC_LOGICAL, 784 .instance_size = sizeof(SpaprDrc), 785 .class_init = spapr_drc_phb_class_init, 786 }; 787 788 static const TypeInfo spapr_drc_pmem_info = { 789 .name = TYPE_SPAPR_DRC_PMEM, 790 .parent = TYPE_SPAPR_DRC_LOGICAL, 791 .class_init = spapr_drc_pmem_class_init, 792 }; 793 794 /* helper functions for external users */ 795 796 SpaprDrc *spapr_drc_by_index(uint32_t index) 797 { 798 Object *obj; 799 g_autofree gchar *name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, 800 index); 801 obj = object_resolve_path(name, NULL); 802 803 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 804 } 805 806 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 807 { 808 SpaprDrcClass *drck 809 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 810 811 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 812 | (id & DRC_INDEX_ID_MASK)); 813 } 814 815 /** 816 * spapr_dt_drc 817 * 818 * @fdt: libfdt device tree 819 * @path: path in the DT to generate properties 820 * @owner: parent Object/DeviceState for which to generate DRC 821 * descriptions for 822 * @drc_type_mask: mask of SpaprDrcType values corresponding 823 * to the types of DRCs to generate entries for 824 * 825 * generate OF properties to describe DRC topology/indices to guests 826 * 827 * as documented in PAPR+ v2.1, 13.5.2 828 */ 829 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 830 { 831 Object *root_container; 832 ObjectProperty *prop; 833 ObjectPropertyIterator iter; 834 uint32_t drc_count = 0; 835 g_autoptr(GArray) drc_indexes = g_array_new(false, true, 836 sizeof(uint32_t)); 837 g_autoptr(GArray) drc_power_domains = g_array_new(false, true, 838 sizeof(uint32_t)); 839 g_autoptr(GString) drc_names = g_string_set_size(g_string_new(NULL), 840 sizeof(uint32_t)); 841 g_autoptr(GString) drc_types = g_string_set_size(g_string_new(NULL), 842 sizeof(uint32_t)); 843 int ret; 844 845 /* 846 * This should really be only called once per node since it overwrites 847 * the OF properties if they already exist. 848 */ 849 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 850 851 /* the first entry of each properties is a 32-bit integer encoding 852 * the number of elements in the array. we won't know this until 853 * we complete the iteration through all the matching DRCs, but 854 * reserve the space now and set the offsets accordingly so we 855 * can fill them in later. 856 */ 857 drc_indexes = g_array_set_size(drc_indexes, 1); 858 drc_power_domains = g_array_set_size(drc_power_domains, 1); 859 860 /* aliases for all DRConnector objects will be rooted in QOM 861 * composition tree at DRC_CONTAINER_PATH 862 */ 863 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 864 865 object_property_iter_init(&iter, root_container); 866 while ((prop = object_property_iter_next(&iter))) { 867 Object *obj; 868 SpaprDrc *drc; 869 SpaprDrcClass *drck; 870 g_autofree char *drc_name = NULL; 871 uint32_t drc_index, drc_power_domain; 872 873 if (!strstart(prop->type, "link<", NULL)) { 874 continue; 875 } 876 877 obj = object_property_get_link(root_container, prop->name, 878 &error_abort); 879 drc = SPAPR_DR_CONNECTOR(obj); 880 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 881 882 if (owner && (drc->owner != owner)) { 883 continue; 884 } 885 886 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 887 continue; 888 } 889 890 drc_count++; 891 892 /* ibm,drc-indexes */ 893 drc_index = cpu_to_be32(spapr_drc_index(drc)); 894 g_array_append_val(drc_indexes, drc_index); 895 896 /* ibm,drc-power-domains */ 897 drc_power_domain = cpu_to_be32(-1); 898 g_array_append_val(drc_power_domains, drc_power_domain); 899 900 /* ibm,drc-names */ 901 drc_name = spapr_drc_name(drc); 902 drc_names = g_string_append(drc_names, drc_name); 903 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 904 905 /* ibm,drc-types */ 906 drc_types = g_string_append(drc_types, drck->typename); 907 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 908 } 909 910 /* now write the drc count into the space we reserved at the 911 * beginning of the arrays previously 912 */ 913 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 914 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 915 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 916 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 917 918 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 919 drc_indexes->data, 920 drc_indexes->len * sizeof(uint32_t)); 921 if (ret) { 922 error_report("Couldn't create ibm,drc-indexes property"); 923 return ret; 924 } 925 926 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 927 drc_power_domains->data, 928 drc_power_domains->len * sizeof(uint32_t)); 929 if (ret) { 930 error_report("Couldn't finalize ibm,drc-power-domains property"); 931 return ret; 932 } 933 934 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 935 drc_names->str, drc_names->len); 936 if (ret) { 937 error_report("Couldn't finalize ibm,drc-names property"); 938 return ret; 939 } 940 941 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 942 drc_types->str, drc_types->len); 943 if (ret) { 944 error_report("Couldn't finalize ibm,drc-types property"); 945 } 946 947 return ret; 948 } 949 950 void spapr_drc_reset_all(SpaprMachineState *spapr) 951 { 952 Object *drc_container; 953 ObjectProperty *prop; 954 ObjectPropertyIterator iter; 955 956 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 957 restart: 958 object_property_iter_init(&iter, drc_container); 959 while ((prop = object_property_iter_next(&iter))) { 960 SpaprDrc *drc; 961 962 if (!strstart(prop->type, "link<", NULL)) { 963 continue; 964 } 965 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 966 prop->name, 967 &error_abort)); 968 969 /* 970 * This will complete any pending plug/unplug requests. 