xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 62a35aaa)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     Error *err = NULL;
306     int fdt_offset_next, fdt_offset, fdt_depth;
307     void *fdt;
308 
309     if (!drc->fdt) {
310         visit_type_null(v, NULL, &null, errp);
311         qobject_unref(null);
312         return;
313     }
314 
315     fdt = drc->fdt;
316     fdt_offset = drc->fdt_start_offset;
317     fdt_depth = 0;
318 
319     do {
320         const char *name = NULL;
321         const struct fdt_property *prop = NULL;
322         int prop_len = 0, name_len = 0;
323         uint32_t tag;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             if (!visit_start_struct(v, name, NULL, 0, &err)) {
331                 error_propagate(errp, err);
332                 return;
333             }
334             break;
335         case FDT_END_NODE:
336             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
337             g_assert(fdt_depth > 0);
338             visit_check_struct(v, &err);
339             visit_end_struct(v, NULL);
340             if (err) {
341                 error_propagate(errp, err);
342                 return;
343             }
344             fdt_depth--;
345             break;
346         case FDT_PROP: {
347             int i;
348             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
349             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
350             if (!visit_start_list(v, name, NULL, 0, &err)) {
351                 error_propagate(errp, err);
352                 return;
353             }
354             for (i = 0; i < prop_len; i++) {
355                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
356                                       &err)) {
357                     error_propagate(errp, err);
358                     return;
359                 }
360             }
361             visit_check_list(v, &err);
362             visit_end_list(v, NULL);
363             if (err) {
364                 error_propagate(errp, err);
365                 return;
366             }
367             break;
368         }
369         default:
370             error_report("device FDT in unexpected state: %d", tag);
371             abort();
372         }
373         fdt_offset = fdt_offset_next;
374     } while (fdt_depth != 0);
375 }
376 
377 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
378 {
379     trace_spapr_drc_attach(spapr_drc_index(drc));
380 
381     if (drc->dev) {
382         error_setg(errp, "an attached device is still awaiting release");
383         return;
384     }
385     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
386              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
387 
388     drc->dev = d;
389 
390     object_property_add_link(OBJECT(drc), "device",
391                              object_get_typename(OBJECT(drc->dev)),
392                              (Object **)(&drc->dev),
393                              NULL, 0);
394 }
395 
396 static void spapr_drc_release(SpaprDrc *drc)
397 {
398     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
399 
400     drck->release(drc->dev);
401 
402     drc->unplug_requested = false;
403     g_free(drc->fdt);
404     drc->fdt = NULL;
405     drc->fdt_start_offset = 0;
406     object_property_del(OBJECT(drc), "device");
407     drc->dev = NULL;
408 }
409 
410 void spapr_drc_detach(SpaprDrc *drc)
411 {
412     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
413 
414     trace_spapr_drc_detach(spapr_drc_index(drc));
415 
416     g_assert(drc->dev);
417 
418     drc->unplug_requested = true;
419 
420     if (drc->state != drck->empty_state) {
421         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
422         return;
423     }
424 
425     spapr_drc_release(drc);
426 }
427 
428 void spapr_drc_reset(SpaprDrc *drc)
429 {
430     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
431 
432     trace_spapr_drc_reset(spapr_drc_index(drc));
433 
434     /* immediately upon reset we can safely assume DRCs whose devices
435      * are pending removal can be safely removed.
436      */
437     if (drc->unplug_requested) {
438         spapr_drc_release(drc);
439     }
440 
441     if (drc->dev) {
442         /* A device present at reset is ready to go, same as coldplugged */
443         drc->state = drck->ready_state;
444         /*
445          * Ensure that we are able to send the FDT fragment again
446          * via configure-connector call if the guest requests.
