1 /* 2 * sPAPR CPU core device, acts as container of CPU thread devices. 3 * 4 * Copyright (C) 2016 Bharata B Rao <bharata@linux.vnet.ibm.com> 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "hw/cpu/core.h" 12 #include "hw/ppc/spapr_cpu_core.h" 13 #include "hw/qdev-properties.h" 14 #include "migration/vmstate.h" 15 #include "target/ppc/cpu.h" 16 #include "hw/ppc/spapr.h" 17 #include "qapi/error.h" 18 #include "sysemu/cpus.h" 19 #include "sysemu/kvm.h" 20 #include "target/ppc/kvm_ppc.h" 21 #include "hw/ppc/ppc.h" 22 #include "target/ppc/mmu-hash64.h" 23 #include "target/ppc/power8-pmu.h" 24 #include "sysemu/numa.h" 25 #include "sysemu/reset.h" 26 #include "sysemu/hw_accel.h" 27 #include "qemu/error-report.h" 28 29 static void spapr_reset_vcpu(PowerPCCPU *cpu) 30 { 31 CPUState *cs = CPU(cpu); 32 CPUPPCState *env = &cpu->env; 33 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 34 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 35 target_ulong lpcr; 36 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 37 38 cpu_reset(cs); 39 40 /* 41 * "PowerPC Processor binding to IEEE 1275" defines the initial MSR state 42 * as 32bit (MSR_SF=0) in "8.2.1. Initial Register Values". 43 */ 44 env->msr &= ~(1ULL << MSR_SF); 45 env->spr[SPR_HIOR] = 0; 46 47 lpcr = env->spr[SPR_LPCR]; 48 49 /* Set emulated LPCR to not send interrupts to hypervisor. Note that 50 * under KVM, the actual HW LPCR will be set differently by KVM itself, 51 * the settings below ensure proper operations with TCG in absence of 52 * a real hypervisor. 53 * 54 * Disable Power-saving mode Exit Cause exceptions for the CPU, so 55 * we don't get spurious wakups before an RTAS start-cpu call. 56 * For the same reason, set PSSCR_EC. 57 */ 58 lpcr &= ~(LPCR_VPM1 | LPCR_ISL | LPCR_KBV | pcc->lpcr_pm); 59 lpcr |= LPCR_LPES0 | LPCR_LPES1; 60 env->spr[SPR_PSSCR] |= PSSCR_EC; 61 62 ppc_store_lpcr(cpu, lpcr); 63 64 /* Set a full AMOR so guest can use the AMR as it sees fit */ 65 env->spr[SPR_AMOR] = 0xffffffffffffffffull; 66 67 spapr_cpu->vpa_addr = 0; 68 spapr_cpu->slb_shadow_addr = 0; 69 spapr_cpu->slb_shadow_size = 0; 70 spapr_cpu->dtl_addr = 0; 71 spapr_cpu->dtl_size = 0; 72 73 spapr_caps_cpu_apply(spapr, cpu); 74 75 kvm_check_mmu(cpu, &error_fatal); 76 77 cpu_ppc_tb_reset(env); 78 79 spapr_irq_cpu_intc_reset(spapr, cpu); 80 } 81 82 void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, 83 target_ulong r1, target_ulong r3, 84 target_ulong r4) 85 { 86 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 87 CPUPPCState *env = &cpu->env; 88 89 env->nip = nip; 90 env->gpr[1] = r1; 91 env->gpr[3] = r3; 92 env->gpr[4] = r4; 93 kvmppc_set_reg_ppc_online(cpu, 1); 94 CPU(cpu)->halted = 0; 95 /* Enable Power-saving mode Exit Cause exceptions */ 96 ppc_store_lpcr(cpu, env->spr[SPR_LPCR] | pcc->lpcr_pm); 97 } 98 99 /* 100 * Return the sPAPR CPU core type for @model which essentially is the CPU 101 * model specified with -cpu cmdline option. 