1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 int fdt_offset_next, fdt_offset, fdt_depth; 306 void *fdt; 307 308 if (!drc->fdt) { 309 visit_type_null(v, NULL, &null, errp); 310 qobject_unref(null); 311 return; 312 } 313 314 fdt = drc->fdt; 315 fdt_offset = drc->fdt_start_offset; 316 fdt_depth = 0; 317 318 do { 319 const char *name = NULL; 320 const struct fdt_property *prop = NULL; 321 int prop_len = 0, name_len = 0; 322 uint32_t tag; 323 bool ok; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 if (!visit_start_struct(v, name, NULL, 0, errp)) { 331 return; 332 } 333 break; 334 case FDT_END_NODE: 335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 336 g_assert(fdt_depth > 0); 337 ok = visit_check_struct(v, errp); 338 visit_end_struct(v, NULL); 339 if (!ok) { 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 if (!visit_start_list(v, name, NULL, 0, errp)) { 349 return; 350 } 351 for (i = 0; i < prop_len; i++) { 352 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 353 errp)) { 354 return; 355 } 356 } 357 ok = visit_check_list(v, errp); 358 visit_end_list(v, NULL); 359 if (!ok) { 360 return; 361 } 362 break; 363 } 364 default: 365 error_report("device FDT in unexpected state: %d", tag); 366 abort(); 367 } 368 fdt_offset = fdt_offset_next; 369 } while (fdt_depth != 0); 370 } 371 372 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 373 { 374 trace_spapr_drc_attach(spapr_drc_index(drc)); 375 376 g_assert(!drc->dev); 377 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 378 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 379 380 drc->dev = d; 381 382 object_property_add_link(OBJECT(drc), "device", 383 object_get_typename(OBJECT(drc->dev)), 384 (Object **)(&drc->dev), 385 NULL, 0); 386 } 387 388 static void spapr_drc_release(SpaprDrc *drc) 389 { 390 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 391 392 drck->release(drc->dev); 393 394 drc->unplug_requested = false; 395 g_free(drc->fdt); 396 drc->fdt = NULL; 397 drc->fdt_start_offset = 0; 398 object_property_del(OBJECT(drc), "device"); 399 drc->dev = NULL; 400 } 401 402 void spapr_drc_detach(SpaprDrc *drc) 403 { 404 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 405 406 trace_spapr_drc_detach(spapr_drc_index(drc)); 407 408 g_assert(drc->dev); 409 410 drc->unplug_requested = true; 411 412 if (drc->state != drck->empty_state) { 413 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 414 return; 415 } 416 417 spapr_drc_release(drc); 418 } 419 420 void spapr_drc_reset(SpaprDrc *drc) 421 { 422 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 423 424 trace_spapr_drc_reset(spapr_drc_index(drc)); 425 426 /* immediately upon reset we can safely assume DRCs whose devices 427 * are pending removal can be safely removed. 428 */ 429 if (drc->unplug_requested) { 430 spapr_drc_release(drc); 431 } 432 433 if (drc->dev) { 434 /* A device present at reset is ready to go, same as coldplugged */ 435 drc->state = drck->ready_state; 436 /* 437 * Ensure that we are able to send the FDT fragment again 438 * via configure-connector call if the guest requests. 439 */ 440 drc->ccs_offset = drc->fdt_start_offset; 441 drc->ccs_depth = 0; 442 } else { 443 drc->state = drck->empty_state; 444 drc->ccs_offset = -1; 445 drc->ccs_depth = -1; 446 } 447 } 448 449 static bool spapr_drc_unplug_requested_needed(void *opaque) 450 { 451 return spapr_drc_unplug_requested(opaque); 452 } 453 454 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 455 .name = "spapr_drc/unplug_requested", 456 .version_id = 1, 457 .minimum_version_id = 1, 458 .needed = spapr_drc_unplug_requested_needed, 459 .fields = (VMStateField []) { 460 VMSTATE_BOOL(unplug_requested, SpaprDrc), 461 VMSTATE_END_OF_LIST() 462 } 463 }; 464 465 static bool spapr_drc_needed(void *opaque) 466 { 467 SpaprDrc *drc = opaque; 468 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 469 470 /* 471 * If no dev is plugged in there is no need to migrate the DRC state 472 * nor to reset the DRC at CAS. 473 */ 474 if (!drc->dev) { 475 return false; 476 } 477 478 /* 479 * We need to reset the DRC at CAS or to migrate the DRC state if it's 480 * not equal to the expected long-term state, which is the same as the 481 * coldplugged initial state, or if an unplug request is pending. 