1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 int fdt_offset_next, fdt_offset, fdt_depth; 306 void *fdt; 307 308 if (!drc->fdt) { 309 visit_type_null(v, NULL, &null, errp); 310 qobject_unref(null); 311 return; 312 } 313 314 fdt = drc->fdt; 315 fdt_offset = drc->fdt_start_offset; 316 fdt_depth = 0; 317 318 do { 319 const char *name = NULL; 320 const struct fdt_property *prop = NULL; 321 int prop_len = 0, name_len = 0; 322 uint32_t tag; 323 bool ok; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 if (!visit_start_struct(v, name, NULL, 0, errp)) { 331 return; 332 } 333 break; 334 case FDT_END_NODE: 335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 336 g_assert(fdt_depth > 0); 337 ok = visit_check_struct(v, errp); 338 visit_end_struct(v, NULL); 339 if (!ok) { 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 if (!visit_start_list(v, name, NULL, 0, errp)) { 349 return; 350 } 351 for (i = 0; i < prop_len; i++) { 352 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 353 errp)) { 354 return; 355 } 356 } 357 ok = visit_check_list(v, errp); 358 visit_end_list(v, NULL); 359 if (!ok) { 360 return; 361 } 362 break; 363 } 364 default: 365 error_report("device FDT in unexpected state: %d", tag); 366 abort(); 367 } 368 fdt_offset = fdt_offset_next; 369 } while (fdt_depth != 0); 370 } 371 372 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 373 { 374 trace_spapr_drc_attach(spapr_drc_index(drc)); 375 376 g_assert(!drc->dev); 377 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 378 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 379 380 drc->dev = d; 381 382 object_property_add_link(OBJECT(drc), "device", 383 object_get_typename(OBJECT(drc->dev)), 384 (Object **)(&drc->dev), 385 NULL, 0); 386 } 387 388 static void spapr_drc_release(SpaprDrc *drc) 389 { 390 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 391 392 drck->release(drc->dev); 393 394 drc->unplug_requested = false; 395 g_free(drc->fdt); 396 drc->fdt = NULL; 397 drc->fdt_start_offset = 0; 398 object_property_del(OBJECT(drc), "device"); 399 drc->dev = NULL; 400 } 401 402 void spapr_drc_detach(SpaprDrc *drc) 403 { 404 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 405 406 trace_spapr_drc_detach(spapr_drc_index(drc)); 407 408 g_assert(drc->dev); 409 410 drc->unplug_requested = true; 411 412 if (drc->state != drck->empty_state) { 413 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 414 return; 415 } 416 417 spapr_drc_release(drc); 418 } 419 420 void spapr_drc_reset(SpaprDrc *drc) 421 { 422 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 423 424 trace_spapr_drc_reset(spapr_drc_index(drc)); 425 426 /* immediately upon reset we can safely assume DRCs whose devices 427 * are pending removal can be safely removed. 428 */ 429 if (drc->unplug_requested) { 430 spapr_drc_release(drc); 431 } 432 433 if (drc->dev) { 434 /* A device present at reset is ready to go, same as coldplugged */ 435 drc->state = drck->ready_state; 436 /* 437 * Ensure that we are able to send the FDT fragment again 438 * via configure-connector call if the guest requests. 439 */ 440 drc->ccs_offset = drc->fdt_start_offset; 441 drc->ccs_depth = 0; 442 } else { 443 drc->state = drck->empty_state; 444 drc->ccs_offset = -1; 445 drc->ccs_depth = -1; 446 } 447 } 448 449 static bool spapr_drc_unplug_requested_needed(void *opaque) 450 { 451 return spapr_drc_unplug_requested(opaque); 452 } 453 454 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 455 .name = "spapr_drc/unplug_requested", 456 .version_id = 1, 457 .minimum_version_id = 1, 458 .needed = spapr_drc_unplug_requested_needed, 459 .fields = (VMStateField []) { 460 VMSTATE_BOOL(unplug_requested, SpaprDrc), 461 VMSTATE_END_OF_LIST() 462 } 463 }; 464 465 bool spapr_drc_transient(SpaprDrc *drc) 466 { 467 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 468 469 /* 470 * If no dev is plugged in there is no need to migrate the DRC state 471 * nor to reset the DRC at CAS. 472 */ 473 if (!drc->dev) { 474 return false; 475 } 476 477 /* 478 * We need to reset the DRC at CAS or to migrate the DRC state if it's 479 * not equal to the expected long-term state, which is the same as the 480 * coldplugged initial state, or if an unplug request is pending. 