1 /* 2 * sPAPR CPU core device, acts as container of CPU thread devices. 3 * 4 * Copyright (C) 2016 Bharata B Rao <bharata@linux.vnet.ibm.com> 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "hw/cpu/core.h" 12 #include "hw/ppc/spapr_cpu_core.h" 13 #include "hw/qdev-properties.h" 14 #include "migration/vmstate.h" 15 #include "target/ppc/cpu.h" 16 #include "hw/ppc/spapr.h" 17 #include "qapi/error.h" 18 #include "sysemu/cpus.h" 19 #include "sysemu/kvm.h" 20 #include "target/ppc/kvm_ppc.h" 21 #include "hw/ppc/ppc.h" 22 #include "target/ppc/mmu-hash64.h" 23 #include "target/ppc/power8-pmu.h" 24 #include "sysemu/numa.h" 25 #include "sysemu/reset.h" 26 #include "sysemu/hw_accel.h" 27 #include "qemu/error-report.h" 28 29 static void spapr_reset_vcpu(PowerPCCPU *cpu) 30 { 31 CPUState *cs = CPU(cpu); 32 CPUPPCState *env = &cpu->env; 33 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 34 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 35 target_ulong lpcr; 36 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 37 38 cpu_reset(cs); 39 40 /* 41 * "PowerPC Processor binding to IEEE 1275" defines the initial MSR state 42 * as 32bit (MSR_SF=0) in "8.2.1. Initial Register Values". 43 */ 44 env->msr &= ~(1ULL << MSR_SF); 45 env->spr[SPR_HIOR] = 0; 46 47 lpcr = env->spr[SPR_LPCR]; 48 49 /* Set emulated LPCR to not send interrupts to hypervisor. Note that 50 * under KVM, the actual HW LPCR will be set differently by KVM itself, 51 * the settings below ensure proper operations with TCG in absence of 52 * a real hypervisor. 53 * 54 * Disable Power-saving mode Exit Cause exceptions for the CPU, so 55 * we don't get spurious wakups before an RTAS start-cpu call. 56 * For the same reason, set PSSCR_EC. 57 */ 58 lpcr &= ~(LPCR_VPM1 | LPCR_ISL | LPCR_KBV | pcc->lpcr_pm); 59 lpcr |= LPCR_LPES0 | LPCR_LPES1; 60 env->spr[SPR_PSSCR] |= PSSCR_EC; 61 62 ppc_store_lpcr(cpu, lpcr); 63 64 /* Set a full AMOR so guest can use the AMR as it sees fit */ 65 env->spr[SPR_AMOR] = 0xffffffffffffffffull; 66 67 spapr_cpu->vpa_addr = 0; 68 spapr_cpu->slb_shadow_addr = 0; 69 spapr_cpu->slb_shadow_size = 0; 70 spapr_cpu->dtl_addr = 0; 71 spapr_cpu->dtl_size = 0; 72 73 spapr_caps_cpu_apply(spapr, cpu); 74 75 kvm_check_mmu(cpu, &error_fatal); 76 77 spapr_irq_cpu_intc_reset(spapr, cpu); 78 } 79 80 void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, 81 target_ulong r1, target_ulong r3, 82 target_ulong r4) 83 { 84 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 85 CPUPPCState *env = &cpu->env; 86 87 env->nip = nip; 88 env->gpr[1] = r1; 89 env->gpr[3] = r3; 90 env->gpr[4] = r4; 91 kvmppc_set_reg_ppc_online(cpu, 1); 92 CPU(cpu)->halted = 0; 93 /* Enable Power-saving mode Exit Cause exceptions */ 94 ppc_store_lpcr(cpu, env->spr[SPR_LPCR] | pcc->lpcr_pm); 95 } 96 97 /* 98 * Return the sPAPR CPU core type for @model which essentially is the CPU 99 * model specified with -cpu cmdline option. 