102 */ 103 const char *spapr_get_cpu_core_type(const char *cpu_type) 104 { 105 int len = strlen(cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 106 char *core_type = g_strdup_printf(SPAPR_CPU_CORE_TYPE_NAME("%.*s"), 107 len, cpu_type); 108 ObjectClass *oc = object_class_by_name(core_type); 109 110 g_free(core_type); 111 if (!oc) { 112 return NULL; 113 } 114 115 return object_class_get_name(oc); 116 } 117 118 static bool slb_shadow_needed(void *opaque) 119 { 120 SpaprCpuState *spapr_cpu = opaque; 121 122 return spapr_cpu->slb_shadow_addr != 0; 123 } 124 125 static const VMStateDescription vmstate_spapr_cpu_slb_shadow = { 126 .name = "spapr_cpu/vpa/slb_shadow", 127 .version_id = 1, 128 .minimum_version_id = 1, 129 .needed = slb_shadow_needed, 130 .fields = (const VMStateField[]) { 131 VMSTATE_UINT64(slb_shadow_addr, SpaprCpuState), 132 VMSTATE_UINT64(slb_shadow_size, SpaprCpuState), 133 VMSTATE_END_OF_LIST() 134 } 135 }; 136 137 static bool dtl_needed(void *opaque) 138 { 139 SpaprCpuState *spapr_cpu = opaque; 140 141 return spapr_cpu->dtl_addr != 0; 142 } 143 144 static const VMStateDescription vmstate_spapr_cpu_dtl = { 145 .name = "spapr_cpu/vpa/dtl", 146 .version_id = 1, 147 .minimum_version_id = 1, 148 .needed = dtl_needed, 149 .fields = (const VMStateField[]) { 150 VMSTATE_UINT64(dtl_addr, SpaprCpuState), 151 VMSTATE_UINT64(dtl_size, SpaprCpuState), 152 VMSTATE_END_OF_LIST() 153 } 154 }; 155 156 static bool vpa_needed(void *opaque) 157 { 158 SpaprCpuState *spapr_cpu = opaque; 159 160 return spapr_cpu->vpa_addr != 0; 161 } 162 163 static const VMStateDescription vmstate_spapr_cpu_vpa = { 164 .name = "spapr_cpu/vpa", 165 .version_id = 1, 166 .minimum_version_id = 1, 167 .needed = vpa_needed, 168 .fields = (const VMStateField[]) { 169 VMSTATE_UINT64(vpa_addr, SpaprCpuState), 170 VMSTATE_END_OF_LIST() 171 }, 172 .subsections = (const VMStateDescription * const []) { 173 &vmstate_spapr_cpu_slb_shadow, 174 &vmstate_spapr_cpu_dtl, 175 NULL 176 } 177 }; 178 179 static const VMStateDescription vmstate_spapr_cpu_state = { 180 .name = "spapr_cpu", 181 .version_id = 1, 182 .minimum_version_id = 1, 183 .fields = (const VMStateField[]) { 184 VMSTATE_END_OF_LIST() 185 }, 186 .subsections = (const VMStateDescription * const []) { 187 &vmstate_spapr_cpu_vpa, 188 NULL 189 } 190 }; 191 192 static void spapr_unrealize_vcpu(PowerPCCPU *cpu, SpaprCpuCore *sc) 193 { 194 CPUPPCState *env = &cpu->env; 195 196 if (!sc->pre_3_0_migration) { 197 vmstate_unregister(NULL, &vmstate_spapr_cpu_state, cpu->machine_data); 198 } 199 spapr_irq_cpu_intc_destroy(SPAPR_MACHINE(qdev_get_machine()), cpu); 200 cpu_ppc_tb_free(env); 201 qdev_unrealize(DEVICE(cpu)); 202 } 203 204 /* 205 * Called when CPUs are hot-plugged. 206 */ 207 static void spapr_cpu_core_reset(DeviceState *dev) 208 { 209 CPUCore *cc = CPU_CORE(dev); 210 SpaprCpuCore *sc = SPAPR_CPU_CORE(dev); 211 int i; 212 213 for (i = 0; i < cc->nr_threads; i++) { 214 spapr_reset_vcpu(sc->threads[i]); 215 } 216 } 217 218 /* 219 * Called by the machine reset. 