481 */ 482 return drc->state != drck->ready_state || 483 spapr_drc_unplug_requested(drc); 484 } 485 486 static bool spapr_drc_needed(void *opaque) 487 { 488 return spapr_drc_transient(opaque); 489 } 490 491 static const VMStateDescription vmstate_spapr_drc = { 492 .name = "spapr_drc", 493 .version_id = 1, 494 .minimum_version_id = 1, 495 .needed = spapr_drc_needed, 496 .fields = (VMStateField []) { 497 VMSTATE_UINT32(state, SpaprDrc), 498 VMSTATE_END_OF_LIST() 499 }, 500 .subsections = (const VMStateDescription * []) { 501 &vmstate_spapr_drc_unplug_requested, 502 NULL 503 } 504 }; 505 506 static void realize(DeviceState *d, Error **errp) 507 { 508 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 509 Object *root_container; 510 gchar *link_name; 511 const char *child_name; 512 513 trace_spapr_drc_realize(spapr_drc_index(drc)); 514 /* NOTE: we do this as part of realize/unrealize due to the fact 515 * that the guest will communicate with the DRC via RTAS calls 516 * referencing the global DRC index. By unlinking the DRC 517 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 518 * inaccessible by the guest, since lookups rely on this path 519 * existing in the composition tree 520 */ 521 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 522 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 523 child_name = object_get_canonical_path_component(OBJECT(drc)); 524 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 525 object_property_add_alias(root_container, link_name, 526 drc->owner, child_name); 527 g_free(link_name); 528 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 529 drc); 530 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 531 } 532 533 static void unrealize(DeviceState *d) 534 { 535 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 536 Object *root_container; 537 gchar *name; 538 539 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 540 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 541 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 542 name = g_strdup_printf("%x", spapr_drc_index(drc)); 543 object_property_del(root_container, name); 544 g_free(name); 545 } 546 547 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 548 uint32_t id) 549 { 550 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 551 char *prop_name; 552 553 drc->id = id; 554 drc->owner = owner; 555 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 556 spapr_drc_index(drc)); 557 object_property_add_child(owner, prop_name, OBJECT(drc)); 558 object_unref(OBJECT(drc)); 559 qdev_realize(DEVICE(drc), NULL, NULL); 560 g_free(prop_name); 561 562 return drc; 563 } 564 565 static void spapr_dr_connector_instance_init(Object *obj) 566 { 567 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 568 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 569 570 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 571 object_property_add(obj, "index", "uint32", prop_get_index, 572 NULL, NULL, NULL); 573 object_property_add(obj, "fdt", "struct", prop_get_fdt, 574 NULL, NULL, NULL); 575 drc->state = drck->empty_state; 576 } 577 578 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 579 { 580 DeviceClass *dk = DEVICE_CLASS(k); 581 582 dk->realize = realize; 583 dk->unrealize = unrealize; 584 /* 585 * Reason: DR connector needs to be wired to either the machine or to a 586 * PHB in spapr_dr_connector_new(). 587 */ 588 dk->user_creatable = false; 589 } 590 591 static bool drc_physical_needed(void *opaque) 592 { 593 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 594 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 595 596 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 597 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 598 return false; 599 } 600 return true; 601 } 602 603 static const VMStateDescription vmstate_spapr_drc_physical = { 604 .name = "spapr_drc/physical", 605 .version_id = 1, 606 .minimum_version_id = 1, 607 .needed = drc_physical_needed, 608 .fields = (VMStateField []) { 609 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 610 VMSTATE_END_OF_LIST() 611 } 612 }; 613 614 static void drc_physical_reset(void *opaque) 615 { 616 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 617 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 618 619 if (drc->dev) { 620 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 621 } else { 622 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 623 } 624 } 625 626 static void realize_physical(DeviceState *d, Error **errp) 627 { 628 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 629 Error *local_err = NULL; 630 631 realize(d, &local_err); 632 if (local_err) { 633 error_propagate(errp, local_err); 634 return; 635 } 636 637 vmstate_register(VMSTATE_IF(drcp), 638 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 639 &vmstate_spapr_drc_physical, drcp); 640 qemu_register_reset(drc_physical_reset, drcp); 641 } 642 643 static void unrealize_physical(DeviceState *d) 644 { 645 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 646 647 unrealize(d); 648 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 649 