1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 int fdt_offset_next, fdt_offset, fdt_depth; 306 void *fdt; 307 308 if (!drc->fdt) { 309 visit_type_null(v, NULL, &null, errp); 310 qobject_unref(null); 311 return; 312 } 313 314 fdt = drc->fdt; 315 fdt_offset = drc->fdt_start_offset; 316 fdt_depth = 0; 317 318 do { 319 const char *name = NULL; 320 const struct fdt_property *prop = NULL; 321 int prop_len = 0, name_len = 0; 322 uint32_t tag; 323 bool ok; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 if (!visit_start_struct(v, name, NULL, 0, errp)) { 331 return; 332 } 333 break; 334 case FDT_END_NODE: 335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 336 g_assert(fdt_depth > 0); 337 ok = visit_check_struct(v, errp); 338 visit_end_struct(v, NULL); 339 if (!ok) { 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 if (!visit_start_list(v, name, NULL, 0, errp)) { 349 return; 350 } 351 for (i = 0; i < prop_len; i++) { 352 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 353 errp)) { 354 return; 355 } 356 } 357 ok = visit_check_list(v, errp); 358 visit_end_list(v, NULL); 359 if (!ok) { 360 return; 361 } 362 break; 363 } 364 default: 365 error_report("device FDT in unexpected state: %d", tag); 366 abort(); 367 } 368 fdt_offset = fdt_offset_next; 369 } while (fdt_depth != 0); 370 } 371 372 bool spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp) 373 { 374 trace_spapr_drc_attach(spapr_drc_index(drc)); 375 376 if (drc->dev) { 377 error_setg(errp, "an attached device is still awaiting release"); 378 return false; 379 } 380 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 381 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 382 383 drc->dev = d; 384 385 object_property_add_link(OBJECT(drc), "device", 386 object_get_typename(OBJECT(drc->dev)), 387 (Object **)(&drc->dev), 388 NULL, 0); 389 return true; 390 } 391 392 static void spapr_drc_release(SpaprDrc *drc) 393 { 394 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 395 396 drck->release(drc->dev); 397 398 drc->unplug_requested = false; 399 g_free(drc->fdt); 400 drc->fdt = NULL; 401 drc->fdt_start_offset = 0; 402 object_property_del(OBJECT(drc), "device"); 403 drc->dev = NULL; 404 } 405 406 void spapr_drc_detach(SpaprDrc *drc) 407 { 408 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 409 410 trace_spapr_drc_detach(spapr_drc_index(drc)); 411 412 g_assert(drc->dev); 413 414 drc->unplug_requested = true; 415 416 if (drc->state != drck->empty_state) { 417 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 418 return; 419 } 420 421 spapr_drc_release(drc); 422 } 423 424 void spapr_drc_reset(SpaprDrc *drc) 425 { 426 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 427 428 trace_spapr_drc_reset(spapr_drc_index(drc)); 429 430 /* immediately upon reset we can safely assume DRCs whose devices 431 * are pending removal can be safely removed. 432 */ 433 if (drc->unplug_requested) { 434 spapr_drc_release(drc); 435 } 436 437 if (drc->dev) { 438 /* A device present at reset is ready to go, same as coldplugged */ 439 drc->state = drck->ready_state; 440 /* 441 * Ensure that we are able to send the FDT fragment again 442 * via configure-connector call if the guest requests. 443 */ 444 drc->ccs_offset = drc->fdt_start_offset; 445 drc->ccs_depth = 0; 446 } else { 447 drc->state = drck->empty_state; 448 drc->ccs_offset = -1; 449 drc->ccs_depth = -1; 450 } 451 } 452 453 static bool spapr_drc_unplug_requested_needed(void *opaque) 454 { 455 return spapr_drc_unplug_requested(opaque); 456 } 457 458 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 459 .name = "spapr_drc/unplug_requested", 460 .version_id = 1, 461 .minimum_version_id = 1, 462 .needed = spapr_drc_unplug_requested_needed, 463 .fields = (VMStateField []) { 464 VMSTATE_BOOL(unplug_requested, SpaprDrc), 465 VMSTATE_END_OF_LIST() 466 } 467 }; 468 469 bool spapr_drc_transient(SpaprDrc *drc) 470 { 471 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 472 473 /* 474 * If no dev is plugged in there is no need to migrate the DRC state 475 * nor to reset the DRC at CAS. 476 */ 477 if (!drc->dev) { 478 return false; 479 } 480 481 /* 482 * We need to reset the DRC at CAS or to migrate the DRC state if it's 483 * not equal to the expected long-term state, which is the same as the 484 * coldplugged initial state, or if an unplug request is pending. 