xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 9aa3397f)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "hw/qdev.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "trace.h"
25 
26 #define DRC_CONTAINER_PATH "/dr-connector"
27 #define DRC_INDEX_TYPE_SHIFT 28
28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
29 
30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
31 {
32     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
33 
34     return 1 << drck->typeshift;
35 }
36 
37 uint32_t spapr_drc_index(sPAPRDRConnector *drc)
38 {
39     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
40 
41     /* no set format for a drc index: it only needs to be globally
42      * unique. this is how we encode the DRC type on bare-metal
43      * however, so might as well do that here
44      */
45     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
46         | (drc->id & DRC_INDEX_ID_MASK);
47 }
48 
49 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc)
50 {
51     switch (drc->state) {
52     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
53         return RTAS_OUT_SUCCESS; /* Nothing to do */
54     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
55         break; /* see below */
56     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
57         return RTAS_OUT_PARAM_ERROR; /* not allowed */
58     default:
59         g_assert_not_reached();
60     }
61 
62     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
63 
64     if (drc->unplug_requested) {
65         uint32_t drc_index = spapr_drc_index(drc);
66         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
67         spapr_drc_detach(drc);
68     }
69 
70     return RTAS_OUT_SUCCESS;
71 }
72 
73 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc)
74 {
75     switch (drc->state) {
76     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
77     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
78         return RTAS_OUT_SUCCESS; /* Nothing to do */
79     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
80         break; /* see below */
81     default:
82         g_assert_not_reached();
83     }
84 
85     /* cannot unisolate a non-existent resource, and, or resources
86      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
87      * 13.5.3.5)
88      */
89     if (!drc->dev) {
90         return RTAS_OUT_NO_SUCH_INDICATOR;
91     }
92 
93     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
94     drc->ccs_offset = drc->fdt_start_offset;
95     drc->ccs_depth = 0;
96 
97     return RTAS_OUT_SUCCESS;
98 }
99 
100 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc)
101 {
102     switch (drc->state) {
103     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
104     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
105         return RTAS_OUT_SUCCESS; /* Nothing to do */
106     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
107         break; /* see below */
108     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
109         return RTAS_OUT_PARAM_ERROR; /* not allowed */
110     default:
111         g_assert_not_reached();
112     }
113 
114     /*
115      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
116      * belong to a DIMM device that is marked for removal.
117      *
118      * Currently the guest userspace tool drmgr that drives the memory
119      * hotplug/unplug will just try to remove a set of 'removable' LMBs
120      * in response to a hot unplug request that is based on drc-count.
121      * If the LMB being removed doesn't belong to a DIMM device that is
122      * actually being unplugged, fail the isolation request here.
123      */
124     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
125         && !drc->unplug_requested) {
126         return RTAS_OUT_HW_ERROR;
127     }
128 
129     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
130 
131     /* if we're awaiting release, but still in an unconfigured state,
132      * it's likely the guest is still in the process of configuring
133      * the device and is transitioning the devices to an ISOLATED
134      * state as a part of that process. so we only complete the
135      * removal when this transition happens for a device in a
136      * configured state, as suggested by the state diagram from PAPR+
137      * 2.7, 13.4
138      */
139     if (drc->unplug_requested) {
140         uint32_t drc_index = spapr_drc_index(drc);
141         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
142         spapr_drc_detach(drc);
143     }
144     return RTAS_OUT_SUCCESS;
145 }
146 
147 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc)
148 {
149     switch (drc->state) {
150     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
151     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
152         return RTAS_OUT_SUCCESS; /* Nothing to do */
153     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
154         break; /* see below */
155     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
156         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
157     default:
158         g_assert_not_reached();
