1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 Error *err = NULL; 306 int fdt_offset_next, fdt_offset, fdt_depth; 307 void *fdt; 308 309 if (!drc->fdt) { 310 visit_type_null(v, NULL, &null, errp); 311 qobject_unref(null); 312 return; 313 } 314 315 fdt = drc->fdt; 316 fdt_offset = drc->fdt_start_offset; 317 fdt_depth = 0; 318 319 do { 320 const char *name = NULL; 321 const struct fdt_property *prop = NULL; 322 int prop_len = 0, name_len = 0; 323 uint32_t tag; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 visit_start_struct(v, name, NULL, 0, &err); 331 if (err) { 332 error_propagate(errp, err); 333 return; 334 } 335 break; 336 case FDT_END_NODE: 337 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 338 g_assert(fdt_depth > 0); 339 visit_check_struct(v, &err); 340 visit_end_struct(v, NULL); 341 if (err) { 342 error_propagate(errp, err); 343 return; 344 } 345 fdt_depth--; 346 break; 347 case FDT_PROP: { 348 int i; 349 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 350 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 351 visit_start_list(v, name, NULL, 0, &err); 352 if (err) { 353 error_propagate(errp, err); 354 return; 355 } 356 for (i = 0; i < prop_len; i++) { 357 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 358 if (err) { 359 error_propagate(errp, err); 360 return; 361 } 362 } 363 visit_check_list(v, &err); 364 visit_end_list(v, NULL); 365 if (err) { 366 error_propagate(errp, err); 367 return; 368 } 369 break; 370 } 371 default: 372 error_report("device FDT in unexpected state: %d", tag); 373 abort(); 374 } 375 fdt_offset = fdt_offset_next; 376 } while (fdt_depth != 0); 377 } 378 379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp) 380 { 381 trace_spapr_drc_attach(spapr_drc_index(drc)); 382 383 if (drc->dev) { 384 error_setg(errp, "an attached device is still awaiting release"); 385 return; 386 } 387 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 388 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 389 390 drc->dev = d; 391 392 object_property_add_link(OBJECT(drc), "device", 393 object_get_typename(OBJECT(drc->dev)), 394 (Object **)(&drc->dev), 395 NULL, 0, NULL); 396 } 397 398 static void spapr_drc_release(SpaprDrc *drc) 399 { 400 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 401 402 drck->release(drc->dev); 403 404 drc->unplug_requested = false; 405 g_free(drc->fdt); 406 drc->fdt = NULL; 407 drc->fdt_start_offset = 0; 408 object_property_del(OBJECT(drc), "device", &error_abort); 409 drc->dev = NULL; 410 } 411 412 void spapr_drc_detach(SpaprDrc *drc) 413 { 414 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 415 416 trace_spapr_drc_detach(spapr_drc_index(drc)); 417 418 g_assert(drc->dev); 419 420 drc->unplug_requested = true; 421 422 if (drc->state != drck->empty_state) { 423 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 424 return; 425 } 426 427 spapr_drc_release(drc); 428 } 429 430 void spapr_drc_reset(SpaprDrc *drc) 431 { 432 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 433 434 trace_spapr_drc_reset(spapr_drc_index(drc)); 435 436 /* immediately upon reset we can safely assume DRCs whose devices 437 * are pending removal can be safely removed. 438 */ 439 if (drc->unplug_requested) { 440 spapr_drc_release(drc); 441 } 442 443 if (drc->dev) { 444 /* A device present at reset is ready to go, same as coldplugged */ 445 drc->state = drck->ready_state; 446 /* 447 * Ensure that we are able to send the FDT fragment again 448 * via configure-connector call if the guest requests. 449 */ 450 drc->ccs_offset = drc->fdt_start_offset; 451 drc->ccs_depth = 0; 452 } else { 453 drc->state = drck->empty_state; 454 drc->ccs_offset = -1; 455 drc->ccs_depth = -1; 456 } 457 } 458 459 static bool spapr_drc_unplug_requested_needed(void *opaque) 460 { 461 return spapr_drc_unplug_requested(opaque); 462 } 463 464 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 465 .name = "spapr_drc/unplug_requested", 466 .version_id = 1, 467 .minimum_version_id = 1, 468 .needed = spapr_drc_unplug_requested_needed, 469 .fields = (VMStateField []) { 470 VMSTATE_BOOL(unplug_requested, SpaprDrc), 471 VMSTATE_END_OF_LIST() 472 } 473 }; 474 475 bool spapr_drc_transient(SpaprDrc *drc) 476 { 477 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 478 479 /* 480 * If no dev is plugged in there is no need to migrate the DRC state 481 * nor to reset the DRC at CAS. 482 */ 483 if (!drc->dev) { 484 return false; 485 } 486 487 /* 488 * We need to reset the DRC at CAS or to migrate the DRC state if it's 489 * not equal to the expected long-term state, which is the same as the 490 * coldplugged initial state, or if an unplug request is pending. 