xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision a4d4edce7ae23b9136cb9e243d6eab866609315d)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "hw/qdev.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "trace.h"
25 
26 #define DRC_CONTAINER_PATH "/dr-connector"
27 #define DRC_INDEX_TYPE_SHIFT 28
28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
29 
30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
31 {
32     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
33 
34     return 1 << drck->typeshift;
35 }
36 
37 uint32_t spapr_drc_index(sPAPRDRConnector *drc)
38 {
39     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
40 
41     /* no set format for a drc index: it only needs to be globally
42      * unique. this is how we encode the DRC type on bare-metal
43      * however, so might as well do that here
44      */
45     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
46         | (drc->id & DRC_INDEX_ID_MASK);
47 }
48 
49 static uint32_t set_isolation_state(sPAPRDRConnector *drc,
50                                     sPAPRDRIsolationState state)
51 {
52     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
53 
54     /* if the guest is configuring a device attached to this DRC, we
55      * should reset the configuration state at this point since it may
56      * no longer be reliable (guest released device and needs to start
57      * over, or unplug occurred so the FDT is no longer valid)
58      */
59     if (state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
60         g_free(drc->ccs);
61         drc->ccs = NULL;
62     }
63 
64     if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
65         /* cannot unisolate a non-existent resource, and, or resources
66          * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 13.5.3.5)
67          */
68         if (!drc->dev ||
69             drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
70             return RTAS_OUT_NO_SUCH_INDICATOR;
71         }
72     }
73 
74     /*
75      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
76      * belong to a DIMM device that is marked for removal.
77      *
78      * Currently the guest userspace tool drmgr that drives the memory
79      * hotplug/unplug will just try to remove a set of 'removable' LMBs
80      * in response to a hot unplug request that is based on drc-count.
81      * If the LMB being removed doesn't belong to a DIMM device that is
82      * actually being unplugged, fail the isolation request here.
83      */
84     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
85         if ((state == SPAPR_DR_ISOLATION_STATE_ISOLATED) &&
86              !drc->awaiting_release) {
87             return RTAS_OUT_HW_ERROR;
88         }
89     }
90 
91     drc->isolation_state = state;
92 
93     if (drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
94         /* if we're awaiting release, but still in an unconfigured state,
95          * it's likely the guest is still in the process of configuring
96          * the device and is transitioning the devices to an ISOLATED
97          * state as a part of that process. so we only complete the
98          * removal when this transition happens for a device in a
99          * configured state, as suggested by the state diagram from
100          * PAPR+ 2.7, 13.4
101          */
102         if (drc->awaiting_release) {
103             uint32_t drc_index = spapr_drc_index(drc);
104             if (drc->configured) {
105                 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
106                 spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
107             } else {
108                 trace_spapr_drc_set_isolation_state_deferring(drc_index);
109             }
110         }
111         drc->configured = false;
112     }
113 
114     return RTAS_OUT_SUCCESS;
115 }
116 
117 static uint32_t set_allocation_state(sPAPRDRConnector *drc,
118                                      sPAPRDRAllocationState state)
119 {
120     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
121 
122     if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
123         /* if there's no resource/device associated with the DRC, there's
124          * no way for us to put it in an allocation state consistent with
125          * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
126          * result in an RTAS return code of -3 / "no such indicator"
127          */
128         if (!drc->dev) {
129             return RTAS_OUT_NO_SUCH_INDICATOR;
130         }
131         if (drc->awaiting_release && drc->awaiting_allocation) {
132             /* kernel is acknowledging a previous hotplug event
133              * while we are already removing it.
134              * it's safe to ignore awaiting_allocation here since we know the
135              * situation is predicated on the guest either already having done
136              * so (boot-time hotplug), or never being able to acquire in the
137              * first place (hotplug followed by immediate unplug).
138              */
139             drc->awaiting_allocation_skippable = true;
140             return RTAS_OUT_NO_SUCH_INDICATOR;
141         }
142     }
143 
144     if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
145         drc->allocation_state = state;
146         if (drc->awaiting_release &&
147             drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
148             uint32_t drc_index = spapr_drc_index(drc);
149             trace_spapr_drc_set_allocation_state_finalizing(drc_index);
150             spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
151         } else if (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
152             drc->awaiting_allocation = false;
153         }
154     }
155     return RTAS_OUT_SUCCESS;
156 }
157 
158 static const char *spapr_drc_name(sPAPRDRConnector *drc)
159 {
160     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
161 
162     /* human-readable name for a DRC to encode into the DT
163      * description. this is mainly only used within a guest in place
164      * of the unique DRC index.