159     }
160 
161     /* Move to AVAILABLE state should have ensured device was present */
162     g_assert(drc->dev);
163 
164     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
165     drc->ccs_offset = drc->fdt_start_offset;
166     drc->ccs_depth = 0;
167 
168     return RTAS_OUT_SUCCESS;
169 }
170 
171 static uint32_t drc_set_usable(sPAPRDRConnector *drc)
172 {
173     switch (drc->state) {
174     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
175     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
176     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
177         return RTAS_OUT_SUCCESS; /* Nothing to do */
178     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
179         break; /* see below */
180     default:
181         g_assert_not_reached();
182     }
183 
184     /* if there's no resource/device associated with the DRC, there's
185      * no way for us to put it in an allocation state consistent with
186      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
187      * result in an RTAS return code of -3 / "no such indicator"
188      */
189     if (!drc->dev) {
190         return RTAS_OUT_NO_SUCH_INDICATOR;
191     }
192     if (drc->unplug_requested) {
193         /* Don't allow the guest to move a device away from UNUSABLE
194          * state when we want to unplug it */
195         return RTAS_OUT_NO_SUCH_INDICATOR;
196     }
197 
198     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
199 
200     return RTAS_OUT_SUCCESS;
201 }
202 
203 static uint32_t drc_set_unusable(sPAPRDRConnector *drc)
204 {
205     switch (drc->state) {
206     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
207         return RTAS_OUT_SUCCESS; /* Nothing to do */
208     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
209         break; /* see below */
210     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
211     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
212         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
213     default:
214         g_assert_not_reached();
215     }
216 
217     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
218     if (drc->unplug_requested) {
219         uint32_t drc_index = spapr_drc_index(drc);
220         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
221         spapr_drc_detach(drc);
222     }
223 
224     return RTAS_OUT_SUCCESS;
225 }
226 
227 static const char *spapr_drc_name(sPAPRDRConnector *drc)
228 {
229     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
230 
231     /* human-readable name for a DRC to encode into the DT
232      * description. this is mainly only used within a guest in place
233      * of the unique DRC index.
234      *
235      * in the case of VIO/PCI devices, it corresponds to a "location
236      * code" that maps a logical device/function (DRC index) to a
237      * physical (or virtual in the case of VIO) location in the system
238      * by chaining together the "location label" for each
239      * encapsulating component.
240      *
241      * since this is more to do with diagnosing physical hardware
242      * issues than guest compatibility, we choose location codes/DRC
243      * names that adhere to the documented format, but avoid encoding
244      * the entire topology information into the label/code, instead
245      * just using the location codes based on the labels for the
246      * endpoints (VIO/PCI adaptor connectors), which is basically just
247      * "C" followed by an integer ID.
248      *
249      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
250      * location codes as documented by PAPR+ v2.7, 12.3.1.5
251      */
252     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
253 }
254 
255 /*
256  * dr-entity-sense sensor value
257  * returned via get-sensor-state RTAS calls
258  * as expected by state diagram in PAPR+ 2.7, 13.4
259  * based on the current allocation/indicator/power states
260  * for the DR connector.
261  */
262 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
263 {
264     /* this assumes all PCI devices are assigned to a 'live insertion'
265      * power domain, where QEMU manages power state automatically as
266      * opposed to the guest. present, non-PCI resources are unaffected
267      * by power state.
268      */
269     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
270         : SPAPR_DR_ENTITY_SENSE_EMPTY;
271 }
272 
273 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
274 {
275     switch (drc->state) {
276     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
277         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
278     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
279     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
280     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
281         g_assert(drc->dev);
282         return SPAPR_DR_ENTITY_SENSE_PRESENT;
283     default:
284         g_assert_not_reached();
285     }
286 }
287 
288 static void prop_get_index(Object *obj, Visitor *v, const char *name,
289                            void *opaque, Error **errp)
290 {
