1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "hw/qdev.h" 20 #include "qapi/visitor.h" 21 #include "qemu/error-report.h" 22 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 24 #include "trace.h" 25 26 #define DRC_CONTAINER_PATH "/dr-connector" 27 #define DRC_INDEX_TYPE_SHIFT 28 28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 29 30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) 31 { 32 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 33 34 return 1 << drck->typeshift; 35 } 36 37 uint32_t spapr_drc_index(sPAPRDRConnector *drc) 38 { 39 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 40 41 /* no set format for a drc index: it only needs to be globally 42 * unique. this is how we encode the DRC type on bare-metal 43 * however, so might as well do that here 44 */ 45 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 46 | (drc->id & DRC_INDEX_ID_MASK); 47 } 48 49 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) 50 { 51 switch (drc->state) { 52 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 53 return RTAS_OUT_SUCCESS; /* Nothing to do */ 54 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 55 break; /* see below */ 56 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 57 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 58 default: 59 g_assert_not_reached(); 60 } 61 62 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 63 64 if (drc->unplug_requested) { 65 uint32_t drc_index = spapr_drc_index(drc); 66 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 67 spapr_drc_detach(drc); 68 } 69 70 return RTAS_OUT_SUCCESS; 71 } 72 73 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) 74 { 75 switch (drc->state) { 76 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 77 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 78 return RTAS_OUT_SUCCESS; /* Nothing to do */ 79 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 80 break; /* see below */ 81 default: 82 g_assert_not_reached(); 83 } 84 85 /* cannot unisolate a non-existent resource, and, or resources 86 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 87 * 13.5.3.5) 88 */ 89 if (!drc->dev) { 90 return RTAS_OUT_NO_SUCH_INDICATOR; 91 } 92 93 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 94 drc->ccs_offset = drc->fdt_start_offset; 95 drc->ccs_depth = 0; 96 97 return RTAS_OUT_SUCCESS; 98 } 99 100 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) 101 { 102 switch (drc->state) { 103 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 104 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 105 return RTAS_OUT_SUCCESS; /* Nothing to do */ 106 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 107 break; /* see below */ 108 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 109 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 110 default: 111 g_assert_not_reached(); 112 } 113 114 /* 115 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 116 * belong to a DIMM device that is marked for removal. 117 * 118 * Currently the guest userspace tool drmgr that drives the memory 119 * hotplug/unplug will just try to remove a set of 'removable' LMBs 120 * in response to a hot unplug request that is based on drc-count. 121 * If the LMB being removed doesn't belong to a DIMM device that is 122 * actually being unplugged, fail the isolation request here. 123 */ 124 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 125 && !drc->unplug_requested) { 126 return RTAS_OUT_HW_ERROR; 127 } 128 129 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 130 131 /* if we're awaiting release, but still in an unconfigured state, 132 * it's likely the guest is still in the process of configuring 133 * the device and is transitioning the devices to an ISOLATED 134 * state as a part of that process. so we only complete the 135 * removal when this transition happens for a device in a 136 * configured state, as suggested by the state diagram from PAPR+ 137 * 2.7, 13.4 138 */ 139 if (drc->unplug_requested) { 140 uint32_t drc_index = spapr_drc_index(drc); 141 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 142 spapr_drc_detach(drc); 143 } 144 return RTAS_OUT_SUCCESS; 145 } 146 147 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) 148 { 149 switch (drc->state) { 150 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 151 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 152 return RTAS_OUT_SUCCESS; /* Nothing