482 */ 483 return drc->state != drck->ready_state || 484 spapr_drc_unplug_requested(drc); 485 } 486 487 static const VMStateDescription vmstate_spapr_drc = { 488 .name = "spapr_drc", 489 .version_id = 1, 490 .minimum_version_id = 1, 491 .needed = spapr_drc_needed, 492 .fields = (VMStateField []) { 493 VMSTATE_UINT32(state, SpaprDrc), 494 VMSTATE_END_OF_LIST() 495 }, 496 .subsections = (const VMStateDescription * []) { 497 &vmstate_spapr_drc_unplug_requested, 498 NULL 499 } 500 }; 501 502 static void realize(DeviceState *d, Error **errp) 503 { 504 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 505 Object *root_container; 506 gchar *link_name; 507 const char *child_name; 508 509 trace_spapr_drc_realize(spapr_drc_index(drc)); 510 /* NOTE: we do this as part of realize/unrealize due to the fact 511 * that the guest will communicate with the DRC via RTAS calls 512 * referencing the global DRC index. By unlinking the DRC 513 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 514 * inaccessible by the guest, since lookups rely on this path 515 * existing in the composition tree 516 */ 517 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 518 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 519 child_name = object_get_canonical_path_component(OBJECT(drc)); 520 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 521 object_property_add_alias(root_container, link_name, 522 drc->owner, child_name); 523 g_free(link_name); 524 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 525 drc); 526 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 527 } 528 529 static void unrealize(DeviceState *d) 530 { 531 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 532 Object *root_container; 533 gchar *name; 534 535 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 536 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 537 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 538 name = g_strdup_printf("%x", spapr_drc_index(drc)); 539 object_property_del(root_container, name); 540 g_free(name); 541 } 542 543 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 544 uint32_t id) 545 { 546 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 547 char *prop_name; 548 549 drc->id = id; 550 drc->owner = owner; 551 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 552 spapr_drc_index(drc)); 553 object_property_add_child(owner, prop_name, OBJECT(drc)); 554 object_unref(OBJECT(drc)); 555 qdev_realize(DEVICE(drc), NULL, NULL); 556 g_free(prop_name); 557 558 return drc; 559 } 560 561 static void spapr_dr_connector_instance_init(Object *obj) 562 { 563 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 564 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 565 566 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 567 object_property_add(obj, "index", "uint32", prop_get_index, 568 NULL, NULL, NULL); 569 object_property_add(obj, "fdt", "struct", prop_get_fdt, 570 NULL, NULL, NULL); 571 drc->state = drck->empty_state; 572 } 573 574 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 575 { 576 DeviceClass *dk = DEVICE_CLASS(k); 577 578 dk->realize = realize; 579 dk->unrealize = unrealize; 580 /* 581 * Reason: DR connector needs to be wired to either the machine or to a 582 * PHB in spapr_dr_connector_new(). 583 */ 584 dk->user_creatable = false; 585 } 586 587 static bool drc_physical_needed(void *opaque) 588 { 589 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 590 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 591 592 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 593 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 594 return false; 595 } 596 return true; 597 } 598 599 static const VMStateDescription vmstate_spapr_drc_physical = { 600 .name = "spapr_drc/physical", 601 .version_id = 1, 602 .minimum_version_id = 1, 603 .needed = drc_physical_needed, 604 .fields = (VMStateField []) { 605 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 606 VMSTATE_END_OF_LIST() 607 } 608 }; 609 610 static void drc_physical_reset(void *opaque) 611 { 612 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 613 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 614 615 if (drc->dev) { 616 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 617 } else { 618 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 619 } 620 } 621 622 static void realize_physical(DeviceState *d, Error **errp) 623 { 624 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 625 Error *local_err = NULL; 626 627 realize(d, &local_err); 628 if (local_err) { 629 error_propagate(errp, local_err); 630 return; 631 } 632 633 vmstate_register(VMSTATE_IF(drcp), 634 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 635 &vmstate_spapr_drc_physical, drcp); 636 qemu_register_reset(drc_physical_reset, drcp); 637 } 638 639 static void unrealize_physical(DeviceState *d) 640 { 641 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 642 643 unrealize(d); 644 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 645 qemu_unregister_reset(drc_physical_reset, drcp); 646 } 647 648 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 649 { 650 