971 * In case of a unplugged PHB or PCI bridge, this will 972 * cause some DRCs to be destroyed and thus potentially 973 * invalidate the iterator. 974 */ 975 if (spapr_drc_reset(drc)) { 976 goto restart; 977 } 978 } 979 } 980 981 /* 982 * RTAS calls 983 */ 984 985 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 986 { 987 SpaprDrc *drc = spapr_drc_by_index(idx); 988 SpaprDrcClass *drck; 989 990 if (!drc) { 991 return RTAS_OUT_NO_SUCH_INDICATOR; 992 } 993 994 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 995 996 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 997 998 switch (state) { 999 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 1000 return drck->isolate(drc); 1001 1002 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 1003 return drck->unisolate(drc); 1004 1005 default: 1006 return RTAS_OUT_PARAM_ERROR; 1007 } 1008 } 1009 1010 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1011 { 1012 SpaprDrc *drc = spapr_drc_by_index(idx); 1013 1014 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1015 return RTAS_OUT_NO_SUCH_INDICATOR; 1016 } 1017 1018 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1019 1020 switch (state) { 1021 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1022 return drc_set_usable(drc); 1023 1024 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1025 return drc_set_unusable(drc); 1026 1027 default: 1028 return RTAS_OUT_PARAM_ERROR; 1029 } 1030 } 1031 1032 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1033 { 1034 SpaprDrc *drc = spapr_drc_by_index(idx); 1035 1036 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1037 return RTAS_OUT_NO_SUCH_INDICATOR; 1038 } 1039 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1040 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1041 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1042 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1043 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1044 } 1045 1046 trace_spapr_drc_set_dr_indicator(idx, state); 1047 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1048 return RTAS_OUT_SUCCESS; 1049 } 1050 1051 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1052 uint32_t token, 1053 uint32_t nargs, target_ulong args, 1054 uint32_t nret, target_ulong rets) 1055 { 1056 uint32_t type, idx, state; 1057 uint32_t ret = RTAS_OUT_SUCCESS; 1058 1059 if (nargs != 3 || nret != 1) { 1060 ret = RTAS_OUT_PARAM_ERROR; 1061 goto out; 1062 } 1063 1064 type = rtas_ld(args, 0); 1065 idx = rtas_ld(args, 1); 1066 state = rtas_ld(args, 2); 1067 1068 switch (type) { 1069 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1070 ret = rtas_set_isolation_state(idx, state); 1071 break; 1072 case RTAS_SENSOR_TYPE_DR: 1073 ret = rtas_set_dr_indicator(idx, state); 1074 break; 1075 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1076 ret = rtas_set_allocation_state(idx, state); 1077 break; 1078 default: 1079 ret = RTAS_OUT_NOT_SUPPORTED; 1080 } 1081 1082 out: 1083 rtas_st(rets, 0, ret); 1084 } 1085 1086 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1087 uint32_t token, uint32_t nargs, 1088 target_ulong args, uint32_t nret, 1089 target_ulong rets) 1090 { 1091 uint32_t sensor_type; 1092 uint32_t sensor_index; 1093 uint32_t sensor_state = 0; 1094 SpaprDrc *drc; 1095 SpaprDrcClass *drck; 1096 uint32_t ret = RTAS_OUT_SUCCESS; 1097 1098 if (nargs != 2 || nret != 2) { 1099 ret = RTAS_OUT_PARAM_ERROR; 1100 goto out; 1101 } 1102 1103 sensor_type = rtas_ld(args, 0); 1104 sensor_index = rtas_ld(args, 1); 1105 1106 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1107 /* currently only DR-related sensors are implemented */ 1108 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1109 sensor_type); 1110 ret = RTAS_OUT_NOT_SUPPORTED; 1111 goto out; 1112 } 1113 1114 drc = spapr_drc_by_index(sensor_index); 1115 if (!drc) { 1116 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1117 ret = RTAS_OUT_PARAM_ERROR; 1118 goto out; 1119 } 1120 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1121 sensor_state = drck->dr_entity_sense(drc); 1122 1123 out: 1124 rtas_st(rets, 0, ret); 1125 rtas_st(rets, 1, sensor_state); 1126 } 1127 1128 /* configure-connector work area offsets, int32_t units for field 1129 * indexes, bytes for field offset/len values. 