447          */
448         drc->ccs_offset = drc->fdt_start_offset;
449         drc->ccs_depth = 0;
450     } else {
451         drc->state = drck->empty_state;
452         drc->ccs_offset = -1;
453         drc->ccs_depth = -1;
454     }
455 }
456 
457 static bool spapr_drc_unplug_requested_needed(void *opaque)
458 {
459     return spapr_drc_unplug_requested(opaque);
460 }
461 
462 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
463     .name = "spapr_drc/unplug_requested",
464     .version_id = 1,
465     .minimum_version_id = 1,
466     .needed = spapr_drc_unplug_requested_needed,
467     .fields  = (VMStateField []) {
468         VMSTATE_BOOL(unplug_requested, SpaprDrc),
469         VMSTATE_END_OF_LIST()
470     }
471 };
472 
473 bool spapr_drc_transient(SpaprDrc *drc)
474 {
475     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
476 
477     /*
478      * If no dev is plugged in there is no need to migrate the DRC state
479      * nor to reset the DRC at CAS.
480      */
481     if (!drc->dev) {
482         return false;
483     }
484 
485     /*
486      * We need to reset the DRC at CAS or to migrate the DRC state if it's
487      * not equal to the expected long-term state, which is the same as the
488      * coldplugged initial state, or if an unplug request is pending.
489      */
490     return drc->state != drck->ready_state ||
491         spapr_drc_unplug_requested(drc);
492 }
493 
494 static bool spapr_drc_needed(void *opaque)
495 {
496     return spapr_drc_transient(opaque);
497 }
498 
499 static const VMStateDescription vmstate_spapr_drc = {
500     .name = "spapr_drc",
501     .version_id = 1,
502     .minimum_version_id = 1,
503     .needed = spapr_drc_needed,
504     .fields  = (VMStateField []) {
505         VMSTATE_UINT32(state, SpaprDrc),
506         VMSTATE_END_OF_LIST()
507     },
508     .subsections = (const VMStateDescription * []) {
509         &vmstate_spapr_drc_unplug_requested,
510         NULL
511     }
512 };
513 
514 static void realize(DeviceState *d, Error **errp)
515 {
516     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
517     Object *root_container;
518     gchar *link_name;
519     char *child_name;
520 
521     trace_spapr_drc_realize(spapr_drc_index(drc));
522     /* NOTE: we do this as part of realize/unrealize due to the fact
523      * that the guest will communicate with the DRC via RTAS calls
524      * referencing the global DRC index. By unlinking the DRC
525      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
526      * inaccessible by the guest, since lookups rely on this path
527      * existing in the composition tree
528      */
529     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
530     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
531     child_name = object_get_canonical_path_component(OBJECT(drc));
532     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
533     object_property_add_alias(root_container, link_name,
534                               drc->owner, child_name);
535     g_free(child_name);
536     g_free(link_name);
537     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
538                      drc);
539     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
540 }
541 
542 static void unrealize(DeviceState *d)
543 {
544     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
545     Object *root_container;
546     gchar *name;
547 
548     trace_spapr_drc_unrealize(spapr_drc_index(drc));
549     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
550     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
551     name = g_strdup_printf("%x", spapr_drc_index(drc));
552     object_property_del(root_container, name);
553     g_free(name);
554 }
555 
556 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
557                                          uint32_t id)
558 {
559     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
560     char *prop_name;
561 
562     drc->id = id;
563     drc->owner = owner;
564     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
565                                 spapr_drc_index(drc));
566     object_property_add_child(owner, prop_name, OBJECT(drc));
567     object_unref(OBJECT(drc));
568     qdev_realize(DEVICE(drc), NULL, NULL);
569     g_free(prop_name);
570 
571     return drc;
572 }
573 
574 static void spapr_dr_connector_instance_init(Object *obj)
575 {
576     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
577     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
578 
579     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
