1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 Error *err = NULL; 306 int fdt_offset_next, fdt_offset, fdt_depth; 307 void *fdt; 308 309 if (!drc->fdt) { 310 visit_type_null(v, NULL, &null, errp); 311 qobject_unref(null); 312 return; 313 } 314 315 fdt = drc->fdt; 316 fdt_offset = drc->fdt_start_offset; 317 fdt_depth = 0; 318 319 do { 320 const char *name = NULL; 321 const struct fdt_property *prop = NULL; 322 int prop_len = 0, name_len = 0; 323 uint32_t tag; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 if (!visit_start_struct(v, name, NULL, 0, errp)) { 331 return; 332 } 333 break; 334 case FDT_END_NODE: 335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 336 g_assert(fdt_depth > 0); 337 visit_check_struct(v, &err); 338 visit_end_struct(v, NULL); 339 if (err) { 340 error_propagate(errp, err); 341 return; 342 } 343 fdt_depth--; 344 break; 345 case FDT_PROP: { 346 int i; 347 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 348 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 349 if (!visit_start_list(v, name, NULL, 0, errp)) { 350 return; 351 } 352 for (i = 0; i < prop_len; i++) { 353 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 354 errp)) { 355 return; 356 } 357 } 358 visit_check_list(v, &err); 359 visit_end_list(v, NULL); 360 if (err) { 361 error_propagate(errp, err); 362 return; 363 } 364 break; 365 } 366 default: 367 error_report("device FDT in unexpected state: %d", tag); 368 abort(); 369 } 370 fdt_offset = fdt_offset_next; 371 } while (fdt_depth != 0); 372 } 373 374 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp) 375 { 376 trace_spapr_drc_attach(spapr_drc_index(drc)); 377 378 if (drc->dev) { 379 error_setg(errp, "an attached device is still awaiting release"); 380 return; 381 } 382 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 383 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 384 385 drc->dev = d; 386 387 object_property_add_link(OBJECT(drc), "device", 388 object_get_typename(OBJECT(drc->dev)), 389 (Object **)(&drc->dev), 390 NULL, 0); 391 } 392 393 static void spapr_drc_release(SpaprDrc *drc) 394 { 395 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 396 397 drck->release(drc->dev); 398 399 drc->unplug_requested = false; 400 g_free(drc->fdt); 401 drc->fdt = NULL; 402 drc->fdt_start_offset = 0; 403 object_property_del(OBJECT(drc), "device"); 404 drc->dev = NULL; 405 } 406 407 void spapr_drc_detach(SpaprDrc *drc) 408 { 409 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 410 411 trace_spapr_drc_detach(spapr_drc_index(drc)); 412 413 g_assert(drc->dev); 414 415 drc->unplug_requested = true; 416 417 if (drc->state != drck->empty_state) { 418 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 419 return; 420 } 421 422 spapr_drc_release(drc); 423 } 424 425 void spapr_drc_reset(SpaprDrc *drc) 426 { 427 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 428 429 trace_spapr_drc_reset(spapr_drc_index(drc)); 430 431 /* immediately upon reset we can safely assume DRCs whose devices 432 * are pending removal can be safely removed. 433 */ 434 if (drc->unplug_requested) { 435 spapr_drc_release(drc); 436 } 437 438 if (drc->dev) { 439 /* A device present at reset is ready to go, same as coldplugged */ 440 drc->state = drck->ready_state; 441 /* 442 * Ensure that we are able to send the FDT fragment again 443 * via configure-connector call if the guest requests. 444 */ 445 drc->ccs_offset = drc->fdt_start_offset; 446 drc->ccs_depth = 0; 447 } else { 448 drc->state = drck->empty_state; 449 drc->ccs_offset = -1; 450 drc->ccs_depth = -1; 451 } 452 } 453 454 static bool spapr_drc_unplug_requested_needed(void *opaque) 455 { 456 return spapr_drc_unplug_requested(opaque); 457 } 458 459 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 460 .name = "spapr_drc/unplug_requested", 461 .version_id = 1, 462 .minimum_version_id = 1, 463 .needed = spapr_drc_unplug_requested_needed, 464 .fields = (VMStateField []) { 465 VMSTATE_BOOL(unplug_requested, SpaprDrc), 466 VMSTATE_END_OF_LIST() 467 } 468 }; 469 470 bool spapr_drc_transient(SpaprDrc *drc) 471 { 472 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 473 474 /* 475 * If no dev is plugged in there is no need to migrate the DRC state 476 * nor to reset the DRC at CAS. 477 */ 478 if (!drc->dev) { 479 return false; 480 } 481 482 /* 483 * We need to reset the DRC at CAS or to migrate the DRC state if it's 484 * not equal to the expected long-term state, which is the same as the 485 * coldplugged initial state, or if an unplug request is pending. 