to do */ 153 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 154 break; /* see below */ 155 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 156 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 157 default: 158 g_assert_not_reached(); 159 } 160 161 /* Move to AVAILABLE state should have ensured device was present */ 162 g_assert(drc->dev); 163 164 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 165 drc->ccs_offset = drc->fdt_start_offset; 166 drc->ccs_depth = 0; 167 168 return RTAS_OUT_SUCCESS; 169 } 170 171 static uint32_t drc_set_usable(sPAPRDRConnector *drc) 172 { 173 switch (drc->state) { 174 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 175 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 176 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 177 return RTAS_OUT_SUCCESS; /* Nothing to do */ 178 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 179 break; /* see below */ 180 default: 181 g_assert_not_reached(); 182 } 183 184 /* if there's no resource/device associated with the DRC, there's 185 * no way for us to put it in an allocation state consistent with 186 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 187 * result in an RTAS return code of -3 / "no such indicator" 188 */ 189 if (!drc->dev) { 190 return RTAS_OUT_NO_SUCH_INDICATOR; 191 } 192 if (drc->unplug_requested) { 193 /* Don't allow the guest to move a device away from UNUSABLE 194 * state when we want to unplug it */ 195 return RTAS_OUT_NO_SUCH_INDICATOR; 196 } 197 198 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 199 200 return RTAS_OUT_SUCCESS; 201 } 202 203 static uint32_t drc_set_unusable(sPAPRDRConnector *drc) 204 { 205 switch (drc->state) { 206 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 207 return RTAS_OUT_SUCCESS; /* Nothing to do */ 208 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 209 break; /* see below */ 210 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 211 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 212 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 213 default: 214 g_assert_not_reached(); 215 } 216 217 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 218 if (drc->unplug_requested) { 219 uint32_t drc_index = spapr_drc_index(drc); 220 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 221 spapr_drc_detach(drc); 222 } 223 224 return RTAS_OUT_SUCCESS; 225 } 226 227 static const char *spapr_drc_name(sPAPRDRConnector *drc) 228 { 229 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 230 231 /* human-readable name for a DRC to encode into the DT 232 * description. this is mainly only used within a guest in place 233 * of the unique DRC index. 234 * 235 * in the case of VIO/PCI devices, it corresponds to a "location 236 * code" that maps a logical device/function (DRC index) to a 237 * physical (or virtual in the case of VIO) location in the system 238 * by chaining together the "location label" for each 239 * encapsulating component. 240 * 241 * since this is more to do with diagnosing physical hardware 242 * issues than guest compatibility, we choose location codes/DRC 243 * names that adhere to the documented format, but avoid encoding 244 * the entire topology information into the label/code, instead 245 * just using the location codes based on the labels for the 246 * endpoints (VIO/PCI adaptor connectors), which is basically just 247 * "C" followed by an integer ID. 248 * 249 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 250 * location codes as documented by PAPR+ v2.7, 12.3.1.5 251 */ 252 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 253 } 254 255 /* 256 * dr-entity-sense sensor value 257 * returned via get-sensor-state RTAS calls 258 * as expected by state diagram in PAPR+ 2.7, 13.4 259 * based on the current allocation/indicator/power states 260 * for the DR connector. 261 */ 262 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) 263 { 264 /* this assumes all PCI devices are assigned to a 'live insertion' 265 * power domain, where QEMU manages power state automatically as 266 * opposed to the guest. present, non-PCI resources are unaffected 267 * by power state. 