DeviceClass *dk = DEVICE_CLASS(k); 651 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 652 653 dk->realize = realize_physical; 654 dk->unrealize = unrealize_physical; 655 drck->dr_entity_sense = physical_entity_sense; 656 drck->isolate = drc_isolate_physical; 657 drck->unisolate = drc_unisolate_physical; 658 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 659 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 660 } 661 662 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 663 { 664 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 665 666 drck->dr_entity_sense = logical_entity_sense; 667 drck->isolate = drc_isolate_logical; 668 drck->unisolate = drc_unisolate_logical; 669 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 670 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 671 } 672 673 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 674 { 675 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 676 677 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 678 drck->typename = "CPU"; 679 drck->drc_name_prefix = "CPU "; 680 drck->release = spapr_core_release; 681 drck->dt_populate = spapr_core_dt_populate; 682 } 683 684 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 685 { 686 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 687 688 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 689 drck->typename = "28"; 690 drck->drc_name_prefix = "C"; 691 drck->release = spapr_phb_remove_pci_device_cb; 692 drck->dt_populate = spapr_pci_dt_populate; 693 } 694 695 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 696 { 697 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 698 699 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 700 drck->typename = "MEM"; 701 drck->drc_name_prefix = "LMB "; 702 drck->release = spapr_lmb_release; 703 drck->dt_populate = spapr_lmb_dt_populate; 704 } 705 706 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 707 { 708 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 709 710 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 711 drck->typename = "PHB"; 712 drck->drc_name_prefix = "PHB "; 713 drck->release = spapr_phb_release; 714 drck->dt_populate = spapr_phb_dt_populate; 715 } 716 717 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 718 { 719 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 720 721 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 722 drck->typename = "PMEM"; 723 drck->drc_name_prefix = "PMEM "; 724 drck->release = NULL; 725 drck->dt_populate = spapr_pmem_dt_populate; 726 } 727 728 static const TypeInfo spapr_dr_connector_info = { 729 .name = TYPE_SPAPR_DR_CONNECTOR, 730 .parent = TYPE_DEVICE, 731 .instance_size = sizeof(SpaprDrc), 732 .instance_init = spapr_dr_connector_instance_init, 733 .class_size = sizeof(SpaprDrcClass), 734 .class_init = spapr_dr_connector_class_init, 735 .abstract = true, 736 }; 737 738 static const TypeInfo spapr_drc_physical_info = { 739 .name = TYPE_SPAPR_DRC_PHYSICAL, 740 .parent = TYPE_SPAPR_DR_CONNECTOR, 741 .instance_size = sizeof(SpaprDrcPhysical), 742 .class_init = spapr_drc_physical_class_init, 743 .abstract = true, 744 }; 745 746 static const TypeInfo spapr_drc_logical_info = { 747 .name = TYPE_SPAPR_DRC_LOGICAL, 748 .parent = TYPE_SPAPR_DR_CONNECTOR, 749 .class_init = spapr_drc_logical_class_init, 750 .abstract = true, 751 }; 752 753 static const TypeInfo spapr_drc_cpu_info = { 754 .name = TYPE_SPAPR_DRC_CPU, 755 .parent = TYPE_SPAPR_DRC_LOGICAL, 756 .class_init = spapr_drc_cpu_class_init, 757 }; 758 759 static const TypeInfo spapr_drc_pci_info = { 760 .name = TYPE_SPAPR_DRC_PCI, 761 .parent = TYPE_SPAPR_DRC_PHYSICAL, 762 .class_init = spapr_drc_pci_class_init, 763 }; 764 765 static const TypeInfo spapr_drc_lmb_info = { 766 .name = TYPE_SPAPR_DRC_LMB, 767 .parent = TYPE_SPAPR_DRC_LOGICAL, 768 .class_init = spapr_drc_lmb_class_init, 769 }; 770 771 static const TypeInfo spapr_drc_phb_info = { 772 .name = TYPE_SPAPR_DRC_PHB, 773 .parent = TYPE_SPAPR_DRC_LOGICAL, 774 .instance_size = sizeof(SpaprDrc), 775 .class_init = spapr_drc_phb_class_init, 776 }; 777 778 static const TypeInfo spapr_drc_pmem_info = { 779 .name = TYPE_SPAPR_DRC_PMEM, 780 .parent = TYPE_SPAPR_DRC_LOGICAL, 781 .class_init = spapr_drc_pmem_class_init, 782 }; 783 784 /* helper functions for external users */ 785 786 SpaprDrc *spapr_drc_by_index(uint32_t index) 787 { 788 Object *obj; 789 gchar *name; 790 791 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 792 obj = object_resolve_path(name, NULL); 793 g_free(name); 794 795 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 796 } 797 798 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 799 { 800 SpaprDrcClass *drck 801 