1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static void spapr_drc_release(SpaprDrc *drc) 54 { 55 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 56 57 drck->release(drc->dev); 58 59 drc->unplug_requested = false; 60 g_free(drc->fdt); 61 drc->fdt = NULL; 62 drc->fdt_start_offset = 0; 63 object_property_del(OBJECT(drc), "device"); 64 drc->dev = NULL; 65 } 66 67 static uint32_t drc_isolate_physical(SpaprDrc *drc) 68 { 69 switch (drc->state) { 70 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 71 return RTAS_OUT_SUCCESS; /* Nothing to do */ 72 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 73 break; /* see below */ 74 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 75 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 76 default: 77 g_assert_not_reached(); 78 } 79 80 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 81 82 if (drc->unplug_requested) { 83 uint32_t drc_index = spapr_drc_index(drc); 84 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 85 spapr_drc_release(drc); 86 } 87 88 return RTAS_OUT_SUCCESS; 89 } 90 91 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 92 { 93 switch (drc->state) { 94 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 95 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 96 return RTAS_OUT_SUCCESS; /* Nothing to do */ 97 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 98 break; /* see below */ 99 default: 100 g_assert_not_reached(); 101 } 102 103 /* cannot unisolate a non-existent resource, and, or resources 104 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 105 * 13.5.3.5) 106 */ 107 if (!drc->dev) { 108 return RTAS_OUT_NO_SUCH_INDICATOR; 109 } 110 111 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 112 drc->ccs_offset = drc->fdt_start_offset; 113 drc->ccs_depth = 0; 114 115 return RTAS_OUT_SUCCESS; 116 } 117 118 static uint32_t drc_isolate_logical(SpaprDrc *drc) 119 { 120 switch (drc->state) { 121 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 122 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 123 return RTAS_OUT_SUCCESS; /* Nothing to do */ 124 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 125 break; /* see below */ 126 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 127 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 128 default: 129 g_assert_not_reached(); 130 } 131 132 /* 133 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 134 * belong to a DIMM device that is marked for removal. 135 * 136 * Currently the guest userspace tool drmgr that drives the memory 137 * hotplug/unplug will just try to remove a set of 'removable' LMBs 138 * in response to a hot unplug request that is based on drc-count. 139 * If the LMB being removed doesn't belong to a DIMM device that is 140 * actually being unplugged, fail the isolation request here. 141 */ 142 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 143 && !drc->unplug_requested) { 144 return RTAS_OUT_HW_ERROR; 145 } 146 147 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 148 149 return RTAS_OUT_SUCCESS; 150 } 151 152 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 153 { 154 switch (drc->state) { 155 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 156 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 157 return RTAS_OUT_SUCCESS; /* Nothing to do */ 158 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 159 break; /* see below */ 160 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 161 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 162 default: 163 g_assert_not_reached(); 164 } 165 166 /* Move to AVAILABLE state should have ensured device was present */ 167 g_assert(drc->dev); 168 169 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 170 drc->ccs_offset = drc->fdt_start_offset; 171 drc->ccs_depth = 0; 172 173 return RTAS_OUT_SUCCESS; 174 } 175 176 static uint32_t drc_set_usable(SpaprDrc *drc) 177 { 178 switch (drc->state) { 179 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 180 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 181 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 182 return RTAS_OUT_SUCCESS; /* Nothing to do */ 183 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 184 break; /* see below */ 185 default: 186 g_assert_not_reached(); 187 } 188 189 /* if there's no resource/device associated with the DRC, there's 190 * no way for us to put it in an allocation state consistent with 191 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 192 * result in an RTAS return code of -3 / "no such indicator" 193 */ 194 if (!drc->dev) { 195 return RTAS_OUT_NO_SUCH_INDICATOR; 196 } 197 if (drc->unplug_requested) { 198 /* Don't allow the guest to move a device away from UNUSABLE 199 * state when