165      *
166      * in the case of VIO/PCI devices, it corresponds to a "location
167      * code" that maps a logical device/function (DRC index) to a
168      * physical (or virtual in the case of VIO) location in the system
169      * by chaining together the "location label" for each
170      * encapsulating component.
171      *
172      * since this is more to do with diagnosing physical hardware
173      * issues than guest compatibility, we choose location codes/DRC
174      * names that adhere to the documented format, but avoid encoding
175      * the entire topology information into the label/code, instead
176      * just using the location codes based on the labels for the
177      * endpoints (VIO/PCI adaptor connectors), which is basically just
178      * "C" followed by an integer ID.
179      *
180      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
181      * location codes as documented by PAPR+ v2.7, 12.3.1.5
182      */
183     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
184 }
185 
186 /* has the guest been notified of device attachment? */
187 static void set_signalled(sPAPRDRConnector *drc)
188 {
189     drc->signalled = true;
190 }
191 
192 /*
193  * dr-entity-sense sensor value
194  * returned via get-sensor-state RTAS calls
195  * as expected by state diagram in PAPR+ 2.7, 13.4
196  * based on the current allocation/indicator/power states
197  * for the DR connector.
198  */
199 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
200 {
201     /* this assumes all PCI devices are assigned to a 'live insertion'
202      * power domain, where QEMU manages power state automatically as
203      * opposed to the guest. present, non-PCI resources are unaffected
204      * by power state.
205      */
206     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
207         : SPAPR_DR_ENTITY_SENSE_EMPTY;
208 }
209 
210 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
211 {
212     if (drc->dev
213         && (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) {
214         return SPAPR_DR_ENTITY_SENSE_PRESENT;
215     } else {
216         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
217     }
218 }
219 
220 static void prop_get_index(Object *obj, Visitor *v, const char *name,
221                            void *opaque, Error **errp)
222 {
223     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
224     uint32_t value = spapr_drc_index(drc);
225     visit_type_uint32(v, name, &value, errp);
226 }
227 
228 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
229                          void *opaque, Error **errp)
230 {
231     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
232     Error *err = NULL;
233     int fdt_offset_next, fdt_offset, fdt_depth;
234     void *fdt;
235 
236     if (!drc->fdt) {
237         visit_type_null(v, NULL, errp);
238         return;
239     }
240 
241     fdt = drc->fdt;
242     fdt_offset = drc->fdt_start_offset;
243     fdt_depth = 0;
244 
245     do {
246         const char *name = NULL;
247         const struct fdt_property *prop = NULL;
248         int prop_len = 0, name_len = 0;
249         uint32_t tag;
250 
251         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
252         switch (tag) {
253         case FDT_BEGIN_NODE:
254             fdt_depth++;
255             name = fdt_get_name(fdt, fdt_offset, &name_len);
256             visit_start_struct(v, name, NULL, 0, &err);
257             if (err) {
258                 error_propagate(errp, err);
259                 return;
260             }
261             break;
262         case FDT_END_NODE:
263             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
264             g_assert(fdt_depth > 0);
265             visit_check_struct(v, &err);
266             visit_end_struct(v, NULL);
267             if (err) {
268                 error_propagate(errp, err);
269                 return;
270             }
271             fdt_depth--;
272             break;
273         case FDT_PROP: {
274             int i;
275             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
276             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
277             visit_start_list(v, name, NULL, 0, &err);
278             if (err) {
279                 error_propagate(errp, err);
280                 return;
281             }
282             for (i = 0; i < prop_len; i++) {
283                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
284                 if (err) {
285                     error_propagate(errp, err);
286                     return;
287                 }
288             }
289             visit_check_list(v, &err);
290             visit_end_list(v, NULL);
291             if (err) {
292                 error_propagate(errp, err);
293                 return;
294             }
295             break;
296         }
297         default:
298             error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
299         }
300         fdt_offset = fdt_offset_next;
301     } while (fdt_depth != 0);
302 }
303 
304 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
305                       int fdt_start_offset, bool coldplug, Error **errp)
306 {
307     trace_spapr_drc_attach(spapr_drc_index(drc));
308 
309     if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
310         error_setg(errp, "an attached device is still awaiting release");
311         return;
312     }
313     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
314         g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
315     }
316     g_assert(fdt || coldplug);
317 
318     /* NOTE: setting initial isolation state to UNISOLATED means we can't
319      * detach unless guest has a userspace/kernel that moves this state
320      * back to ISOLATED in response to an unplug event, or this is done
321      * manually by the admin prior. if we force things while the guest
322      * may be accessing the device, we can easily crash the guest, so we
323      * we defer completion of removal in such cases to the reset() hook.