qemu_unregister_reset(drc_physical_reset, drcp); 650 } 651 652 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 653 { 654 DeviceClass *dk = DEVICE_CLASS(k); 655 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 656 657 dk->realize = realize_physical; 658 dk->unrealize = unrealize_physical; 659 drck->dr_entity_sense = physical_entity_sense; 660 drck->isolate = drc_isolate_physical; 661 drck->unisolate = drc_unisolate_physical; 662 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 663 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 664 } 665 666 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 667 { 668 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 669 670 drck->dr_entity_sense = logical_entity_sense; 671 drck->isolate = drc_isolate_logical; 672 drck->unisolate = drc_unisolate_logical; 673 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 674 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 675 } 676 677 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 678 { 679 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 680 681 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 682 drck->typename = "CPU"; 683 drck->drc_name_prefix = "CPU "; 684 drck->release = spapr_core_release; 685 drck->dt_populate = spapr_core_dt_populate; 686 } 687 688 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 689 { 690 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 691 692 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 693 drck->typename = "28"; 694 drck->drc_name_prefix = "C"; 695 drck->release = spapr_phb_remove_pci_device_cb; 696 drck->dt_populate = spapr_pci_dt_populate; 697 } 698 699 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 700 { 701 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 702 703 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 704 drck->typename = "MEM"; 705 drck->drc_name_prefix = "LMB "; 706 drck->release = spapr_lmb_release; 707 drck->dt_populate = spapr_lmb_dt_populate; 708 } 709 710 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 711 { 712 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 713 714 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 715 drck->typename = "PHB"; 716 drck->drc_name_prefix = "PHB "; 717 drck->release = spapr_phb_release; 718 drck->dt_populate = spapr_phb_dt_populate; 719 } 720 721 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 722 { 723 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 724 725 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 726 drck->typename = "PMEM"; 727 drck->drc_name_prefix = "PMEM "; 728 drck->release = NULL; 729 drck->dt_populate = spapr_pmem_dt_populate; 730 } 731 732 static const TypeInfo spapr_dr_connector_info = { 733 .name = TYPE_SPAPR_DR_CONNECTOR, 734 .parent = TYPE_DEVICE, 735 .instance_size = sizeof(SpaprDrc), 736 .instance_init = spapr_dr_connector_instance_init, 737 .class_size = sizeof(SpaprDrcClass), 738 .class_init = spapr_dr_connector_class_init, 739 .abstract = true, 740 }; 741 742 static const TypeInfo spapr_drc_physical_info = { 743 .name = TYPE_SPAPR_DRC_PHYSICAL, 744 .parent = TYPE_SPAPR_DR_CONNECTOR, 745 .instance_size = sizeof(SpaprDrcPhysical), 746 .class_init = spapr_drc_physical_class_init, 747 .abstract = true, 748 }; 749 750 static const TypeInfo spapr_drc_logical_info = { 751 .name = TYPE_SPAPR_DRC_LOGICAL, 752 .parent = TYPE_SPAPR_DR_CONNECTOR, 753 .class_init = spapr_drc_logical_class_init, 754 .abstract = true, 755 }; 756 757 static const TypeInfo spapr_drc_cpu_info = { 758 .name = TYPE_SPAPR_DRC_CPU, 759 .parent = TYPE_SPAPR_DRC_LOGICAL, 760 .class_init = spapr_drc_cpu_class_init, 761 }; 762 763 static const TypeInfo spapr_drc_pci_info = { 764 .name = TYPE_SPAPR_DRC_PCI, 765 .parent = TYPE_SPAPR_DRC_PHYSICAL, 766 .class_init = spapr_drc_pci_class_init, 767 }; 768 769 static const TypeInfo spapr_drc_lmb_info = { 770 .name = TYPE_SPAPR_DRC_LMB, 771 .parent = TYPE_SPAPR_DRC_LOGICAL, 772 .class_init = spapr_drc_lmb_class_init, 773 }; 774 775 static const TypeInfo spapr_drc_phb_info = { 776 .name = TYPE_SPAPR_DRC_PHB, 777 .parent = TYPE_SPAPR_DRC_LOGICAL, 778 .instance_size = sizeof(SpaprDrc), 779 .class_init = spapr_drc_phb_class_init, 780 }; 781 782 static const TypeInfo spapr_drc_pmem_info = { 783 .name = TYPE_SPAPR_DRC_PMEM, 784 .parent = TYPE_SPAPR_DRC_LOGICAL, 785 .class_init = spapr_drc_pmem_class_init, 786 }; 787 788 /* helper functions for external users */ 789 790 SpaprDrc *spapr_drc_by_index(uint32_t index) 791 { 792 Object *obj; 793 gchar *name; 794 795 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 796 obj = object_resolve_path(name, NULL); 797 g_free(name); 798 799 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 