291     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
292     uint32_t value = spapr_drc_index(drc);
293     visit_type_uint32(v, name, &value, errp);
294 }
295 
296 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
297                          void *opaque, Error **errp)
298 {
299     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
300     QNull *null = NULL;
301     Error *err = NULL;
302     int fdt_offset_next, fdt_offset, fdt_depth;
303     void *fdt;
304 
305     if (!drc->fdt) {
306         visit_type_null(v, NULL, &null, errp);
307         QDECREF(null);
308         return;
309     }
310 
311     fdt = drc->fdt;
312     fdt_offset = drc->fdt_start_offset;
313     fdt_depth = 0;
314 
315     do {
316         const char *name = NULL;
317         const struct fdt_property *prop = NULL;
318         int prop_len = 0, name_len = 0;
319         uint32_t tag;
320 
321         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
322         switch (tag) {
323         case FDT_BEGIN_NODE:
324             fdt_depth++;
325             name = fdt_get_name(fdt, fdt_offset, &name_len);
326             visit_start_struct(v, name, NULL, 0, &err);
327             if (err) {
328                 error_propagate(errp, err);
329                 return;
330             }
331             break;
332         case FDT_END_NODE:
333             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
334             g_assert(fdt_depth > 0);
335             visit_check_struct(v, &err);
336             visit_end_struct(v, NULL);
337             if (err) {
338                 error_propagate(errp, err);
339                 return;
340             }
341             fdt_depth--;
342             break;
343         case FDT_PROP: {
344             int i;
345             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
346             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
347             visit_start_list(v, name, NULL, 0, &err);
348             if (err) {
349                 error_propagate(errp, err);
350                 return;
351             }
352             for (i = 0; i < prop_len; i++) {
353                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
354                 if (err) {
355                     error_propagate(errp, err);
356                     return;
357                 }
358             }
359             visit_check_list(v, &err);
360             visit_end_list(v, NULL);
361             if (err) {
362                 error_propagate(errp, err);
363                 return;
364             }
365             break;
366         }
367         default:
368             error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
369         }
370         fdt_offset = fdt_offset_next;
371     } while (fdt_depth != 0);
372 }
373 
374 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
375                       int fdt_start_offset, Error **errp)
376 {
377     trace_spapr_drc_attach(spapr_drc_index(drc));
378 
379     if (drc->dev) {
380         error_setg(errp, "an attached device is still awaiting release");
381         return;
382     }
383     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
384              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
385     g_assert(fdt);
386 
387     drc->dev = d;
388     drc->fdt = fdt;
389     drc->fdt_start_offset = fdt_start_offset;
390 
391     object_property_add_link(OBJECT(drc), "device",
392                              object_get_typename(OBJECT(drc->dev)),
393                              (Object **)(&drc->dev),
394                              NULL, 0, NULL);
395 }
396 
397 static void spapr_drc_release(sPAPRDRConnector *drc)
398 {
399     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
400 
401     drck->release(drc->dev);
402 
403     drc->unplug_requested = false;
404     g_free(drc->fdt);
405     drc->fdt = NULL;
406     drc->fdt_start_offset = 0;
407     object_property_del(OBJECT(drc), "device", &error_abort);
408     drc->dev = NULL;
409 }
410 
411 void spapr_drc_detach(sPAPRDRConnector *drc)
412 {
413     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
414 
415     trace_spapr_drc_detach(spapr_drc_index(drc));
416 
417     g_assert(drc->dev);
418 
419     drc->unplug_requested = true;
420 
421     if (drc->state != drck->empty_state) {
422         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
423         return;
424     }
425 
426     spapr_drc_release(drc);
427 }
428 
429 void spapr_drc_reset(sPAPRDRConnector *drc)
430 {
431     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
432 
433     trace_spapr_drc_reset(spapr_drc_index(drc));
434 
435     /* immediately upon reset we can safely assume DRCs whose devices
436      * are pending removal can be safely removed.
437      */
438     if (drc->unplug_requested) {
439         spapr_drc_release(drc);
440     }
441 
442     if (drc->dev) {
443         /* A device present at reset is ready to go, same as coldplugged */
444         drc->state = drck->ready_state;
445         /*
446          * Ensure that we are able to send the FDT fragment again
447          * via configure-connector call if the guest requests.
