1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "hw/qdev.h" 20 #include "qapi/visitor.h" 21 #include "qemu/error-report.h" 22 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 24 #include "trace.h" 25 26 #define DRC_CONTAINER_PATH "/dr-connector" 27 #define DRC_INDEX_TYPE_SHIFT 28 28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 29 30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc) 31 { 32 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 33 34 return 1 << drck->typeshift; 35 } 36 37 uint32_t spapr_drc_index(sPAPRDRConnector *drc) 38 { 39 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 40 41 /* no set format for a drc index: it only needs to be globally 42 * unique. this is how we encode the DRC type on bare-metal 43 * however, so might as well do that here 44 */ 45 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 46 | (drc->id & DRC_INDEX_ID_MASK); 47 } 48 49 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc) 50 { 51 switch (drc->state) { 52 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 53 return RTAS_OUT_SUCCESS; /* Nothing to do */ 54 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 55 break; /* see below */ 56 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 57 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 58 default: 59 g_assert_not_reached(); 60 } 61 62 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 63 64 if (drc->unplug_requested) { 65 uint32_t drc_index = spapr_drc_index(drc); 66 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 67 spapr_drc_detach(drc); 68 } 69 70 return RTAS_OUT_SUCCESS; 71 } 72 73 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc) 74 { 75 switch (drc->state) { 76 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 77 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 78 return RTAS_OUT_SUCCESS; /* Nothing to do */ 79 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 80 break; /* see below */ 81 default: 82 g_assert_not_reached(); 83 } 84 85 /* cannot unisolate a non-existent resource, and, or resources 86 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 87 * 13.5.3.5) 88 */ 89 if (!drc->dev) { 90 return RTAS_OUT_NO_SUCH_INDICATOR; 91 } 92 93 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 94 drc->ccs_offset = drc->fdt_start_offset; 95 drc->ccs_depth = 0; 96 97 return RTAS_OUT_SUCCESS; 98 } 99 100 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc) 101 { 102 switch (drc->state) { 103 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 104 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 105 return RTAS_OUT_SUCCESS; /* Nothing to do */ 106 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 107 break; /* see below */ 108 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 109 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 110 default: 111 g_assert_not_reached(); 112 } 113 114 /* 115 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 116 * belong to a DIMM device that is marked for removal. 117 * 118 * Currently the guest userspace tool drmgr that drives the memory 119 * hotplug/unplug will just try to remove a set of 'removable' LMBs 120 * in response to a hot unplug request that is based on drc-count. 121 * If the LMB being removed doesn't belong to a DIMM device that is 122 * actually being unplugged, fail the isolation request here. 123 */ 124 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 125 && !drc->unplug_requested) { 126 return RTAS_OUT_HW_ERROR; 127 } 128 129 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 130 131 /* if we're awaiting release, but still in an unconfigured state, 132 * it's likely the guest is still in the process of configuring 133 * the device and is transitioning the devices to an ISOLATED 134 * state as a part of that process. so we only complete the 135 * removal when this transition happens for a device in a 136 * configured state, as suggested by the state diagram from PAPR+ 137 * 2.7, 13.4 138 */ 139 if (drc->unplug_requested) { 140 uint32_t drc_index = spapr_drc_index(drc); 141 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 142 spapr_drc_detach(drc); 143 } 144 return RTAS_OUT_SUCCESS; 145 } 146 147 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc) 148 { 149 switch (drc->state) { 150 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 151 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 152 return RTAS_OUT_SUCCESS; /* Nothing to do */ 153 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 154 