491 */ 492 return drc->state != drck->ready_state || 493 spapr_drc_unplug_requested(drc); 494 } 495 496 static bool spapr_drc_needed(void *opaque) 497 { 498 return spapr_drc_transient(opaque); 499 } 500 501 static const VMStateDescription vmstate_spapr_drc = { 502 .name = "spapr_drc", 503 .version_id = 1, 504 .minimum_version_id = 1, 505 .needed = spapr_drc_needed, 506 .fields = (VMStateField []) { 507 VMSTATE_UINT32(state, SpaprDrc), 508 VMSTATE_END_OF_LIST() 509 }, 510 .subsections = (const VMStateDescription * []) { 511 &vmstate_spapr_drc_unplug_requested, 512 NULL 513 } 514 }; 515 516 static void realize(DeviceState *d, Error **errp) 517 { 518 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 519 Object *root_container; 520 gchar *link_name; 521 gchar *child_name; 522 Error *err = NULL; 523 524 trace_spapr_drc_realize(spapr_drc_index(drc)); 525 /* NOTE: we do this as part of realize/unrealize due to the fact 526 * that the guest will communicate with the DRC via RTAS calls 527 * referencing the global DRC index. By unlinking the DRC 528 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 529 * inaccessible by the guest, since lookups rely on this path 530 * existing in the composition tree 531 */ 532 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 533 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 534 child_name = object_get_canonical_path_component(OBJECT(drc)); 535 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 536 object_property_add_alias(root_container, link_name, 537 drc->owner, child_name, &err); 538 g_free(child_name); 539 g_free(link_name); 540 if (err) { 541 error_propagate(errp, err); 542 return; 543 } 544 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 545 drc); 546 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 547 } 548 549 static void unrealize(DeviceState *d, Error **errp) 550 { 551 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 552 Object *root_container; 553 gchar *name; 554 555 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 556 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 557 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 558 name = g_strdup_printf("%x", spapr_drc_index(drc)); 559 object_property_del(root_container, name, errp); 560 g_free(name); 561 } 562 563 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 564 uint32_t id) 565 { 566 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 567 char *prop_name; 568 569 drc->id = id; 570 drc->owner = owner; 571 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 572 spapr_drc_index(drc)); 573 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort); 574 object_unref(OBJECT(drc)); 575 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 576 g_free(prop_name); 577 578 return drc; 579 } 580 581 static void spapr_dr_connector_instance_init(Object *obj) 582 { 583 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 584 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 585 586 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 587 object_property_add(obj, "index", "uint32", prop_get_index, 588 NULL, NULL, NULL, NULL); 589 object_property_add(obj, "fdt", "struct", prop_get_fdt, 590 NULL, NULL, NULL, NULL); 591 drc->state = drck->empty_state; 592 } 593 594 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 595 { 596 DeviceClass *dk = DEVICE_CLASS(k); 597 598 dk->realize = realize; 599 dk->unrealize = unrealize; 600 /* 601 * Reason: it crashes FIXME find and document the real reason 602 */ 603 dk->user_creatable = false; 604 } 605 606 static bool