xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 59a3a1c0)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "sysemu/device_tree.h"
26 #include "sysemu/reset.h"
27 #include "trace.h"
28 
29 #define DRC_CONTAINER_PATH "/dr-connector"
30 #define DRC_INDEX_TYPE_SHIFT 28
31 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
32 
33 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
34 {
35     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
36 
37     return 1 << drck->typeshift;
38 }
39 
40 uint32_t spapr_drc_index(SpaprDrc *drc)
41 {
42     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
43 
44     /* no set format for a drc index: it only needs to be globally
45      * unique. this is how we encode the DRC type on bare-metal
46      * however, so might as well do that here
47      */
48     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
49         | (drc->id & DRC_INDEX_ID_MASK);
50 }
51 
52 static uint32_t drc_isolate_physical(SpaprDrc *drc)
53 {
54     switch (drc->state) {
55     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
56         return RTAS_OUT_SUCCESS; /* Nothing to do */
57     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
58         break; /* see below */
59     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
60         return RTAS_OUT_PARAM_ERROR; /* not allowed */
61     default:
62         g_assert_not_reached();
63     }
64 
65     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
66 
67     if (drc->unplug_requested) {
68         uint32_t drc_index = spapr_drc_index(drc);
69         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
70         spapr_drc_detach(drc);
71     }
72 
73     return RTAS_OUT_SUCCESS;
74 }
75 
76 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
77 {
78     switch (drc->state) {
79     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
80     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
81         return RTAS_OUT_SUCCESS; /* Nothing to do */
82     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
83         break; /* see below */
84     default:
85         g_assert_not_reached();
86     }
87 
88     /* cannot unisolate a non-existent resource, and, or resources
89      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
90      * 13.5.3.5)
91      */
92     if (!drc->dev) {
93         return RTAS_OUT_NO_SUCH_INDICATOR;
94     }
95 
96     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
97     drc->ccs_offset = drc->fdt_start_offset;
98     drc->ccs_depth = 0;
99 
100     return RTAS_OUT_SUCCESS;
101 }
102 
103 static uint32_t drc_isolate_logical(SpaprDrc *drc)
104 {
105     switch (drc->state) {
106     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
107     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
108         return RTAS_OUT_SUCCESS; /* Nothing to do */
109     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
110         break; /* see below */
111     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
112         return RTAS_OUT_PARAM_ERROR; /* not allowed */
113     default:
114         g_assert_not_reached();
115     }
116 
117     /*
118      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
119      * belong to a DIMM device that is marked for removal.
120      *
121      * Currently the guest userspace tool drmgr that drives the memory
122      * hotplug/unplug will just try to remove a set of 'removable' LMBs
123      * in response to a hot unplug request that is based on drc-count.
124      * If the LMB being removed doesn't belong to a DIMM device that is
125      * actually being unplugged, fail the isolation request here.
126      */
127     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
128         && !drc->unplug_requested) {
129         return RTAS_OUT_HW_ERROR;
130     }
131 
132     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
133 
134     /* if we're awaiting release, but still in an unconfigured state,
135      * it's likely the guest is still in the process of configuring
136      * the device and is transitioning the devices to an ISOLATED
137      * state as a part of that process. so we only complete the
138      * removal when this transition happens for a device in a
139      * configured state, as suggested by the state diagram from PAPR+
140      * 2.7, 13.4
141      */
142     if (drc->unplug_requested) {
143         uint32_t drc_index = spapr_drc_index(drc);
144         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
145         spapr_drc_detach(drc);
146     }
147     return RTAS_OUT_SUCCESS;
148 }
149 
150 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
151 {
152     switch (drc->state) {
153     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
154     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
155         return RTAS_OUT_SUCCESS; /* Nothing to do */
156     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
157         break; /* see below */
158     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
159         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