448          */
449         drc->ccs_offset = drc->fdt_start_offset;
450         drc->ccs_depth = 0;
451     } else {
452         drc->state = drck->empty_state;
453         drc->ccs_offset = -1;
454         drc->ccs_depth = -1;
455     }
456 }
457 
458 static void drc_reset(void *opaque)
459 {
460     spapr_drc_reset(SPAPR_DR_CONNECTOR(opaque));
461 }
462 
463 bool spapr_drc_needed(void *opaque)
464 {
465     sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
466     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
467 
468     /* If no dev is plugged in there is no need to migrate the DRC state */
469     if (!drc->dev) {
470         return false;
471     }
472 
473     /*
474      * We need to migrate the state if it's not equal to the expected
475      * long-term state, which is the same as the coldplugged initial
476      * state */
477     return (drc->state != drck->ready_state);
478 }
479 
480 static const VMStateDescription vmstate_spapr_drc = {
481     .name = "spapr_drc",
482     .version_id = 1,
483     .minimum_version_id = 1,
484     .needed = spapr_drc_needed,
485     .fields  = (VMStateField []) {
486         VMSTATE_UINT32(state, sPAPRDRConnector),
487         VMSTATE_END_OF_LIST()
488     }
489 };
490 
491 static void realize(DeviceState *d, Error **errp)
492 {
493     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
494     Object *root_container;
495     gchar *link_name;
496     gchar *child_name;
497     Error *err = NULL;
498 
499     trace_spapr_drc_realize(spapr_drc_index(drc));
500     /* NOTE: we do this as part of realize/unrealize due to the fact
501      * that the guest will communicate with the DRC via RTAS calls
502      * referencing the global DRC index. By unlinking the DRC
503      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
504      * inaccessible by the guest, since lookups rely on this path
505      * existing in the composition tree
506      */
507     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
508     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
509     child_name = object_get_canonical_path_component(OBJECT(drc));
510     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
511     object_property_add_alias(root_container, link_name,
512                               drc->owner, child_name, &err);
513     g_free(child_name);
514     g_free(link_name);
515     if (err) {
516         error_propagate(errp, err);
517         return;
518     }
519     vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
520                      drc);
521     qemu_register_reset(drc_reset, drc);
522     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
523 }
524 
525 static void unrealize(DeviceState *d, Error **errp)
526 {
527     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
528     Object *root_container;
529     gchar *name;
530 
531     trace_spapr_drc_unrealize(spapr_drc_index(drc));
532     qemu_unregister_reset(drc_reset, drc);
533     vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
534     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
535     name = g_strdup_printf("%x", spapr_drc_index(drc));
536     object_property_del(root_container, name, errp);
537     g_free(name);
538 }
539 
540 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
541                                          uint32_t id)
542 {
543     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
544     char *prop_name;
545 
546     drc->id = id;
547     drc->owner = owner;
548     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
549                                 spapr_drc_index(drc));
550     object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
551     object_unref(OBJECT(drc));
552     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
553     g_free(prop_name);
554 
555     return drc;
556 }
557 
558 static void spapr_dr_connector_instance_init(Object *obj)
559 {
560     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
561     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
562 
563     object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
564     object_property_add(obj, "index", "uint32", prop_get_index,
565                         NULL, NULL, NULL, NULL);
566     object_property_add(obj, "fdt", "struct", prop_get_fdt,
567                         NULL, NULL, NULL, NULL);
568     drc->state = drck->empty_state;
569 }
570 
571 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
572 {
573     DeviceClass *dk = DEVICE_CLASS(k);
574 
575     dk->realize = realize;
576     dk->unrealize = unrealize;
577     /*
578      * Reason: it crashes FIXME find and document the real reason
579      */
580     dk->user_creatable = false;
581 }
582 
583 static bool drc_physical_needed(void *opaque)
584 {
585     sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque;
586     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp);
587 
588     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
589         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
590         return false;
591     }
592     return true;
593 }
594 
595 static const VMStateDescription vmstate_spapr_drc_physical = {
596     .name = "spapr_drc/physical",
597     .version_id = 1,
598     .minimum_version_id = 1,
599     .needed = drc_physical_needed,
600     .fields  = (VMStateField []) {
601         VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical),
602         VMSTATE_END_OF_LIST()
603     }
604 };
605 
606 static void drc_physical_reset(void *opaque)
607 {
608     sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque);
609     sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
610 
611     if (drc->dev) {
612         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
613     } else {
614         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
615     }
616 }
617 
618 static void realize_physical(DeviceState *d, Error **errp)
619 {
620     sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
621     Error *local_err = NULL;
622 
623     realize(d, &local_err);
624     if (local_err) {