486 */ 487 return drc->state != drck->ready_state || 488 spapr_drc_unplug_requested(drc); 489 } 490 491 static bool spapr_drc_needed(void *opaque) 492 { 493 return spapr_drc_transient(opaque); 494 } 495 496 static const VMStateDescription vmstate_spapr_drc = { 497 .name = "spapr_drc", 498 .version_id = 1, 499 .minimum_version_id = 1, 500 .needed = spapr_drc_needed, 501 .fields = (VMStateField []) { 502 VMSTATE_UINT32(state, SpaprDrc), 503 VMSTATE_END_OF_LIST() 504 }, 505 .subsections = (const VMStateDescription * []) { 506 &vmstate_spapr_drc_unplug_requested, 507 NULL 508 } 509 }; 510 511 static void realize(DeviceState *d, Error **errp) 512 { 513 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 514 Object *root_container; 515 gchar *link_name; 516 char *child_name; 517 518 trace_spapr_drc_realize(spapr_drc_index(drc)); 519 /* NOTE: we do this as part of realize/unrealize due to the fact 520 * that the guest will communicate with the DRC via RTAS calls 521 * referencing the global DRC index. By unlinking the DRC 522 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 523 * inaccessible by the guest, since lookups rely on this path 524 * existing in the composition tree 525 */ 526 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 527 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 528 child_name = object_get_canonical_path_component(OBJECT(drc)); 529 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 530 object_property_add_alias(root_container, link_name, 531 drc->owner, child_name); 532 g_free(child_name); 533 g_free(link_name); 534 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 535 drc); 536 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 537 } 538 539 static void unrealize(DeviceState *d) 540 { 541 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 542 Object *root_container; 543 gchar *name; 544 545 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 546 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 547 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 548 name = g_strdup_printf("%x", spapr_drc_index(drc)); 549 object_property_del(root_container, name); 550 g_free(name); 551 } 552 553 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 554 uint32_t id) 555 { 556 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 557 char *prop_name; 558 559 drc->id = id; 560 drc->owner = owner; 561 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 562 spapr_drc_index(drc)); 563 object_property_add_child(owner, prop_name, OBJECT(drc)); 564 object_unref(OBJECT(drc)); 565 qdev_realize(DEVICE(drc), NULL, NULL); 566 g_free(prop_name); 567 568 return drc; 569 } 570 571 static void spapr_dr_connector_instance_init(Object *obj) 572 { 573 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 574 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 575 576 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 577 object_property_add(obj, "index", "uint32", prop_get_index, 578 NULL, NULL, NULL); 579 object_property_add(obj, "fdt", "struct", prop_get_fdt, 580 NULL, NULL, NULL); 581 drc->state = drck->empty_state; 582 } 583 584 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 585 { 586 DeviceClass *dk = DEVICE_CLASS(k); 587 588 dk->realize = realize; 589 dk->unrealize = unrealize; 590 /* 591 * Reason: it crashes FIXME find and document the real reason 592 */ 593 dk->user_creatable = false; 594 } 595 596 static bool drc_physical_needed(void *opaque) 597 { 598 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 599 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 600 601 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 602 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 603 return false; 604 } 605 return true; 606 } 607 608 static const VMStateDescription vmstate_spapr_drc_physical = { 609 .name = "spapr_drc/physical", 610 .version_id = 1, 611 .minimum_version_id = 1, 612 .needed = drc_physical_needed, 613 .fields = (VMStateField []) { 614 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 615 VMSTATE_END_OF_LIST() 616 } 617 }; 618 619 static void drc_physical_reset(void *opaque) 620 { 621 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 622 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 623 624 if (drc->dev) { 625 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 626 } else { 627 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 628 } 629 } 630 631 static void realize_physical(DeviceState *d, Error **errp) 632 { 633 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 634 Error *local_err = NULL; 635 636 realize(d, &local_err); 637 if (local_err) { 638 error_propagate(errp, local_err); 639 return; 640 } 641 642 vmstate_register(VMSTATE_IF(drcp), 643 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 644 &vmstate_spapr_drc_physical, drcp); 645 qemu_register_reset(drc_physical_reset, drcp); 646 } 647 648 static void unrealize_physical(DeviceState *d) 649 { 650 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 651 652 unrealize(d); 653 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 654 qemu_unregister_reset(drc_physical_reset, drcp); 655 } 656 657 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 658 { 659 DeviceClass *dk = DEVICE_CLASS(k); 660 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 661 662 dk->realize = realize_physical; 663 dk->unrealize = unrealize_physical; 664 drck->dr_entity_sense = physical_entity_sense; 665 drck->isolate = drc_isolate_physical; 666 drck->unisolate = drc_unisolate_physical; 667 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 668 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 669 } 670 671 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 672 { 673 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 674 675 drck->dr_entity_sense = logical_entity_sense; 676 drck->isolate = drc_isolate_logical; 677 drck->unisolate = drc_unisolate_logical; 678 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 679 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 680 } 681 682 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 683 { 684 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 685 686 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 687 drck->typename = "CPU"; 688 drck->drc_name_prefix = "CPU "; 689 drck->release = spapr_core_release; 690 drck->dt_populate = spapr_core_dt_populate; 691 } 692 693 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 694 { 695 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 696 697 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 698 drck->typename = "28"; 699 drck->drc_name_prefix = "C"; 700 drck->release = spapr_phb_remove_pci_device_cb; 701 drck->dt_populate = spapr_pci_dt_populate; 702 } 703 704 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 705 { 706 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 707 708 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 709 drck->typename = "MEM"; 710 drck->drc_name_prefix = "LMB "; 711 drck->release = spapr_lmb_release; 712 drck->dt_populate = spapr_lmb_dt_populate; 713 } 714 715 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 716 { 717 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 718 719 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 720 drck->typename = "PHB"; 721 drck->drc_name_prefix = "PHB "; 722 drck->release = spapr_phb_release; 723 drck->dt_populate = spapr_phb_dt_populate; 724 } 725 726 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 727 { 728 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 729 730 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 731 drck->typename = "PMEM"; 732 drck->drc_name_prefix = "PMEM "; 733 drck->release = NULL; 734 drck->dt_populate = spapr_pmem_dt_populate; 735 } 736 737 static const TypeInfo spapr_dr_connector_info = { 738 .name = TYPE_SPAPR_DR_CONNECTOR, 739 .parent = TYPE_DEVICE, 740 .instance_size = sizeof(SpaprDrc), 741 .instance_init = spapr_dr_connector_instance_init, 742 .class_size = sizeof(SpaprDrcClass), 743 .class_init = spapr_dr_connector_class_init, 744 .abstract = true, 745 }; 746 747 static const TypeInfo spapr_drc_physical_info = { 748 .name = TYPE_SPAPR_DRC_PHYSICAL, 749 .parent = TYPE_SPAPR_DR_CONNECTOR, 750 .instance_size = sizeof(SpaprDrcPhysical), 751 .class_init = spapr_drc_physical_class_init, 752 .abstract = true, 753 }; 754 755 static const TypeInfo spapr_drc_logical_info = { 756 .name = TYPE_SPAPR_DRC_LOGICAL, 757 .parent = TYPE_SPAPR_DR_CONNECTOR, 758 .class_init = spapr_drc_logical_class_init, 759 .abstract = true, 760 }; 761 762 static const TypeInfo spapr_drc_cpu_info = { 763 .name = TYPE_SPAPR_DRC_CPU, 764 .parent = TYPE_SPAPR_DRC_LOGICAL, 765 .class_init = spapr_drc_cpu_class_init, 766 }; 767 768 static const TypeInfo spapr_drc_pci_info = { 769 .name = TYPE_SPAPR_DRC_PCI, 770 .parent = TYPE_SPAPR_DRC_PHYSICAL, 771 .class_init = spapr_drc_pci_class_init, 772 }; 773 774 static const TypeInfo spapr_drc_lmb_info = { 775 .name = TYPE_SPAPR_DRC_LMB, 776 .parent = TYPE_SPAPR_DRC_LOGICAL, 777 .class_init = spapr_drc_lmb_class_init, 778 }; 779 780 static const TypeInfo spapr_drc_phb_info = { 781 .name = TYPE_SPAPR_DRC_PHB, 782 .parent = TYPE_SPAPR_DRC_LOGICAL, 783 .instance_size = sizeof(SpaprDrc), 784 .class_init = spapr_drc_phb_class_init, 785 }; 786 787 static const TypeInfo spapr_drc_pmem_info = { 788 .name = TYPE_SPAPR_DRC_PMEM, 789 .parent = TYPE_SPAPR_DRC_LOGICAL, 790 .class_init = spapr_drc_pmem_class_init, 791 }; 792 793 /* helper functions for external users */ 794 795 SpaprDrc *spapr_drc_by_index(uint32_t index) 796 { 797 Object *obj; 798 gchar *name; 799 800 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 