xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision a5bc19c5)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "migration/vmstate.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "hw/ppc/spapr_nvdimm.h"
25 #include "sysemu/device_tree.h"
26 #include "sysemu/reset.h"
27 #include "trace.h"
28 
29 #define DRC_CONTAINER_PATH "/dr-connector"
30 #define DRC_INDEX_TYPE_SHIFT 28
31 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
32 
33 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
34 {
35     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
36 
37     return 1 << drck->typeshift;
38 }
39 
40 uint32_t spapr_drc_index(SpaprDrc *drc)
41 {
42     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
43 
44     /* no set format for a drc index: it only needs to be globally
45      * unique. this is how we encode the DRC type on bare-metal
46      * however, so might as well do that here
47      */
48     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
49         | (drc->id & DRC_INDEX_ID_MASK);
50 }
51 
52 static void spapr_drc_release(SpaprDrc *drc)
53 {
54     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
55 
56     drck->release(drc->dev);
57 
58     drc->unplug_requested = false;
59     g_free(drc->fdt);
60     drc->fdt = NULL;
61     drc->fdt_start_offset = 0;
62     object_property_del(OBJECT(drc), "device");
63     drc->dev = NULL;
64 }
65 
66 static uint32_t drc_isolate_physical(SpaprDrc *drc)
67 {
68     switch (drc->state) {
69     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
70         return RTAS_OUT_SUCCESS; /* Nothing to do */
71     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
72         break; /* see below */
73     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
74         return RTAS_OUT_PARAM_ERROR; /* not allowed */
75     default:
76         g_assert_not_reached();
77     }
78 
79     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
80 
81     if (drc->unplug_requested) {
82         uint32_t drc_index = spapr_drc_index(drc);
83         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
84         spapr_drc_release(drc);
85     }
86 
87     return RTAS_OUT_SUCCESS;
88 }
89 
90 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
91 {
92     switch (drc->state) {
93     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
94     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
95         return RTAS_OUT_SUCCESS; /* Nothing to do */
96     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
97         break; /* see below */
98     default:
99         g_assert_not_reached();
100     }
101 
102     /* cannot unisolate a non-existent resource, and, or resources
103      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
104      * 13.5.3.5)
105      */
106     if (!drc->dev) {
107         return RTAS_OUT_NO_SUCH_INDICATOR;
108     }
109 
110     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
111     drc->ccs_offset = drc->fdt_start_offset;
112     drc->ccs_depth = 0;
113 
114     return RTAS_OUT_SUCCESS;
115 }
116 
117 static uint32_t drc_isolate_logical(SpaprDrc *drc)
118 {
119     switch (drc->state) {
120     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
121     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
122         return RTAS_OUT_SUCCESS; /* Nothing to do */
123     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
124         break; /* see below */
125     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
126         return RTAS_OUT_PARAM_ERROR; /* not allowed */
127     default:
128         g_assert_not_reached();
129     }
130 
131     /*
132      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
133      * belong to a DIMM device that is marked for removal.
134      *
135      * Currently the guest userspace tool drmgr that drives the memory
136      * hotplug/unplug will just try to remove a set of 'removable' LMBs
137      * in response to a hot unplug request that is based on drc-count.
138      * If the LMB being removed doesn't belong to a DIMM device that is
139      * actually being unplugged, fail the isolation request here.
140      */
141     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
142         && !drc->unplug_requested) {
143         return RTAS_OUT_HW_ERROR;
144     }
145 
146     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
147 
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     SpaprMachineState *spapr = NULL;
154 
155     switch (drc->state) {
156     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
157     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
158         /*
159          * Unisolating a logical DRC that was marked for unplug
160          * means that the kernel is refusing the removal.
161          */
162         if (drc->unplug_requested && drc->dev) {
163             if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
164                 spapr = SPAPR_MACHINE(qdev_get_machine());
165 
166                 spapr_memory_unplug_rollback(spapr, drc->dev);
167             }
168 
169             drc->unplug_requested = false;
170 
171             if (drc->dev->id) {
172                 error_report("Device hotunplug rejected by the guest "
173                              "for device %s", drc->dev->id);
174             }
175 
176             /*
177              * TODO: send a QAPI DEVICE_UNPLUG_ERROR event when
178              * it is implemented.