160     default:
161         g_assert_not_reached();
162     }
163 
164     /* Move to AVAILABLE state should have ensured device was present */
165     g_assert(drc->dev);
166 
167     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
168     drc->ccs_offset = drc->fdt_start_offset;
169     drc->ccs_depth = 0;
170 
171     return RTAS_OUT_SUCCESS;
172 }
173 
174 static uint32_t drc_set_usable(SpaprDrc *drc)
175 {
176     switch (drc->state) {
177     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
178     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
179     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
180         return RTAS_OUT_SUCCESS; /* Nothing to do */
181     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
182         break; /* see below */
183     default:
184         g_assert_not_reached();
185     }
186 
187     /* if there's no resource/device associated with the DRC, there's
188      * no way for us to put it in an allocation state consistent with
189      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
190      * result in an RTAS return code of -3 / "no such indicator"
191      */
192     if (!drc->dev) {
193         return RTAS_OUT_NO_SUCH_INDICATOR;
194     }
195     if (drc->unplug_requested) {
196         /* Don't allow the guest to move a device away from UNUSABLE
197          * state when we want to unplug it */
198         return RTAS_OUT_NO_SUCH_INDICATOR;
199     }
200 
201     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
202 
203     return RTAS_OUT_SUCCESS;
204 }
205 
206 static uint32_t drc_set_unusable(SpaprDrc *drc)
207 {
208     switch (drc->state) {
209     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
210         return RTAS_OUT_SUCCESS; /* Nothing to do */
211     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
212         break; /* see below */
213     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
214     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
215         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
216     default:
217         g_assert_not_reached();
218     }
219 
220     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
221     if (drc->unplug_requested) {
222         uint32_t drc_index = spapr_drc_index(drc);
223         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
224         spapr_drc_detach(drc);
225     }
226 
227     return RTAS_OUT_SUCCESS;
228 }
229 
230 static const char *spapr_drc_name(SpaprDrc *drc)
231 {
232     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
233 
234     /* human-readable name for a DRC to encode into the DT
235      * description. this is mainly only used within a guest in place
236      * of the unique DRC index.
237      *
238      * in the case of VIO/PCI devices, it corresponds to a "location
239      * code" that maps a logical device/function (DRC index) to a
240      * physical (or virtual in the case of VIO) location in the system
241      * by chaining together the "location label" for each
242      * encapsulating component.
243      *
244      * since this is more to do with diagnosing physical hardware
245      * issues than guest compatibility, we choose location codes/DRC
246      * names that adhere to the documented format, but avoid encoding
247      * the entire topology information into the label/code, instead
248      * just using the location codes based on the labels for the
249      * endpoints (VIO/PCI adaptor connectors), which is basically just
250      * "C" followed by an integer ID.
251      *
252      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
253      * location codes as documented by PAPR+ v2.7, 12.3.1.5
254      */
255     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
256 }
257 
258 /*
259  * dr-entity-sense sensor value
260  * returned via get-sensor-state RTAS calls
261  * as expected by state diagram in PAPR+ 2.7, 13.4
262  * based on the current allocation/indicator/power states
263  * for the DR connector.
264  */
265 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
266 {
267     /* this assumes all PCI devices are assigned to a 'live insertion'
268      * power domain, where QEMU manages power state automatically as
269      * opposed to the guest. present, non-PCI resources are unaffected
270      * by power state.
271      */
272     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
273         : SPAPR_DR_ENTITY_SENSE_EMPTY;
274 }
275 
276 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
277 {
278     switch (drc->state) {
279     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
280         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
281     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
282     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
283     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
284         g_assert(drc->dev);
285         return SPAPR_DR_ENTITY_SENSE_PRESENT;
286     default:
287         g_assert_not_reached();
288     }
289 }
290 
291 static void prop_get_index(Object *obj, Visitor *v, const char *name,
