xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 7acafcfa)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     Error *err = NULL;
306     int fdt_offset_next, fdt_offset, fdt_depth;
307     void *fdt;
308 
309     if (!drc->fdt) {
310         visit_type_null(v, NULL, &null, errp);
311         qobject_unref(null);
312         return;
313     }
314 
315     fdt = drc->fdt;
316     fdt_offset = drc->fdt_start_offset;
317     fdt_depth = 0;
318 
319     do {
320         const char *name = NULL;
321         const struct fdt_property *prop = NULL;
322         int prop_len = 0, name_len = 0;
323         uint32_t tag;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             if (!visit_start_struct(v, name, NULL, 0, errp)) {
331                 return;
332             }
333             break;
334         case FDT_END_NODE:
335             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
336             g_assert(fdt_depth > 0);
337             visit_check_struct(v, &err);
338             visit_end_struct(v, NULL);
339             if (err) {
340                 error_propagate(errp, err);
341                 return;
342             }
343             fdt_depth--;
344             break;
345         case FDT_PROP: {
346             int i;
347             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
348             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
349             if (!visit_start_list(v, name, NULL, 0, errp)) {
350                 return;
351             }
352             for (i = 0; i < prop_len; i++) {
353                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
354                                       errp)) {
355                     return;
356                 }
357             }
358             visit_check_list(v, &err);
359             visit_end_list(v, NULL);
360             if (err) {
361                 error_propagate(errp, err);
362                 return;
363             }
364             break;
365         }
366         default:
367             error_report("device FDT in unexpected state: %d", tag);
368             abort();
369         }
370         fdt_offset = fdt_offset_next;
371     } while (fdt_depth != 0);
372 }
373 
374 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
375 {
376     trace_spapr_drc_attach(spapr_drc_index(drc));
377 
378     if (drc->dev) {
379         error_setg(errp, "an attached device is still awaiting release");
380         return;
381     }
382     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
383              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
384 
385     drc->dev = d;
386 
387     object_property_add_link(OBJECT(drc), "device",
388                              object_get_typename(OBJECT(drc->dev)),
389                              (Object **)(&drc->dev),
390                              NULL, 0);
391 }
392 
393 static void spapr_drc_release(SpaprDrc *drc)
394 {
395     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
396 
397     drck->release(drc->dev);
398 
399     drc->unplug_requested = false;
400     g_free(drc->fdt);
401     drc->fdt = NULL;
402     drc->fdt_start_offset = 0;
403     object_property_del(OBJECT(drc), "device");
404     drc->dev = NULL;
405 }
406 
407 void spapr_drc_detach(SpaprDrc *drc)
408 {
409     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
410 
411     trace_spapr_drc_detach(spapr_drc_index(drc));
412 
413     g_assert(drc->dev);
414 
415     drc->unplug_requested = true;
416 
417     if (drc->state != drck->empty_state) {
418         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
419         return;
420     }
421 
422     spapr_drc_release(drc);
423 }
424 
425 void spapr_drc_reset(SpaprDrc *drc)
426 {
427     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
428 
429     trace_spapr_drc_reset(spapr_drc_index(drc));
430 
431     /* immediately upon reset we can safely assume DRCs whose devices
432      * are pending removal can be safely removed.
433      */
434     if (drc->unplug_requested) {
435         spapr_drc_release(drc);
436     }
437 
438     if (drc->dev) {
439         /* A device present at reset is ready to go, same as coldplugged */
440         drc->state = drck->ready_state;
441         /*
442          * Ensure that we are able to send the FDT fragment again
443          * via configure-connector call if the guest requests.
