xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision cd725bd7489e52445a15dd2f0ad1aa746dfa91fc)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     int fdt_offset_next, fdt_offset, fdt_depth;
306     void *fdt;
307 
308     if (!drc->fdt) {
309         visit_type_null(v, NULL, &null, errp);
310         qobject_unref(null);
311         return;
312     }
313 
314     fdt = drc->fdt;
315     fdt_offset = drc->fdt_start_offset;
316     fdt_depth = 0;
317 
318     do {
319         const char *name = NULL;
320         const struct fdt_property *prop = NULL;
321         int prop_len = 0, name_len = 0;
322         uint32_t tag;
323         bool ok;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             if (!visit_start_struct(v, name, NULL, 0, errp)) {
331                 return;
332             }
333             break;
334         case FDT_END_NODE:
335             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
336             g_assert(fdt_depth > 0);
337             ok = visit_check_struct(v, errp);
338             visit_end_struct(v, NULL);
339             if (!ok) {
340                 return;
341             }
342             fdt_depth--;
343             break;
344         case FDT_PROP: {
345             int i;
346             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
347             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
348             if (!visit_start_list(v, name, NULL, 0, errp)) {
349                 return;
350             }
351             for (i = 0; i < prop_len; i++) {
352                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
353                                       errp)) {
354                     return;
355                 }
356             }
357             ok = visit_check_list(v, errp);
358             visit_end_list(v, NULL);
359             if (!ok) {
360                 return;
361             }
362             break;
363         }
364         default:
365             error_report("device FDT in unexpected state: %d", tag);
366             abort();
367         }
368         fdt_offset = fdt_offset_next;
369     } while (fdt_depth != 0);
370 }
371 
372 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
373 {
374     trace_spapr_drc_attach(spapr_drc_index(drc));
375 
376     g_assert(!drc->dev);
377     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
378              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
379 
380     drc->dev = d;
381 
382     object_property_add_link(OBJECT(drc), "device",
383                              object_get_typename(OBJECT(drc->dev)),
384                              (Object **)(&drc->dev),
385                              NULL, 0);
386 }
387 
388 static void spapr_drc_release(SpaprDrc *drc)
389 {
390     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
391 
392     drck->release(drc->dev);
393 
394     drc->unplug_requested = false;
395     g_free(drc->fdt);
396     drc->fdt = NULL;
397     drc->fdt_start_offset = 0;
398     object_property_del(OBJECT(drc), "device");
399     drc->dev = NULL;
400 }
401 
402 void spapr_drc_detach(SpaprDrc *drc)
403 {
404     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
405 
406     trace_spapr_drc_detach(spapr_drc_index(drc));
407 
408     g_assert(drc->dev);
409 
410     drc->unplug_requested = true;
411 
412     if (drc->state != drck->empty_state) {
413         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
414         return;
415     }
416 
417     spapr_drc_release(drc);
418 }
419 
420 void spapr_drc_reset(SpaprDrc *drc)
421 {
422     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
423 
424     trace_spapr_drc_reset(spapr_drc_index(drc));
425 
426     /* immediately upon reset we can safely assume DRCs whose devices
427      * are pending removal can be safely removed.
428      */
429     if (drc->unplug_requested) {
430         spapr_drc_release(drc);
431     }
432 
433     if (drc->dev) {
434         /* A device present at reset is ready to go, same as coldplugged */
435         drc->state = drck->ready_state;
436         /*
437          * Ensure that we are able to send the FDT fragment again
438          * via configure-connector call if the guest requests.