580     object_property_add(obj, "index", "uint32", prop_get_index,
581                         NULL, NULL, NULL);
582     object_property_add(obj, "fdt", "struct", prop_get_fdt,
583                         NULL, NULL, NULL);
584     drc->state = drck->empty_state;
585 }
586 
587 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
588 {
589     DeviceClass *dk = DEVICE_CLASS(k);
590 
591     dk->realize = realize;
592     dk->unrealize = unrealize;
593     /*
594      * Reason: it crashes FIXME find and document the real reason
595      */
596     dk->user_creatable = false;
597 }
598 
599 static bool drc_physical_needed(void *opaque)
600 {
601     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
602     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
603 
604     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
605         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
606         return false;
607     }
608     return true;
609 }
610 
611 static const VMStateDescription vmstate_spapr_drc_physical = {
612     .name = "spapr_drc/physical",
613     .version_id = 1,
614     .minimum_version_id = 1,
615     .needed = drc_physical_needed,
616     .fields  = (VMStateField []) {
617         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
618         VMSTATE_END_OF_LIST()
619     }
620 };
621 
622 static void drc_physical_reset(void *opaque)
623 {
624     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
625     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
626 
627     if (drc->dev) {
628         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
629     } else {
630         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
631     }
632 }
633 
634 static void realize_physical(DeviceState *d, Error **errp)
635 {
636     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
637     Error *local_err = NULL;
638 
639     realize(d, &local_err);
640     if (local_err) {
641         error_propagate(errp, local_err);
642         return;
643     }
644 
645     vmstate_register(VMSTATE_IF(drcp),
646                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
647                      &vmstate_spapr_drc_physical, drcp);
648     qemu_register_reset(drc_physical_reset, drcp);
649 }
650 
651 static void unrealize_physical(DeviceState *d)
652 {
653     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
654 
655     unrealize(d);
656     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
657     qemu_unregister_reset(drc_physical_reset, drcp);
658 }
659 
660 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
661 {
662     DeviceClass *dk = DEVICE_CLASS(k);
663     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
664 
665     dk->realize = realize_physical;
666     dk->unrealize = unrealize_physical;
667     drck->dr_entity_sense = physical_entity_sense;
668     drck->isolate = drc_isolate_physical;
669     drck->unisolate = drc_unisolate_physical;
670     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
671     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
672 }
673 
674 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
675 {
676     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
677 
678     drck->dr_entity_sense = logical_entity_sense;
679     drck->isolate = drc_isolate_logical;
680     drck->unisolate = drc_unisolate_logical;
681     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
682     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
683 }
684 
685 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
686 {
687     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
688 
689     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
690     drck->typename = "CPU";
691     drck->drc_name_prefix = "CPU ";
692     drck->release = spapr_core_release;
693     drck->dt_populate = spapr_core_dt_populate;
694 }
695 
696 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
697 {
698     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
699 
700     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
701     drck->typename = "28";
702     drck->drc_name_prefix = "C";
703     drck->release = spapr_phb_remove_pci_device_cb;
704     drck->dt_populate = spapr_pci_dt_populate;
705 }
706 
707 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
708 {
709     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
710 
711     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
712     drck->typename = "MEM";
713     drck->drc_name_prefix = "LMB ";
714     drck->release = spapr_lmb_release;