we want to unplug it */ 200 return RTAS_OUT_NO_SUCH_INDICATOR; 201 } 202 203 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 204 205 return RTAS_OUT_SUCCESS; 206 } 207 208 static uint32_t drc_set_unusable(SpaprDrc *drc) 209 { 210 switch (drc->state) { 211 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 212 return RTAS_OUT_SUCCESS; /* Nothing to do */ 213 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 214 break; /* see below */ 215 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 216 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 217 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 218 default: 219 g_assert_not_reached(); 220 } 221 222 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 223 if (drc->unplug_requested) { 224 uint32_t drc_index = spapr_drc_index(drc); 225 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 226 spapr_drc_release(drc); 227 } 228 229 return RTAS_OUT_SUCCESS; 230 } 231 232 static char *spapr_drc_name(SpaprDrc *drc) 233 { 234 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 235 236 /* human-readable name for a DRC to encode into the DT 237 * description. this is mainly only used within a guest in place 238 * of the unique DRC index. 239 * 240 * in the case of VIO/PCI devices, it corresponds to a "location 241 * code" that maps a logical device/function (DRC index) to a 242 * physical (or virtual in the case of VIO) location in the system 243 * by chaining together the "location label" for each 244 * encapsulating component. 245 * 246 * since this is more to do with diagnosing physical hardware 247 * issues than guest compatibility, we choose location codes/DRC 248 * names that adhere to the documented format, but avoid encoding 249 * the entire topology information into the label/code, instead 250 * just using the location codes based on the labels for the 251 * endpoints (VIO/PCI adaptor connectors), which is basically just 252 * "C" followed by an integer ID. 253 * 254 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 255 * location codes as documented by PAPR+ v2.7, 12.3.1.5 256 */ 257 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 258 } 259 260 /* 261 * dr-entity-sense sensor value 262 * returned via get-sensor-state RTAS calls 263 * as expected by state diagram in PAPR+ 2.7, 13.4 264 * based on the current allocation/indicator/power states 265 * for the DR connector. 266 */ 267 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 268 { 269 /* this assumes all PCI devices are assigned to a 'live insertion' 270 * power domain, where QEMU manages power state automatically as 271 * opposed to the guest. present, non-PCI resources are unaffected 272 * by power state. 273 */ 274 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 275 : SPAPR_DR_ENTITY_SENSE_EMPTY; 276 } 277 278 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 279 { 280 switch (drc->state) { 281 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 282 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 283 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 284 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 285 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 286 g_assert(drc->dev); 287 return SPAPR_DR_ENTITY_SENSE_PRESENT; 288 default: 289 g_assert_not_reached(); 290 } 291 } 292 293 static void prop_get_index(Object *obj, Visitor *v, const char *name, 294 void *opaque, Error **errp) 295 { 296 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 297 uint32_t value = spapr_drc_index(drc); 298 visit_type_uint32(v, name, &value, errp); 299 } 300 301 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 302 void *opaque, Error **errp) 303 { 304 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 305 QNull *null = NULL; 306 int fdt_offset_next, fdt_offset, fdt_depth; 307 void *fdt; 308 309 if (!drc->fdt) { 310 visit_type_null(v, NULL, &null, errp); 311 qobject_unref(null); 312 return; 313 } 314 315 fdt = drc->fdt; 316 fdt_offset = drc->fdt_start_offset; 317 fdt_depth = 0; 318 319 do { 320 const char *name = NULL; 321 const struct fdt_property *prop = NULL; 322 int prop_len = 0, name_len = 0; 323 uint32_t tag; 324 bool ok; 325 326 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 327 switch (tag) { 328 case FDT_BEGIN_NODE: 329 fdt_depth++; 330 name = fdt_get_name(fdt, fdt_offset, &name_len); 331 if (!visit_start_struct(v, name, NULL, 0, errp)) { 332 return; 333 } 334 break; 335 case FDT_END_NODE: 336 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 337 g_assert(fdt_depth > 0); 338 ok = visit_check_struct(v, errp); 339 visit_end_struct(v, NULL); 340 if (!ok) { 341 return; 342 } 343 fdt_depth--; 344 break; 345 case FDT_PROP: { 346 int i; 347 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 