268 */ 269 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 270 : SPAPR_DR_ENTITY_SENSE_EMPTY; 271 } 272 273 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) 274 { 275 switch (drc->state) { 276 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 277 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 278 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 279 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 280 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 281 g_assert(drc->dev); 282 return SPAPR_DR_ENTITY_SENSE_PRESENT; 283 default: 284 g_assert_not_reached(); 285 } 286 } 287 288 static void prop_get_index(Object *obj, Visitor *v, const char *name, 289 void *opaque, Error **errp) 290 { 291 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 292 uint32_t value = spapr_drc_index(drc); 293 visit_type_uint32(v, name, &value, errp); 294 } 295 296 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 297 void *opaque, Error **errp) 298 { 299 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 300 Error *err = NULL; 301 int fdt_offset_next, fdt_offset, fdt_depth; 302 void *fdt; 303 304 if (!drc->fdt) { 305 visit_type_null(v, NULL, errp); 306 return; 307 } 308 309 fdt = drc->fdt; 310 fdt_offset = drc->fdt_start_offset; 311 fdt_depth = 0; 312 313 do { 314 const char *name = NULL; 315 const struct fdt_property *prop = NULL; 316 int prop_len = 0, name_len = 0; 317 uint32_t tag; 318 319 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 320 switch (tag) { 321 case FDT_BEGIN_NODE: 322 fdt_depth++; 323 name = fdt_get_name(fdt, fdt_offset, &name_len); 324 visit_start_struct(v, name, NULL, 0, &err); 325 if (err) { 326 error_propagate(errp, err); 327 return; 328 } 329 break; 330 case FDT_END_NODE: 331 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 332 g_assert(fdt_depth > 0); 333 visit_check_struct(v, &err); 334 visit_end_struct(v, NULL); 335 if (err) { 336 error_propagate(errp, err); 337 return; 338 } 339 fdt_depth--; 340 break; 341 case FDT_PROP: { 342 int i; 343 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 344 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 345 visit_start_list(v, name, NULL, 0, &err); 346 if (err) { 347 error_propagate(errp, err); 348 return; 349 } 350 for (i = 0; i < prop_len; i++) { 351 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 352 if (err) { 353 error_propagate(errp, err); 354 return; 355 } 356 } 357 visit_check_list(v, &err); 358 visit_end_list(v, NULL); 359 if (err) { 360 error_propagate(errp, err); 361 return; 362 } 363 break; 364 } 365 default: 366 error_setg(&error_abort, "device FDT in unexpected state: %d", tag); 367 } 368 fdt_offset = fdt_offset_next; 369 } while (fdt_depth != 0); 370 } 371 372 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, 373 int fdt_start_offset, Error **errp) 374 { 375 trace_spapr_drc_attach(spapr_drc_index(drc)); 376 377 if (drc->dev) { 378 error_setg(errp, "an attached device is still awaiting release"); 379 return; 380 } 381 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 382 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 383 g_assert(fdt); 384 385 drc->dev = d; 386 drc->fdt = fdt; 387 drc->fdt_start_offset = fdt_start_offset; 388 389 object_property_add_link(OBJECT(drc), "device", 390 object_get_typename(OBJECT(drc->dev)), 391 (Object **)(&drc->dev), 392 NULL, 0, NULL); 393 } 394 395 static void spapr_drc_release(sPAPRDRConnector *drc) 396 { 397 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 398 399 drck->release(drc->dev); 400 401 drc->unplug_requested = false; 402 g_free(drc->fdt); 403 drc->fdt = NULL; 404 drc->fdt_start_offset = 0; 405 object_property_del(OBJECT(drc), "device", &error_abort); 406 drc->dev = NULL; 407 } 408 409 void spapr_drc_detach(sPAPRDRConnector *drc) 410 { 411 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 412 413 trace_spapr_drc_detach(spapr_drc_index(drc)); 414 415 g_assert(drc->dev); 416 417 drc->unplug_requested = true; 418 419 if (drc->state != drck->empty_state) { 420 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 421 return; 422 } 423 424 spapr_drc_release(drc); 425 } 426 427 void spapr_drc_reset(sPAPRDRConnector *drc) 428 { 429 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 430 431 trace_spapr_drc_reset(spapr_drc_index(drc)); 432 433 /* immediately upon reset we can safely assume DRCs whose devices 434 * are pending removal can be safely removed. 