drc_physical_needed(void *opaque) 607 { 608 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 609 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 610 611 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 612 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 613 return false; 614 } 615 return true; 616 } 617 618 static const VMStateDescription vmstate_spapr_drc_physical = { 619 .name = "spapr_drc/physical", 620 .version_id = 1, 621 .minimum_version_id = 1, 622 .needed = drc_physical_needed, 623 .fields = (VMStateField []) { 624 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 625 VMSTATE_END_OF_LIST() 626 } 627 }; 628 629 static void drc_physical_reset(void *opaque) 630 { 631 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 632 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 633 634 if (drc->dev) { 635 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 636 } else { 637 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 638 } 639 } 640 641 static void realize_physical(DeviceState *d, Error **errp) 642 { 643 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 644 Error *local_err = NULL; 645 646 realize(d, &local_err); 647 if (local_err) { 648 error_propagate(errp, local_err); 649 return; 650 } 651 652 vmstate_register(VMSTATE_IF(drcp), 653 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 654 &vmstate_spapr_drc_physical, drcp); 655 qemu_register_reset(drc_physical_reset, drcp); 656 } 657 658 static void unrealize_physical(DeviceState *d, Error **errp) 659 { 660 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 661 Error *local_err = NULL; 662 663 unrealize(d, &local_err); 664 if (local_err) { 665 error_propagate(errp, local_err); 666 return; 667 } 668 669 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 670 qemu_unregister_reset(drc_physical_reset, drcp); 671 } 672 673 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 674 { 675 DeviceClass *dk = DEVICE_CLASS(k); 676 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 677 678 dk->realize = realize_physical; 679 dk->unrealize = unrealize_physical; 680 drck->dr_entity_sense = physical_entity_sense; 681 drck->isolate = drc_isolate_physical; 682 drck->unisolate = drc_unisolate_physical; 683 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 684 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 685 } 686 687 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 688 { 689 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 690 691 drck->dr_entity_sense = logical_entity_sense; 692 drck->isolate = drc_isolate_logical; 693 drck->unisolate = drc_unisolate_logical; 694 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 695 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 696 } 697 698 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 699 { 700 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 701 702 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 703 drck->typename = "CPU"; 704 drck->drc_name_prefix = "CPU "; 705 drck->release = spapr_core_release; 706 drck->dt_populate = spapr_core_dt_populate; 707 } 708 709 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 710 { 711 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 712 713 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 714 drck->typename = "28"; 715 drck->drc_name_prefix = "C"; 716 drck->release = spapr_phb_remove_pci_device_cb; 717 drck->dt_populate = spapr_pci_dt_populate; 718 } 719 720 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 721 { 722 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 723 724 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 725 drck->typename = "MEM"; 726 drck->drc_name_prefix = "LMB "; 727 drck->release = spapr_lmb_release; 728 drck->dt_populate = spapr_lmb_dt_populate; 729 } 730 731 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 732 { 733 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 734 735 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 736 drck->typename = "PHB"; 737 drck->drc_name_prefix = "PHB "; 738 drck->release = spapr_phb_release; 739 drck->dt_populate = spapr_phb_dt_populate; 740 } 741 