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 802 803 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 804 | (id & DRC_INDEX_ID_MASK)); 805 } 806 807 /** 808 * spapr_dt_drc 809 * 810 * @fdt: libfdt device tree 811 * @path: path in the DT to generate properties 812 * @owner: parent Object/DeviceState for which to generate DRC 813 * descriptions for 814 * @drc_type_mask: mask of SpaprDrcType values corresponding 815 * to the types of DRCs to generate entries for 816 * 817 * generate OF properties to describe DRC topology/indices to guests 818 * 819 * as documented in PAPR+ v2.1, 13.5.2 820 */ 821 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 822 { 823 Object *root_container; 824 ObjectProperty *prop; 825 ObjectPropertyIterator iter; 826 uint32_t drc_count = 0; 827 GArray *drc_indexes, *drc_power_domains; 828 GString *drc_names, *drc_types; 829 int ret; 830 831 /* 832 * This should really be only called once per node since it overwrites 833 * the OF properties if they already exist. 834 */ 835 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 836 837 /* the first entry of each properties is a 32-bit integer encoding 838 * the number of elements in the array. we won't know this until 839 * we complete the iteration through all the matching DRCs, but 840 * reserve the space now and set the offsets accordingly so we 841 * can fill them in later. 842 */ 843 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 844 drc_indexes = g_array_set_size(drc_indexes, 1); 845 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 846 drc_power_domains = g_array_set_size(drc_power_domains, 1); 847 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 848 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 849 850 /* aliases for all DRConnector objects will be rooted in QOM 851 * composition tree at DRC_CONTAINER_PATH 852 */ 853 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 854 855 object_property_iter_init(&iter, root_container); 856 while ((prop = object_property_iter_next(&iter))) { 857 Object *obj; 858 SpaprDrc *drc; 859 SpaprDrcClass *drck; 860 char *drc_name = NULL; 861 uint32_t drc_index, drc_power_domain; 862 863 if (!strstart(prop->type, "link<", NULL)) { 864 continue; 865 } 866 867 obj = object_property_get_link(root_container, prop->name, 868 &error_abort); 869 drc = SPAPR_DR_CONNECTOR(obj); 870 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 871 872 if (owner && (drc->owner != owner)) { 873 continue; 874 } 875 876 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 877 continue; 878 } 879 880 drc_count++; 881 882 /* ibm,drc-indexes */ 883 drc_index = cpu_to_be32(spapr_drc_index(drc)); 884 g_array_append_val(drc_indexes, drc_index); 885 886 /* ibm,drc-power-domains */ 887 drc_power_domain = cpu_to_be32(-1); 888 g_array_append_val(drc_power_domains, drc_power_domain); 889 890 /* ibm,drc-names */ 891 drc_name = spapr_drc_name(drc); 892 drc_names = g_string_append(drc_names, drc_name); 893 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 894 g_free(drc_name); 895 896 /* ibm,drc-types */ 897 drc_types = g_string_append(drc_types, drck->typename); 898 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 899 } 900 901 /* now write the drc count into the space we reserved at the 902 * beginning of the arrays previously 903 */ 904 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 905 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 906 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 907 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 908 909 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 910 drc_indexes->data, 911 drc_indexes->len * sizeof(uint32_t)); 912 if (ret) { 913 error_report("Couldn't create ibm,drc-indexes property"); 914 goto out; 915 } 916 917 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 918 drc_power_domains->data, 919 drc_power_domains->len * sizeof(uint32_t)); 920 if (ret) { 921 error_report("Couldn't finalize ibm,drc-power-domains property"); 922 goto out; 923 } 924 925 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 926 drc_names->str, drc_names->len); 927 if (ret) { 928 error_report("Couldn't finalize ibm,drc-names property"); 929 goto out; 930 } 931 932 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 933 drc_types->str, drc_types->len); 934 if (ret) { 935 error_report("Couldn't finalize ibm,drc-types property"); 936 goto out; 937 } 938 939 out: 940 g_array_free(drc_indexes, true); 941 g_array_free(drc_power_domains, true); 942 g_string_free(drc_names, true); 943 g_string_free(drc_types, true); 944 945 return ret; 946 } 947 948 /* 949 * RTAS calls 950 */ 951 952 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 953 { 954 SpaprDrc *drc = spapr_drc_by_index(idx); 955 SpaprDrcClass *drck; 956 957 if (!drc) { 958 return RTAS_OUT_NO_SUCH_INDICATOR; 959 } 960 961 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 962 963 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 964 965 switch (state) { 966 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 967 return drck->isolate(drc); 968 969 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 970 return drck->unisolate(drc); 971 972 default: 973 return RTAS_OUT_PARAM_ERROR; 974 } 975 } 976 977 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 978 { 979 SpaprDrc *drc = spapr_drc_by_index(idx); 980 981 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 982 return RTAS_OUT_NO_SUCH_INDICATOR; 983 } 984 985 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 986 987 switch (state) { 988 case SPAPR_DR_ALLOCATION_STATE_USABLE: 989 return drc_set_usable(drc); 990 991 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 992 return drc_set_unusable(drc); 993 994 default: 995 return RTAS_OUT_PARAM_ERROR; 996 } 997 } 998 999 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1000 { 1001 SpaprDrc *drc = spapr_drc_by_index(idx); 1002 1003 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1004 return RTAS_OUT_NO_SUCH_INDICATOR; 1005 } 1006 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1007 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1008 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1009 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1010 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1011 } 1012 1013 trace_spapr_drc_set_dr_indicator(idx, state); 1014 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1015 return RTAS_OUT_SUCCESS; 1016 } 1017 1018 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1019 uint32_t token, 1020 uint32_t nargs, target_ulong args, 1021 uint32_t nret, target_ulong rets) 1022 { 1023 uint32_t type, idx, state; 1024 uint32_t ret = RTAS_OUT_SUCCESS; 1025 1026 if (nargs != 3 || nret != 1) { 1027 ret = RTAS_OUT_PARAM_ERROR; 1028 goto out; 1029 } 1030 1031 type = rtas_ld(args, 0); 1032 idx = rtas_ld(args, 1); 1033 state = rtas_ld(args, 2); 1034 1035 switch (type) { 1036 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1037 ret = rtas_set_isolation_state(idx, state); 1038 break; 1039 case RTAS_SENSOR_TYPE_DR: 1040 ret = rtas_set_dr_indicator(idx, state); 1041 break; 1042 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1043 ret = rtas_set_allocation_state(idx, state); 1044 break; 1045 default: 1046 ret = RTAS_OUT_NOT_SUPPORTED; 1047 } 1048 1049 out: 1050 rtas_st(rets, 0, ret); 1051 } 1052 1053 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1054 uint32_t token, uint32_t nargs, 1055 target_ulong args, uint32_t nret, 1056 target_ulong rets) 1057 { 1058 uint32_t sensor_type; 1059 uint32_t sensor_index; 1060 uint32_t sensor_state = 0; 1061 SpaprDrc *drc; 1062 SpaprDrcClass *drck; 1063 uint32_t ret = RTAS_OUT_SUCCESS; 1064 1065 if (nargs != 2 || nret != 2) { 1066 ret = RTAS_OUT_PARAM_ERROR; 1067 goto out; 1068 } 1069 1070 sensor_type = rtas_ld(args, 0); 1071 sensor_index = rtas_ld(args, 1); 1072 1073 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1074 /* currently only DR-related sensors are implemented */ 1075 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1076 sensor_type); 1077 ret = RTAS_OUT_NOT_SUPPORTED; 1078 goto out; 1079 } 1080 1081 drc = spapr_drc_by_index(sensor_index); 1082 if (!drc) { 1083 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1084 ret = RTAS_OUT_PARAM_ERROR; 1085 goto out; 1086 } 1087 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1088 sensor_state = drck->dr_entity_sense(drc); 1089 1090 out: 1091 rtas_st(rets, 0, ret); 1092 rtas_st(rets, 1, sensor_state); 1093 } 1094 1095 /* configure-connector work area offsets, int32_t units for field 1096 * indexes, bytes for field offset/len values. 1097 * 1098 * as documented by PAPR+ v2.7, 13.5.3.5 1099 */ 1100 #define CC_IDX_NODE_NAME_OFFSET 2 1101 #define CC_IDX_PROP_NAME_OFFSET 2 1102 #define CC_IDX_PROP_LEN 3 1103 #define CC_IDX_PROP_DATA_OFFSET 4 1104 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1105 #define CC_WA_LEN 4096 1106 1107 static void configure_connector_st(target_ulong addr, target_ulong offset, 1108 const void *buf, size_t len) 1109 { 1110 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1111 buf, MIN(len, CC_WA_LEN - offset)); 1112 } 1113 1114 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1115 SpaprMachineState *spapr, 1116 uint32_t token, uint32_t nargs, 1117 target_ulong args, uint32_t nret, 1118 target_ulong rets) 1119 { 1120 uint64_t wa_addr; 1121 uint64_t wa_offset; 1122 uint32_t drc_index; 