324      */
325     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
326         drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
327     }
328     drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
329 
330     drc->dev = d;
331     drc->fdt = fdt;
332     drc->fdt_start_offset = fdt_start_offset;
333     drc->configured = coldplug;
334     /* 'logical' DR resources such as memory/cpus are in some cases treated
335      * as a pool of resources from which the guest is free to choose from
336      * based on only a count. for resources that can be assigned in this
337      * fashion, we must assume the resource is signalled immediately
338      * since a single hotplug request might make an arbitrary number of
339      * such attached resources available to the guest, as opposed to
340      * 'physical' DR resources such as PCI where each device/resource is
341      * signalled individually.
342      */
343     drc->signalled = (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI)
344                      ? true : coldplug;
345 
346     if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
347         drc->awaiting_allocation = true;
348     }
349 
350     object_property_add_link(OBJECT(drc), "device",
351                              object_get_typename(OBJECT(drc->dev)),
352                              (Object **)(&drc->dev),
353                              NULL, 0, NULL);
354 }
355 
356 void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
357 {
358     trace_spapr_drc_detach(spapr_drc_index(drc));
359 
360     /* if we've signalled device presence to the guest, or if the guest
361      * has gone ahead and configured the device (via manually-executed
362      * device add via drmgr in guest, namely), we need to wait
363      * for the guest to quiesce the device before completing detach.
364      * Otherwise, we can assume the guest hasn't seen it and complete the
365      * detach immediately. Note that there is a small race window
366      * just before, or during, configuration, which is this context
367      * refers mainly to fetching the device tree via RTAS.
368      * During this window the device access will be arbitrated by
369      * associated DRC, which will simply fail the RTAS calls as invalid.
370      * This is recoverable within guest and current implementations of
371      * drmgr should be able to cope.
372      */
373     if (!drc->signalled && !drc->configured) {
374         /* if the guest hasn't seen the device we can't rely on it to
375          * set it back to an isolated state via RTAS, so do it here manually
376          */
377         drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
378     }
379 
380     if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
381         trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc));
382         drc->awaiting_release = true;
383         return;
384     }
385 
386     if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
387         drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
388         trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc));
389         drc->awaiting_release = true;
390         return;
391     }
392 
393     if (drc->awaiting_allocation) {
394         if (!drc->awaiting_allocation_skippable) {
395             drc->awaiting_release = true;
396             trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc));
397             return;
398         }
399     }
400 
401     drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
402 
403     /* Calling release callbacks based on spapr_drc_type(drc). */
404     switch (spapr_drc_type(drc)) {
405     case SPAPR_DR_CONNECTOR_TYPE_CPU:
406         spapr_core_release(drc->dev);
407         break;
408     case SPAPR_DR_CONNECTOR_TYPE_PCI:
409         spapr_phb_remove_pci_device_cb(drc->dev);
410         break;
411     case SPAPR_DR_CONNECTOR_TYPE_LMB:
412         spapr_lmb_release(drc->dev);
413         break;
414     case SPAPR_DR_CONNECTOR_TYPE_PHB:
415     case SPAPR_DR_CONNECTOR_TYPE_VIO:
416     default:
417         g_assert(false);
418     }
419 
420     drc->awaiting_release = false;
421     drc->awaiting_allocation_skippable = false;
422     g_free(drc->fdt);
423     drc->fdt = NULL;
424     drc->fdt_start_offset = 0;
425     object_property_del(OBJECT(drc), "device", NULL);
426     drc->dev = NULL;
427 }
428 
429 static bool release_pending(sPAPRDRConnector *drc)
430 {
431     return drc->awaiting_release;
432 }
433 
434 static void reset(DeviceState *d)
435 {
436     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
437     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
438 
439     trace_spapr_drc_reset(spapr_drc_index(drc));
440 
441     g_free(drc->ccs);
442     drc->ccs = NULL;
443 
444     /* immediately upon reset we can safely assume DRCs whose devices