625         error_propagate(errp, local_err);
626         return;
627     }
628 
629     vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
630                      &vmstate_spapr_drc_physical, drcp);
631     qemu_register_reset(drc_physical_reset, drcp);
632 }
633 
634 static void unrealize_physical(DeviceState *d, Error **errp)
635 {
636     sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
637     Error *local_err = NULL;
638 
639     unrealize(d, &local_err);
640     if (local_err) {
641         error_propagate(errp, local_err);
642         return;
643     }
644 
645     vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
646     qemu_unregister_reset(drc_physical_reset, drcp);
647 }
648 
649 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
650 {
651     DeviceClass *dk = DEVICE_CLASS(k);
652     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
653 
654     dk->realize = realize_physical;
655     dk->unrealize = unrealize_physical;
656     drck->dr_entity_sense = physical_entity_sense;
657     drck->isolate = drc_isolate_physical;
658     drck->unisolate = drc_unisolate_physical;
659     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
660     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
661 }
662 
663 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
664 {
665     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
666 
667     drck->dr_entity_sense = logical_entity_sense;
668     drck->isolate = drc_isolate_logical;
669     drck->unisolate = drc_unisolate_logical;
670     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
671     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
672 }
673 
674 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
675 {
676     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
677 
678     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
679     drck->typename = "CPU";
680     drck->drc_name_prefix = "CPU ";
681     drck->release = spapr_core_release;
682 }
683 
684 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
685 {
686     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
687 
688     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
689     drck->typename = "28";
690     drck->drc_name_prefix = "C";
691     drck->release = spapr_phb_remove_pci_device_cb;
692 }
693 
694 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
695 {
696     sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
697 
698     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
699     drck->typename = "MEM";
700     drck->drc_name_prefix = "LMB ";
701     drck->release = spapr_lmb_release;
702 }
703 
704 static const TypeInfo spapr_dr_connector_info = {
705     .name          = TYPE_SPAPR_DR_CONNECTOR,
706     .parent        = TYPE_DEVICE,
707     .instance_size = sizeof(sPAPRDRConnector),
708     .instance_init = spapr_dr_connector_instance_init,
709     .class_size    = sizeof(sPAPRDRConnectorClass),
710     .class_init    = spapr_dr_connector_class_init,
711     .abstract      = true,
712 };
713 
714 static const TypeInfo spapr_drc_physical_info = {
715     .name          = TYPE_SPAPR_DRC_PHYSICAL,
716     .parent        = TYPE_SPAPR_DR_CONNECTOR,
717     .instance_size = sizeof(sPAPRDRCPhysical),
718     .class_init    = spapr_drc_physical_class_init,
719     .abstract      = true,
720 };
721 
722 static const TypeInfo spapr_drc_logical_info = {
723     .name          = TYPE_SPAPR_DRC_LOGICAL,
724     .parent        = TYPE_SPAPR_DR_CONNECTOR,
725     .class_init    = spapr_drc_logical_class_init,
726     .abstract      = true,
727 };
728 
729 static const TypeInfo spapr_drc_cpu_info = {
730     .name          = TYPE_SPAPR_DRC_CPU,
731     .parent        = TYPE_SPAPR_DRC_LOGICAL,
732     .class_init    = spapr_drc_cpu_class_init,
733 };
734 
735 static const TypeInfo spapr_drc_pci_info = {
736     .name          = TYPE_SPAPR_DRC_PCI,
737     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
738     .class_init    = spapr_drc_pci_class_init,
739 };
740 
741 static const TypeInfo spapr_drc_lmb_info = {
742     .name          = TYPE_SPAPR_DRC_LMB,
743     .parent        = TYPE_SPAPR_DRC_LOGICAL,
744     .class_init    = spapr_drc_lmb_class_init,
745 };
746 
747 /* helper functions for external users */
748 
749 sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
750 {
751     Object *obj;
752     gchar *name;
753 
754     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
755     obj = object_resolve_path(name, NULL);
756     g_free(name);
757 
758     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
759 }
760 
761 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
762 {
763     sPAPRDRConnectorClass *drck
764         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
765 
766     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
767                               | (id & DRC_INDEX_ID_MASK));
768 }
769 
770 /**
771  * spapr_drc_populate_dt
772  *
773  * @fdt: libfdt device tree
774  * @path: path in the DT to generate properties
775  * @owner: parent Object/DeviceState for which to generate DRC
776  *         descriptions for
777  * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
778  *   to the types of DRCs to generate entries for
779  *
780  * generate OF properties to describe DRC topology/indices to guests
781  *
782  * as documented in PAPR+ v2.1, 13.5.2
783  */
784 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
785                           uint32_t drc_type_mask)
786 {
787     Object *root_container;
788     ObjectProperty *prop;
789     ObjectPropertyIterator iter;
790     uint32_t drc_count = 0;
791     GArray *drc_indexes, *drc_power_domains;
792     GString *drc_names, *drc_types;
793     int ret;
794 
795     /* the first entry of each properties is a 32-bit integer encoding
796      * the number of elements in the array. we won't know this until
797      * we complete the iteration through all the matching DRCs, but
798      * reserve the space now and set the offsets accordingly so we
799      * can fill them in later.
