xref: /openbmc/qemu/hw/ppc/spapr_drc.c (revision 1a7c00bb3aa4cf5501343fe041e93227ec33e66f)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "cpu.h"
17 #include "qemu/cutils.h"
18 #include "hw/ppc/spapr_drc.h"
19 #include "qom/object.h"
20 #include "hw/qdev.h"
21 #include "qapi/visitor.h"
22 #include "qemu/error-report.h"
23 #include "hw/ppc/spapr.h" /* for RTAS return codes */
24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
25 #include "sysemu/device_tree.h"
26 #include "trace.h"
27 
28 #define DRC_CONTAINER_PATH "/dr-connector"
29 #define DRC_INDEX_TYPE_SHIFT 28
30 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
31 
32 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
33 {
34     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
35 
36     return 1 << drck->typeshift;
37 }
38 
39 uint32_t spapr_drc_index(SpaprDrc *drc)
40 {
41     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
42 
43     /* no set format for a drc index: it only needs to be globally
44      * unique. this is how we encode the DRC type on bare-metal
45      * however, so might as well do that here
46      */
47     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
48         | (drc->id & DRC_INDEX_ID_MASK);
49 }
50 
51 static uint32_t drc_isolate_physical(SpaprDrc *drc)
52 {
53     switch (drc->state) {
54     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
55         return RTAS_OUT_SUCCESS; /* Nothing to do */
56     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
57         break; /* see below */
58     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
59         return RTAS_OUT_PARAM_ERROR; /* not allowed */
60     default:
61         g_assert_not_reached();
62     }
63 
64     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
65 
66     if (drc->unplug_requested) {
67         uint32_t drc_index = spapr_drc_index(drc);
68         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
69         spapr_drc_detach(drc);
70     }
71 
72     return RTAS_OUT_SUCCESS;
73 }
74 
75 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
76 {
77     switch (drc->state) {
78     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
79     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
80         return RTAS_OUT_SUCCESS; /* Nothing to do */
81     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
82         break; /* see below */
83     default:
84         g_assert_not_reached();
85     }
86 
87     /* cannot unisolate a non-existent resource, and, or resources
88      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
89      * 13.5.3.5)
90      */
91     if (!drc->dev) {
92         return RTAS_OUT_NO_SUCH_INDICATOR;
93     }
94 
95     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
96     drc->ccs_offset = drc->fdt_start_offset;
97     drc->ccs_depth = 0;
98 
99     return RTAS_OUT_SUCCESS;
100 }
101 
102 static uint32_t drc_isolate_logical(SpaprDrc *drc)
103 {
104     switch (drc->state) {
105     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
106     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
107         return RTAS_OUT_SUCCESS; /* Nothing to do */
108     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
109         break; /* see below */
110     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
111         return RTAS_OUT_PARAM_ERROR; /* not allowed */
112     default:
113         g_assert_not_reached();
114     }
115 
116     /*
117      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
118      * belong to a DIMM device that is marked for removal.
119      *
120      * Currently the guest userspace tool drmgr that drives the memory
121      * hotplug/unplug will just try to remove a set of 'removable' LMBs
122      * in response to a hot unplug request that is based on drc-count.
123      * If the LMB being removed doesn't belong to a DIMM device that is
124      * actually being unplugged, fail the isolation request here.