801 obj = object_resolve_path(name, NULL); 802 g_free(name); 803 804 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 805 } 806 807 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 808 { 809 SpaprDrcClass *drck 810 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 811 812 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 813 | (id & DRC_INDEX_ID_MASK)); 814 } 815 816 /** 817 * spapr_dt_drc 818 * 819 * @fdt: libfdt device tree 820 * @path: path in the DT to generate properties 821 * @owner: parent Object/DeviceState for which to generate DRC 822 * descriptions for 823 * @drc_type_mask: mask of SpaprDrcType values corresponding 824 * to the types of DRCs to generate entries for 825 * 826 * generate OF properties to describe DRC topology/indices to guests 827 * 828 * as documented in PAPR+ v2.1, 13.5.2 829 */ 830 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 831 { 832 Object *root_container; 833 ObjectProperty *prop; 834 ObjectPropertyIterator iter; 835 uint32_t drc_count = 0; 836 GArray *drc_indexes, *drc_power_domains; 837 GString *drc_names, *drc_types; 838 int ret; 839 840 /* the first entry of each properties is a 32-bit integer encoding 841 * the number of elements in the array. we won't know this until 842 * we complete the iteration through all the matching DRCs, but 843 * reserve the space now and set the offsets accordingly so we 844 * can fill them in later. 845 */ 846 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 847 drc_indexes = g_array_set_size(drc_indexes, 1); 848 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 849 drc_power_domains = g_array_set_size(drc_power_domains, 1); 850 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 851 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 852 853 /* aliases for all DRConnector objects will be rooted in QOM 854 * composition tree at DRC_CONTAINER_PATH 855 */ 856 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 857 858 object_property_iter_init(&iter, root_container); 859 while ((prop = object_property_iter_next(&iter))) { 860 Object *obj; 861 SpaprDrc *drc; 862 SpaprDrcClass *drck; 863 char *drc_name = NULL; 864 uint32_t drc_index, drc_power_domain; 865 866 if (!strstart(prop->type, "link<", NULL)) { 867 continue; 868 } 869 870 obj = object_property_get_link(root_container, prop->name, 871 &error_abort); 872 drc = SPAPR_DR_CONNECTOR(obj); 873 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 874 875 if (owner && (drc->owner != owner)) { 876 continue; 877 } 878 879 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 880 continue; 881 } 882 883 drc_count++; 884 885 /* ibm,drc-indexes */ 886 drc_index = cpu_to_be32(spapr_drc_index(drc)); 887 g_array_append_val(drc_indexes, drc_index); 888 889 /* ibm,drc-power-domains */ 890 drc_power_domain = cpu_to_be32(-1); 891 g_array_append_val(drc_power_domains, drc_power_domain); 892 893 /* ibm,drc-names */ 894 drc_name = spapr_drc_name(drc); 895 drc_names = g_string_append(drc_names, drc_name); 896 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 897 g_free(drc_name); 898 899 /* ibm,drc-types */ 900 drc_types = g_string_append(drc_types, drck->typename); 901 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 902 } 903 904 /* now write the drc count into the space we reserved at the 905 * beginning of the arrays previously 906 */ 907 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 908 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 909 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 910 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 911 912 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 913 drc_indexes->data, 914 drc_indexes->len * sizeof(uint32_t)); 915 if (ret) { 916 error_report("Couldn't create ibm,drc-indexes property"); 917 goto out; 918 } 919 920 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 921 drc_power_domains->data, 922 drc_power_domains->len * sizeof(uint32_t)); 923 if (ret) { 924 error_report("Couldn't finalize ibm,drc-power-domains property"); 925 goto out; 926 } 927 928 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 929 drc_names->str, drc_names->len); 930 if (ret) { 931 error_report("Couldn't finalize ibm,drc-names property"); 932 goto out; 933 } 934 935 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 936 drc_types->str, drc_types->len); 937 if (ret) { 938 error_report("Couldn't finalize ibm,drc-types property"); 939 goto out; 940 } 941 942 out: 943 g_array_free(drc_indexes, true); 944 g_array_free(drc_power_domains, true); 945 g_string_free(drc_names, true); 946 g_string_free(drc_types, true); 947 948 return ret; 949 } 950 951 /* 952 * RTAS calls 953 */ 954 955 