348 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 349 if (!visit_start_list(v, name, NULL, 0, errp)) { 350 return; 351 } 352 for (i = 0; i < prop_len; i++) { 353 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 354 errp)) { 355 return; 356 } 357 } 358 ok = visit_check_list(v, errp); 359 visit_end_list(v, NULL); 360 if (!ok) { 361 return; 362 } 363 break; 364 } 365 default: 366 error_report("device FDT in unexpected state: %d", tag); 367 abort(); 368 } 369 fdt_offset = fdt_offset_next; 370 } while (fdt_depth != 0); 371 } 372 373 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 374 { 375 trace_spapr_drc_attach(spapr_drc_index(drc)); 376 377 g_assert(!drc->dev); 378 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 379 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 380 381 drc->dev = d; 382 383 object_property_add_link(OBJECT(drc), "device", 384 object_get_typename(OBJECT(drc->dev)), 385 (Object **)(&drc->dev), 386 NULL, 0); 387 } 388 389 void spapr_drc_unplug_request(SpaprDrc *drc) 390 { 391 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 392 393 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 394 395 g_assert(drc->dev); 396 397 drc->unplug_requested = true; 398 399 if (drc->state != drck->empty_state) { 400 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 401 return; 402 } 403 404 spapr_drc_release(drc); 405 } 406 407 bool spapr_drc_reset(SpaprDrc *drc) 408 { 409 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 410 bool unplug_completed = false; 411 412 trace_spapr_drc_reset(spapr_drc_index(drc)); 413 414 /* immediately upon reset we can safely assume DRCs whose devices 415 * are pending removal can be safely removed. 416 */ 417 if (drc->unplug_requested) { 418 spapr_drc_release(drc); 419 unplug_completed = true; 420 } 421 422 if (drc->dev) { 423 /* A device present at reset is ready to go, same as coldplugged */ 424 drc->state = drck->ready_state; 425 /* 426 * Ensure that we are able to send the FDT fragment again 427 * via configure-connector call if the guest requests. 428 */ 429 drc->ccs_offset = drc->fdt_start_offset; 430 drc->ccs_depth = 0; 431 } else { 432 drc->state = drck->empty_state; 433 drc->ccs_offset = -1; 434 drc->ccs_depth = -1; 435 } 436 437 return unplug_completed; 438 } 439 440 static bool spapr_drc_unplug_requested_needed(void *opaque) 441 { 442 return spapr_drc_unplug_requested(opaque); 443 } 444 445 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 446 .name = "spapr_drc/unplug_requested", 447 .version_id = 1, 448 .minimum_version_id = 1, 449 .needed = spapr_drc_unplug_requested_needed, 450 .fields = (VMStateField []) { 451 VMSTATE_BOOL(unplug_requested, SpaprDrc), 452 VMSTATE_END_OF_LIST() 453 } 454 }; 455 456 static bool spapr_drc_needed(void *opaque) 457 { 458 SpaprDrc *drc = opaque; 459 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 460 461 /* 462 * If no dev is plugged in there is no need to migrate the DRC state 463 * nor to reset the DRC at CAS. 464 */ 465 if (!drc->dev) { 466 return false; 467 } 468 469 /* 470 * We need to reset the DRC at CAS or to migrate the DRC state if it's 471 * not equal to the expected long-term state, which is the same as the 472 * coldplugged initial state, or if an unplug request is pending. 473 */ 474 return drc->state != drck->ready_state || 475 spapr_drc_unplug_requested(drc); 476 } 477 478 static const VMStateDescription vmstate_spapr_drc = { 479 .name = "spapr_drc", 480 .version_id = 1, 481 .minimum_version_id = 1, 482 .needed = spapr_drc_needed, 483 .fields = (VMStateField []) { 484 VMSTATE_UINT32(state, SpaprDrc), 485 VMSTATE_END_OF_LIST() 486 }, 487 .subsections = (const VMStateDescription * []) { 488 &vmstate_spapr_drc_unplug_requested, 489 NULL 490 } 491 }; 492 493 static void drc_realize(DeviceState *d, Error **errp) 494 { 495 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 496 Object *root_container; 497 gchar *link_name; 498 const char *child_name; 499 500 trace_spapr_drc_realize(spapr_drc_index(drc)); 501 /* NOTE: we do this as part of realize/unrealize due to the fact 502 * that the guest will communicate with the DRC via RTAS calls 503 * referencing the global DRC index. By unlinking the DRC 504 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 505 * inaccessible by the guest, since lookups rely on this path 506 * existing in the composition tree 507 */ 508 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 509 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 510 child_name = object_get_canonical_path_component(OBJECT(drc)); 511 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 512 object_property_add_alias(root_container, link_name, 513 drc->owner, child_name); 