742 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 743 { 744 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 745 746 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 747 drck->typename = "PMEM"; 748 drck->drc_name_prefix = "PMEM "; 749 drck->release = NULL; 750 drck->dt_populate = spapr_pmem_dt_populate; 751 } 752 753 static const TypeInfo spapr_dr_connector_info = { 754 .name = TYPE_SPAPR_DR_CONNECTOR, 755 .parent = TYPE_DEVICE, 756 .instance_size = sizeof(SpaprDrc), 757 .instance_init = spapr_dr_connector_instance_init, 758 .class_size = sizeof(SpaprDrcClass), 759 .class_init = spapr_dr_connector_class_init, 760 .abstract = true, 761 }; 762 763 static const TypeInfo spapr_drc_physical_info = { 764 .name = TYPE_SPAPR_DRC_PHYSICAL, 765 .parent = TYPE_SPAPR_DR_CONNECTOR, 766 .instance_size = sizeof(SpaprDrcPhysical), 767 .class_init = spapr_drc_physical_class_init, 768 .abstract = true, 769 }; 770 771 static const TypeInfo spapr_drc_logical_info = { 772 .name = TYPE_SPAPR_DRC_LOGICAL, 773 .parent = TYPE_SPAPR_DR_CONNECTOR, 774 .class_init = spapr_drc_logical_class_init, 775 .abstract = true, 776 }; 777 778 static const TypeInfo spapr_drc_cpu_info = { 779 .name = TYPE_SPAPR_DRC_CPU, 780 .parent = TYPE_SPAPR_DRC_LOGICAL, 781 .class_init = spapr_drc_cpu_class_init, 782 }; 783 784 static const TypeInfo spapr_drc_pci_info = { 785 .name = TYPE_SPAPR_DRC_PCI, 786 .parent = TYPE_SPAPR_DRC_PHYSICAL, 787 .class_init = spapr_drc_pci_class_init, 788 }; 789 790 static const TypeInfo spapr_drc_lmb_info = { 791 .name = TYPE_SPAPR_DRC_LMB, 792 .parent = TYPE_SPAPR_DRC_LOGICAL, 793 .class_init = spapr_drc_lmb_class_init, 794 }; 795 796 static const TypeInfo spapr_drc_phb_info = { 797 .name = TYPE_SPAPR_DRC_PHB, 798 .parent = TYPE_SPAPR_DRC_LOGICAL, 799 .instance_size = sizeof(SpaprDrc), 800 .class_init = spapr_drc_phb_class_init, 801 }; 802 803 static const TypeInfo spapr_drc_pmem_info = { 804 .name = TYPE_SPAPR_DRC_PMEM, 805 .parent = TYPE_SPAPR_DRC_LOGICAL, 806 .class_init = spapr_drc_pmem_class_init, 807 }; 808 809 /* helper functions for external users */ 810 811 SpaprDrc *spapr_drc_by_index(uint32_t index) 812 { 813 Object *obj; 814 gchar *name; 815 816 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 817 obj = object_resolve_path(name, NULL); 818 g_free(name); 819 820 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 821 } 822 823 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 824 { 825 SpaprDrcClass *drck 826 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 827 828 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 829 | (id & DRC_INDEX_ID_MASK)); 830 } 831 832 /** 833 * spapr_dt_drc 834 * 835 * @fdt: libfdt device tree 836 * @path: path in the DT to generate properties 837 * @owner: parent Object/DeviceState for which to generate DRC 838 * descriptions for 839 * @drc_type_mask: mask of SpaprDrcType values corresponding 840 * to the types of DRCs to generate entries for 841 * 842 * generate OF properties to describe DRC topology/indices to guests 843 * 844 * as documented in PAPR+ v2.1, 13.5.2 845 */ 846 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 847 { 848 Object *root_container; 849 ObjectProperty *prop; 850 ObjectPropertyIterator iter; 851 uint32_t drc_count = 0; 852 GArray *drc_indexes, *drc_power_domains; 853 GString *drc_names, *drc_types; 854 int ret; 855 856 /* the first entry of each properties is a 32-bit integer encoding 857 * the number of elements in the array. we won't know this until 858 * we complete the iteration through all the matching DRCs, but 859 * reserve the space now and set the offsets accordingly so we 860 * can fill them in later. 