445      * are pending removal can be safely removed, and that they will
446      * subsequently be left in an ISOLATED state. move the DRC to this
447      * state in these cases (which will in turn complete any pending
448      * device removals)
449      */
450     if (drc->awaiting_release) {
451         drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_ISOLATED);
452         /* generally this should also finalize the removal, but if the device
453          * hasn't yet been configured we normally defer removal under the
454          * assumption that this transition is taking place as part of device
455          * configuration. so check if we're still waiting after this, and
456          * force removal if we are
457          */
458         if (drc->awaiting_release) {
459             spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
460         }
461 
462         /* non-PCI devices may be awaiting a transition to UNUSABLE */
463         if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
464             drc->awaiting_release) {
465             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_UNUSABLE);
466         }
467     }
468 
469     if (drck->dr_entity_sense(drc) == SPAPR_DR_ENTITY_SENSE_PRESENT) {
470         drck->set_signalled(drc);
471     }
472 }
473 
474 static bool spapr_drc_needed(void *opaque)
475 {
476     sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
477     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
478     bool rc = false;
479     sPAPRDREntitySense value = drck->dr_entity_sense(drc);
480 
481     /* If no dev is plugged in there is no need to migrate the DRC state */
482     if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
483         return false;
484     }
485 
486     /*
487      * If there is dev plugged in, we need to migrate the DRC state when
488      * it is different from cold-plugged state
489      */
490     switch (spapr_drc_type(drc)) {
491     case SPAPR_DR_CONNECTOR_TYPE_PCI:
492     case SPAPR_DR_CONNECTOR_TYPE_CPU:
493     case SPAPR_DR_CONNECTOR_TYPE_LMB:
494         rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) &&
495                (drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) &&
496                drc->configured && drc->signalled && !drc->awaiting_release);
497         break;
498     case SPAPR_DR_CONNECTOR_TYPE_PHB:
499     case SPAPR_DR_CONNECTOR_TYPE_VIO:
500     default:
501         g_assert_not_reached();
502     }
503     return rc;
504 }
505 
506 static const VMStateDescription vmstate_spapr_drc = {
507     .name = "spapr_drc",
508     .version_id = 1,
509     .minimum_version_id = 1,
510     .needed = spapr_drc_needed,
511     .fields  = (VMStateField []) {
512         VMSTATE_UINT32(isolation_state, sPAPRDRConnector),
513         VMSTATE_UINT32(allocation_state, sPAPRDRConnector),
514         VMSTATE_UINT32(dr_indicator, sPAPRDRConnector),
515         VMSTATE_BOOL(configured, sPAPRDRConnector),
516         VMSTATE_BOOL(awaiting_release, sPAPRDRConnector),
517         VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector),
518         VMSTATE_BOOL(signalled, sPAPRDRConnector),
519         VMSTATE_END_OF_LIST()
520     }
521 };
522 
523 static void realize(DeviceState *d, Error **errp)
524 {
525     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
526     Object *root_container;
527     char link_name[256];
528     gchar *child_name;
529     Error *err = NULL;
530 
531     trace_spapr_drc_realize(spapr_drc_index(drc));
532     /* NOTE: we do this as part of realize/unrealize due to the fact
533      * that the guest will communicate with the DRC via RTAS calls
534      * referencing the global DRC index. By unlinking the DRC
535      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
536      * inaccessible by the guest, since lookups rely on this path
537      * existing in the composition tree
538      */
539     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
540     snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
541     child_name = object_get_canonical_path_component(OBJECT(drc));
542     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
543     object_property_add_alias(root_container, link_name,
544                               drc->owner, child_name, &err);
545     if (err) {
546         error_report_err(err);
547         object_unref(OBJECT(drc));
548     }
549     g_free(child_name);
550     vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
551                      drc);
552     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
553 }
554 
555 static void unrealize(DeviceState *d, Error **errp)
556 {
557     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
558     Object *root_container;
559     char name[256];
560     Error *err = NULL;
561 