292                            void *opaque, Error **errp)
293 {
294     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
295     uint32_t value = spapr_drc_index(drc);
296     visit_type_uint32(v, name, &value, errp);
297 }
298 
299 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
300                          void *opaque, Error **errp)
301 {
302     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
303     QNull *null = NULL;
304     Error *err = NULL;
305     int fdt_offset_next, fdt_offset, fdt_depth;
306     void *fdt;
307 
308     if (!drc->fdt) {
309         visit_type_null(v, NULL, &null, errp);
310         qobject_unref(null);
311         return;
312     }
313 
314     fdt = drc->fdt;
315     fdt_offset = drc->fdt_start_offset;
316     fdt_depth = 0;
317 
318     do {
319         const char *name = NULL;
320         const struct fdt_property *prop = NULL;
321         int prop_len = 0, name_len = 0;
322         uint32_t tag;
323 
324         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
325         switch (tag) {
326         case FDT_BEGIN_NODE:
327             fdt_depth++;
328             name = fdt_get_name(fdt, fdt_offset, &name_len);
329             visit_start_struct(v, name, NULL, 0, &err);
330             if (err) {
331                 error_propagate(errp, err);
332                 return;
333             }
334             break;
335         case FDT_END_NODE:
336             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
337             g_assert(fdt_depth > 0);
338             visit_check_struct(v, &err);
339             visit_end_struct(v, NULL);
340             if (err) {
341                 error_propagate(errp, err);
342                 return;
343             }
344             fdt_depth--;
345             break;
346         case FDT_PROP: {
347             int i;
348             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
349             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
350             visit_start_list(v, name, NULL, 0, &err);
351             if (err) {
352                 error_propagate(errp, err);
353                 return;
354             }
355             for (i = 0; i < prop_len; i++) {
356                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
357                 if (err) {
358                     error_propagate(errp, err);
359                     return;
360                 }
361             }
362             visit_check_list(v, &err);
363             visit_end_list(v, NULL);
364             if (err) {
365                 error_propagate(errp, err);
366                 return;
367             }
368             break;
369         }
370         default:
371             error_report("device FDT in unexpected state: %d", tag);
372             abort();
373         }
374         fdt_offset = fdt_offset_next;
375     } while (fdt_depth != 0);
376 }
377 
378 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
379 {
380     trace_spapr_drc_attach(spapr_drc_index(drc));
381 
382     if (drc->dev) {
383         error_setg(errp, "an attached device is still awaiting release");
384         return;
385     }
386     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
387              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
388 
389     drc->dev = d;
390 
391     object_property_add_link(OBJECT(drc), "device",
392                              object_get_typename(OBJECT(drc->dev)),
393                              (Object **)(&drc->dev),
394                              NULL, 0, NULL);
395 }
396 
397 static void spapr_drc_release(SpaprDrc *drc)
398 {
399     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
400 
401     drck->release(drc->dev);
402 
403     drc->unplug_requested = false;
404     g_free(drc->fdt);
405     drc->fdt = NULL;
406     drc->fdt_start_offset = 0;
407     object_property_del(OBJECT(drc), "device", &error_abort);
408     drc->dev = NULL;
409 }
410 
411 void spapr_drc_detach(SpaprDrc *drc)
412 {
413     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
414 
415     trace_spapr_drc_detach(spapr_drc_index(drc));
416 
417     g_assert(drc->dev);
418 
419     drc->unplug_requested = true;
420 
421     if (drc->state != drck->empty_state) {
422         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
423         return;
424     }
425 
426     spapr_drc_release(drc);
427 }
428 
429 void spapr_drc_reset(SpaprDrc *drc)
430 {
431     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
432 
433     trace_spapr_drc_reset(spapr_drc_index(drc));
434 
435     /* immediately upon reset we can safely assume DRCs whose devices
436      * are pending removal can be safely removed.
437      */
438     if (drc->unplug_requested) {
439         spapr_drc_release(drc);
440     }
441 
442     if (drc->dev) {
443         /* A device present at reset is ready to go, same as coldplugged */
444         drc->state = drck->ready_state;
445         /*
446          * Ensure that we are able to send the FDT fragment again
447          * via configure-connector call if the guest requests.