break; /* see below */ 155 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 156 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 157 default: 158 g_assert_not_reached(); 159 } 160 161 /* Move to AVAILABLE state should have ensured device was present */ 162 g_assert(drc->dev); 163 164 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 165 drc->ccs_offset = drc->fdt_start_offset; 166 drc->ccs_depth = 0; 167 168 return RTAS_OUT_SUCCESS; 169 } 170 171 static uint32_t drc_set_usable(sPAPRDRConnector *drc) 172 { 173 switch (drc->state) { 174 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 175 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 176 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 177 return RTAS_OUT_SUCCESS; /* Nothing to do */ 178 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 179 break; /* see below */ 180 default: 181 g_assert_not_reached(); 182 } 183 184 /* if there's no resource/device associated with the DRC, there's 185 * no way for us to put it in an allocation state consistent with 186 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 187 * result in an RTAS return code of -3 / "no such indicator" 188 */ 189 if (!drc->dev) { 190 return RTAS_OUT_NO_SUCH_INDICATOR; 191 } 192 if (drc->unplug_requested) { 193 /* Don't allow the guest to move a device away from UNUSABLE 194 * state when we want to unplug it */ 195 return RTAS_OUT_NO_SUCH_INDICATOR; 196 } 197 198 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 199 200 return RTAS_OUT_SUCCESS; 201 } 202 203 static uint32_t drc_set_unusable(sPAPRDRConnector *drc) 204 { 205 switch (drc->state) { 206 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 207 return RTAS_OUT_SUCCESS; /* Nothing to do */ 208 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 209 break; /* see below */ 210 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 211 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 212 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 213 default: 214 g_assert_not_reached(); 215 } 216 217 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 218 if (drc->unplug_requested) { 219 uint32_t drc_index = spapr_drc_index(drc); 220 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 221 spapr_drc_detach(drc); 222 } 223 224 return RTAS_OUT_SUCCESS; 225 } 226 227 static const char *spapr_drc_name(sPAPRDRConnector *drc) 228 { 229 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 230 231 /* human-readable name for a DRC to encode into the DT 232 * description. this is mainly only used within a guest in place 233 * of the unique DRC index. 234 * 235 * in the case of VIO/PCI devices, it corresponds to a "location 236 * code" that maps a logical device/function (DRC index) to a 237 * physical (or virtual in the case of VIO) location in the system 238 * by chaining together the "location label" for each 239 * encapsulating component. 240 * 241 * since this is more to do with diagnosing physical hardware 242 * issues than guest compatibility, we choose location codes/DRC 243 * names that adhere to the documented format, but avoid encoding 244 * the entire topology information into the label/code, instead 245 * just using the location codes based on the labels for the 246 * endpoints (VIO/PCI adaptor connectors), which is basically just 247 * "C" followed by an integer ID. 248 * 249 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 250 * location codes as documented by PAPR+ v2.7, 12.3.1.5 251 */ 252 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 253 } 254 255 /* 256 * dr-entity-sense sensor value 257 * returned via get-sensor-state RTAS calls 258 * as expected by state diagram in PAPR+ 2.7, 13.4 259 * based on the current allocation/indicator/power states 260 * for the DR connector. 261 */ 262 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc) 263 { 264 /* this assumes all PCI devices are assigned to a 'live insertion' 265 * power domain, where QEMU manages power state automatically as 266 * opposed to the guest. present, non-PCI resources are unaffected 267 * by power state. 