800      */
801     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
802     drc_indexes = g_array_set_size(drc_indexes, 1);
803     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
804     drc_power_domains = g_array_set_size(drc_power_domains, 1);
805     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
806     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
807 
808     /* aliases for all DRConnector objects will be rooted in QOM
809      * composition tree at DRC_CONTAINER_PATH
810      */
811     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
812 
813     object_property_iter_init(&iter, root_container);
814     while ((prop = object_property_iter_next(&iter))) {
815         Object *obj;
816         sPAPRDRConnector *drc;
817         sPAPRDRConnectorClass *drck;
818         uint32_t drc_index, drc_power_domain;
819 
820         if (!strstart(prop->type, "link<", NULL)) {
821             continue;
822         }
823 
824         obj = object_property_get_link(root_container, prop->name, NULL);
825         drc = SPAPR_DR_CONNECTOR(obj);
826         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
827 
828         if (owner && (drc->owner != owner)) {
829             continue;
830         }
831 
832         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
833             continue;
834         }
835 
836         drc_count++;
837 
838         /* ibm,drc-indexes */
839         drc_index = cpu_to_be32(spapr_drc_index(drc));
840         g_array_append_val(drc_indexes, drc_index);
841 
842         /* ibm,drc-power-domains */
843         drc_power_domain = cpu_to_be32(-1);
844         g_array_append_val(drc_power_domains, drc_power_domain);
845 
846         /* ibm,drc-names */
847         drc_names = g_string_append(drc_names, spapr_drc_name(drc));
848         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
849 
850         /* ibm,drc-types */
851         drc_types = g_string_append(drc_types, drck->typename);
852         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
853     }
854 
855     /* now write the drc count into the space we reserved at the
856      * beginning of the arrays previously
857      */
858     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
859     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
860     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
861     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
862 
863     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
864                       drc_indexes->data,
865                       drc_indexes->len * sizeof(uint32_t));
866     if (ret) {
867         error_report("Couldn't create ibm,drc-indexes property");
868         goto out;
869     }
870 
871     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
872                       drc_power_domains->data,
873                       drc_power_domains->len * sizeof(uint32_t));
874     if (ret) {
875         error_report("Couldn't finalize ibm,drc-power-domains property");
876         goto out;
877     }
878 
879     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
880                       drc_names->str, drc_names->len);
881     if (ret) {
882         error_report("Couldn't finalize ibm,drc-names property");
883         goto out;
884     }
885 
886     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
887                       drc_types->str, drc_types->len);
888     if (ret) {
889         error_report("Couldn't finalize ibm,drc-types property");
890         goto out;
891     }
892 
893 out:
894     g_array_free(drc_indexes, true);
895     g_array_free(drc_power_domains, true);
896     g_string_free(drc_names, true);
897     g_string_free(drc_types, true);
898 
899     return ret;
900 }
901 
902 /*
903  * RTAS calls
904  */
905 
906 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
907 {
908     sPAPRDRConnector *drc = spapr_drc_by_index(idx);
909     sPAPRDRConnectorClass *drck;
910 
911     if (!drc) {
912         return RTAS_OUT_NO_SUCH_INDICATOR;
913     }
914 
915     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
916 
917     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
918 
919     switch (state) {
920     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