514 g_free(link_name); 515 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 516 drc); 517 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 518 } 519 520 static void drc_unrealize(DeviceState *d) 521 { 522 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 523 Object *root_container; 524 gchar *name; 525 526 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 527 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 528 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 529 name = g_strdup_printf("%x", spapr_drc_index(drc)); 530 object_property_del(root_container, name); 531 g_free(name); 532 } 533 534 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 535 uint32_t id) 536 { 537 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 538 char *prop_name; 539 540 drc->id = id; 541 drc->owner = owner; 542 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 543 spapr_drc_index(drc)); 544 object_property_add_child(owner, prop_name, OBJECT(drc)); 545 object_unref(OBJECT(drc)); 546 qdev_realize(DEVICE(drc), NULL, NULL); 547 g_free(prop_name); 548 549 return drc; 550 } 551 552 static void spapr_dr_connector_instance_init(Object *obj) 553 { 554 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 555 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 556 557 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 558 object_property_add(obj, "index", "uint32", prop_get_index, 559 NULL, NULL, NULL); 560 object_property_add(obj, "fdt", "struct", prop_get_fdt, 561 NULL, NULL, NULL); 562 drc->state = drck->empty_state; 563 } 564 565 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 566 { 567 DeviceClass *dk = DEVICE_CLASS(k); 568 569 dk->realize = drc_realize; 570 dk->unrealize = drc_unrealize; 571 /* 572 * Reason: DR connector needs to be wired to either the machine or to a 573 * PHB in spapr_dr_connector_new(). 574 */ 575 dk->user_creatable = false; 576 } 577 578 static bool drc_physical_needed(void *opaque) 579 { 580 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 581 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 582 583 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 584 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 585 return false; 586 } 587 return true; 588 } 589 590 static const VMStateDescription vmstate_spapr_drc_physical = { 591 .name = "spapr_drc/physical", 592 .version_id = 1, 593 .minimum_version_id = 1, 594 .needed = drc_physical_needed, 595 .fields = (VMStateField []) { 596 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 597 VMSTATE_END_OF_LIST() 598 } 599 }; 600 601 static void drc_physical_reset(void *opaque) 602 { 603 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 604 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 605 606 if (drc->dev) { 607 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 608 } else { 609 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 610 } 611 } 612 613 static void realize_physical(DeviceState *d, Error **errp) 614 { 615 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 616 Error *local_err = NULL; 617 618 drc_realize(d, &local_err); 619 if (local_err) { 620 error_propagate(errp, local_err); 621 return; 622 } 623 624 vmstate_register(VMSTATE_IF(drcp), 625 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 626 &vmstate_spapr_drc_physical, drcp); 627 qemu_register_reset(drc_physical_reset, drcp); 628 } 629 630 static void unrealize_physical(DeviceState *d) 631 { 632 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 633 634 drc_unrealize(d); 635 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 636 qemu_unregister_reset(drc_physical_reset, drcp); 637 } 638 639 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 640 { 641 DeviceClass *dk = DEVICE_CLASS(k); 642 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 643 644 dk->realize = realize_physical; 645 dk->unrealize = unrealize_physical; 646 drck->dr_entity_sense = physical_entity_sense; 647 drck->isolate = drc_isolate_physical; 648 drck->unisolate = drc_unisolate_physical; 649 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 650 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 651 } 652 653 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 654 { 655 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 656 657 drck->dr_entity_sense = logical_entity_sense; 658 drck->isolate = drc_isolate_logical; 659 drck->unisolate = drc_unisolate_logical; 660 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 661 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 662 } 663 664 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 665 { 666 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 667 668 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 669 