448          */
449         drc->ccs_offset = drc->fdt_start_offset;
450         drc->ccs_depth = 0;
451     } else {
452         drc->state = drck->empty_state;
453         drc->ccs_offset = -1;
454         drc->ccs_depth = -1;
455     }
456 }
457 
458 bool spapr_drc_needed(void *opaque)
459 {
460     SpaprDrc *drc = (SpaprDrc *)opaque;
461     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
462 
463     /* If no dev is plugged in there is no need to migrate the DRC state */
464     if (!drc->dev) {
465         return false;
466     }
467 
468     /*
469      * We need to migrate the state if it's not equal to the expected
470      * long-term state, which is the same as the coldplugged initial
471      * state */
472     return (drc->state != drck->ready_state);
473 }
474 
475 static const VMStateDescription vmstate_spapr_drc = {
476     .name = "spapr_drc",
477     .version_id = 1,
478     .minimum_version_id = 1,
479     .needed = spapr_drc_needed,
480     .fields  = (VMStateField []) {
481         VMSTATE_UINT32(state, SpaprDrc),
482         VMSTATE_END_OF_LIST()
483     }
484 };
485 
486 static void realize(DeviceState *d, Error **errp)
487 {
488     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
489     Object *root_container;
490     gchar *link_name;
491     gchar *child_name;
492     Error *err = NULL;
493 
494     trace_spapr_drc_realize(spapr_drc_index(drc));
495     /* NOTE: we do this as part of realize/unrealize due to the fact
496      * that the guest will communicate with the DRC via RTAS calls
497      * referencing the global DRC index. By unlinking the DRC
498      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
499      * inaccessible by the guest, since lookups rely on this path
500      * existing in the composition tree
501      */
502     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
503     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
504     child_name = object_get_canonical_path_component(OBJECT(drc));
505     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
506     object_property_add_alias(root_container, link_name,
507                               drc->owner, child_name, &err);
508     g_free(child_name);
509     g_free(link_name);
510     if (err) {
511         error_propagate(errp, err);
512         return;
513     }
514     vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
515                      drc);
516     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
517 }
518 
519 static void unrealize(DeviceState *d, Error **errp)
520 {
521     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
522     Object *root_container;
523     gchar *name;
524 
525     trace_spapr_drc_unrealize(spapr_drc_index(drc));
526     vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
527     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
528     name = g_strdup_printf("%x", spapr_drc_index(drc));
529     object_property_del(root_container, name, errp);
530     g_free(name);
531 }
532 
533 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
534                                          uint32_t id)
535 {
536     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
537     char *prop_name;
538 
539     drc->id = id;
540     drc->owner = owner;
541     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
542                                 spapr_drc_index(drc));
543     object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
544     object_unref(OBJECT(drc));
545     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
546     g_free(prop_name);
547 
548     return drc;
549 }
550 
551 static void spapr_dr_connector_instance_init(Object *obj)
552 {
553     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
554     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
555 
556     object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
557     object_property_add(obj, "index", "uint32", prop_get_index,
558                         NULL, NULL, NULL, NULL);
559     object_property_add(obj, "fdt", "struct", prop_get_fdt,
560                         NULL, NULL, NULL, NULL);
561     drc->state = drck->empty_state;
562 }
563 
564 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
565 {
566     DeviceClass *dk = DEVICE_CLASS(k);
567 
568     dk->realize = realize;
569     dk->unrealize = unrealize;
570     /*
571      * Reason: it crashes FIXME find and document the real reason
572      */
573     dk->user_creatable = false;
574 }
575 
576 static bool drc_physical_needed(void *opaque)
577 {
578     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
579     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
580 
581     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
582         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
583         return false;
584     }
585     return true;
586 }
587 
588 static const VMStateDescription vmstate_spapr_drc_physical = {
589     .name = "spapr_drc/physical",
590     .version_id = 1,
591     .minimum_version_id = 1,
592     .needed = drc_physical_needed,
593     .fields  = (VMStateField []) {
594         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
595         VMSTATE_END_OF_LIST()
596     }
597 };
598 
599 static void drc_physical_reset(void *opaque)
600 {
601     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
602     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
603 
604     if (drc->dev) {
605         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
606     } else {
607         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
608     }
609 }
610 
611 static void realize_physical(DeviceState *d, Error **errp)
612 {
613     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
614     Error *local_err = NULL;
615 
616     realize(d, &local_err);
617     if (local_err) {
618         error_propagate(errp, local_err);
619         return;
620     }
621 
622     vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
623                      &vmstate_spapr_drc_physical, drcp);
624     qemu_register_reset(drc_physical_reset, drcp);
625 }
626 
627 static void unrealize_physical(DeviceState *d, Error **errp)
628 {
629     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
630     Error *local_err = NULL;
631 