220 */ 221 static void spapr_cpu_core_reset_handler(void *opaque) 222 { 223 spapr_cpu_core_reset(opaque); 224 } 225 226 static void spapr_delete_vcpu(PowerPCCPU *cpu) 227 { 228 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 229 230 cpu->machine_data = NULL; 231 g_free(spapr_cpu); 232 object_unparent(OBJECT(cpu)); 233 } 234 235 static void spapr_cpu_core_unrealize(DeviceState *dev) 236 { 237 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 238 CPUCore *cc = CPU_CORE(dev); 239 int i; 240 241 for (i = 0; i < cc->nr_threads; i++) { 242 if (sc->threads[i]) { 243 /* 244 * Since this we can get here from the error path of 245 * spapr_cpu_core_realize(), make sure we only unrealize 246 * vCPUs that have already been realized. 247 */ 248 if (qdev_is_realized(DEVICE(sc->threads[i]))) { 249 spapr_unrealize_vcpu(sc->threads[i], sc); 250 } 251 spapr_delete_vcpu(sc->threads[i]); 252 } 253 } 254 g_free(sc->threads); 255 qemu_unregister_reset(spapr_cpu_core_reset_handler, sc); 256 } 257 258 static bool spapr_realize_vcpu(PowerPCCPU *cpu, SpaprMachineState *spapr, 259 SpaprCpuCore *sc, int thread_index, Error **errp) 260 { 261 CPUPPCState *env = &cpu->env; 262 CPUState *cs = CPU(cpu); 263 264 if (!qdev_realize(DEVICE(cpu), NULL, errp)) { 265 return false; 266 } 267 268 cpu_ppc_set_vhyp(cpu, PPC_VIRTUAL_HYPERVISOR(spapr)); 269 kvmppc_set_papr(cpu); 270 271 env->spr_cb[SPR_PIR].default_value = cs->cpu_index; 272 env->spr_cb[SPR_TIR].default_value = thread_index; 273 274 cpu_ppc_set_1lpar(cpu); 275 276 /* Set time-base frequency to 512 MHz. vhyp must be set first. */ 277 cpu_ppc_tb_init(env, SPAPR_TIMEBASE_FREQ); 278 279 if (spapr_irq_cpu_intc_create(spapr, cpu, errp) < 0) { 280 qdev_unrealize(DEVICE(cpu)); 281 return false; 282 } 283 284 if (!sc->pre_3_0_migration) { 285 vmstate_register(NULL, cs->cpu_index, &vmstate_spapr_cpu_state, 286 cpu->machine_data); 287 } 288 return true; 289 } 290 291 static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp) 292 { 293 SpaprCpuCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(sc); 294 CPUCore *cc = CPU_CORE(sc); 295 g_autoptr(Object) obj = NULL; 296 g_autofree char *id = NULL; 297 CPUState *cs; 298 PowerPCCPU *cpu; 299 300 obj = object_new(scc->cpu_type); 301 302 cs = CPU(obj); 303 cpu = POWERPC_CPU(obj); 304 /* 305 * All CPUs start halted. CPU0 is unhalted from the machine level reset code 306 * and the rest are explicitly started up by the guest using an RTAS call. 307 */ 308 qdev_prop_set_bit(DEVICE(obj), "start-powered-off", true); 309 cs->cpu_index = cc->core_id + i; 310 if (!spapr_set_vcpu_id(cpu, cs->cpu_index, errp)) { 311 return NULL; 312 } 313 314 cpu->node_id = sc->node_id; 315 316 id = g_strdup_printf("thread[%d]", i); 317 object_property_add_child(OBJECT(sc), id, obj); 318 319 cpu->machine_data = g_new0(SpaprCpuState, 1); 320 321 return cpu; 322 } 323 324 static void spapr_cpu_core_realize(DeviceState *dev, Error **errp) 325 { 326 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 327 * tries to add a sPAPR CPU core to a non-pseries machine. 