861 */ 862 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 863 drc_indexes = g_array_set_size(drc_indexes, 1); 864 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 865 drc_power_domains = g_array_set_size(drc_power_domains, 1); 866 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 867 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 868 869 /* aliases for all DRConnector objects will be rooted in QOM 870 * composition tree at DRC_CONTAINER_PATH 871 */ 872 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 873 874 object_property_iter_init(&iter, root_container); 875 while ((prop = object_property_iter_next(&iter))) { 876 Object *obj; 877 SpaprDrc *drc; 878 SpaprDrcClass *drck; 879 char *drc_name = NULL; 880 uint32_t drc_index, drc_power_domain; 881 882 if (!strstart(prop->type, "link<", NULL)) { 883 continue; 884 } 885 886 obj = object_property_get_link(root_container, prop->name, NULL); 887 drc = SPAPR_DR_CONNECTOR(obj); 888 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 889 890 if (owner && (drc->owner != owner)) { 891 continue; 892 } 893 894 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 895 continue; 896 } 897 898 drc_count++; 899 900 /* ibm,drc-indexes */ 901 drc_index = cpu_to_be32(spapr_drc_index(drc)); 902 g_array_append_val(drc_indexes, drc_index); 903 904 /* ibm,drc-power-domains */ 905 drc_power_domain = cpu_to_be32(-1); 906 g_array_append_val(drc_power_domains, drc_power_domain); 907 908 /* ibm,drc-names */ 909 drc_name = spapr_drc_name(drc); 910 drc_names = g_string_append(drc_names, drc_name); 911 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 912 g_free(drc_name); 913 914 /* ibm,drc-types */ 915 drc_types = g_string_append(drc_types, drck->typename); 916 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 917 } 918 919 /* now write the drc count into the space we reserved at the 920 * beginning of the arrays previously 921 */ 922 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 923 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 924 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 925 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 926 927 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 928 drc_indexes->data, 929 drc_indexes->len * sizeof(uint32_t)); 930 if (ret) { 931 error_report("Couldn't create ibm,drc-indexes property"); 932 goto out; 933 } 934 935 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 936 drc_power_domains->data, 937 drc_power_domains->len * sizeof(uint32_t)); 938 if (ret) { 939 error_report("Couldn't finalize ibm,drc-power-domains property"); 940 goto out; 941 } 942 943 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 944 drc_names->str, drc_names->len); 945 if (ret) { 946 error_report("Couldn't finalize ibm,drc-names property"); 947 goto out; 948 } 949 950 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 951 drc_types->str, drc_types->len); 952 if (ret) { 953 error_report("Couldn't finalize ibm,drc-types property"); 954 goto out; 955 } 956 957 out: 958 g_array_free(drc_indexes, true); 959 g_array_free(drc_power_domains, true); 960 g_string_free(drc_names, true); 961 g_string_free(drc_types, true); 962 963 return ret; 964 } 965 966 /* 967 * RTAS calls 968 */ 969 970 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 971 { 972 SpaprDrc *drc = spapr_drc_by_index(idx); 973 SpaprDrcClass *drck; 974 975 if (!drc) { 976 return RTAS_OUT_NO_SUCH_INDICATOR; 977 } 978 979 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 980 981 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 982 983 switch (state) { 984 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 985 return drck->isolate(drc); 986 987 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 988 return drck->unisolate(drc); 989 990 default: 991 return RTAS_OUT_PARAM_ERROR; 992 } 993 } 994 995 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 996 { 997 SpaprDrc *drc = spapr_drc_by_index(idx); 998 999 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1000 return RTAS_OUT_NO_SUCH_INDICATOR; 1001 } 1002 1003 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1004 1005 switch (state) { 1006 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1007 return drc_set_usable(drc); 1008 1009 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1010 return drc_set_unusable(drc); 1011 1012 default: 1013 return RTAS_OUT_PARAM_ERROR; 1014 } 1015 } 1016 1017 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1018 { 1019 SpaprDrc *drc = spapr_drc_by_index(idx); 1020 1021 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1022 