1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "migration/vmstate.h" 20 #include "qapi/visitor.h" 21 #include "qemu/error-report.h" 22 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 24 #include "hw/ppc/spapr_nvdimm.h" 25 #include "sysemu/device_tree.h" 26 #include "sysemu/reset.h" 27 #include "trace.h" 28 29 #define DRC_CONTAINER_PATH "/dr-connector" 30 #define DRC_INDEX_TYPE_SHIFT 28 31 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 32 33 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 34 { 35 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 36 37 return 1 << drck->typeshift; 38 } 39 40 uint32_t spapr_drc_index(SpaprDrc *drc) 41 { 42 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 43 44 /* no set format for a drc index: it only needs to be globally 45 * unique. this is how we encode the DRC type on bare-metal 46 * however, so might as well do that here 47 */ 48 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 49 | (drc->id & DRC_INDEX_ID_MASK); 50 } 51 52 static void spapr_drc_release(SpaprDrc *drc) 53 { 54 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 55 56 drck->release(drc->dev); 57 58 drc->unplug_requested = false; 59 g_free(drc->fdt); 60 drc->fdt = NULL; 61 drc->fdt_start_offset = 0; 62 object_property_del(OBJECT(drc), "device"); 63 drc->dev = NULL; 64 } 65 66 static uint32_t drc_isolate_physical(SpaprDrc *drc) 67 { 68 switch (drc->state) { 69 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 70 return RTAS_OUT_SUCCESS; /* Nothing to do */ 71 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 72 break; /* see below */ 73 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 74 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 75 default: 76 g_assert_not_reached(); 77 } 78 79 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 80 81 if (drc->unplug_requested) { 82 uint32_t drc_index = spapr_drc_index(drc); 83 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 84 spapr_drc_release(drc); 85 } 86 87 return RTAS_OUT_SUCCESS; 88 } 89 90 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 91 { 92 switch (drc->state) { 93 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 94 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 95 return RTAS_OUT_SUCCESS; /* Nothing to do */ 96 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 97 break; /* see below */ 98 default: 99 g_assert_not_reached(); 100 } 101 102 /* cannot unisolate a non-existent resource, and, or resources 103 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 104 * 13.5.3.5) 105 */ 106 if (!drc->dev) { 107 return RTAS_OUT_NO_SUCH_INDICATOR; 108 } 109 110 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 111 drc->ccs_offset = drc->fdt_start_offset; 112 drc->ccs_depth = 0; 113 114 return RTAS_OUT_SUCCESS; 115 } 116 117 static uint32_t drc_isolate_logical(SpaprDrc *drc) 118 { 119 switch (drc->state) { 120 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 121 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 122 return RTAS_OUT_SUCCESS; /* Nothing to do */ 123 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 124 break; /* see below */ 125 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 126 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 127 default: 128 g_assert_not_reached(); 129 } 130 131 /* 132 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 133 * belong to a DIMM device that is marked for removal. 134 * 135 * Currently the guest userspace tool drmgr that drives the memory 136 * hotplug/unplug will just try to remove a set of 'removable' LMBs 137 * in response to a hot unplug request that is based on drc-count. 138 * If the LMB being removed doesn't belong to a DIMM device that is 139 * actually being unplugged, fail the isolation request here. 140 */ 141 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 142 && !drc->unplug_requested) { 143 return RTAS_OUT_HW_ERROR; 144 } 145 146 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 147 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 SpaprMachineState *spapr = NULL; 154 155 switch (drc->state) { 156 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 157 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 158 /* 159 * Unisolating a logical DRC that was marked for unplug 160 * means that the kernel is refusing the removal. 161 */ 162 if (drc->unplug_requested && drc->dev) { 163 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) { 164 spapr = SPAPR_MACHINE(qdev_get_machine()); 165 166 spapr_memory_unplug_rollback(spapr, drc->dev); 167 } 168 169 drc->unplug_requested = false; 170 error_report("Device hotunplug rejected by the guest " 171 "for device %s", drc->dev->id); 172 173 /* 174 * TODO: send a QAPI DEVICE_UNPLUG_ERROR event when 175 * it is implemented. 