1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static void spapr_drc_release(SpaprDrc *drc) 54 { 55 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 56 57 drck->release(drc->dev); 58 59 drc->unplug_requested = false; 60 g_free(drc->fdt); 61 drc->fdt = NULL; 62 drc->fdt_start_offset = 0; 63 object_property_del(OBJECT(drc), "device"); 64 drc->dev = NULL; 65 } 66 67 static uint32_t drc_isolate_physical(SpaprDrc *drc) 68 { 69 switch (drc->state) { 70 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 71 return RTAS_OUT_SUCCESS; /* Nothing to do */ 72 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 73 break; /* see below */ 74 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 75 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 76 default: 77 g_assert_not_reached(); 78 } 79 80 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 81 82 if (drc->unplug_requested) { 83 uint32_t drc_index = spapr_drc_index(drc); 84 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 85 spapr_drc_release(drc); 86 } 87 88 return RTAS_OUT_SUCCESS; 89 } 90 91 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 92 { 93 switch (drc->state) { 94 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 95 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 96 return RTAS_OUT_SUCCESS; /* Nothing to do */ 97 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 98 break; /* see below */ 99 default: 100 g_assert_not_reached(); 101 } 102 103 /* cannot unisolate a non-existent resource, and, or resources 104 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 105 * 13.5.3.5) 106 */ 107 if (!drc->dev) { 108 return RTAS_OUT_NO_SUCH_INDICATOR; 109 } 110 111 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 112 drc->ccs_offset = drc->fdt_start_offset; 113 drc->ccs_depth = 0; 114 115 return RTAS_OUT_SUCCESS; 116 } 117 118 static uint32_t drc_isolate_logical(SpaprDrc *drc) 119 { 120 switch (drc->state) { 121 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 122 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 123 return RTAS_OUT_SUCCESS; /* Nothing to do */ 124 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 125 break; /* see below */ 126 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 127 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 128 default: 129 g_assert_not_reached(); 130 } 131 132 /* 133 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 134 * belong to a DIMM device that is marked for removal. 135 * 136 * Currently the guest userspace tool drmgr that drives the memory 137 * hotplug/unplug will just try to remove a set of 'removable' LMBs 138 * in response to a hot unplug request that is based on drc-count. 139 * If the LMB being removed doesn't belong to a DIMM device that is 140 * actually being unplugged, fail the isolation request here. 141 */ 142 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 143 && !drc->unplug_requested) { 144 return RTAS_OUT_HW_ERROR; 145 } 146 147 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 148 149 return RTAS_OUT_SUCCESS; 150 } 151 152 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 153 { 154 SpaprMachineState *spapr = NULL; 155 156 switch (drc->state) { 157 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 158 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 159 /* 160 * Unisolating a logical DRC that was marked for unplug 161 * means that the kernel is refusing the removal. 162 */ 163 if (drc->unplug_requested && drc->dev) { 164 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) { 165 spapr = SPAPR_MACHINE(qdev_get_machine()); 166 167 spapr_memory_unplug_rollback(spapr, drc->dev); 168 } 169 170 drc->unplug_requested = false; 171 error_report("Device hotunplug rejected by the guest " 172 "for device %s", drc->dev->id); 173 174 /* 175 * TODO: send a QAPI DEVICE_UNPLUG_ERROR event when 176 * it is implemented. 177 */ 178 } 179 180 return RTAS_OUT_SUCCESS; /* Nothing to do */ 181 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 182 break; /* see below */ 183 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 184 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 185 default: 186 g_assert_not_reached(); 187 } 188 189 /* Move to AVAILABLE state should have ensured device was present */ 190 g_assert(drc->dev); 191 192 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 193 drc->ccs_offset = drc->fdt_start_offset; 194 drc->ccs_depth = 0; 195 196 return RTAS_OUT_SUCCESS; 197 } 198 199 static uint32_t drc_set_usable(SpaprDrc *drc) 200 { 201 switch (drc->state) { 202 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 203 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 204 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 205 return RTAS_OUT_SUCCESS; /* Nothing to do */ 206 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 