444          */
445         drc->ccs_offset = drc->fdt_start_offset;
446         drc->ccs_depth = 0;
447     } else {
448         drc->state = drck->empty_state;
449         drc->ccs_offset = -1;
450         drc->ccs_depth = -1;
451     }
452 }
453 
454 static bool spapr_drc_unplug_requested_needed(void *opaque)
455 {
456     return spapr_drc_unplug_requested(opaque);
457 }
458 
459 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
460     .name = "spapr_drc/unplug_requested",
461     .version_id = 1,
462     .minimum_version_id = 1,
463     .needed = spapr_drc_unplug_requested_needed,
464     .fields  = (VMStateField []) {
465         VMSTATE_BOOL(unplug_requested, SpaprDrc),
466         VMSTATE_END_OF_LIST()
467     }
468 };
469 
470 bool spapr_drc_transient(SpaprDrc *drc)
471 {
472     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
473 
474     /*
475      * If no dev is plugged in there is no need to migrate the DRC state
476      * nor to reset the DRC at CAS.
477      */
478     if (!drc->dev) {
479         return false;
480     }
481 
482     /*
483      * We need to reset the DRC at CAS or to migrate the DRC state if it's
484      * not equal to the expected long-term state, which is the same as the
485      * coldplugged initial state, or if an unplug request is pending.
486      */
487     return drc->state != drck->ready_state ||
488         spapr_drc_unplug_requested(drc);
489 }
490 
491 static bool spapr_drc_needed(void *opaque)
492 {
493     return spapr_drc_transient(opaque);
494 }
495 
496 static const VMStateDescription vmstate_spapr_drc = {
497     .name = "spapr_drc",
498     .version_id = 1,
499     .minimum_version_id = 1,
500     .needed = spapr_drc_needed,
501     .fields  = (VMStateField []) {
502         VMSTATE_UINT32(state, SpaprDrc),
503         VMSTATE_END_OF_LIST()
504     },
505     .subsections = (const VMStateDescription * []) {
506         &vmstate_spapr_drc_unplug_requested,
507         NULL
508     }
509 };
510 
511 static void realize(DeviceState *d, Error **errp)
512 {
513     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
514     Object *root_container;
515     gchar *link_name;
516     char *child_name;
517 
518     trace_spapr_drc_realize(spapr_drc_index(drc));
519     /* NOTE: we do this as part of realize/unrealize due to the fact
520      * that the guest will communicate with the DRC via RTAS calls
521      * referencing the global DRC index. By unlinking the DRC
522      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
523      * inaccessible by the guest, since lookups rely on this path
524      * existing in the composition tree
525      */
526     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
527     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
528     child_name = object_get_canonical_path_component(OBJECT(drc));
529     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
530     object_property_add_alias(root_container, link_name,
531                               drc->owner, child_name);
532     g_free(child_name);
533     g_free(link_name);
534     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
535                      drc);
536     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
537 }
538 
539 static void unrealize(DeviceState *d)
540 {
541     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
542     Object *root_container;
543     gchar *name;
544 
545     trace_spapr_drc_unrealize(spapr_drc_index(drc));
546     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
547     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
548     name = g_strdup_printf("%x", spapr_drc_index(drc));
549     object_property_del(root_container, name);
550     g_free(name);
551 }
552 
553 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
554                                          uint32_t id)
555 {
556     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
557     char *prop_name;
558 
559     drc->id = id;
560     drc->owner = owner;
561     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
562                                 spapr_drc_index(drc));
563     object_property_add_child(owner, prop_name, OBJECT(drc));
564     object_unref(OBJECT(drc));
565     qdev_realize(DEVICE(drc), NULL, NULL);
566     g_free(prop_name);
567 
568     return drc;
569 }
570 
571 static void spapr_dr_connector_instance_init(Object *obj)
572 {
573     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
574     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
575 
576     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