715     drck->dt_populate = spapr_lmb_dt_populate;
716 }
717 
718 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
719 {
720     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
721 
722     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
723     drck->typename = "PHB";
724     drck->drc_name_prefix = "PHB ";
725     drck->release = spapr_phb_release;
726     drck->dt_populate = spapr_phb_dt_populate;
727 }
728 
729 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
730 {
731     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
732 
733     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
734     drck->typename = "PMEM";
735     drck->drc_name_prefix = "PMEM ";
736     drck->release = NULL;
737     drck->dt_populate = spapr_pmem_dt_populate;
738 }
739 
740 static const TypeInfo spapr_dr_connector_info = {
741     .name          = TYPE_SPAPR_DR_CONNECTOR,
742     .parent        = TYPE_DEVICE,
743     .instance_size = sizeof(SpaprDrc),
744     .instance_init = spapr_dr_connector_instance_init,
745     .class_size    = sizeof(SpaprDrcClass),
746     .class_init    = spapr_dr_connector_class_init,
747     .abstract      = true,
748 };
749 
750 static const TypeInfo spapr_drc_physical_info = {
751     .name          = TYPE_SPAPR_DRC_PHYSICAL,
752     .parent        = TYPE_SPAPR_DR_CONNECTOR,
753     .instance_size = sizeof(SpaprDrcPhysical),
754     .class_init    = spapr_drc_physical_class_init,
755     .abstract      = true,
756 };
757 
758 static const TypeInfo spapr_drc_logical_info = {
759     .name          = TYPE_SPAPR_DRC_LOGICAL,
760     .parent        = TYPE_SPAPR_DR_CONNECTOR,
761     .class_init    = spapr_drc_logical_class_init,
762     .abstract      = true,
763 };
764 
765 static const TypeInfo spapr_drc_cpu_info = {
766     .name          = TYPE_SPAPR_DRC_CPU,
767     .parent        = TYPE_SPAPR_DRC_LOGICAL,
768     .class_init    = spapr_drc_cpu_class_init,
769 };
770 
771 static const TypeInfo spapr_drc_pci_info = {
772     .name          = TYPE_SPAPR_DRC_PCI,
773     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
774     .class_init    = spapr_drc_pci_class_init,
775 };
776 
777 static const TypeInfo spapr_drc_lmb_info = {
778     .name          = TYPE_SPAPR_DRC_LMB,
779     .parent        = TYPE_SPAPR_DRC_LOGICAL,
780     .class_init    = spapr_drc_lmb_class_init,
781 };
782 
783 static const TypeInfo spapr_drc_phb_info = {
784     .name          = TYPE_SPAPR_DRC_PHB,
785     .parent        = TYPE_SPAPR_DRC_LOGICAL,
786     .instance_size = sizeof(SpaprDrc),
787     .class_init    = spapr_drc_phb_class_init,
788 };
789 
790 static const TypeInfo spapr_drc_pmem_info = {
791     .name          = TYPE_SPAPR_DRC_PMEM,
792     .parent        = TYPE_SPAPR_DRC_LOGICAL,
793     .class_init    = spapr_drc_pmem_class_init,
794 };
795 
796 /* helper functions for external users */
797 
798 SpaprDrc *spapr_drc_by_index(uint32_t index)
799 {
800     Object *obj;
801     gchar *name;
802 
803     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
804     obj = object_resolve_path(name, NULL);
805     g_free(name);
806 
807     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
808 }
809 
810 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
811 {
812     SpaprDrcClass *drck
813         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
814 
815     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
816                               | (id & DRC_INDEX_ID_MASK));
817 }
818 
819 /**
820  * spapr_dt_drc
821  *
822  * @fdt: libfdt device tree
823  * @path: path in the DT to generate properties
824  * @owner: parent Object/DeviceState for which to generate DRC
825  *         descriptions for
826  * @drc_type_mask: mask of SpaprDrcType values corresponding
827  *   to the types of DRCs to generate entries for
828  *
829  * generate OF properties to describe DRC topology/indices to guests
830  *
831  * as documented in PAPR+ v2.1, 13.5.2
832  */
833 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
834 {
835     Object *root_container;
836     ObjectProperty *prop;
837     ObjectPropertyIterator iter;
838     uint32_t drc_count = 0;
839     GArray *drc_indexes, *drc_power_domains;
840     GString *drc_names, *drc_types;
841     int ret;
842 
843     /* the first entry of each properties is a 32-bit integer encoding
844      * the number of elements in the array. we won't know this until
845      * we complete the iteration through all the matching DRCs, but
846      * reserve the space now and set the offsets accordingly so we
847      * can fill them in later.