100 */ 101 const char *spapr_get_cpu_core_type(const char *cpu_type) 102 { 103 int len = strlen(cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 104 char *core_type = g_strdup_printf(SPAPR_CPU_CORE_TYPE_NAME("%.*s"), 105 len, cpu_type); 106 ObjectClass *oc = object_class_by_name(core_type); 107 108 g_free(core_type); 109 if (!oc) { 110 return NULL; 111 } 112 113 return object_class_get_name(oc); 114 } 115 116 static bool slb_shadow_needed(void *opaque) 117 { 118 SpaprCpuState *spapr_cpu = opaque; 119 120 return spapr_cpu->slb_shadow_addr != 0; 121 } 122 123 static const VMStateDescription vmstate_spapr_cpu_slb_shadow = { 124 .name = "spapr_cpu/vpa/slb_shadow", 125 .version_id = 1, 126 .minimum_version_id = 1, 127 .needed = slb_shadow_needed, 128 .fields = (VMStateField[]) { 129 VMSTATE_UINT64(slb_shadow_addr, SpaprCpuState), 130 VMSTATE_UINT64(slb_shadow_size, SpaprCpuState), 131 VMSTATE_END_OF_LIST() 132 } 133 }; 134 135 static bool dtl_needed(void *opaque) 136 { 137 SpaprCpuState *spapr_cpu = opaque; 138 139 return spapr_cpu->dtl_addr != 0; 140 } 141 142 static const VMStateDescription vmstate_spapr_cpu_dtl = { 143 .name = "spapr_cpu/vpa/dtl", 144 .version_id = 1, 145 .minimum_version_id = 1, 146 .needed = dtl_needed, 147 .fields = (VMStateField[]) { 148 VMSTATE_UINT64(dtl_addr, SpaprCpuState), 149 VMSTATE_UINT64(dtl_size, SpaprCpuState), 150 VMSTATE_END_OF_LIST() 151 } 152 }; 153 154 static bool vpa_needed(void *opaque) 155 { 156 SpaprCpuState *spapr_cpu = opaque; 157 158 return spapr_cpu->vpa_addr != 0; 159 } 160 161 static const VMStateDescription vmstate_spapr_cpu_vpa = { 162 .name = "spapr_cpu/vpa", 163 .version_id = 1, 164 .minimum_version_id = 1, 165 .needed = vpa_needed, 166 .fields = (VMStateField[]) { 167 VMSTATE_UINT64(vpa_addr, SpaprCpuState), 168 VMSTATE_END_OF_LIST() 169 }, 170 .subsections = (const VMStateDescription * []) { 171 &vmstate_spapr_cpu_slb_shadow, 172 &vmstate_spapr_cpu_dtl, 173 NULL 174 } 175 }; 176 177 static const VMStateDescription vmstate_spapr_cpu_state = { 178 .name = "spapr_cpu", 179 .version_id = 1, 180 .minimum_version_id = 1, 181 .fields = (VMStateField[]) { 182 VMSTATE_END_OF_LIST() 183 }, 184 .subsections = (const VMStateDescription * []) { 185 &vmstate_spapr_cpu_vpa, 186 NULL 187 } 188 }; 189 190 static void spapr_unrealize_vcpu(PowerPCCPU *cpu, SpaprCpuCore *sc) 191 { 192 if (!sc->pre_3_0_migration) { 193 vmstate_unregister(NULL, &vmstate_spapr_cpu_state, cpu->machine_data); 194 } 195 spapr_irq_cpu_intc_destroy(SPAPR_MACHINE(qdev_get_machine()), cpu); 196 qdev_unrealize(DEVICE(cpu)); 197 } 198 199 /* 200 * Called when CPUs are hot-plugged. 201 */ 202 static void spapr_cpu_core_reset(DeviceState *dev) 203 { 204 CPUCore *cc = CPU_CORE(dev); 205 SpaprCpuCore *sc = SPAPR_CPU_CORE(dev); 206 int i; 207 208 for (i = 0; i < cc->nr_threads; i++) { 209 spapr_reset_vcpu(sc->threads[i]); 210 } 211 } 212 213 /* 214 * Called by the machine reset. 