207 break; /* see below */ 208 default: 209 g_assert_not_reached(); 210 } 211 212 /* if there's no resource/device associated with the DRC, there's 213 * no way for us to put it in an allocation state consistent with 214 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 215 * result in an RTAS return code of -3 / "no such indicator" 216 */ 217 if (!drc->dev) { 218 return RTAS_OUT_NO_SUCH_INDICATOR; 219 } 220 if (drc->unplug_requested) { 221 /* Don't allow the guest to move a device away from UNUSABLE 222 * state when we want to unplug it */ 223 return RTAS_OUT_NO_SUCH_INDICATOR; 224 } 225 226 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static uint32_t drc_set_unusable(SpaprDrc *drc) 232 { 233 switch (drc->state) { 234 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 235 return RTAS_OUT_SUCCESS; /* Nothing to do */ 236 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 237 break; /* see below */ 238 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 239 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 240 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 241 default: 242 g_assert_not_reached(); 243 } 244 245 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 246 if (drc->unplug_requested) { 247 uint32_t drc_index = spapr_drc_index(drc); 248 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 249 spapr_drc_release(drc); 250 } 251 252 return RTAS_OUT_SUCCESS; 253 } 254 255 static char *spapr_drc_name(SpaprDrc *drc) 256 { 257 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 258 259 /* human-readable name for a DRC to encode into the DT 260 * description. this is mainly only used within a guest in place 261 * of the unique DRC index. 262 * 263 * in the case of VIO/PCI devices, it corresponds to a "location 264 * code" that maps a logical device/function (DRC index) to a 265 * physical (or virtual in the case of VIO) location in the system 266 * by chaining together the "location label" for each 267 * encapsulating component. 268 * 269 * since this is more to do with diagnosing physical hardware 270 * issues than guest compatibility, we choose location codes/DRC 271 * names that adhere to the documented format, but avoid encoding 272 * the entire topology information into the label/code, instead 273 * just using the location codes based on the labels for the 274 * endpoints (VIO/PCI adaptor connectors), which is basically just 275 * "C" followed by an integer ID. 276 * 277 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 278 * location codes as documented by PAPR+ v2.7, 12.3.1.5 279 */ 280 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 281 } 282 283 /* 284 * dr-entity-sense sensor value 285 * returned via get-sensor-state RTAS calls 286 * as expected by state diagram in PAPR+ 2.7, 13.4 287 * based on the current allocation/indicator/power states 288 * for the DR connector. 289 */ 290 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 291 { 292 /* this assumes all PCI devices are assigned to a 'live insertion' 293 * power domain, where QEMU manages power state automatically as 294 * opposed to the guest. present, non-PCI resources are unaffected 295 * by power state. 296 */ 297 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 298 : SPAPR_DR_ENTITY_SENSE_EMPTY; 299 } 300 301 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 302 { 303 switch (drc->state) { 304 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 305 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 306 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 307 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 308 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 309 g_assert(drc->dev); 310 return SPAPR_DR_ENTITY_SENSE_PRESENT; 311 default: 312 g_assert_not_reached(); 313 } 314 } 315 316 static void prop_get_index(Object *obj, Visitor *v, const char *name, 317 void *opaque, Error **errp) 318 { 319 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 320 uint32_t value = spapr_drc_index(drc); 321 visit_type_uint32(v, name, &value, errp); 322 } 323 324 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 325 void *opaque, Error **errp) 326 { 327 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 328 QNull *null = NULL; 329 int fdt_offset_next, fdt_offset, fdt_depth; 330 void *fdt; 331 332 if (!drc->fdt) { 333 visit_type_null(v, NULL, &null, errp); 334 qobject_unref(null); 335 return; 336 } 337 338 fdt = drc->fdt; 339 fdt_offset = drc->fdt_start_offset; 340 fdt_depth = 0; 341 342 do { 343 const char *name = NULL; 344 const struct fdt_property *prop = NULL; 345 int prop_len = 0, name_len = 0; 346 uint32_t tag; 347 bool ok; 348 349 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 350 switch (tag) { 351 case FDT_BEGIN_NODE: 352 fdt_depth++; 353 name = fdt_get_name(fdt, fdt_offset, &name_len); 354 if (!visit_start_struct(v, name, NULL, 0, errp)) { 355 return; 356 } 357 break; 358 case FDT_END_NODE: 359 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 360 g_assert(fdt_depth > 0); 361 ok = visit_check_struct(v, errp); 362 visit_end_struct(v, NULL); 363 if (!ok) { 364 return; 365 } 366 fdt_depth--; 367 break; 368 case FDT_PROP: { 369 int i; 370 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 371 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 372 if (!visit_start_list(v, name, NULL, 0, errp)) { 373 return; 374 } 375 for (i = 0; i < prop_len; i++) { 376 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 377 errp)) { 378 return; 379 } 380 } 381 ok = visit_check_list(v, errp); 382 visit_end_list(v, NULL); 383 if (!ok) { 384 return; 385 } 386 break; 387 } 388 default: 389 error_report("device FDT in unexpected state: %d", tag); 390 abort(); 391 } 392 fdt_offset = fdt_offset_next; 393 } while (fdt_depth != 0); 394 } 395 396 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 397 { 398 trace_spapr_drc_attach(spapr_drc_index(drc)); 399 400 g_assert(!drc->dev); 401 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 402 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 403 404 drc->dev = d; 405 406 object_property_add_link(OBJECT(drc), "device", 407 object_get_typename(OBJECT(drc->dev)), 408 (Object **)(&drc->dev), 409 NULL, 0); 410 } 411 412 void spapr_drc_unplug_request(SpaprDrc *drc) 413 { 414 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 415 416 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 417 418 g_assert(drc->dev); 419 420 drc->unplug_requested = true; 421 422 if (drc->state != drck->empty_state) { 423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 424 return; 425 } 426 427 spapr_drc_release(drc); 428 } 429 430 bool spapr_drc_reset(SpaprDrc *drc) 431 { 432 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 433 bool unplug_completed = false; 434 435 trace_spapr_drc_reset(spapr_drc_index(drc)); 436 437 /* immediately upon reset we can safely assume DRCs whose devices 438 * are pending removal can be safely removed. 439 */ 440 if (drc->unplug_requested) { 441 spapr_drc_release(drc); 442 unplug_completed = true; 443 } 444 445 if (drc->dev) { 446 /* A device present at reset is ready to go, same as coldplugged */ 447 drc->state = drck->ready_state; 448 /* 449 * Ensure that we are able to send the FDT fragment again 450 * via configure-connector call if the guest requests. 451 */ 452 drc->ccs_offset = drc->fdt_start_offset; 453 drc->ccs_depth = 0; 454 } else { 455 drc->state = drck->empty_state; 456 drc->ccs_offset = -1; 457 drc->ccs_depth = -1; 458 } 459 460 return unplug_completed; 461 } 462 463 static bool spapr_drc_unplug_requested_needed(void *opaque) 464 { 465 return spapr_drc_unplug_requested(opaque); 466 } 467 468 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 469 .name = "spapr_drc/unplug_requested", 470 .version_id = 1, 471 .minimum_version_id = 1, 472 .needed = spapr_drc_unplug_requested_needed, 473 .fields = (VMStateField []) { 474 VMSTATE_BOOL(unplug_requested, SpaprDrc), 475 VMSTATE_END_OF_LIST() 476 } 477 }; 478 479 static bool spapr_drc_needed(void *opaque) 480 { 481 SpaprDrc *drc = opaque; 482 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 483 484 /* 485 * If no dev is plugged in there is no need to migrate the DRC state 486 * nor to reset the DRC at CAS. 487 */ 488 if (!drc->dev) { 489 return false; 490 } 491 492 /* 493 * We need to reset the DRC at CAS or to migrate the DRC state if it's 494 * not equal to the expected long-term state, which is the same as the 495 * coldplugged initial state, or if an unplug request is pending. 496 */ 497 return drc->state != drck->ready_state || 498 spapr_drc_unplug_requested(drc); 499 } 500 501 static const VMStateDescription vmstate_spapr_drc = { 502 .name = "spapr_drc", 503 .version_id = 1, 504 .minimum_version_id = 1, 505 .needed = spapr_drc_needed, 506 .fields = (VMStateField []) { 507 VMSTATE_UINT32(state, SpaprDrc), 508 VMSTATE_END_OF_LIST() 509 }, 510 .subsections = (const VMStateDescription * []) { 511 &vmstate_spapr_drc_unplug_requested, 512 NULL 513 } 514 }; 515 516 static void drc_realize(DeviceState *d, Error **errp) 517 { 518 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 519 Object *root_container; 520 gchar *link_name; 521 const char *child_name; 522 523 trace_spapr_drc_realize(spapr_drc_index(drc)); 524 /* NOTE: we do this as part of realize/unrealize due to the fact 525 * that the guest will communicate with the DRC via RTAS calls 526 * referencing the global DRC index. By unlinking the DRC 527 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 528 * inaccessible by the guest, since lookups rely on this path 529 * existing in the