176 */ 177 } 178 179 return RTAS_OUT_SUCCESS; /* Nothing to do */ 180 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 181 break; /* see below */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* Move to AVAILABLE state should have ensured device was present */ 189 g_assert(drc->dev); 190 191 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 192 drc->ccs_offset = drc->fdt_start_offset; 193 drc->ccs_depth = 0; 194 195 return RTAS_OUT_SUCCESS; 196 } 197 198 static uint32_t drc_set_usable(SpaprDrc *drc) 199 { 200 switch (drc->state) { 201 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 202 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 203 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 204 return RTAS_OUT_SUCCESS; /* Nothing to do */ 205 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 206 break; /* see below */ 207 default: 208 g_assert_not_reached(); 209 } 210 211 /* if there's no resource/device associated with the DRC, there's 212 * no way for us to put it in an allocation state consistent with 213 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 214 * result in an RTAS return code of -3 / "no such indicator" 215 */ 216 if (!drc->dev) { 217 return RTAS_OUT_NO_SUCH_INDICATOR; 218 } 219 if (drc->unplug_requested) { 220 /* Don't allow the guest to move a device away from UNUSABLE 221 * state when we want to unplug it */ 222 return RTAS_OUT_NO_SUCH_INDICATOR; 223 } 224 225 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 226 227 return RTAS_OUT_SUCCESS; 228 } 229 230 static uint32_t drc_set_unusable(SpaprDrc *drc) 231 { 232 switch (drc->state) { 233 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 234 return RTAS_OUT_SUCCESS; /* Nothing to do */ 235 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 236 break; /* see below */ 237 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 238 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 239 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 240 default: 241 g_assert_not_reached(); 242 } 243 244 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 245 if (drc->unplug_requested) { 246 uint32_t drc_index = spapr_drc_index(drc); 247 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 248 spapr_drc_release(drc); 249 } 250 251 return RTAS_OUT_SUCCESS; 252 } 253 254 static char *spapr_drc_name(SpaprDrc *drc) 255 { 256 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 257 258 /* human-readable name for a DRC to encode into the DT 259 * description. this is mainly only used within a guest in place 260 * of the unique DRC index. 261 * 262 * in the case of VIO/PCI devices, it corresponds to a "location 263 * code" that maps a logical device/function (DRC index) to a 264 * physical (or virtual in the case of VIO) location in the system 265 * by chaining together the "location label" for each 266 * encapsulating component. 267 * 268 * since this is more to do with diagnosing physical hardware 269 * issues than guest compatibility, we choose location codes/DRC 270 * names that adhere to the documented format, but avoid encoding 271 * the entire topology information into the label/code, instead 272 * just using the location codes based on the labels for the 273 * endpoints (VIO/PCI adaptor connectors), which is basically just 274 * "C" followed by an integer ID. 275 * 276 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 277 * location codes as documented by PAPR+ v2.7, 12.3.1.5 278 */ 279 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 280 } 281 282 /* 283 * dr-entity-sense sensor value 284 * returned via get-sensor-state RTAS calls 285 * as expected by state diagram in PAPR+ 2.7, 13.4 286 * based on the current allocation/indicator/power states 287 * for the DR connector. 288 */ 289 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 290 { 291 /* this assumes all PCI devices are assigned to a 'live insertion' 292 * power domain, where QEMU manages power state automatically as 293 * opposed to the guest. present, non-PCI resources are unaffected 294 * by power state. 295 */ 296 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 297 : SPAPR_DR_ENTITY_SENSE_EMPTY; 298 } 299 300 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 301 { 302 switch (drc->state) { 303 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 304 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 305 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 306 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 307 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 308 g_assert(drc->dev); 309 return SPAPR_DR_ENTITY_SENSE_PRESENT; 310 default: 311 g_assert_not_reached(); 312 } 313 } 314 315 static void prop_get_index(Object *obj, Visitor *v, const char *name, 316 void *opaque, Error **errp) 317 { 318 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 319 uint32_t value = spapr_drc_index(drc); 320 visit_type_uint32(v, name, &value, errp); 321 } 322 323 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 324 void *opaque, Error **errp) 325 { 326 