800 } 801 802 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 803 { 804 SpaprDrcClass *drck 805 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 806 807 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 808 | (id & DRC_INDEX_ID_MASK)); 809 } 810 811 /** 812 * spapr_dt_drc 813 * 814 * @fdt: libfdt device tree 815 * @path: path in the DT to generate properties 816 * @owner: parent Object/DeviceState for which to generate DRC 817 * descriptions for 818 * @drc_type_mask: mask of SpaprDrcType values corresponding 819 * to the types of DRCs to generate entries for 820 * 821 * generate OF properties to describe DRC topology/indices to guests 822 * 823 * as documented in PAPR+ v2.1, 13.5.2 824 */ 825 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 826 { 827 Object *root_container; 828 ObjectProperty *prop; 829 ObjectPropertyIterator iter; 830 uint32_t drc_count = 0; 831 GArray *drc_indexes, *drc_power_domains; 832 GString *drc_names, *drc_types; 833 int ret; 834 835 /* the first entry of each properties is a 32-bit integer encoding 836 * the number of elements in the array. we won't know this until 837 * we complete the iteration through all the matching DRCs, but 838 * reserve the space now and set the offsets accordingly so we 839 * can fill them in later. 840 */ 841 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 842 drc_indexes = g_array_set_size(drc_indexes, 1); 843 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 844 drc_power_domains = g_array_set_size(drc_power_domains, 1); 845 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 846 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 847 848 /* aliases for all DRConnector objects will be rooted in QOM 849 * composition tree at DRC_CONTAINER_PATH 850 */ 851 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 852 853 object_property_iter_init(&iter, root_container); 854 while ((prop = object_property_iter_next(&iter))) { 855 Object *obj; 856 SpaprDrc *drc; 857 SpaprDrcClass *drck; 858 char *drc_name = NULL; 859 uint32_t drc_index, drc_power_domain; 860 861 if (!strstart(prop->type, "link<", NULL)) { 862 continue; 863 } 864 865 obj = object_property_get_link(root_container, prop->name, 866 &error_abort); 867 drc = SPAPR_DR_CONNECTOR(obj); 868 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 869 870 if (owner && (drc->owner != owner)) { 871 continue; 872 } 873 874 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 875 continue; 876 } 877 878 drc_count++; 879 880 /* ibm,drc-indexes */ 881 drc_index = cpu_to_be32(spapr_drc_index(drc)); 882 g_array_append_val(drc_indexes, drc_index); 883 884 /* ibm,drc-power-domains */ 885 drc_power_domain = cpu_to_be32(-1); 886 g_array_append_val(drc_power_domains, drc_power_domain); 887 888 /* ibm,drc-names */ 889 drc_name = spapr_drc_name(drc); 890 drc_names = g_string_append(drc_names, drc_name); 891 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 892 g_free(drc_name); 893 894 /* ibm,drc-types */ 895 drc_types = g_string_append(drc_types, drck->typename); 896 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 897 } 898 899 /* now write the drc count into the space we reserved at the 900 * beginning of the arrays previously 901 */ 902 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 903 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 904 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 905 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 906 907 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 908 drc_indexes->data, 909 drc_indexes->len * sizeof(uint32_t)); 910 if (ret) { 911 error_report("Couldn't create ibm,drc-indexes property"); 912 goto out; 913 } 914 915 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 916 drc_power_domains->data, 917 drc_power_domains->len * sizeof(uint32_t)); 918 if (ret) { 919 error_report("Couldn't finalize ibm,drc-power-domains property"); 920 goto out; 921 } 922 923 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 924 drc_names->str, drc_names->len); 925 if (ret) { 926 error_report("Couldn't finalize ibm,drc-names property"); 927 goto out; 928 } 929 930 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 931 drc_types->str, drc_types->len); 932 if (ret) { 933 error_report("Couldn't finalize ibm,drc-types property"); 934 goto out; 935 } 936 937 out: 938 g_array_free(drc_indexes, true); 939 g_array_free(drc_power_domains, true); 940 g_string_free(drc_names, true); 941 g_string_free(drc_types, true); 942 943 return ret; 944 } 945 946 /* 947 * RTAS calls 948 */ 949 950 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 951 { 952 SpaprDrc *drc = spapr_drc_by_index(idx); 953 