328 */ 329 SpaprMachineState *spapr = 330 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 331 TYPE_SPAPR_MACHINE); 332 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 333 CPUCore *cc = CPU_CORE(OBJECT(dev)); 334 int i; 335 336 if (!spapr) { 337 error_setg(errp, TYPE_SPAPR_CPU_CORE " needs a pseries machine"); 338 return; 339 } 340 341 qemu_register_reset(spapr_cpu_core_reset_handler, sc); 342 sc->threads = g_new0(PowerPCCPU *, cc->nr_threads); 343 for (i = 0; i < cc->nr_threads; i++) { 344 sc->threads[i] = spapr_create_vcpu(sc, i, errp); 345 if (!sc->threads[i] || 346 !spapr_realize_vcpu(sc->threads[i], spapr, sc, i, errp)) { 347 spapr_cpu_core_unrealize(dev); 348 return; 349 } 350 } 351 } 352 353 static Property spapr_cpu_core_properties[] = { 354 DEFINE_PROP_INT32("node-id", SpaprCpuCore, node_id, CPU_UNSET_NUMA_NODE_ID), 355 DEFINE_PROP_BOOL("pre-3.0-migration", SpaprCpuCore, pre_3_0_migration, 356 false), 357 DEFINE_PROP_END_OF_LIST() 358 }; 359 360 static void spapr_cpu_core_class_init(ObjectClass *oc, void *data) 361 { 362 DeviceClass *dc = DEVICE_CLASS(oc); 363 SpaprCpuCoreClass *scc = SPAPR_CPU_CORE_CLASS(oc); 364 365 dc->realize = spapr_cpu_core_realize; 366 dc->unrealize = spapr_cpu_core_unrealize; 367 dc->reset = spapr_cpu_core_reset; 368 device_class_set_props(dc, spapr_cpu_core_properties); 369 scc->cpu_type = data; 370 } 371 372 #define DEFINE_SPAPR_CPU_CORE_TYPE(cpu_model) \ 373 { \ 374 .parent = TYPE_SPAPR_CPU_CORE, \ 375 .class_data = (void *) POWERPC_CPU_TYPE_NAME(cpu_model), \ 376 .class_init = spapr_cpu_core_class_init, \ 377 .name = SPAPR_CPU_CORE_TYPE_NAME(cpu_model), \ 378 } 379 380 static const TypeInfo spapr_cpu_core_type_infos[] = { 381 { 382 .name = TYPE_SPAPR_CPU_CORE, 383 .parent = TYPE_CPU_CORE, 384 .abstract = true, 385 .instance_size = sizeof(SpaprCpuCore), 386 .class_size = sizeof(SpaprCpuCoreClass), 387 }, 388 DEFINE_SPAPR_CPU_CORE_TYPE("970_v2.2"), 389 DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.0"), 390 DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.1"), 391 DEFINE_SPAPR_CPU_CORE_TYPE("power5p_v2.1"), 392 DEFINE_SPAPR_CPU_CORE_TYPE("power7_v2.3"), 393 DEFINE_SPAPR_CPU_CORE_TYPE("power7p_v2.1"), 394 DEFINE_SPAPR_CPU_CORE_TYPE("power8_v2.0"), 395 DEFINE_SPAPR_CPU_CORE_TYPE("power8e_v2.1"), 396 DEFINE_SPAPR_CPU_CORE_TYPE("power8nvl_v1.0"), 397 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v1.0"), 398 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v2.0"), 399 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v2.2"), 400 DEFINE_SPAPR_CPU_CORE_TYPE("power10_v1.0"), 401 DEFINE_SPAPR_CPU_CORE_TYPE("power10_v2.0"), 402 #ifdef CONFIG_KVM 403 DEFINE_SPAPR_CPU_CORE_TYPE("host"), 404 #endif 405 }; 406 407 DEFINE_TYPES(spapr_cpu_core_type_infos) 408