435 */ 436 if (drc->unplug_requested) { 437 spapr_drc_release(drc); 438 } 439 440 if (drc->dev) { 441 /* A device present at reset is ready to go, same as coldplugged */ 442 drc->state = drck->ready_state; 443 } else { 444 drc->state = drck->empty_state; 445 } 446 447 drc->ccs_offset = -1; 448 drc->ccs_depth = -1; 449 } 450 451 static void drc_reset(void *opaque) 452 { 453 spapr_drc_reset(SPAPR_DR_CONNECTOR(opaque)); 454 } 455 456 static bool spapr_drc_needed(void *opaque) 457 { 458 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; 459 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 460 sPAPRDREntitySense value = drck->dr_entity_sense(drc); 461 462 /* If no dev is plugged in there is no need to migrate the DRC state */ 463 if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) { 464 return false; 465 } 466 467 /* 468 * We need to migrate the state if it's not equal to the expected 469 * long-term state, which is the same as the coldplugged initial 470 * state */ 471 return (drc->state != drck->ready_state); 472 } 473 474 static const VMStateDescription vmstate_spapr_drc = { 475 .name = "spapr_drc", 476 .version_id = 1, 477 .minimum_version_id = 1, 478 .needed = spapr_drc_needed, 479 .fields = (VMStateField []) { 480 VMSTATE_UINT32(state, sPAPRDRConnector), 481 VMSTATE_END_OF_LIST() 482 } 483 }; 484 485 static void realize(DeviceState *d, Error **errp) 486 { 487 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 488 Object *root_container; 489 char link_name[256]; 490 gchar *child_name; 491 Error *err = NULL; 492 493 trace_spapr_drc_realize(spapr_drc_index(drc)); 494 /* NOTE: we do this as part of realize/unrealize due to the fact 495 * that the guest will communicate with the DRC via RTAS calls 496 * referencing the global DRC index. By unlinking the DRC 497 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 498 * inaccessible by the guest, since lookups rely on this path 499 * existing in the composition tree 500 */ 501 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 502 snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc)); 503 child_name = object_get_canonical_path_component(OBJECT(drc)); 504 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 505 object_property_add_alias(root_container, link_name, 506 drc->owner, child_name, &err); 507 if (err) { 508 error_report_err(err); 509 object_unref(OBJECT(drc)); 510 } 511 g_free(child_name); 512 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 513 drc); 514 qemu_register_reset(drc_reset, drc); 515 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 516 } 517 518 static void unrealize(DeviceState *d, Error **errp) 519 { 520 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 521 Object *root_container; 522 char name[256]; 523 Error *err = NULL; 524 525 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 526 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 527 snprintf(name, sizeof(name), "%x", spapr_drc_index(drc)); 528 object_property_del(root_container, name, &err); 529 if (err) { 530 error_report_err(err); 531 object_unref(OBJECT(drc)); 532 } 533 } 534 535 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, 536 uint32_t id) 537 { 538 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); 539 char *prop_name; 540 541 drc->id = id; 542 drc->owner = owner; 543 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 544 spapr_drc_index(drc)); 545 object_property_add_child(owner, prop_name, OBJECT(drc), NULL); 546 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 547 g_free(prop_name); 548 549 return drc; 550 } 551 552 static void spapr_dr_connector_instance_init(Object *obj) 553 { 554 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 555 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 556 557 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 558 object_property_add(obj, "index", "uint32", prop_get_index, 559 NULL, NULL, NULL, NULL); 560 object_property_add(obj, "fdt", "struct", prop_get_fdt, 561 NULL, NULL, NULL, NULL); 562 drc->state = drck->empty_state; 563 } 564 565 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 566 { 567 DeviceClass *dk = DEVICE_CLASS(k); 568 569 dk->realize = realize; 570 dk->unrealize = unrealize; 571 /* 572 * Reason: it crashes FIXME find and document the real reason 573 */ 574 dk->user_creatable = false; 575 } 576 577 static bool drc_physical_needed(void *opaque) 578 { 579 sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque; 580 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp); 581 582 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 583 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 584 return false; 585 } 586 