drck->typename = "CPU"; 670 drck->drc_name_prefix = "CPU "; 671 drck->release = spapr_core_release; 672 drck->dt_populate = spapr_core_dt_populate; 673 } 674 675 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 676 { 677 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 678 679 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 680 drck->typename = "28"; 681 drck->drc_name_prefix = "C"; 682 drck->release = spapr_phb_remove_pci_device_cb; 683 drck->dt_populate = spapr_pci_dt_populate; 684 } 685 686 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 687 { 688 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 689 690 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 691 drck->typename = "MEM"; 692 drck->drc_name_prefix = "LMB "; 693 drck->release = spapr_lmb_release; 694 drck->dt_populate = spapr_lmb_dt_populate; 695 } 696 697 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 698 { 699 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 700 701 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 702 drck->typename = "PHB"; 703 drck->drc_name_prefix = "PHB "; 704 drck->release = spapr_phb_release; 705 drck->dt_populate = spapr_phb_dt_populate; 706 } 707 708 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 709 { 710 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 711 712 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 713 drck->typename = "PMEM"; 714 drck->drc_name_prefix = "PMEM "; 715 drck->release = NULL; 716 drck->dt_populate = spapr_pmem_dt_populate; 717 } 718 719 static const TypeInfo spapr_dr_connector_info = { 720 .name = TYPE_SPAPR_DR_CONNECTOR, 721 .parent = TYPE_DEVICE, 722 .instance_size = sizeof(SpaprDrc), 723 .instance_init = spapr_dr_connector_instance_init, 724 .class_size = sizeof(SpaprDrcClass), 725 .class_init = spapr_dr_connector_class_init, 726 .abstract = true, 727 }; 728 729 static const TypeInfo spapr_drc_physical_info = { 730 .name = TYPE_SPAPR_DRC_PHYSICAL, 731 .parent = TYPE_SPAPR_DR_CONNECTOR, 732 .instance_size = sizeof(SpaprDrcPhysical), 733 .class_init = spapr_drc_physical_class_init, 734 .abstract = true, 735 }; 736 737 static const TypeInfo spapr_drc_logical_info = { 738 .name = TYPE_SPAPR_DRC_LOGICAL, 739 .parent = TYPE_SPAPR_DR_CONNECTOR, 740 .class_init = spapr_drc_logical_class_init, 741 .abstract = true, 742 }; 743 744 static const TypeInfo spapr_drc_cpu_info = { 745 .name = TYPE_SPAPR_DRC_CPU, 746 .parent = TYPE_SPAPR_DRC_LOGICAL, 747 .class_init = spapr_drc_cpu_class_init, 748 }; 749 750 static const TypeInfo spapr_drc_pci_info = { 751 .name = TYPE_SPAPR_DRC_PCI, 752 .parent = TYPE_SPAPR_DRC_PHYSICAL, 753 .class_init = spapr_drc_pci_class_init, 754 }; 755 756 static const TypeInfo spapr_drc_lmb_info = { 757 .name = TYPE_SPAPR_DRC_LMB, 758 .parent = TYPE_SPAPR_DRC_LOGICAL, 759 .class_init = spapr_drc_lmb_class_init, 760 }; 761 762 static const TypeInfo spapr_drc_phb_info = { 763 .name = TYPE_SPAPR_DRC_PHB, 764 .parent = TYPE_SPAPR_DRC_LOGICAL, 765 .instance_size = sizeof(SpaprDrc), 766 .class_init = spapr_drc_phb_class_init, 767 }; 768 769 static const TypeInfo spapr_drc_pmem_info = { 770 .name = TYPE_SPAPR_DRC_PMEM, 771 .parent = TYPE_SPAPR_DRC_LOGICAL, 772 .class_init = spapr_drc_pmem_class_init, 773 }; 774 775 /* helper functions for external users */ 776 777 SpaprDrc *spapr_drc_by_index(uint32_t index) 778 { 779 Object *obj; 780 gchar *name; 781 782 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 783 obj = object_resolve_path(name, NULL); 784 g_free(name); 785 786 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 787 } 788 789 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 790 { 791 SpaprDrcClass *drck 792 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 793 794 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 795 | (id & DRC_INDEX_ID_MASK)); 796 } 797 798 /** 799 * spapr_dt_drc 800 * 801 * @fdt: libfdt device tree 802 * @path: path in the DT to generate properties 803 * @owner: parent Object/DeviceState for which to generate DRC 804 * descriptions for 805 * @drc_type_mask: mask of SpaprDrcType values corresponding 806 * to the types of DRCs to generate entries for 807 * 808 * generate OF properties to describe DRC topology/indices to guests 809 * 810 * as documented in PAPR+ v2.1, 13.5.2 811 */ 812 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 813 { 814 Object *root_container; 815 ObjectProperty *prop; 816 ObjectPropertyIterator iter; 817 uint32_t drc_count = 0; 818 GArray *drc_indexes, *drc_power_domains; 819 GString *drc_names, *drc_types; 820 int ret; 821 822 /* 823 * This should really be only called once per node since it overwrites 824 * the OF properties if they already exist. 