xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 4b63db1289a9e597bc151fa5e4d72f882cb6de1e)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "migration/vmstate.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "hw/ppc/spapr_nvdimm.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/reset.h"
28 #include "trace.h"
29 
30 #define DRC_CONTAINER_PATH "/dr-connector"
31 #define DRC_INDEX_TYPE_SHIFT 28
32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
33 
34 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
35 {
36     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
37 
38     return 1 << drck->typeshift;
39 }
40 
41 uint32_t spapr_drc_index(SpaprDrc *drc)
42 {
43     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
44 
45     /* no set format for a drc index: it only needs to be globally
46      * unique. this is how we encode the DRC type on bare-metal
47      * however, so might as well do that here
48      */
49     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
50         | (drc->id & DRC_INDEX_ID_MASK);
51 }
52 
53 static uint32_t drc_isolate_physical(SpaprDrc *drc)
54 {
55     switch (drc->state) {
56     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
57         return RTAS_OUT_SUCCESS; /* Nothing to do */
58     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
59         break; /* see below */
60     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
61         return RTAS_OUT_PARAM_ERROR; /* not allowed */
62     default:
63         g_assert_not_reached();
64     }
65 
66     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
67 
68     if (drc->unplug_requested) {
69         uint32_t drc_index = spapr_drc_index(drc);
70         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
71         spapr_drc_detach(drc);
72     }
73 
74     return RTAS_OUT_SUCCESS;
75 }
76 
77 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
78 {
79     switch (drc->state) {
80     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
81     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
82         return RTAS_OUT_SUCCESS; /* Nothing to do */
83     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
84         break; /* see below */
85     default:
86         g_assert_not_reached();
87     }
88 
89     /* cannot unisolate a non-existent resource, and, or resources
90      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
91      * 13.5.3.5)
92      */
93     if (!drc->dev) {
94         return RTAS_OUT_NO_SUCH_INDICATOR;
95     }
96 
97     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
98     drc->ccs_offset = drc->fdt_start_offset;
99     drc->ccs_depth = 0;
100 
101     return RTAS_OUT_SUCCESS;
102 }
103 
104 static uint32_t drc_isolate_logical(SpaprDrc *drc)
105 {
106     switch (drc->state) {
107     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
108     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
109         return RTAS_OUT_SUCCESS; /* Nothing to do */
110     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
111         break; /* see below */
112     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
113         return RTAS_OUT_PARAM_ERROR; /* not allowed */
114     default:
115         g_assert_not_reached();
116     }
117 
118     /*
119      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
120      * belong to a DIMM device that is marked for removal.
121      *
122      * Currently the guest userspace tool drmgr that drives the memory
123      * hotplug/unplug will just try to remove a set of 'removable' LMBs
124      * in response to a hot unplug request that is based on drc-count.
125      * If the LMB being removed doesn't belong to a DIMM device that is
126      * actually being unplugged, fail the isolation request here.
127      */
128     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
129         && !drc->unplug_requested) {
130         return RTAS_OUT_HW_ERROR;
131     }
132 
133     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
134 
135     /* if we're awaiting release, but still in an unconfigured state,
136      * it's likely the guest is still in the process of configuring
137      * the device and is transitioning the devices to an ISOLATED
138      * state as a part of that process. so we only complete the
139      * removal when this transition happens for a device in a
140      * configured state, as suggested by the state diagram from PAPR+
141      * 2.7, 13.4
142      */
143     if (drc->unplug_requested) {
144         uint32_t drc_index = spapr_drc_index(drc);
145         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
146         spapr_drc_detach(drc);
147     }
148     return RTAS_OUT_SUCCESS;
149 }
150 
151 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
152 {
153     switch (drc->state) {
154     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
155     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
156         return RTAS_OUT_SUCCESS; /* Nothing to do */
157     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
158         break; /* see below */
159     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
160         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
161     default:
162         g_assert_not_reached();
163     }
164 
165     /* Move to AVAILABLE state should have ensured device was present */
166     g_assert(drc->dev);