return true; 587 } 588 589 static const VMStateDescription vmstate_spapr_drc_physical = { 590 .name = "spapr_drc/physical", 591 .version_id = 1, 592 .minimum_version_id = 1, 593 .needed = drc_physical_needed, 594 .fields = (VMStateField []) { 595 VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical), 596 VMSTATE_END_OF_LIST() 597 } 598 }; 599 600 static void drc_physical_reset(void *opaque) 601 { 602 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque); 603 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 604 605 if (drc->dev) { 606 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 607 } else { 608 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 609 } 610 } 611 612 static void realize_physical(DeviceState *d, Error **errp) 613 { 614 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 615 Error *local_err = NULL; 616 617 realize(d, &local_err); 618 if (local_err) { 619 error_propagate(errp, local_err); 620 return; 621 } 622 623 vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 624 &vmstate_spapr_drc_physical, drcp); 625 qemu_register_reset(drc_physical_reset, drcp); 626 } 627 628 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 629 { 630 DeviceClass *dk = DEVICE_CLASS(k); 631 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 632 633 dk->realize = realize_physical; 634 drck->dr_entity_sense = physical_entity_sense; 635 drck->isolate = drc_isolate_physical; 636 drck->unisolate = drc_unisolate_physical; 637 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 638 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 639 } 640 641 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 642 { 643 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 644 645 drck->dr_entity_sense = logical_entity_sense; 646 drck->isolate = drc_isolate_logical; 647 drck->unisolate = drc_unisolate_logical; 648 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 649 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 650 } 651 652 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 653 { 654 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 655 656 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 657 drck->typename = "CPU"; 658 drck->drc_name_prefix = "CPU "; 659 drck->release = spapr_core_release; 660 } 661 662 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 663 { 664 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 665 666 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 667 drck->typename = "28"; 668 drck->drc_name_prefix = "C"; 669 drck->release = spapr_phb_remove_pci_device_cb; 670 } 671 672 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 673 { 674 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 675 676 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 677 drck->typename = "MEM"; 678 drck->drc_name_prefix = "LMB "; 679 drck->release = spapr_lmb_release; 680 } 681 682 static const TypeInfo spapr_dr_connector_info = { 683 .name = TYPE_SPAPR_DR_CONNECTOR, 684 .parent = TYPE_DEVICE, 685 .instance_size = sizeof(sPAPRDRConnector), 686 .instance_init = spapr_dr_connector_instance_init, 687 .class_size = sizeof(sPAPRDRConnectorClass), 688 .class_init = spapr_dr_connector_class_init, 689 .abstract = true, 690 }; 691 692 static const TypeInfo spapr_drc_physical_info = { 693 .name = TYPE_SPAPR_DRC_PHYSICAL, 694 .parent = TYPE_SPAPR_DR_CONNECTOR, 695 .instance_size = sizeof(sPAPRDRCPhysical), 696 .class_init = spapr_drc_physical_class_init, 697 .abstract = true, 698 }; 699 700 static const TypeInfo spapr_drc_logical_info = { 701 .name = TYPE_SPAPR_DRC_LOGICAL, 702 .parent = TYPE_SPAPR_DR_CONNECTOR, 703 .class_init = spapr_drc_logical_class_init, 704 .abstract = true, 705 }; 706 707 static const TypeInfo spapr_drc_cpu_info = { 708 .name = TYPE_SPAPR_DRC_CPU, 709 .parent = TYPE_SPAPR_DRC_LOGICAL, 710 .class_init = spapr_drc_cpu_class_init, 711 }; 712 713 static const TypeInfo spapr_drc_pci_info = { 714 .name = TYPE_SPAPR_DRC_PCI, 715 .parent = TYPE_SPAPR_DRC_PHYSICAL, 716 .class_init = spapr_drc_pci_class_init, 717 }; 718 719 static const TypeInfo spapr_drc_lmb_info = { 720 .name = TYPE_SPAPR_DRC_LMB, 721 .parent = TYPE_SPAPR_DRC_LOGICAL, 722 .class_init = spapr_drc_lmb_class_init, 723 }; 724 725 /* helper functions for external users */ 726 727 sPAPRDRConnector *spapr_drc_by_index(uint32_t index) 728 { 729 Object *obj; 730 char name[256]; 731 732 snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index); 