SpaprDrcClass *drck; 954 955 if (!drc) { 956 return RTAS_OUT_NO_SUCH_INDICATOR; 957 } 958 959 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 960 961 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 962 963 switch (state) { 964 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 965 return drck->isolate(drc); 966 967 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 968 return drck->unisolate(drc); 969 970 default: 971 return RTAS_OUT_PARAM_ERROR; 972 } 973 } 974 975 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 976 { 977 SpaprDrc *drc = spapr_drc_by_index(idx); 978 979 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 980 return RTAS_OUT_NO_SUCH_INDICATOR; 981 } 982 983 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 984 985 switch (state) { 986 case SPAPR_DR_ALLOCATION_STATE_USABLE: 987 return drc_set_usable(drc); 988 989 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 990 return drc_set_unusable(drc); 991 992 default: 993 return RTAS_OUT_PARAM_ERROR; 994 } 995 } 996 997 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 998 { 999 SpaprDrc *drc = spapr_drc_by_index(idx); 1000 1001 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1002 return RTAS_OUT_NO_SUCH_INDICATOR; 1003 } 1004 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1005 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1006 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1007 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1008 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1009 } 1010 1011 trace_spapr_drc_set_dr_indicator(idx, state); 1012 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1013 return RTAS_OUT_SUCCESS; 1014 } 1015 1016 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1017 uint32_t token, 1018 uint32_t nargs, target_ulong args, 1019 uint32_t nret, target_ulong rets) 1020 { 1021 uint32_t type, idx, state; 1022 uint32_t ret = RTAS_OUT_SUCCESS; 1023 1024 if (nargs != 3 || nret != 1) { 1025 ret = RTAS_OUT_PARAM_ERROR; 1026 goto out; 1027 } 1028 1029 type = rtas_ld(args, 0); 1030 idx = rtas_ld(args, 1); 1031 state = rtas_ld(args, 2); 1032 1033 switch (type) { 1034 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1035 ret = rtas_set_isolation_state(idx, state); 1036 break; 1037 case RTAS_SENSOR_TYPE_DR: 1038 ret = rtas_set_dr_indicator(idx, state); 1039 break; 1040 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1041 ret = rtas_set_allocation_state(idx, state); 1042 break; 1043 default: 1044 ret = RTAS_OUT_NOT_SUPPORTED; 1045 } 1046 1047 out: 1048 rtas_st(rets, 0, ret); 1049 } 1050 1051 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1052 uint32_t token, uint32_t nargs, 1053 target_ulong args, uint32_t nret, 1054 target_ulong rets) 1055 { 1056 uint32_t sensor_type; 1057 uint32_t sensor_index; 1058 uint32_t sensor_state = 0; 1059 SpaprDrc *drc; 1060 SpaprDrcClass *drck; 1061 uint32_t ret = RTAS_OUT_SUCCESS; 1062 1063 if (nargs != 2 || nret != 2) { 1064 ret = RTAS_OUT_PARAM_ERROR; 1065 goto out; 1066 } 1067 1068 sensor_type = rtas_ld(args, 0); 1069 sensor_index = rtas_ld(args, 1); 1070 1071 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1072 /* currently only DR-related sensors are implemented */ 1073 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1074 sensor_type); 1075 ret = RTAS_OUT_NOT_SUPPORTED; 1076 goto out; 1077 } 1078 1079 drc = spapr_drc_by_index(sensor_index); 1080 if (!drc) { 1081 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1082 ret = RTAS_OUT_PARAM_ERROR; 1083 goto out; 1084 } 1085 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1086 sensor_state = drck->dr_entity_sense(drc); 1087 1088 out: 1089 rtas_st(rets, 0, ret); 1090 rtas_st(rets, 1, sensor_state); 1091 } 1092 1093 /* configure-connector work area offsets, int32_t units for field 1094 * indexes, bytes for field offset/len values. 1095 * 1096 * as documented by PAPR+ v2.7, 13.5.3.5 1097 */ 1098 #define CC_IDX_NODE_NAME_OFFSET 2 1099 #define CC_IDX_PROP_NAME_OFFSET 2 1100 #define CC_IDX_PROP_LEN 3 1101 #define CC_IDX_PROP_DATA_OFFSET 4 1102 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1103 #define CC_WA_LEN 4096 1104 1105 static void configure_connector_st(target_ulong addr, target_ulong offset, 1106 const void *buf, size_t len) 1107 { 1108 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1109 buf, MIN(len, CC_WA_LEN - offset)); 1110 } 1111 1112 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1113 SpaprMachineState *spapr, 1114 uint32_t token, uint32_t nargs, 1115 target_ulong args, uint32_t nret, 1116 target_ulong rets) 1117 { 1118 uint64_t wa_addr; 1119 uint64_t wa_offset; 1120 uint32_t drc_index; 1121 SpaprDrc *drc; 