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 327 QNull *null = NULL; 328 int fdt_offset_next, fdt_offset, fdt_depth; 329 void *fdt; 330 331 if (!drc->fdt) { 332 visit_type_null(v, NULL, &null, errp); 333 qobject_unref(null); 334 return; 335 } 336 337 fdt = drc->fdt; 338 fdt_offset = drc->fdt_start_offset; 339 fdt_depth = 0; 340 341 do { 342 const char *name = NULL; 343 const struct fdt_property *prop = NULL; 344 int prop_len = 0, name_len = 0; 345 uint32_t tag; 346 bool ok; 347 348 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 349 switch (tag) { 350 case FDT_BEGIN_NODE: 351 fdt_depth++; 352 name = fdt_get_name(fdt, fdt_offset, &name_len); 353 if (!visit_start_struct(v, name, NULL, 0, errp)) { 354 return; 355 } 356 break; 357 case FDT_END_NODE: 358 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 359 g_assert(fdt_depth > 0); 360 ok = visit_check_struct(v, errp); 361 visit_end_struct(v, NULL); 362 if (!ok) { 363 return; 364 } 365 fdt_depth--; 366 break; 367 case FDT_PROP: { 368 int i; 369 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 370 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 371 if (!visit_start_list(v, name, NULL, 0, errp)) { 372 return; 373 } 374 for (i = 0; i < prop_len; i++) { 375 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 376 errp)) { 377 return; 378 } 379 } 380 ok = visit_check_list(v, errp); 381 visit_end_list(v, NULL); 382 if (!ok) { 383 return; 384 } 385 break; 386 } 387 default: 388 error_report("device FDT in unexpected state: %d", tag); 389 abort(); 390 } 391 fdt_offset = fdt_offset_next; 392 } while (fdt_depth != 0); 393 } 394 395 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 396 { 397 trace_spapr_drc_attach(spapr_drc_index(drc)); 398 399 g_assert(!drc->dev); 400 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 401 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 402 403 drc->dev = d; 404 405 object_property_add_link(OBJECT(drc), "device", 406 object_get_typename(OBJECT(drc->dev)), 407 (Object **)(&drc->dev), 408 NULL, 0); 409 } 410 411 void spapr_drc_unplug_request(SpaprDrc *drc) 412 { 413 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 414 415 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 416 417 g_assert(drc->dev); 418 419 drc->unplug_requested = true; 420 421 if (drc->state != drck->empty_state) { 422 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 423 return; 424 } 425 426 spapr_drc_release(drc); 427 } 428 429 bool spapr_drc_reset(SpaprDrc *drc) 430 { 431 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 432 bool unplug_completed = false; 433 434 trace_spapr_drc_reset(spapr_drc_index(drc)); 435 436 /* immediately upon reset we can safely assume DRCs whose devices 437 * are pending removal can be safely removed. 438 */ 439 if (drc->unplug_requested) { 440 spapr_drc_release(drc); 441 unplug_completed = true; 442 } 443 444 if (drc->dev) { 445 /* A device present at reset is ready to go, same as coldplugged */ 446 drc->state = drck->ready_state; 447 /* 448 * Ensure that we are able to send the FDT fragment again 449 * via configure-connector call if the guest requests. 450 */ 451 drc->ccs_offset = drc->fdt_start_offset; 452 drc->ccs_depth = 0; 453 } else { 454 drc->state = drck->empty_state; 455 drc->ccs_offset = -1; 456 drc->ccs_depth = -1; 457 } 458 459 return unplug_completed; 460 } 461 462 static bool spapr_drc_unplug_requested_needed(void *opaque) 463 { 464 return spapr_drc_unplug_requested(opaque); 465 } 466 467 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 468 .name = "spapr_drc/unplug_requested", 469 .version_id = 1, 470 .minimum_version_id = 1, 471 .needed = spapr_drc_unplug_requested_needed, 472 .fields = (VMStateField []) { 473 VMSTATE_BOOL(unplug_requested, SpaprDrc), 474 VMSTATE_END_OF_LIST() 475 } 476 }; 477 478 static bool spapr_drc_needed(void *opaque) 479 { 480 SpaprDrc *drc = opaque; 481 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 482 483 /* 484 * If no dev is plugged in there is no need to migrate the DRC state 485 * nor to reset the DRC at CAS. 486 */ 487 if (!drc->dev) { 488 return false; 489 } 490 491 /* 492 * We need to reset the DRC at CAS or to migrate the DRC state if it's 493 * not equal to the expected long-term state, which is the same as the 494 * coldplugged initial state, or if an unplug request is pending. 