733 obj = object_resolve_path(name, NULL); 734 735 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 736 } 737 738 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) 739 { 740 sPAPRDRConnectorClass *drck 741 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 742 743 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 744 | (id & DRC_INDEX_ID_MASK)); 745 } 746 747 /** 748 * spapr_drc_populate_dt 749 * 750 * @fdt: libfdt device tree 751 * @path: path in the DT to generate properties 752 * @owner: parent Object/DeviceState for which to generate DRC 753 * descriptions for 754 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding 755 * to the types of DRCs to generate entries for 756 * 757 * generate OF properties to describe DRC topology/indices to guests 758 * 759 * as documented in PAPR+ v2.1, 13.5.2 760 */ 761 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, 762 uint32_t drc_type_mask) 763 { 764 Object *root_container; 765 ObjectProperty *prop; 766 ObjectPropertyIterator iter; 767 uint32_t drc_count = 0; 768 GArray *drc_indexes, *drc_power_domains; 769 GString *drc_names, *drc_types; 770 int ret; 771 772 /* the first entry of each properties is a 32-bit integer encoding 773 * the number of elements in the array. we won't know this until 774 * we complete the iteration through all the matching DRCs, but 775 * reserve the space now and set the offsets accordingly so we 776 * can fill them in later. 777 */ 778 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 779 drc_indexes = g_array_set_size(drc_indexes, 1); 780 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 781 drc_power_domains = g_array_set_size(drc_power_domains, 1); 782 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 783 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 784 785 /* aliases for all DRConnector objects will be rooted in QOM 786 * composition tree at DRC_CONTAINER_PATH 787 */ 788 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 789 790 object_property_iter_init(&iter, root_container); 791 while ((prop = object_property_iter_next(&iter))) { 792 Object *obj; 793 sPAPRDRConnector *drc; 794 sPAPRDRConnectorClass *drck; 795 uint32_t drc_index, drc_power_domain; 796 797 if (!strstart(prop->type, "link<", NULL)) { 798 continue; 799 } 800 801 obj = object_property_get_link(root_container, prop->name, NULL); 802 drc = SPAPR_DR_CONNECTOR(obj); 803 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 804 805 if (owner && (drc->owner != owner)) { 806 continue; 807 } 808 809 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 810 continue; 811 } 812 813 drc_count++; 814 815 /* ibm,drc-indexes */ 816 drc_index = cpu_to_be32(spapr_drc_index(drc)); 817 g_array_append_val(drc_indexes, drc_index); 818 819 /* ibm,drc-power-domains */ 820 drc_power_domain = cpu_to_be32(-1); 821 g_array_append_val(drc_power_domains, drc_power_domain); 822 823 /* ibm,drc-names */ 824 drc_names = g_string_append(drc_names, spapr_drc_name(drc)); 825 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 826 827 /* ibm,drc-types */ 828 drc_types = g_string_append(drc_types, drck->typename); 829 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 830 } 831 832 /* now write the drc count into the space we reserved at the 833 * beginning of the arrays previously 834 */ 835 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 836 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 837 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 838 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 839 840 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", 841 drc_indexes->data, 842 drc_indexes->len * sizeof(uint32_t)); 843 if (ret) { 844 error_report("Couldn't create ibm,drc-indexes property"); 845 goto out; 846 } 847 848 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", 849 drc_power_domains->data, 850 drc_power_domains->len * sizeof(uint32_t)); 851 if (ret) { 852 error_report("Couldn't finalize ibm,drc-power-domains property"); 853 goto out; 854 } 855 856 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", 857 drc_names->str, drc_names->len); 858 if (ret) { 859 error_report("Couldn't finalize ibm,drc-names property"); 860 goto out; 861 } 862 863 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", 864 drc_types->str, drc_types->len); 865 if (ret) { 866 error_report("Couldn't finalize ibm,drc-types property"); 867 