125      */
126     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
127         && !drc->unplug_requested) {
128         return RTAS_OUT_HW_ERROR;
129     }
130 
131     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
132 
133     /* if we're awaiting release, but still in an unconfigured state,
134      * it's likely the guest is still in the process of configuring
135      * the device and is transitioning the devices to an ISOLATED
136      * state as a part of that process. so we only complete the
137      * removal when this transition happens for a device in a
138      * configured state, as suggested by the state diagram from PAPR+
139      * 2.7, 13.4
140      */
141     if (drc->unplug_requested) {
142         uint32_t drc_index = spapr_drc_index(drc);
143         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
144         spapr_drc_detach(drc);
145     }
146     return RTAS_OUT_SUCCESS;
147 }
148 
149 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
150 {
151     switch (drc->state) {
152     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
153     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
154         return RTAS_OUT_SUCCESS; /* Nothing to do */
155     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
156         break; /* see below */
157     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
158         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
159     default:
160         g_assert_not_reached();
161     }
162 
163     /* Move to AVAILABLE state should have ensured device was present */
164     g_assert(drc->dev);
165 
166     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
167     drc->ccs_offset = drc->fdt_start_offset;
168     drc->ccs_depth = 0;
169 
170     return RTAS_OUT_SUCCESS;
171 }
172 
173 static uint32_t drc_set_usable(SpaprDrc *drc)
174 {
175     switch (drc->state) {
176     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
177     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
178     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
179         return RTAS_OUT_SUCCESS; /* Nothing to do */
180     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
181         break; /* see below */
182     default:
183         g_assert_not_reached();
184     }
185 
186     /* if there's no resource/device associated with the DRC, there's
187      * no way for us to put it in an allocation state consistent with
188      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
189      * result in an RTAS return code of -3 / "no such indicator"
190      */
191     if (!drc->dev) {
192         return RTAS_OUT_NO_SUCH_INDICATOR;
193     }
194     if (drc->unplug_requested) {
195         /* Don't allow the guest to move a device away from UNUSABLE
196          * state when we want to unplug it */
197         return RTAS_OUT_NO_SUCH_INDICATOR;
198     }
199 
200     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
201 
202     return RTAS_OUT_SUCCESS;
203 }
204 
205 static uint32_t drc_set_unusable(SpaprDrc *drc)
206 {
207     switch (drc->state) {
208     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
209         return RTAS_OUT_SUCCESS; /* Nothing to do */
210     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
211         break; /* see below */
212     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
213     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
214         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
215     default:
216         g_assert_not_reached();
217     }
218 
219     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
220     if (drc->unplug_requested) {
221         uint32_t drc_index = spapr_drc_index(drc);
222         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
223         spapr_drc_detach(drc);
224     }
225 
226     return RTAS_OUT_SUCCESS;
227 }
228 
229 static const char *spapr_drc_name(SpaprDrc *drc)
230 {
231     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
232 
233     /* human-readable name for a DRC to encode into the DT
234      * description. this is mainly only used within a guest in place
235      * of the unique DRC index.
236      *
237      * in the case of VIO/PCI devices, it corresponds to a "location
238      * code" that maps a logical device/function (DRC index) to a
239      * physical (or virtual in the case of VIO) location in the system
240      * by chaining together the "location label" for each
241      * encapsulating component.
242      *
243      * since this is more to do with diagnosing physical hardware
244      * issues than guest compatibility, we choose location codes/DRC
245      * names that adhere to the documented format, but avoid encoding
246      * the entire topology information into the label/code, instead
247      * just using the location codes based on the labels for the
248      * endpoints (VIO/PCI adaptor connectors), which is basically just
249      * "C" followed by an integer ID.
250      *
251      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
252      * location codes as documented by PAPR+ v2.7, 12.3.1.5
253      */
254     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
255 }
256 
257 /*
258  * dr-entity-sense sensor value
259  * returned via get-sensor-state RTAS calls
260  * as expected by state diagram in PAPR+ 2.7, 13.4
261  * based on the current allocation/indicator/power states
262  * for the DR connector.
263  */
264 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
265 {
266     /* this assumes all PCI devices are assigned to a 'live insertion'
267      * power domain, where QEMU manages power state automatically as
268      * opposed to the guest. present, non-PCI resources are unaffected
269      * by power state.