577     object_property_add(obj, "index", "uint32", prop_get_index,
578                         NULL, NULL, NULL);
579     object_property_add(obj, "fdt", "struct", prop_get_fdt,
580                         NULL, NULL, NULL);
581     drc->state = drck->empty_state;
582 }
583 
584 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
585 {
586     DeviceClass *dk = DEVICE_CLASS(k);
587 
588     dk->realize = realize;
589     dk->unrealize = unrealize;
590     /*
591      * Reason: it crashes FIXME find and document the real reason
592      */
593     dk->user_creatable = false;
594 }
595 
596 static bool drc_physical_needed(void *opaque)
597 {
598     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
599     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
600 
601     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
602         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
603         return false;
604     }
605     return true;
606 }
607 
608 static const VMStateDescription vmstate_spapr_drc_physical = {
609     .name = "spapr_drc/physical",
610     .version_id = 1,
611     .minimum_version_id = 1,
612     .needed = drc_physical_needed,
613     .fields  = (VMStateField []) {
614         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
615         VMSTATE_END_OF_LIST()
616     }
617 };
618 
619 static void drc_physical_reset(void *opaque)
620 {
621     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
622     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
623 
624     if (drc->dev) {
625         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
626     } else {
627         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
628     }
629 }
630 
631 static void realize_physical(DeviceState *d, Error **errp)
632 {
633     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
634     Error *local_err = NULL;
635 
636     realize(d, &local_err);
637     if (local_err) {
638         error_propagate(errp, local_err);
639         return;
640     }
641 
642     vmstate_register(VMSTATE_IF(drcp),
643                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
644                      &vmstate_spapr_drc_physical, drcp);
645     qemu_register_reset(drc_physical_reset, drcp);
646 }
647 
648 static void unrealize_physical(DeviceState *d)
649 {
650     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
651 
652     unrealize(d);
653     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
654     qemu_unregister_reset(drc_physical_reset, drcp);
655 }
656 
657 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
658 {
659     DeviceClass *dk = DEVICE_CLASS(k);
660     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
661 
662     dk->realize = realize_physical;
663     dk->unrealize = unrealize_physical;
664     drck->dr_entity_sense = physical_entity_sense;
665     drck->isolate = drc_isolate_physical;
666     drck->unisolate = drc_unisolate_physical;
667     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
668     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
669 }
670 
671 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
672 {
673     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
674 
675     drck->dr_entity_sense = logical_entity_sense;
676     drck->isolate = drc_isolate_logical;
677     drck->unisolate = drc_unisolate_logical;
678     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
679     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
680 }
681 
682 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
683 {
684     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
685 
686     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
687     drck->typename = "CPU";
688     drck->drc_name_prefix = "CPU ";
689     drck->release = spapr_core_release;
690     drck->dt_populate = spapr_core_dt_populate;
691 }
692 
693 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
694 {
695     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
696 
697     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
698     drck->typename = "28";
699     drck->drc_name_prefix = "C";
700     drck->release = spapr_phb_remove_pci_device_cb;
701     drck->dt_populate = spapr_pci_dt_populate;
702 }
703 
704 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
705 {
706     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
707 
708     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
709     drck->typename = "MEM";
710     drck->drc_name_prefix = "LMB ";
711     drck->release = spapr_lmb_release;