921         return drck->isolate(drc);
922 
923     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
924         return drck->unisolate(drc);
925 
926     default:
927         return RTAS_OUT_PARAM_ERROR;
928     }
929 }
930 
931 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
932 {
933     sPAPRDRConnector *drc = spapr_drc_by_index(idx);
934 
935     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
936         return RTAS_OUT_NO_SUCH_INDICATOR;
937     }
938 
939     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
940 
941     switch (state) {
942     case SPAPR_DR_ALLOCATION_STATE_USABLE:
943         return drc_set_usable(drc);
944 
945     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
946         return drc_set_unusable(drc);
947 
948     default:
949         return RTAS_OUT_PARAM_ERROR;
950     }
951 }
952 
953 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
954 {
955     sPAPRDRConnector *drc = spapr_drc_by_index(idx);
956 
957     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
958         return RTAS_OUT_NO_SUCH_INDICATOR;
959     }
960     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
961         && (state != SPAPR_DR_INDICATOR_ACTIVE)
962         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
963         && (state != SPAPR_DR_INDICATOR_ACTION)) {
964         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
965     }
966 
967     trace_spapr_drc_set_dr_indicator(idx, state);
968     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
969     return RTAS_OUT_SUCCESS;
970 }
971 
972 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
973                                uint32_t token,
974                                uint32_t nargs, target_ulong args,
975                                uint32_t nret, target_ulong rets)
976 {
977     uint32_t type, idx, state;
978     uint32_t ret = RTAS_OUT_SUCCESS;
979 
980     if (nargs != 3 || nret != 1) {
981         ret = RTAS_OUT_PARAM_ERROR;
982         goto out;
983     }
984 
985     type = rtas_ld(args, 0);
986     idx = rtas_ld(args, 1);
987     state = rtas_ld(args, 2);
988 
989     switch (type) {
990     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
991         ret = rtas_set_isolation_state(idx, state);
992         break;
993     case RTAS_SENSOR_TYPE_DR:
994         ret = rtas_set_dr_indicator(idx, state);
995         break;
996     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
997         ret = rtas_set_allocation_state(idx, state);
998         break;
999     default:
1000         ret = RTAS_OUT_NOT_SUPPORTED;
1001     }
1002 
1003 out:
1004     rtas_st(rets, 0, ret);
1005 }
1006 
1007 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1008                                   uint32_t token, uint32_t nargs,
1009                                   target_ulong args, uint32_t nret,
1010                                   target_ulong rets)
1011 {
1012     uint32_t sensor_type;
1013     uint32_t sensor_index;
1014     uint32_t sensor_state = 0;
1015     sPAPRDRConnector *drc;
1016     sPAPRDRConnectorClass *drck;
1017     uint32_t ret = RTAS_OUT_SUCCESS;
1018 
1019     if (nargs != 2 || nret != 2) {
1020         ret = RTAS_OUT_PARAM_ERROR;
1021         goto out;
1022     }
1023 
1024     sensor_type = rtas_ld(args, 0);
1025     sensor_index = rtas_ld(args, 1);
1026 
1027     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1028         /* currently only DR-related sensors are implemented */
1029         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1030                                                         sensor_type);
1031         ret = RTAS_OUT_NOT_SUPPORTED;
1032         goto out;
1033     }
1034 
1035     drc = spapr_drc_by_index(sensor_index);
1036     if (!drc) {
1037         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1038         ret = RTAS_OUT_PARAM_ERROR;
1039         goto out;
1040     }
1041     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1042     sensor_state = drck->dr_entity_sense(drc);
1043 
1044 out:
1045     rtas_st(rets, 0, ret);
1046     rtas_st(rets, 1, sensor_state);
1047 }
1048 
1049 /* configure-connector work area offsets, int32_t units for field
1050  * indexes, bytes for field offset/len values.