1122 SpaprDrcClass *drck; 1123 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1124 int rc; 1125 1126 if (nargs != 2 || nret != 1) { 1127 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1128 return; 1129 } 1130 1131 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1132 1133 drc_index = rtas_ld(wa_addr, 0); 1134 drc = spapr_drc_by_index(drc_index); 1135 if (!drc) { 1136 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1137 rc = RTAS_OUT_PARAM_ERROR; 1138 goto out; 1139 } 1140 1141 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1142 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1143 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1144 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1145 /* 1146 * Need to unisolate the device before configuring 1147 * or it should already be in configured state to 1148 * allow configure-connector be called repeatedly. 1149 */ 1150 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1151 goto out; 1152 } 1153 1154 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1155 1156 if (!drc->fdt) { 1157 void *fdt; 1158 int fdt_size; 1159 1160 fdt = create_device_tree(&fdt_size); 1161 1162 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1163 NULL)) { 1164 g_free(fdt); 1165 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1166 goto out; 1167 } 1168 1169 drc->fdt = fdt; 1170 drc->ccs_offset = drc->fdt_start_offset; 1171 drc->ccs_depth = 0; 1172 } 1173 1174 do { 1175 uint32_t tag; 1176 const char *name; 1177 const struct fdt_property *prop; 1178 int fdt_offset_next, prop_len; 1179 1180 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1181 1182 switch (tag) { 1183 case FDT_BEGIN_NODE: 1184 drc->ccs_depth++; 1185 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1186 1187 /* provide the name of the next OF node */ 1188 wa_offset = CC_VAL_DATA_OFFSET; 1189 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1190 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1191 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1192 break; 1193 case FDT_END_NODE: 1194 drc->ccs_depth--; 1195 if (drc->ccs_depth == 0) { 1196 uint32_t drc_index = spapr_drc_index(drc); 1197 1198 /* done sending the device tree, move to configured state */ 1199 trace_spapr_drc_set_configured(drc_index); 1200 drc->state = drck->ready_state; 1201 /* 1202 * Ensure that we are able to send the FDT fragment 1203 * again via configure-connector call if the guest requests. 1204 */ 1205 drc->ccs_offset = drc->fdt_start_offset; 1206 drc->ccs_depth = 0; 1207 fdt_offset_next = drc->fdt_start_offset; 1208 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1209 } else { 1210 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1211 } 1212 break; 1213 case FDT_PROP: 1214 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1215 &prop_len); 1216 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1217 1218 /* provide the name of the next OF property */ 1219 wa_offset = CC_VAL_DATA_OFFSET; 1220 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1221 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1222 1223 /* provide the length and value of the OF property. data gets 1224 * placed immediately after NULL terminator of the OF property's 1225 * name string 1226 */ 1227 wa_offset += strlen(name) + 1, 1228 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1229 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1230 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1231 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1232 break; 1233 case FDT_END: 1234 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1235 default: 1236 /* keep seeking for an actionable tag */ 1237 break; 1238 } 1239 if (drc->ccs_offset >= 0) { 1240 drc->ccs_offset = fdt_offset_next; 1241 } 1242 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1243 1244 rc = resp; 1245 out: 1246 rtas_st(rets, 0, rc); 1247 } 1248 1249 static void spapr_drc_register_types(void) 1250 { 1251 type_register_static(&spapr_dr_connector_info); 1252 type_register_static(&spapr_drc_physical_info); 1253 type_register_static(&spapr_drc_logical_info); 1254 type_register_static(&spapr_drc_cpu_info); 1255 type_register_static(&spapr_drc_pci_info); 1256 type_register_static(&spapr_drc_lmb_info); 1257 type_register_static(&spapr_drc_phb_info); 1258 type_register_static(&spapr_drc_pmem_info); 1259 1260 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1261 rtas_set_indicator); 1262 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1263 rtas_get_sensor_state); 1264 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1265 rtas_ibm_configure_connector); 1266 } 1267 type_init(spapr_drc_register_types) 1268