179              */
180         }
181 
182         return RTAS_OUT_SUCCESS; /* Nothing to do */
183     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
184         break; /* see below */
185     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
186         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
187     default:
188         g_assert_not_reached();
189     }
190 
191     /* Move to AVAILABLE state should have ensured device was present */
192     g_assert(drc->dev);
193 
194     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
195     drc->ccs_offset = drc->fdt_start_offset;
196     drc->ccs_depth = 0;
197 
198     return RTAS_OUT_SUCCESS;
199 }
200 
201 static uint32_t drc_set_usable(SpaprDrc *drc)
202 {
203     switch (drc->state) {
204     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
205     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
206     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
207         return RTAS_OUT_SUCCESS; /* Nothing to do */
208     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
209         break; /* see below */
210     default:
211         g_assert_not_reached();
212     }
213 
214     /* if there's no resource/device associated with the DRC, there's
215      * no way for us to put it in an allocation state consistent with
216      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
217      * result in an RTAS return code of -3 / "no such indicator"
218      */
219     if (!drc->dev) {
220         return RTAS_OUT_NO_SUCH_INDICATOR;
221     }
222     if (drc->unplug_requested) {
223         /* Don't allow the guest to move a device away from UNUSABLE
224          * state when we want to unplug it */
225         return RTAS_OUT_NO_SUCH_INDICATOR;
226     }
227 
228     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
229 
230     return RTAS_OUT_SUCCESS;
231 }
232 
233 static uint32_t drc_set_unusable(SpaprDrc *drc)
234 {
235     switch (drc->state) {
236     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
237         return RTAS_OUT_SUCCESS; /* Nothing to do */
238     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
239         break; /* see below */
240     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
241     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
242         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
243     default:
244         g_assert_not_reached();
245     }
246 
247     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
248     if (drc->unplug_requested) {
249         uint32_t drc_index = spapr_drc_index(drc);
250         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
251         spapr_drc_release(drc);
252     }
253 
254     return RTAS_OUT_SUCCESS;
255 }
256 
257 static char *spapr_drc_name(SpaprDrc *drc)
258 {
259     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
260 
261     /* human-readable name for a DRC to encode into the DT
262      * description. this is mainly only used within a guest in place
263      * of the unique DRC index.
264      *
265      * in the case of VIO/PCI devices, it corresponds to a "location
266      * code" that maps a logical device/function (DRC index) to a
267      * physical (or virtual in the case of VIO) location in the system
268      * by chaining together the "location label" for each
269      * encapsulating component.
270      *
271      * since this is more to do with diagnosing physical hardware
272      * issues than guest compatibility, we choose location codes/DRC
273      * names that adhere to the documented format, but avoid encoding
274      * the entire topology information into the label/code, instead
275      * just using the location codes based on the labels for the
276      * endpoints (VIO/PCI adaptor connectors), which is basically just
277      * "C" followed by an integer ID.
278      *
279      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
280      * location codes as documented by PAPR+ v2.7, 12.3.1.5
281      */
282     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
283 }
284 
285 /*
286  * dr-entity-sense sensor value
287  * returned via get-sensor-state RTAS calls
288  * as expected by state diagram in PAPR+ 2.7, 13.4
289  * based on the current allocation/indicator/power states
290  * for the DR connector.
291  */
292 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
293 {
294     /* this assumes all PCI devices are assigned to a 'live insertion'
295      * power domain, where QEMU manages power state automatically as
296      * opposed to the guest. present, non-PCI resources are unaffected
297      * by power state.
298      */
299     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
300         : SPAPR_DR_ENTITY_SENSE_EMPTY;
301 }
302 
303 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
304 {
305     switch (drc->state) {
306     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
307         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
308     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
309     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
310     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
311         g_assert(drc->dev);
312         return SPAPR_DR_ENTITY_SENSE_PRESENT;
313     default:
314         g_assert_not_reached();
315     }
316 }
317 
318 static void prop_get_index(Object *obj, Visitor *v, const char *name,
319                            void *opaque, Error **errp)
320 {
321     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
322     uint32_t value = spapr_drc_index(drc);