268 */ 269 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 270 : SPAPR_DR_ENTITY_SENSE_EMPTY; 271 } 272 273 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) 274 { 275 switch (drc->state) { 276 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 277 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 278 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 279 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 280 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 281 g_assert(drc->dev); 282 return SPAPR_DR_ENTITY_SENSE_PRESENT; 283 default: 284 g_assert_not_reached(); 285 } 286 } 287 288 static void prop_get_index(Object *obj, Visitor *v, const char *name, 289 void *opaque, Error **errp) 290 { 291 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 292 uint32_t value = spapr_drc_index(drc); 293 visit_type_uint32(v, name, &value, errp); 294 } 295 296 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 297 void *opaque, Error **errp) 298 { 299 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 300 QNull *null = NULL; 301 Error *err = NULL; 302 int fdt_offset_next, fdt_offset, fdt_depth; 303 void *fdt; 304 305 if (!drc->fdt) { 306 visit_type_null(v, NULL, &null, errp); 307 QDECREF(null); 308 return; 309 } 310 311 fdt = drc->fdt; 312 fdt_offset = drc->fdt_start_offset; 313 fdt_depth = 0; 314 315 do { 316 const char *name = NULL; 317 const struct fdt_property *prop = NULL; 318 int prop_len = 0, name_len = 0; 319 uint32_t tag; 320 321 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 322 switch (tag) { 323 case FDT_BEGIN_NODE: 324 fdt_depth++; 325 name = fdt_get_name(fdt, fdt_offset, &name_len); 326 visit_start_struct(v, name, NULL, 0, &err); 327 if (err) { 328 error_propagate(errp, err); 329 return; 330 } 331 break; 332 case FDT_END_NODE: 333 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 334 g_assert(fdt_depth > 0); 335 visit_check_struct(v, &err); 336 visit_end_struct(v, NULL); 337 if (err) { 338 error_propagate(errp, err); 339 return; 340 } 341 fdt_depth--; 342 break; 343 case FDT_PROP: { 344 int i; 345 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 346 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 347 visit_start_list(v, name, NULL, 0, &err); 348 if (err) { 349 error_propagate(errp, err); 350 return; 351 } 352 for (i = 0; i < prop_len; i++) { 353 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err); 354 if (err) { 355 error_propagate(errp, err); 356 return; 357 } 358 } 359 visit_check_list(v, &err); 360 visit_end_list(v, NULL); 361 if (err) { 362 error_propagate(errp, err); 363 return; 364 } 365 break; 366 } 367 default: 368 error_setg(&error_abort, "device FDT in unexpected state: %d", tag); 369 } 370 fdt_offset = fdt_offset_next; 371 } while (fdt_depth != 0); 372 } 373 374 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt, 375 int fdt_start_offset, Error **errp) 376 { 377 trace_spapr_drc_attach(spapr_drc_index(drc)); 378 379 if (drc->dev) { 380 error_setg(errp, "an attached device is still awaiting release"); 381 return; 382 } 383 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 384 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 385 g_assert(fdt); 386 387 drc->dev = d; 388 drc->fdt = fdt; 389 drc->fdt_start_offset = fdt_start_offset; 390 391 object_property_add_link(OBJECT(drc), "device", 392 object_get_typename(OBJECT(drc->dev)), 393 (Object **)(&drc->dev), 394 NULL, 0, NULL); 395 } 396 397 static void spapr_drc_release(sPAPRDRConnector *drc) 398 { 399 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 400 401 drck->release(drc->dev); 402 403 drc->unplug_requested = false; 404 g_free(drc->fdt); 405 drc->fdt = NULL; 406 drc->fdt_start_offset = 0; 407 object_property_del(OBJECT(drc), "device", &error_abort); 408 drc->dev = NULL; 409 } 410 411 void spapr_drc_detach(sPAPRDRConnector *drc) 412 { 413 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 414 415 trace_spapr_drc_detach(spapr_drc_index(drc)); 416 417 g_assert(drc->dev); 418 419 drc->unplug_requested = true; 420 421 if (drc->state != drck->empty_state) { 422 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 423 return; 424 } 425 426 spapr_drc_release(drc); 427 } 428 429 void spapr_drc_reset(sPAPRDRConnector *drc) 430 { 431 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 432 433 trace_spapr_drc_reset(spapr_drc_index(drc)); 434 435 /* immediately upon reset we can safely assume DRCs whose devices 436 * are pending removal can be safely removed. 437 */ 438 if (drc->unplug_requested) { 439 spapr_drc_release(drc); 440 } 441 442 if (drc->dev) { 443 /* A device present at reset is ready to go, same as coldplugged */ 444 drc->state = drck->ready_state; 445 /* 446 * Ensure that we are able to send the FDT fragment again 447 * via configure-connector call if the guest requests. 