712     drck->dt_populate = spapr_lmb_dt_populate;
713 }
714 
715 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
716 {
717     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
718 
719     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
720     drck->typename = "PHB";
721     drck->drc_name_prefix = "PHB ";
722     drck->release = spapr_phb_release;
723     drck->dt_populate = spapr_phb_dt_populate;
724 }
725 
726 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
727 {
728     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
729 
730     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
731     drck->typename = "PMEM";
732     drck->drc_name_prefix = "PMEM ";
733     drck->release = NULL;
734     drck->dt_populate = spapr_pmem_dt_populate;
735 }
736 
737 static const TypeInfo spapr_dr_connector_info = {
738     .name          = TYPE_SPAPR_DR_CONNECTOR,
739     .parent        = TYPE_DEVICE,
740     .instance_size = sizeof(SpaprDrc),
741     .instance_init = spapr_dr_connector_instance_init,
742     .class_size    = sizeof(SpaprDrcClass),
743     .class_init    = spapr_dr_connector_class_init,
744     .abstract      = true,
745 };
746 
747 static const TypeInfo spapr_drc_physical_info = {
748     .name          = TYPE_SPAPR_DRC_PHYSICAL,
749     .parent        = TYPE_SPAPR_DR_CONNECTOR,
750     .instance_size = sizeof(SpaprDrcPhysical),
751     .class_init    = spapr_drc_physical_class_init,
752     .abstract      = true,
753 };
754 
755 static const TypeInfo spapr_drc_logical_info = {
756     .name          = TYPE_SPAPR_DRC_LOGICAL,
757     .parent        = TYPE_SPAPR_DR_CONNECTOR,
758     .class_init    = spapr_drc_logical_class_init,
759     .abstract      = true,
760 };
761 
762 static const TypeInfo spapr_drc_cpu_info = {
763     .name          = TYPE_SPAPR_DRC_CPU,
764     .parent        = TYPE_SPAPR_DRC_LOGICAL,
765     .class_init    = spapr_drc_cpu_class_init,
766 };
767 
768 static const TypeInfo spapr_drc_pci_info = {
769     .name          = TYPE_SPAPR_DRC_PCI,
770     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
771     .class_init    = spapr_drc_pci_class_init,
772 };
773 
774 static const TypeInfo spapr_drc_lmb_info = {
775     .name          = TYPE_SPAPR_DRC_LMB,
776     .parent        = TYPE_SPAPR_DRC_LOGICAL,
777     .class_init    = spapr_drc_lmb_class_init,
778 };
779 
780 static const TypeInfo spapr_drc_phb_info = {
781     .name          = TYPE_SPAPR_DRC_PHB,
782     .parent        = TYPE_SPAPR_DRC_LOGICAL,
783     .instance_size = sizeof(SpaprDrc),
784     .class_init    = spapr_drc_phb_class_init,
785 };
786 
787 static const TypeInfo spapr_drc_pmem_info = {
788     .name          = TYPE_SPAPR_DRC_PMEM,
789     .parent        = TYPE_SPAPR_DRC_LOGICAL,
790     .class_init    = spapr_drc_pmem_class_init,
791 };
792 
793 /* helper functions for external users */
794 
795 SpaprDrc *spapr_drc_by_index(uint32_t index)
796 {
797     Object *obj;
798     gchar *name;
799 
800     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
801     obj = object_resolve_path(name, NULL);
802     g_free(name);
803 
804     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
805 }
806 
807 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
808 {
809     SpaprDrcClass *drck
810         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
811 
812     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
813                               | (id & DRC_INDEX_ID_MASK));
814 }
815 
816 /**
817  * spapr_dt_drc
818  *
819  * @fdt: libfdt device tree
820  * @path: path in the DT to generate properties
821  * @owner: parent Object/DeviceState for which to generate DRC
822  *         descriptions for
823  * @drc_type_mask: mask of SpaprDrcType values corresponding
824  *   to the types of DRCs to generate entries for
825  *
826  * generate OF properties to describe DRC topology/indices to guests
827  *
828  * as documented in PAPR+ v2.1, 13.5.2
829  */
830 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
831 {
832     Object *root_container;
833     ObjectProperty *prop;
834     ObjectPropertyIterator iter;
835     uint32_t drc_count = 0;
836     GArray *drc_indexes, *drc_power_domains;
837     GString *drc_names, *drc_types;
838     int ret;
839 
840     /* the first entry of each properties is a 32-bit integer encoding
841      * the number of elements in the array. we won't know this until
842      * we complete the iteration through all the matching DRCs, but
843      * reserve the space now and set the offsets accordingly so we
844      * can fill them in later.