632     unrealize(d, &local_err);
633     if (local_err) {
634         error_propagate(errp, local_err);
635         return;
636     }
637 
638     vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
639     qemu_unregister_reset(drc_physical_reset, drcp);
640 }
641 
642 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
643 {
644     DeviceClass *dk = DEVICE_CLASS(k);
645     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
646 
647     dk->realize = realize_physical;
648     dk->unrealize = unrealize_physical;
649     drck->dr_entity_sense = physical_entity_sense;
650     drck->isolate = drc_isolate_physical;
651     drck->unisolate = drc_unisolate_physical;
652     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
653     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
654 }
655 
656 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
657 {
658     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
659 
660     drck->dr_entity_sense = logical_entity_sense;
661     drck->isolate = drc_isolate_logical;
662     drck->unisolate = drc_unisolate_logical;
663     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
664     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
665 }
666 
667 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
668 {
669     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
670 
671     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
672     drck->typename = "CPU";
673     drck->drc_name_prefix = "CPU ";
674     drck->release = spapr_core_release;
675     drck->dt_populate = spapr_core_dt_populate;
676 }
677 
678 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
679 {
680     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
681 
682     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
683     drck->typename = "28";
684     drck->drc_name_prefix = "C";
685     drck->release = spapr_phb_remove_pci_device_cb;
686     drck->dt_populate = spapr_pci_dt_populate;
687 }
688 
689 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
690 {
691     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
692 
693     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
694     drck->typename = "MEM";
695     drck->drc_name_prefix = "LMB ";
696     drck->release = spapr_lmb_release;
697     drck->dt_populate = spapr_lmb_dt_populate;
698 }
699 
700 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
701 {
702     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
703 
704     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
705     drck->typename = "PHB";
706     drck->drc_name_prefix = "PHB ";
707     drck->release = spapr_phb_release;
708     drck->dt_populate = spapr_phb_dt_populate;
709 }
710 
711 static const TypeInfo spapr_dr_connector_info = {
712     .name          = TYPE_SPAPR_DR_CONNECTOR,
713     .parent        = TYPE_DEVICE,
714     .instance_size = sizeof(SpaprDrc),
715     .instance_init = spapr_dr_connector_instance_init,
716     .class_size    = sizeof(SpaprDrcClass),
717     .class_init    = spapr_dr_connector_class_init,
718     .abstract      = true,
719 };
720 
721 static const TypeInfo spapr_drc_physical_info = {
722     .name          = TYPE_SPAPR_DRC_PHYSICAL,
723     .parent        = TYPE_SPAPR_DR_CONNECTOR,
724     .instance_size = sizeof(SpaprDrcPhysical),
725     .class_init    = spapr_drc_physical_class_init,
726     .abstract      = true,
727 };
728 
729 static const TypeInfo spapr_drc_logical_info = {
730     .name          = TYPE_SPAPR_DRC_LOGICAL,
731     .parent        = TYPE_SPAPR_DR_CONNECTOR,
732     .class_init    = spapr_drc_logical_class_init,
733     .abstract      = true,
734 };
735 
736 static const TypeInfo spapr_drc_cpu_info = {
737     .name          = TYPE_SPAPR_DRC_CPU,
738     .parent        = TYPE_SPAPR_DRC_LOGICAL,
739     .class_init    = spapr_drc_cpu_class_init,
740 };
741 
742 static const TypeInfo spapr_drc_pci_info = {
743     .name          = TYPE_SPAPR_DRC_PCI,
744     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
745     .class_init    = spapr_drc_pci_class_init,
746 };
747 
748 static const TypeInfo spapr_drc_lmb_info = {
749     .name          = TYPE_SPAPR_DRC_LMB,
750     .parent        = TYPE_SPAPR_DRC_LOGICAL,
751     .class_init    = spapr_drc_lmb_class_init,
752 };
753 
754 static const TypeInfo spapr_drc_phb_info = {
755     .name          = TYPE_SPAPR_DRC_PHB,
756     .parent        = TYPE_SPAPR_DRC_LOGICAL,
757     .instance_size = sizeof(SpaprDrc),
758     .class_init    = spapr_drc_phb_class_init,
759 };
760 
761 /* helper functions for external users */
762 
763 SpaprDrc *spapr_drc_by_index(uint32_t index)
764 {
765     Object *obj;
766     gchar *name;
767 
768     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
769     obj = object_resolve_path(name, NULL);
770     g_free(name);
771 
772     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
773 }
774 
775 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
776 {
777     SpaprDrcClass *drck
778         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
779 
780     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
781                               | (id & DRC_INDEX_ID_MASK));
782 }
783 
784 /**
785  * spapr_dt_drc
786  *
787  * @fdt: libfdt device tree
788  * @path: path in the DT to generate properties
789  * @owner: parent Object/DeviceState for which to generate DRC
790  *         descriptions for
791  * @drc_type_mask: mask of SpaprDrcType values corresponding
792  *   to the types of DRCs to generate entries for
793  *
794  * generate OF properties to describe DRC topology/indices to guests
795  *
796  * as documented in PAPR+ v2.1, 13.5.2
797  */
798 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
799 {
800     Object *root_container;
801     ObjectProperty *prop;
802     ObjectPropertyIterator iter;
803     uint32_t drc_count = 0;
804     GArray *drc_indexes, *drc_power_domains;
805     GString *drc_names, *drc_types;
806     int ret;
807 
808     /* the first entry of each properties is a 32-bit integer encoding
809      * the number of elements in the array. we won't know this until
810      * we complete the iteration through all the matching DRCs, but
811      * reserve the space now and set the offsets accordingly so we
812      * can fill them in later.