215 */ 216 static void spapr_cpu_core_reset_handler(void *opaque) 217 { 218 spapr_cpu_core_reset(opaque); 219 } 220 221 static void spapr_delete_vcpu(PowerPCCPU *cpu) 222 { 223 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 224 225 cpu->machine_data = NULL; 226 g_free(spapr_cpu); 227 object_unparent(OBJECT(cpu)); 228 } 229 230 static void spapr_cpu_core_unrealize(DeviceState *dev) 231 { 232 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 233 CPUCore *cc = CPU_CORE(dev); 234 int i; 235 236 for (i = 0; i < cc->nr_threads; i++) { 237 if (sc->threads[i]) { 238 /* 239 * Since this we can get here from the error path of 240 * spapr_cpu_core_realize(), make sure we only unrealize 241 * vCPUs that have already been realized. 242 */ 243 if (object_property_get_bool(OBJECT(sc->threads[i]), "realized", 244 &error_abort)) { 245 spapr_unrealize_vcpu(sc->threads[i], sc); 246 } 247 spapr_delete_vcpu(sc->threads[i]); 248 } 249 } 250 g_free(sc->threads); 251 qemu_unregister_reset(spapr_cpu_core_reset_handler, sc); 252 } 253 254 static bool spapr_realize_vcpu(PowerPCCPU *cpu, SpaprMachineState *spapr, 255 SpaprCpuCore *sc, Error **errp) 256 { 257 CPUPPCState *env = &cpu->env; 258 CPUState *cs = CPU(cpu); 259 260 if (!qdev_realize(DEVICE(cpu), NULL, errp)) { 261 return false; 262 } 263 264 /* Set time-base frequency to 512 MHz */ 265 cpu_ppc_tb_init(env, SPAPR_TIMEBASE_FREQ); 266 267 cpu_ppc_set_vhyp(cpu, PPC_VIRTUAL_HYPERVISOR(spapr)); 268 kvmppc_set_papr(cpu); 269 270 if (spapr_irq_cpu_intc_create(spapr, cpu, errp) < 0) { 271 qdev_unrealize(DEVICE(cpu)); 272 return false; 273 } 274 275 if (!sc->pre_3_0_migration) { 276 vmstate_register(NULL, cs->cpu_index, &vmstate_spapr_cpu_state, 277 cpu->machine_data); 278 } 279 return true; 280 } 281 282 static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp) 283 { 284 SpaprCpuCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(sc); 285 CPUCore *cc = CPU_CORE(sc); 286 g_autoptr(Object) obj = NULL; 287 g_autofree char *id = NULL; 288 CPUState *cs; 289 PowerPCCPU *cpu; 290 291 obj = object_new(scc->cpu_type); 292 293 cs = CPU(obj); 294 cpu = POWERPC_CPU(obj); 295 /* 296 * All CPUs start halted. CPU0 is unhalted from the machine level reset code 297 * and the rest are explicitly started up by the guest using an RTAS call. 298 */ 299 cs->start_powered_off = true; 300 cs->cpu_index = cc->core_id + i; 301 if (!spapr_set_vcpu_id(cpu, cs->cpu_index, errp)) { 302 return NULL; 303 } 304 305 cpu->node_id = sc->node_id; 306 307 id = g_strdup_printf("thread[%d]", i); 308 object_property_add_child(OBJECT(sc), id, obj); 309 310 cpu->machine_data = g_new0(SpaprCpuState, 1); 311 312 return cpu; 313 } 314 315 static void spapr_cpu_core_realize(DeviceState *dev, Error **errp) 316 { 317 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 318 * tries to add a sPAPR CPU core to a non-pseries machine. 