848      */
849     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
850     drc_indexes = g_array_set_size(drc_indexes, 1);
851     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
852     drc_power_domains = g_array_set_size(drc_power_domains, 1);
853     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
854     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
855 
856     /* aliases for all DRConnector objects will be rooted in QOM
857      * composition tree at DRC_CONTAINER_PATH
858      */
859     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
860 
861     object_property_iter_init(&iter, root_container);
862     while ((prop = object_property_iter_next(&iter))) {
863         Object *obj;
864         SpaprDrc *drc;
865         SpaprDrcClass *drck;
866         char *drc_name = NULL;
867         uint32_t drc_index, drc_power_domain;
868 
869         if (!strstart(prop->type, "link<", NULL)) {
870             continue;
871         }
872 
873         obj = object_property_get_link(root_container, prop->name, NULL);
874         drc = SPAPR_DR_CONNECTOR(obj);
875         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
876 
877         if (owner && (drc->owner != owner)) {
878             continue;
879         }
880 
881         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
882             continue;
883         }
884 
885         drc_count++;
886 
887         /* ibm,drc-indexes */
888         drc_index = cpu_to_be32(spapr_drc_index(drc));
889         g_array_append_val(drc_indexes, drc_index);
890 
891         /* ibm,drc-power-domains */
892         drc_power_domain = cpu_to_be32(-1);
893         g_array_append_val(drc_power_domains, drc_power_domain);
894 
895         /* ibm,drc-names */
896         drc_name = spapr_drc_name(drc);
897         drc_names = g_string_append(drc_names, drc_name);
898         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
899         g_free(drc_name);
900 
901         /* ibm,drc-types */
902         drc_types = g_string_append(drc_types, drck->typename);
903         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
904     }
905 
906     /* now write the drc count into the space we reserved at the
907      * beginning of the arrays previously
908      */
909     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
910     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
911     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
912     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
913 
914     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
915                       drc_indexes->data,
916                       drc_indexes->len * sizeof(uint32_t));
917     if (ret) {
918         error_report("Couldn't create ibm,drc-indexes property");
919         goto out;
920     }
921 
922     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
923                       drc_power_domains->data,
924                       drc_power_domains->len * sizeof(uint32_t));
925     if (ret) {
926         error_report("Couldn't finalize ibm,drc-power-domains property");
927         goto out;
928     }
929 
930     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
931                       drc_names->str, drc_names->len);
932     if (ret) {
933         error_report("Couldn't finalize ibm,drc-names property");
934         goto out;
935     }
936 
937     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
938                       drc_types->str, drc_types->len);
939     if (ret) {
940         error_report("Couldn't finalize ibm,drc-types property");
941         goto out;
942     }
943 
944 out:
945     g_array_free(drc_indexes, true);
946     g_array_free(drc_power_domains, true);
947     g_string_free(drc_names, true);
948     g_string_free(drc_types, true);
949 
950     return ret;
951 }
952 
953 /*
954  * RTAS calls
955  */
956 
957 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
958 {
959     SpaprDrc *drc = spapr_drc_by_index(idx);
960     SpaprDrcClass *drck;
961 
962     if (!drc) {
963         return RTAS_OUT_NO_SUCH_INDICATOR;
964     }
965 
966     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
967 
968     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
969 
970     switch (state) {
971     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
972         return drck->isolate(drc);
973 
974     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
975         return drck->unisolate(drc);
976 
977     default:
978         return RTAS_OUT_PARAM_ERROR;
979     }
980 }
981 
982 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
983 {
984     SpaprDrc *drc = spapr_drc_by_index(idx);
985 
986     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
987         return RTAS_OUT_NO_SUCH_INDICATOR;
988     }
989 
990     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
991 
992     switch (state) {
993     case SPAPR_DR_ALLOCATION_STATE_USABLE:
994         return drc_set_usable(drc);
995 
996     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
997         return drc_set_unusable(drc);
998 
999     default:
1000         return RTAS_OUT_PARAM_ERROR;
1001     }
1002 }
1003 
1004 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1005 {
1006     SpaprDrc *drc = spapr_drc_by_index(idx);
1007 
1008     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1009         return RTAS_OUT_NO_SUCH_INDICATOR;