485 */ 486 return drc->state != drck->ready_state || 487 spapr_drc_unplug_requested(drc); 488 } 489 490 static bool spapr_drc_needed(void *opaque) 491 { 492 return spapr_drc_transient(opaque); 493 } 494 495 static const VMStateDescription vmstate_spapr_drc = { 496 .name = "spapr_drc", 497 .version_id = 1, 498 .minimum_version_id = 1, 499 .needed = spapr_drc_needed, 500 .fields = (VMStateField []) { 501 VMSTATE_UINT32(state, SpaprDrc), 502 VMSTATE_END_OF_LIST() 503 }, 504 .subsections = (const VMStateDescription * []) { 505 &vmstate_spapr_drc_unplug_requested, 506 NULL 507 } 508 }; 509 510 static void realize(DeviceState *d, Error **errp) 511 { 512 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 513 Object *root_container; 514 gchar *link_name; 515 const char *child_name; 516 517 trace_spapr_drc_realize(spapr_drc_index(drc)); 518 /* NOTE: we do this as part of realize/unrealize due to the fact 519 * that the guest will communicate with the DRC via RTAS calls 520 * referencing the global DRC index. By unlinking the DRC 521 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 522 * inaccessible by the guest, since lookups rely on this path 523 * existing in the composition tree 524 */ 525 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 526 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 527 child_name = object_get_canonical_path_component(OBJECT(drc)); 528 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 529 object_property_add_alias(root_container, link_name, 530 drc->owner, child_name); 531 g_free(link_name); 532 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 533 drc); 534 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 535 } 536 537 static void unrealize(DeviceState *d) 538 { 539 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 540 Object *root_container; 541 gchar *name; 542 543 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 544 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 545 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 546 name = g_strdup_printf("%x", spapr_drc_index(drc)); 547 object_property_del(root_container, name); 548 g_free(name); 549 } 550 551 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 552 uint32_t id) 553 { 554 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 555 char *prop_name; 556 557 drc->id = id; 558 drc->owner = owner; 559 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 560 spapr_drc_index(drc)); 561 object_property_add_child(owner, prop_name, OBJECT(drc)); 562 object_unref(OBJECT(drc)); 563 qdev_realize(DEVICE(drc), NULL, NULL); 564 g_free(prop_name); 565 566 return drc; 567 } 568 569 static void spapr_dr_connector_instance_init(Object *obj) 570 { 571 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 572 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 573 574 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 575 object_property_add(obj, "index", "uint32", prop_get_index, 576 NULL, NULL, NULL); 577 object_property_add(obj, "fdt", "struct", prop_get_fdt, 578 NULL, NULL, NULL); 579 drc->state = drck->empty_state; 580 } 581 582 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 583 { 584 DeviceClass *dk = DEVICE_CLASS(k); 585 586 dk->realize = realize; 587 dk->unrealize = unrealize; 588 /* 589 * Reason: it crashes FIXME find and document the real reason 590 */ 591 dk->user_creatable = false; 592 } 593 594 static bool drc_physical_needed(void *opaque) 595 { 596 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 597 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 598 599 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 600 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 601 return false; 602 } 603 return true; 604 } 605 606 static const VMStateDescription vmstate_spapr_drc_physical = { 607 .name = "spapr_drc/physical", 608 .version_id = 1, 609 .minimum_version_id = 1, 610 .needed = drc_physical_needed, 611 .fields = (VMStateField []) { 612 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 613 VMSTATE_END_OF_LIST() 614 } 615 }; 616 617 static void drc_physical_reset(void *opaque) 618 { 619 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 620 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 621 622 if (drc->dev) { 623 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 624 } else { 625 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 626 } 627 } 628 629 static void realize_physical(DeviceState *d, Error **errp) 630 { 631 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 632 Error *local_err = NULL; 633 634 realize(d, &local_err); 635 if (local_err) { 636 error_propagate(errp, local_err); 637 return; 638 } 639 640 vmstate_register(VMSTATE_IF(drcp), 641 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 642 &vmstate_spapr_drc_physical, drcp); 643 qemu_register_reset(drc_physical_reset, drcp); 644 } 645 646 static void unrealize_physical(DeviceState *d) 647 { 648 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 649 650 unrealize(d); 651 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 