1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "cpu.h" 17 #include "qemu/cutils.h" 18 #include "hw/ppc/spapr_drc.h" 19 #include "qom/object.h" 20 #include "migration/vmstate.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "/dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static uint32_t drc_isolate_physical(SpaprDrc *drc) 54 { 55 switch (drc->state) { 56 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 57 return RTAS_OUT_SUCCESS; /* Nothing to do */ 58 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 59 break; /* see below */ 60 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 61 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 62 default: 63 g_assert_not_reached(); 64 } 65 66 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 67 68 if (drc->unplug_requested) { 69 uint32_t drc_index = spapr_drc_index(drc); 70 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 71 spapr_drc_detach(drc); 72 } 73 74 return RTAS_OUT_SUCCESS; 75 } 76 77 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 78 { 79 switch (drc->state) { 80 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 81 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 82 return RTAS_OUT_SUCCESS; /* Nothing to do */ 83 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 84 break; /* see below */ 85 default: 86 g_assert_not_reached(); 87 } 88 89 /* cannot unisolate a non-existent resource, and, or resources 90 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 91 * 13.5.3.5) 92 */ 93 if (!drc->dev) { 94 return RTAS_OUT_NO_SUCH_INDICATOR; 95 } 96 97 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 98 drc->ccs_offset = drc->fdt_start_offset; 99 drc->ccs_depth = 0; 100 101 return RTAS_OUT_SUCCESS; 102 } 103 104 static uint32_t drc_isolate_logical(SpaprDrc *drc) 105 { 106 switch (drc->state) { 107 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 108 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 109 return RTAS_OUT_SUCCESS; /* Nothing to do */ 110 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 111 break; /* see below */ 112 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 113 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 114 default: 115 g_assert_not_reached(); 116 } 117 118 /* 119 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 120 * belong to a DIMM device that is marked for removal. 121 * 122 * Currently the guest userspace tool drmgr that drives the memory 123 * hotplug/unplug will just try to remove a set of 'removable' LMBs 124 * in response to a hot unplug request that is based on drc-count. 125 * If the LMB being removed doesn't belong to a DIMM device that is 126 * actually being unplugged, fail the isolation request here. 127 */ 128 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 129 && !drc->unplug_requested) { 130 return RTAS_OUT_HW_ERROR; 131 } 132 133 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 134 135 /* if we're awaiting release, but still in an unconfigured state, 136 * it's likely the guest is still in the process of configuring 137 * the device and is transitioning the devices to an ISOLATED 138 * state as a part of that process. so we only complete the 139 * removal when this transition happens for a device in a 140 * configured state, as suggested by the state diagram from PAPR+ 141 * 2.7, 13.4 142 */ 143 if (drc->unplug_requested) { 144 uint32_t drc_index = spapr_drc_index(drc); 145 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 146 spapr_drc_detach(drc); 147 } 148 return RTAS_OUT_SUCCESS; 149 } 150 151 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 152 { 153 switch (drc->state) { 154 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 155 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 156 return RTAS_OUT_SUCCESS; /* Nothing to do */ 157 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 158 break; /* see below */ 159 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 160 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 161 default: 162 g_assert_not_reached(); 163 } 164 165 /* Move to AVAILABLE state should have ensured device was present */ 166 g_assert(drc->dev); 167 168 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 169 drc->ccs_offset = drc->fdt_start_offset; 170 drc->ccs_depth = 0; 171 172 return RTAS_OUT_SUCCESS; 173 } 174 175 static uint32_t drc_set_usable(SpaprDrc *drc) 176 { 177 switch (drc->state) { 178 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 179 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 180 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 183 break; /* see below */ 184 default: 185 g_assert_not_reached(); 186 } 187 