495 */ 496 return drc->state != drck->ready_state || 497 spapr_drc_unplug_requested(drc); 498 } 499 500 static const VMStateDescription vmstate_spapr_drc = { 501 .name = "spapr_drc", 502 .version_id = 1, 503 .minimum_version_id = 1, 504 .needed = spapr_drc_needed, 505 .fields = (VMStateField []) { 506 VMSTATE_UINT32(state, SpaprDrc), 507 VMSTATE_END_OF_LIST() 508 }, 509 .subsections = (const VMStateDescription * []) { 510 &vmstate_spapr_drc_unplug_requested, 511 NULL 512 } 513 }; 514 515 static void drc_realize(DeviceState *d, Error **errp) 516 { 517 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 518 Object *root_container; 519 gchar *link_name; 520 const char *child_name; 521 522 trace_spapr_drc_realize(spapr_drc_index(drc)); 523 /* NOTE: we do this as part of realize/unrealize due to the fact 524 * that the guest will communicate with the DRC via RTAS calls 525 * referencing the global DRC index. By unlinking the DRC 526 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 527 * inaccessible by the guest, since lookups rely on this path 528 * existing in the composition tree 529 */ 530 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 531 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 532 child_name = object_get_canonical_path_component(OBJECT(drc)); 533 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 534 object_property_add_alias(root_container, link_name, 535 drc->owner, child_name); 536 g_free(link_name); 537 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 538 drc); 539 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 540 } 541 542 static void drc_unrealize(DeviceState *d) 543 { 544 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 545 Object *root_container; 546 gchar *name; 547 548 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 549 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 550 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 551 name = g_strdup_printf("%x", spapr_drc_index(drc)); 552 object_property_del(root_container, name); 553 g_free(name); 554 } 555 556 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 557 uint32_t id) 558 { 559 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 560 char *prop_name; 561 562 drc->id = id; 563 drc->owner = owner; 564 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 565 spapr_drc_index(drc)); 566 object_property_add_child(owner, prop_name, OBJECT(drc)); 567 object_unref(OBJECT(drc)); 568 qdev_realize(DEVICE(drc), NULL, NULL); 569 g_free(prop_name); 570 571 return drc; 572 } 573 574 static void spapr_dr_connector_instance_init(Object *obj) 575 { 576 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 577 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 578 579 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 580 object_property_add(obj, "index", "uint32", prop_get_index, 581 NULL, NULL, NULL); 582 object_property_add(obj, "fdt", "struct", prop_get_fdt, 583 NULL, NULL, NULL); 584 drc->state = drck->empty_state; 585 } 586 587 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 588 { 589 DeviceClass *dk = DEVICE_CLASS(k); 590 591 dk->realize = drc_realize; 592 dk->unrealize = drc_unrealize; 593 /* 594 * Reason: DR connector needs to be wired to either the machine or to a 595 * PHB in spapr_dr_connector_new(). 596 */ 597 dk->user_creatable = false; 598 } 599 600 static bool drc_physical_needed(void *opaque) 601 { 602 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 603 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 604 605 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 606 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 607 return false; 608 } 609 return true; 610 } 611 612 static const VMStateDescription vmstate_spapr_drc_physical = { 613 .name = "spapr_drc/physical", 614 .version_id = 1, 615 .minimum_version_id = 1, 616 .needed = drc_physical_needed, 617 .fields = (VMStateField []) { 618 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 619 VMSTATE_END_OF_LIST() 620 } 621 }; 622 623 static void drc_physical_reset(void *opaque) 624 { 625 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 626 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 627 628 if (drc->dev) { 629 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 630 } else { 631 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 632 } 633 } 634 635 static void realize_physical(DeviceState *d, Error **errp) 636 { 637 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 638 Error *local_err = NULL; 639 640 drc_realize(d, &local_err); 641 if (local_err) { 642 error_propagate(errp, local_err); 643 return; 644 } 645 646 vmstate_register(VMSTATE_IF(drcp), 647 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 648 &vmstate_spapr_drc_physical, drcp); 649 qemu_register_reset(drc_physical_reset, drcp); 650 } 651 652 static void unrealize_physical(DeviceState *d) 653 { 654 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 655 656 drc_unrealize(d); 657 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 658 qemu_unregister_reset(drc_physical_reset, drcp); 659 } 660 661 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 662 { 663 DeviceClass *dk = DEVICE_CLASS(k); 664 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 665 666 dk->realize = realize_physical; 667 dk->unrealize = unrealize_physical; 668 drck->dr_entity_sense = physical_entity_sense; 669 drck->isolate = drc_isolate_physical; 670 drck->unisolate = drc_unisolate_physical; 671 