845      */
846     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
847     drc_indexes = g_array_set_size(drc_indexes, 1);
848     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
849     drc_power_domains = g_array_set_size(drc_power_domains, 1);
850     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
851     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
852 
853     /* aliases for all DRConnector objects will be rooted in QOM
854      * composition tree at DRC_CONTAINER_PATH
855      */
856     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
857 
858     object_property_iter_init(&iter, root_container);
859     while ((prop = object_property_iter_next(&iter))) {
860         Object *obj;
861         SpaprDrc *drc;
862         SpaprDrcClass *drck;
863         char *drc_name = NULL;
864         uint32_t drc_index, drc_power_domain;
865 
866         if (!strstart(prop->type, "link<", NULL)) {
867             continue;
868         }
869 
870         obj = object_property_get_link(root_container, prop->name,
871                                        &error_abort);
872         drc = SPAPR_DR_CONNECTOR(obj);
873         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
874 
875         if (owner && (drc->owner != owner)) {
876             continue;
877         }
878 
879         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
880             continue;
881         }
882 
883         drc_count++;
884 
885         /* ibm,drc-indexes */
886         drc_index = cpu_to_be32(spapr_drc_index(drc));
887         g_array_append_val(drc_indexes, drc_index);
888 
889         /* ibm,drc-power-domains */
890         drc_power_domain = cpu_to_be32(-1);
891         g_array_append_val(drc_power_domains, drc_power_domain);
892 
893         /* ibm,drc-names */
894         drc_name = spapr_drc_name(drc);
895         drc_names = g_string_append(drc_names, drc_name);
896         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
897         g_free(drc_name);
898 
899         /* ibm,drc-types */
900         drc_types = g_string_append(drc_types, drck->typename);
901         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
902     }
903 
904     /* now write the drc count into the space we reserved at the
905      * beginning of the arrays previously
906      */
907     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
908     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
909     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
910     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
911 
912     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
913                       drc_indexes->data,
914                       drc_indexes->len * sizeof(uint32_t));
915     if (ret) {
916         error_report("Couldn't create ibm,drc-indexes property");
917         goto out;
918     }
919 
920     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
921                       drc_power_domains->data,
922                       drc_power_domains->len * sizeof(uint32_t));
923     if (ret) {
924         error_report("Couldn't finalize ibm,drc-power-domains property");
925         goto out;
926     }
927 
928     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
929                       drc_names->str, drc_names->len);
930     if (ret) {
931         error_report("Couldn't finalize ibm,drc-names property");
932         goto out;
933     }
934 
935     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
936                       drc_types->str, drc_types->len);
937     if (ret) {
938         error_report("Couldn't finalize ibm,drc-types property");
939         goto out;
940     }
941 
942 out:
943     g_array_free(drc_indexes, true);
944     g_array_free(drc_power_domains, true);
945     g_string_free(drc_names, true);
946     g_string_free(drc_types, true);
947 
948     return ret;
949 }
950 
951 /*
952  * RTAS calls
953  */
954 
955 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
956 {
957     SpaprDrc *drc = spapr_drc_by_index(idx);
958     SpaprDrcClass *drck;
959 
960     if (!drc) {
961         return RTAS_OUT_NO_SUCH_INDICATOR;
962     }
963 
964     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
965 
966     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
967 
968     switch (state) {
969     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
970         return drck->isolate(drc);
971 
972     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
973         return drck->unisolate(drc);
974 
975     default:
976         return RTAS_OUT_PARAM_ERROR;
977     }
978 }
979 
980 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
981 {
982     SpaprDrc *drc = spapr_drc_by_index(idx);
983 
984     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
985         return RTAS_OUT_NO_SUCH_INDICATOR;
986     }
987 
988     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
989 
990     switch (state) {
991     case SPAPR_DR_ALLOCATION_STATE_USABLE:
992         return drc_set_usable(drc);
993 
994     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
995         return drc_set_unusable(drc);
996 
997     default:
998         return RTAS_OUT_PARAM_ERROR;
999     }
1000 }
1001 
1002 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1003 {
1004     SpaprDrc *drc = spapr_drc_by_index(idx);
1005 