188 /* if there's no resource/device associated with the DRC, there's 189 * no way for us to put it in an allocation state consistent with 190 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 191 * result in an RTAS return code of -3 / "no such indicator" 192 */ 193 if (!drc->dev) { 194 return RTAS_OUT_NO_SUCH_INDICATOR; 195 } 196 if (drc->unplug_requested) { 197 /* Don't allow the guest to move a device away from UNUSABLE 198 * state when we want to unplug it */ 199 return RTAS_OUT_NO_SUCH_INDICATOR; 200 } 201 202 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 203 204 return RTAS_OUT_SUCCESS; 205 } 206 207 static uint32_t drc_set_unusable(SpaprDrc *drc) 208 { 209 switch (drc->state) { 210 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 211 return RTAS_OUT_SUCCESS; /* Nothing to do */ 212 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 213 break; /* see below */ 214 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 215 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 216 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 217 default: 218 g_assert_not_reached(); 219 } 220 221 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 222 if (drc->unplug_requested) { 223 uint32_t drc_index = spapr_drc_index(drc); 224 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 225 spapr_drc_detach(drc); 226 } 227 228 return RTAS_OUT_SUCCESS; 229 } 230 231 static char *spapr_drc_name(SpaprDrc *drc) 232 { 233 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 234 235 /* human-readable name for a DRC to encode into the DT 236 * description. this is mainly only used within a guest in place 237 * of the unique DRC index. 238 * 239 * in the case of VIO/PCI devices, it corresponds to a "location 240 * code" that maps a logical device/function (DRC index) to a 241 * physical (or virtual in the case of VIO) location in the system 242 * by chaining together the "location label" for each 243 * encapsulating component. 244 * 245 * since this is more to do with diagnosing physical hardware 246 * issues than guest compatibility, we choose location codes/DRC 247 * names that adhere to the documented format, but avoid encoding 248 * the entire topology information into the label/code, instead 249 * just using the location codes based on the labels for the 250 * endpoints (VIO/PCI adaptor connectors), which is basically just 251 * "C" followed by an integer ID. 252 * 253 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 254 * location codes as documented by PAPR+ v2.7, 12.3.1.5 255 */ 256 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 257 } 258 259 /* 260 * dr-entity-sense sensor value 261 * returned via get-sensor-state RTAS calls 262 * as expected by state diagram in PAPR+ 2.7, 13.4 263 * based on the current allocation/indicator/power states 264 * for the DR connector. 265 */ 266 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 267 { 268 /* this assumes all PCI devices are assigned to a 'live insertion' 269 * power domain, where QEMU manages power state automatically as 270 * opposed to the guest. present, non-PCI resources are unaffected 271 * by power state. 272 */ 273 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 274 : SPAPR_DR_ENTITY_SENSE_EMPTY; 275 } 276 277 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 278 { 279 switch (drc->state) { 280 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 281 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 282 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 283 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 284 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 285 g_assert(drc->dev); 286 return SPAPR_DR_ENTITY_SENSE_PRESENT; 287 default: 288 g_assert_not_reached(); 289 } 290 } 291 292 static void prop_get_index(Object *obj, Visitor *v, const char *name, 293 void *opaque, Error **errp) 294 { 295 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 296 uint32_t value = spapr_drc_index(drc); 297 visit_type_uint32(v, name, &value, errp); 298 } 299 300 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 301 void *opaque, Error **errp) 302 { 303 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 304 QNull *null = NULL; 305 int fdt_offset_next, fdt_offset, fdt_depth; 306 void *fdt; 307 308 if (!drc->fdt) { 309 visit_type_null(v, NULL, &null, errp); 310 qobject_unref(null); 311 return; 312 } 313 314 fdt = drc->fdt; 315 fdt_offset = drc->fdt_start_offset; 316 fdt_depth = 0; 317 318 do { 319 const char *name = NULL; 320 const struct fdt_property *prop = NULL; 321 int prop_len = 0, name_len = 0; 322 uint32_t tag; 323 bool ok; 324 325 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 