448 */ 449 drc->ccs_offset = drc->fdt_start_offset; 450 drc->ccs_depth = 0; 451 } else { 452 drc->state = drck->empty_state; 453 drc->ccs_offset = -1; 454 drc->ccs_depth = -1; 455 } 456 } 457 458 static void drc_reset(void *opaque) 459 { 460 spapr_drc_reset(SPAPR_DR_CONNECTOR(opaque)); 461 } 462 463 static bool spapr_drc_needed(void *opaque) 464 { 465 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque; 466 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 467 sPAPRDREntitySense value = drck->dr_entity_sense(drc); 468 469 /* If no dev is plugged in there is no need to migrate the DRC state */ 470 if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) { 471 return false; 472 } 473 474 /* 475 * We need to migrate the state if it's not equal to the expected 476 * long-term state, which is the same as the coldplugged initial 477 * state */ 478 return (drc->state != drck->ready_state); 479 } 480 481 static const VMStateDescription vmstate_spapr_drc = { 482 .name = "spapr_drc", 483 .version_id = 1, 484 .minimum_version_id = 1, 485 .needed = spapr_drc_needed, 486 .fields = (VMStateField []) { 487 VMSTATE_UINT32(state, sPAPRDRConnector), 488 VMSTATE_END_OF_LIST() 489 } 490 }; 491 492 static void realize(DeviceState *d, Error **errp) 493 { 494 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 495 Object *root_container; 496 char link_name[256]; 497 gchar *child_name; 498 Error *err = NULL; 499 500 trace_spapr_drc_realize(spapr_drc_index(drc)); 501 /* NOTE: we do this as part of realize/unrealize due to the fact 502 * that the guest will communicate with the DRC via RTAS calls 503 * referencing the global DRC index. By unlinking the DRC 504 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 505 * inaccessible by the guest, since lookups rely on this path 506 * existing in the composition tree 507 */ 508 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 509 snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc)); 510 child_name = object_get_canonical_path_component(OBJECT(drc)); 511 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 512 object_property_add_alias(root_container, link_name, 513 drc->owner, child_name, &err); 514 g_free(child_name); 515 if (err) { 516 error_propagate(errp, err); 517 return; 518 } 519 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 520 drc); 521 qemu_register_reset(drc_reset, drc); 522 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 523 } 524 525 static void unrealize(DeviceState *d, Error **errp) 526 { 527 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); 528 Object *root_container; 529 char name[256]; 530 531 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 532 qemu_unregister_reset(drc_reset, drc); 533 vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc); 534 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 535 snprintf(name, sizeof(name), "%x", spapr_drc_index(drc)); 536 object_property_del(root_container, name, errp); 537 } 538 539 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type, 540 uint32_t id) 541 { 542 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type)); 543 char *prop_name; 544 545 drc->id = id; 546 drc->owner = owner; 547 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 548 spapr_drc_index(drc)); 549 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort); 550 object_property_set_bool(OBJECT(drc), true, "realized", NULL); 551 g_free(prop_name); 552 553 return drc; 554 } 555 556 static void spapr_dr_connector_instance_init(Object *obj) 557 { 558 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj); 559 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 560 561 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL); 562 object_property_add(obj, "index", "uint32", prop_get_index, 563 NULL, NULL, NULL, NULL); 564 object_property_add(obj, "fdt", "struct", prop_get_fdt, 565 NULL, NULL, NULL, NULL); 566 drc->state = drck->empty_state; 567 } 568 569 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 570 { 571 DeviceClass *dk = DEVICE_CLASS(k); 572 573 dk->realize = realize; 574 dk->unrealize = unrealize; 575 /* 576 * Reason: it crashes FIXME find and document the real reason 577 */ 578 dk->user_creatable = false; 579 } 580 581 static bool drc_physical_needed(void *opaque) 582 { 583 sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque; 584 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp); 585 586 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 587 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 588 return false; 589 } 590 return true; 591 } 592 593 static const VMStateDescription vmstate_spapr_drc_physical = { 594 .name = "spapr_drc/physical", 595 .version_id = 1, 596 .minimum_version_id = 1, 597 .needed = drc_physical_needed, 598 .fields = (VMStateField []) { 599 VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical), 600 VMSTATE_END_OF_LIST() 601 } 602 }; 603 604 static void drc_physical_reset(void *opaque) 605 { 606 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque); 607 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 608 609 if (drc->dev) { 610 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 611 } else { 612 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 613 } 614 } 615 616 static void realize_physical(DeviceState *d, Error **errp) 617 { 618 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 619 Error *local_err = NULL; 620 621 realize(d, &local_err); 622 if (local_err) { 623 error_propagate(errp, local_err); 624 return; 625 } 626 627 vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 628 &vmstate_spapr_drc_physical, drcp); 629 qemu_register_reset(drc_physical_reset, drcp); 630 } 631 632 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 633 { 634 DeviceClass *dk = DEVICE_CLASS(k); 635 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 636 637 dk->realize = realize_physical; 638 drck->dr_entity_sense = physical_entity_sense; 639 drck->isolate = drc_isolate_physical; 640 drck->unisolate = drc_unisolate_physical; 641 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 642 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 643 } 644 645 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 646 { 647 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 648 649 drck->dr_entity_sense = logical_entity_sense; 650 drck->isolate = drc_isolate_logical; 651 drck->unisolate = drc_unisolate_logical; 652 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 653 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 654 } 655 656 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 657 { 658 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 659 660 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 661 drck->typename = "CPU"; 662 drck->drc_name_prefix = "CPU "; 663 drck->release = spapr_core_release; 664 } 665 666 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 667 { 668 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 669 670 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 671 drck->typename = "28"; 672 drck->drc_name_prefix = "C"; 673 drck->release = spapr_phb_remove_pci_device_cb; 674 } 675 676 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 677 { 678 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 679 680 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 681 drck->typename = "MEM"; 682 drck->drc_name_prefix = "LMB "; 683 drck->release = spapr_lmb_release; 684 } 685 686 static const TypeInfo spapr_dr_connector_info = { 687 .name = TYPE_SPAPR_DR_CONNECTOR, 688 .parent = TYPE_DEVICE, 689 .instance_size = sizeof(sPAPRDRConnector), 690 .instance_init = spapr_dr_connector_instance_init, 691 .class_size = sizeof(sPAPRDRConnectorClass), 692 .class_init = spapr_dr_connector_class_init, 693 .abstract = true, 694 }; 695 696 static const TypeInfo spapr_drc_physical_info = { 697 .name = TYPE_SPAPR_DRC_PHYSICAL, 698 .parent = TYPE_SPAPR_DR_CONNECTOR, 699 .instance_size = sizeof(sPAPRDRCPhysical), 700 .class_init = spapr_drc_physical_class_init, 701 .abstract = true, 702 }; 703 704 static const TypeInfo spapr_drc_logical_info = { 705 .name = TYPE_SPAPR_DRC_LOGICAL, 706 .parent = TYPE_SPAPR_DR_CONNECTOR, 707 .class_init = spapr_drc_logical_class_init, 708 .abstract = true, 709 }; 710 711 static const TypeInfo spapr_drc_cpu_info = { 712 .name = TYPE_SPAPR_DRC_CPU, 713 .parent = TYPE_SPAPR_DRC_LOGICAL, 714 .class_init = spapr_drc_cpu_class_init, 715 }; 716 717 static const TypeInfo spapr_drc_pci_info = { 718 .name = TYPE_SPAPR_DRC_PCI, 719 .parent = TYPE_SPAPR_DRC_PHYSICAL, 720 .class_init = spapr_drc_pci_class_init, 721 }; 722 723 static const TypeInfo spapr_drc_lmb_info = { 724 .name = TYPE_SPAPR_DRC_LMB, 725 .parent = TYPE_SPAPR_DRC_LOGICAL, 726 .class_init = spapr_drc_lmb_class_init, 727 }; 728 729 /* helper functions for external users */ 730 731 sPAPRDRConnector *spapr_drc_by_index(uint32_t index) 732 { 733 Object *obj; 734 char name[256]; 735 736 snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index); 737 obj = object_resolve_path(name, NULL); 738 739 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 740 } 741 742 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id) 