1006     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1007         return RTAS_OUT_NO_SUCH_INDICATOR;
1008     }
1009     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1010         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1011         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1012         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1013         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1014     }
1015 
1016     trace_spapr_drc_set_dr_indicator(idx, state);
1017     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1018     return RTAS_OUT_SUCCESS;
1019 }
1020 
1021 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1022                                uint32_t token,
1023                                uint32_t nargs, target_ulong args,
1024                                uint32_t nret, target_ulong rets)
1025 {
1026     uint32_t type, idx, state;
1027     uint32_t ret = RTAS_OUT_SUCCESS;
1028 
1029     if (nargs != 3 || nret != 1) {
1030         ret = RTAS_OUT_PARAM_ERROR;
1031         goto out;
1032     }
1033 
1034     type = rtas_ld(args, 0);
1035     idx = rtas_ld(args, 1);
1036     state = rtas_ld(args, 2);
1037 
1038     switch (type) {
1039     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1040         ret = rtas_set_isolation_state(idx, state);
1041         break;
1042     case RTAS_SENSOR_TYPE_DR:
1043         ret = rtas_set_dr_indicator(idx, state);
1044         break;
1045     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1046         ret = rtas_set_allocation_state(idx, state);
1047         break;
1048     default:
1049         ret = RTAS_OUT_NOT_SUPPORTED;
1050     }
1051 
1052 out:
1053     rtas_st(rets, 0, ret);
1054 }
1055 
1056 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1057                                   uint32_t token, uint32_t nargs,
1058                                   target_ulong args, uint32_t nret,
1059                                   target_ulong rets)
1060 {
1061     uint32_t sensor_type;
1062     uint32_t sensor_index;
1063     uint32_t sensor_state = 0;
1064     SpaprDrc *drc;
1065     SpaprDrcClass *drck;
1066     uint32_t ret = RTAS_OUT_SUCCESS;
1067 
1068     if (nargs != 2 || nret != 2) {
1069         ret = RTAS_OUT_PARAM_ERROR;
1070         goto out;
1071     }
1072 
1073     sensor_type = rtas_ld(args, 0);
1074     sensor_index = rtas_ld(args, 1);
1075 
1076     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1077         /* currently only DR-related sensors are implemented */
1078         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1079                                                         sensor_type);
1080         ret = RTAS_OUT_NOT_SUPPORTED;
1081         goto out;
1082     }
1083 
1084     drc = spapr_drc_by_index(sensor_index);
1085     if (!drc) {
1086         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1087         ret = RTAS_OUT_PARAM_ERROR;
1088         goto out;
1089     }
1090     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1091     sensor_state = drck->dr_entity_sense(drc);
1092 
1093 out:
1094     rtas_st(rets, 0, ret);
1095     rtas_st(rets, 1, sensor_state);
1096 }
1097 
1098 /* configure-connector work area offsets, int32_t units for field
1099  * indexes, bytes for field offset/len values.
1100  *
1101  * as documented by PAPR+ v2.7, 13.5.3.5
1102  */
1103 #define CC_IDX_NODE_NAME_OFFSET 2
1104 #define CC_IDX_PROP_NAME_OFFSET 2
1105 #define CC_IDX_PROP_LEN 3
1106 #define CC_IDX_PROP_DATA_OFFSET 4
1107 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1108 #define CC_WA_LEN 4096
1109 
1110 static void configure_connector_st(target_ulong addr, target_ulong offset,
1111                                    const void *buf, size_t len)
1112 {
1113     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1114                               buf, MIN(len, CC_WA_LEN - offset));
1115 }
1116 
1117 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1118                                          SpaprMachineState *spapr,
1119                                          uint32_t token, uint32_t nargs,
1120                                          target_ulong args, uint32_t nret,
1121                                          target_ulong rets)
1122 {
1123     uint64_t wa_addr;
1124     uint64_t wa_offset;
1125     uint32_t drc_index;
1126     SpaprDrc *drc;
1127     SpaprDrcClass *drck;
1128     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1129     int rc;
1130 
1131     if (nargs != 2 || nret != 1) {
1132         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1133         return;
1134     }
1135 
1136     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1137 
1138     drc_index = rtas_ld(wa_addr, 0);
1139     drc = spapr_drc_by_index(drc_index);
1140     if (!drc) {
1141         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1142         rc = RTAS_OUT_PARAM_ERROR;
1143         goto out;
1144     }
1145 
1146     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1147         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1148         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1149         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1150         /*
1151          * Need to unisolate the device before configuring
1152          * or it should already be in configured state to
1153          * allow configure-connector be called repeatedly.