270      */
271     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
272         : SPAPR_DR_ENTITY_SENSE_EMPTY;
273 }
274 
275 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
276 {
277     switch (drc->state) {
278     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
279         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
280     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
281     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
282     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
283         g_assert(drc->dev);
284         return SPAPR_DR_ENTITY_SENSE_PRESENT;
285     default:
286         g_assert_not_reached();
287     }
288 }
289 
290 static void prop_get_index(Object *obj, Visitor *v, const char *name,
291                            void *opaque, Error **errp)
292 {
293     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
294     uint32_t value = spapr_drc_index(drc);
295     visit_type_uint32(v, name, &value, errp);
296 }
297 
298 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
299                          void *opaque, Error **errp)
300 {
301     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
302     QNull *null = NULL;
303     Error *err = NULL;
304     int fdt_offset_next, fdt_offset, fdt_depth;
305     void *fdt;
306 
307     if (!drc->fdt) {
308         visit_type_null(v, NULL, &null, errp);
309         qobject_unref(null);
310         return;
311     }
312 
313     fdt = drc->fdt;
314     fdt_offset = drc->fdt_start_offset;
315     fdt_depth = 0;
316 
317     do {
318         const char *name = NULL;
319         const struct fdt_property *prop = NULL;
320         int prop_len = 0, name_len = 0;
321         uint32_t tag;
322 
323         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
324         switch (tag) {
325         case FDT_BEGIN_NODE:
326             fdt_depth++;
327             name = fdt_get_name(fdt, fdt_offset, &name_len);
328             visit_start_struct(v, name, NULL, 0, &err);
329             if (err) {
330                 error_propagate(errp, err);
331                 return;
332             }
333             break;
334         case FDT_END_NODE:
335             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
336             g_assert(fdt_depth > 0);
337             visit_check_struct(v, &err);
338             visit_end_struct(v, NULL);
339             if (err) {
340                 error_propagate(errp, err);
341                 return;
342             }
343             fdt_depth--;
344             break;
345         case FDT_PROP: {
346             int i;
347             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
348             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
349             visit_start_list(v, name, NULL, 0, &err);
350             if (err) {
351                 error_propagate(errp, err);
352                 return;
353             }
354             for (i = 0; i < prop_len; i++) {
355                 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
356                 if (err) {
357                     error_propagate(errp, err);
358                     return;
359                 }
360             }
361             visit_check_list(v, &err);
362             visit_end_list(v, NULL);
363             if (err) {
364                 error_propagate(errp, err);
365                 return;
366             }
367             break;
368         }
369         default:
370             error_report("device FDT in unexpected state: %d", tag);
371             abort();
372         }
373         fdt_offset = fdt_offset_next;
374     } while (fdt_depth != 0);
375 }
376 
377 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
378 {
379     trace_spapr_drc_attach(spapr_drc_index(drc));
380 
381     if (drc->dev) {
382         error_setg(errp, "an attached device is still awaiting release");
383         return;
384     }
385     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
386              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
387 
388     drc->dev = d;
389 
390     object_property_add_link(OBJECT(drc), "device",
391                              object_get_typename(OBJECT(drc->dev)),
392                              (Object **)(&drc->dev),
393                              NULL, 0, NULL);
394 }
395 
396 static void spapr_drc_release(SpaprDrc *drc)
397 {
398     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
399 
400     drck->release(drc->dev);
401 
402     drc->unplug_requested = false;
403     g_free(drc->fdt);
404     drc->fdt = NULL;
405     drc->fdt_start_offset = 0;
406     object_property_del(OBJECT(drc), "device", &error_abort);
407     drc->dev = NULL;
408 }
409 
410 void spapr_drc_detach(SpaprDrc *drc)
411 {
412     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
413 
414     trace_spapr_drc_detach(spapr_drc_index(drc));
415 
416     g_assert(drc->dev);
417 
418     drc->unplug_requested = true;
419 
420     if (drc->state != drck->empty_state) {
421         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
422         return;
423     }
424 
425     spapr_drc_release(drc);
426 }
427 
428 void spapr_drc_reset(SpaprDrc *drc)
429 {
430     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
431 
432     trace_spapr_drc_reset(spapr_drc_index(drc));
433 
434     /* immediately upon reset we can safely assume DRCs whose devices
435      * are pending removal can be safely removed.
436      */
437     if (drc->unplug_requested) {
438         spapr_drc_release(drc);
439     }
440 
441     if (drc->dev) {
442         /* A device present at reset is ready to go, same as coldplugged */
443         drc->state = drck->ready_state;
444         /*
445          * Ensure that we are able to send the FDT fragment again
446          * via configure-connector call if the guest requests.