323     visit_type_uint32(v, name, &value, errp);
324 }
325 
326 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
327                          void *opaque, Error **errp)
328 {
329     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
330     QNull *null = NULL;
331     int fdt_offset_next, fdt_offset, fdt_depth;
332     void *fdt;
333 
334     if (!drc->fdt) {
335         visit_type_null(v, NULL, &null, errp);
336         qobject_unref(null);
337         return;
338     }
339 
340     fdt = drc->fdt;
341     fdt_offset = drc->fdt_start_offset;
342     fdt_depth = 0;
343 
344     do {
345         const char *name = NULL;
346         const struct fdt_property *prop = NULL;
347         int prop_len = 0, name_len = 0;
348         uint32_t tag;
349         bool ok;
350 
351         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
352         switch (tag) {
353         case FDT_BEGIN_NODE:
354             fdt_depth++;
355             name = fdt_get_name(fdt, fdt_offset, &name_len);
356             if (!visit_start_struct(v, name, NULL, 0, errp)) {
357                 return;
358             }
359             break;
360         case FDT_END_NODE:
361             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
362             g_assert(fdt_depth > 0);
363             ok = visit_check_struct(v, errp);
364             visit_end_struct(v, NULL);
365             if (!ok) {
366                 return;
367             }
368             fdt_depth--;
369             break;
370         case FDT_PROP: {
371             int i;
372             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
373             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
374             if (!visit_start_list(v, name, NULL, 0, errp)) {
375                 return;
376             }
377             for (i = 0; i < prop_len; i++) {
378                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
379                                       errp)) {
380                     return;
381                 }
382             }
383             ok = visit_check_list(v, errp);
384             visit_end_list(v, NULL);
385             if (!ok) {
386                 return;
387             }
388             break;
389         }
390         default:
391             error_report("device FDT in unexpected state: %d", tag);
392             abort();
393         }
394         fdt_offset = fdt_offset_next;
395     } while (fdt_depth != 0);
396 }
397 
398 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
399 {
400     trace_spapr_drc_attach(spapr_drc_index(drc));
401 
402     g_assert(!drc->dev);
403     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
404              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
405 
406     drc->dev = d;
407 
408     object_property_add_link(OBJECT(drc), "device",
409                              object_get_typename(OBJECT(drc->dev)),
410                              (Object **)(&drc->dev),
411                              NULL, 0);
412 }
413 
414 void spapr_drc_unplug_request(SpaprDrc *drc)
415 {
416     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
417 
418     trace_spapr_drc_unplug_request(spapr_drc_index(drc));
419 
420     g_assert(drc->dev);
421 
422     drc->unplug_requested = true;
423 
424     if (drc->state != drck->empty_state) {
425         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
426         return;
427     }
428 
429     spapr_drc_release(drc);
430 }
431 
432 bool spapr_drc_reset(SpaprDrc *drc)
433 {
434     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
435     bool unplug_completed = false;
436 
437     trace_spapr_drc_reset(spapr_drc_index(drc));
438 
439     /* immediately upon reset we can safely assume DRCs whose devices
440      * are pending removal can be safely removed.
441      */
442     if (drc->unplug_requested) {
443         spapr_drc_release(drc);
444         unplug_completed = true;
445     }
446 
447     if (drc->dev) {
448         /* A device present at reset is ready to go, same as coldplugged */
449         drc->state = drck->ready_state;
450         /*
451          * Ensure that we are able to send the FDT fragment again
452          * via configure-connector call if the guest requests.
453          */
454         drc->ccs_offset = drc->fdt_start_offset;
455         drc->ccs_depth = 0;
456     } else {
457         drc->state = drck->empty_state;
458         drc->ccs_offset = -1;
459         drc->ccs_depth = -1;
460     }
461 
462     return unplug_completed;
463 }
464 
465 static bool spapr_drc_unplug_requested_needed(void *opaque)
466 {
467     return spapr_drc_unplug_requested(opaque);
468 }
469 
470 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
471     .name = "spapr_drc/unplug_requested",
472     .version_id = 1,
473     .minimum_version_id = 1,
474     .needed = spapr_drc_unplug_requested_needed,
475     .fields  = (VMStateField []) {
476         VMSTATE_BOOL(unplug_requested, SpaprDrc),
477         VMSTATE_END_OF_LIST()
478     }
479 };
480 
481 static bool spapr_drc_needed(void *opaque)
482 {
483     SpaprDrc *drc = opaque;
484     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
485 
486     /*
487      * If no dev is plugged in there is no need to migrate the DRC state
488      * nor to reset the DRC at CAS.
489      */
490     if (!drc->dev) {
491         return false;
492     }
493 
494     /*
495      * We need to reset the DRC at CAS or to migrate the DRC state if it's
496      * not equal to the expected long-term state, which is the same as the
497      * coldplugged initial state, or if an unplug request is pending.