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 672 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 673 } 674 675 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 676 { 677 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 678 679 drck->dr_entity_sense = logical_entity_sense; 680 drck->isolate = drc_isolate_logical; 681 drck->unisolate = drc_unisolate_logical; 682 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 683 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 684 } 685 686 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 687 { 688 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 689 690 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 691 drck->typename = "CPU"; 692 drck->drc_name_prefix = "CPU "; 693 drck->release = spapr_core_release; 694 drck->dt_populate = spapr_core_dt_populate; 695 } 696 697 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 698 { 699 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 700 701 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 702 drck->typename = "28"; 703 drck->drc_name_prefix = "C"; 704 drck->release = spapr_phb_remove_pci_device_cb; 705 drck->dt_populate = spapr_pci_dt_populate; 706 } 707 708 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 709 { 710 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 711 712 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 713 drck->typename = "MEM"; 714 drck->drc_name_prefix = "LMB "; 715 drck->release = spapr_lmb_release; 716 drck->dt_populate = spapr_lmb_dt_populate; 717 } 718 719 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 720 { 721 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 722 723 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 724 drck->typename = "PHB"; 725 drck->drc_name_prefix = "PHB "; 726 drck->release = spapr_phb_release; 727 drck->dt_populate = spapr_phb_dt_populate; 728 } 729 730 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 731 { 732 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 733 734 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 735 drck->typename = "PMEM"; 736 drck->drc_name_prefix = "PMEM "; 737 drck->release = NULL; 738 drck->dt_populate = spapr_pmem_dt_populate; 739 } 740 741 static const TypeInfo spapr_dr_connector_info = { 742 .name = TYPE_SPAPR_DR_CONNECTOR, 743 .parent = TYPE_DEVICE, 744 .instance_size = sizeof(SpaprDrc), 745 .instance_init = spapr_dr_connector_instance_init, 746 .class_size = sizeof(SpaprDrcClass), 747 .class_init = spapr_dr_connector_class_init, 748 .abstract = true, 749 }; 750 751 static const TypeInfo spapr_drc_physical_info = { 752 .name = TYPE_SPAPR_DRC_PHYSICAL, 753 .parent = TYPE_SPAPR_DR_CONNECTOR, 754 .instance_size = sizeof(SpaprDrcPhysical), 755 .class_init = spapr_drc_physical_class_init, 756 .abstract = true, 757 }; 758 759 static const TypeInfo spapr_drc_logical_info = { 760 .name = TYPE_SPAPR_DRC_LOGICAL, 761 .parent = TYPE_SPAPR_DR_CONNECTOR, 762 .class_init = spapr_drc_logical_class_init, 763 .abstract = true, 764 }; 765 766 static const TypeInfo spapr_drc_cpu_info = { 767 .name = TYPE_SPAPR_DRC_CPU, 768 .parent = TYPE_SPAPR_DRC_LOGICAL, 769 .class_init = spapr_drc_cpu_class_init, 770 }; 771 772 static const TypeInfo spapr_drc_pci_info = { 773 .name = TYPE_SPAPR_DRC_PCI, 774 .parent = TYPE_SPAPR_DRC_PHYSICAL, 775 .class_init = spapr_drc_pci_class_init, 776 }; 777 778 static const TypeInfo spapr_drc_lmb_info = { 779 .name = TYPE_SPAPR_DRC_LMB, 780 .parent = TYPE_SPAPR_DRC_LOGICAL, 781 .class_init = spapr_drc_lmb_class_init, 782 }; 783 784 static const TypeInfo spapr_drc_phb_info = { 785 .name = TYPE_SPAPR_DRC_PHB, 786 .parent = TYPE_SPAPR_DRC_LOGICAL, 787 .instance_size = sizeof(SpaprDrc), 788 .class_init = spapr_drc_phb_class_init, 789 }; 790 791 static const TypeInfo spapr_drc_pmem_info = { 792 .name = TYPE_SPAPR_DRC_PMEM, 793 .parent = TYPE_SPAPR_DRC_LOGICAL, 794 .class_init = spapr_drc_pmem_class_init, 795 }; 796 797 /* helper functions for external users */ 798 799 SpaprDrc *spapr_drc_by_index(uint32_t index) 800 { 801 Object *obj; 802 gchar *name; 803 804 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 805 obj = object_resolve_path(name, NULL); 806 g_free(name); 807 808 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 809 } 810 811 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 812 { 813 SpaprDrcClass *drck 814 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 815 816 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 817 | (id & DRC_INDEX_ID_MASK)); 818 } 819 820 /** 821 * spapr_dt_drc 822 * 823 * @fdt: libfdt device tree 824 * @path: path in the DT to generate properties 825 * @owner: parent Object/DeviceState for which to generate DRC 826 * descriptions for 827 * @drc_type_mask: mask of SpaprDrcType values corresponding 828 * to the types of DRCs to generate entries for 829 * 830 * generate OF properties to describe DRC topology/indices to guests 831 * 832 * as documented in PAPR+ v2.1, 13.5.2 833 */ 834 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 835 { 836 Object *root_container; 837 ObjectProperty *prop; 838 ObjectPropertyIterator iter; 839 uint32_t drc_count = 0; 840 GArray *drc_indexes, *drc_power_domains; 841 GString *drc_names, *drc_types; 842 int ret; 843 844 /* 845 * This should really be only called once per node since it overwrites 846 * the OF properties if they already exist. 