447          */
448         drc->ccs_offset = drc->fdt_start_offset;
449         drc->ccs_depth = 0;
450     } else {
451         drc->state = drck->empty_state;
452         drc->ccs_offset = -1;
453         drc->ccs_depth = -1;
454     }
455 }
456 
457 bool spapr_drc_needed(void *opaque)
458 {
459     SpaprDrc *drc = (SpaprDrc *)opaque;
460     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
461 
462     /* If no dev is plugged in there is no need to migrate the DRC state */
463     if (!drc->dev) {
464         return false;
465     }
466 
467     /*
468      * We need to migrate the state if it's not equal to the expected
469      * long-term state, which is the same as the coldplugged initial
470      * state */
471     return (drc->state != drck->ready_state);
472 }
473 
474 static const VMStateDescription vmstate_spapr_drc = {
475     .name = "spapr_drc",
476     .version_id = 1,
477     .minimum_version_id = 1,
478     .needed = spapr_drc_needed,
479     .fields  = (VMStateField []) {
480         VMSTATE_UINT32(state, SpaprDrc),
481         VMSTATE_END_OF_LIST()
482     }
483 };
484 
485 static void realize(DeviceState *d, Error **errp)
486 {
487     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
488     Object *root_container;
489     gchar *link_name;
490     gchar *child_name;
491     Error *err = NULL;
492 
493     trace_spapr_drc_realize(spapr_drc_index(drc));
494     /* NOTE: we do this as part of realize/unrealize due to the fact
495      * that the guest will communicate with the DRC via RTAS calls
496      * referencing the global DRC index. By unlinking the DRC
497      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
498      * inaccessible by the guest, since lookups rely on this path
499      * existing in the composition tree
500      */
501     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
502     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
503     child_name = object_get_canonical_path_component(OBJECT(drc));
504     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
505     object_property_add_alias(root_container, link_name,
506                               drc->owner, child_name, &err);
507     g_free(child_name);
508     g_free(link_name);
509     if (err) {
510         error_propagate(errp, err);
511         return;
512     }
513     vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
514                      drc);
515     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
516 }
517 
518 static void unrealize(DeviceState *d, Error **errp)
519 {
520     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
521     Object *root_container;
522     gchar *name;
523 
524     trace_spapr_drc_unrealize(spapr_drc_index(drc));
525     vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
526     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
527     name = g_strdup_printf("%x", spapr_drc_index(drc));
528     object_property_del(root_container, name, errp);
529     g_free(name);
530 }
531 
532 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
533                                          uint32_t id)
534 {
535     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
536     char *prop_name;
537 
538     drc->id = id;
539     drc->owner = owner;
540     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
541                                 spapr_drc_index(drc));
542     object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
543     object_unref(OBJECT(drc));
544     object_property_set_bool(OBJECT(drc), true, "realized", NULL);
545     g_free(prop_name);
546 
547     return drc;
548 }
549 
550 static void spapr_dr_connector_instance_init(Object *obj)
551 {
552     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
553     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
554 
555     object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
556     object_property_add(obj, "index", "uint32", prop_get_index,
557                         NULL, NULL, NULL, NULL);
558     object_property_add(obj, "fdt", "struct", prop_get_fdt,
559                         NULL, NULL, NULL, NULL);
560     drc->state = drck->empty_state;
561 }
562 
563 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
564 {
565     DeviceClass *dk = DEVICE_CLASS(k);
566 
567     dk->realize = realize;
568     dk->unrealize = unrealize;
569     /*
570      * Reason: it crashes FIXME find and document the real reason
571      */
572     dk->user_creatable = false;
573 }
574 
575 static bool drc_physical_needed(void *opaque)
576 {
577     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
578     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
579 
580     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
581         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
582         return false;
583     }
584     return true;
585 }
586 
587 static const VMStateDescription vmstate_spapr_drc_physical = {
588     .name = "spapr_drc/physical",
589     .version_id = 1,
590     .minimum_version_id = 1,
591     .needed = drc_physical_needed,
592     .fields  = (VMStateField []) {
593         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
594         VMSTATE_END_OF_LIST()
595     }
596 };
597 
598 static void drc_physical_reset(void *opaque)
599 {
600     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
601     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
602 
603     if (drc->dev) {
604         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
605     } else {
606         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
607     }
608 }
609 
610 static void realize_physical(DeviceState *d, Error **errp)
611 {
612     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
613     Error *local_err = NULL;
614 
615     realize(d, &local_err);
616     if (local_err) {
617         error_propagate(errp, local_err);
618         return;
619     }
620 
621     vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
622                      &vmstate_spapr_drc_physical, drcp);
623     qemu_register_reset(drc_physical_reset, drcp);
624 }
625 
626 static void unrealize_physical(DeviceState *d, Error **errp)
627 {
628     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
629     Error *local_err = NULL;
630 
631     unrealize(d, &local_err);