439          */
440         drc->ccs_offset = drc->fdt_start_offset;
441         drc->ccs_depth = 0;
442     } else {
443         drc->state = drck->empty_state;
444         drc->ccs_offset = -1;
445         drc->ccs_depth = -1;
446     }
447 }
448 
449 static bool spapr_drc_unplug_requested_needed(void *opaque)
450 {
451     return spapr_drc_unplug_requested(opaque);
452 }
453 
454 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
455     .name = "spapr_drc/unplug_requested",
456     .version_id = 1,
457     .minimum_version_id = 1,
458     .needed = spapr_drc_unplug_requested_needed,
459     .fields  = (VMStateField []) {
460         VMSTATE_BOOL(unplug_requested, SpaprDrc),
461         VMSTATE_END_OF_LIST()
462     }
463 };
464 
465 static bool spapr_drc_needed(void *opaque)
466 {
467     SpaprDrc *drc = opaque;
468     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
469 
470     /*
471      * If no dev is plugged in there is no need to migrate the DRC state
472      * nor to reset the DRC at CAS.
473      */
474     if (!drc->dev) {
475         return false;
476     }
477 
478     /*
479      * We need to reset the DRC at CAS or to migrate the DRC state if it's
480      * not equal to the expected long-term state, which is the same as the
481      * coldplugged initial state, or if an unplug request is pending.
482      */
483     return drc->state != drck->ready_state ||
484         spapr_drc_unplug_requested(drc);
485 }
486 
487 static const VMStateDescription vmstate_spapr_drc = {
488     .name = "spapr_drc",
489     .version_id = 1,
490     .minimum_version_id = 1,
491     .needed = spapr_drc_needed,
492     .fields  = (VMStateField []) {
493         VMSTATE_UINT32(state, SpaprDrc),
494         VMSTATE_END_OF_LIST()
495     },
496     .subsections = (const VMStateDescription * []) {
497         &vmstate_spapr_drc_unplug_requested,
498         NULL
499     }
500 };
501 
502 static void realize(DeviceState *d, Error **errp)
503 {
504     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
505     Object *root_container;
506     gchar *link_name;
507     const char *child_name;
508 
509     trace_spapr_drc_realize(spapr_drc_index(drc));
510     /* NOTE: we do this as part of realize/unrealize due to the fact
511      * that the guest will communicate with the DRC via RTAS calls
512      * referencing the global DRC index. By unlinking the DRC
513      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
514      * inaccessible by the guest, since lookups rely on this path
515      * existing in the composition tree
516      */
517     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
518     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
519     child_name = object_get_canonical_path_component(OBJECT(drc));
520     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
521     object_property_add_alias(root_container, link_name,
522                               drc->owner, child_name);
523     g_free(link_name);
524     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
525                      drc);
526     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
527 }
528 
529 static void unrealize(DeviceState *d)
530 {
531     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
532     Object *root_container;
533     gchar *name;
534 
535     trace_spapr_drc_unrealize(spapr_drc_index(drc));
536     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
537     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
538     name = g_strdup_printf("%x", spapr_drc_index(drc));
539     object_property_del(root_container, name);
540     g_free(name);
541 }
542 
543 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
544                                          uint32_t id)
545 {
546     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
547     char *prop_name;
548 
549     drc->id = id;
550     drc->owner = owner;
551     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
552                                 spapr_drc_index(drc));
553     object_property_add_child(owner, prop_name, OBJECT(drc));
554     object_unref(OBJECT(drc));
555     qdev_realize(DEVICE(drc), NULL, NULL);
556     g_free(prop_name);
557 
558     return drc;
559 }
560 
561 static void spapr_dr_connector_instance_init(Object *obj)
562 {
563     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
564     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
565 
566     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
567     object_property_add(obj, "index", "uint32", prop_get_index,
568                         NULL, NULL, NULL);
569     object_property_add(obj, "fdt", "struct", prop_get_fdt,
570                         NULL, NULL, NULL);
571     drc->state = drck->empty_state;
572 }
573 
574 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
575 {
576     DeviceClass *dk = DEVICE_CLASS(k);
577 
578     dk->realize = realize;
579     dk->unrealize = unrealize;
580     /*
581      * Reason: DR connector needs to be wired to either the machine or to a
582      * PHB in spapr_dr_connector_new().