825 */ 826 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 827 828 /* the first entry of each properties is a 32-bit integer encoding 829 * the number of elements in the array. we won't know this until 830 * we complete the iteration through all the matching DRCs, but 831 * reserve the space now and set the offsets accordingly so we 832 * can fill them in later. 833 */ 834 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 835 drc_indexes = g_array_set_size(drc_indexes, 1); 836 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 837 drc_power_domains = g_array_set_size(drc_power_domains, 1); 838 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 839 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 840 841 /* aliases for all DRConnector objects will be rooted in QOM 842 * composition tree at DRC_CONTAINER_PATH 843 */ 844 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 845 846 object_property_iter_init(&iter, root_container); 847 while ((prop = object_property_iter_next(&iter))) { 848 Object *obj; 849 SpaprDrc *drc; 850 SpaprDrcClass *drck; 851 char *drc_name = NULL; 852 uint32_t drc_index, drc_power_domain; 853 854 if (!strstart(prop->type, "link<", NULL)) { 855 continue; 856 } 857 858 obj = object_property_get_link(root_container, prop->name, 859 &error_abort); 860 drc = SPAPR_DR_CONNECTOR(obj); 861 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 862 863 if (owner && (drc->owner != owner)) { 864 continue; 865 } 866 867 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 868 continue; 869 } 870 871 drc_count++; 872 873 /* ibm,drc-indexes */ 874 drc_index = cpu_to_be32(spapr_drc_index(drc)); 875 g_array_append_val(drc_indexes, drc_index); 876 877 /* ibm,drc-power-domains */ 878 drc_power_domain = cpu_to_be32(-1); 879 g_array_append_val(drc_power_domains, drc_power_domain); 880 881 /* ibm,drc-names */ 882 drc_name = spapr_drc_name(drc); 883 drc_names = g_string_append(drc_names, drc_name); 884 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 885 g_free(drc_name); 886 887 /* ibm,drc-types */ 888 drc_types = g_string_append(drc_types, drck->typename); 889 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 890 } 891 892 /* now write the drc count into the space we reserved at the 893 * beginning of the arrays previously 894 */ 895 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 896 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 897 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 898 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 899 900 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 901 drc_indexes->data, 902 drc_indexes->len * sizeof(uint32_t)); 903 if (ret) { 904 error_report("Couldn't create ibm,drc-indexes property"); 905 goto out; 906 } 907 908 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 909 drc_power_domains->data, 910 drc_power_domains->len * sizeof(uint32_t)); 911 if (ret) { 912 error_report("Couldn't finalize ibm,drc-power-domains property"); 913 goto out; 914 } 915 916 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 917 drc_names->str, drc_names->len); 918 if (ret) { 919 error_report("Couldn't finalize ibm,drc-names property"); 920 goto out; 921 } 922 923 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 924 drc_types->str, drc_types->len); 925 if (ret) { 926 error_report("Couldn't finalize ibm,drc-types property"); 927 goto out; 928 } 929 930 out: 931 g_array_free(drc_indexes, true); 932 g_array_free(drc_power_domains, true); 933 g_string_free(drc_names, true); 934 g_string_free(drc_types, true); 935 936 return ret; 937 } 938 939 void spapr_drc_reset_all(SpaprMachineState *spapr) 940 { 941 Object *drc_container; 942 ObjectProperty *prop; 943 ObjectPropertyIterator iter; 944 945 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 946 restart: 947 object_property_iter_init(&iter, drc_container); 948 while ((prop = object_property_iter_next(&iter))) { 949 SpaprDrc *drc; 950 951 if (!strstart(prop->type, "link<", NULL)) { 952 continue; 953 } 954 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 955 prop->name, 956 &error_abort)); 957 958 /* 959 * This will complete any pending plug/unplug requests. 960 * In case of a unplugged PHB or PCI bridge, this will 961 * cause some DRCs to be destroyed and thus potentially 962 * invalidate the iterator. 