847 */ 848 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 849 850 /* the first entry of each properties is a 32-bit integer encoding 851 * the number of elements in the array. we won't know this until 852 * we complete the iteration through all the matching DRCs, but 853 * reserve the space now and set the offsets accordingly so we 854 * can fill them in later. 855 */ 856 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 857 drc_indexes = g_array_set_size(drc_indexes, 1); 858 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 859 drc_power_domains = g_array_set_size(drc_power_domains, 1); 860 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 861 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 862 863 /* aliases for all DRConnector objects will be rooted in QOM 864 * composition tree at DRC_CONTAINER_PATH 865 */ 866 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 867 868 object_property_iter_init(&iter, root_container); 869 while ((prop = object_property_iter_next(&iter))) { 870 Object *obj; 871 SpaprDrc *drc; 872 SpaprDrcClass *drck; 873 char *drc_name = NULL; 874 uint32_t drc_index, drc_power_domain; 875 876 if (!strstart(prop->type, "link<", NULL)) { 877 continue; 878 } 879 880 obj = object_property_get_link(root_container, prop->name, 881 &error_abort); 882 drc = SPAPR_DR_CONNECTOR(obj); 883 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 884 885 if (owner && (drc->owner != owner)) { 886 continue; 887 } 888 889 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 890 continue; 891 } 892 893 drc_count++; 894 895 /* ibm,drc-indexes */ 896 drc_index = cpu_to_be32(spapr_drc_index(drc)); 897 g_array_append_val(drc_indexes, drc_index); 898 899 /* ibm,drc-power-domains */ 900 drc_power_domain = cpu_to_be32(-1); 901 g_array_append_val(drc_power_domains, drc_power_domain); 902 903 /* ibm,drc-names */ 904 drc_name = spapr_drc_name(drc); 905 drc_names = g_string_append(drc_names, drc_name); 906 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 907 g_free(drc_name); 908 909 /* ibm,drc-types */ 910 drc_types = g_string_append(drc_types, drck->typename); 911 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 912 } 913 914 /* now write the drc count into the space we reserved at the 915 * beginning of the arrays previously 916 */ 917 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 918 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 919 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 920 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 921 922 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 923 drc_indexes->data, 924 drc_indexes->len * sizeof(uint32_t)); 925 if (ret) { 926 error_report("Couldn't create ibm,drc-indexes property"); 927 goto out; 928 } 929 930 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 931 drc_power_domains->data, 932 drc_power_domains->len * sizeof(uint32_t)); 933 if (ret) { 934 error_report("Couldn't finalize ibm,drc-power-domains property"); 935 goto out; 936 } 937 938 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 939 drc_names->str, drc_names->len); 940 if (ret) { 941 error_report("Couldn't finalize ibm,drc-names property"); 942 goto out; 943 } 944 945 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 946 drc_types->str, drc_types->len); 947 if (ret) { 948 error_report("Couldn't finalize ibm,drc-types property"); 949 goto out; 950 } 951 952 out: 953 g_array_free(drc_indexes, true); 954 g_array_free(drc_power_domains, true); 955 g_string_free(drc_names, true); 956 g_string_free(drc_types, true); 957 958 return ret; 959 } 960 961 void spapr_drc_reset_all(SpaprMachineState *spapr) 962 { 963 Object *drc_container; 964 ObjectProperty *prop; 965 ObjectPropertyIterator iter; 966 967 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 968 restart: 969 object_property_iter_init(&iter, drc_container); 970 while ((prop = object_property_iter_next(&iter))) { 971 SpaprDrc *drc; 972 973 if (!strstart(prop->type, "link<", NULL)) { 974 continue; 975 } 976 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 977 prop->name, 978 &error_abort)); 979 980 /* 981 * This will complete any pending plug/unplug requests. 982 * In case of a unplugged PHB or PCI bridge, this will 983 * cause some DRCs to be destroyed and thus potentially 984 * invalidate the iterator. 