562     trace_spapr_drc_unrealize(spapr_drc_index(drc));
563     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
564     snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
565     object_property_del(root_container, name, &err);
566     if (err) {
567         error_report_err(err);
568         object_unref(OBJECT(drc));
569     }
570 }
571 
572 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
573                                          uint32_t id)
574 {
575     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
576     char *prop_name;
577 
578     drc->id = id;
579     drc->owner = owner;
580     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
581                                 spapr_drc_index(drc));
582     object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
583     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
584     g_free(prop_name);
585 
586     /* PCI slot always start in a USABLE state, and stay there */
587     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
588         drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
589     }
590 
591     return drc;
592 }
593 
594 static void spapr_dr_connector_instance_init(Object *obj)
595 {
596     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
597 
598     object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
599     object_property_add(obj, "index", "uint32", prop_get_index,
600                         NULL, NULL, NULL, NULL);
601     object_property_add(obj, "fdt", "struct", prop_get_fdt,
602                         NULL, NULL, NULL, NULL);
603 }
604 
605 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
606 {
607     DeviceClass *dk = DEVICE_CLASS(k);
608     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
609 
610     dk->reset = reset;
611     dk->realize = realize;
612     dk->unrealize = unrealize;
613     drck->set_isolation_state = set_isolation_state;
614     drck->set_allocation_state = set_allocation_state;
615     drck->release_pending = release_pending;
616     drck->set_signalled = set_signalled;
617     /*
618      * Reason: it crashes FIXME find and document the real reason
619      */
620     dk->user_creatable = false;
621 }
622 
623 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
624 {
625     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
626 
627     drck->dr_entity_sense = physical_entity_sense;
628 }
629 
630 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
631 {
632     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
633 
634     drck->dr_entity_sense = logical_entity_sense;
635 }
636 
637 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
638 {
639     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
640 
641     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
642     drck->typename = "CPU";
643     drck->drc_name_prefix = "CPU ";
644 }
645 
646 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
647 {
648     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
649 
650     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
651     drck->typename = "28";
652     drck->drc_name_prefix = "C";
653 }
654 
655 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
656 {
657     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
658 
659     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
660     drck->typename = "MEM";
661     drck->drc_name_prefix = "LMB ";
662 }
663 
664 static const TypeInfo spapr_dr_connector_info = {
665     .name          = TYPE_SPAPR_DR_CONNECTOR,
666     .parent        = TYPE_DEVICE,
667     .instance_size = sizeof(sPAPRDRConnector),
668     .instance_init = spapr_dr_connector_instance_init,
669     .class_size    = sizeof(sPAPRDRConnectorClass),
670     .class_init    = spapr_dr_connector_class_init,
671     .abstract      = true,
672 };
673 
674 static const TypeInfo spapr_drc_physical_info = {
675     .name          = TYPE_SPAPR_DRC_PHYSICAL,
676     .parent        = TYPE_SPAPR_DR_CONNECTOR,
677     .instance_size = sizeof(sPAPRDRConnector),
678     .class_init    = spapr_drc_physical_class_init,
679     .abstract      = true,
680 };
681 
682 static const TypeInfo spapr_drc_logical_info = {
683     .name          = TYPE_SPAPR_DRC_LOGICAL,
684     .parent        = TYPE_SPAPR_DR_CONNECTOR,
685     .instance_size = sizeof(sPAPRDRConnector),
686     .class_init    = spapr_drc_logical_class_init,
687     .abstract      = true,
688 };
689 
690 static const TypeInfo spapr_drc_cpu_info = {
691     .name          = TYPE_SPAPR_DRC_CPU,
692     .parent        = TYPE_SPAPR_DRC_LOGICAL,
693     .instance_size = sizeof(sPAPRDRConnector),
694     .class_init    = spapr_drc_cpu_class_init,
695 };
696 
697 static const TypeInfo spapr_drc_pci_info = {
698     .name          = TYPE_SPAPR_DRC_PCI,
699     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