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 956 { 957 SpaprDrc *drc = spapr_drc_by_index(idx); 958 SpaprDrcClass *drck; 959 960 if (!drc) { 961 return RTAS_OUT_NO_SUCH_INDICATOR; 962 } 963 964 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 965 966 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 967 968 switch (state) { 969 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 970 return drck->isolate(drc); 971 972 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 973 return drck->unisolate(drc); 974 975 default: 976 return RTAS_OUT_PARAM_ERROR; 977 } 978 } 979 980 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 981 { 982 SpaprDrc *drc = spapr_drc_by_index(idx); 983 984 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 985 return RTAS_OUT_NO_SUCH_INDICATOR; 986 } 987 988 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 989 990 switch (state) { 991 case SPAPR_DR_ALLOCATION_STATE_USABLE: 992 return drc_set_usable(drc); 993 994 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 995 return drc_set_unusable(drc); 996 997 default: 998 return RTAS_OUT_PARAM_ERROR; 999 } 1000 } 1001 1002 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1003 { 1004 SpaprDrc *drc = spapr_drc_by_index(idx); 1005 1006 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1007 return RTAS_OUT_NO_SUCH_INDICATOR; 1008 } 1009 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1010 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1011 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1012 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1013 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1014 } 1015 1016 trace_spapr_drc_set_dr_indicator(idx, state); 1017 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1018 return RTAS_OUT_SUCCESS; 1019 } 1020 1021 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1022 uint32_t token, 1023 uint32_t nargs, target_ulong args, 1024 uint32_t nret, target_ulong rets) 1025 { 1026 uint32_t type, idx, state; 1027 uint32_t ret = RTAS_OUT_SUCCESS; 1028 1029 if (nargs != 3 || nret != 1) { 1030 ret = RTAS_OUT_PARAM_ERROR; 1031 goto out; 1032 } 1033 1034 type = rtas_ld(args, 0); 1035 idx = rtas_ld(args, 1); 1036 state = rtas_ld(args, 2); 1037 1038 switch (type) { 1039 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1040 ret = rtas_set_isolation_state(idx, state); 1041 break; 1042 case RTAS_SENSOR_TYPE_DR: 1043 ret = rtas_set_dr_indicator(idx, state); 1044 break; 1045 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1046 ret = rtas_set_allocation_state(idx, state); 1047 break; 1048 default: 1049 ret = RTAS_OUT_NOT_SUPPORTED; 1050 } 1051 1052 out: 1053 rtas_st(rets, 0, ret); 1054 } 1055 1056 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1057 uint32_t token, uint32_t nargs, 1058 target_ulong args, uint32_t nret, 1059 target_ulong rets) 1060 { 1061 uint32_t sensor_type; 1062 uint32_t sensor_index; 1063 uint32_t sensor_state = 0; 1064 SpaprDrc *drc; 1065 SpaprDrcClass *drck; 1066 uint32_t ret = RTAS_OUT_SUCCESS; 1067 1068 if (nargs != 2 || nret != 2) { 1069 ret = RTAS_OUT_PARAM_ERROR; 1070 goto out; 1071 } 1072 1073 sensor_type = rtas_ld(args, 0); 1074 sensor_index = rtas_ld(args, 1); 1075 1076 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1077 /* currently only DR-related sensors are implemented */ 1078 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1079 sensor_type); 1080 ret = RTAS_OUT_NOT_SUPPORTED; 1081 goto out; 1082 } 1083 1084 drc = spapr_drc_by_index(sensor_index); 1085 if (!drc) { 1086 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1087 ret = RTAS_OUT_PARAM_ERROR; 1088 goto out; 1089 } 1090 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1091 sensor_state = drck->dr_entity_sense(drc); 1092 1093 out: 1094 rtas_st(rets, 0, ret); 1095 rtas_st(rets, 1, sensor_state); 1096 } 1097 1098 /* configure-connector work area offsets, int32_t units for field 1099 * indexes, bytes for field offset/len values. 1100 * 1101 * as documented by PAPR+ v2.7, 13.5.3.5 1102 */ 1103 #define CC_IDX_NODE_NAME_OFFSET 2 1104 #define CC_IDX_PROP_NAME_OFFSET 2 1105 #define CC_IDX_PROP_LEN 3 1106 #define CC_IDX_PROP_DATA_OFFSET 4 1107 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1108 #define CC_WA_LEN 4096 1109 1110 static void configure_connector_st(target_ulong addr, target_ulong offset, 1111 const void *buf, size_t len) 1112 { 1113 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1114 buf, MIN(len, CC_WA_LEN - offset)); 1115 } 1116 1117 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1118 SpaprMachineState *spapr, 1119 uint32_t token, uint32_t nargs, 1120 target_ulong args, uint32_t nret, 1121 target_ulong rets) 1122 { 1123 uint64_t wa_addr; 1124 uint64_t wa_offset; 