326 switch (tag) { 327 case FDT_BEGIN_NODE: 328 fdt_depth++; 329 name = fdt_get_name(fdt, fdt_offset, &name_len); 330 if (!visit_start_struct(v, name, NULL, 0, errp)) { 331 return; 332 } 333 break; 334 case FDT_END_NODE: 335 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 336 g_assert(fdt_depth > 0); 337 ok = visit_check_struct(v, errp); 338 visit_end_struct(v, NULL); 339 if (!ok) { 340 return; 341 } 342 fdt_depth--; 343 break; 344 case FDT_PROP: { 345 int i; 346 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 347 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 348 if (!visit_start_list(v, name, NULL, 0, errp)) { 349 return; 350 } 351 for (i = 0; i < prop_len; i++) { 352 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 353 errp)) { 354 return; 355 } 356 } 357 ok = visit_check_list(v, errp); 358 visit_end_list(v, NULL); 359 if (!ok) { 360 return; 361 } 362 break; 363 } 364 default: 365 error_report("device FDT in unexpected state: %d", tag); 366 abort(); 367 } 368 fdt_offset = fdt_offset_next; 369 } while (fdt_depth != 0); 370 } 371 372 bool spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp) 373 { 374 trace_spapr_drc_attach(spapr_drc_index(drc)); 375 376 if (drc->dev) { 377 error_setg(errp, "an attached device is still awaiting release"); 378 return false; 379 } 380 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 381 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 382 383 drc->dev = d; 384 385 object_property_add_link(OBJECT(drc), "device", 386 object_get_typename(OBJECT(drc->dev)), 387 (Object **)(&drc->dev), 388 NULL, 0); 389 return true; 390 } 391 392 static void spapr_drc_release(SpaprDrc *drc) 393 { 394 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 395 396 drck->release(drc->dev); 397 398 drc->unplug_requested = false; 399 g_free(drc->fdt); 400 drc->fdt = NULL; 401 drc->fdt_start_offset = 0; 402 object_property_del(OBJECT(drc), "device"); 403 drc->dev = NULL; 404 } 405 406 void spapr_drc_detach(SpaprDrc *drc) 407 { 408 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 409 410 trace_spapr_drc_detach(spapr_drc_index(drc)); 411 412 g_assert(drc->dev); 413 414 drc->unplug_requested = true; 415 416 if (drc->state != drck->empty_state) { 417 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 418 return; 419 } 420 421 spapr_drc_release(drc); 422 } 423 424 void spapr_drc_reset(SpaprDrc *drc) 425 { 426 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 427 428 trace_spapr_drc_reset(spapr_drc_index(drc)); 429 430 /* immediately upon reset we can safely assume DRCs whose devices 431 * are pending removal can be safely removed. 432 */ 433 if (drc->unplug_requested) { 434 spapr_drc_release(drc); 435 } 436 437 if (drc->dev) { 438 /* A device present at reset is ready to go, same as coldplugged */ 439 drc->state = drck->ready_state; 440 /* 441 * Ensure that we are able to send the FDT fragment again 442 * via configure-connector call if the guest requests. 443 */ 444 drc->ccs_offset = drc->fdt_start_offset; 445 drc->ccs_depth = 0; 446 } else { 447 drc->state = drck->empty_state; 448 drc->ccs_offset = -1; 449 drc->ccs_depth = -1; 450 } 451 } 452 453 static bool spapr_drc_unplug_requested_needed(void *opaque) 454 { 455 return spapr_drc_unplug_requested(opaque); 456 } 457 458 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 459 .name = "spapr_drc/unplug_requested", 460 .version_id = 1, 461 .minimum_version_id = 1, 462 .needed = spapr_drc_unplug_requested_needed, 463 .fields = (VMStateField []) { 464 VMSTATE_BOOL(unplug_requested, SpaprDrc), 465 VMSTATE_END_OF_LIST() 466 } 467 }; 468 469 bool spapr_drc_transient(SpaprDrc *drc) 470 { 471 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 472 473 /* 474 * If no dev is plugged in there is no need to migrate the DRC state 475 * nor to reset the DRC at CAS. 476 */ 477 if (!drc->dev) { 478 return false; 479 } 480 481 /* 482 * We need to reset the DRC at CAS or to migrate the DRC state if it's 483 * not equal to the expected long-term state, which is the same as the 484 * coldplugged initial state, or if an unplug request is pending. 