498      */
499     return drc->state != drck->ready_state ||
500         spapr_drc_unplug_requested(drc);
501 }
502 
503 static const VMStateDescription vmstate_spapr_drc = {
504     .name = "spapr_drc",
505     .version_id = 1,
506     .minimum_version_id = 1,
507     .needed = spapr_drc_needed,
508     .fields  = (VMStateField []) {
509         VMSTATE_UINT32(state, SpaprDrc),
510         VMSTATE_END_OF_LIST()
511     },
512     .subsections = (const VMStateDescription * []) {
513         &vmstate_spapr_drc_unplug_requested,
514         NULL
515     }
516 };
517 
518 static void drc_realize(DeviceState *d, Error **errp)
519 {
520     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
521     Object *root_container;
522     gchar *link_name;
523     const char *child_name;
524 
525     trace_spapr_drc_realize(spapr_drc_index(drc));
526     /* NOTE: we do this as part of realize/unrealize due to the fact
527      * that the guest will communicate with the DRC via RTAS calls
528      * referencing the global DRC index. By unlinking the DRC
529      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
530      * inaccessible by the guest, since lookups rely on this path
531      * existing in the composition tree
532      */
533     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
534     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
535     child_name = object_get_canonical_path_component(OBJECT(drc));
536     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
537     object_property_add_alias(root_container, link_name,
538                               drc->owner, child_name);
539     g_free(link_name);
540     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
541                      drc);
542     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
543 }
544 
545 static void drc_unrealize(DeviceState *d)
546 {
547     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
548     Object *root_container;
549     gchar *name;
550 
551     trace_spapr_drc_unrealize(spapr_drc_index(drc));
552     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
553     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
554     name = g_strdup_printf("%x", spapr_drc_index(drc));
555     object_property_del(root_container, name);
556     g_free(name);
557 }
558 
559 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
560                                          uint32_t id)
561 {
562     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
563     char *prop_name;
564 
565     drc->id = id;
566     drc->owner = owner;
567     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
568                                 spapr_drc_index(drc));
569     object_property_add_child(owner, prop_name, OBJECT(drc));
570     object_unref(OBJECT(drc));
571     qdev_realize(DEVICE(drc), NULL, NULL);
572     g_free(prop_name);
573 
574     return drc;
575 }
576 
577 static void spapr_dr_connector_instance_init(Object *obj)
578 {
579     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
580     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
581 
582     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
583     object_property_add(obj, "index", "uint32", prop_get_index,
584                         NULL, NULL, NULL);
585     object_property_add(obj, "fdt", "struct", prop_get_fdt,
586                         NULL, NULL, NULL);
587     drc->state = drck->empty_state;
588 }
589 
590 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
591 {
592     DeviceClass *dk = DEVICE_CLASS(k);
593 
594     dk->realize = drc_realize;
595     dk->unrealize = drc_unrealize;
596     /*
597      * Reason: DR connector needs to be wired to either the machine or to a
598      * PHB in spapr_dr_connector_new().
599      */
600     dk->user_creatable = false;
601 }
602 
603 static bool drc_physical_needed(void *opaque)
604 {
605     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
606     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
607 
608     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
609         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
610         return false;
611     }
612     return true;
613 }
614 
615 static const VMStateDescription vmstate_spapr_drc_physical = {
616     .name = "spapr_drc/physical",
617     .version_id = 1,
618     .minimum_version_id = 1,
619     .needed = drc_physical_needed,
620     .fields  = (VMStateField []) {
621         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
622         VMSTATE_END_OF_LIST()
623     }
624 };
625 
626 static void drc_physical_reset(void *opaque)
627 {
628     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
629     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
630 
631     if (drc->dev) {
632         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
633     } else {
634         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
635     }
636 }
637 
638 static void realize_physical(DeviceState *d, Error **errp)
639 {
640     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
641     Error *local_err = NULL;
642 
643     drc_realize(d, &local_err);
644     if (local_err) {
645         error_propagate(errp, local_err);
646         return;
647     }
648 
649     vmstate_register(VMSTATE_IF(drcp),
650                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
651                      &vmstate_spapr_drc_physical, drcp);
652     qemu_register_reset(drc_physical_reset, drcp);
653 }
654 
655 static void unrealize_physical(DeviceState *d)
656 {
657     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
658 
659     drc_unrealize(d);
660     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
661     qemu_unregister_reset(drc_physical_reset, drcp);
662 }
663 
664 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
665 {
666     DeviceClass *dk = DEVICE_CLASS(k);
667     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
668 
669     dk->realize = realize_physical;
670     dk->unrealize = unrealize_physical;
671     drck->dr_entity_sense = physical_entity_sense;