813      */
814     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
815     drc_indexes = g_array_set_size(drc_indexes, 1);
816     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
817     drc_power_domains = g_array_set_size(drc_power_domains, 1);
818     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
819     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
820 
821     /* aliases for all DRConnector objects will be rooted in QOM
822      * composition tree at DRC_CONTAINER_PATH
823      */
824     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
825 
826     object_property_iter_init(&iter, root_container);
827     while ((prop = object_property_iter_next(&iter))) {
828         Object *obj;
829         SpaprDrc *drc;
830         SpaprDrcClass *drck;
831         uint32_t drc_index, drc_power_domain;
832 
833         if (!strstart(prop->type, "link<", NULL)) {
834             continue;
835         }
836 
837         obj = object_property_get_link(root_container, prop->name, NULL);
838         drc = SPAPR_DR_CONNECTOR(obj);
839         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
840 
841         if (owner && (drc->owner != owner)) {
842             continue;
843         }
844 
845         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
846             continue;
847         }
848 
849         drc_count++;
850 
851         /* ibm,drc-indexes */
852         drc_index = cpu_to_be32(spapr_drc_index(drc));
853         g_array_append_val(drc_indexes, drc_index);
854 
855         /* ibm,drc-power-domains */
856         drc_power_domain = cpu_to_be32(-1);
857         g_array_append_val(drc_power_domains, drc_power_domain);
858 
859         /* ibm,drc-names */
860         drc_names = g_string_append(drc_names, spapr_drc_name(drc));
861         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
862 
863         /* ibm,drc-types */
864         drc_types = g_string_append(drc_types, drck->typename);
865         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
866     }
867 
868     /* now write the drc count into the space we reserved at the
869      * beginning of the arrays previously
870      */
871     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
872     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
873     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
874     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
875 
876     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
877                       drc_indexes->data,
878                       drc_indexes->len * sizeof(uint32_t));
879     if (ret) {
880         error_report("Couldn't create ibm,drc-indexes property");
881         goto out;
882     }
883 
884     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
885                       drc_power_domains->data,
886                       drc_power_domains->len * sizeof(uint32_t));
887     if (ret) {
888         error_report("Couldn't finalize ibm,drc-power-domains property");
889         goto out;
890     }
891 
892     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
893                       drc_names->str, drc_names->len);
894     if (ret) {
895         error_report("Couldn't finalize ibm,drc-names property");
896         goto out;
897     }
898 
899     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
900                       drc_types->str, drc_types->len);
901     if (ret) {
902         error_report("Couldn't finalize ibm,drc-types property");
903         goto out;
904     }
905 
906 out:
907     g_array_free(drc_indexes, true);
908     g_array_free(drc_power_domains, true);
909     g_string_free(drc_names, true);
910     g_string_free(drc_types, true);
911 
912     return ret;
913 }
914 
915 /*
916  * RTAS calls
917  */
918 
919 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
920 {
921     SpaprDrc *drc = spapr_drc_by_index(idx);
922     SpaprDrcClass *drck;
923 
924     if (!drc) {
925         return RTAS_OUT_NO_SUCH_INDICATOR;
926     }
927 
928     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
929 
930     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
931 
932     switch (state) {
933     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