1154          */
1155         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1156         goto out;
1157     }
1158 
1159     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1160 
1161     if (!drc->fdt) {
1162         void *fdt;
1163         int fdt_size;
1164 
1165         fdt = create_device_tree(&fdt_size);
1166 
1167         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1168                               NULL)) {
1169             g_free(fdt);
1170             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1171             goto out;
1172         }
1173 
1174         drc->fdt = fdt;
1175         drc->ccs_offset = drc->fdt_start_offset;
1176         drc->ccs_depth = 0;
1177     }
1178 
1179     do {
1180         uint32_t tag;
1181         const char *name;
1182         const struct fdt_property *prop;
1183         int fdt_offset_next, prop_len;
1184 
1185         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1186 
1187         switch (tag) {
1188         case FDT_BEGIN_NODE:
1189             drc->ccs_depth++;
1190             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1191 
1192             /* provide the name of the next OF node */
1193             wa_offset = CC_VAL_DATA_OFFSET;
1194             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1195             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1196             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1197             break;
1198         case FDT_END_NODE:
1199             drc->ccs_depth--;
1200             if (drc->ccs_depth == 0) {
1201                 uint32_t drc_index = spapr_drc_index(drc);
1202 
1203                 /* done sending the device tree, move to configured state */
1204                 trace_spapr_drc_set_configured(drc_index);
1205                 drc->state = drck->ready_state;
1206                 /*
1207                  * Ensure that we are able to send the FDT fragment
1208                  * again via configure-connector call if the guest requests.
1209                  */
1210                 drc->ccs_offset = drc->fdt_start_offset;
1211                 drc->ccs_depth = 0;
1212                 fdt_offset_next = drc->fdt_start_offset;
1213                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1214             } else {
1215                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1216             }
1217             break;
1218         case FDT_PROP:
1219             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1220                                               &prop_len);
1221             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1222 
1223             /* provide the name of the next OF property */
1224             wa_offset = CC_VAL_DATA_OFFSET;
1225             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1226             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1227 
1228             /* provide the length and value of the OF property. data gets
1229              * placed immediately after NULL terminator of the OF property's
1230              * name string
1231              */
1232             wa_offset += strlen(name) + 1,
1233             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1234             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1235             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1236             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1237             break;
1238         case FDT_END:
1239             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1240         default:
1241             /* keep seeking for an actionable tag */
1242             break;
1243         }
1244         if (drc->ccs_offset >= 0) {
1245             drc->ccs_offset = fdt_offset_next;
1246         }
1247     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1248 
1249     rc = resp;
1250 out:
1251     rtas_st(rets, 0, rc);
1252 }
1253 
1254 static void spapr_drc_register_types(void)
1255 {
1256     type_register_static(&spapr_dr_connector_info);
1257     type_register_static(&spapr_drc_physical_info);
1258     type_register_static(&spapr_drc_logical_info);
1259     type_register_static(&spapr_drc_cpu_info);
1260     type_register_static(&spapr_drc_pci_info);
1261     type_register_static(&spapr_drc_lmb_info);
1262     type_register_static(&spapr_drc_phb_info);
1263     type_register_static(&spapr_drc_pmem_info);
1264 
1265     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1266                         rtas_set_indicator);
1267     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1268                         rtas_get_sensor_state);
1269     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1270                         rtas_ibm_configure_connector);
1271 }
1272 type_init(spapr_drc_register_types)
1273