743 { 744 sPAPRDRConnectorClass *drck 745 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 746 747 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 748 | (id & DRC_INDEX_ID_MASK)); 749 } 750 751 /** 752 * spapr_drc_populate_dt 753 * 754 * @fdt: libfdt device tree 755 * @path: path in the DT to generate properties 756 * @owner: parent Object/DeviceState for which to generate DRC 757 * descriptions for 758 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding 759 * to the types of DRCs to generate entries for 760 * 761 * generate OF properties to describe DRC topology/indices to guests 762 * 763 * as documented in PAPR+ v2.1, 13.5.2 764 */ 765 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner, 766 uint32_t drc_type_mask) 767 { 768 Object *root_container; 769 ObjectProperty *prop; 770 ObjectPropertyIterator iter; 771 uint32_t drc_count = 0; 772 GArray *drc_indexes, *drc_power_domains; 773 GString *drc_names, *drc_types; 774 int ret; 775 776 /* the first entry of each properties is a 32-bit integer encoding 777 * the number of elements in the array. we won't know this until 778 * we complete the iteration through all the matching DRCs, but 779 * reserve the space now and set the offsets accordingly so we 780 * can fill them in later. 781 */ 782 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 783 drc_indexes = g_array_set_size(drc_indexes, 1); 784 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 785 drc_power_domains = g_array_set_size(drc_power_domains, 1); 786 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 787 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 788 789 /* aliases for all DRConnector objects will be rooted in QOM 790 * composition tree at DRC_CONTAINER_PATH 791 */ 792 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 793 794 object_property_iter_init(&iter, root_container); 795 while ((prop = object_property_iter_next(&iter))) { 796 Object *obj; 797 sPAPRDRConnector *drc; 798 sPAPRDRConnectorClass *drck; 799 uint32_t drc_index, drc_power_domain; 800 801 if (!strstart(prop->type, "link<", NULL)) { 802 continue; 803 } 804 805 obj = object_property_get_link(root_container, prop->name, NULL); 806 drc = SPAPR_DR_CONNECTOR(obj); 807 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 808 809 if (owner && (drc->owner != owner)) { 810 continue; 811 } 812 813 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 814 continue; 815 } 816 817 drc_count++; 818 819 /* ibm,drc-indexes */ 820 drc_index = cpu_to_be32(spapr_drc_index(drc)); 821 g_array_append_val(drc_indexes, drc_index); 822 823 /* ibm,drc-power-domains */ 824 drc_power_domain = cpu_to_be32(-1); 825 g_array_append_val(drc_power_domains, drc_power_domain); 826 827 /* ibm,drc-names */ 828 drc_names = g_string_append(drc_names, spapr_drc_name(drc)); 829 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 830 831 /* ibm,drc-types */ 832 drc_types = g_string_append(drc_types, drck->typename); 833 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 834 } 835 836 /* now write the drc count into the space we reserved at the 837 * beginning of the arrays previously 838 */ 839 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 840 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 841 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 842 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 843 844 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes", 845 drc_indexes->data, 846 drc_indexes->len * sizeof(uint32_t)); 847 if (ret) { 848 error_report("Couldn't create ibm,drc-indexes property"); 849 goto out; 850 } 851 852 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains", 853 drc_power_domains->data, 854 drc_power_domains->len * sizeof(uint32_t)); 855 if (ret) { 856 error_report("Couldn't finalize ibm,drc-power-domains property"); 857 goto out; 858 } 859 860 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names", 861 drc_names->str, drc_names->len); 862 if (ret) { 863 error_report("Couldn't finalize ibm,drc-names property"); 864 goto out; 865 } 866 867 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types", 868 drc_types->str, drc_types->len); 869 if (ret) { 870 error_report("Couldn't finalize ibm,drc-types property"); 871 goto out; 872 } 873 874 out: 875 g_array_free(drc_indexes, true); 876 g_array_free(drc_power_domains, true); 877 g_string_free(drc_names, true); 878 g_string_free(drc_types, true); 879 880 return ret; 881 } 882 883 /* 884 * RTAS calls 885 */ 886 887 