672     drck->isolate = drc_isolate_physical;
673     drck->unisolate = drc_unisolate_physical;
674     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
675     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
676 }
677 
678 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
679 {
680     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
681 
682     drck->dr_entity_sense = logical_entity_sense;
683     drck->isolate = drc_isolate_logical;
684     drck->unisolate = drc_unisolate_logical;
685     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
686     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
687 }
688 
689 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
690 {
691     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
692 
693     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
694     drck->typename = "CPU";
695     drck->drc_name_prefix = "CPU ";
696     drck->release = spapr_core_release;
697     drck->dt_populate = spapr_core_dt_populate;
698 }
699 
700 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
701 {
702     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
703 
704     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
705     drck->typename = "28";
706     drck->drc_name_prefix = "C";
707     drck->release = spapr_phb_remove_pci_device_cb;
708     drck->dt_populate = spapr_pci_dt_populate;
709 }
710 
711 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
712 {
713     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
714 
715     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
716     drck->typename = "MEM";
717     drck->drc_name_prefix = "LMB ";
718     drck->release = spapr_lmb_release;
719     drck->dt_populate = spapr_lmb_dt_populate;
720 }
721 
722 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
723 {
724     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
725 
726     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
727     drck->typename = "PHB";
728     drck->drc_name_prefix = "PHB ";
729     drck->release = spapr_phb_release;
730     drck->dt_populate = spapr_phb_dt_populate;
731 }
732 
733 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
734 {
735     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
736 
737     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
738     drck->typename = "PMEM";
739     drck->drc_name_prefix = "PMEM ";
740     drck->release = NULL;
741     drck->dt_populate = spapr_pmem_dt_populate;
742 }
743 
744 static const TypeInfo spapr_dr_connector_info = {
745     .name          = TYPE_SPAPR_DR_CONNECTOR,
746     .parent        = TYPE_DEVICE,
747     .instance_size = sizeof(SpaprDrc),
748     .instance_init = spapr_dr_connector_instance_init,
749     .class_size    = sizeof(SpaprDrcClass),
750     .class_init    = spapr_dr_connector_class_init,
751     .abstract      = true,
752 };
753 
754 static const TypeInfo spapr_drc_physical_info = {
755     .name          = TYPE_SPAPR_DRC_PHYSICAL,
756     .parent        = TYPE_SPAPR_DR_CONNECTOR,
757     .instance_size = sizeof(SpaprDrcPhysical),
758     .class_init    = spapr_drc_physical_class_init,
759     .abstract      = true,
760 };
761 
762 static const TypeInfo spapr_drc_logical_info = {
763     .name          = TYPE_SPAPR_DRC_LOGICAL,
764     .parent        = TYPE_SPAPR_DR_CONNECTOR,
765     .class_init    = spapr_drc_logical_class_init,
766     .abstract      = true,
767 };
768 
769 static const TypeInfo spapr_drc_cpu_info = {
770     .name          = TYPE_SPAPR_DRC_CPU,
771     .parent        = TYPE_SPAPR_DRC_LOGICAL,
772     .class_init    = spapr_drc_cpu_class_init,
773 };
774 
775 static const TypeInfo spapr_drc_pci_info = {
776     .name          = TYPE_SPAPR_DRC_PCI,
777     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
778     .class_init    = spapr_drc_pci_class_init,
779 };
780 
781 static const TypeInfo spapr_drc_lmb_info = {
782     .name          = TYPE_SPAPR_DRC_LMB,
783     .parent        = TYPE_SPAPR_DRC_LOGICAL,
784     .class_init    = spapr_drc_lmb_class_init,
785 };
786 
787 static const TypeInfo spapr_drc_phb_info = {
788     .name          = TYPE_SPAPR_DRC_PHB,
789     .parent        = TYPE_SPAPR_DRC_LOGICAL,
790     .instance_size = sizeof(SpaprDrc),
791     .class_init    = spapr_drc_phb_class_init,
792 };
793 
794 static const TypeInfo spapr_drc_pmem_info = {
795     .name          = TYPE_SPAPR_DRC_PMEM,
796     .parent        = TYPE_SPAPR_DRC_LOGICAL,
797     .class_init    = spapr_drc_pmem_class_init,
798 };
799 
800 /* helper functions for external users */
801 
802 SpaprDrc *spapr_drc_by_index(uint32_t index)
803 {
804     Object *obj;
805     gchar *name;
806 
807     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
808     obj = object_resolve_path(name, NULL);
809     g_free(name);
810 
811     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
812 }
813 
814 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
815 {
816     SpaprDrcClass *drck
817         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
818 
819     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
820                               | (id & DRC_INDEX_ID_MASK));
821 }
822 
823 /**
824  * spapr_dt_drc
825  *
826  * @fdt: libfdt device tree
827  * @path: path in the DT to generate properties
828  * @owner: parent Object/DeviceState for which to generate DRC
829  *         descriptions for
830  * @drc_type_mask: mask of SpaprDrcType values corresponding
831  *   to the types of DRCs to generate entries for
832  *
833  * generate OF properties to describe DRC topology/indices to guests
834  *
835  * as documented in PAPR+ v2.1, 13.5.2
836  */
837 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
838 {
839     Object *root_container;
840     ObjectProperty *prop;
841     ObjectPropertyIterator iter;
842     uint32_t drc_count = 0;
843     GArray *drc_indexes, *drc_power_domains;
844     GString *drc_names, *drc_types;
845     int ret;
846 
847     /*
848      * This should really be only called once per node since it overwrites
849      * the OF properties if they already exist.