632     if (local_err) {
633         error_propagate(errp, local_err);
634         return;
635     }
636 
637     vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
638     qemu_unregister_reset(drc_physical_reset, drcp);
639 }
640 
641 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
642 {
643     DeviceClass *dk = DEVICE_CLASS(k);
644     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
645 
646     dk->realize = realize_physical;
647     dk->unrealize = unrealize_physical;
648     drck->dr_entity_sense = physical_entity_sense;
649     drck->isolate = drc_isolate_physical;
650     drck->unisolate = drc_unisolate_physical;
651     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
652     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
653 }
654 
655 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
656 {
657     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
658 
659     drck->dr_entity_sense = logical_entity_sense;
660     drck->isolate = drc_isolate_logical;
661     drck->unisolate = drc_unisolate_logical;
662     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
663     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
664 }
665 
666 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
667 {
668     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
669 
670     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
671     drck->typename = "CPU";
672     drck->drc_name_prefix = "CPU ";
673     drck->release = spapr_core_release;
674     drck->dt_populate = spapr_core_dt_populate;
675 }
676 
677 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
678 {
679     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
680 
681     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
682     drck->typename = "28";
683     drck->drc_name_prefix = "C";
684     drck->release = spapr_phb_remove_pci_device_cb;
685     drck->dt_populate = spapr_pci_dt_populate;
686 }
687 
688 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
689 {
690     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
691 
692     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
693     drck->typename = "MEM";
694     drck->drc_name_prefix = "LMB ";
695     drck->release = spapr_lmb_release;
696     drck->dt_populate = spapr_lmb_dt_populate;
697 }
698 
699 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
700 {
701     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
702 
703     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
704     drck->typename = "PHB";
705     drck->drc_name_prefix = "PHB ";
706     drck->release = spapr_phb_release;
707     drck->dt_populate = spapr_phb_dt_populate;
708 }
709 
710 static const TypeInfo spapr_dr_connector_info = {
711     .name          = TYPE_SPAPR_DR_CONNECTOR,
712     .parent        = TYPE_DEVICE,
713     .instance_size = sizeof(SpaprDrc),
714     .instance_init = spapr_dr_connector_instance_init,
715     .class_size    = sizeof(SpaprDrcClass),
716     .class_init    = spapr_dr_connector_class_init,
717     .abstract      = true,
718 };
719 
720 static const TypeInfo spapr_drc_physical_info = {
721     .name          = TYPE_SPAPR_DRC_PHYSICAL,
722     .parent        = TYPE_SPAPR_DR_CONNECTOR,
723     .instance_size = sizeof(SpaprDrcPhysical),
724     .class_init    = spapr_drc_physical_class_init,
725     .abstract      = true,
726 };
727 
728 static const TypeInfo spapr_drc_logical_info = {
729     .name          = TYPE_SPAPR_DRC_LOGICAL,
730     .parent        = TYPE_SPAPR_DR_CONNECTOR,
731     .class_init    = spapr_drc_logical_class_init,
732     .abstract      = true,
733 };
734 
735 static const TypeInfo spapr_drc_cpu_info = {
736     .name          = TYPE_SPAPR_DRC_CPU,
737     .parent        = TYPE_SPAPR_DRC_LOGICAL,
738     .class_init    = spapr_drc_cpu_class_init,
739 };
740 
741 static const TypeInfo spapr_drc_pci_info = {
742     .name          = TYPE_SPAPR_DRC_PCI,
743     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
744     .class_init    = spapr_drc_pci_class_init,
745 };
746 
747 static const TypeInfo spapr_drc_lmb_info = {
748     .name          = TYPE_SPAPR_DRC_LMB,
749     .parent        = TYPE_SPAPR_DRC_LOGICAL,
750     .class_init    = spapr_drc_lmb_class_init,
751 };
752 
753 static const TypeInfo spapr_drc_phb_info = {
754     .name          = TYPE_SPAPR_DRC_PHB,
755     .parent        = TYPE_SPAPR_DRC_LOGICAL,
756     .instance_size = sizeof(SpaprDrc),
757     .class_init    = spapr_drc_phb_class_init,
758 };
759 
760 /* helper functions for external users */
761 
762 SpaprDrc *spapr_drc_by_index(uint32_t index)
763 {
764     Object *obj;
765     gchar *name;
766 
767     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
768     obj = object_resolve_path(name, NULL);
769     g_free(name);
770 
771     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
772 }
773 
774 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
775 {
776     SpaprDrcClass *drck
777         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
778 
779     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
780                               | (id & DRC_INDEX_ID_MASK));
781 }
782 
783 /**
784  * spapr_drc_populate_dt
785  *
786  * @fdt: libfdt device tree
787  * @path: path in the DT to generate properties
788  * @owner: parent Object/DeviceState for which to generate DRC
789  *         descriptions for
790  * @drc_type_mask: mask of SpaprDrcType values corresponding
791  *   to the types of DRCs to generate entries for
792  *
793  * generate OF properties to describe DRC topology/indices to guests
794  *
795  * as documented in PAPR+ v2.1, 13.5.2
796  */
797 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
798                           uint32_t drc_type_mask)
799 {
800     Object *root_container;
801     ObjectProperty *prop;
802     ObjectPropertyIterator iter;
803     uint32_t drc_count = 0;
804     GArray *drc_indexes, *drc_power_domains;
805     GString *drc_names, *drc_types;
806     int ret;
807 
808     /* the first entry of each properties is a 32-bit integer encoding
809      * the number of elements in the array. we won't know this until
810      * we complete the iteration through all the matching DRCs, but
811      * reserve the space now and set the offsets accordingly so we
812      * can fill them in later.