return RTAS_OUT_NO_SUCH_INDICATOR; 1023 } 1024 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1025 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1026 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1027 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1028 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1029 } 1030 1031 trace_spapr_drc_set_dr_indicator(idx, state); 1032 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1033 return RTAS_OUT_SUCCESS; 1034 } 1035 1036 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1037 uint32_t token, 1038 uint32_t nargs, target_ulong args, 1039 uint32_t nret, target_ulong rets) 1040 { 1041 uint32_t type, idx, state; 1042 uint32_t ret = RTAS_OUT_SUCCESS; 1043 1044 if (nargs != 3 || nret != 1) { 1045 ret = RTAS_OUT_PARAM_ERROR; 1046 goto out; 1047 } 1048 1049 type = rtas_ld(args, 0); 1050 idx = rtas_ld(args, 1); 1051 state = rtas_ld(args, 2); 1052 1053 switch (type) { 1054 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1055 ret = rtas_set_isolation_state(idx, state); 1056 break; 1057 case RTAS_SENSOR_TYPE_DR: 1058 ret = rtas_set_dr_indicator(idx, state); 1059 break; 1060 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1061 ret = rtas_set_allocation_state(idx, state); 1062 break; 1063 default: 1064 ret = RTAS_OUT_NOT_SUPPORTED; 1065 } 1066 1067 out: 1068 rtas_st(rets, 0, ret); 1069 } 1070 1071 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1072 uint32_t token, uint32_t nargs, 1073 target_ulong args, uint32_t nret, 1074 target_ulong rets) 1075 { 1076 uint32_t sensor_type; 1077 uint32_t sensor_index; 1078 uint32_t sensor_state = 0; 1079 SpaprDrc *drc; 1080 SpaprDrcClass *drck; 1081 uint32_t ret = RTAS_OUT_SUCCESS; 1082 1083 if (nargs != 2 || nret != 2) { 1084 ret = RTAS_OUT_PARAM_ERROR; 1085 goto out; 1086 } 1087 1088 sensor_type = rtas_ld(args, 0); 1089 sensor_index = rtas_ld(args, 1); 1090 1091 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1092 /* currently only DR-related sensors are implemented */ 1093 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1094 sensor_type); 1095 ret = RTAS_OUT_NOT_SUPPORTED; 1096 goto out; 1097 } 1098 1099 drc = spapr_drc_by_index(sensor_index); 1100 if (!drc) { 1101 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1102 ret = RTAS_OUT_PARAM_ERROR; 1103 goto out; 1104 } 1105 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1106 sensor_state = drck->dr_entity_sense(drc); 1107 1108 out: 1109 rtas_st(rets, 0, ret); 1110 rtas_st(rets, 1, sensor_state); 1111 } 1112 1113 /* configure-connector work area offsets, int32_t units for field 1114 * indexes, bytes for field offset/len values. 1115 * 1116 * as documented by PAPR+ v2.7, 13.5.3.5 1117 */ 1118 #define CC_IDX_NODE_NAME_OFFSET 2 1119 #define CC_IDX_PROP_NAME_OFFSET 2 1120 #define CC_IDX_PROP_LEN 3 1121 #define CC_IDX_PROP_DATA_OFFSET 4 1122 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1123 #define CC_WA_LEN 4096 1124 1125 static void configure_connector_st(target_ulong addr, target_ulong offset, 1126 const void *buf, size_t len) 1127 { 1128 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1129 buf, MIN(len, CC_WA_LEN - offset)); 1130 } 1131 1132 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1133 SpaprMachineState *spapr, 1134 uint32_t token, uint32_t nargs, 1135 target_ulong args, uint32_t nret, 1136 target_ulong rets) 1137 { 1138 uint64_t wa_addr; 1139 uint64_t wa_offset; 1140 uint32_t drc_index; 1141 SpaprDrc *drc; 1142 SpaprDrcClass *drck; 1143 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1144 int rc; 1145 1146 if (nargs != 2 || nret != 1) { 1147 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1148 return; 1149 } 1150 1151 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1152 1153 drc_index = rtas_ld(wa_addr, 0); 1154 drc = spapr_drc_by_index(drc_index); 1155 if (!drc) { 1156 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1157 rc = RTAS_OUT_PARAM_ERROR; 1158 goto out; 1159 } 1160 1161 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1162 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1163 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1164 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1165 /* 1166 * Need to unisolate the device before configuring 1167 * or it should already be in configured state to 1168 * allow configure-connector be called repeatedly. 