167 
168     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
169     drc->ccs_offset = drc->fdt_start_offset;
170     drc->ccs_depth = 0;
171 
172     return RTAS_OUT_SUCCESS;
173 }
174 
175 static uint32_t drc_set_usable(SpaprDrc *drc)
176 {
177     switch (drc->state) {
178     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
179     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
180     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
181         return RTAS_OUT_SUCCESS; /* Nothing to do */
182     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
183         break; /* see below */
184     default:
185         g_assert_not_reached();
186     }
187 
188     /* if there's no resource/device associated with the DRC, there's
189      * no way for us to put it in an allocation state consistent with
190      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
191      * result in an RTAS return code of -3 / "no such indicator"
192      */
193     if (!drc->dev) {
194         return RTAS_OUT_NO_SUCH_INDICATOR;
195     }
196     if (drc->unplug_requested) {
197         /* Don't allow the guest to move a device away from UNUSABLE
198          * state when we want to unplug it */
199         return RTAS_OUT_NO_SUCH_INDICATOR;
200     }
201 
202     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
203 
204     return RTAS_OUT_SUCCESS;
205 }
206 
207 static uint32_t drc_set_unusable(SpaprDrc *drc)
208 {
209     switch (drc->state) {
210     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
211         return RTAS_OUT_SUCCESS; /* Nothing to do */
212     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
213         break; /* see below */
214     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
215     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
216         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
217     default:
218         g_assert_not_reached();
219     }
220 
221     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
222     if (drc->unplug_requested) {
223         uint32_t drc_index = spapr_drc_index(drc);
224         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
225         spapr_drc_detach(drc);
226     }
227 
228     return RTAS_OUT_SUCCESS;
229 }
230 
231 static char *spapr_drc_name(SpaprDrc *drc)
232 {
233     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
234 
235     /* human-readable name for a DRC to encode into the DT
236      * description. this is mainly only used within a guest in place
237      * of the unique DRC index.
238      *
239      * in the case of VIO/PCI devices, it corresponds to a "location
240      * code" that maps a logical device/function (DRC index) to a
241      * physical (or virtual in the case of VIO) location in the system
242      * by chaining together the "location label" for each
243      * encapsulating component.
244      *
245      * since this is more to do with diagnosing physical hardware
246      * issues than guest compatibility, we choose location codes/DRC
247      * names that adhere to the documented format, but avoid encoding
248      * the entire topology information into the label/code, instead
249      * just using the location codes based on the labels for the
250      * endpoints (VIO/PCI adaptor connectors), which is basically just
251      * "C" followed by an integer ID.
252      *
253      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
254      * location codes as documented by PAPR+ v2.7, 12.3.1.5
255      */
256     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
257 }
258 
259 /*
260  * dr-entity-sense sensor value
261  * returned via get-sensor-state RTAS calls
262  * as expected by state diagram in PAPR+ 2.7, 13.4
263  * based on the current allocation/indicator/power states
264  * for the DR connector.
265  */
266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
267 {
268     /* this assumes all PCI devices are assigned to a 'live insertion'
269      * power domain, where QEMU manages power state automatically as
270      * opposed to the guest. present, non-PCI resources are unaffected
271      * by power state.
272      */
273     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
274         : SPAPR_DR_ENTITY_SENSE_EMPTY;
275 }
276 
277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
278 {
279     switch (drc->state) {
280     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
281         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
282     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
283     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
284     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
285         g_assert(drc->dev);
286         return SPAPR_DR_ENTITY_SENSE_PRESENT;
287     default:
288         g_assert_not_reached();
289     }
290 }
291 
292 static void prop_get_index(Object *obj, Visitor *v, const char *name,
293                            void *opaque, Error **errp)
294 {
295     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
296     uint32_t value = spapr_drc_index(drc);
297     visit_type_uint32(v, name, &value, errp);
298 }
299 
300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
301                          void *opaque, Error **errp)
302 {
303     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
304     QNull *null = NULL;
305     Error *err = NULL;