583      */
584     dk->user_creatable = false;
585 }
586 
587 static bool drc_physical_needed(void *opaque)
588 {
589     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
590     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
591 
592     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
593         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
594         return false;
595     }
596     return true;
597 }
598 
599 static const VMStateDescription vmstate_spapr_drc_physical = {
600     .name = "spapr_drc/physical",
601     .version_id = 1,
602     .minimum_version_id = 1,
603     .needed = drc_physical_needed,
604     .fields  = (VMStateField []) {
605         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
606         VMSTATE_END_OF_LIST()
607     }
608 };
609 
610 static void drc_physical_reset(void *opaque)
611 {
612     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
613     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
614 
615     if (drc->dev) {
616         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
617     } else {
618         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
619     }
620 }
621 
622 static void realize_physical(DeviceState *d, Error **errp)
623 {
624     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
625     Error *local_err = NULL;
626 
627     realize(d, &local_err);
628     if (local_err) {
629         error_propagate(errp, local_err);
630         return;
631     }
632 
633     vmstate_register(VMSTATE_IF(drcp),
634                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
635                      &vmstate_spapr_drc_physical, drcp);
636     qemu_register_reset(drc_physical_reset, drcp);
637 }
638 
639 static void unrealize_physical(DeviceState *d)
640 {
641     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
642 
643     unrealize(d);
644     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
645     qemu_unregister_reset(drc_physical_reset, drcp);
646 }
647 
648 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
649 {
650     DeviceClass *dk = DEVICE_CLASS(k);
651     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
652 
653     dk->realize = realize_physical;
654     dk->unrealize = unrealize_physical;
655     drck->dr_entity_sense = physical_entity_sense;
656     drck->isolate = drc_isolate_physical;
657     drck->unisolate = drc_unisolate_physical;
658     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
659     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
660 }
661 
662 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
663 {
664     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
665 
666     drck->dr_entity_sense = logical_entity_sense;
667     drck->isolate = drc_isolate_logical;
668     drck->unisolate = drc_unisolate_logical;
669     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
670     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
671 }
672 
673 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
674 {
675     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
676 
677     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
678     drck->typename = "CPU";
679     drck->drc_name_prefix = "CPU ";
680     drck->release = spapr_core_release;
681     drck->dt_populate = spapr_core_dt_populate;
682 }
683 
684 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
685 {
686     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
687 
688     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
689     drck->typename = "28";
690     drck->drc_name_prefix = "C";
691     drck->release = spapr_phb_remove_pci_device_cb;
692     drck->dt_populate = spapr_pci_dt_populate;
693 }
694 
695 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
696 {
697     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
698 
699     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
700     drck->typename = "MEM";
701     drck->drc_name_prefix = "LMB ";
702     drck->release = spapr_lmb_release;
703     drck->dt_populate = spapr_lmb_dt_populate;
704 }
705 
706 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
707 {
708     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
709 
710     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
711     drck->typename = "PHB";
712     drck->drc_name_prefix = "PHB ";
713     drck->release = spapr_phb_release;