850      */
851     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
852 
853     /* the first entry of each properties is a 32-bit integer encoding
854      * the number of elements in the array. we won't know this until
855      * we complete the iteration through all the matching DRCs, but
856      * reserve the space now and set the offsets accordingly so we
857      * can fill them in later.
858      */
859     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
860     drc_indexes = g_array_set_size(drc_indexes, 1);
861     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
862     drc_power_domains = g_array_set_size(drc_power_domains, 1);
863     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
864     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
865 
866     /* aliases for all DRConnector objects will be rooted in QOM
867      * composition tree at DRC_CONTAINER_PATH
868      */
869     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
870 
871     object_property_iter_init(&iter, root_container);
872     while ((prop = object_property_iter_next(&iter))) {
873         Object *obj;
874         SpaprDrc *drc;
875         SpaprDrcClass *drck;
876         char *drc_name = NULL;
877         uint32_t drc_index, drc_power_domain;
878 
879         if (!strstart(prop->type, "link<", NULL)) {
880             continue;
881         }
882 
883         obj = object_property_get_link(root_container, prop->name,
884                                        &error_abort);
885         drc = SPAPR_DR_CONNECTOR(obj);
886         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
887 
888         if (owner && (drc->owner != owner)) {
889             continue;
890         }
891 
892         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
893             continue;
894         }
895 
896         drc_count++;
897 
898         /* ibm,drc-indexes */
899         drc_index = cpu_to_be32(spapr_drc_index(drc));
900         g_array_append_val(drc_indexes, drc_index);
901 
902         /* ibm,drc-power-domains */
903         drc_power_domain = cpu_to_be32(-1);
904         g_array_append_val(drc_power_domains, drc_power_domain);
905 
906         /* ibm,drc-names */
907         drc_name = spapr_drc_name(drc);
908         drc_names = g_string_append(drc_names, drc_name);
909         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
910         g_free(drc_name);
911 
912         /* ibm,drc-types */
913         drc_types = g_string_append(drc_types, drck->typename);
914         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
915     }
916 
917     /* now write the drc count into the space we reserved at the
918      * beginning of the arrays previously
919      */
920     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
921     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
922     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
923     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
924 
925     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
926                       drc_indexes->data,
927                       drc_indexes->len * sizeof(uint32_t));
928     if (ret) {
929         error_report("Couldn't create ibm,drc-indexes property");
930         goto out;
931     }
932 
933     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
934                       drc_power_domains->data,
935                       drc_power_domains->len * sizeof(uint32_t));
936     if (ret) {
937         error_report("Couldn't finalize ibm,drc-power-domains property");
938         goto out;
939     }
940 
941     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
942                       drc_names->str, drc_names->len);
943     if (ret) {
944         error_report("Couldn't finalize ibm,drc-names property");
945         goto out;
946     }
947 
948     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
949                       drc_types->str, drc_types->len);
950     if (ret) {
951         error_report("Couldn't finalize ibm,drc-types property");
952         goto out;
953     }
954 
955 out:
956     g_array_free(drc_indexes, true);
957     g_array_free(drc_power_domains, true);
958     g_string_free(drc_names, true);
959     g_string_free(drc_types, true);
960 
961     return ret;
962 }
963 
964 void spapr_drc_reset_all(SpaprMachineState *spapr)
965 {
966     Object *drc_container;
967     ObjectProperty *prop;
968     ObjectPropertyIterator iter;
969 
970     drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
971 restart:
972     object_property_iter_init(&iter, drc_container);
973     while ((prop = object_property_iter_next(&iter))) {
974         SpaprDrc *drc;
975 
976         if (!strstart(prop->type, "link<", NULL)) {
977             continue;
978         }
979         drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
980                                                           prop->name,
981                                                           &error_abort));
982 
983         /*
984          * This will complete any pending plug/unplug requests.
985          * In case of a unplugged PHB or PCI bridge, this will
986          * cause some DRCs to be destroyed and thus potentially
987          * invalidate the iterator.