319 */ 320 SpaprMachineState *spapr = 321 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), 322 TYPE_SPAPR_MACHINE); 323 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 324 CPUCore *cc = CPU_CORE(OBJECT(dev)); 325 int i; 326 327 if (!spapr) { 328 error_setg(errp, TYPE_SPAPR_CPU_CORE " needs a pseries machine"); 329 return; 330 } 331 332 qemu_register_reset(spapr_cpu_core_reset_handler, sc); 333 sc->threads = g_new0(PowerPCCPU *, cc->nr_threads); 334 for (i = 0; i < cc->nr_threads; i++) { 335 sc->threads[i] = spapr_create_vcpu(sc, i, errp); 336 if (!sc->threads[i] || 337 !spapr_realize_vcpu(sc->threads[i], spapr, sc, errp)) { 338 spapr_cpu_core_unrealize(dev); 339 return; 340 } 341 } 342 } 343 344 static Property spapr_cpu_core_properties[] = { 345 DEFINE_PROP_INT32("node-id", SpaprCpuCore, node_id, CPU_UNSET_NUMA_NODE_ID), 346 DEFINE_PROP_BOOL("pre-3.0-migration", SpaprCpuCore, pre_3_0_migration, 347 false), 348 DEFINE_PROP_END_OF_LIST() 349 }; 350 351 static void spapr_cpu_core_class_init(ObjectClass *oc, void *data) 352 { 353 DeviceClass *dc = DEVICE_CLASS(oc); 354 SpaprCpuCoreClass *scc = SPAPR_CPU_CORE_CLASS(oc); 355 356 dc->realize = spapr_cpu_core_realize; 357 dc->unrealize = spapr_cpu_core_unrealize; 358 dc->reset = spapr_cpu_core_reset; 359 device_class_set_props(dc, spapr_cpu_core_properties); 360 scc->cpu_type = data; 361 } 362 363 #define DEFINE_SPAPR_CPU_CORE_TYPE(cpu_model) \ 364 { \ 365 .parent = TYPE_SPAPR_CPU_CORE, \ 366 .class_data = (void *) POWERPC_CPU_TYPE_NAME(cpu_model), \ 367 .class_init = spapr_cpu_core_class_init, \ 368 .name = SPAPR_CPU_CORE_TYPE_NAME(cpu_model), \ 369 } 370 371 static const TypeInfo spapr_cpu_core_type_infos[] = { 372 { 373 .name = TYPE_SPAPR_CPU_CORE, 374 .parent = TYPE_CPU_CORE, 375 .abstract = true, 376 .instance_size = sizeof(SpaprCpuCore), 377 .class_size = sizeof(SpaprCpuCoreClass), 378 }, 379 DEFINE_SPAPR_CPU_CORE_TYPE("970_v2.2"), 380 DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.0"), 381 DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.1"), 382 DEFINE_SPAPR_CPU_CORE_TYPE("power5+_v2.1"), 383 DEFINE_SPAPR_CPU_CORE_TYPE("power7_v2.3"), 384 DEFINE_SPAPR_CPU_CORE_TYPE("power7+_v2.1"), 385 DEFINE_SPAPR_CPU_CORE_TYPE("power8_v2.0"), 386 DEFINE_SPAPR_CPU_CORE_TYPE("power8e_v2.1"), 387 DEFINE_SPAPR_CPU_CORE_TYPE("power8nvl_v1.0"), 388 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v1.0"), 389 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v2.0"), 390 DEFINE_SPAPR_CPU_CORE_TYPE("power10_v1.0"), 391 DEFINE_SPAPR_CPU_CORE_TYPE("power10_v2.0"), 392 #ifdef CONFIG_KVM 393 DEFINE_SPAPR_CPU_CORE_TYPE("host"), 394 #endif 395 }; 396 397 DEFINE_TYPES(spapr_cpu_core_type_infos) 398