714     drck->dt_populate = spapr_phb_dt_populate;
715 }
716 
717 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
718 {
719     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
720 
721     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
722     drck->typename = "PMEM";
723     drck->drc_name_prefix = "PMEM ";
724     drck->release = NULL;
725     drck->dt_populate = spapr_pmem_dt_populate;
726 }
727 
728 static const TypeInfo spapr_dr_connector_info = {
729     .name          = TYPE_SPAPR_DR_CONNECTOR,
730     .parent        = TYPE_DEVICE,
731     .instance_size = sizeof(SpaprDrc),
732     .instance_init = spapr_dr_connector_instance_init,
733     .class_size    = sizeof(SpaprDrcClass),
734     .class_init    = spapr_dr_connector_class_init,
735     .abstract      = true,
736 };
737 
738 static const TypeInfo spapr_drc_physical_info = {
739     .name          = TYPE_SPAPR_DRC_PHYSICAL,
740     .parent        = TYPE_SPAPR_DR_CONNECTOR,
741     .instance_size = sizeof(SpaprDrcPhysical),
742     .class_init    = spapr_drc_physical_class_init,
743     .abstract      = true,
744 };
745 
746 static const TypeInfo spapr_drc_logical_info = {
747     .name          = TYPE_SPAPR_DRC_LOGICAL,
748     .parent        = TYPE_SPAPR_DR_CONNECTOR,
749     .class_init    = spapr_drc_logical_class_init,
750     .abstract      = true,
751 };
752 
753 static const TypeInfo spapr_drc_cpu_info = {
754     .name          = TYPE_SPAPR_DRC_CPU,
755     .parent        = TYPE_SPAPR_DRC_LOGICAL,
756     .class_init    = spapr_drc_cpu_class_init,
757 };
758 
759 static const TypeInfo spapr_drc_pci_info = {
760     .name          = TYPE_SPAPR_DRC_PCI,
761     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
762     .class_init    = spapr_drc_pci_class_init,
763 };
764 
765 static const TypeInfo spapr_drc_lmb_info = {
766     .name          = TYPE_SPAPR_DRC_LMB,
767     .parent        = TYPE_SPAPR_DRC_LOGICAL,
768     .class_init    = spapr_drc_lmb_class_init,
769 };
770 
771 static const TypeInfo spapr_drc_phb_info = {
772     .name          = TYPE_SPAPR_DRC_PHB,
773     .parent        = TYPE_SPAPR_DRC_LOGICAL,
774     .instance_size = sizeof(SpaprDrc),
775     .class_init    = spapr_drc_phb_class_init,
776 };
777 
778 static const TypeInfo spapr_drc_pmem_info = {
779     .name          = TYPE_SPAPR_DRC_PMEM,
780     .parent        = TYPE_SPAPR_DRC_LOGICAL,
781     .class_init    = spapr_drc_pmem_class_init,
782 };
783 
784 /* helper functions for external users */
785 
786 SpaprDrc *spapr_drc_by_index(uint32_t index)
787 {
788     Object *obj;
789     gchar *name;
790 
791     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
792     obj = object_resolve_path(name, NULL);
793     g_free(name);
794 
795     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
796 }
797 
798 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
799 {
800     SpaprDrcClass *drck
801         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
802 
803     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
804                               | (id & DRC_INDEX_ID_MASK));
805 }
806 
807 /**
808  * spapr_dt_drc
809  *
810  * @fdt: libfdt device tree
811  * @path: path in the DT to generate properties
812  * @owner: parent Object/DeviceState for which to generate DRC
813  *         descriptions for
814  * @drc_type_mask: mask of SpaprDrcType values corresponding
815  *   to the types of DRCs to generate entries for
816  *
817  * generate OF properties to describe DRC topology/indices to guests
818  *
819  * as documented in PAPR+ v2.1, 13.5.2
820  */
821 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
822 {
823     Object *root_container;
824     ObjectProperty *prop;
825     ObjectPropertyIterator iter;
826     uint32_t drc_count = 0;
827     GArray *drc_indexes, *drc_power_domains;
828     GString *drc_names, *drc_types;
829     int ret;
830 
831     /*
832      * This should really be only called once per node since it overwrites
833      * the OF properties if they already exist.
834      */
835     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
836 
837     /* the first entry of each properties is a 32-bit integer encoding
838      * the number of elements in the array. we won't know this until
839      * we complete the iteration through all the matching DRCs, but
840      * reserve the space now and set the offsets accordingly so we
841      * can fill them in later.
