xref: /openbmc/qemu/hw/ppc/spapr.c (revision fe7f9b8e)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
78 
79 #include <libfdt.h>
80 
81 /* SLOF memory layout:
82  *
83  * SLOF raw image loaded at 0, copies its romfs right below the flat
84  * device-tree, then position SLOF itself 31M below that
85  *
86  * So we set FW_OVERHEAD to 40MB which should account for all of that
87  * and more
88  *
89  * We load our kernel at 4M, leaving space for SLOF initial image
90  */
91 #define FDT_MAX_SIZE            0x100000
92 #define RTAS_MAX_SIZE           0x10000
93 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE             0x400000
95 #define FW_FILE_NAME            "slof.bin"
96 #define FW_OVERHEAD             0x2800000
97 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
98 
99 #define MIN_RMA_SLOF            128UL
100 
101 #define PHANDLE_XICP            0x00001111
102 
103 /* These two functions implement the VCPU id numbering: one to compute them
104  * all and one to identify thread 0 of a VCORE. Any change to the first one
105  * is likely to have an impact on the second one, so let's keep them close.
106  */
107 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 {
109     assert(spapr->vsmt);
110     return
111         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 }
113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
114                                       PowerPCCPU *cpu)
115 {
116     assert(spapr->vsmt);
117     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
118 }
119 
120 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
121                                   const char *type_ics,
122                                   int nr_irqs, Error **errp)
123 {
124     Error *local_err = NULL;
125     Object *obj;
126 
127     obj = object_new(type_ics);
128     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
129     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
130                                    &error_abort);
131     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
132     if (local_err) {
133         goto error;
134     }
135     object_property_set_bool(obj, true, "realized", &local_err);
136     if (local_err) {
137         goto error;
138     }
139 
140     return ICS_SIMPLE(obj);
141 
142 error:
143     error_propagate(errp, local_err);
144     return NULL;
145 }
146 
147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 {
149     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
150      * and newer QEMUs don't even have them. In both cases, we don't want
151      * to send anything on the wire.
152      */
153     return false;
154 }
155 
156 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
157     .name = "icp/server",
158     .version_id = 1,
159     .minimum_version_id = 1,
160     .needed = pre_2_10_vmstate_dummy_icp_needed,
161     .fields = (VMStateField[]) {
162         VMSTATE_UNUSED(4), /* uint32_t xirr */
163         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
164         VMSTATE_UNUSED(1), /* uint8_t mfrr */
165         VMSTATE_END_OF_LIST()
166     },
167 };
168 
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 {
171     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172                      (void *)(uintptr_t) i);
173 }
174 
175 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 {
177     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
178                        (void *)(uintptr_t) i);
179 }
180 
181 static int xics_max_server_number(sPAPRMachineState *spapr)
182 {
183     assert(spapr->vsmt);
184     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
185 }
186 
187 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 {
189     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
190 
191     if (kvm_enabled()) {
192         if (machine_kernel_irqchip_allowed(machine) &&
193             !xics_kvm_init(spapr, errp)) {
194             spapr->icp_type = TYPE_KVM_ICP;
195             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
196         }
197         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
198             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
199             return;
200         }
201     }
202 
203     if (!spapr->ics) {
204         xics_spapr_init(spapr);
205         spapr->icp_type = TYPE_ICP;
206         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
207         if (!spapr->ics) {
208             return;
209         }
210     }
211 }
212 
213 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
214                                   int smt_threads)
215 {
216     int i, ret = 0;
217     uint32_t servers_prop[smt_threads];
218     uint32_t gservers_prop[smt_threads * 2];
219     int index = spapr_get_vcpu_id(cpu);
220 
221     if (cpu->compat_pvr) {
222         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
223         if (ret < 0) {
224             return ret;
225         }
226     }
227 
228     /* Build interrupt servers and gservers properties */
229     for (i = 0; i < smt_threads; i++) {
230         servers_prop[i] = cpu_to_be32(index + i);
231         /* Hack, direct the group queues back to cpu 0 */
232         gservers_prop[i*2] = cpu_to_be32(index + i);
233         gservers_prop[i*2 + 1] = 0;
234     }
235     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
236                       servers_prop, sizeof(servers_prop));
237     if (ret < 0) {
238         return ret;
239     }
240     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
241                       gservers_prop, sizeof(gservers_prop));
242 
243     return ret;
244 }
245 
246 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
247 {
248     int index = spapr_get_vcpu_id(cpu);
249     uint32_t associativity[] = {cpu_to_be32(0x5),
250                                 cpu_to_be32(0x0),
251                                 cpu_to_be32(0x0),
252                                 cpu_to_be32(0x0),
253                                 cpu_to_be32(cpu->node_id),
254                                 cpu_to_be32(index)};
255 
256     /* Advertise NUMA via ibm,associativity */
257     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
258                           sizeof(associativity));
259 }
260 
261 /* Populate the "ibm,pa-features" property */
262 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
263                                        PowerPCCPU *cpu,
264                                        void *fdt, int offset,
265                                        bool legacy_guest)
266 {
267     uint8_t pa_features_206[] = { 6, 0,
268         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
269     uint8_t pa_features_207[] = { 24, 0,
270         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
271         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
272         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
273         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
274     uint8_t pa_features_300[] = { 66, 0,
275         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
276         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
277         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
278         /* 6: DS207 */
279         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
280         /* 16: Vector */
281         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
282         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
283         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
284         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
285         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
286         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
287         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
288         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
289         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
290         /* 42: PM, 44: PC RA, 46: SC vec'd */
291         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
292         /* 48: SIMD, 50: QP BFP, 52: String */
293         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
294         /* 54: DecFP, 56: DecI, 58: SHA */
295         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
296         /* 60: NM atomic, 62: RNG */
297         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
298     };
299     uint8_t *pa_features = NULL;
300     size_t pa_size;
301 
302     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
303         pa_features = pa_features_206;
304         pa_size = sizeof(pa_features_206);
305     }
306     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
307         pa_features = pa_features_207;
308         pa_size = sizeof(pa_features_207);
309     }
310     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
311         pa_features = pa_features_300;
312         pa_size = sizeof(pa_features_300);
313     }
314     if (!pa_features) {
315         return;
316     }
317 
318     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
319         /*
320          * Note: we keep CI large pages off by default because a 64K capable
321          * guest provisioned with large pages might otherwise try to map a qemu
322          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
323          * even if that qemu runs on a 4k host.