composition tree 530 */ 531 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 532 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 533 child_name = object_get_canonical_path_component(OBJECT(drc)); 534 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 535 object_property_add_alias(root_container, link_name, 536 drc->owner, child_name); 537 g_free(link_name); 538 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 539 drc); 540 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 541 } 542 543 static void drc_unrealize(DeviceState *d) 544 { 545 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 546 Object *root_container; 547 gchar *name; 548 549 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 550 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 551 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 552 name = g_strdup_printf("%x", spapr_drc_index(drc)); 553 object_property_del(root_container, name); 554 g_free(name); 555 } 556 557 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 558 uint32_t id) 559 { 560 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 561 char *prop_name; 562 563 drc->id = id; 564 drc->owner = owner; 565 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 566 spapr_drc_index(drc)); 567 object_property_add_child(owner, prop_name, OBJECT(drc)); 568 object_unref(OBJECT(drc)); 569 qdev_realize(DEVICE(drc), NULL, NULL); 570 g_free(prop_name); 571 572 return drc; 573 } 574 575 static void spapr_dr_connector_instance_init(Object *obj) 576 { 577 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 578 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 579 580 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 581 object_property_add(obj, "index", "uint32", prop_get_index, 582 NULL, NULL, NULL); 583 object_property_add(obj, "fdt", "struct", prop_get_fdt, 584 NULL, NULL, NULL); 585 drc->state = drck->empty_state; 586 } 587 588 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 589 { 590 DeviceClass *dk = DEVICE_CLASS(k); 591 592 dk->realize = drc_realize; 593 dk->unrealize = drc_unrealize; 594 /* 595 * Reason: DR connector needs to be wired to either the machine or to a 596 * PHB in spapr_dr_connector_new(). 597 */ 598 dk->user_creatable = false; 599 } 600 601 static bool drc_physical_needed(void *opaque) 602 { 603 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 604 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 605 606 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 607 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 608 return false; 609 } 610 return true; 611 } 612 613 static const VMStateDescription vmstate_spapr_drc_physical = { 614 .name = "spapr_drc/physical", 615 .version_id = 1, 616 .minimum_version_id = 1, 617 .needed = drc_physical_needed, 618 .fields = (VMStateField []) { 619 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 620 VMSTATE_END_OF_LIST() 621 } 622 }; 623 624 static void drc_physical_reset(void *opaque) 625 { 626 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 627 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 628 629 if (drc->dev) { 630 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 631 } else { 632 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 633 } 634 } 635 636 static void realize_physical(DeviceState *d, Error **errp) 637 { 638 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 639 Error *local_err = NULL; 640 641 drc_realize(d, &local_err); 642 if (local_err) { 643 error_propagate(errp, local_err); 644 return; 645 } 646 647 vmstate_register(VMSTATE_IF(drcp), 648 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 649 &vmstate_spapr_drc_physical, drcp); 650 qemu_register_reset(drc_physical_reset, drcp); 651 } 652 653 static void unrealize_physical(DeviceState *d) 654 { 655 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 656 657 drc_unrealize(d); 658 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 659 qemu_unregister_reset(drc_physical_reset, drcp); 660 } 661 662 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 663 { 664 DeviceClass *dk = DEVICE_CLASS(k); 665 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 666 667 dk->realize = realize_physical; 668 dk->unrealize = unrealize_physical; 669 drck->dr_entity_sense = physical_entity_sense; 670 drck->isolate = drc_isolate_physical; 671 drck->unisolate = drc_unisolate_physical; 672 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 673 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 674 } 675 676 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 677 { 678 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 679 680 drck->dr_entity_sense = logical_entity_sense; 681 drck->isolate = drc_isolate_logical; 682 drck->unisolate = drc_unisolate_logical; 683 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 