934         return drck->isolate(drc);
935 
936     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
937         return drck->unisolate(drc);
938 
939     default:
940         return RTAS_OUT_PARAM_ERROR;
941     }
942 }
943 
944 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
945 {
946     SpaprDrc *drc = spapr_drc_by_index(idx);
947 
948     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
949         return RTAS_OUT_NO_SUCH_INDICATOR;
950     }
951 
952     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
953 
954     switch (state) {
955     case SPAPR_DR_ALLOCATION_STATE_USABLE:
956         return drc_set_usable(drc);
957 
958     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
959         return drc_set_unusable(drc);
960 
961     default:
962         return RTAS_OUT_PARAM_ERROR;
963     }
964 }
965 
966 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
967 {
968     SpaprDrc *drc = spapr_drc_by_index(idx);
969 
970     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
971         return RTAS_OUT_NO_SUCH_INDICATOR;
972     }
973     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
974         && (state != SPAPR_DR_INDICATOR_ACTIVE)
975         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
976         && (state != SPAPR_DR_INDICATOR_ACTION)) {
977         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
978     }
979 
980     trace_spapr_drc_set_dr_indicator(idx, state);
981     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
982     return RTAS_OUT_SUCCESS;
983 }
984 
985 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
986                                uint32_t token,
987                                uint32_t nargs, target_ulong args,
988                                uint32_t nret, target_ulong rets)
989 {
990     uint32_t type, idx, state;
991     uint32_t ret = RTAS_OUT_SUCCESS;
992 
993     if (nargs != 3 || nret != 1) {
994         ret = RTAS_OUT_PARAM_ERROR;
995         goto out;
996     }
997 
998     type = rtas_ld(args, 0);
999     idx = rtas_ld(args, 1);
1000     state = rtas_ld(args, 2);
1001 
1002     switch (type) {
1003     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1004         ret = rtas_set_isolation_state(idx, state);
1005         break;
1006     case RTAS_SENSOR_TYPE_DR:
1007         ret = rtas_set_dr_indicator(idx, state);
1008         break;
1009     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1010         ret = rtas_set_allocation_state(idx, state);
1011         break;
1012     default:
1013         ret = RTAS_OUT_NOT_SUPPORTED;
1014     }
1015 
1016 out:
1017     rtas_st(rets, 0, ret);
1018 }
1019 
1020 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1021                                   uint32_t token, uint32_t nargs,
1022                                   target_ulong args, uint32_t nret,
1023                                   target_ulong rets)
1024 {
1025     uint32_t sensor_type;
1026     uint32_t sensor_index;
1027     uint32_t sensor_state = 0;
1028     SpaprDrc *drc;
1029     SpaprDrcClass *drck;
1030     uint32_t ret = RTAS_OUT_SUCCESS;
1031 
1032     if (nargs != 2 || nret != 2) {
1033         ret = RTAS_OUT_PARAM_ERROR;
1034         goto out;
1035     }
1036 
1037     sensor_type = rtas_ld(args, 0);
1038     sensor_index = rtas_ld(args, 1);
1039 
1040     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1041         /* currently only DR-related sensors are implemented */
1042         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1043                                                         sensor_type);
1044         ret = RTAS_OUT_NOT_SUPPORTED;
1045         goto out;
1046     }
1047 
1048     drc = spapr_drc_by_index(sensor_index);
1049     if (!drc) {
1050         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1051         ret = RTAS_OUT_PARAM_ERROR;
1052         goto out;
1053     }
1054     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1055     sensor_state = drck->dr_entity_sense(drc);
1056 
1057 out:
1058     rtas_st(rets, 0, ret);
1059     rtas_st(rets, 1, sensor_state);
1060 }
1061 
1062 /* configure-connector work area offsets, int32_t units for field
1063  * indexes, bytes for field offset/len values.