813      */
814     drc_indexes = g_array_new(false, true, sizeof(uint32_t));
815     drc_indexes = g_array_set_size(drc_indexes, 1);
816     drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
817     drc_power_domains = g_array_set_size(drc_power_domains, 1);
818     drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
819     drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
820 
821     /* aliases for all DRConnector objects will be rooted in QOM
822      * composition tree at DRC_CONTAINER_PATH
823      */
824     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
825 
826     object_property_iter_init(&iter, root_container);
827     while ((prop = object_property_iter_next(&iter))) {
828         Object *obj;
829         SpaprDrc *drc;
830         SpaprDrcClass *drck;
831         uint32_t drc_index, drc_power_domain;
832 
833         if (!strstart(prop->type, "link<", NULL)) {
834             continue;
835         }
836 
837         obj = object_property_get_link(root_container, prop->name, NULL);
838         drc = SPAPR_DR_CONNECTOR(obj);
839         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
840 
841         if (owner && (drc->owner != owner)) {
842             continue;
843         }
844 
845         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
846             continue;
847         }
848 
849         drc_count++;
850 
851         /* ibm,drc-indexes */
852         drc_index = cpu_to_be32(spapr_drc_index(drc));
853         g_array_append_val(drc_indexes, drc_index);
854 
855         /* ibm,drc-power-domains */
856         drc_power_domain = cpu_to_be32(-1);
857         g_array_append_val(drc_power_domains, drc_power_domain);
858 
859         /* ibm,drc-names */
860         drc_names = g_string_append(drc_names, spapr_drc_name(drc));
861         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
862 
863         /* ibm,drc-types */
864         drc_types = g_string_append(drc_types, drck->typename);
865         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
866     }
867 
868     /* now write the drc count into the space we reserved at the
869      * beginning of the arrays previously
870      */
871     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
872     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
873     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
874     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
875 
876     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
877                       drc_indexes->data,
878                       drc_indexes->len * sizeof(uint32_t));
879     if (ret) {
880         error_report("Couldn't create ibm,drc-indexes property");
881         goto out;
882     }
883 
884     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
885                       drc_power_domains->data,
886                       drc_power_domains->len * sizeof(uint32_t));
887     if (ret) {
888         error_report("Couldn't finalize ibm,drc-power-domains property");
889         goto out;
890     }
891 
892     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
893                       drc_names->str, drc_names->len);
894     if (ret) {
895         error_report("Couldn't finalize ibm,drc-names property");
896         goto out;
897     }
898 
899     ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
900                       drc_types->str, drc_types->len);
901     if (ret) {
902         error_report("Couldn't finalize ibm,drc-types property");
903         goto out;
904     }
905 
906 out:
907     g_array_free(drc_indexes, true);
908     g_array_free(drc_power_domains, true);
909     g_string_free(drc_names, true);
910     g_string_free(drc_types, true);
911 
912     return ret;
913 }
914 
915 /*
916  * RTAS calls
917  */
918 
919 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
920 {
921     SpaprDrc *drc = spapr_drc_by_index(idx);
922     SpaprDrcClass *drck;
923 
924     if (!drc) {
925         return RTAS_OUT_NO_SUCH_INDICATOR;
926     }
927 
928     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
929 
930     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
931 
932     switch (state) {
933     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