goto out; 868 } 869 870 out: 871 g_array_free(drc_indexes, true); 872 g_array_free(drc_power_domains, true); 873 g_string_free(drc_names, true); 874 g_string_free(drc_types, true); 875 876 return ret; 877 } 878 879 /* 880 * RTAS calls 881 */ 882 883 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 884 { 885 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 886 sPAPRDRConnectorClass *drck; 887 888 if (!drc) { 889 return RTAS_OUT_NO_SUCH_INDICATOR; 890 } 891 892 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 893 894 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 895 896 switch (state) { 897 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 898 return drck->isolate(drc); 899 900 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 901 return drck->unisolate(drc); 902 903 default: 904 return RTAS_OUT_PARAM_ERROR; 905 } 906 } 907 908 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 909 { 910 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 911 912 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 913 return RTAS_OUT_NO_SUCH_INDICATOR; 914 } 915 916 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 917 918 switch (state) { 919 case SPAPR_DR_ALLOCATION_STATE_USABLE: 920 return drc_set_usable(drc); 921 922 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 923 return drc_set_unusable(drc); 924 925 default: 926 return RTAS_OUT_PARAM_ERROR; 927 } 928 } 929 930 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 931 { 932 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 933 934 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 935 return RTAS_OUT_NO_SUCH_INDICATOR; 936 } 937 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 938 && (state != SPAPR_DR_INDICATOR_ACTIVE) 939 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 940 && (state != SPAPR_DR_INDICATOR_ACTION)) { 941 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 942 } 943 944 trace_spapr_drc_set_dr_indicator(idx, state); 945 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 946 return RTAS_OUT_SUCCESS; 947 } 948 949 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 950 uint32_t token, 951 uint32_t nargs, target_ulong args, 952 uint32_t nret, target_ulong rets) 953 { 954 uint32_t type, idx, state; 955 uint32_t ret = RTAS_OUT_SUCCESS; 956 957 if (nargs != 3 || nret != 1) { 958 ret = RTAS_OUT_PARAM_ERROR; 959 goto out; 960 } 961 962 type = rtas_ld(args, 0); 963 idx = rtas_ld(args, 1); 964 state = rtas_ld(args, 2); 965 966 switch (type) { 967 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 968 ret = rtas_set_isolation_state(idx, state); 969 break; 970 case RTAS_SENSOR_TYPE_DR: 971 ret = rtas_set_dr_indicator(idx, state); 972 break; 973 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 974 ret = rtas_set_allocation_state(idx, state); 975 break; 976 default: 977 ret = RTAS_OUT_NOT_SUPPORTED; 978 } 979 980 out: 981 rtas_st(rets, 0, ret); 982 } 983 984 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 985 uint32_t token, uint32_t nargs, 986 target_ulong args, uint32_t nret, 987 target_ulong rets) 988 { 989 uint32_t sensor_type; 990 uint32_t sensor_index; 991 uint32_t sensor_state = 0; 992 sPAPRDRConnector *drc; 993 sPAPRDRConnectorClass *drck; 994 uint32_t ret = RTAS_OUT_SUCCESS; 995 996 if (nargs != 2 || nret != 2) { 997 ret = RTAS_OUT_PARAM_ERROR; 998 goto out; 999 } 1000 1001 sensor_type = rtas_ld(args, 0); 1002 sensor_index = rtas_ld(args, 1); 1003 1004 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1005 /* currently only DR-related sensors are implemented */ 1006 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1007 sensor_type); 1008 ret = RTAS_OUT_NOT_SUPPORTED; 1009 goto out; 1010 } 1011 1012 drc = spapr_drc_by_index(sensor_index); 1013 if (!drc) { 1014 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1015 ret = RTAS_OUT_PARAM_ERROR; 1016 goto out; 1017 } 1018 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1019 sensor_state = drck->dr_entity_sense(drc); 1020 1021 out: 1022 rtas_st(rets, 0, ret); 1023 rtas_st(rets, 1, sensor_state); 1024 } 1025 1026 /* configure-connector work area offsets, int32_t units for field 1027 * indexes, bytes for field offset/len values. 