1169 */ 1170 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1171 goto out; 1172 } 1173 1174 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1175 1176 if (!drc->fdt) { 1177 Error *local_err = NULL; 1178 void *fdt; 1179 int fdt_size; 1180 1181 fdt = create_device_tree(&fdt_size); 1182 1183 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1184 &local_err)) { 1185 g_free(fdt); 1186 error_free(local_err); 1187 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1188 goto out; 1189 } 1190 1191 drc->fdt = fdt; 1192 drc->ccs_offset = drc->fdt_start_offset; 1193 drc->ccs_depth = 0; 1194 } 1195 1196 do { 1197 uint32_t tag; 1198 const char *name; 1199 const struct fdt_property *prop; 1200 int fdt_offset_next, prop_len; 1201 1202 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1203 1204 switch (tag) { 1205 case FDT_BEGIN_NODE: 1206 drc->ccs_depth++; 1207 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1208 1209 /* provide the name of the next OF node */ 1210 wa_offset = CC_VAL_DATA_OFFSET; 1211 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1212 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1213 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1214 break; 1215 case FDT_END_NODE: 1216 drc->ccs_depth--; 1217 if (drc->ccs_depth == 0) { 1218 uint32_t drc_index = spapr_drc_index(drc); 1219 1220 /* done sending the device tree, move to configured state */ 1221 trace_spapr_drc_set_configured(drc_index); 1222 drc->state = drck->ready_state; 1223 /* 1224 * Ensure that we are able to send the FDT fragment 1225 * again via configure-connector call if the guest requests. 1226 */ 1227 drc->ccs_offset = drc->fdt_start_offset; 1228 drc->ccs_depth = 0; 1229 fdt_offset_next = drc->fdt_start_offset; 1230 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1231 } else { 1232 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1233 } 1234 break; 1235 case FDT_PROP: 1236 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1237 &prop_len); 1238 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1239 1240 /* provide the name of the next OF property */ 1241 wa_offset = CC_VAL_DATA_OFFSET; 1242 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1243 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1244 1245 /* provide the length and value of the OF property. data gets 1246 * placed immediately after NULL terminator of the OF property's 1247 * name string 1248 */ 1249 wa_offset += strlen(name) + 1, 1250 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1251 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1252 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1253 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1254 break; 1255 case FDT_END: 1256 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1257 default: 1258 /* keep seeking for an actionable tag */ 1259 break; 1260 } 1261 if (drc->ccs_offset >= 0) { 1262 drc->ccs_offset = fdt_offset_next; 1263 } 1264 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1265 1266 rc = resp; 1267 out: 1268 rtas_st(rets, 0, rc); 1269 } 1270 1271 static void spapr_drc_register_types(void) 1272 { 1273 type_register_static(&spapr_dr_connector_info); 1274 type_register_static(&spapr_drc_physical_info); 1275 type_register_static(&spapr_drc_logical_info); 1276 type_register_static(&spapr_drc_cpu_info); 1277 type_register_static(&spapr_drc_pci_info); 1278 type_register_static(&spapr_drc_lmb_info); 1279 type_register_static(&spapr_drc_phb_info); 1280 type_register_static(&spapr_drc_pmem_info); 1281 1282 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1283 rtas_set_indicator); 1284 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1285 rtas_get_sensor_state); 1286 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1287 rtas_ibm_configure_connector); 1288 } 1289 type_init(spapr_drc_register_types) 1290