684 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 685 } 686 687 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 688 { 689 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 690 691 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 692 drck->typename = "CPU"; 693 drck->drc_name_prefix = "CPU "; 694 drck->release = spapr_core_release; 695 drck->dt_populate = spapr_core_dt_populate; 696 } 697 698 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 699 { 700 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 701 702 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 703 drck->typename = "28"; 704 drck->drc_name_prefix = "C"; 705 drck->release = spapr_phb_remove_pci_device_cb; 706 drck->dt_populate = spapr_pci_dt_populate; 707 } 708 709 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 710 { 711 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 712 713 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 714 drck->typename = "MEM"; 715 drck->drc_name_prefix = "LMB "; 716 drck->release = spapr_lmb_release; 717 drck->dt_populate = spapr_lmb_dt_populate; 718 } 719 720 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 721 { 722 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 723 724 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 725 drck->typename = "PHB"; 726 drck->drc_name_prefix = "PHB "; 727 drck->release = spapr_phb_release; 728 drck->dt_populate = spapr_phb_dt_populate; 729 } 730 731 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 732 { 733 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 734 735 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 736 drck->typename = "PMEM"; 737 drck->drc_name_prefix = "PMEM "; 738 drck->release = NULL; 739 drck->dt_populate = spapr_pmem_dt_populate; 740 } 741 742 static const TypeInfo spapr_dr_connector_info = { 743 .name = TYPE_SPAPR_DR_CONNECTOR, 744 .parent = TYPE_DEVICE, 745 .instance_size = sizeof(SpaprDrc), 746 .instance_init = spapr_dr_connector_instance_init, 747 .class_size = sizeof(SpaprDrcClass), 748 .class_init = spapr_dr_connector_class_init, 749 .abstract = true, 750 }; 751 752 static const TypeInfo spapr_drc_physical_info = { 753 .name = TYPE_SPAPR_DRC_PHYSICAL, 754 .parent = TYPE_SPAPR_DR_CONNECTOR, 755 .instance_size = sizeof(SpaprDrcPhysical), 756 .class_init = spapr_drc_physical_class_init, 757 .abstract = true, 758 }; 759 760 static const TypeInfo spapr_drc_logical_info = { 761 .name = TYPE_SPAPR_DRC_LOGICAL, 762 .parent = TYPE_SPAPR_DR_CONNECTOR, 763 .class_init = spapr_drc_logical_class_init, 764 .abstract = true, 765 }; 766 767 static const TypeInfo spapr_drc_cpu_info = { 768 .name = TYPE_SPAPR_DRC_CPU, 769 .parent = TYPE_SPAPR_DRC_LOGICAL, 770 .class_init = spapr_drc_cpu_class_init, 771 }; 772 773 static const TypeInfo spapr_drc_pci_info = { 774 .name = TYPE_SPAPR_DRC_PCI, 775 .parent = TYPE_SPAPR_DRC_PHYSICAL, 776 .class_init = spapr_drc_pci_class_init, 777 }; 778 779 static const TypeInfo spapr_drc_lmb_info = { 780 .name = TYPE_SPAPR_DRC_LMB, 781 .parent = TYPE_SPAPR_DRC_LOGICAL, 782 .class_init = spapr_drc_lmb_class_init, 783 }; 784 785 static const TypeInfo spapr_drc_phb_info = { 786 .name = TYPE_SPAPR_DRC_PHB, 787 .parent = TYPE_SPAPR_DRC_LOGICAL, 788 .instance_size = sizeof(SpaprDrc), 789 .class_init = spapr_drc_phb_class_init, 790 }; 791 792 static const TypeInfo spapr_drc_pmem_info = { 793 .name = TYPE_SPAPR_DRC_PMEM, 794 .parent = TYPE_SPAPR_DRC_LOGICAL, 795 .class_init = spapr_drc_pmem_class_init, 796 }; 797 798 /* helper functions for external users */ 799 800 SpaprDrc *spapr_drc_by_index(uint32_t index) 801 { 802 Object *obj; 803 gchar *name; 804 805 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 806 obj = object_resolve_path(name, NULL); 807 g_free(name); 808 809 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 810 } 811 812 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 813 { 814 SpaprDrcClass *drck 815 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 816 817 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 818 | (id & DRC_INDEX_ID_MASK)); 819 } 820 821 /** 822 * spapr_dt_drc 823 * 824 * @fdt: libfdt device tree 825 * @path: path in the DT to generate properties 826 * @owner: parent Object/DeviceState for which to generate DRC 827 * descriptions for 828 * @drc_type_mask: mask of SpaprDrcType values corresponding 829 * to the types of DRCs to generate entries for 830 * 831 * generate OF properties to describe DRC topology/indices to guests 832 * 833 * as documented in PAPR+ v2.1, 13.5.2 834 */ 835 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 836 { 837 Object *root_container; 838 ObjectProperty *prop; 839 ObjectPropertyIterator iter; 840 uint32_t drc_count = 0; 841 GArray *drc_indexes, *drc_power_domains; 842 GString *drc_names, *drc_types; 843 int ret; 844 845 /* 846 * This should really be only called once per node since it overwrites 847 * the OF properties if they already exist. 