324          * We dd this bit back here if we are confident this is not an issue
325          */
326         pa_features[3] |= 0x20;
327     }
328     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
329         pa_features[24] |= 0x80;    /* Transactional memory support */
330     }
331     if (legacy_guest && pa_size > 40) {
332         /* Workaround for broken kernels that attempt (guest) radix
333          * mode when they can't handle it, if they see the radix bit set
334          * in pa-features. So hide it from them. */
335         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
336     }
337 
338     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
339 }
340 
341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
342 {
343     int ret = 0, offset, cpus_offset;
344     CPUState *cs;
345     char cpu_model[32];
346     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
347 
348     CPU_FOREACH(cs) {
349         PowerPCCPU *cpu = POWERPC_CPU(cs);
350         DeviceClass *dc = DEVICE_GET_CLASS(cs);
351         int index = spapr_get_vcpu_id(cpu);
352         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
353 
354         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
355             continue;
356         }
357 
358         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
359 
360         cpus_offset = fdt_path_offset(fdt, "/cpus");
361         if (cpus_offset < 0) {
362             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
363             if (cpus_offset < 0) {
364                 return cpus_offset;
365             }
366         }
367         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
368         if (offset < 0) {
369             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
370             if (offset < 0) {
371                 return offset;
372             }
373         }
374 
375         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
376                           pft_size_prop, sizeof(pft_size_prop));
377         if (ret < 0) {
378             return ret;
379         }
380 
381         if (nb_numa_nodes > 1) {
382             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
383             if (ret < 0) {
384                 return ret;
385             }
386         }
387 
388         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
389         if (ret < 0) {
390             return ret;
391         }
392 
393         spapr_populate_pa_features(spapr, cpu, fdt, offset,
394                                    spapr->cas_legacy_guest_workaround);
395     }
396     return ret;
397 }
398 
399 static hwaddr spapr_node0_size(MachineState *machine)
400 {
401     if (nb_numa_nodes) {
402         int i;
403         for (i = 0; i < nb_numa_nodes; ++i) {
404             if (numa_info[i].node_mem) {
405                 return MIN(pow2floor(numa_info[i].node_mem),
406                            machine->ram_size);
407             }
408         }
409     }
410     return machine->ram_size;
411 }
412 
413 static void add_str(GString *s, const gchar *s1)
414 {
415     g_string_append_len(s, s1, strlen(s1) + 1);
416 }
417 
418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
419                                        hwaddr size)
420 {
421     uint32_t associativity[] = {
422         cpu_to_be32(0x4), /* length */
423         cpu_to_be32(0x0), cpu_to_be32(0x0),
424         cpu_to_be32(0x0), cpu_to_be32(nodeid)
425     };
426     char mem_name[32];
427     uint64_t mem_reg_property[2];
428     int off;
429 
430     mem_reg_property[0] = cpu_to_be64(start);
431     mem_reg_property[1] = cpu_to_be64(size);
432 
433     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
434     off = fdt_add_subnode(fdt, 0, mem_name);
435     _FDT(off);
436     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
437     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
438                       sizeof(mem_reg_property))));
439     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
440                       sizeof(associativity))));
441     return off;
442 }
443 
444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
445 {
446     MachineState *machine = MACHINE(spapr);
447     hwaddr mem_start, node_size;
448     int i, nb_nodes = nb_numa_nodes;
449     NodeInfo *nodes = numa_info;
450     NodeInfo ramnode;
451 
452     /* No NUMA nodes, assume there is just one node with whole RAM */
453     if (!nb_numa_nodes) {
454         nb_nodes = 1;
455         ramnode.node_mem = machine->ram_size;
456         nodes = &ramnode;
457     }
458 
459     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
460         if (!nodes[i].node_mem) {
461             continue;
462         }
463         if (mem_start >= machine->ram_size) {
464             node_size = 0;
465         } else {
466             node_size = nodes[i].node_mem;
467             if (node_size > machine->ram_size - mem_start) {
468                 node_size = machine->ram_size - mem_start;
469             }
470         }
471         if (!mem_start) {
472             /* spapr_machine_init() checks for rma_size <= node0_size
473              * already */
474             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
475             mem_start += spapr->rma_size;
476             node_size -= spapr->rma_size;
477         }
478         for ( ; node_size; ) {
479             hwaddr sizetmp = pow2floor(node_size);
480 
481             /* mem_start != 0 here */
482             if (ctzl(mem_start) < ctzl(sizetmp)) {
483                 sizetmp = 1ULL << ctzl(mem_start);
484             }
485 
486             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
487             node_size -= sizetmp;
488             mem_start += sizetmp;
489         }
490     }
491 
492     return 0;
493 }
494 
495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
496                                   sPAPRMachineState *spapr)
497 {
498     PowerPCCPU *cpu = POWERPC_CPU(cs);
499     CPUPPCState *env = &cpu->env;
500     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
501     int index = spapr_get_vcpu_id(cpu);
502     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
503                        0xffffffff, 0xffffffff};
504     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
505         : SPAPR_TIMEBASE_FREQ;
506     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
507     uint32_t page_sizes_prop[64];
508     size_t page_sizes_prop_size;
509     uint32_t vcpus_per_socket = smp_threads * smp_cores;
510     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
511     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