306     int fdt_offset_next, fdt_offset, fdt_depth;
307     void *fdt;
308 
309     if (!drc->fdt) {
310         visit_type_null(v, NULL, &null, errp);
311         qobject_unref(null);
312         return;
313     }
314 
315     fdt = drc->fdt;
316     fdt_offset = drc->fdt_start_offset;
317     fdt_depth = 0;
318 
319     do {
320         const char *name = NULL;
321         const struct fdt_property *prop = NULL;
322         int prop_len = 0, name_len = 0;
323         uint32_t tag;
324 
325         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
326         switch (tag) {
327         case FDT_BEGIN_NODE:
328             fdt_depth++;
329             name = fdt_get_name(fdt, fdt_offset, &name_len);
330             visit_start_struct(v, name, NULL, 0, &err);
331             if (err) {
332                 error_propagate(errp, err);
333                 return;
334             }
335             break;
336         case FDT_END_NODE:
337             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
338             g_assert(fdt_depth > 0);
339             visit_check_struct(v, &err);
340             visit_end_struct(v, NULL);
341             if (err) {
342                 error_propagate(errp, err);
343                 return;
344             }
345             fdt_depth--;
346             break;
347         case FDT_PROP: {
348             int i;
349             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
350             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
351             visit_start_list(v, name, NULL, 0, &err);
352             if (err) {
353                 error_propagate(errp, err);
354                 return;
355             }
356             for (i = 0; i < prop_len; i++) {
357                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
358                 if (err) {
359                     error_propagate(errp, err);
360                     return;
361                 }
362             }
363             visit_check_list(v, &err);
364             visit_end_list(v, NULL);
365             if (err) {
366                 error_propagate(errp, err);
367                 return;
368             }
369             break;
370         }
371         default:
372             error_report("device FDT in unexpected state: %d", tag);
373             abort();
374         }
375         fdt_offset = fdt_offset_next;
376     } while (fdt_depth != 0);
377 }
378 
379 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
380 {
381     trace_spapr_drc_attach(spapr_drc_index(drc));
382 
383     if (drc->dev) {
384         error_setg(errp, "an attached device is still awaiting release");
385         return;
386     }
387     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
388              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
389 
390     drc->dev = d;
391 
392     object_property_add_link(OBJECT(drc), "device",
393                              object_get_typename(OBJECT(drc->dev)),
394                              (Object **)(&drc->dev),
395                              NULL, 0, NULL);
396 }
397 
398 static void spapr_drc_release(SpaprDrc *drc)
399 {
400     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
401 
402     drck->release(drc->dev);
403 
404     drc->unplug_requested = false;
405     g_free(drc->fdt);
406     drc->fdt = NULL;
407     drc->fdt_start_offset = 0;
408     object_property_del(OBJECT(drc), "device", &error_abort);
409     drc->dev = NULL;
410 }
411 
412 void spapr_drc_detach(SpaprDrc *drc)
413 {
414     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
415 
416     trace_spapr_drc_detach(spapr_drc_index(drc));
417 
418     g_assert(drc->dev);
419 
420     drc->unplug_requested = true;
421 
422     if (drc->state != drck->empty_state) {
423         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
424         return;
425     }
426 
427     spapr_drc_release(drc);
428 }
429 
430 void spapr_drc_reset(SpaprDrc *drc)
431 {
432     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
433 
434     trace_spapr_drc_reset(spapr_drc_index(drc));
435 
436     /* immediately upon reset we can safely assume DRCs whose devices
437      * are pending removal can be safely removed.
438      */
439     if (drc->unplug_requested) {
440         spapr_drc_release(drc);
441     }
442 
443     if (drc->dev) {
444         /* A device present at reset is ready to go, same as coldplugged */
445         drc->state = drck->ready_state;
446         /*
447          * Ensure that we are able to send the FDT fragment again
448          * via configure-connector call if the guest requests.
449          */
450         drc->ccs_offset = drc->fdt_start_offset;
451         drc->ccs_depth = 0;
452     } else {
453         drc->state = drck->empty_state;
454         drc->ccs_offset = -1;
455         drc->ccs_depth = -1;
456     }
457 }
458 
459 bool spapr_drc_transient(SpaprDrc *drc)
460 {
461     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
462 
463     /*
464      * If no dev is plugged in there is no need to migrate the DRC state
465      * nor to reset the DRC at CAS.
466      */
467     if (!drc->dev) {
468         return false;
469     }
470 
471     /*
472      * We need to reset the DRC at CAS or to migrate the DRC state if it's
473      * not equal to the expected long-term state, which is the same as the
474      * coldplugged initial state.