848 */ 849 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 850 851 /* the first entry of each properties is a 32-bit integer encoding 852 * the number of elements in the array. we won't know this until 853 * we complete the iteration through all the matching DRCs, but 854 * reserve the space now and set the offsets accordingly so we 855 * can fill them in later. 856 */ 857 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 858 drc_indexes = g_array_set_size(drc_indexes, 1); 859 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 860 drc_power_domains = g_array_set_size(drc_power_domains, 1); 861 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 862 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 863 864 /* aliases for all DRConnector objects will be rooted in QOM 865 * composition tree at DRC_CONTAINER_PATH 866 */ 867 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 868 869 object_property_iter_init(&iter, root_container); 870 while ((prop = object_property_iter_next(&iter))) { 871 Object *obj; 872 SpaprDrc *drc; 873 SpaprDrcClass *drck; 874 char *drc_name = NULL; 875 uint32_t drc_index, drc_power_domain; 876 877 if (!strstart(prop->type, "link<", NULL)) { 878 continue; 879 } 880 881 obj = object_property_get_link(root_container, prop->name, 882 &error_abort); 883 drc = SPAPR_DR_CONNECTOR(obj); 884 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 885 886 if (owner && (drc->owner != owner)) { 887 continue; 888 } 889 890 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 891 continue; 892 } 893 894 drc_count++; 895 896 /* ibm,drc-indexes */ 897 drc_index = cpu_to_be32(spapr_drc_index(drc)); 898 g_array_append_val(drc_indexes, drc_index); 899 900 /* ibm,drc-power-domains */ 901 drc_power_domain = cpu_to_be32(-1); 902 g_array_append_val(drc_power_domains, drc_power_domain); 903 904 /* ibm,drc-names */ 905 drc_name = spapr_drc_name(drc); 906 drc_names = g_string_append(drc_names, drc_name); 907 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 908 g_free(drc_name); 909 910 /* ibm,drc-types */ 911 drc_types = g_string_append(drc_types, drck->typename); 912 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 913 } 914 915 /* now write the drc count into the space we reserved at the 916 * beginning of the arrays previously 917 */ 918 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 919 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 920 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 921 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 922 923 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 924 drc_indexes->data, 925 drc_indexes->len * sizeof(uint32_t)); 926 if (ret) { 927 error_report("Couldn't create ibm,drc-indexes property"); 928 goto out; 929 } 930 931 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 932 drc_power_domains->data, 933 drc_power_domains->len * sizeof(uint32_t)); 934 if (ret) { 935 error_report("Couldn't finalize ibm,drc-power-domains property"); 936 goto out; 937 } 938 939 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 940 drc_names->str, drc_names->len); 941 if (ret) { 942 error_report("Couldn't finalize ibm,drc-names property"); 943 goto out; 944 } 945 946 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 947 drc_types->str, drc_types->len); 948 if (ret) { 949 error_report("Couldn't finalize ibm,drc-types property"); 950 goto out; 951 } 952 953 out: 954 g_array_free(drc_indexes, true); 955 g_array_free(drc_power_domains, true); 956 g_string_free(drc_names, true); 957 g_string_free(drc_types, true); 958 959 return ret; 960 } 961 962 void spapr_drc_reset_all(SpaprMachineState *spapr) 963 { 964 Object *drc_container; 965 ObjectProperty *prop; 966 ObjectPropertyIterator iter; 967 968 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 969 restart: 970 object_property_iter_init(&iter, drc_container); 971 while ((prop = object_property_iter_next(&iter))) { 972 SpaprDrc *drc; 973 974 if (!strstart(prop->type, "link<", NULL)) { 975 continue; 976 } 977 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 978 prop->name, 979 &error_abort)); 980 981 /* 982 * This will complete any pending plug/unplug requests. 983 * In case of a unplugged PHB or PCI bridge, this will 984 * cause some DRCs to be destroyed and thus potentially 985 * invalidate the iterator. 