512     sPAPRDRConnector *drc;
513     int drc_index;
514     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
515     int i;
516 
517     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
518     if (drc) {
519         drc_index = spapr_drc_index(drc);
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
521     }
522 
523     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
524     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
525 
526     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
527     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
528                            env->dcache_line_size)));
529     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
530                            env->dcache_line_size)));
531     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
532                            env->icache_line_size)));
533     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
534                            env->icache_line_size)));
535 
536     if (pcc->l1_dcache_size) {
537         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
538                                pcc->l1_dcache_size)));
539     } else {
540         warn_report("Unknown L1 dcache size for cpu");
541     }
542     if (pcc->l1_icache_size) {
543         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
544                                pcc->l1_icache_size)));
545     } else {
546         warn_report("Unknown L1 icache size for cpu");
547     }
548 
549     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
550     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
551     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
552     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
553     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
554     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
555 
556     if (env->spr_cb[SPR_PURR].oea_read) {
557         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
558     }
559 
560     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
561         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
562                           segs, sizeof(segs))));
563     }
564 
565     /* Advertise VSX (vector extensions) if available
566      *   1               == VMX / Altivec available
567      *   2               == VSX available
568      *
569      * Only CPUs for which we create core types in spapr_cpu_core.c
570      * are possible, and all of those have VMX */
571     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
572         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
573     } else {
574         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
575     }
576 
577     /* Advertise DFP (Decimal Floating Point) if available
578      *   0 / no property == no DFP
579      *   1               == DFP available */
580     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
581         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
582     }
583 
584     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
585                                                       sizeof(page_sizes_prop));
586     if (page_sizes_prop_size) {
587         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
588                           page_sizes_prop, page_sizes_prop_size)));
589     }
590 
591     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
592 
593     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
594                            cs->cpu_index / vcpus_per_socket)));
595 
596     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
597                       pft_size_prop, sizeof(pft_size_prop))));
598 
599     if (nb_numa_nodes > 1) {
600         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
601     }
602 
603     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
604 
605     if (pcc->radix_page_info) {
606         for (i = 0; i < pcc->radix_page_info->count; i++) {
607             radix_AP_encodings[i] =
608                 cpu_to_be32(pcc->radix_page_info->entries[i]);
609         }
610         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
611                           radix_AP_encodings,
612                           pcc->radix_page_info->count *
613                           sizeof(radix_AP_encodings[0]))));
614     }
615 }
616 
617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
618 {
619     CPUState *cs;
620     int cpus_offset;
621     char *nodename;
622 
623     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
624     _FDT(cpus_offset);
625     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
626     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
627 
628     /*
629      * We walk the CPUs in reverse order to ensure that CPU DT nodes
630      * created by fdt_add_subnode() end up in the right order in FDT
631      * for the guest kernel the enumerate the CPUs correctly.
632      */
633     CPU_FOREACH_REVERSE(cs) {
634         PowerPCCPU *cpu = POWERPC_CPU(cs);
635         int index = spapr_get_vcpu_id(cpu);
636         DeviceClass *dc = DEVICE_GET_CLASS(cs);
637         int offset;
638 
639         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
640             continue;
641         }
642 
643         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
644         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
645         g_free(nodename);
646         _FDT(offset);
647         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
648     }
649 
650 }
651 
652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
653 {
654     MemoryDeviceInfoList *info;
655 
656     for (info = list; info; info = info->next) {
657         MemoryDeviceInfo *value = info->value;
658 
659         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
660             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
661 
662             if (pcdimm_info->addr >= addr &&
663                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
664                 return pcdimm_info->node;
665             }
666         }
667     }
668 
669     return -1;
670 }
671 
672 struct sPAPRDrconfCellV2 {
673      uint32_t seq_lmbs;
674      uint64_t base_addr;
675      uint32_t drc_index;
676      uint32_t aa_index;
677      uint32_t flags;
678 } QEMU_PACKED;
679 
680 typedef struct DrconfCellQueue {
681     struct sPAPRDrconfCellV2 cell;
682     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
683 } DrconfCellQueue;
684 
685 static DrconfCellQueue *
686 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
687                       uint32_t drc_index, uint32_t aa_index,