475      */
476     return (drc->state != drck->ready_state);
477 }
478 
479 static bool spapr_drc_needed(void *opaque)
480 {
481     return spapr_drc_transient(opaque);
482 }
483 
484 static const VMStateDescription vmstate_spapr_drc = {
485     .name = "spapr_drc",
486     .version_id = 1,
487     .minimum_version_id = 1,
488     .needed = spapr_drc_needed,
489     .fields  = (VMStateField []) {
490         VMSTATE_UINT32(state, SpaprDrc),
491         VMSTATE_END_OF_LIST()
492     }
493 };
494 
495 static void realize(DeviceState *d, Error **errp)
496 {
497     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
498     Object *root_container;
499     gchar *link_name;
500     gchar *child_name;
501     Error *err = NULL;
502 
503     trace_spapr_drc_realize(spapr_drc_index(drc));
504     /* NOTE: we do this as part of realize/unrealize due to the fact
505      * that the guest will communicate with the DRC via RTAS calls
506      * referencing the global DRC index. By unlinking the DRC
507      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
508      * inaccessible by the guest, since lookups rely on this path
509      * existing in the composition tree
510      */
511     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
512     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
513     child_name = object_get_canonical_path_component(OBJECT(drc));
514     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
515     object_property_add_alias(root_container, link_name,
516                               drc->owner, child_name, &err);
517     g_free(child_name);
518     g_free(link_name);
519     if (err) {
520         error_propagate(errp, err);
521         return;
522     }
523     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
524                      drc);
525     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
526 }
527 
528 static void unrealize(DeviceState *d, Error **errp)
529 {
530     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
531     Object *root_container;
532     gchar *name;
533 
534     trace_spapr_drc_unrealize(spapr_drc_index(drc));
535     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
536     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
537     name = g_strdup_printf("%x", spapr_drc_index(drc));
538     object_property_del(root_container, name, errp);
539     g_free(name);
540 }
541 
542 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
543                                          uint32_t id)
544 {
545     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
546     char *prop_name;
547 
548     drc->id = id;
549     drc->owner = owner;
550     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
551                                 spapr_drc_index(drc));
552     object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
553     object_unref(OBJECT(drc));
554     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
555     g_free(prop_name);
556 
557     return drc;
558 }
559 
560 static void spapr_dr_connector_instance_init(Object *obj)
561 {
562     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
563     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
564 
565     object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
566     object_property_add(obj, "index", "uint32", prop_get_index,
567                         NULL, NULL, NULL, NULL);
568     object_property_add(obj, "fdt", "struct", prop_get_fdt,
569                         NULL, NULL, NULL, NULL);
570     drc->state = drck->empty_state;
571 }
572 
573 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
574 {
575     DeviceClass *dk = DEVICE_CLASS(k);
576 
577     dk->realize = realize;
578     dk->unrealize = unrealize;
579     /*
580      * Reason: it crashes FIXME find and document the real reason
581      */
582     dk->user_creatable = false;
583 }
584 
585 static bool drc_physical_needed(void *opaque)
586 {
587     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
588     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
589 
590     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
591         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
592         return false;
593     }
594     return true;
595 }
596 
597 static const VMStateDescription vmstate_spapr_drc_physical = {
598     .name = "spapr_drc/physical",
599     .version_id = 1,
600     .minimum_version_id = 1,
601     .needed = drc_physical_needed,
602     .fields  = (VMStateField []) {
603         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
604         VMSTATE_END_OF_LIST()
605     }
606 };
607 
608 static void drc_physical_reset(void *opaque)
609 {
610     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
611     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
612 
613     if (drc->dev) {
614         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
615     } else {
616         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
617     }
618 }
619 
620 static void realize_physical(DeviceState *d, Error **errp)
621 {
622     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
623     Error *local_err = NULL;
624 
625     realize(d, &local_err);
626     if (local_err) {
627         error_propagate(errp, local_err);
628         return;
629     }
630 
631     vmstate_register(VMSTATE_IF(drcp),
632                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
633                      &vmstate_spapr_drc_physical, drcp);
634     qemu_register_reset(drc_physical_reset, drcp);
635 }
636 
637 static void unrealize_physical(DeviceState *d, Error **errp)
638 {
639     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
640     Error *local_err = NULL;
641 
642     unrealize(d, &local_err);
643     if (local_err) {
644         error_propagate(errp, local_err);
645         return;
646     }
647 
648     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
649     qemu_unregister_reset(drc_physical_reset, drcp);
650 }
651 
652 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
653 {
654     DeviceClass *dk = DEVICE_CLASS(k);
655     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
656 
657     dk->realize = realize_physical;
658     dk->unrealize = unrealize_physical;
659     drck->dr_entity_sense = physical_entity_sense;