1123 SpaprDrc *drc; 1124 SpaprDrcClass *drck; 1125 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1126 int rc; 1127 1128 if (nargs != 2 || nret != 1) { 1129 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1130 return; 1131 } 1132 1133 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1134 1135 drc_index = rtas_ld(wa_addr, 0); 1136 drc = spapr_drc_by_index(drc_index); 1137 if (!drc) { 1138 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1139 rc = RTAS_OUT_PARAM_ERROR; 1140 goto out; 1141 } 1142 1143 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1144 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1145 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1146 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1147 /* 1148 * Need to unisolate the device before configuring 1149 * or it should already be in configured state to 1150 * allow configure-connector be called repeatedly. 1151 */ 1152 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1153 goto out; 1154 } 1155 1156 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1157 1158 if (!drc->fdt) { 1159 void *fdt; 1160 int fdt_size; 1161 1162 fdt = create_device_tree(&fdt_size); 1163 1164 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1165 NULL)) { 1166 g_free(fdt); 1167 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1168 goto out; 1169 } 1170 1171 drc->fdt = fdt; 1172 drc->ccs_offset = drc->fdt_start_offset; 1173 drc->ccs_depth = 0; 1174 } 1175 1176 do { 1177 uint32_t tag; 1178 const char *name; 1179 const struct fdt_property *prop; 1180 int fdt_offset_next, prop_len; 1181 1182 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1183 1184 switch (tag) { 1185 case FDT_BEGIN_NODE: 1186 drc->ccs_depth++; 1187 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1188 1189 /* provide the name of the next OF node */ 1190 wa_offset = CC_VAL_DATA_OFFSET; 1191 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1192 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1193 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1194 break; 1195 case FDT_END_NODE: 1196 drc->ccs_depth--; 1197 if (drc->ccs_depth == 0) { 1198 uint32_t drc_index = spapr_drc_index(drc); 1199 1200 /* done sending the device tree, move to configured state */ 1201 trace_spapr_drc_set_configured(drc_index); 1202 drc->state = drck->ready_state; 1203 /* 1204 * Ensure that we are able to send the FDT fragment 1205 * again via configure-connector call if the guest requests. 1206 */ 1207 drc->ccs_offset = drc->fdt_start_offset; 1208 drc->ccs_depth = 0; 1209 fdt_offset_next = drc->fdt_start_offset; 1210 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1211 } else { 1212 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1213 } 1214 break; 1215 case FDT_PROP: 1216 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1217 &prop_len); 1218 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1219 1220 /* provide the name of the next OF property */ 1221 wa_offset = CC_VAL_DATA_OFFSET; 1222 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1223 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1224 1225 /* provide the length and value of the OF property. data gets 1226 * placed immediately after NULL terminator of the OF property's 1227 * name string 1228 */ 1229 wa_offset += strlen(name) + 1, 1230 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1231 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1232 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1233 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1234 break; 1235 case FDT_END: 1236 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1237 default: 1238 /* keep seeking for an actionable tag */ 1239 break; 1240 } 1241 if (drc->ccs_offset >= 0) { 1242 drc->ccs_offset = fdt_offset_next; 1243 } 1244 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1245 1246 rc = resp; 1247 out: 1248 rtas_st(rets, 0, rc); 1249 } 1250 1251 static void spapr_drc_register_types(void) 1252 { 1253 type_register_static(&spapr_dr_connector_info); 1254 type_register_static(&spapr_drc_physical_info); 1255 type_register_static(&spapr_drc_logical_info); 1256 type_register_static(&spapr_drc_cpu_info); 1257 type_register_static(&spapr_drc_pci_info); 1258 type_register_static(&spapr_drc_lmb_info); 1259 type_register_static(&spapr_drc_phb_info); 1260 type_register_static(&spapr_drc_pmem_info); 1261 1262 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1263 rtas_set_indicator); 1264 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1265 rtas_get_sensor_state); 1266 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1267 rtas_ibm_configure_connector); 1268 } 1269 type_init(spapr_drc_register_types) 1270