688                       uint32_t flags)
689 {
690     DrconfCellQueue *elem;
691 
692     elem = g_malloc0(sizeof(*elem));
693     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
694     elem->cell.base_addr = cpu_to_be64(base_addr);
695     elem->cell.drc_index = cpu_to_be32(drc_index);
696     elem->cell.aa_index = cpu_to_be32(aa_index);
697     elem->cell.flags = cpu_to_be32(flags);
698 
699     return elem;
700 }
701 
702 /* ibm,dynamic-memory-v2 */
703 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
704                                    int offset, MemoryDeviceInfoList *dimms)
705 {
706     MachineState *machine = MACHINE(spapr);
707     uint8_t *int_buf, *cur_index, buf_len;
708     int ret;
709     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
710     uint64_t addr, cur_addr, size;
711     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
712     uint64_t mem_end = machine->device_memory->base +
713                        memory_region_size(&machine->device_memory->mr);
714     uint32_t node, nr_entries = 0;
715     sPAPRDRConnector *drc;
716     DrconfCellQueue *elem, *next;
717     MemoryDeviceInfoList *info;
718     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
719         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
720 
721     /* Entry to cover RAM and the gap area */
722     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
723                                  SPAPR_LMB_FLAGS_RESERVED |
724                                  SPAPR_LMB_FLAGS_DRC_INVALID);
725     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726     nr_entries++;
727 
728     cur_addr = machine->device_memory->base;
729     for (info = dimms; info; info = info->next) {
730         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
731 
732         addr = di->addr;
733         size = di->size;
734         node = di->node;
735 
736         /* Entry for hot-pluggable area */
737         if (cur_addr < addr) {
738             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
739             g_assert(drc);
740             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
741                                          cur_addr, spapr_drc_index(drc), -1, 0);
742             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
743             nr_entries++;
744         }
745 
746         /* Entry for DIMM */
747         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
748         g_assert(drc);
749         elem = spapr_get_drconf_cell(size / lmb_size, addr,
750                                      spapr_drc_index(drc), node,
751                                      SPAPR_LMB_FLAGS_ASSIGNED);
752         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
753         nr_entries++;
754         cur_addr = addr + size;
755     }
756 
757     /* Entry for remaining hotpluggable area */
758     if (cur_addr < mem_end) {
759         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
760         g_assert(drc);
761         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
762                                      cur_addr, spapr_drc_index(drc), -1, 0);
763         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
764         nr_entries++;
765     }
766 
767     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
768     int_buf = cur_index = g_malloc0(buf_len);
769     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
770     cur_index += sizeof(nr_entries);
771 
772     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
773         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
774         cur_index += sizeof(elem->cell);
775         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
776         g_free(elem);
777     }
778 
779     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
780     g_free(int_buf);
781     if (ret < 0) {
782         return -1;
783     }
784     return 0;
785 }
786 
787 /* ibm,dynamic-memory */
788 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
789                                    int offset, MemoryDeviceInfoList *dimms)
790 {
791     MachineState *machine = MACHINE(spapr);
792     int i, ret;
793     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
794     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
795     uint32_t nr_lmbs = (machine->device_memory->base +
796                        memory_region_size(&machine->device_memory->mr)) /
797                        lmb_size;
798     uint32_t *int_buf, *cur_index, buf_len;
799 
800     /*
801      * Allocate enough buffer size to fit in ibm,dynamic-memory
802      */
803     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
804     cur_index = int_buf = g_malloc0(buf_len);
805     int_buf[0] = cpu_to_be32(nr_lmbs);
806     cur_index++;
807     for (i = 0; i < nr_lmbs; i++) {
808         uint64_t addr = i * lmb_size;
809         uint32_t *dynamic_memory = cur_index;
810 
811         if (i >= device_lmb_start) {
812             sPAPRDRConnector *drc;
813 
814             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
815             g_assert(drc);
816 
817             dynamic_memory[0] = cpu_to_be32(addr >> 32);
818             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
820             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
822             if (memory_region_present(get_system_memory(), addr)) {
823                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
824             } else {
825                 dynamic_memory[5] = cpu_to_be32(0);
826             }
827         } else {
828             /*
829              * LMB information for RMA, boot time RAM and gap b/n RAM and
830              * device memory region -- all these are marked as reserved
831              * and as having no valid DRC.
832              */
833             dynamic_memory[0] = cpu_to_be32(addr >> 32);
834             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
835             dynamic_memory[2] = cpu_to_be32(0);
836             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
837             dynamic_memory[4] = cpu_to_be32(-1);
838             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
839                                             SPAPR_LMB_FLAGS_DRC_INVALID);
840         }
841 
842         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
843     }
844     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
845     g_free(int_buf);
846     if (ret < 0) {
847         return -1;
848     }
849     return 0;
850 }
851 
852 /*
853  * Adds ibm,dynamic-reconfiguration-memory node.
854  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
855  * of this device tree node.