700     .instance_size = sizeof(sPAPRDRConnector),
701     .class_init    = spapr_drc_pci_class_init,
702 };
703 
704 static const TypeInfo spapr_drc_lmb_info = {
705     .name          = TYPE_SPAPR_DRC_LMB,
706     .parent        = TYPE_SPAPR_DRC_LOGICAL,
707     .instance_size = sizeof(sPAPRDRConnector),
708     .class_init    = spapr_drc_lmb_class_init,
709 };
710 
711 /* helper functions for external users */
712 
713 sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
714 {
715     Object *obj;
716     char name[256];
717 
718     snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
719     obj = object_resolve_path(name, NULL);
720 
721     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
722 }
723 
724 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
725 {
726     sPAPRDRConnectorClass *drck
727         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
728 
729     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
730                               | (id & DRC_INDEX_ID_MASK));
731 }
732 
733 /**
734  * spapr_drc_populate_dt
735  *
736  * @fdt: libfdt device tree
737  * @path: path in the DT to generate properties
738  * @owner: parent Object/DeviceState for which to generate DRC
739  *         descriptions for
740  * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
741  *   to the types of DRCs to generate entries for
742  *
743  * generate OF properties to describe DRC topology/indices to guests
744  *
745  * as documented in PAPR+ v2.1, 13.5.2
746  */
747 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
748                           uint32_t drc_type_mask)
749 {
750     Object *root_container;
751     ObjectProperty *prop;
752     ObjectPropertyIterator iter;
753     uint32_t drc_count = 0;
754     GArray *drc_indexes, *drc_power_domains;
755     GString *drc_names, *drc_types;
756     int ret;
757 
758     /* the first entry of each properties is a 32-bit integer encoding
759      * the number of elements in the array. we won't know this until
760      * we complete the iteration through all the matching DRCs, but
761      * reserve the space now and set the offsets accordingly so we
762      * can fill them in later.
763      */
764     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
765     drc_indexes = g_array_set_size(drc_indexes, 1);
766     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
767     drc_power_domains = g_array_set_size(drc_power_domains, 1);
768     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
769     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
770 
771     /* aliases for all DRConnector objects will be rooted in QOM
772      * composition tree at DRC_CONTAINER_PATH
773      */
774     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
775 
776     object_property_iter_init(&iter, root_container);
777     while ((prop = object_property_iter_next(&iter))) {
778         Object *obj;
779         sPAPRDRConnector *drc;
780         sPAPRDRConnectorClass *drck;
781         uint32_t drc_index, drc_power_domain;
782 
783         if (!strstart(prop->type, "link<", NULL)) {
784             continue;
785         }
786 
787         obj = object_property_get_link(root_container, prop->name, NULL);
788         drc = SPAPR_DR_CONNECTOR(obj);
789         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
790 
791         if (owner && (drc->owner != owner)) {
792             continue;
793         }
794 
795         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
796             continue;
797         }
798 
799         drc_count++;
800 
801         /* ibm,drc-indexes */
802         drc_index = cpu_to_be32(spapr_drc_index(drc));
803         g_array_append_val(drc_indexes, drc_index);
804 
805         /* ibm,drc-power-domains */
806         drc_power_domain = cpu_to_be32(-1);
807         g_array_append_val(drc_power_domains, drc_power_domain);
808 
809         /* ibm,drc-names */
810         drc_names = g_string_append(drc_names, spapr_drc_name(drc));
811         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
812 
813         /* ibm,drc-types */
814         drc_types = g_string_append(drc_types, drck->typename);
815         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
816     }
817 
818     /* now write the drc count into the space we reserved at the
819      * beginning of the arrays previously
820      */
821     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
822     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
823     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
824     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
825 
826     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
827                       drc_indexes->data,
828                       drc_indexes->len * sizeof(uint32_t));
829     if (ret) {