842      */
843     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
844     drc_indexes = g_array_set_size(drc_indexes, 1);
845     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
846     drc_power_domains = g_array_set_size(drc_power_domains, 1);
847     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
848     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
849 
850     /* aliases for all DRConnector objects will be rooted in QOM
851      * composition tree at DRC_CONTAINER_PATH
852      */
853     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
854 
855     object_property_iter_init(&iter, root_container);
856     while ((prop = object_property_iter_next(&iter))) {
857         Object *obj;
858         SpaprDrc *drc;
859         SpaprDrcClass *drck;
860         char *drc_name = NULL;
861         uint32_t drc_index, drc_power_domain;
862 
863         if (!strstart(prop->type, "link<", NULL)) {
864             continue;
865         }
866 
867         obj = object_property_get_link(root_container, prop->name,
868                                        &error_abort);
869         drc = SPAPR_DR_CONNECTOR(obj);
870         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
871 
872         if (owner && (drc->owner != owner)) {
873             continue;
874         }
875 
876         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
877             continue;
878         }
879 
880         drc_count++;
881 
882         /* ibm,drc-indexes */
883         drc_index = cpu_to_be32(spapr_drc_index(drc));
884         g_array_append_val(drc_indexes, drc_index);
885 
886         /* ibm,drc-power-domains */
887         drc_power_domain = cpu_to_be32(-1);
888         g_array_append_val(drc_power_domains, drc_power_domain);
889 
890         /* ibm,drc-names */
891         drc_name = spapr_drc_name(drc);
892         drc_names = g_string_append(drc_names, drc_name);
893         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
894         g_free(drc_name);
895 
896         /* ibm,drc-types */
897         drc_types = g_string_append(drc_types, drck->typename);
898         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
899     }
900 
901     /* now write the drc count into the space we reserved at the
902      * beginning of the arrays previously
903      */
904     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
905     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
906     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
907     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
908 
909     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
910                       drc_indexes->data,
911                       drc_indexes->len * sizeof(uint32_t));
912     if (ret) {
913         error_report("Couldn't create ibm,drc-indexes property");
914         goto out;
915     }
916 
917     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
918                       drc_power_domains->data,
919                       drc_power_domains->len * sizeof(uint32_t));
920     if (ret) {
921         error_report("Couldn't finalize ibm,drc-power-domains property");
922         goto out;
923     }
924 
925     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
926                       drc_names->str, drc_names->len);
927     if (ret) {
928         error_report("Couldn't finalize ibm,drc-names property");
929         goto out;
930     }
931 
932     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
933                       drc_types->str, drc_types->len);
934     if (ret) {
935         error_report("Couldn't finalize ibm,drc-types property");
936         goto out;
937     }
938 
939 out:
940     g_array_free(drc_indexes, true);
941     g_array_free(drc_power_domains, true);
942     g_string_free(drc_names, true);
943     g_string_free(drc_types, true);
944 
945     return ret;
946 }
947 
948 /*
949  * RTAS calls
950  */
951 
952 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
953 {
954     SpaprDrc *drc = spapr_drc_by_index(idx);
955     SpaprDrcClass *drck;
956 
957     if (!drc) {
958         return RTAS_OUT_NO_SUCH_INDICATOR;
959     }
960 
961     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
962 
963     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
964 
965     switch (state) {
966     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
967         return drck->isolate(drc);
968 
969     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
970         return drck->unisolate(drc);
971 
972     default:
973         return RTAS_OUT_PARAM_ERROR;
974     }
975 }
976 
977 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
978 {
979     SpaprDrc *drc = spapr_drc_by_index(idx);
980 
981     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
982         return RTAS_OUT_NO_SUCH_INDICATOR;
983     }
984 
985     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
986 
987     switch (state) {
988     case SPAPR_DR_ALLOCATION_STATE_USABLE:
989         return drc_set_usable(drc);
990 
991     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
992         return drc_set_unusable(drc);
993 
994     default:
995         return RTAS_OUT_PARAM_ERROR;
996     }
997 }
998 
999 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1000 {
1001     SpaprDrc *drc = spapr_drc_by_index(idx);
1002 