856  */
857 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
858 {
859     MachineState *machine = MACHINE(spapr);
860     int ret, i, offset;
861     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
862     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
863     uint32_t *int_buf, *cur_index, buf_len;
864     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
865     MemoryDeviceInfoList *dimms = NULL;
866 
867     /*
868      * Don't create the node if there is no device memory
869      */
870     if (machine->ram_size == machine->maxram_size) {
871         return 0;
872     }
873 
874     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
875 
876     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
877                     sizeof(prop_lmb_size));
878     if (ret < 0) {
879         return ret;
880     }
881 
882     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
883     if (ret < 0) {
884         return ret;
885     }
886 
887     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
888     if (ret < 0) {
889         return ret;
890     }
891 
892     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
893     dimms = qmp_memory_device_list();
894     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
895         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
896     } else {
897         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
898     }
899     qapi_free_MemoryDeviceInfoList(dimms);
900 
901     if (ret < 0) {
902         return ret;
903     }
904 
905     /* ibm,associativity-lookup-arrays */
906     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
907     cur_index = int_buf = g_malloc0(buf_len);
908 
909     cur_index = int_buf;
910     int_buf[0] = cpu_to_be32(nr_nodes);
911     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
912     cur_index += 2;
913     for (i = 0; i < nr_nodes; i++) {
914         uint32_t associativity[] = {
915             cpu_to_be32(0x0),
916             cpu_to_be32(0x0),
917             cpu_to_be32(0x0),
918             cpu_to_be32(i)
919         };
920         memcpy(cur_index, associativity, sizeof(associativity));
921         cur_index += 4;
922     }
923     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
924             (cur_index - int_buf) * sizeof(uint32_t));
925     g_free(int_buf);
926 
927     return ret;
928 }
929 
930 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
931                                 sPAPROptionVector *ov5_updates)
932 {
933     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
934     int ret = 0, offset;
935 
936     /* Generate ibm,dynamic-reconfiguration-memory node if required */
937     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
938         g_assert(smc->dr_lmb_enabled);
939         ret = spapr_populate_drconf_memory(spapr, fdt);
940         if (ret) {
941             goto out;
942         }
943     }
944 
945     offset = fdt_path_offset(fdt, "/chosen");
946     if (offset < 0) {
947         offset = fdt_add_subnode(fdt, 0, "chosen");
948         if (offset < 0) {
949             return offset;
950         }
951     }
952     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
953                                  "ibm,architecture-vec-5");
954 
955 out:
956     return ret;
957 }
958 
959 static bool spapr_hotplugged_dev_before_cas(void)
960 {
961     Object *drc_container, *obj;
962     ObjectProperty *prop;
963     ObjectPropertyIterator iter;
964 
965     drc_container = container_get(object_get_root(), "/dr-connector");
966     object_property_iter_init(&iter, drc_container);
967     while ((prop = object_property_iter_next(&iter))) {
968         if (!strstart(prop->type, "link<", NULL)) {
969             continue;
970         }
971         obj = object_property_get_link(drc_container, prop->name, NULL);
972         if (spapr_drc_needed(obj)) {
973             return true;
974         }
975     }
976     return false;
977 }
978 
979 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
980                                  target_ulong addr, target_ulong size,
981                                  sPAPROptionVector *ov5_updates)
982 {
983     void *fdt, *fdt_skel;
984     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
985 
986     if (spapr_hotplugged_dev_before_cas()) {
987         return 1;
988     }
989 
990     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
991         error_report("SLOF provided an unexpected CAS buffer size "
992                      TARGET_FMT_lu " (min: %zu, max: %u)",
993                      size, sizeof(hdr), FW_MAX_SIZE);
994         exit(EXIT_FAILURE);
995     }
996 
997     size -= sizeof(hdr);
998 
999     /* Create skeleton */
1000     fdt_skel = g_malloc0(size);
1001     _FDT((fdt_create(fdt_skel, size)));
1002     _FDT((fdt_finish_reservemap(fdt_skel)));
1003     _FDT((fdt_begin_node(fdt_skel, "")));
1004     _FDT((fdt_end_node(fdt_skel)));
1005     _FDT((fdt_finish(fdt_skel)));
1006     fdt = g_malloc0(size);
1007     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1008     g_free(fdt_skel);
1009 
1010     /* Fixup cpu nodes */
1011     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1012 
1013     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1014         return -1;
1015     }
1016 
1017     /* Pack resulting tree */
1018     _FDT((fdt_pack(fdt)));
1019 
1020     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1021         trace_spapr_cas_failed(size);
1022         return -1;
1023     }
1024 
1025     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1026     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1027     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1028     g_free(fdt);
1029 
1030     return 0;
1031 }
1032 
1033 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1034 {
1035     int rtas;
1036     GString *hypertas = g_string_sized_new(256);
1037     GString *qemu_hypertas = g_string_sized_new(256);
1038     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1039     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1040         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1041     uint32_t lrdr_capacity[] = {
1042         cpu_to_be32(max_device_addr >> 32),
1043         cpu_to_be32(max_device_addr & 0xffffffff),
1044         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1045         cpu_to_be32(max_cpus / smp_threads),
1046     };
1047     uint32_t maxdomains[] = {
1048         cpu_to_be32(4),
1049         cpu_to_be32(0),
1050         cpu_to_be32(0),
1051         cpu_to_be32(0),
1052         cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1053     };
1054 
1055     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1056 
1057     /* hypertas */
1058     add_str(hypertas, "hcall-pft");
1059     add_str(hypertas, "hcall-term");
1060     add_str(hypertas, "hcall-dabr");
1061     add_str(hypertas, "hcall-interrupt");
1062     add_str(hypertas, "hcall-tce");
1063     add_str(hypertas, "hcall-vio");
1064     add_str(hypertas, "hcall-splpar");
1065     add_str(hypertas, "hcall-bulk");
1066     add_str(hypertas, "hcall-set-mode");
1067     add_str(hypertas, "hcall-sprg0");
1068     add_str(hypertas, "hcall-copy");
1069     add_str(hypertas, "hcall-debug");
1070     add_str(qemu_hypertas, "hcall-memop1");
1071 
1072     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1073         add_str(hypertas, "hcall-multi-tce");
1074     }
1075 
1076     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1077         add_str(hypertas, "hcall-hpt-resize");
1078     }
1079 
1080     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1081                      hypertas->str, hypertas->len));
1082     g_string_free(hypertas, TRUE);
1083     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1084                      qemu_hypertas->str, qemu_hypertas->len));
1085     g_string_free(qemu_hypertas, TRUE);
1086 
1087     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1088                      refpoints, sizeof(refpoints)));
1089 
1090     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1091                      maxdomains, sizeof(maxdomains)));
1092 
1093     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1094                           RTAS_ERROR_LOG_MAX));
1095     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1096                           RTAS_EVENT_SCAN_RATE));
1097 
1098     g_assert(msi_nonbroken);
1099     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1100 
1101     /*
1102      * According to PAPR, rtas ibm,os-term does not guarantee a return
1103      * back to the guest cpu.