988          */
989         if (spapr_drc_reset(drc)) {
990             goto restart;
991         }
992     }
993 }
994 
995 /*
996  * RTAS calls
997  */
998 
999 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
1000 {
1001     SpaprDrc *drc = spapr_drc_by_index(idx);
1002     SpaprDrcClass *drck;
1003 
1004     if (!drc) {
1005         return RTAS_OUT_NO_SUCH_INDICATOR;
1006     }
1007 
1008     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
1009 
1010     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1011 
1012     switch (state) {
1013     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1014         return drck->isolate(drc);
1015 
1016     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1017         return drck->unisolate(drc);
1018 
1019     default:
1020         return RTAS_OUT_PARAM_ERROR;
1021     }
1022 }
1023 
1024 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1025 {
1026     SpaprDrc *drc = spapr_drc_by_index(idx);
1027 
1028     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1029         return RTAS_OUT_NO_SUCH_INDICATOR;
1030     }
1031 
1032     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1033 
1034     switch (state) {
1035     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1036         return drc_set_usable(drc);
1037 
1038     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1039         return drc_set_unusable(drc);
1040 
1041     default:
1042         return RTAS_OUT_PARAM_ERROR;
1043     }
1044 }
1045 
1046 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1047 {
1048     SpaprDrc *drc = spapr_drc_by_index(idx);
1049 
1050     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1051         return RTAS_OUT_NO_SUCH_INDICATOR;
1052     }
1053     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1054         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1055         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1056         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1057         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1058     }
1059 
1060     trace_spapr_drc_set_dr_indicator(idx, state);
1061     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1062     return RTAS_OUT_SUCCESS;
1063 }
1064 
1065 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1066                                uint32_t token,
1067                                uint32_t nargs, target_ulong args,
1068                                uint32_t nret, target_ulong rets)
1069 {
1070     uint32_t type, idx, state;
1071     uint32_t ret = RTAS_OUT_SUCCESS;
1072 
1073     if (nargs != 3 || nret != 1) {
1074         ret = RTAS_OUT_PARAM_ERROR;
1075         goto out;
1076     }
1077 
1078     type = rtas_ld(args, 0);
1079     idx = rtas_ld(args, 1);
1080     state = rtas_ld(args, 2);
1081 
1082     switch (type) {
1083     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1084         ret = rtas_set_isolation_state(idx, state);
1085         break;
1086     case RTAS_SENSOR_TYPE_DR:
1087         ret = rtas_set_dr_indicator(idx, state);
1088         break;
1089     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1090         ret = rtas_set_allocation_state(idx, state);
1091         break;
1092     default:
1093         ret = RTAS_OUT_NOT_SUPPORTED;
1094     }
1095 
1096 out:
1097     rtas_st(rets, 0, ret);
1098 }
1099 
1100 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1101                                   uint32_t token, uint32_t nargs,
1102                                   target_ulong args, uint32_t nret,
1103                                   target_ulong rets)
1104 {
1105     uint32_t sensor_type;
1106     uint32_t sensor_index;
1107     uint32_t sensor_state = 0;
1108     SpaprDrc *drc;
1109     SpaprDrcClass *drck;
1110     uint32_t ret = RTAS_OUT_SUCCESS;
1111 
1112     if (nargs != 2 || nret != 2) {
1113         ret = RTAS_OUT_PARAM_ERROR;
1114         goto out;
1115     }
1116 
1117     sensor_type = rtas_ld(args, 0);
1118     sensor_index = rtas_ld(args, 1);
1119 
1120     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1121         /* currently only DR-related sensors are implemented */
1122         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1123                                                         sensor_type);
1124         ret = RTAS_OUT_NOT_SUPPORTED;
1125         goto out;
1126     }
1127 
1128     drc = spapr_drc_by_index(sensor_index);
1129     if (!drc) {
1130         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1131         ret = RTAS_OUT_PARAM_ERROR;
1132         goto out;
1133     }
1134     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1135     sensor_state = drck->dr_entity_sense(drc);
1136 
1137 out:
1138     rtas_st(rets, 0, ret);
1139     rtas_st(rets, 1, sensor_state);
1140 }
1141 
1142 /* configure-connector work area offsets, int32_t units for field
1143  * indexes, bytes for field offset/len values.