830         error_report("Couldn't create ibm,drc-indexes property");
831         goto out;
832     }
833 
834     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
835                       drc_power_domains->data,
836                       drc_power_domains->len * sizeof(uint32_t));
837     if (ret) {
838         error_report("Couldn't finalize ibm,drc-power-domains property");
839         goto out;
840     }
841 
842     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
843                       drc_names->str, drc_names->len);
844     if (ret) {
845         error_report("Couldn't finalize ibm,drc-names property");
846         goto out;
847     }
848 
849     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
850                       drc_types->str, drc_types->len);
851     if (ret) {
852         error_report("Couldn't finalize ibm,drc-types property");
853         goto out;
854     }
855 
856 out:
857     g_array_free(drc_indexes, true);
858     g_array_free(drc_power_domains, true);
859     g_string_free(drc_names, true);
860     g_string_free(drc_types, true);
861 
862     return ret;
863 }
864 
865 /*
866  * RTAS calls
867  */
868 
869 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
870 {
871     sPAPRDRConnector *drc = spapr_drc_by_index(idx);
872     sPAPRDRConnectorClass *drck;
873 
874     if (!drc) {
875         return RTAS_OUT_PARAM_ERROR;
876     }
877 
878     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
879     return drck->set_isolation_state(drc, state);
880 }
881 
882 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
883 {
884     sPAPRDRConnector *drc = spapr_drc_by_index(idx);
885     sPAPRDRConnectorClass *drck;
886 
887     if (!drc) {
888         return RTAS_OUT_PARAM_ERROR;
889     }
890 
891     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
892     return drck->set_allocation_state(drc, state);
893 }
894 
895 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
896 {
897     sPAPRDRConnector *drc = spapr_drc_by_index(idx);
898 
899     if (!drc) {
900         return RTAS_OUT_PARAM_ERROR;
901     }
902 
903     trace_spapr_drc_set_dr_indicator(idx, state);
904     drc->dr_indicator = state;
905     return RTAS_OUT_SUCCESS;
906 }
907 
908 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
909                                uint32_t token,
910                                uint32_t nargs, target_ulong args,
911                                uint32_t nret, target_ulong rets)
912 {
913     uint32_t type, idx, state;
914     uint32_t ret = RTAS_OUT_SUCCESS;
915 
916     if (nargs != 3 || nret != 1) {
917         ret = RTAS_OUT_PARAM_ERROR;
918         goto out;
919     }
920 
921     type = rtas_ld(args, 0);
922     idx = rtas_ld(args, 1);
923     state = rtas_ld(args, 2);
924 
925     switch (type) {
926     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
927         ret = rtas_set_isolation_state(idx, state);
928         break;
929     case RTAS_SENSOR_TYPE_DR:
930         ret = rtas_set_dr_indicator(idx, state);
931         break;
932     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
933         ret = rtas_set_allocation_state(idx, state);
934         break;
935     default:
936         ret = RTAS_OUT_NOT_SUPPORTED;
937     }
938 
939 out:
940     rtas_st(rets, 0, ret);
941 }
942 
943 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
944                                   uint32_t token, uint32_t nargs,
945                                   target_ulong args, uint32_t nret,
946                                   target_ulong rets)
947 {
948     uint32_t sensor_type;
949     uint32_t sensor_index;
950     uint32_t sensor_state = 0;
951     sPAPRDRConnector *drc;
952     sPAPRDRConnectorClass *drck;
953     uint32_t ret = RTAS_OUT_SUCCESS;
954 
955     if (nargs != 2 || nret != 2) {
956         ret = RTAS_OUT_PARAM_ERROR;
957         goto out;
958     }
959 
960     sensor_type = rtas_ld(args, 0);
961     sensor_index = rtas_ld(args, 1);
962 
963     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
964         /* currently only DR-related sensors are implemented */
965         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
966                                                         sensor_type);
967         ret = RTAS_OUT_NOT_SUPPORTED;
968         goto out;
969     }
970 
971     drc = spapr_drc_by_index(sensor_index);
972     if (!drc) {
973         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
974         ret = RTAS_OUT_PARAM_ERROR;
975         goto out;
976     }
977     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
978     sensor_state = drck->dr_entity_sense(drc);
979 
980 out:
981     rtas_st(rets, 0, ret);
982     rtas_st(rets, 1, sensor_state);
983 }
984 
985 /* configure-connector work area offsets, int32_t units for field
986  * indexes, bytes for field offset/len values.