1104      *
1105      * While an additional ibm,extended-os-term property indicates
1106      * that rtas call return will always occur. Set this property.
1107      */
1108     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1109 
1110     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1111                      lrdr_capacity, sizeof(lrdr_capacity)));
1112 
1113     spapr_dt_rtas_tokens(fdt, rtas);
1114 }
1115 
1116 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1117  * that the guest may request and thus the valid values for bytes 24..26 of
1118  * option vector 5: */
1119 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1120 {
1121     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1122 
1123     char val[2 * 4] = {
1124         23, 0x00, /* Xive mode, filled in below. */
1125         24, 0x00, /* Hash/Radix, filled in below. */
1126         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1127         26, 0x40, /* Radix options: GTSE == yes. */
1128     };
1129 
1130     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1131                           first_ppc_cpu->compat_pvr)) {
1132         /* If we're in a pre POWER9 compat mode then the guest should do hash */
1133         val[3] = 0x00; /* Hash */
1134     } else if (kvm_enabled()) {
1135         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1136             val[3] = 0x80; /* OV5_MMU_BOTH */
1137         } else if (kvmppc_has_cap_mmu_radix()) {
1138             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1139         } else {
1140             val[3] = 0x00; /* Hash */
1141         }
1142     } else {
1143         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1144         val[3] = 0xC0;
1145     }
1146     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1147                      val, sizeof(val)));
1148 }
1149 
1150 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1151 {
1152     MachineState *machine = MACHINE(spapr);
1153     int chosen;
1154     const char *boot_device = machine->boot_order;
1155     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1156     size_t cb = 0;
1157     char *bootlist = get_boot_devices_list(&cb, true);
1158 
1159     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1160 
1161     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1162     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1163                           spapr->initrd_base));
1164     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1165                           spapr->initrd_base + spapr->initrd_size));
1166 
1167     if (spapr->kernel_size) {
1168         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1169                               cpu_to_be64(spapr->kernel_size) };
1170 
1171         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1172                          &kprop, sizeof(kprop)));
1173         if (spapr->kernel_le) {
1174             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1175         }
1176     }
1177     if (boot_menu) {
1178         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1179     }
1180     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1181     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1182     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1183 
1184     if (cb && bootlist) {
1185         int i;
1186 
1187         for (i = 0; i < cb; i++) {
1188             if (bootlist[i] == '\n') {
1189                 bootlist[i] = ' ';
1190             }
1191         }
1192         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1193     }
1194 
1195     if (boot_device && strlen(boot_device)) {
1196         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1197     }
1198 
1199     if (!spapr->has_graphics && stdout_path) {
1200         /*
1201          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1202          * kernel. New platforms should only use the "stdout-path" property. Set
1203          * the new property and continue using older property to remain
1204          * compatible with the existing firmware.
1205          */
1206         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1207         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1208     }
1209 
1210     spapr_dt_ov5_platform_support(fdt, chosen);
1211 
1212     g_free(stdout_path);
1213     g_free(bootlist);
1214 }
1215 
1216 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1217 {
1218     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1219      * KVM to work under pHyp with some guest co-operation */
1220     int hypervisor;
1221     uint8_t hypercall[16];
1222 
1223     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1224     /* indicate KVM hypercall interface */
1225     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1226     if (kvmppc_has_cap_fixup_hcalls()) {
1227         /*
1228          * Older KVM versions with older guest kernels were broken
1229          * with the magic page, don't allow the guest to map it.