660     drck->isolate = drc_isolate_physical;
661     drck->unisolate = drc_unisolate_physical;
662     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
663     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
664 }
665 
666 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
667 {
668     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
669 
670     drck->dr_entity_sense = logical_entity_sense;
671     drck->isolate = drc_isolate_logical;
672     drck->unisolate = drc_unisolate_logical;
673     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
674     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
675 }
676 
677 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
678 {
679     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
680 
681     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
682     drck->typename = "CPU";
683     drck->drc_name_prefix = "CPU ";
684     drck->release = spapr_core_release;
685     drck->dt_populate = spapr_core_dt_populate;
686 }
687 
688 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
689 {
690     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
691 
692     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
693     drck->typename = "28";
694     drck->drc_name_prefix = "C";
695     drck->release = spapr_phb_remove_pci_device_cb;
696     drck->dt_populate = spapr_pci_dt_populate;
697 }
698 
699 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
700 {
701     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
702 
703     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
704     drck->typename = "MEM";
705     drck->drc_name_prefix = "LMB ";
706     drck->release = spapr_lmb_release;
707     drck->dt_populate = spapr_lmb_dt_populate;
708 }
709 
710 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
711 {
712     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
713 
714     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
715     drck->typename = "PHB";
716     drck->drc_name_prefix = "PHB ";
717     drck->release = spapr_phb_release;
718     drck->dt_populate = spapr_phb_dt_populate;
719 }
720 
721 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
722 {
723     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
724 
725     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
726     drck->typename = "PMEM";
727     drck->drc_name_prefix = "PMEM ";
728     drck->release = NULL;
729     drck->dt_populate = spapr_pmem_dt_populate;
730 }
731 
732 static const TypeInfo spapr_dr_connector_info = {
733     .name          = TYPE_SPAPR_DR_CONNECTOR,
734     .parent        = TYPE_DEVICE,
735     .instance_size = sizeof(SpaprDrc),
736     .instance_init = spapr_dr_connector_instance_init,
737     .class_size    = sizeof(SpaprDrcClass),
738     .class_init    = spapr_dr_connector_class_init,
739     .abstract      = true,
740 };
741 
742 static const TypeInfo spapr_drc_physical_info = {
743     .name          = TYPE_SPAPR_DRC_PHYSICAL,
744     .parent        = TYPE_SPAPR_DR_CONNECTOR,
745     .instance_size = sizeof(SpaprDrcPhysical),
746     .class_init    = spapr_drc_physical_class_init,
747     .abstract      = true,
748 };
749 
750 static const TypeInfo spapr_drc_logical_info = {
751     .name          = TYPE_SPAPR_DRC_LOGICAL,
752     .parent        = TYPE_SPAPR_DR_CONNECTOR,
753     .class_init    = spapr_drc_logical_class_init,
754     .abstract      = true,
755 };
756 
757 static const TypeInfo spapr_drc_cpu_info = {
758     .name          = TYPE_SPAPR_DRC_CPU,
759     .parent        = TYPE_SPAPR_DRC_LOGICAL,
760     .class_init    = spapr_drc_cpu_class_init,
761 };
762 
763 static const TypeInfo spapr_drc_pci_info = {
764     .name          = TYPE_SPAPR_DRC_PCI,
765     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
766     .class_init    = spapr_drc_pci_class_init,
767 };
768 
769 static const TypeInfo spapr_drc_lmb_info = {
770     .name          = TYPE_SPAPR_DRC_LMB,
771     .parent        = TYPE_SPAPR_DRC_LOGICAL,
772     .class_init    = spapr_drc_lmb_class_init,
773 };
774 
775 static const TypeInfo spapr_drc_phb_info = {
776     .name          = TYPE_SPAPR_DRC_PHB,
777     .parent        = TYPE_SPAPR_DRC_LOGICAL,
778     .instance_size = sizeof(SpaprDrc),
779     .class_init    = spapr_drc_phb_class_init,
780 };
781 
782 static const TypeInfo spapr_drc_pmem_info = {
783     .name          = TYPE_SPAPR_DRC_PMEM,
784     .parent        = TYPE_SPAPR_DRC_LOGICAL,
785     .class_init    = spapr_drc_pmem_class_init,
786 };
787 
788 /* helper functions for external users */
789 
790 SpaprDrc *spapr_drc_by_index(uint32_t index)
791 {
792     Object *obj;
793     gchar *name;
794 
795     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
796     obj = object_resolve_path(name, NULL);
797     g_free(name);
798 
799     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
800 }
801 
802 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
803 {
804     SpaprDrcClass *drck
805         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
806 
807     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
808                               | (id & DRC_INDEX_ID_MASK));
809 }
810 
811 /**
812  * spapr_dt_drc
813  *
814  * @fdt: libfdt device tree
815  * @path: path in the DT to generate properties
816  * @owner: parent Object/DeviceState for which to generate DRC
817  *         descriptions for
818  * @drc_type_mask: mask of SpaprDrcType values corresponding
819  *   to the types of DRCs to generate entries for
820  *
821  * generate OF properties to describe DRC topology/indices to guests
822  *
823  * as documented in PAPR+ v2.1, 13.5.2
824  */
825 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
826 {
827     Object *root_container;
828     ObjectProperty *prop;
829     ObjectPropertyIterator iter;
830     uint32_t drc_count = 0;
831     GArray *drc_indexes, *drc_power_domains;
832     GString *drc_names, *drc_types;
833     int ret;
834 
835     /* the first entry of each properties is a 32-bit integer encoding
836      * the number of elements in the array. we won't know this until
837      * we complete the iteration through all the matching DRCs, but
838      * reserve the space now and set the offsets accordingly so we
839      * can fill them in later.