987  *
988  * as documented by PAPR+ v2.7, 13.5.3.5
989  */
990 #define CC_IDX_NODE_NAME_OFFSET 2
991 #define CC_IDX_PROP_NAME_OFFSET 2
992 #define CC_IDX_PROP_LEN 3
993 #define CC_IDX_PROP_DATA_OFFSET 4
994 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
995 #define CC_WA_LEN 4096
996 
997 static void configure_connector_st(target_ulong addr, target_ulong offset,
998                                    const void *buf, size_t len)
999 {
1000     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1001                               buf, MIN(len, CC_WA_LEN - offset));
1002 }
1003 
1004 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1005                                          sPAPRMachineState *spapr,
1006                                          uint32_t token, uint32_t nargs,
1007                                          target_ulong args, uint32_t nret,
1008                                          target_ulong rets)
1009 {
1010     uint64_t wa_addr;
1011     uint64_t wa_offset;
1012     uint32_t drc_index;
1013     sPAPRDRConnector *drc;
1014     sPAPRConfigureConnectorState *ccs;
1015     sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1016     int rc;
1017 
1018     if (nargs != 2 || nret != 1) {
1019         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1020         return;
1021     }
1022 
1023     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1024 
1025     drc_index = rtas_ld(wa_addr, 0);
1026     drc = spapr_drc_by_index(drc_index);
1027     if (!drc) {
1028         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1029         rc = RTAS_OUT_PARAM_ERROR;
1030         goto out;
1031     }
1032 
1033     if (!drc->fdt) {
1034         trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
1035         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1036         goto out;
1037     }
1038 
1039     ccs = drc->ccs;
1040     if (!ccs) {
1041         ccs = g_new0(sPAPRConfigureConnectorState, 1);
1042         ccs->fdt_offset = drc->fdt_start_offset;
1043         drc->ccs = ccs;
1044     }
1045 
1046     do {
1047         uint32_t tag;
1048         const char *name;
1049         const struct fdt_property *prop;
1050         int fdt_offset_next, prop_len;
1051 
1052         tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next);
1053 
1054         switch (tag) {
1055         case FDT_BEGIN_NODE:
1056             ccs->fdt_depth++;
1057             name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL);
1058 
1059             /* provide the name of the next OF node */
1060             wa_offset = CC_VAL_DATA_OFFSET;
1061             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1062             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1063             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1064             break;
1065         case FDT_END_NODE:
1066             ccs->fdt_depth--;
1067             if (ccs->fdt_depth == 0) {
1068                 sPAPRDRIsolationState state = drc->isolation_state;
1069                 uint32_t drc_index = spapr_drc_index(drc);
1070                 /* done sending the device tree, don't need to track
1071                  * the state anymore
1072                  */
1073                 trace_spapr_drc_set_configured(drc_index);
1074                 if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
1075                     drc->configured = true;
1076                 } else {
1077                     /* guest should be not configuring an isolated device */
1078                     trace_spapr_drc_set_configured_skipping(drc_index);
1079                 }
1080                 g_free(ccs);
1081                 drc->ccs = NULL;
1082                 ccs = NULL;
1083                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1084             } else {
1085                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1086             }
1087             break;
1088         case FDT_PROP:
1089             prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset,
1090                                               &prop_len);
1091             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1092 
1093             /* provide the name of the next OF property */
1094             wa_offset = CC_VAL_DATA_OFFSET;
1095             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1096             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1097 
1098             /* provide the length and value of the OF property. data gets
1099              * placed immediately after NULL terminator of the OF property's
1100              * name string
1101              */
1102             wa_offset += strlen(name) + 1,
1103             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1104             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1105             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1106             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1107             break;
1108         case FDT_END:
1109             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1110         default:
1111             /* keep seeking for an actionable tag */
1112             break;
1113         }
1114         if (ccs) {
1115             ccs->fdt_offset = fdt_offset_next;
1116         }
1117     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1118 
1119     rc = resp;
1120 out:
1121     rtas_st(rets, 0, rc);
1122 }
1123 
1124 static void spapr_drc_register_types(void)
1125 {
1126     type_register_static(&spapr_dr_connector_info);
1127     type_register_static(&spapr_drc_physical_info);
1128     type_register_static(&spapr_drc_logical_info);
1129     type_register_static(&spapr_drc_cpu_info);
1130     type_register_static(&spapr_drc_pci_info);
1131     type_register_static(&spapr_drc_lmb_info);
1132 
1133     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1134                         rtas_set_indicator);
1135     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1136                         rtas_get_sensor_state);
1137     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1138                         rtas_ibm_configure_connector);
1139 }
1140 type_init(spapr_drc_register_types)
1141