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 888 { 889 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 890 sPAPRDRConnectorClass *drck; 891 892 if (!drc) { 893 return RTAS_OUT_NO_SUCH_INDICATOR; 894 } 895 896 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 897 898 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 899 900 switch (state) { 901 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 902 return drck->isolate(drc); 903 904 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 905 return drck->unisolate(drc); 906 907 default: 908 return RTAS_OUT_PARAM_ERROR; 909 } 910 } 911 912 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 913 { 914 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 915 916 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 917 return RTAS_OUT_NO_SUCH_INDICATOR; 918 } 919 920 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 921 922 switch (state) { 923 case SPAPR_DR_ALLOCATION_STATE_USABLE: 924 return drc_set_usable(drc); 925 926 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 927 return drc_set_unusable(drc); 928 929 default: 930 return RTAS_OUT_PARAM_ERROR; 931 } 932 } 933 934 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 935 { 936 sPAPRDRConnector *drc = spapr_drc_by_index(idx); 937 938 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 939 return RTAS_OUT_NO_SUCH_INDICATOR; 940 } 941 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 942 && (state != SPAPR_DR_INDICATOR_ACTIVE) 943 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 944 && (state != SPAPR_DR_INDICATOR_ACTION)) { 945 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 946 } 947 948 trace_spapr_drc_set_dr_indicator(idx, state); 949 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 950 return RTAS_OUT_SUCCESS; 951 } 952 953 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, 954 uint32_t token, 955 uint32_t nargs, target_ulong args, 956 uint32_t nret, target_ulong rets) 957 { 958 uint32_t type, idx, state; 959 uint32_t ret = RTAS_OUT_SUCCESS; 960 961 if (nargs != 3 || nret != 1) { 962 ret = RTAS_OUT_PARAM_ERROR; 963 goto out; 964 } 965 966 type = rtas_ld(args, 0); 967 idx = rtas_ld(args, 1); 968 state = rtas_ld(args, 2); 969 970 switch (type) { 971 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 972 ret = rtas_set_isolation_state(idx, state); 973 break; 974 case RTAS_SENSOR_TYPE_DR: 975 ret = rtas_set_dr_indicator(idx, state); 976 break; 977 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 978 ret = rtas_set_allocation_state(idx, state); 979 break; 980 default: 981 ret = RTAS_OUT_NOT_SUPPORTED; 982 } 983 984 out: 985 rtas_st(rets, 0, ret); 986 } 987 988 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, 989 uint32_t token, uint32_t nargs, 990 target_ulong args, uint32_t nret, 991 target_ulong rets) 992 { 993 uint32_t sensor_type; 994 uint32_t sensor_index; 995 uint32_t sensor_state = 0; 996 sPAPRDRConnector *drc; 997 sPAPRDRConnectorClass *drck; 998 uint32_t ret = RTAS_OUT_SUCCESS; 999 1000 if (nargs != 2 || nret != 2) { 1001 ret = RTAS_OUT_PARAM_ERROR; 1002 goto out; 1003 } 1004 1005 sensor_type = rtas_ld(args, 0); 1006 sensor_index = rtas_ld(args, 1); 1007 1008 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1009 /* currently only DR-related sensors are implemented */ 1010 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1011 sensor_type); 1012 ret = RTAS_OUT_NOT_SUPPORTED; 1013 goto out; 1014 } 1015 1016 drc = spapr_drc_by_index(sensor_index); 1017 if (!drc) { 1018 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1019 ret = RTAS_OUT_PARAM_ERROR; 1020 goto out; 1021 } 1022 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1023 sensor_state = drck->dr_entity_sense(drc); 1024 1025 out: 1026 rtas_st(rets, 0, ret); 1027 rtas_st(rets, 1, sensor_state); 1028 } 1029 1030 /* configure-connector work area offsets, int32_t units for field 1031 * indexes, bytes for field offset/len values. 