840      */
841     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
842     drc_indexes = g_array_set_size(drc_indexes, 1);
843     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
844     drc_power_domains = g_array_set_size(drc_power_domains, 1);
845     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
846     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
847 
848     /* aliases for all DRConnector objects will be rooted in QOM
849      * composition tree at DRC_CONTAINER_PATH
850      */
851     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
852 
853     object_property_iter_init(&iter, root_container);
854     while ((prop = object_property_iter_next(&iter))) {
855         Object *obj;
856         SpaprDrc *drc;
857         SpaprDrcClass *drck;
858         char *drc_name = NULL;
859         uint32_t drc_index, drc_power_domain;
860 
861         if (!strstart(prop->type, "link<", NULL)) {
862             continue;
863         }
864 
865         obj = object_property_get_link(root_container, prop->name, NULL);
866         drc = SPAPR_DR_CONNECTOR(obj);
867         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
868 
869         if (owner && (drc->owner != owner)) {
870             continue;
871         }
872 
873         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
874             continue;
875         }
876 
877         drc_count++;
878 
879         /* ibm,drc-indexes */
880         drc_index = cpu_to_be32(spapr_drc_index(drc));
881         g_array_append_val(drc_indexes, drc_index);
882 
883         /* ibm,drc-power-domains */
884         drc_power_domain = cpu_to_be32(-1);
885         g_array_append_val(drc_power_domains, drc_power_domain);
886 
887         /* ibm,drc-names */
888         drc_name = spapr_drc_name(drc);
889         drc_names = g_string_append(drc_names, drc_name);
890         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
891         g_free(drc_name);
892 
893         /* ibm,drc-types */
894         drc_types = g_string_append(drc_types, drck->typename);
895         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
896     }
897 
898     /* now write the drc count into the space we reserved at the
899      * beginning of the arrays previously
900      */
901     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
902     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
903     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
904     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
905 
906     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
907                       drc_indexes->data,
908                       drc_indexes->len * sizeof(uint32_t));
909     if (ret) {
910         error_report("Couldn't create ibm,drc-indexes property");
911         goto out;
912     }
913 
914     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
915                       drc_power_domains->data,
916                       drc_power_domains->len * sizeof(uint32_t));
917     if (ret) {
918         error_report("Couldn't finalize ibm,drc-power-domains property");
919         goto out;
920     }
921 
922     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
923                       drc_names->str, drc_names->len);
924     if (ret) {
925         error_report("Couldn't finalize ibm,drc-names property");
926         goto out;
927     }
928 
929     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
930                       drc_types->str, drc_types->len);
931     if (ret) {
932         error_report("Couldn't finalize ibm,drc-types property");
933         goto out;
934     }
935 
936 out:
937     g_array_free(drc_indexes, true);
938     g_array_free(drc_power_domains, true);
939     g_string_free(drc_names, true);
940     g_string_free(drc_types, true);
941 
942     return ret;
943 }
944 
945 /*
946  * RTAS calls
947  */
948 
949 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
950 {
951     SpaprDrc *drc = spapr_drc_by_index(idx);
952     SpaprDrcClass *drck;
953 
954     if (!drc) {
955         return RTAS_OUT_NO_SUCH_INDICATOR;
956     }
957 
958     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
959 
960     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
961 
962     switch (state) {
963     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