1003     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1004         return RTAS_OUT_NO_SUCH_INDICATOR;
1005     }
1006     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1007         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1008         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1009         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1010         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1011     }
1012 
1013     trace_spapr_drc_set_dr_indicator(idx, state);
1014     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1015     return RTAS_OUT_SUCCESS;
1016 }
1017 
1018 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1019                                uint32_t token,
1020                                uint32_t nargs, target_ulong args,
1021                                uint32_t nret, target_ulong rets)
1022 {
1023     uint32_t type, idx, state;
1024     uint32_t ret = RTAS_OUT_SUCCESS;
1025 
1026     if (nargs != 3 || nret != 1) {
1027         ret = RTAS_OUT_PARAM_ERROR;
1028         goto out;
1029     }
1030 
1031     type = rtas_ld(args, 0);
1032     idx = rtas_ld(args, 1);
1033     state = rtas_ld(args, 2);
1034 
1035     switch (type) {
1036     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1037         ret = rtas_set_isolation_state(idx, state);
1038         break;
1039     case RTAS_SENSOR_TYPE_DR:
1040         ret = rtas_set_dr_indicator(idx, state);
1041         break;
1042     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1043         ret = rtas_set_allocation_state(idx, state);
1044         break;
1045     default:
1046         ret = RTAS_OUT_NOT_SUPPORTED;
1047     }
1048 
1049 out:
1050     rtas_st(rets, 0, ret);
1051 }
1052 
1053 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1054                                   uint32_t token, uint32_t nargs,
1055                                   target_ulong args, uint32_t nret,
1056                                   target_ulong rets)
1057 {
1058     uint32_t sensor_type;
1059     uint32_t sensor_index;
1060     uint32_t sensor_state = 0;
1061     SpaprDrc *drc;
1062     SpaprDrcClass *drck;
1063     uint32_t ret = RTAS_OUT_SUCCESS;
1064 
1065     if (nargs != 2 || nret != 2) {
1066         ret = RTAS_OUT_PARAM_ERROR;
1067         goto out;
1068     }
1069 
1070     sensor_type = rtas_ld(args, 0);
1071     sensor_index = rtas_ld(args, 1);
1072 
1073     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1074         /* currently only DR-related sensors are implemented */
1075         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1076                                                         sensor_type);
1077         ret = RTAS_OUT_NOT_SUPPORTED;
1078         goto out;
1079     }
1080 
1081     drc = spapr_drc_by_index(sensor_index);
1082     if (!drc) {
1083         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1084         ret = RTAS_OUT_PARAM_ERROR;
1085         goto out;
1086     }
1087     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1088     sensor_state = drck->dr_entity_sense(drc);
1089 
1090 out:
1091     rtas_st(rets, 0, ret);
1092     rtas_st(rets, 1, sensor_state);
1093 }
1094 
1095 /* configure-connector work area offsets, int32_t units for field
1096  * indexes, bytes for field offset/len values.
1097  *
1098  * as documented by PAPR+ v2.7, 13.5.3.5
1099  */
1100 #define CC_IDX_NODE_NAME_OFFSET 2
1101 #define CC_IDX_PROP_NAME_OFFSET 2
1102 #define CC_IDX_PROP_LEN 3
1103 #define CC_IDX_PROP_DATA_OFFSET 4
1104 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1105 #define CC_WA_LEN 4096
1106 
1107 static void configure_connector_st(target_ulong addr, target_ulong offset,
1108                                    const void *buf, size_t len)
1109 {
1110     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1111                               buf, MIN(len, CC_WA_LEN - offset));
1112 }
1113 
1114 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1115                                          SpaprMachineState *spapr,
1116                                          uint32_t token, uint32_t nargs,
1117                                          target_ulong args, uint32_t nret,
1118                                          target_ulong rets)
1119 {
1120     uint64_t wa_addr;
1121     uint64_t wa_offset;
1122     uint32_t drc_index;
1123     SpaprDrc *drc;
1124     SpaprDrcClass *drck;
1125     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1126     int rc;
1127 
1128     if (nargs != 2 || nret != 1) {
1129         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1130         return;
1131     }
1132 
1133     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1134 
1135     drc_index = rtas_ld(wa_addr, 0);
1136     drc = spapr_drc_by_index(drc_index);
1137     if (!drc) {
1138         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1139         rc = RTAS_OUT_PARAM_ERROR;
1140         goto out;
1141     }
1142 
1143     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1144         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1145         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1146         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1147         /*
1148          * Need to unisolate the device before configuring
1149          * or it should already be in configured state to
1150          * allow configure-connector be called repeatedly.