1010     }
1011     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1012         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1013         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1014         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1015         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1016     }
1017 
1018     trace_spapr_drc_set_dr_indicator(idx, state);
1019     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1020     return RTAS_OUT_SUCCESS;
1021 }
1022 
1023 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1024                                uint32_t token,
1025                                uint32_t nargs, target_ulong args,
1026                                uint32_t nret, target_ulong rets)
1027 {
1028     uint32_t type, idx, state;
1029     uint32_t ret = RTAS_OUT_SUCCESS;
1030 
1031     if (nargs != 3 || nret != 1) {
1032         ret = RTAS_OUT_PARAM_ERROR;
1033         goto out;
1034     }
1035 
1036     type = rtas_ld(args, 0);
1037     idx = rtas_ld(args, 1);
1038     state = rtas_ld(args, 2);
1039 
1040     switch (type) {
1041     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1042         ret = rtas_set_isolation_state(idx, state);
1043         break;
1044     case RTAS_SENSOR_TYPE_DR:
1045         ret = rtas_set_dr_indicator(idx, state);
1046         break;
1047     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1048         ret = rtas_set_allocation_state(idx, state);
1049         break;
1050     default:
1051         ret = RTAS_OUT_NOT_SUPPORTED;
1052     }
1053 
1054 out:
1055     rtas_st(rets, 0, ret);
1056 }
1057 
1058 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1059                                   uint32_t token, uint32_t nargs,
1060                                   target_ulong args, uint32_t nret,
1061                                   target_ulong rets)
1062 {
1063     uint32_t sensor_type;
1064     uint32_t sensor_index;
1065     uint32_t sensor_state = 0;
1066     SpaprDrc *drc;
1067     SpaprDrcClass *drck;
1068     uint32_t ret = RTAS_OUT_SUCCESS;
1069 
1070     if (nargs != 2 || nret != 2) {
1071         ret = RTAS_OUT_PARAM_ERROR;
1072         goto out;
1073     }
1074 
1075     sensor_type = rtas_ld(args, 0);
1076     sensor_index = rtas_ld(args, 1);
1077 
1078     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1079         /* currently only DR-related sensors are implemented */
1080         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1081                                                         sensor_type);
1082         ret = RTAS_OUT_NOT_SUPPORTED;
1083         goto out;
1084     }
1085 
1086     drc = spapr_drc_by_index(sensor_index);
1087     if (!drc) {
1088         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1089         ret = RTAS_OUT_PARAM_ERROR;
1090         goto out;
1091     }
1092     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1093     sensor_state = drck->dr_entity_sense(drc);
1094 
1095 out:
1096     rtas_st(rets, 0, ret);
1097     rtas_st(rets, 1, sensor_state);
1098 }
1099 
1100 /* configure-connector work area offsets, int32_t units for field
1101  * indexes, bytes for field offset/len values.
1102  *
1103  * as documented by PAPR+ v2.7, 13.5.3.5
1104  */
1105 #define CC_IDX_NODE_NAME_OFFSET 2
1106 #define CC_IDX_PROP_NAME_OFFSET 2
1107 #define CC_IDX_PROP_LEN 3
1108 #define CC_IDX_PROP_DATA_OFFSET 4
1109 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1110 #define CC_WA_LEN 4096
1111 
1112 static void configure_connector_st(target_ulong addr, target_ulong offset,
1113                                    const void *buf, size_t len)
1114 {
1115     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1116                               buf, MIN(len, CC_WA_LEN - offset));
1117 }
1118 
1119 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1120                                          SpaprMachineState *spapr,
1121                                          uint32_t token, uint32_t nargs,
1122                                          target_ulong args, uint32_t nret,
1123                                          target_ulong rets)
1124 {
1125     uint64_t wa_addr;
1126     uint64_t wa_offset;
1127     uint32_t drc_index;
1128     SpaprDrc *drc;
1129     SpaprDrcClass *drck;
1130     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1131     int rc;
1132 
1133     if (nargs != 2 || nret != 1) {
1134         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1135         return;
1136     }
1137 
1138     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1139 
1140     drc_index = rtas_ld(wa_addr, 0);
1141     drc = spapr_drc_by_index(drc_index);
1142     if (!drc) {
1143         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1144         rc = RTAS_OUT_PARAM_ERROR;
1145         goto out;
1146     }
1147 
1148     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1149         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1150         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1151         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1152         /*
1153          * Need to unisolate the device before configuring
1154          * or it should already be in configured state to
1155          * allow configure-connector be called repeatedly.