1051  *
1052  * as documented by PAPR+ v2.7, 13.5.3.5
1053  */
1054 #define CC_IDX_NODE_NAME_OFFSET 2
1055 #define CC_IDX_PROP_NAME_OFFSET 2
1056 #define CC_IDX_PROP_LEN 3
1057 #define CC_IDX_PROP_DATA_OFFSET 4
1058 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1059 #define CC_WA_LEN 4096
1060 
1061 static void configure_connector_st(target_ulong addr, target_ulong offset,
1062                                    const void *buf, size_t len)
1063 {
1064     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1065                               buf, MIN(len, CC_WA_LEN - offset));
1066 }
1067 
1068 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1069                                          sPAPRMachineState *spapr,
1070                                          uint32_t token, uint32_t nargs,
1071                                          target_ulong args, uint32_t nret,
1072                                          target_ulong rets)
1073 {
1074     uint64_t wa_addr;
1075     uint64_t wa_offset;
1076     uint32_t drc_index;
1077     sPAPRDRConnector *drc;
1078     sPAPRDRConnectorClass *drck;
1079     sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1080     int rc;
1081 
1082     if (nargs != 2 || nret != 1) {
1083         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1084         return;
1085     }
1086 
1087     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1088 
1089     drc_index = rtas_ld(wa_addr, 0);
1090     drc = spapr_drc_by_index(drc_index);
1091     if (!drc) {
1092         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1093         rc = RTAS_OUT_PARAM_ERROR;
1094         goto out;
1095     }
1096 
1097     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1098         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1099         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1100         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1101         /*
1102          * Need to unisolate the device before configuring
1103          * or it should already be in configured state to
1104          * allow configure-connector be called repeatedly.
1105          */
1106         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1107         goto out;
1108     }
1109 
1110     g_assert(drc->fdt);
1111 
1112     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1113 
1114     do {
1115         uint32_t tag;
1116         const char *name;
1117         const struct fdt_property *prop;
1118         int fdt_offset_next, prop_len;
1119 
1120         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1121 
1122         switch (tag) {
1123         case FDT_BEGIN_NODE:
1124             drc->ccs_depth++;
1125             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1126 
1127             /* provide the name of the next OF node */
1128             wa_offset = CC_VAL_DATA_OFFSET;
1129             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1130             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1131             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1132             break;
1133         case FDT_END_NODE:
1134             drc->ccs_depth--;
1135             if (drc->ccs_depth == 0) {
1136                 uint32_t drc_index = spapr_drc_index(drc);
1137 
1138                 /* done sending the device tree, move to configured state */
1139                 trace_spapr_drc_set_configured(drc_index);
1140                 drc->state = drck->ready_state;
1141                 /*
1142                  * Ensure that we are able to send the FDT fragment
1143                  * again via configure-connector call if the guest requests.
1144                  */
1145                 drc->ccs_offset = drc->fdt_start_offset;
1146                 drc->ccs_depth = 0;
1147                 fdt_offset_next = drc->fdt_start_offset;
1148                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1149             } else {
1150                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1151             }
1152             break;
1153         case FDT_PROP:
1154             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1155                                               &prop_len);
1156             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1157 
1158             /* provide the name of the next OF property */
1159             wa_offset = CC_VAL_DATA_OFFSET;
1160             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1161             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1162 
1163             /* provide the length and value of the OF property. data gets
1164              * placed immediately after NULL terminator of the OF property's
1165              * name string
1166              */
1167             wa_offset += strlen(name) + 1,
1168             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1169             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1170             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1171             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1172             break;
1173         case FDT_END:
1174             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1175         default:
1176             /* keep seeking for an actionable tag */
1177             break;
1178         }
1179         if (drc->ccs_offset >= 0) {
1180             drc->ccs_offset = fdt_offset_next;
1181         }
1182     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1183 
1184     rc = resp;
1185 out:
1186     rtas_st(rets, 0, rc);
1187 }
1188 
1189 static void spapr_drc_register_types(void)
1190 {
1191     type_register_static(&spapr_dr_connector_info);
1192     type_register_static(&spapr_drc_physical_info);
1193     type_register_static(&spapr_drc_logical_info);
1194     type_register_static(&spapr_drc_cpu_info);
1195     type_register_static(&spapr_drc_pci_info);
1196     type_register_static(&spapr_drc_lmb_info);
1197 
1198     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1199                         rtas_set_indicator);
1200     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1201                         rtas_get_sensor_state);
1202     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1203                         rtas_ibm_configure_connector);
1204 }
1205 type_init(spapr_drc_register_types)
1206