963 */ 964 if (spapr_drc_reset(drc)) { 965 goto restart; 966 } 967 } 968 } 969 970 /* 971 * RTAS calls 972 */ 973 974 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 975 { 976 SpaprDrc *drc = spapr_drc_by_index(idx); 977 SpaprDrcClass *drck; 978 979 if (!drc) { 980 return RTAS_OUT_NO_SUCH_INDICATOR; 981 } 982 983 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 984 985 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 986 987 switch (state) { 988 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 989 return drck->isolate(drc); 990 991 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 992 return drck->unisolate(drc); 993 994 default: 995 return RTAS_OUT_PARAM_ERROR; 996 } 997 } 998 999 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1000 { 1001 SpaprDrc *drc = spapr_drc_by_index(idx); 1002 1003 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1004 return RTAS_OUT_NO_SUCH_INDICATOR; 1005 } 1006 1007 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1008 1009 switch (state) { 1010 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1011 return drc_set_usable(drc); 1012 1013 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1014 return drc_set_unusable(drc); 1015 1016 default: 1017 return RTAS_OUT_PARAM_ERROR; 1018 } 1019 } 1020 1021 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1022 { 1023 SpaprDrc *drc = spapr_drc_by_index(idx); 1024 1025 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1026 return RTAS_OUT_NO_SUCH_INDICATOR; 1027 } 1028 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1029 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1030 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1031 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1032 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1033 } 1034 1035 trace_spapr_drc_set_dr_indicator(idx, state); 1036 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1037 return RTAS_OUT_SUCCESS; 1038 } 1039 1040 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1041 uint32_t token, 1042 uint32_t nargs, target_ulong args, 1043 uint32_t nret, target_ulong rets) 1044 { 1045 uint32_t type, idx, state; 1046 uint32_t ret = RTAS_OUT_SUCCESS; 1047 1048 if (nargs != 3 || nret != 1) { 1049 ret = RTAS_OUT_PARAM_ERROR; 1050 goto out; 1051 } 1052 1053 type = rtas_ld(args, 0); 1054 idx = rtas_ld(args, 1); 1055 state = rtas_ld(args, 2); 1056 1057 switch (type) { 1058 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1059 ret = rtas_set_isolation_state(idx, state); 1060 break; 1061 case RTAS_SENSOR_TYPE_DR: 1062 ret = rtas_set_dr_indicator(idx, state); 1063 break; 1064 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1065 ret = rtas_set_allocation_state(idx, state); 1066 break; 1067 default: 1068 ret = RTAS_OUT_NOT_SUPPORTED; 1069 } 1070 1071 out: 1072 rtas_st(rets, 0, ret); 1073 } 1074 1075 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1076 uint32_t token, uint32_t nargs, 1077 target_ulong args, uint32_t nret, 1078 target_ulong rets) 1079 { 1080 uint32_t sensor_type; 1081 uint32_t sensor_index; 1082 uint32_t sensor_state = 0; 1083 SpaprDrc *drc; 1084 SpaprDrcClass *drck; 1085 uint32_t ret = RTAS_OUT_SUCCESS; 1086 1087 if (nargs != 2 || nret != 2) { 1088 ret = RTAS_OUT_PARAM_ERROR; 1089 goto out; 1090 } 1091 1092 sensor_type = rtas_ld(args, 0); 1093 sensor_index = rtas_ld(args, 1); 1094 1095 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1096 /* currently only DR-related sensors are implemented */ 1097 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1098 sensor_type); 1099 ret = RTAS_OUT_NOT_SUPPORTED; 1100 goto out; 1101 } 1102 1103 drc = spapr_drc_by_index(sensor_index); 1104 if (!drc) { 1105 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1106 ret = RTAS_OUT_PARAM_ERROR; 1107 goto out; 1108 } 1109 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1110 sensor_state = drck->dr_entity_sense(drc); 1111 1112 out: 1113 rtas_st(rets, 0, ret); 1114 rtas_st(rets, 1, sensor_state); 1115 } 1116 1117 /* configure-connector work area offsets, int32_t units for field 1118 * indexes, bytes for field offset/len values. 1119 * 1120 * as documented by PAPR+ v2.7, 13.5.3.5 1121 */ 1122 #define CC_IDX_NODE_NAME_OFFSET 2 1123 #define CC_IDX_PROP_NAME_OFFSET 2 1124 #define CC_IDX_PROP_LEN 3 1125 #define CC_IDX_PROP_DATA_OFFSET 4 1126 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1127 #define CC_WA_LEN 4096 1128 1129 static void configure_connector_st(target_ulong addr, target_ulong offset, 1130 const void *buf, size_t len) 1131 { 1132 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1133 buf, MIN(len, CC_WA_LEN - offset)); 1134 } 1135 1136 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1137 SpaprMachineState *spapr, 1138 uint32_t token, uint32_t nargs, 1139 target_ulong args, uint32_t nret, 1140 target_ulong rets) 1141 { 1142 uint64_t wa_addr; 1143 uint64_t wa_offset; 1144 uint32_t drc_index; 1145 SpaprDrc *drc; 1146 SpaprDrcClass *drck; 1147 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1148 int rc; 1149 1150 if (nargs != 2 || nret != 1) { 1151 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1152 return; 1153 } 1154 1155 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1156 1157 drc_index = rtas_ld(wa_addr, 0); 1158 drc = spapr_drc_by_index(drc_index); 1159 if (!drc) { 1160 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1161 rc = RTAS_OUT_PARAM_ERROR; 1162 goto out; 1163 } 1164 1165 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1166 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1167 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1168 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1169 /* 1170 * Need to unisolate the device before configuring 1171 * or it should already be in configured state to 1172 * allow configure-connector be called repeatedly. 