1028 * 1029 * as documented by PAPR+ v2.7, 13.5.3.5 1030 */ 1031 #define CC_IDX_NODE_NAME_OFFSET 2 1032 #define CC_IDX_PROP_NAME_OFFSET 2 1033 #define CC_IDX_PROP_LEN 3 1034 #define CC_IDX_PROP_DATA_OFFSET 4 1035 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1036 #define CC_WA_LEN 4096 1037 1038 static void configure_connector_st(target_ulong addr, target_ulong offset, 1039 const void *buf, size_t len) 1040 { 1041 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1042 buf, MIN(len, CC_WA_LEN - offset)); 1043 } 1044 1045 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1046 sPAPRMachineState *spapr, 1047 uint32_t token, uint32_t nargs, 1048 target_ulong args, uint32_t nret, 1049 target_ulong rets) 1050 { 1051 uint64_t wa_addr; 1052 uint64_t wa_offset; 1053 uint32_t drc_index; 1054 sPAPRDRConnector *drc; 1055 sPAPRDRConnectorClass *drck; 1056 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1057 int rc; 1058 1059 if (nargs != 2 || nret != 1) { 1060 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1061 return; 1062 } 1063 1064 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1065 1066 drc_index = rtas_ld(wa_addr, 0); 1067 drc = spapr_drc_by_index(drc_index); 1068 if (!drc) { 1069 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1070 rc = RTAS_OUT_PARAM_ERROR; 1071 goto out; 1072 } 1073 1074 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1075 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)) { 1076 /* Need to unisolate the device before configuring */ 1077 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1078 goto out; 1079 } 1080 1081 g_assert(drc->fdt); 1082 1083 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1084 1085 do { 1086 uint32_t tag; 1087 const char *name; 1088 const struct fdt_property *prop; 1089 int fdt_offset_next, prop_len; 1090 1091 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1092 1093 switch (tag) { 1094 case FDT_BEGIN_NODE: 1095 drc->ccs_depth++; 1096 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1097 1098 /* provide the name of the next OF node */ 1099 wa_offset = CC_VAL_DATA_OFFSET; 1100 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1101 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1102 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1103 break; 1104 case FDT_END_NODE: 1105 drc->ccs_depth--; 1106 if (drc->ccs_depth == 0) { 1107 uint32_t drc_index = spapr_drc_index(drc); 1108 1109 /* done sending the device tree, move to configured state */ 1110 trace_spapr_drc_set_configured(drc_index); 1111 drc->state = drck->ready_state; 1112 drc->ccs_offset = -1; 1113 drc->ccs_depth = -1; 1114 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1115 } else { 1116 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1117 } 1118 break; 1119 case FDT_PROP: 1120 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1121 &prop_len); 1122 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1123 1124 /* provide the name of the next OF property */ 1125 wa_offset = CC_VAL_DATA_OFFSET; 1126 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1127 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1128 1129 /* provide the length and value of the OF property. data gets 1130 * placed immediately after NULL terminator of the OF property's 1131 * name string 1132 */ 1133 wa_offset += strlen(name) + 1, 1134 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1135 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1136 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1137 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1138 break; 1139 case FDT_END: 1140 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1141 default: 1142 /* keep seeking for an actionable tag */ 1143 break; 1144 } 1145 if (drc->ccs_offset >= 0) { 1146 drc->ccs_offset = fdt_offset_next; 1147 } 1148 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1149 1150 rc = resp; 1151 out: 1152 rtas_st(rets, 0, rc); 1153 } 1154 1155 static void spapr_drc_register_types(void) 1156 { 1157 type_register_static(&spapr_dr_connector_info); 1158 type_register_static(&spapr_drc_physical_info); 1159 type_register_static(&spapr_drc_logical_info); 1160 type_register_static(&spapr_drc_cpu_info); 1161 type_register_static(&spapr_drc_pci_info); 1162 type_register_static(&spapr_drc_lmb_info); 1163 1164 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1165 rtas_set_indicator); 1166 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1167 rtas_get_sensor_state); 1168 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1169 rtas_ibm_configure_connector); 1170 } 1171 type_init(spapr_drc_register_types) 1172