986 */ 987 if (spapr_drc_reset(drc)) { 988 goto restart; 989 } 990 } 991 } 992 993 /* 994 * RTAS calls 995 */ 996 997 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 998 { 999 SpaprDrc *drc = spapr_drc_by_index(idx); 1000 SpaprDrcClass *drck; 1001 1002 if (!drc) { 1003 return RTAS_OUT_NO_SUCH_INDICATOR; 1004 } 1005 1006 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 1007 1008 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1009 1010 switch (state) { 1011 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 1012 return drck->isolate(drc); 1013 1014 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 1015 return drck->unisolate(drc); 1016 1017 default: 1018 return RTAS_OUT_PARAM_ERROR; 1019 } 1020 } 1021 1022 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1023 { 1024 SpaprDrc *drc = spapr_drc_by_index(idx); 1025 1026 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1027 return RTAS_OUT_NO_SUCH_INDICATOR; 1028 } 1029 1030 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1031 1032 switch (state) { 1033 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1034 return drc_set_usable(drc); 1035 1036 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1037 return drc_set_unusable(drc); 1038 1039 default: 1040 return RTAS_OUT_PARAM_ERROR; 1041 } 1042 } 1043 1044 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1045 { 1046 SpaprDrc *drc = spapr_drc_by_index(idx); 1047 1048 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1049 return RTAS_OUT_NO_SUCH_INDICATOR; 1050 } 1051 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1052 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1053 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1054 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1055 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1056 } 1057 1058 trace_spapr_drc_set_dr_indicator(idx, state); 1059 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1060 return RTAS_OUT_SUCCESS; 1061 } 1062 1063 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1064 uint32_t token, 1065 uint32_t nargs, target_ulong args, 1066 uint32_t nret, target_ulong rets) 1067 { 1068 uint32_t type, idx, state; 1069 uint32_t ret = RTAS_OUT_SUCCESS; 1070 1071 if (nargs != 3 || nret != 1) { 1072 ret = RTAS_OUT_PARAM_ERROR; 1073 goto out; 1074 } 1075 1076 type = rtas_ld(args, 0); 1077 idx = rtas_ld(args, 1); 1078 state = rtas_ld(args, 2); 1079 1080 switch (type) { 1081 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1082 ret = rtas_set_isolation_state(idx, state); 1083 break; 1084 case RTAS_SENSOR_TYPE_DR: 1085 ret = rtas_set_dr_indicator(idx, state); 1086 break; 1087 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1088 ret = rtas_set_allocation_state(idx, state); 1089 break; 1090 default: 1091 ret = RTAS_OUT_NOT_SUPPORTED; 1092 } 1093 1094 out: 1095 rtas_st(rets, 0, ret); 1096 } 1097 1098 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1099 uint32_t token, uint32_t nargs, 1100 target_ulong args, uint32_t nret, 1101 target_ulong rets) 1102 { 1103 uint32_t sensor_type; 1104 uint32_t sensor_index; 1105 uint32_t sensor_state = 0; 1106 SpaprDrc *drc; 1107 SpaprDrcClass *drck; 1108 uint32_t ret = RTAS_OUT_SUCCESS; 1109 1110 if (nargs != 2 || nret != 2) { 1111 ret = RTAS_OUT_PARAM_ERROR; 1112 goto out; 1113 } 1114 1115 sensor_type = rtas_ld(args, 0); 1116 sensor_index = rtas_ld(args, 1); 1117 1118 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1119 /* currently only DR-related sensors are implemented */ 1120 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1121 sensor_type); 1122 ret = RTAS_OUT_NOT_SUPPORTED; 1123 goto out; 1124 } 1125 1126 drc = spapr_drc_by_index(sensor_index); 1127 if (!drc) { 1128 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1129 ret = RTAS_OUT_PARAM_ERROR; 1130 goto out; 1131 } 1132 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1133 sensor_state = drck->dr_entity_sense(drc); 1134 1135 out: 1136 rtas_st(rets, 0, ret); 1137 rtas_st(rets, 1, sensor_state); 1138 } 1139 1140 /* configure-connector work area offsets, int32_t units for field 1141 * indexes, bytes for field offset/len values. 1142 * 1143 * as documented by PAPR+ v2.7, 13.5.3.5 1144 */ 1145 #define CC_IDX_NODE_NAME_OFFSET 2 1146 #define CC_IDX_PROP_NAME_OFFSET 2 1147 #define CC_IDX_PROP_LEN 3 1148 #define CC_IDX_PROP_DATA_OFFSET 4 1149 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1150 #define CC_WA_LEN 4096 1151 1152 static void configure_connector_st(target_ulong addr, target_ulong offset, 1153 const void *buf, size_t len) 1154 { 1155 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1156 buf, MIN(len, CC_WA_LEN - offset)); 1157 } 1158 1159 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1160 SpaprMachineState *spapr, 1161 uint32_t token, uint32_t nargs, 1162 target_ulong args, uint32_t nret, 1163 target_ulong rets) 1164 { 1165 uint64_t wa_addr; 1166 uint64_t wa_offset; 1167 uint32_t drc_index; 1168 SpaprDrc *drc; 1169 SpaprDrcClass *drck; 1170 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1171 int rc; 1172 1173 if (nargs != 2 || nret != 1) { 1174 