1156          */
1157         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1158         goto out;
1159     }
1160 
1161     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1162 
1163     if (!drc->fdt) {
1164         void *fdt;
1165         int fdt_size;
1166 
1167         fdt = create_device_tree(&fdt_size);
1168 
1169         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1170                               NULL)) {
1171             g_free(fdt);
1172             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1173             goto out;
1174         }
1175 
1176         drc->fdt = fdt;
1177         drc->ccs_offset = drc->fdt_start_offset;
1178         drc->ccs_depth = 0;
1179     }
1180 
1181     do {
1182         uint32_t tag;
1183         const char *name;
1184         const struct fdt_property *prop;
1185         int fdt_offset_next, prop_len;
1186 
1187         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1188 
1189         switch (tag) {
1190         case FDT_BEGIN_NODE:
1191             drc->ccs_depth++;
1192             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1193 
1194             /* provide the name of the next OF node */
1195             wa_offset = CC_VAL_DATA_OFFSET;
1196             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1197             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1198             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1199             break;
1200         case FDT_END_NODE:
1201             drc->ccs_depth--;
1202             if (drc->ccs_depth == 0) {
1203                 uint32_t drc_index = spapr_drc_index(drc);
1204 
1205                 /* done sending the device tree, move to configured state */
1206                 trace_spapr_drc_set_configured(drc_index);
1207                 drc->state = drck->ready_state;
1208                 /*
1209                  * Ensure that we are able to send the FDT fragment
1210                  * again via configure-connector call if the guest requests.
1211                  */
1212                 drc->ccs_offset = drc->fdt_start_offset;
1213                 drc->ccs_depth = 0;
1214                 fdt_offset_next = drc->fdt_start_offset;
1215                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1216             } else {
1217                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1218             }
1219             break;
1220         case FDT_PROP:
1221             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1222                                               &prop_len);
1223             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1224 
1225             /* provide the name of the next OF property */
1226             wa_offset = CC_VAL_DATA_OFFSET;
1227             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1228             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1229 
1230             /* provide the length and value of the OF property. data gets
1231              * placed immediately after NULL terminator of the OF property's
1232              * name string
1233              */
1234             wa_offset += strlen(name) + 1,
1235             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1236             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1237             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1238             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1239             break;
1240         case FDT_END:
1241             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1242         default:
1243             /* keep seeking for an actionable tag */
1244             break;
1245         }
1246         if (drc->ccs_offset >= 0) {
1247             drc->ccs_offset = fdt_offset_next;
1248         }
1249     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1250 
1251     rc = resp;
1252 out:
1253     rtas_st(rets, 0, rc);
1254 }
1255 
1256 static void spapr_drc_register_types(void)
1257 {
1258     type_register_static(&spapr_dr_connector_info);
1259     type_register_static(&spapr_drc_physical_info);
1260     type_register_static(&spapr_drc_logical_info);
1261     type_register_static(&spapr_drc_cpu_info);
1262     type_register_static(&spapr_drc_pci_info);
1263     type_register_static(&spapr_drc_lmb_info);
1264     type_register_static(&spapr_drc_phb_info);
1265     type_register_static(&spapr_drc_pmem_info);
1266 
1267     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1268                         rtas_set_indicator);
1269     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1270                         rtas_get_sensor_state);
1271     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1272                         rtas_ibm_configure_connector);
1273 }
1274 type_init(spapr_drc_register_types)
1275