1130 * 1131 * as documented by PAPR+ v2.7, 13.5.3.5 1132 */ 1133 #define CC_IDX_NODE_NAME_OFFSET 2 1134 #define CC_IDX_PROP_NAME_OFFSET 2 1135 #define CC_IDX_PROP_LEN 3 1136 #define CC_IDX_PROP_DATA_OFFSET 4 1137 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1138 #define CC_WA_LEN 4096 1139 1140 static void configure_connector_st(target_ulong addr, target_ulong offset, 1141 const void *buf, size_t len) 1142 { 1143 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1144 buf, MIN(len, CC_WA_LEN - offset)); 1145 } 1146 1147 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1148 SpaprMachineState *spapr, 1149 uint32_t token, uint32_t nargs, 1150 target_ulong args, uint32_t nret, 1151 target_ulong rets) 1152 { 1153 uint64_t wa_addr; 1154 uint64_t wa_offset; 1155 uint32_t drc_index; 1156 SpaprDrc *drc; 1157 SpaprDrcClass *drck; 1158 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1159 int rc; 1160 1161 if (nargs != 2 || nret != 1) { 1162 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1163 return; 1164 } 1165 1166 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1167 1168 drc_index = rtas_ld(wa_addr, 0); 1169 drc = spapr_drc_by_index(drc_index); 1170 if (!drc) { 1171 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1172 rc = RTAS_OUT_PARAM_ERROR; 1173 goto out; 1174 } 1175 1176 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1177 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1178 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1179 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1180 /* 1181 * Need to unisolate the device before configuring 1182 * or it should already be in configured state to 1183 * allow configure-connector be called repeatedly. 1184 */ 1185 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1186 goto out; 1187 } 1188 1189 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1190 1191 /* 1192 * This indicates that the kernel is reconfiguring a LMB due to 1193 * a failed hotunplug. Rollback the DIMM unplug process. 1194 */ 1195 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1196 drc->unplug_requested) { 1197 spapr_memory_unplug_rollback(spapr, drc->dev); 1198 } 1199 1200 if (!drc->fdt) { 1201 void *fdt; 1202 int fdt_size; 1203 1204 fdt = create_device_tree(&fdt_size); 1205 1206 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1207 NULL)) { 1208 g_free(fdt); 1209 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1210 goto out; 1211 } 1212 1213 drc->fdt = fdt; 1214 drc->ccs_offset = drc->fdt_start_offset; 1215 drc->ccs_depth = 0; 1216 } 1217 1218 do { 1219 uint32_t tag; 1220 const char *name; 1221 const struct fdt_property *prop; 1222 int fdt_offset_next, prop_len; 1223 1224 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1225 1226 switch (tag) { 1227 case FDT_BEGIN_NODE: 1228 drc->ccs_depth++; 1229 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1230 1231 /* provide the name of the next OF node */ 1232 wa_offset = CC_VAL_DATA_OFFSET; 1233 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1234 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1235 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1236 break; 1237 case FDT_END_NODE: 1238 drc->ccs_depth--; 1239 if (drc->ccs_depth == 0) { 1240 uint32_t drc_index = spapr_drc_index(drc); 1241 1242 /* done sending the device tree, move to configured state */ 1243 trace_spapr_drc_set_configured(drc_index); 1244 drc->state = drck->ready_state; 1245 /* 1246 * Ensure that we are able to send the FDT fragment 1247 * again via configure-connector call if the guest requests. 1248 */ 1249 drc->ccs_offset = drc->fdt_start_offset; 1250 drc->ccs_depth = 0; 1251 fdt_offset_next = drc->fdt_start_offset; 1252 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1253 } else { 1254 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1255 } 1256 break; 1257 case FDT_PROP: 1258 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1259 &prop_len); 1260 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1261 1262 /* provide the name of the next OF property */ 1263 wa_offset = CC_VAL_DATA_OFFSET; 1264 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1265 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1266 1267 /* provide the length and value of the OF property. data gets 1268 * placed immediately after NULL terminator of the OF property's 1269 * name string 1270 */ 1271 wa_offset += strlen(name) + 1, 1272 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1273 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1274 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1275 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1276 break; 1277 case FDT_END: 1278 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1279 default: 1280 /* keep seeking for an actionable tag */ 1281 break; 1282 } 1283 if (drc->ccs_offset >= 0) { 1284 drc->ccs_offset = fdt_offset_next; 1285 } 1286 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1287 1288 rc = resp; 1289 out: 1290 rtas_st(rets, 0, rc); 1291 } 1292 1293 static void spapr_drc_register_types(void) 1294 { 1295 type_register_static(&spapr_dr_connector_info); 1296 type_register_static(&spapr_drc_physical_info); 1297 type_register_static(&spapr_drc_logical_info); 1298 type_register_static(&spapr_drc_cpu_info); 1299 type_register_static(&spapr_drc_pci_info); 1300 type_register_static(&spapr_drc_lmb_info); 1301 type_register_static(&spapr_drc_phb_info); 1302 type_register_static(&spapr_drc_pmem_info); 1303 1304 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1305 rtas_set_indicator); 1306 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1307 rtas_get_sensor_state); 1308 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1309 rtas_ibm_configure_connector); 1310 } 1311 type_init(spapr_drc_register_types) 1312