964         return drck->isolate(drc);
965 
966     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
967         return drck->unisolate(drc);
968 
969     default:
970         return RTAS_OUT_PARAM_ERROR;
971     }
972 }
973 
974 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
975 {
976     SpaprDrc *drc = spapr_drc_by_index(idx);
977 
978     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
979         return RTAS_OUT_NO_SUCH_INDICATOR;
980     }
981 
982     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
983 
984     switch (state) {
985     case SPAPR_DR_ALLOCATION_STATE_USABLE:
986         return drc_set_usable(drc);
987 
988     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
989         return drc_set_unusable(drc);
990 
991     default:
992         return RTAS_OUT_PARAM_ERROR;
993     }
994 }
995 
996 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
997 {
998     SpaprDrc *drc = spapr_drc_by_index(idx);
999 
1000     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1001         return RTAS_OUT_NO_SUCH_INDICATOR;
1002     }
1003     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1004         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1005         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1006         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1007         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1008     }
1009 
1010     trace_spapr_drc_set_dr_indicator(idx, state);
1011     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1012     return RTAS_OUT_SUCCESS;
1013 }
1014 
1015 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1016                                uint32_t token,
1017                                uint32_t nargs, target_ulong args,
1018                                uint32_t nret, target_ulong rets)
1019 {
1020     uint32_t type, idx, state;
1021     uint32_t ret = RTAS_OUT_SUCCESS;
1022 
1023     if (nargs != 3 || nret != 1) {
1024         ret = RTAS_OUT_PARAM_ERROR;
1025         goto out;
1026     }
1027 
1028     type = rtas_ld(args, 0);
1029     idx = rtas_ld(args, 1);
1030     state = rtas_ld(args, 2);
1031 
1032     switch (type) {
1033     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1034         ret = rtas_set_isolation_state(idx, state);
1035         break;
1036     case RTAS_SENSOR_TYPE_DR:
1037         ret = rtas_set_dr_indicator(idx, state);
1038         break;
1039     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1040         ret = rtas_set_allocation_state(idx, state);
1041         break;
1042     default:
1043         ret = RTAS_OUT_NOT_SUPPORTED;
1044     }
1045 
1046 out:
1047     rtas_st(rets, 0, ret);
1048 }
1049 
1050 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1051                                   uint32_t token, uint32_t nargs,
1052                                   target_ulong args, uint32_t nret,
1053                                   target_ulong rets)
1054 {
1055     uint32_t sensor_type;
1056     uint32_t sensor_index;
1057     uint32_t sensor_state = 0;
1058     SpaprDrc *drc;
1059     SpaprDrcClass *drck;
1060     uint32_t ret = RTAS_OUT_SUCCESS;
1061 
1062     if (nargs != 2 || nret != 2) {
1063         ret = RTAS_OUT_PARAM_ERROR;
1064         goto out;
1065     }
1066 
1067     sensor_type = rtas_ld(args, 0);
1068     sensor_index = rtas_ld(args, 1);
1069 
1070     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1071         /* currently only DR-related sensors are implemented */
1072         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1073                                                         sensor_type);
1074         ret = RTAS_OUT_NOT_SUPPORTED;
1075         goto out;
1076     }
1077 
1078     drc = spapr_drc_by_index(sensor_index);
1079     if (!drc) {
1080         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1081         ret = RTAS_OUT_PARAM_ERROR;
1082         goto out;
1083     }
1084     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1085     sensor_state = drck->dr_entity_sense(drc);
1086 
1087 out:
1088     rtas_st(rets, 0, ret);
1089     rtas_st(rets, 1, sensor_state);
1090 }
1091 
1092 /* configure-connector work area offsets, int32_t units for field
1093  * indexes, bytes for field offset/len values.