1125 uint32_t drc_index; 1126 SpaprDrc *drc; 1127 SpaprDrcClass *drck; 1128 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1129 int rc; 1130 1131 if (nargs != 2 || nret != 1) { 1132 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1133 return; 1134 } 1135 1136 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1137 1138 drc_index = rtas_ld(wa_addr, 0); 1139 drc = spapr_drc_by_index(drc_index); 1140 if (!drc) { 1141 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1142 rc = RTAS_OUT_PARAM_ERROR; 1143 goto out; 1144 } 1145 1146 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1147 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1148 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1149 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1150 /* 1151 * Need to unisolate the device before configuring 1152 * or it should already be in configured state to 1153 * allow configure-connector be called repeatedly. 1154 */ 1155 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1156 goto out; 1157 } 1158 1159 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1160 1161 if (!drc->fdt) { 1162 void *fdt; 1163 int fdt_size; 1164 1165 fdt = create_device_tree(&fdt_size); 1166 1167 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1168 NULL)) { 1169 g_free(fdt); 1170 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1171 goto out; 1172 } 1173 1174 drc->fdt = fdt; 1175 drc->ccs_offset = drc->fdt_start_offset; 1176 drc->ccs_depth = 0; 1177 } 1178 1179 do { 1180 uint32_t tag; 1181 const char *name; 1182 const struct fdt_property *prop; 1183 int fdt_offset_next, prop_len; 1184 1185 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1186 1187 switch (tag) { 1188 case FDT_BEGIN_NODE: 1189 drc->ccs_depth++; 1190 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1191 1192 /* provide the name of the next OF node */ 1193 wa_offset = CC_VAL_DATA_OFFSET; 1194 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1195 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1196 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1197 break; 1198 case FDT_END_NODE: 1199 drc->ccs_depth--; 1200 if (drc->ccs_depth == 0) { 1201 uint32_t drc_index = spapr_drc_index(drc); 1202 1203 /* done sending the device tree, move to configured state */ 1204 trace_spapr_drc_set_configured(drc_index); 1205 drc->state = drck->ready_state; 1206 /* 1207 * Ensure that we are able to send the FDT fragment 1208 * again via configure-connector call if the guest requests. 1209 */ 1210 drc->ccs_offset = drc->fdt_start_offset; 1211 drc->ccs_depth = 0; 1212 fdt_offset_next = drc->fdt_start_offset; 1213 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1214 } else { 1215 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1216 } 1217 break; 1218 case FDT_PROP: 1219 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1220 &prop_len); 1221 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1222 1223 /* provide the name of the next OF property */ 1224 wa_offset = CC_VAL_DATA_OFFSET; 1225 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1226 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1227 1228 /* provide the length and value of the OF property. data gets 1229 * placed immediately after NULL terminator of the OF property's 1230 * name string 1231 */ 1232 wa_offset += strlen(name) + 1, 1233 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1234 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1235 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1236 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1237 break; 1238 case FDT_END: 1239 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1240 default: 1241 /* keep seeking for an actionable tag */ 1242 break; 1243 } 1244 if (drc->ccs_offset >= 0) { 1245 drc->ccs_offset = fdt_offset_next; 1246 } 1247 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1248 1249 rc = resp; 1250 out: 1251 rtas_st(rets, 0, rc); 1252 } 1253 1254 static void spapr_drc_register_types(void) 1255 { 1256 type_register_static(&spapr_dr_connector_info); 1257 type_register_static(&spapr_drc_physical_info); 1258 type_register_static(&spapr_drc_logical_info); 1259 type_register_static(&spapr_drc_cpu_info); 1260 type_register_static(&spapr_drc_pci_info); 1261 type_register_static(&spapr_drc_lmb_info); 1262 type_register_static(&spapr_drc_phb_info); 1263 type_register_static(&spapr_drc_pmem_info); 1264 1265 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1266 rtas_set_indicator); 1267 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1268 rtas_get_sensor_state); 1269 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1270 rtas_ibm_configure_connector); 1271 } 1272 type_init(spapr_drc_register_types) 1273