485 */ 486 return drc->state != drck->ready_state || 487 spapr_drc_unplug_requested(drc); 488 } 489 490 static bool spapr_drc_needed(void *opaque) 491 { 492 return spapr_drc_transient(opaque); 493 } 494 495 static const VMStateDescription vmstate_spapr_drc = { 496 .name = "spapr_drc", 497 .version_id = 1, 498 .minimum_version_id = 1, 499 .needed = spapr_drc_needed, 500 .fields = (VMStateField []) { 501 VMSTATE_UINT32(state, SpaprDrc), 502 VMSTATE_END_OF_LIST() 503 }, 504 .subsections = (const VMStateDescription * []) { 505 &vmstate_spapr_drc_unplug_requested, 506 NULL 507 } 508 }; 509 510 static void realize(DeviceState *d, Error **errp) 511 { 512 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 513 Object *root_container; 514 gchar *link_name; 515 const char *child_name; 516 517 trace_spapr_drc_realize(spapr_drc_index(drc)); 518 /* NOTE: we do this as part of realize/unrealize due to the fact 519 * that the guest will communicate with the DRC via RTAS calls 520 * referencing the global DRC index. By unlinking the DRC 521 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 522 * inaccessible by the guest, since lookups rely on this path 523 * existing in the composition tree 524 */ 525 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 526 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 527 child_name = object_get_canonical_path_component(OBJECT(drc)); 528 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 529 object_property_add_alias(root_container, link_name, 530 drc->owner, child_name); 531 g_free(link_name); 532 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 533 drc); 534 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 535 } 536 537 static void unrealize(DeviceState *d) 538 { 539 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 540 Object *root_container; 541 gchar *name; 542 543 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 544 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 545 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 546 name = g_strdup_printf("%x", spapr_drc_index(drc)); 547 object_property_del(root_container, name); 548 g_free(name); 549 } 550 551 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 552 uint32_t id) 553 { 554 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 555 char *prop_name; 556 557 drc->id = id; 558 drc->owner = owner; 559 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 560 spapr_drc_index(drc)); 561 object_property_add_child(owner, prop_name, OBJECT(drc)); 562 object_unref(OBJECT(drc)); 563 qdev_realize(DEVICE(drc), NULL, NULL); 564 g_free(prop_name); 565 566 return drc; 567 } 568 569 static void spapr_dr_connector_instance_init(Object *obj) 570 { 571 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 572 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 573 574 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 575 object_property_add(obj, "index", "uint32", prop_get_index, 576 NULL, NULL, NULL); 577 object_property_add(obj, "fdt", "struct", prop_get_fdt, 578 NULL, NULL, NULL); 579 drc->state = drck->empty_state; 580 } 581 582 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 583 { 584 DeviceClass *dk = DEVICE_CLASS(k); 585 586 dk->realize = realize; 587 dk->unrealize = unrealize; 588 /* 589 * Reason: DR connector needs to be wired to either the machine or to a 590 * PHB in spapr_dr_connector_new(). 591 */ 592 dk->user_creatable = false; 593 } 594 595 static bool drc_physical_needed(void *opaque) 596 { 597 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 598 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 599 600 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 601 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 602 return false; 603 } 604 return true; 605 } 606 607 static const VMStateDescription vmstate_spapr_drc_physical = { 608 .name = "spapr_drc/physical", 609 .version_id = 1, 610 .minimum_version_id = 1, 611 .needed = drc_physical_needed, 612 .fields = (VMStateField []) { 613 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 614 VMSTATE_END_OF_LIST() 615 } 616 }; 617 618 static void drc_physical_reset(void *opaque) 619 { 620 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 621 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 622 623 if (drc->dev) { 624 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 625 } else { 626 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 627 } 628 } 629 630 static void realize_physical(DeviceState *d, Error **errp) 631 { 632 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 633 Error *local_err = NULL; 634 635 realize(d, &local_err); 636 if (local_err) { 637 error_propagate(errp, local_err); 638 return; 639 } 640 641 vmstate_register(VMSTATE_IF(drcp), 642 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 643 &vmstate_spapr_drc_physical, drcp); 644 qemu_register_reset(drc_physical_reset, drcp); 645 } 646 647 static void unrealize_physical(DeviceState *d) 648 { 649 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 650 651 unrealize(d); 652 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 653 qemu_unregister_reset(drc_physical_reset, drcp); 654 } 655 656 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 