985 */ 986 if (spapr_drc_reset(drc)) { 987 goto restart; 988 } 989 } 990 } 991 992 /* 993 * RTAS calls 994 */ 995 996 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 997 { 998 SpaprDrc *drc = spapr_drc_by_index(idx); 999 SpaprDrcClass *drck; 1000 1001 if (!drc) { 1002 return RTAS_OUT_NO_SUCH_INDICATOR; 1003 } 1004 1005 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 1006 1007 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1008 1009 switch (state) { 1010 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 1011 return drck->isolate(drc); 1012 1013 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 1014 return drck->unisolate(drc); 1015 1016 default: 1017 return RTAS_OUT_PARAM_ERROR; 1018 } 1019 } 1020 1021 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1022 { 1023 SpaprDrc *drc = spapr_drc_by_index(idx); 1024 1025 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1026 return RTAS_OUT_NO_SUCH_INDICATOR; 1027 } 1028 1029 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1030 1031 switch (state) { 1032 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1033 return drc_set_usable(drc); 1034 1035 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1036 return drc_set_unusable(drc); 1037 1038 default: 1039 return RTAS_OUT_PARAM_ERROR; 1040 } 1041 } 1042 1043 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1044 { 1045 SpaprDrc *drc = spapr_drc_by_index(idx); 1046 1047 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1048 return RTAS_OUT_NO_SUCH_INDICATOR; 1049 } 1050 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1051 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1052 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1053 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1054 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1055 } 1056 1057 trace_spapr_drc_set_dr_indicator(idx, state); 1058 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1059 return RTAS_OUT_SUCCESS; 1060 } 1061 1062 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1063 uint32_t token, 1064 uint32_t nargs, target_ulong args, 1065 uint32_t nret, target_ulong rets) 1066 { 1067 uint32_t type, idx, state; 1068 uint32_t ret = RTAS_OUT_SUCCESS; 1069 1070 if (nargs != 3 || nret != 1) { 1071 ret = RTAS_OUT_PARAM_ERROR; 1072 goto out; 1073 } 1074 1075 type = rtas_ld(args, 0); 1076 idx = rtas_ld(args, 1); 1077 state = rtas_ld(args, 2); 1078 1079 switch (type) { 1080 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1081 ret = rtas_set_isolation_state(idx, state); 1082 break; 1083 case RTAS_SENSOR_TYPE_DR: 1084 ret = rtas_set_dr_indicator(idx, state); 1085 break; 1086 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1087 ret = rtas_set_allocation_state(idx, state); 1088 break; 1089 default: 1090 ret = RTAS_OUT_NOT_SUPPORTED; 1091 } 1092 1093 out: 1094 rtas_st(rets, 0, ret); 1095 } 1096 1097 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1098 uint32_t token, uint32_t nargs, 1099 target_ulong args, uint32_t nret, 1100 target_ulong rets) 1101 { 1102 uint32_t sensor_type; 1103 uint32_t sensor_index; 1104 uint32_t sensor_state = 0; 1105 SpaprDrc *drc; 1106 SpaprDrcClass *drck; 1107 uint32_t ret = RTAS_OUT_SUCCESS; 1108 1109 if (nargs != 2 || nret != 2) { 1110 ret = RTAS_OUT_PARAM_ERROR; 1111 goto out; 1112 } 1113 1114 sensor_type = rtas_ld(args, 0); 1115 sensor_index = rtas_ld(args, 1); 1116 1117 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1118 /* currently only DR-related sensors are implemented */ 1119 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1120 sensor_type); 1121 ret = RTAS_OUT_NOT_SUPPORTED; 1122 goto out; 1123 } 1124 1125 drc = spapr_drc_by_index(sensor_index); 1126 if (!drc) { 1127 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1128 ret = RTAS_OUT_PARAM_ERROR; 1129 goto out; 1130 } 1131 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1132 sensor_state = drck->dr_entity_sense(drc); 1133 1134 out: 1135 rtas_st(rets, 0, ret); 1136 rtas_st(rets, 1, sensor_state); 1137 } 1138 1139 /* configure-connector work area offsets, int32_t units for field 1140 * indexes, bytes for field offset/len values. 1141 * 1142 * as documented by PAPR+ v2.7, 13.5.3.5 1143 */ 1144 #define CC_IDX_NODE_NAME_OFFSET 2 1145 #define CC_IDX_PROP_NAME_OFFSET 2 1146 #define CC_IDX_PROP_LEN 3 1147 #define CC_IDX_PROP_DATA_OFFSET 4 1148 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1149 #define CC_WA_LEN 4096 1150 1151 static void configure_connector_st(target_ulong addr, target_ulong offset, 1152 const void *buf, size_t len) 1153 { 1154 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1155 buf, MIN(len, CC_WA_LEN - offset)); 1156 } 1157 1158 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1159 SpaprMachineState *spapr, 1160 uint32_t token, uint32_t nargs, 1161 target_ulong args, uint32_t nret, 1162 target_ulong rets) 1163 { 1164 uint64_t wa_addr; 1165 uint64_t wa_offset; 1166 uint32_t drc_index; 1167 SpaprDrc *drc; 1168 SpaprDrcClass *drck; 1169 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1170 