1144  *
1145  * as documented by PAPR+ v2.7, 13.5.3.5
1146  */
1147 #define CC_IDX_NODE_NAME_OFFSET 2
1148 #define CC_IDX_PROP_NAME_OFFSET 2
1149 #define CC_IDX_PROP_LEN 3
1150 #define CC_IDX_PROP_DATA_OFFSET 4
1151 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1152 #define CC_WA_LEN 4096
1153 
1154 static void configure_connector_st(target_ulong addr, target_ulong offset,
1155                                    const void *buf, size_t len)
1156 {
1157     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1158                               buf, MIN(len, CC_WA_LEN - offset));
1159 }
1160 
1161 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1162                                          SpaprMachineState *spapr,
1163                                          uint32_t token, uint32_t nargs,
1164                                          target_ulong args, uint32_t nret,
1165                                          target_ulong rets)
1166 {
1167     uint64_t wa_addr;
1168     uint64_t wa_offset;
1169     uint32_t drc_index;
1170     SpaprDrc *drc;
1171     SpaprDrcClass *drck;
1172     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1173     int rc;
1174 
1175     if (nargs != 2 || nret != 1) {
1176         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1177         return;
1178     }
1179 
1180     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1181 
1182     drc_index = rtas_ld(wa_addr, 0);
1183     drc = spapr_drc_by_index(drc_index);
1184     if (!drc) {
1185         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1186         rc = RTAS_OUT_PARAM_ERROR;
1187         goto out;
1188     }
1189 
1190     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1191         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1192         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1193         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1194         /*
1195          * Need to unisolate the device before configuring
1196          * or it should already be in configured state to
1197          * allow configure-connector be called repeatedly.
1198          */
1199         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1200         goto out;
1201     }
1202 
1203     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1204 
1205     /*
1206      * This indicates that the kernel is reconfiguring a LMB due to
1207      * a failed hotunplug. Rollback the DIMM unplug process.
1208      */
1209     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1210         drc->unplug_requested) {
1211         spapr_memory_unplug_rollback(spapr, drc->dev);
1212     }
1213 
1214     if (!drc->fdt) {
1215         void *fdt;
1216         int fdt_size;
1217 
1218         fdt = create_device_tree(&fdt_size);
1219 
1220         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1221                               NULL)) {
1222             g_free(fdt);
1223             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1224             goto out;
1225         }
1226 
1227         drc->fdt = fdt;
1228         drc->ccs_offset = drc->fdt_start_offset;
1229         drc->ccs_depth = 0;
1230     }
1231 
1232     do {
1233         uint32_t tag;
1234         const char *name;
1235         const struct fdt_property *prop;
1236         int fdt_offset_next, prop_len;
1237 
1238         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1239 
1240         switch (tag) {
1241         case FDT_BEGIN_NODE:
1242             drc->ccs_depth++;
1243             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1244 
1245             /* provide the name of the next OF node */
1246             wa_offset = CC_VAL_DATA_OFFSET;
1247             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1248             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1249             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1250             break;
1251         case FDT_END_NODE:
1252             drc->ccs_depth--;
1253             if (drc->ccs_depth == 0) {
1254                 uint32_t drc_index = spapr_drc_index(drc);
1255 
1256                 /* done sending the device tree, move to configured state */
1257                 trace_spapr_drc_set_configured(drc_index);
1258                 drc->state = drck->ready_state;
1259                 /*
1260                  * Ensure that we are able to send the FDT fragment
1261                  * again via configure-connector call if the guest requests.
1262                  */
1263                 drc->ccs_offset = drc->fdt_start_offset;
1264                 drc->ccs_depth = 0;
1265                 fdt_offset_next = drc->fdt_start_offset;
1266                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1267             } else {
1268                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1269             }
1270             break;
1271         case FDT_PROP:
1272             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1273                                               &prop_len);
1274             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1275 
1276             /* provide the name of the next OF property */
1277             wa_offset = CC_VAL_DATA_OFFSET;
1278             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1279             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1280 
1281             /* provide the length and value of the OF property. data gets
1282              * placed immediately after NULL terminator of the OF property's
1283              * name string
1284              */
1285             wa_offset += strlen(name) + 1,
1286             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1287             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1288             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1289             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1290             break;
1291         case FDT_END:
1292             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1293         default:
1294             /* keep seeking for an actionable tag */
1295             break;
1296         }
1297         if (drc->ccs_offset >= 0) {
1298             drc->ccs_offset = fdt_offset_next;
1299         }
1300     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1301 
1302     rc = resp;
1303 out:
1304     rtas_st(rets, 0, rc);
1305 }
1306 
1307 static void spapr_drc_register_types(void)
1308 {
1309     type_register_static(&spapr_dr_connector_info);
1310     type_register_static(&spapr_drc_physical_info);
1311     type_register_static(&spapr_drc_logical_info);
1312     type_register_static(&spapr_drc_cpu_info);
1313     type_register_static(&spapr_drc_pci_info);
1314     type_register_static(&spapr_drc_lmb_info);
1315     type_register_static(&spapr_drc_phb_info);
1316     type_register_static(&spapr_drc_pmem_info);
1317 
1318     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1319                         rtas_set_indicator);
1320     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1321                         rtas_get_sensor_state);
1322     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1323                         rtas_ibm_configure_connector);
1324 }
1325 type_init(spapr_drc_register_types)
1326