657 { 658 DeviceClass *dk = DEVICE_CLASS(k); 659 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 660 661 dk->realize = realize_physical; 662 dk->unrealize = unrealize_physical; 663 drck->dr_entity_sense = physical_entity_sense; 664 drck->isolate = drc_isolate_physical; 665 drck->unisolate = drc_unisolate_physical; 666 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 667 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 668 } 669 670 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 671 { 672 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 673 674 drck->dr_entity_sense = logical_entity_sense; 675 drck->isolate = drc_isolate_logical; 676 drck->unisolate = drc_unisolate_logical; 677 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 678 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 679 } 680 681 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 682 { 683 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 684 685 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 686 drck->typename = "CPU"; 687 drck->drc_name_prefix = "CPU "; 688 drck->release = spapr_core_release; 689 drck->dt_populate = spapr_core_dt_populate; 690 } 691 692 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 693 { 694 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 695 696 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 697 drck->typename = "28"; 698 drck->drc_name_prefix = "C"; 699 drck->release = spapr_phb_remove_pci_device_cb; 700 drck->dt_populate = spapr_pci_dt_populate; 701 } 702 703 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 704 { 705 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 706 707 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 708 drck->typename = "MEM"; 709 drck->drc_name_prefix = "LMB "; 710 drck->release = spapr_lmb_release; 711 drck->dt_populate = spapr_lmb_dt_populate; 712 } 713 714 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 715 { 716 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 717 718 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 719 drck->typename = "PHB"; 720 drck->drc_name_prefix = "PHB "; 721 drck->release = spapr_phb_release; 722 drck->dt_populate = spapr_phb_dt_populate; 723 } 724 725 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 726 { 727 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 728 729 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 730 drck->typename = "PMEM"; 731 drck->drc_name_prefix = "PMEM "; 732 drck->release = NULL; 733 drck->dt_populate = spapr_pmem_dt_populate; 734 } 735 736 static const TypeInfo spapr_dr_connector_info = { 737 .name = TYPE_SPAPR_DR_CONNECTOR, 738 .parent = TYPE_DEVICE, 739 .instance_size = sizeof(SpaprDrc), 740 .instance_init = spapr_dr_connector_instance_init, 741 .class_size = sizeof(SpaprDrcClass), 742 .class_init = spapr_dr_connector_class_init, 743 .abstract = true, 744 }; 745 746 static const TypeInfo spapr_drc_physical_info = { 747 .name = TYPE_SPAPR_DRC_PHYSICAL, 748 .parent = TYPE_SPAPR_DR_CONNECTOR, 749 .instance_size = sizeof(SpaprDrcPhysical), 750 .class_init = spapr_drc_physical_class_init, 751 .abstract = true, 752 }; 753 754 static const TypeInfo spapr_drc_logical_info = { 755 .name = TYPE_SPAPR_DRC_LOGICAL, 756 .parent = TYPE_SPAPR_DR_CONNECTOR, 757 .class_init = spapr_drc_logical_class_init, 758 .abstract = true, 759 }; 760 761 static const TypeInfo spapr_drc_cpu_info = { 762 .name = TYPE_SPAPR_DRC_CPU, 763 .parent = TYPE_SPAPR_DRC_LOGICAL, 764 .class_init = spapr_drc_cpu_class_init, 765 }; 766 767 static const TypeInfo spapr_drc_pci_info = { 768 .name = TYPE_SPAPR_DRC_PCI, 769 .parent = TYPE_SPAPR_DRC_PHYSICAL, 770 .class_init = spapr_drc_pci_class_init, 771 }; 772 773 static const TypeInfo spapr_drc_lmb_info = { 774 .name = TYPE_SPAPR_DRC_LMB, 775 .parent = TYPE_SPAPR_DRC_LOGICAL, 776 .class_init = spapr_drc_lmb_class_init, 777 }; 778 779 static const TypeInfo spapr_drc_phb_info = { 780 .name = TYPE_SPAPR_DRC_PHB, 781 .parent = TYPE_SPAPR_DRC_LOGICAL, 782 .instance_size = sizeof(SpaprDrc), 783 .class_init = spapr_drc_phb_class_init, 784 }; 785 786 static const TypeInfo spapr_drc_pmem_info = { 787 .name = TYPE_SPAPR_DRC_PMEM, 788 .parent = TYPE_SPAPR_DRC_LOGICAL, 789 .class_init = spapr_drc_pmem_class_init, 790 }; 791 792 /* helper functions for external users */ 793 794 SpaprDrc *spapr_drc_by_index(uint32_t index) 795 { 796 Object *obj; 797 gchar *name; 798 799 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 800 obj = object_resolve_path(name, NULL); 801 g_free(name); 802 803 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 804 } 805 806 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 