int rc; 1171 1172 if (nargs != 2 || nret != 1) { 1173 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1174 return; 1175 } 1176 1177 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1178 1179 drc_index = rtas_ld(wa_addr, 0); 1180 drc = spapr_drc_by_index(drc_index); 1181 if (!drc) { 1182 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1183 rc = RTAS_OUT_PARAM_ERROR; 1184 goto out; 1185 } 1186 1187 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1188 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1189 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1190 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1191 /* 1192 * Need to unisolate the device before configuring 1193 * or it should already be in configured state to 1194 * allow configure-connector be called repeatedly. 1195 */ 1196 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1197 goto out; 1198 } 1199 1200 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1201 1202 /* 1203 * This indicates that the kernel is reconfiguring a LMB due to 1204 * a failed hotunplug. Rollback the DIMM unplug process. 1205 */ 1206 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1207 drc->unplug_requested) { 1208 spapr_memory_unplug_rollback(spapr, drc->dev); 1209 } 1210 1211 if (!drc->fdt) { 1212 void *fdt; 1213 int fdt_size; 1214 1215 fdt = create_device_tree(&fdt_size); 1216 1217 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1218 NULL)) { 1219 g_free(fdt); 1220 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1221 goto out; 1222 } 1223 1224 drc->fdt = fdt; 1225 drc->ccs_offset = drc->fdt_start_offset; 1226 drc->ccs_depth = 0; 1227 } 1228 1229 do { 1230 uint32_t tag; 1231 const char *name; 1232 const struct fdt_property *prop; 1233 int fdt_offset_next, prop_len; 1234 1235 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1236 1237 switch (tag) { 1238 case FDT_BEGIN_NODE: 1239 drc->ccs_depth++; 1240 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1241 1242 /* provide the name of the next OF node */ 1243 wa_offset = CC_VAL_DATA_OFFSET; 1244 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1245 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1246 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1247 break; 1248 case FDT_END_NODE: 1249 drc->ccs_depth--; 1250 if (drc->ccs_depth == 0) { 1251 uint32_t drc_index = spapr_drc_index(drc); 1252 1253 /* done sending the device tree, move to configured state */ 1254 trace_spapr_drc_set_configured(drc_index); 1255 drc->state = drck->ready_state; 1256 /* 1257 * Ensure that we are able to send the FDT fragment 1258 * again via configure-connector call if the guest requests. 1259 */ 1260 drc->ccs_offset = drc->fdt_start_offset; 1261 drc->ccs_depth = 0; 1262 fdt_offset_next = drc->fdt_start_offset; 1263 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1264 } else { 1265 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1266 } 1267 break; 1268 case FDT_PROP: 1269 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1270 &prop_len); 1271 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1272 1273 /* provide the name of the next OF property */ 1274 wa_offset = CC_VAL_DATA_OFFSET; 1275 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1276 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1277 1278 /* provide the length and value of the OF property. data gets 1279 * placed immediately after NULL terminator of the OF property's 1280 * name string 1281 */ 1282 wa_offset += strlen(name) + 1, 1283 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1284 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1285 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1286 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1287 break; 1288 case FDT_END: 1289 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1290 default: 1291 /* keep seeking for an actionable tag */ 1292 break; 1293 } 1294 if (drc->ccs_offset >= 0) { 1295 drc->ccs_offset = fdt_offset_next; 1296 } 1297 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1298 1299 rc = resp; 1300 out: 1301 rtas_st(rets, 0, rc); 1302 } 1303 1304 static void spapr_drc_register_types(void) 1305 { 1306 type_register_static(&spapr_dr_connector_info); 1307 type_register_static(&spapr_drc_physical_info); 1308 type_register_static(&spapr_drc_logical_info); 1309 type_register_static(&spapr_drc_cpu_info); 1310 type_register_static(&spapr_drc_pci_info); 1311 type_register_static(&spapr_drc_lmb_info); 1312 type_register_static(&spapr_drc_phb_info); 1313 type_register_static(&spapr_drc_pmem_info); 1314 1315 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1316 rtas_set_indicator); 1317 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1318 rtas_get_sensor_state); 1319 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1320 rtas_ibm_configure_connector); 1321 } 1322 type_init(spapr_drc_register_types) 1323