1230          */
1231         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1232                                   sizeof(hypercall))) {
1233             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1234                              hypercall, sizeof(hypercall)));
1235         }
1236     }
1237 }
1238 
1239 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1240                              hwaddr rtas_addr,
1241                              hwaddr rtas_size)
1242 {
1243     MachineState *machine = MACHINE(spapr);
1244     MachineClass *mc = MACHINE_GET_CLASS(machine);
1245     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1246     int ret;
1247     void *fdt;
1248     sPAPRPHBState *phb;
1249     char *buf;
1250 
1251     fdt = g_malloc0(FDT_MAX_SIZE);
1252     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1253 
1254     /* Root node */
1255     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1256     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1257     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1258 
1259     /*
1260      * Add info to guest to indentify which host is it being run on
1261      * and what is the uuid of the guest
1262      */
1263     if (kvmppc_get_host_model(&buf)) {
1264         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1265         g_free(buf);
1266     }
1267     if (kvmppc_get_host_serial(&buf)) {
1268         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1269         g_free(buf);
1270     }
1271 
1272     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1273 
1274     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1275     if (qemu_uuid_set) {
1276         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1277     }
1278     g_free(buf);
1279 
1280     if (qemu_get_vm_name()) {
1281         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1282                                 qemu_get_vm_name()));
1283     }
1284 
1285     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1286     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1287 
1288     /* /interrupt controller */
1289     spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1290 
1291     ret = spapr_populate_memory(spapr, fdt);
1292     if (ret < 0) {
1293         error_report("couldn't setup memory nodes in fdt");
1294         exit(1);
1295     }
1296 
1297     /* /vdevice */
1298     spapr_dt_vdevice(spapr->vio_bus, fdt);
1299 
1300     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1301         ret = spapr_rng_populate_dt(fdt);
1302         if (ret < 0) {
1303             error_report("could not set up rng device in the fdt");
1304             exit(1);
1305         }
1306     }
1307 
1308     QLIST_FOREACH(phb, &spapr->phbs, list) {
1309         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1310         if (ret < 0) {
1311             error_report("couldn't setup PCI devices in fdt");
1312             exit(1);
1313         }
1314     }
1315 
1316     /* cpus */
1317     spapr_populate_cpus_dt_node(fdt, spapr);
1318 
1319     if (smc->dr_lmb_enabled) {
1320         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1321     }
1322 
1323     if (mc->has_hotpluggable_cpus) {
1324         int offset = fdt_path_offset(fdt, "/cpus");
1325         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1326                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1327         if (ret < 0) {
1328             error_report("Couldn't set up CPU DR device tree properties");
1329             exit(1);
1330         }
1331     }
1332 
1333     /* /event-sources */
1334     spapr_dt_events(spapr, fdt);
1335 
1336     /* /rtas */
1337     spapr_dt_rtas(spapr, fdt);
1338 
1339     /* /chosen */
1340     spapr_dt_chosen(spapr, fdt);
1341 
1342     /* /hypervisor */
1343     if (kvm_enabled()) {
1344         spapr_dt_hypervisor(spapr, fdt);
1345     }
1346 
1347     /* Build memory reserve map */
1348     if (spapr->kernel_size) {
1349         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1350     }
1351     if (spapr->initrd_size) {
1352         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1353     }
1354 
1355     /* ibm,client-architecture-support updates */
1356     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1357     if (ret < 0) {
1358         error_report("couldn't setup CAS properties fdt");
1359         exit(1);
1360     }
1361 
1362     return fdt;
1363 }
1364 
1365 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1366 {
1367     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1368 }
1369 
1370 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1371                                     PowerPCCPU *cpu)
1372 {
1373     CPUPPCState *env = &cpu->env;
1374 
1375     /* The TCG path should also be holding the BQL at this point */
1376     g_assert(qemu_mutex_iothread_locked());
1377 
1378     if (msr_pr) {
1379         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1380         env->gpr[3] = H_PRIVILEGE;
1381     } else {
1382         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1383     }
1384 }
1385 
1386 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1387 {
1388     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1389 
1390     return spapr->patb_entry;
1391 }
1392 
1393 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1394 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1395 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1396 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1397 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1398 
1399 /*
1400  * Get the fd to access the kernel htab, re-opening it if necessary
1401  */
1402 static int get_htab_fd(sPAPRMachineState *spapr)
1403 {
1404     Error *local_err = NULL;
1405 
1406     if (spapr->htab_fd >= 0) {
1407         return spapr->htab_fd;
1408     }
1409 
1410     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1411     if (spapr->htab_fd < 0) {
1412         error_report_err(local_err);
1413     }
1414 
1415     return spapr->htab_fd;
1416 }
1417 
1418 void close_htab_fd(sPAPRMachineState *spapr)
1419 {
1420     if (spapr->htab_fd >= 0) {
1421         close(spapr->htab_fd);
1422     }
1423     spapr->htab_fd = -1;
1424 }
1425 
1426 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1427 {
1428     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 
1430     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1431 }
1432 
1433 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1434 {
1435     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1436 
1437     assert(kvm_enabled());
1438 
1439     if (!spapr->htab) {
1440         return 0;
1441     }
1442 
1443     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1444 }
1445 
1446 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1447                                                 hwaddr ptex, int n)
1448 {
1449     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1450     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1451 
1452     if (!spapr->htab) {
1453         /*
1454          * HTAB is controlled by KVM. Fetch into temporary buffer
1455          */
1456         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1457         kvmppc_read_hptes(hptes, ptex, n);
1458         return hptes;
1459     }
1460 
1461     /*
1462      * HTAB is controlled by QEMU. Just point to the internally
1463      * accessible PTEG.