807 { 808 SpaprDrcClass *drck 809 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 810 811 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 812 | (id & DRC_INDEX_ID_MASK)); 813 } 814 815 /** 816 * spapr_dt_drc 817 * 818 * @fdt: libfdt device tree 819 * @path: path in the DT to generate properties 820 * @owner: parent Object/DeviceState for which to generate DRC 821 * descriptions for 822 * @drc_type_mask: mask of SpaprDrcType values corresponding 823 * to the types of DRCs to generate entries for 824 * 825 * generate OF properties to describe DRC topology/indices to guests 826 * 827 * as documented in PAPR+ v2.1, 13.5.2 828 */ 829 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 830 { 831 Object *root_container; 832 ObjectProperty *prop; 833 ObjectPropertyIterator iter; 834 uint32_t drc_count = 0; 835 GArray *drc_indexes, *drc_power_domains; 836 GString *drc_names, *drc_types; 837 int ret; 838 839 /* the first entry of each properties is a 32-bit integer encoding 840 * the number of elements in the array. we won't know this until 841 * we complete the iteration through all the matching DRCs, but 842 * reserve the space now and set the offsets accordingly so we 843 * can fill them in later. 844 */ 845 drc_indexes = g_array_new(false, true, sizeof(uint32_t)); 846 drc_indexes = g_array_set_size(drc_indexes, 1); 847 drc_power_domains = g_array_new(false, true, sizeof(uint32_t)); 848 drc_power_domains = g_array_set_size(drc_power_domains, 1); 849 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 850 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t)); 851 852 /* aliases for all DRConnector objects will be rooted in QOM 853 * composition tree at DRC_CONTAINER_PATH 854 */ 855 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 856 857 object_property_iter_init(&iter, root_container); 858 while ((prop = object_property_iter_next(&iter))) { 859 Object *obj; 860 SpaprDrc *drc; 861 SpaprDrcClass *drck; 862 char *drc_name = NULL; 863 uint32_t drc_index, drc_power_domain; 864 865 if (!strstart(prop->type, "link<", NULL)) { 866 continue; 867 } 868 869 obj = object_property_get_link(root_container, prop->name, 870 &error_abort); 871 drc = SPAPR_DR_CONNECTOR(obj); 872 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 873 874 if (owner && (drc->owner != owner)) { 875 continue; 876 } 877 878 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 879 continue; 880 } 881 882 drc_count++; 883 884 /* ibm,drc-indexes */ 885 drc_index = cpu_to_be32(spapr_drc_index(drc)); 886 g_array_append_val(drc_indexes, drc_index); 887 888 /* ibm,drc-power-domains */ 889 drc_power_domain = cpu_to_be32(-1); 890 g_array_append_val(drc_power_domains, drc_power_domain); 891 892 /* ibm,drc-names */ 893 drc_name = spapr_drc_name(drc); 894 drc_names = g_string_append(drc_names, drc_name); 895 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 896 g_free(drc_name); 897 898 /* ibm,drc-types */ 899 drc_types = g_string_append(drc_types, drck->typename); 900 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 901 } 902 903 /* now write the drc count into the space we reserved at the 904 * beginning of the arrays previously 905 */ 906 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 907 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 908 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 909 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 910 911 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 912 drc_indexes->data, 913 drc_indexes->len * sizeof(uint32_t)); 914 if (ret) { 915 error_report("Couldn't create ibm,drc-indexes property"); 916 goto out; 917 } 918 919 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 920 drc_power_domains->data, 921 drc_power_domains->len * sizeof(uint32_t)); 922 if (ret) { 923 error_report("Couldn't finalize ibm,drc-power-domains property"); 924 goto out; 925 } 926 927 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 928 drc_names->str, drc_names->len); 929 if (ret) { 930 error_report("Couldn't finalize ibm,drc-names property"); 931 goto out; 932 } 933 934 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 935 drc_types->str, drc_types->len); 936 if (ret) { 937 error_report("Couldn't finalize ibm,drc-types property"); 938 goto out; 939 } 940 941 out: 942 g_array_free(drc_indexes, true); 943 g_array_free(drc_power_domains, true); 944 g_string_free(drc_names, true); 945 g_string_free(drc_types, true); 946 947 return ret; 948 } 949 950 /* 951 * RTAS calls 952 */ 953 954 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 955 { 956 SpaprDrc *drc = spapr_drc_by_index(idx); 957 SpaprDrcClass *drck; 958 959 if (!drc) { 