652 qemu_unregister_reset(drc_physical_reset, drcp); 653 } 654 655 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 656 { 657 DeviceClass *dk = DEVICE_CLASS(k); 658 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 659 660 dk->realize = realize_physical; 661 dk->unrealize = unrealize_physical; 662 drck->dr_entity_sense = physical_entity_sense; 663 drck->isolate = drc_isolate_physical; 664 drck->unisolate = drc_unisolate_physical; 665 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 666 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 667 } 668 669 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 670 { 671 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 672 673 drck->dr_entity_sense = logical_entity_sense; 674 drck->isolate = drc_isolate_logical; 675 drck->unisolate = drc_unisolate_logical; 676 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 677 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 678 } 679 680 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 681 { 682 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 683 684 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 685 drck->typename = "CPU"; 686 drck->drc_name_prefix = "CPU "; 687 drck->release = spapr_core_release; 688 drck->dt_populate = spapr_core_dt_populate; 689 } 690 691 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 692 { 693 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 694 695 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 696 drck->typename = "28"; 697 drck->drc_name_prefix = "C"; 698 drck->release = spapr_phb_remove_pci_device_cb; 699 drck->dt_populate = spapr_pci_dt_populate; 700 } 701 702 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 703 { 704 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 705 706 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 707 drck->typename = "MEM"; 708 drck->drc_name_prefix = "LMB "; 709 drck->release = spapr_lmb_release; 710 drck->dt_populate = spapr_lmb_dt_populate; 711 } 712 713 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 714 { 715 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 716 717 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 718 drck->typename = "PHB"; 719 drck->drc_name_prefix = "PHB "; 720 drck->release = spapr_phb_release; 721 drck->dt_populate = spapr_phb_dt_populate; 722 } 723 724 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 725 { 726 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 727 728 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 729 drck->typename = "PMEM"; 730 drck->drc_name_prefix = "PMEM "; 731 drck->release = NULL; 732 drck->dt_populate = spapr_pmem_dt_populate; 733 } 734 735 static const TypeInfo spapr_dr_connector_info = { 736 .name = TYPE_SPAPR_DR_CONNECTOR, 737 .parent = TYPE_DEVICE, 738 .instance_size = sizeof(SpaprDrc), 739 .instance_init = spapr_dr_connector_instance_init, 740 .class_size = sizeof(SpaprDrcClass), 741 .class_init = spapr_dr_connector_class_init, 742 .abstract = true, 743 }; 744 745 static const TypeInfo spapr_drc_physical_info = { 746 .name = TYPE_SPAPR_DRC_PHYSICAL, 747 .parent = TYPE_SPAPR_DR_CONNECTOR, 748 .instance_size = sizeof(SpaprDrcPhysical), 749 .class_init = spapr_drc_physical_class_init, 750 .abstract = true, 751 }; 752 753 static const TypeInfo spapr_drc_logical_info = { 754 .name = TYPE_SPAPR_DRC_LOGICAL, 755 .parent = TYPE_SPAPR_DR_CONNECTOR, 756 .class_init = spapr_drc_logical_class_init, 757 .abstract = true, 758 }; 759 760 static const TypeInfo spapr_drc_cpu_info = { 761 .name = TYPE_SPAPR_DRC_CPU, 762 .parent = TYPE_SPAPR_DRC_LOGICAL, 763 .class_init = spapr_drc_cpu_class_init, 764 }; 765 766 static const TypeInfo spapr_drc_pci_info = { 767 .name = TYPE_SPAPR_DRC_PCI, 768 .parent = TYPE_SPAPR_DRC_PHYSICAL, 769 .class_init = spapr_drc_pci_class_init, 770 }; 771 772 static const TypeInfo spapr_drc_lmb_info = { 773 .name = TYPE_SPAPR_DRC_LMB, 774 .parent = TYPE_SPAPR_DRC_LOGICAL, 775 .class_init = spapr_drc_lmb_class_init, 776 }; 777 778 static const TypeInfo spapr_drc_phb_info = { 779 .name = TYPE_SPAPR_DRC_PHB, 780 .parent = TYPE_SPAPR_DRC_LOGICAL, 781 .instance_size = sizeof(SpaprDrc), 782 .class_init = spapr_drc_phb_class_init, 783 }; 784 785 static const TypeInfo spapr_drc_pmem_info = { 786 .name = TYPE_SPAPR_DRC_PMEM, 787 .parent = TYPE_SPAPR_DRC_LOGICAL, 788 .class_init = spapr_drc_pmem_class_init, 789 }; 790 791 /* helper functions for external users */ 792 793 SpaprDrc *spapr_drc_by_index(uint32_t index) 794 { 795 Object *obj; 796 gchar *name; 797 798 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 799 obj = object_resolve_path(name, NULL); 800 g_free(name); 801 802 