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1175 return; 1176 } 1177 1178 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1179 1180 drc_index = rtas_ld(wa_addr, 0); 1181 drc = spapr_drc_by_index(drc_index); 1182 if (!drc) { 1183 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1184 rc = RTAS_OUT_PARAM_ERROR; 1185 goto out; 1186 } 1187 1188 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1189 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1190 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1191 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1192 /* 1193 * Need to unisolate the device before configuring 1194 * or it should already be in configured state to 1195 * allow configure-connector be called repeatedly. 1196 */ 1197 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1198 goto out; 1199 } 1200 1201 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1202 1203 /* 1204 * This indicates that the kernel is reconfiguring a LMB due to 1205 * a failed hotunplug. Rollback the DIMM unplug process. 1206 */ 1207 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1208 drc->unplug_requested) { 1209 spapr_memory_unplug_rollback(spapr, drc->dev); 1210 } 1211 1212 if (!drc->fdt) { 1213 void *fdt; 1214 int fdt_size; 1215 1216 fdt = create_device_tree(&fdt_size); 1217 1218 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1219 NULL)) { 1220 g_free(fdt); 1221 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1222 goto out; 1223 } 1224 1225 drc->fdt = fdt; 1226 drc->ccs_offset = drc->fdt_start_offset; 1227 drc->ccs_depth = 0; 1228 } 1229 1230 do { 1231 uint32_t tag; 1232 const char *name; 1233 const struct fdt_property *prop; 1234 int fdt_offset_next, prop_len; 1235 1236 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1237 1238 switch (tag) { 1239 case FDT_BEGIN_NODE: 1240 drc->ccs_depth++; 1241 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1242 1243 /* provide the name of the next OF node */ 1244 wa_offset = CC_VAL_DATA_OFFSET; 1245 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1246 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1247 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1248 break; 1249 case FDT_END_NODE: 1250 drc->ccs_depth--; 1251 if (drc->ccs_depth == 0) { 1252 uint32_t drc_index = spapr_drc_index(drc); 1253 1254 /* done sending the device tree, move to configured state */ 1255 trace_spapr_drc_set_configured(drc_index); 1256 drc->state = drck->ready_state; 1257 /* 1258 * Ensure that we are able to send the FDT fragment 1259 * again via configure-connector call if the guest requests. 1260 */ 1261 drc->ccs_offset = drc->fdt_start_offset; 1262 drc->ccs_depth = 0; 1263 fdt_offset_next = drc->fdt_start_offset; 1264 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1265 } else { 1266 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1267 } 1268 break; 1269 case FDT_PROP: 1270 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1271 &prop_len); 1272 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1273 1274 /* provide the name of the next OF property */ 1275 wa_offset = CC_VAL_DATA_OFFSET; 1276 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1277 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1278 1279 /* provide the length and value of the OF property. data gets 1280 * placed immediately after NULL terminator of the OF property's 1281 * name string 1282 */ 1283 wa_offset += strlen(name) + 1, 1284 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1285 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1286 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1287 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1288 break; 1289 case FDT_END: 1290 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1291 default: 1292 /* keep seeking for an actionable tag */ 1293 break; 1294 } 1295 if (drc->ccs_offset >= 0) { 1296 drc->ccs_offset = fdt_offset_next; 1297 } 1298 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1299 1300 rc = resp; 1301 out: 1302 rtas_st(rets, 0, rc); 1303 } 1304 1305 static void spapr_drc_register_types(void) 1306 { 1307 type_register_static(&spapr_dr_connector_info); 1308 type_register_static(&spapr_drc_physical_info); 1309 type_register_static(&spapr_drc_logical_info); 1310 type_register_static(&spapr_drc_cpu_info); 1311 type_register_static(&spapr_drc_pci_info); 1312 type_register_static(&spapr_drc_lmb_info); 1313 type_register_static(&spapr_drc_phb_info); 1314 type_register_static(&spapr_drc_pmem_info); 1315 1316 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1317 rtas_set_indicator); 1318 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1319 rtas_get_sensor_state); 1320 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1321 rtas_ibm_configure_connector); 1322 } 1323 type_init(spapr_drc_register_types) 1324