960 return RTAS_OUT_NO_SUCH_INDICATOR; 961 } 962 963 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 964 965 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 966 967 switch (state) { 968 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 969 return drck->isolate(drc); 970 971 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 972 return drck->unisolate(drc); 973 974 default: 975 return RTAS_OUT_PARAM_ERROR; 976 } 977 } 978 979 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 980 { 981 SpaprDrc *drc = spapr_drc_by_index(idx); 982 983 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 984 return RTAS_OUT_NO_SUCH_INDICATOR; 985 } 986 987 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 988 989 switch (state) { 990 case SPAPR_DR_ALLOCATION_STATE_USABLE: 991 return drc_set_usable(drc); 992 993 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 994 return drc_set_unusable(drc); 995 996 default: 997 return RTAS_OUT_PARAM_ERROR; 998 } 999 } 1000 1001 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1002 { 1003 SpaprDrc *drc = spapr_drc_by_index(idx); 1004 1005 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1006 return RTAS_OUT_NO_SUCH_INDICATOR; 1007 } 1008 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1009 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1010 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1011 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1012 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1013 } 1014 1015 trace_spapr_drc_set_dr_indicator(idx, state); 1016 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1017 return RTAS_OUT_SUCCESS; 1018 } 1019 1020 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1021 uint32_t token, 1022 uint32_t nargs, target_ulong args, 1023 uint32_t nret, target_ulong rets) 1024 { 1025 uint32_t type, idx, state; 1026 uint32_t ret = RTAS_OUT_SUCCESS; 1027 1028 if (nargs != 3 || nret != 1) { 1029 ret = RTAS_OUT_PARAM_ERROR; 1030 goto out; 1031 } 1032 1033 type = rtas_ld(args, 0); 1034 idx = rtas_ld(args, 1); 1035 state = rtas_ld(args, 2); 1036 1037 switch (type) { 1038 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1039 ret = rtas_set_isolation_state(idx, state); 1040 break; 1041 case RTAS_SENSOR_TYPE_DR: 1042 ret = rtas_set_dr_indicator(idx, state); 1043 break; 1044 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1045 ret = rtas_set_allocation_state(idx, state); 1046 break; 1047 default: 1048 ret = RTAS_OUT_NOT_SUPPORTED; 1049 } 1050 1051 out: 1052 rtas_st(rets, 0, ret); 1053 } 1054 1055 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1056 uint32_t token, uint32_t nargs, 1057 target_ulong args, uint32_t nret, 1058 target_ulong rets) 1059 { 1060 uint32_t sensor_type; 1061 uint32_t sensor_index; 1062 uint32_t sensor_state = 0; 1063 SpaprDrc *drc; 1064 SpaprDrcClass *drck; 1065 uint32_t ret = RTAS_OUT_SUCCESS; 1066 1067 if (nargs != 2 || nret != 2) { 1068 ret = RTAS_OUT_PARAM_ERROR; 1069 goto out; 1070 } 1071 1072 sensor_type = rtas_ld(args, 0); 1073 sensor_index = rtas_ld(args, 1); 1074 1075 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1076 /* currently only DR-related sensors are implemented */ 1077 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1078 sensor_type); 1079 ret = RTAS_OUT_NOT_SUPPORTED; 1080 goto out; 1081 } 1082 1083 drc = spapr_drc_by_index(sensor_index); 1084 if (!drc) { 1085 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1086 ret = RTAS_OUT_PARAM_ERROR; 1087 goto out; 1088 } 1089 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1090 sensor_state = drck->dr_entity_sense(drc); 1091 1092 out: 1093 rtas_st(rets, 0, ret); 1094 rtas_st(rets, 1, sensor_state); 1095 } 1096 1097 /* configure-connector work area offsets, int32_t units for field 1098 * indexes, bytes for field offset/len values. 1099 * 1100 * as documented by PAPR+ v2.7, 13.5.3.5 1101 */ 1102 #define CC_IDX_NODE_NAME_OFFSET 2 1103 #define CC_IDX_PROP_NAME_OFFSET 2 1104 #define CC_IDX_PROP_LEN 3 1105 #define CC_IDX_PROP_DATA_OFFSET 4 1106 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1107 #define CC_WA_LEN 4096 1108 1109 static void configure_connector_st(target_ulong addr, target_ulong offset, 1110 const void *buf, size_t len) 1111 { 1112 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1113 buf, MIN(len, CC_WA_LEN - offset)); 1114 } 1115 1116 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1117 SpaprMachineState *spapr, 1118 uint32_t token, uint32_t nargs, 1119 target_ulong args, uint32_t nret, 1120 target_ulong rets) 1121 { 1122 uint64_t wa_addr; 1123 uint64_t wa_offset; 1124 uint32_t drc_index; 1125 SpaprDrc *drc; 1126 SpaprDrcClass *drck; 1127 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1128 int rc; 1129 1130 if (nargs != 2 || nret != 1) { 1131 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1132 return; 1133 } 1134 1135 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1136 1137 drc_index = rtas_ld(wa_addr, 0); 1138 drc = spapr_drc_by_index(drc_index); 1139 if (!drc) { 1140 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1141 rc = RTAS_OUT_PARAM_ERROR; 1142 goto out; 1143 } 1144 1145 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1146 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1147 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1148 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1149 /* 1150 * Need to unisolate the device before configuring 1151 * or it should already be in configured state to 1152 * allow configure-connector be called repeatedly. 1153 */ 1154 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1155 goto out; 1156 } 1157 1158 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1159 1160 if (!drc->fdt) { 1161 void *fdt; 1162 int fdt_size; 1163 1164 fdt = create_device_tree(&fdt_size); 1165 1166 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1167 NULL)) { 1168 g_free(fdt); 1169 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1170 goto out; 1171 } 1172 1173 drc->fdt = fdt; 1174 drc->ccs_offset = drc->fdt_start_offset; 1175 drc->ccs_depth = 0; 1176 } 1177 1178 do { 1179 uint32_t tag; 1180 const char *name; 1181 const struct fdt_property *prop; 1182 int fdt_offset_next, prop_len; 1183 1184 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1185 1186 switch (tag) { 1187 case FDT_BEGIN_NODE: 1188 drc->ccs_depth++; 1189 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1190 1191 /* provide the name of the next OF node */ 1192 wa_offset = CC_VAL_DATA_OFFSET; 1193 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1194 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1195 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1196 break; 1197 case FDT_END_NODE: 1198 drc->ccs_depth--; 1199 if (drc->ccs_depth == 0) { 1200 uint32_t drc_index = spapr_drc_index(drc); 1201 1202 /* done sending the device tree, move to configured state */ 1203 trace_spapr_drc_set_configured(drc_index); 1204 drc->state = drck->ready_state; 1205 /* 1206 * Ensure that we are able to send the FDT fragment 1207 * again via configure-connector call if the guest requests. 1208 */ 1209 drc->ccs_offset = drc->fdt_start_offset; 1210 drc->ccs_depth = 0; 1211 fdt_offset_next = drc->fdt_start_offset; 1212 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1213 } else { 1214 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1215 } 1216 break; 1217 case FDT_PROP: 1218 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1219 &prop_len); 1220 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1221 1222 /* provide the name of the next OF property */ 1223 wa_offset = CC_VAL_DATA_OFFSET; 1224 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1225 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1226 1227 /* provide the length and value of the OF property. data gets 1228 * placed immediately after NULL terminator of the OF property's 1229 * name string 1230 */ 1231 wa_offset += strlen(name) + 1, 1232 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1233 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1234 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1235 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1236 break; 1237 case FDT_END: 1238 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1239 default: 1240 /* keep seeking for an actionable tag */ 1241 break; 1242 } 1243 if (drc->ccs_offset >= 0) { 1244 drc->ccs_offset = fdt_offset_next; 1245 } 1246 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1247 1248 rc = resp; 1249 out: 1250 rtas_st(rets, 0, rc); 1251 } 1252 1253 static void spapr_drc_register_types(void) 1254 { 1255 type_register_static(&spapr_dr_connector_info); 1256 type_register_static(&spapr_drc_physical_info); 1257 type_register_static(&spapr_drc_logical_info); 1258 type_register_static(&spapr_drc_cpu_info); 1259 type_register_static(&spapr_drc_pci_info); 1260 type_register_static(&spapr_drc_lmb_info); 1261 type_register_static(&spapr_drc_phb_info); 1262 type_register_static(&spapr_drc_pmem_info); 1263 1264 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1265 rtas_set_indicator); 1266 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1267 rtas_get_sensor_state); 1268 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1269 rtas_ibm_configure_connector); 1270 } 1271 type_init(spapr_drc_register_types) 1272