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 803 } 804 805 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 806 { 807 SpaprDrcClass *drck 808 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 809 810 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 811 | (id & DRC_INDEX_ID_MASK)); 812 } 813 814 /** 815 * spapr_dt_drc 816 * 817 * @fdt: libfdt device tree 818 * @path: path in the DT to generate properties 819 * @owner: parent Object/DeviceState for which to generate DRC 820 * descriptions for 821 * @drc_type_mask: mask of SpaprDrcType values corresponding 822 * to the types of DRCs to generate entries for 823 * 824 * generate OF properties to describe DRC topology/indices to guests 825 * 826 * as documented in PAPR+ v2.1, 13.5.2 827 */ 828 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 829 { 830 Object *root_container; 831 ObjectProperty *prop; 832 ObjectPropertyIterator iter; 833 uint32_t drc_count = 0; 834 GArray *drc_indexes, *drc_power_domains; 835 GString *drc_names, *drc_types; 836 int ret; 837 838 /* the first entry of each properties is a 32-bit integer encoding 839 * the number of elements in the array. we won't know this until 840 * we complete the iteration through all the matching DRCs, but 841 * reserve the space now and set the offsets accordingly so we 842 * can fill them in later. 843 */ 844 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 845 drc_indexes = g_array_set_size(drc_indexes, 1); 846 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 847 drc_power_domains = g_array_set_size(drc_power_domains, 1); 848 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 849 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 850 851 /* aliases for all DRConnector objects will be rooted in QOM 852 * composition tree at DRC_CONTAINER_PATH 853 */ 854 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 855 856 object_property_iter_init(&iter, root_container); 857 while ((prop = object_property_iter_next(&iter))) { 858 Object *obj; 859 SpaprDrc *drc; 860 SpaprDrcClass *drck; 861 char *drc_name = NULL; 862 uint32_t drc_index, drc_power_domain; 863 864 if (!strstart(prop->type, "link<", NULL)) { 865 continue; 866 } 867 868 obj = object_property_get_link(root_container, prop->name, 869 &error_abort); 870 drc = SPAPR_DR_CONNECTOR(obj); 871 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 872 873 if (owner && (drc->owner != owner)) { 874 continue; 875 } 876 877 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 878 continue; 879 } 880 881 drc_count++; 882 883 /* ibm,drc-indexes */ 884 drc_index = cpu_to_be32(spapr_drc_index(drc)); 885 g_array_append_val(drc_indexes, drc_index); 886 887 /* ibm,drc-power-domains */ 888 drc_power_domain = cpu_to_be32(-1); 889 g_array_append_val(drc_power_domains, drc_power_domain); 890 891 /* ibm,drc-names */ 892 drc_name = spapr_drc_name(drc); 893 drc_names = g_string_append(drc_names, drc_name); 894 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 895 g_free(drc_name); 896 897 /* ibm,drc-types */ 898 drc_types = g_string_append(drc_types, drck->typename); 899 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 900 } 901 902 /* now write the drc count into the space we reserved at the 903 * beginning of the arrays previously 904 */ 905 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 906 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 907 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 908 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 909 910 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 911 drc_indexes->data, 912 drc_indexes->len * sizeof(uint32_t)); 913 if (ret) { 914 error_report("Couldn't create ibm,drc-indexes property"); 915 goto out; 916 } 917 918 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 919 drc_power_domains->data, 920 drc_power_domains->len * sizeof(uint32_t)); 921 if (ret) { 922 error_report("Couldn't finalize ibm,drc-power-domains property"); 923 goto out; 924 } 925 926 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 927 drc_names->str, drc_names->len); 928 if (ret) { 929 error_report("Couldn't finalize ibm,drc-names property"); 930 goto out; 931 } 932 933 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 934 drc_types->str, drc_types->len); 935 if (ret) { 936 error_report("Couldn't finalize ibm,drc-types property"); 937 goto out; 938 } 939 940 out: 941 g_array_free(drc_indexes, true); 942 g_array_free(drc_power_domains, true); 943 g_string_free(drc_names, true); 944 g_string_free(drc_types, true); 945 946 return ret; 947 } 948 949 /* 950 * RTAS calls 951 */ 952 953 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 954 { 955 SpaprDrc *drc = spapr_drc_by_index(idx); 956 SpaprDrcClass *drck; 957 958 if (!drc) { 959 return RTAS_OUT_NO_SUCH_INDICATOR; 960 } 961 962 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 963 964 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 965 966 switch (state) { 967 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 968 return drck->isolate(drc); 969 970 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 971 return drck->unisolate(drc); 972 973 default: 974 return RTAS_OUT_PARAM_ERROR; 975 } 976 } 977 978 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 979 { 980 SpaprDrc *drc = spapr_drc_by_index(idx); 981 982 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 983 return RTAS_OUT_NO_SUCH_INDICATOR; 984 } 985 986 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 987 988 switch (state) { 989 case SPAPR_DR_ALLOCATION_STATE_USABLE: 990 return drc_set_usable(drc); 991 992 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 993 return drc_set_unusable(drc); 994 995 default: 996 return RTAS_OUT_PARAM_ERROR; 997 } 998 } 999 1000 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1001 { 1002 SpaprDrc *drc = spapr_drc_by_index(idx); 1003 1004 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1005 return RTAS_OUT_NO_SUCH_INDICATOR; 1006 } 1007 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1008 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1009 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1010 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1011 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1012 } 1013 1014 trace_spapr_drc_set_dr_indicator(idx, state); 1015 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1016 return RTAS_OUT_SUCCESS; 1017 } 1018 1019 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1020 uint32_t token, 1021 uint32_t nargs, target_ulong args, 1022 uint32_t nret, target_ulong rets) 1023 { 1024 uint32_t type, idx, state; 1025 uint32_t ret = RTAS_OUT_SUCCESS; 1026 1027 if (nargs != 3 || nret != 1) { 1028 ret = RTAS_OUT_PARAM_ERROR; 1029 goto out; 1030 } 1031 1032 type = rtas_ld(args, 0); 1033 idx = rtas_ld(args, 1); 1034 state = rtas_ld(args, 2); 1035 1036 switch (type) { 1037 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1038 ret = rtas_set_isolation_state(idx, state); 1039 break; 1040 case RTAS_SENSOR_TYPE_DR: 1041 ret = rtas_set_dr_indicator(idx, state); 1042 break; 1043 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1044 ret = rtas_set_allocation_state(idx, state); 1045 break; 1046 default: 1047 ret = RTAS_OUT_NOT_SUPPORTED; 1048 } 1049 1050 out: 1051 rtas_st(rets, 0, ret); 1052 } 1053 1054 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1055 uint32_t token, uint32_t nargs, 1056 target_ulong args, uint32_t nret, 1057 target_ulong rets) 1058 { 1059 uint32_t sensor_type; 1060 uint32_t sensor_index; 1061 uint32_t sensor_state = 0; 1062 SpaprDrc *drc; 1063 SpaprDrcClass *drck; 1064 uint32_t ret = RTAS_OUT_SUCCESS; 1065 1066 if (nargs != 2 || nret != 2) { 1067 ret = RTAS_OUT_PARAM_ERROR; 1068 goto out; 1069 } 1070 1071 sensor_type = rtas_ld(args, 0); 1072 sensor_index = rtas_ld(args, 1); 1073 1074 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1075 /* currently only DR-related sensors are implemented */ 1076 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1077 sensor_type); 1078 ret = RTAS_OUT_NOT_SUPPORTED; 1079 goto out; 1080 } 1081 1082 drc = spapr_drc_by_index(sensor_index); 1083 if (!drc) { 1084 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1085 ret = RTAS_OUT_PARAM_ERROR; 1086 goto out; 1087 } 1088 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1089 sensor_state = drck->dr_entity_sense(drc); 1090 1091 out: 1092 rtas_st(rets, 0, ret); 1093 rtas_st(rets, 1, sensor_state); 1094 } 1095 1096 /* configure-connector work area offsets, int32_t units for field 1097 * indexes, bytes for field offset/len values. 1098 * 1099 * as documented by PAPR+ v2.7, 13.5.3.5 1100 */ 1101 #define CC_IDX_NODE_NAME_OFFSET 2 1102 #define CC_IDX_PROP_NAME_OFFSET 2 1103 #define CC_IDX_PROP_LEN 3 1104 #define CC_IDX_PROP_DATA_OFFSET 4 1105 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1106 #define CC_WA_LEN 4096 1107 1108 static void configure_connector_st(target_ulong addr, target_ulong offset, 1109 const void *buf, size_t len) 1110 { 1111 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1112 buf, MIN(len, CC_WA_LEN - offset)); 1113 } 1114 1115 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1116 SpaprMachineState *spapr, 1117 uint32_t token, uint32_t nargs, 1118 target_ulong args, uint32_t nret, 1119 target_ulong rets) 1120 { 1121 uint64_t wa_addr; 1122 uint64_t wa_offset; 1123 uint32_t drc_index; 1124 SpaprDrc *drc; 1125 SpaprDrcClass *drck; 1126 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1127 int rc; 1128 1129 if (nargs != 2 || nret != 1) { 1130 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1131 return; 1132 } 1133 1134 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1135 1136 drc_index = rtas_ld(wa_addr, 0); 1137 drc = spapr_drc_by_index(drc_index); 1138 if (!drc) { 1139 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1140 rc = RTAS_OUT_PARAM_ERROR; 1141 goto out; 1142 } 1143 1144 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1145 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1146 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1147 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1148 /* 1149 * Need to unisolate the device before configuring 1150 * or it should already be in configured state to 1151 * allow configure-connector be called repeatedly. 1152 */ 1153 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1154 goto out; 1155 } 1156 1157 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1158 1159 if (!drc->fdt) { 1160 void *fdt; 1161 int fdt_size; 1162 1163 fdt = create_device_tree(&fdt_size); 1164 1165 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1166 NULL)) { 1167 g_free(fdt); 1168 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1169 goto out; 1170 } 1171 1172 drc->fdt = fdt; 1173 drc->ccs_offset = drc->fdt_start_offset; 1174 drc->ccs_depth = 0; 1175 } 1176 1177 do { 1178 uint32_t tag; 1179 const char *name; 1180 const struct fdt_property *prop; 1181 int fdt_offset_next, prop_len; 1182 1183 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1184 1185 switch (tag) { 1186 case FDT_BEGIN_NODE: 1187 drc->ccs_depth++; 1188 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1189 1190 /* provide the name of the next OF node */ 1191 wa_offset = CC_VAL_DATA_OFFSET; 1192 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1193 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1194 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1195 break; 1196 case FDT_END_NODE: 1197 drc->ccs_depth--; 1198 if (drc->ccs_depth == 0) { 1199 uint32_t drc_index = spapr_drc_index(drc); 1200 1201 /* done sending the device tree, move to configured state */ 1202 trace_spapr_drc_set_configured(drc_index); 1203 drc->state = drck->ready_state; 1204 /* 1205 * Ensure that we are able to send the FDT fragment 1206 * again via configure-connector call if the guest requests. 1207 */ 1208 drc->ccs_offset = drc->fdt_start_offset; 1209 drc->ccs_depth = 0; 1210 fdt_offset_next = drc->fdt_start_offset; 1211 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1212 } else { 1213 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1214 } 1215 break; 1216 case FDT_PROP: 1217 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1218 &prop_len); 1219 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1220 1221 /* provide the name of the next OF property */ 1222 wa_offset = CC_VAL_DATA_OFFSET; 1223 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1224 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1225 1226 /* provide the length and value of the OF property. data gets 1227 * placed immediately after NULL terminator of the OF property's 1228 * name string 1229 */ 1230 wa_offset += strlen(name) + 1, 1231 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1232 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1233 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1234 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1235 break; 1236 case FDT_END: 1237 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1238 default: 1239 /* keep seeking for an actionable tag */ 1240 break; 1241 } 1242 if (drc->ccs_offset >= 0) { 1243 drc->ccs_offset = fdt_offset_next; 1244 } 1245 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1246 1247 rc = resp; 1248 out: 1249 rtas_st(rets, 0, rc); 1250 } 1251 1252 static void spapr_drc_register_types(void) 1253 { 1254 type_register_static(&spapr_dr_connector_info); 1255 type_register_static(&spapr_drc_physical_info); 1256 type_register_static(&spapr_drc_logical_info); 1257 type_register_static(&spapr_drc_cpu_info); 1258 type_register_static(&spapr_drc_pci_info); 1259 type_register_static(&spapr_drc_lmb_info); 1260 type_register_static(&spapr_drc_phb_info); 1261 type_register_static(&spapr_drc_pmem_info); 1262 1263 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1264 rtas_set_indicator); 1265 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1266 rtas_get_sensor_state); 1267 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1268 rtas_ibm_configure_connector); 1269 } 1270 type_init(spapr_drc_register_types) 1271