934         return drck->isolate(drc);
935 
936     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
937         return drck->unisolate(drc);
938 
939     default:
940         return RTAS_OUT_PARAM_ERROR;
941     }
942 }
943 
944 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
945 {
946     SpaprDrc *drc = spapr_drc_by_index(idx);
947 
948     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
949         return RTAS_OUT_NO_SUCH_INDICATOR;
950     }
951 
952     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
953 
954     switch (state) {
955     case SPAPR_DR_ALLOCATION_STATE_USABLE:
956         return drc_set_usable(drc);
957 
958     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
959         return drc_set_unusable(drc);
960 
961     default:
962         return RTAS_OUT_PARAM_ERROR;
963     }
964 }
965 
966 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
967 {
968     SpaprDrc *drc = spapr_drc_by_index(idx);
969 
970     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
971         return RTAS_OUT_NO_SUCH_INDICATOR;
972     }
973     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
974         && (state != SPAPR_DR_INDICATOR_ACTIVE)
975         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
976         && (state != SPAPR_DR_INDICATOR_ACTION)) {
977         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
978     }
979 
980     trace_spapr_drc_set_dr_indicator(idx, state);
981     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
982     return RTAS_OUT_SUCCESS;
983 }
984 
985 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
986                                uint32_t token,
987                                uint32_t nargs, target_ulong args,
988                                uint32_t nret, target_ulong rets)
989 {
990     uint32_t type, idx, state;
991     uint32_t ret = RTAS_OUT_SUCCESS;
992 
993     if (nargs != 3 || nret != 1) {
994         ret = RTAS_OUT_PARAM_ERROR;
995         goto out;
996     }
997 
998     type = rtas_ld(args, 0);
999     idx = rtas_ld(args, 1);
1000     state = rtas_ld(args, 2);
1001 
1002     switch (type) {
1003     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1004         ret = rtas_set_isolation_state(idx, state);
1005         break;
1006     case RTAS_SENSOR_TYPE_DR:
1007         ret = rtas_set_dr_indicator(idx, state);
1008         break;
1009     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1010         ret = rtas_set_allocation_state(idx, state);
1011         break;
1012     default:
1013         ret = RTAS_OUT_NOT_SUPPORTED;
1014     }
1015 
1016 out:
1017     rtas_st(rets, 0, ret);
1018 }
1019 
1020 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1021                                   uint32_t token, uint32_t nargs,
1022                                   target_ulong args, uint32_t nret,
1023                                   target_ulong rets)
1024 {
1025     uint32_t sensor_type;
1026     uint32_t sensor_index;
1027     uint32_t sensor_state = 0;
1028     SpaprDrc *drc;
1029     SpaprDrcClass *drck;
1030     uint32_t ret = RTAS_OUT_SUCCESS;
1031 
1032     if (nargs != 2 || nret != 2) {
1033         ret = RTAS_OUT_PARAM_ERROR;
1034         goto out;
1035     }
1036 
1037     sensor_type = rtas_ld(args, 0);
1038     sensor_index = rtas_ld(args, 1);
1039 
1040     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1041         /* currently only DR-related sensors are implemented */
1042         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1043                                                         sensor_type);
1044         ret = RTAS_OUT_NOT_SUPPORTED;
1045         goto out;
1046     }
1047 
1048     drc = spapr_drc_by_index(sensor_index);
1049     if (!drc) {
1050         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1051         ret = RTAS_OUT_PARAM_ERROR;
1052         goto out;
1053     }
1054     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1055     sensor_state = drck->dr_entity_sense(drc);
1056 
1057 out:
1058     rtas_st(rets, 0, ret);
1059     rtas_st(rets, 1, sensor_state);
1060 }
1061 
1062 /* configure-connector work area offsets, int32_t units for field
1063  * indexes, bytes for field offset/len values.