1094  *
1095  * as documented by PAPR+ v2.7, 13.5.3.5
1096  */
1097 #define CC_IDX_NODE_NAME_OFFSET 2
1098 #define CC_IDX_PROP_NAME_OFFSET 2
1099 #define CC_IDX_PROP_LEN 3
1100 #define CC_IDX_PROP_DATA_OFFSET 4
1101 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1102 #define CC_WA_LEN 4096
1103 
1104 static void configure_connector_st(target_ulong addr, target_ulong offset,
1105                                    const void *buf, size_t len)
1106 {
1107     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1108                               buf, MIN(len, CC_WA_LEN - offset));
1109 }
1110 
1111 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1112                                          SpaprMachineState *spapr,
1113                                          uint32_t token, uint32_t nargs,
1114                                          target_ulong args, uint32_t nret,
1115                                          target_ulong rets)
1116 {
1117     uint64_t wa_addr;
1118     uint64_t wa_offset;
1119     uint32_t drc_index;
1120     SpaprDrc *drc;
1121     SpaprDrcClass *drck;
1122     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1123     int rc;
1124 
1125     if (nargs != 2 || nret != 1) {
1126         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1127         return;
1128     }
1129 
1130     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1131 
1132     drc_index = rtas_ld(wa_addr, 0);
1133     drc = spapr_drc_by_index(drc_index);
1134     if (!drc) {
1135         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1136         rc = RTAS_OUT_PARAM_ERROR;
1137         goto out;
1138     }
1139 
1140     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1141         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1142         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1143         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1144         /*
1145          * Need to unisolate the device before configuring
1146          * or it should already be in configured state to
1147          * allow configure-connector be called repeatedly.
1148          */
1149         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1150         goto out;
1151     }
1152 
1153     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1154 
1155     if (!drc->fdt) {
1156         Error *local_err = NULL;
1157         void *fdt;
1158         int fdt_size;
1159 
1160         fdt = create_device_tree(&fdt_size);
1161 
1162         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1163                               &local_err)) {
1164             g_free(fdt);
1165             error_free(local_err);
1166             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1167             goto out;
1168         }
1169 
1170         drc->fdt = fdt;
1171         drc->ccs_offset = drc->fdt_start_offset;
1172         drc->ccs_depth = 0;
1173     }
1174 
1175     do {
1176         uint32_t tag;
1177         const char *name;
1178         const struct fdt_property *prop;
1179         int fdt_offset_next, prop_len;
1180 
1181         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1182 
1183         switch (tag) {
1184         case FDT_BEGIN_NODE:
1185             drc->ccs_depth++;
1186             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1187 
1188             /* provide the name of the next OF node */
1189             wa_offset = CC_VAL_DATA_OFFSET;
1190             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1191             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1192             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1193             break;
1194         case FDT_END_NODE:
1195             drc->ccs_depth--;
1196             if (drc->ccs_depth == 0) {
1197                 uint32_t drc_index = spapr_drc_index(drc);
1198 
1199                 /* done sending the device tree, move to configured state */
1200                 trace_spapr_drc_set_configured(drc_index);
1201                 drc->state = drck->ready_state;
1202                 /*
1203                  * Ensure that we are able to send the FDT fragment
1204                  * again via configure-connector call if the guest requests.
1205                  */
1206                 drc->ccs_offset = drc->fdt_start_offset;
1207                 drc->ccs_depth = 0;
1208                 fdt_offset_next = drc->fdt_start_offset;
1209                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1210             } else {
1211                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1212             }
1213             break;
1214         case FDT_PROP:
1215             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1216                                               &prop_len);
1217             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1218 
1219             /* provide the name of the next OF property */
1220             wa_offset = CC_VAL_DATA_OFFSET;
1221             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1222             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1223 
1224             /* provide the length and value of the OF property. data gets
1225              * placed immediately after NULL terminator of the OF property's
1226              * name string
1227              */
1228             wa_offset += strlen(name) + 1,
1229             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1230             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1231             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1232             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1233             break;
1234         case FDT_END:
1235             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1236         default:
1237             /* keep seeking for an actionable tag */
1238             break;
1239         }
1240         if (drc->ccs_offset >= 0) {
1241             drc->ccs_offset = fdt_offset_next;
1242         }
1243     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1244 
1245     rc = resp;
1246 out:
1247     rtas_st(rets, 0, rc);
1248 }
1249 
1250 static void spapr_drc_register_types(void)
1251 {
1252     type_register_static(&spapr_dr_connector_info);
1253     type_register_static(&spapr_drc_physical_info);
1254     type_register_static(&spapr_drc_logical_info);
1255     type_register_static(&spapr_drc_cpu_info);
1256     type_register_static(&spapr_drc_pci_info);
1257     type_register_static(&spapr_drc_lmb_info);
1258     type_register_static(&spapr_drc_phb_info);
1259     type_register_static(&spapr_drc_pmem_info);
1260 
1261     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1262                         rtas_set_indicator);
1263     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1264                         rtas_get_sensor_state);
1265     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1266                         rtas_ibm_configure_connector);
1267 }
1268 type_init(spapr_drc_register_types)
1269