1151          */
1152         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1153         goto out;
1154     }
1155 
1156     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1157 
1158     if (!drc->fdt) {
1159         void *fdt;
1160         int fdt_size;
1161 
1162         fdt = create_device_tree(&fdt_size);
1163 
1164         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1165                               NULL)) {
1166             g_free(fdt);
1167             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1168             goto out;
1169         }
1170 
1171         drc->fdt = fdt;
1172         drc->ccs_offset = drc->fdt_start_offset;
1173         drc->ccs_depth = 0;
1174     }
1175 
1176     do {
1177         uint32_t tag;
1178         const char *name;
1179         const struct fdt_property *prop;
1180         int fdt_offset_next, prop_len;
1181 
1182         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1183 
1184         switch (tag) {
1185         case FDT_BEGIN_NODE:
1186             drc->ccs_depth++;
1187             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1188 
1189             /* provide the name of the next OF node */
1190             wa_offset = CC_VAL_DATA_OFFSET;
1191             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1192             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1193             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1194             break;
1195         case FDT_END_NODE:
1196             drc->ccs_depth--;
1197             if (drc->ccs_depth == 0) {
1198                 uint32_t drc_index = spapr_drc_index(drc);
1199 
1200                 /* done sending the device tree, move to configured state */
1201                 trace_spapr_drc_set_configured(drc_index);
1202                 drc->state = drck->ready_state;
1203                 /*
1204                  * Ensure that we are able to send the FDT fragment
1205                  * again via configure-connector call if the guest requests.
1206                  */
1207                 drc->ccs_offset = drc->fdt_start_offset;
1208                 drc->ccs_depth = 0;
1209                 fdt_offset_next = drc->fdt_start_offset;
1210                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1211             } else {
1212                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1213             }
1214             break;
1215         case FDT_PROP:
1216             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1217                                               &prop_len);
1218             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1219 
1220             /* provide the name of the next OF property */
1221             wa_offset = CC_VAL_DATA_OFFSET;
1222             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1223             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1224 
1225             /* provide the length and value of the OF property. data gets
1226              * placed immediately after NULL terminator of the OF property's
1227              * name string
1228              */
1229             wa_offset += strlen(name) + 1,
1230             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1231             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1232             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1233             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1234             break;
1235         case FDT_END:
1236             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1237         default:
1238             /* keep seeking for an actionable tag */
1239             break;
1240         }
1241         if (drc->ccs_offset >= 0) {
1242             drc->ccs_offset = fdt_offset_next;
1243         }
1244     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1245 
1246     rc = resp;
1247 out:
1248     rtas_st(rets, 0, rc);
1249 }
1250 
1251 static void spapr_drc_register_types(void)
1252 {
1253     type_register_static(&spapr_dr_connector_info);
1254     type_register_static(&spapr_drc_physical_info);
1255     type_register_static(&spapr_drc_logical_info);
1256     type_register_static(&spapr_drc_cpu_info);
1257     type_register_static(&spapr_drc_pci_info);
1258     type_register_static(&spapr_drc_lmb_info);
1259     type_register_static(&spapr_drc_phb_info);
1260     type_register_static(&spapr_drc_pmem_info);
1261 
1262     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1263                         rtas_set_indicator);
1264     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1265                         rtas_get_sensor_state);
1266     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1267                         rtas_ibm_configure_connector);
1268 }
1269 type_init(spapr_drc_register_types)
1270