1064  *
1065  * as documented by PAPR+ v2.7, 13.5.3.5
1066  */
1067 #define CC_IDX_NODE_NAME_OFFSET 2
1068 #define CC_IDX_PROP_NAME_OFFSET 2
1069 #define CC_IDX_PROP_LEN 3
1070 #define CC_IDX_PROP_DATA_OFFSET 4
1071 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1072 #define CC_WA_LEN 4096
1073 
1074 static void configure_connector_st(target_ulong addr, target_ulong offset,
1075                                    const void *buf, size_t len)
1076 {
1077     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1078                               buf, MIN(len, CC_WA_LEN - offset));
1079 }
1080 
1081 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1082                                          SpaprMachineState *spapr,
1083                                          uint32_t token, uint32_t nargs,
1084                                          target_ulong args, uint32_t nret,
1085                                          target_ulong rets)
1086 {
1087     uint64_t wa_addr;
1088     uint64_t wa_offset;
1089     uint32_t drc_index;
1090     SpaprDrc *drc;
1091     SpaprDrcClass *drck;
1092     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1093     int rc;
1094 
1095     if (nargs != 2 || nret != 1) {
1096         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1097         return;
1098     }
1099 
1100     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1101 
1102     drc_index = rtas_ld(wa_addr, 0);
1103     drc = spapr_drc_by_index(drc_index);
1104     if (!drc) {
1105         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1106         rc = RTAS_OUT_PARAM_ERROR;
1107         goto out;
1108     }
1109 
1110     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1111         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1112         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1113         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1114         /*
1115          * Need to unisolate the device before configuring
1116          * or it should already be in configured state to
1117          * allow configure-connector be called repeatedly.
1118          */
1119         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1120         goto out;
1121     }
1122 
1123     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1124 
1125     if (!drc->fdt) {
1126         Error *local_err = NULL;
1127         void *fdt;
1128         int fdt_size;
1129 
1130         fdt = create_device_tree(&fdt_size);
1131 
1132         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1133                               &local_err)) {
1134             g_free(fdt);
1135             error_free(local_err);
1136             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1137             goto out;
1138         }
1139 
1140         drc->fdt = fdt;
1141         drc->ccs_offset = drc->fdt_start_offset;
1142         drc->ccs_depth = 0;
1143     }
1144 
1145     do {
1146         uint32_t tag;
1147         const char *name;
1148         const struct fdt_property *prop;
1149         int fdt_offset_next, prop_len;
1150 
1151         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1152 
1153         switch (tag) {
1154         case FDT_BEGIN_NODE:
1155             drc->ccs_depth++;
1156             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1157 
1158             /* provide the name of the next OF node */
1159             wa_offset = CC_VAL_DATA_OFFSET;
1160             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1161             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1162             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1163             break;
1164         case FDT_END_NODE:
1165             drc->ccs_depth--;
1166             if (drc->ccs_depth == 0) {
1167                 uint32_t drc_index = spapr_drc_index(drc);
1168 
1169                 /* done sending the device tree, move to configured state */
1170                 trace_spapr_drc_set_configured(drc_index);
1171                 drc->state = drck->ready_state;
1172                 /*
1173                  * Ensure that we are able to send the FDT fragment
1174                  * again via configure-connector call if the guest requests.
1175                  */
1176                 drc->ccs_offset = drc->fdt_start_offset;
1177                 drc->ccs_depth = 0;
1178                 fdt_offset_next = drc->fdt_start_offset;
1179                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1180             } else {
1181                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1182             }
1183             break;
1184         case FDT_PROP:
1185             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1186                                               &prop_len);
1187             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1188 
1189             /* provide the name of the next OF property */
1190             wa_offset = CC_VAL_DATA_OFFSET;
1191             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1192             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1193 
1194             /* provide the length and value of the OF property. data gets
1195              * placed immediately after NULL terminator of the OF property's
1196              * name string
1197              */
1198             wa_offset += strlen(name) + 1,
1199             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1200             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1201             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1202             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1203             break;
1204         case FDT_END:
1205             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1206         default:
1207             /* keep seeking for an actionable tag */
1208             break;
1209         }
1210         if (drc->ccs_offset >= 0) {
1211             drc->ccs_offset = fdt_offset_next;
1212         }
1213     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1214 
1215     rc = resp;
1216 out:
1217     rtas_st(rets, 0, rc);
1218 }
1219 
1220 static void spapr_drc_register_types(void)
1221 {
1222     type_register_static(&spapr_dr_connector_info);
1223     type_register_static(&spapr_drc_physical_info);
1224     type_register_static(&spapr_drc_logical_info);
1225     type_register_static(&spapr_drc_cpu_info);
1226     type_register_static(&spapr_drc_pci_info);
1227     type_register_static(&spapr_drc_lmb_info);
1228     type_register_static(&spapr_drc_phb_info);
1229 
1230     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1231                         rtas_set_indicator);
1232     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1233                         rtas_get_sensor_state);
1234     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1235                         rtas_ibm_configure_connector);
1236 }
1237 type_init(spapr_drc_register_types)
1238