1032 * 1033 * as documented by PAPR+ v2.7, 13.5.3.5 1034 */ 1035 #define CC_IDX_NODE_NAME_OFFSET 2 1036 #define CC_IDX_PROP_NAME_OFFSET 2 1037 #define CC_IDX_PROP_LEN 3 1038 #define CC_IDX_PROP_DATA_OFFSET 4 1039 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1040 #define CC_WA_LEN 4096 1041 1042 static void configure_connector_st(target_ulong addr, target_ulong offset, 1043 const void *buf, size_t len) 1044 { 1045 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1046 buf, MIN(len, CC_WA_LEN - offset)); 1047 } 1048 1049 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1050 sPAPRMachineState *spapr, 1051 uint32_t token, uint32_t nargs, 1052 target_ulong args, uint32_t nret, 1053 target_ulong rets) 1054 { 1055 uint64_t wa_addr; 1056 uint64_t wa_offset; 1057 uint32_t drc_index; 1058 sPAPRDRConnector *drc; 1059 sPAPRDRConnectorClass *drck; 1060 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1061 int rc; 1062 1063 if (nargs != 2 || nret != 1) { 1064 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1065 return; 1066 } 1067 1068 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1069 1070 drc_index = rtas_ld(wa_addr, 0); 1071 drc = spapr_drc_by_index(drc_index); 1072 if (!drc) { 1073 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1074 rc = RTAS_OUT_PARAM_ERROR; 1075 goto out; 1076 } 1077 1078 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1079 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1080 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1081 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1082 /* 1083 * Need to unisolate the device before configuring 1084 * or it should already be in configured state to 1085 * allow configure-connector be called repeatedly. 1086 */ 1087 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1088 goto out; 1089 } 1090 1091 g_assert(drc->fdt); 1092 1093 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1094 1095 do { 1096 uint32_t tag; 1097 const char *name; 1098 const struct fdt_property *prop; 1099 int fdt_offset_next, prop_len; 1100 1101 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1102 1103 switch (tag) { 1104 case FDT_BEGIN_NODE: 1105 drc->ccs_depth++; 1106 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1107 1108 /* provide the name of the next OF node */ 1109 wa_offset = CC_VAL_DATA_OFFSET; 1110 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1111 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1112 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1113 break; 1114 case FDT_END_NODE: 1115 drc->ccs_depth--; 1116 if (drc->ccs_depth == 0) { 1117 uint32_t drc_index = spapr_drc_index(drc); 1118 1119 /* done sending the device tree, move to configured state */ 1120 trace_spapr_drc_set_configured(drc_index); 1121 drc->state = drck->ready_state; 1122 /* 1123 * Ensure that we are able to send the FDT fragment 1124 * again via configure-connector call if the guest requests. 1125 */ 1126 drc->ccs_offset = drc->fdt_start_offset; 1127 drc->ccs_depth = 0; 1128 fdt_offset_next = drc->fdt_start_offset; 1129 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1130 } else { 1131 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1132 } 1133 break; 1134 case FDT_PROP: 1135 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1136 &prop_len); 1137 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1138 1139 /* provide the name of the next OF property */ 1140 wa_offset = CC_VAL_DATA_OFFSET; 1141 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1142 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1143 1144 /* provide the length and value of the OF property. data gets 1145 * placed immediately after NULL terminator of the OF property's 1146 * name string 1147 */ 1148 wa_offset += strlen(name) + 1, 1149 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1150 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1151 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1152 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1153 break; 1154 case FDT_END: 1155 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1156 default: 1157 /* keep seeking for an actionable tag */ 1158 break; 1159 } 1160 if (drc->ccs_offset >= 0) { 1161 drc->ccs_offset = fdt_offset_next; 1162 } 1163 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1164 1165 rc = resp; 1166 out: 1167 rtas_st(rets, 0, rc); 1168 } 1169 1170 static void spapr_drc_register_types(void) 1171 { 1172 type_register_static(&spapr_dr_connector_info); 1173 type_register_static(&spapr_drc_physical_info); 1174 type_register_static(&spapr_drc_logical_info); 1175 type_register_static(&spapr_drc_cpu_info); 1176 type_register_static(&spapr_drc_pci_info); 1177 type_register_static(&spapr_drc_lmb_info); 1178 1179 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1180 rtas_set_indicator); 1181 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1182 rtas_get_sensor_state); 1183 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1184 rtas_ibm_configure_connector); 1185 } 1186 type_init(spapr_drc_register_types) 1187