1064  *
1065  * as documented by PAPR+ v2.7, 13.5.3.5
1066  */
1067 #define CC_IDX_NODE_NAME_OFFSET 2
1068 #define CC_IDX_PROP_NAME_OFFSET 2
1069 #define CC_IDX_PROP_LEN 3
1070 #define CC_IDX_PROP_DATA_OFFSET 4
1071 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1072 #define CC_WA_LEN 4096
1073 
1074 static void configure_connector_st(target_ulong addr, target_ulong offset,
1075                                    const void *buf, size_t len)
1076 {
1077     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1078                               buf, MIN(len, CC_WA_LEN - offset));
1079 }
1080 
1081 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1082                                          SpaprMachineState *spapr,
1083                                          uint32_t token, uint32_t nargs,
1084                                          target_ulong args, uint32_t nret,
1085                                          target_ulong rets)
1086 {
1087     uint64_t wa_addr;
1088     uint64_t wa_offset;
1089     uint32_t drc_index;
1090     SpaprDrc *drc;
1091     SpaprDrcClass *drck;
1092     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1093     int rc;
1094 
1095     if (nargs != 2 || nret != 1) {
1096         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1097         return;
1098     }
1099 
1100     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1101 
1102     drc_index = rtas_ld(wa_addr, 0);
1103     drc = spapr_drc_by_index(drc_index);
1104     if (!drc) {
1105         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1106         rc = RTAS_OUT_PARAM_ERROR;
1107         goto out;
1108     }
1109 
1110     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1111         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1112         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1113         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1114         /*
1115          * Need to unisolate the device before configuring
1116          * or it should already be in configured state to
1117          * allow configure-connector be called repeatedly.
1118          */
1119         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1120         goto out;
1121     }
1122 
1123     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1124 
1125     if (!drc->fdt) {
1126         Error *local_err = NULL;
1127         void *fdt;
1128         int fdt_size;
1129 
1130         fdt = create_device_tree(&fdt_size);
1131 
1132         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1133                               &local_err)) {
1134             g_free(fdt);
1135             error_free(local_err);
1136             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1137             goto out;
1138         }
1139 
1140         drc->fdt = fdt;
1141         drc->ccs_offset = drc->fdt_start_offset;
1142         drc->ccs_depth = 0;
1143     }
1144 
1145     do {
1146         uint32_t tag;
1147         const char *name;
1148         const struct fdt_property *prop;
1149         int fdt_offset_next, prop_len;
1150 
1151         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1152 
1153         switch (tag) {
1154         case FDT_BEGIN_NODE:
1155             drc->ccs_depth++;
1156             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1157 
1158             /* provide the name of the next OF node */
1159             wa_offset = CC_VAL_DATA_OFFSET;
1160             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1161             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1162             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1163             break;
1164         case FDT_END_NODE:
1165             drc->ccs_depth--;
1166             if (drc->ccs_depth == 0) {
1167                 uint32_t drc_index = spapr_drc_index(drc);
1168 
1169                 /* done sending the device tree, move to configured state */
1170                 trace_spapr_drc_set_configured(drc_index);
1171                 drc->state = drck->ready_state;
1172                 /*
1173                  * Ensure that we are able to send the FDT fragment
1174                  * again via configure-connector call if the guest requests.
1175                  */
1176                 drc->ccs_offset = drc->fdt_start_offset;
1177                 drc->ccs_depth = 0;
1178                 fdt_offset_next = drc->fdt_start_offset;
1179                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1180             } else {
1181                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1182             }
1183             break;
1184         case FDT_PROP:
1185             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1186                                               &prop_len);
1187             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1188 
1189             /* provide the name of the next OF property */
1190             wa_offset = CC_VAL_DATA_OFFSET;
1191             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1192             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1193 
1194             /* provide the length and value of the OF property. data gets
1195              * placed immediately after NULL terminator of the OF property's
1196              * name string
1197              */
1198             wa_offset += strlen(name) + 1,
1199             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1200             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1201             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1202             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1203             break;
1204         case FDT_END:
1205             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1206         default:
1207             /* keep seeking for an actionable tag */
1208             break;
1209         }
1210         if (drc->ccs_offset >= 0) {
1211             drc->ccs_offset = fdt_offset_next;
1212         }
1213     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1214 
1215     rc = resp;
1216 out:
1217     rtas_st(rets, 0, rc);
1218 }
1219 
1220 static void spapr_drc_register_types(void)
1221 {
1222     type_register_static(&spapr_dr_connector_info);
1223     type_register_static(&spapr_drc_physical_info);
1224     type_register_static(&spapr_drc_logical_info);
1225     type_register_static(&spapr_drc_cpu_info);
1226     type_register_static(&spapr_drc_pci_info);
1227     type_register_static(&spapr_drc_lmb_info);
1228     type_register_static(&spapr_drc_phb_info);
1229 
1230     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1231                         rtas_set_indicator);
1232     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1233                         rtas_get_sensor_state);
1234     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1235                         rtas_ibm_configure_connector);
1236 }
1237 type_init(spapr_drc_register_types)
1238