1173 */ 1174 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1175 goto out; 1176 } 1177 1178 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1179 1180 /* 1181 * This indicates that the kernel is reconfiguring a LMB due to 1182 * a failed hotunplug. Rollback the DIMM unplug process. 1183 */ 1184 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1185 drc->unplug_requested) { 1186 spapr_memory_unplug_rollback(spapr, drc->dev); 1187 } 1188 1189 if (!drc->fdt) { 1190 void *fdt; 1191 int fdt_size; 1192 1193 fdt = create_device_tree(&fdt_size); 1194 1195 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1196 NULL)) { 1197 g_free(fdt); 1198 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1199 goto out; 1200 } 1201 1202 drc->fdt = fdt; 1203 drc->ccs_offset = drc->fdt_start_offset; 1204 drc->ccs_depth = 0; 1205 } 1206 1207 do { 1208 uint32_t tag; 1209 const char *name; 1210 const struct fdt_property *prop; 1211 int fdt_offset_next, prop_len; 1212 1213 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1214 1215 switch (tag) { 1216 case FDT_BEGIN_NODE: 1217 drc->ccs_depth++; 1218 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1219 1220 /* provide the name of the next OF node */ 1221 wa_offset = CC_VAL_DATA_OFFSET; 1222 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1223 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1224 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1225 break; 1226 case FDT_END_NODE: 1227 drc->ccs_depth--; 1228 if (drc->ccs_depth == 0) { 1229 uint32_t drc_index = spapr_drc_index(drc); 1230 1231 /* done sending the device tree, move to configured state */ 1232 trace_spapr_drc_set_configured(drc_index); 1233 drc->state = drck->ready_state; 1234 /* 1235 * Ensure that we are able to send the FDT fragment 1236 * again via configure-connector call if the guest requests. 1237 */ 1238 drc->ccs_offset = drc->fdt_start_offset; 1239 drc->ccs_depth = 0; 1240 fdt_offset_next = drc->fdt_start_offset; 1241 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1242 } else { 1243 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1244 } 1245 break; 1246 case FDT_PROP: 1247 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1248 &prop_len); 1249 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1250 1251 /* provide the name of the next OF property */ 1252 wa_offset = CC_VAL_DATA_OFFSET; 1253 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1254 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1255 1256 /* provide the length and value of the OF property. data gets 1257 * placed immediately after NULL terminator of the OF property's 1258 * name string 1259 */ 1260 wa_offset += strlen(name) + 1, 1261 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1262 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1263 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1264 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1265 break; 1266 case FDT_END: 1267 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1268 default: 1269 /* keep seeking for an actionable tag */ 1270 break; 1271 } 1272 if (drc->ccs_offset >= 0) { 1273 drc->ccs_offset = fdt_offset_next; 1274 } 1275 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1276 1277 rc = resp; 1278 out: 1279 rtas_st(rets, 0, rc); 1280 } 1281 1282 static void spapr_drc_register_types(void) 1283 { 1284 type_register_static(&spapr_dr_connector_info); 1285 type_register_static(&spapr_drc_physical_info); 1286 type_register_static(&spapr_drc_logical_info); 1287 type_register_static(&spapr_drc_cpu_info); 1288 type_register_static(&spapr_drc_pci_info); 1289 type_register_static(&spapr_drc_lmb_info); 1290 type_register_static(&spapr_drc_phb_info); 1291 type_register_static(&spapr_drc_pmem_info); 1292 1293 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1294 rtas_set_indicator); 1295 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1296 rtas_get_sensor_state); 1297 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1298 rtas_ibm_configure_connector); 1299 } 1300 type_init(spapr_drc_register_types) 1301