1464      */
1465     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1466 }
1467 
1468 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1469                               const ppc_hash_pte64_t *hptes,
1470                               hwaddr ptex, int n)
1471 {
1472     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1473 
1474     if (!spapr->htab) {
1475         g_free((void *)hptes);
1476     }
1477 
1478     /* Nothing to do for qemu managed HPT */
1479 }
1480 
1481 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1482                              uint64_t pte0, uint64_t pte1)
1483 {
1484     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1485     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1486 
1487     if (!spapr->htab) {
1488         kvmppc_write_hpte(ptex, pte0, pte1);
1489     } else {
1490         stq_p(spapr->htab + offset, pte0);
1491         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1492     }
1493 }
1494 
1495 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1496 {
1497     int shift;
1498 
1499     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1500      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1501      * that's much more than is needed for Linux guests */
1502     shift = ctz64(pow2ceil(ramsize)) - 7;
1503     shift = MAX(shift, 18); /* Minimum architected size */
1504     shift = MIN(shift, 46); /* Maximum architected size */
1505     return shift;
1506 }
1507 
1508 void spapr_free_hpt(sPAPRMachineState *spapr)
1509 {
1510     g_free(spapr->htab);
1511     spapr->htab = NULL;
1512     spapr->htab_shift = 0;
1513     close_htab_fd(spapr);
1514 }
1515 
1516 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1517                           Error **errp)
1518 {
1519     long rc;
1520 
1521     /* Clean up any HPT info from a previous boot */
1522     spapr_free_hpt(spapr);
1523 
1524     rc = kvmppc_reset_htab(shift);
1525     if (rc < 0) {
1526         /* kernel-side HPT needed, but couldn't allocate one */
1527         error_setg_errno(errp, errno,
1528                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1529                          shift);
1530         /* This is almost certainly fatal, but if the caller really
1531          * wants to carry on with shift == 0, it's welcome to try */
1532     } else if (rc > 0) {
1533         /* kernel-side HPT allocated */
1534         if (rc != shift) {
1535             error_setg(errp,
1536                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1537                        shift, rc);
1538         }
1539 
1540         spapr->htab_shift = shift;
1541         spapr->htab = NULL;
1542     } else {
1543         /* kernel-side HPT not needed, allocate in userspace instead */
1544         size_t size = 1ULL << shift;
1545         int i;
1546 
1547         spapr->htab = qemu_memalign(size, size);
1548         if (!spapr->htab) {
1549             error_setg_errno(errp, errno,
1550                              "Could not allocate HPT of order %d", shift);
1551             return;
1552         }
1553 
1554         memset(spapr->htab, 0, size);
1555         spapr->htab_shift = shift;
1556 
1557         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1558             DIRTY_HPTE(HPTE(spapr->htab, i));
1559         }
1560     }
1561     /* We're setting up a hash table, so that means we're not radix */
1562     spapr->patb_entry = 0;
1563 }
1564 
1565 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1566 {
1567     int hpt_shift;
1568 
1569     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1570         || (spapr->cas_reboot
1571             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1572         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1573     } else {
1574         uint64_t current_ram_size;
1575 
1576         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1577         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1578     }
1579     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1580 
1581     if (spapr->vrma_adjust) {
1582         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1583                                           spapr->htab_shift);
1584     }
1585 }
1586 
1587 static int spapr_reset_drcs(Object *child, void *opaque)
1588 {
1589     sPAPRDRConnector *drc =
1590         (sPAPRDRConnector *) object_dynamic_cast(child,
1591                                                  TYPE_SPAPR_DR_CONNECTOR);
1592 
1593     if (drc) {
1594         spapr_drc_reset(drc);
1595     }
1596 
1597     return 0;
1598 }
1599 
1600 static void spapr_machine_reset(void)
1601 {
1602     MachineState *machine = MACHINE(qdev_get_machine());
1603     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1604     PowerPCCPU *first_ppc_cpu;
1605     uint32_t rtas_limit;
1606     hwaddr rtas_addr, fdt_addr;
1607     void *fdt;
1608     int rc;
1609 
1610     spapr_caps_reset(spapr);
1611 
1612     first_ppc_cpu = POWERPC_CPU(first_cpu);
1613     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1614         ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1615                          spapr->max_compat_pvr)) {
1616         /* If using KVM with radix mode available, VCPUs can be started
1617          * without a HPT because KVM will start them in radix mode.
1618          * Set the GR bit in PATB so that we know there is no HPT. */
1619         spapr->patb_entry = PATBE1_GR;
1620     } else {
1621         spapr_setup_hpt_and_vrma(spapr);
1622     }
1623 
1624     /* if this reset wasn't generated by CAS, we should reset our
1625      * negotiated options and start from scratch */
1626     if (!spapr->cas_reboot) {
1627         spapr_ovec_cleanup(spapr->ov5_cas);
1628         spapr->ov5_cas = spapr_ovec_new();
1629 
1630         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1631     }
1632 
1633     qemu_devices_reset();
1634 
1635     /* DRC reset may cause a device to be unplugged. This will cause troubles
1636      * if this device is used by another device (eg, a running vhost backend
1637      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1638      * situations, we reset DRCs after all devices have been reset.
1639      */
1640     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1641 
1642     spapr_clear_pending_events(spapr);
1643 
1644     /*
1645      * We place the device tree and RTAS just below either the top of the RMA,
1646      * or just below 2GB, whichever is lowere, so that it can be
1647      * processed with 32-bit real mode code if necessary
1648      */
1649     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1650     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1651     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1652 
1653     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1654 
1655     spapr_load_rtas(spapr, fdt, rtas_addr);
1656 
1657     rc = fdt_pack(fdt);
1658 
1659     /* Should only fail if we've built a corrupted tree */
1660     assert(rc == 0);
1661 
1662     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1663         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1664                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1665         exit(1);
1666     }
1667 
1668     /* Load the fdt */
1669     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1670     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1671     g_free(fdt);
1672 
1673     /* Set up the entry state */
1674     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1675     first_ppc_cpu->env.gpr[5] = 0;
1676 
1677     spapr->cas_reboot = false;
1678 }
1679 
1680 static void spapr_create_nvram(sPAPRMachineState *spapr)
1681 {
1682     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1683     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1684 
1685     if (dinfo) {
1686         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1687                             &error_fatal);
1688     }
1689 
1690     qdev_init_nofail(dev);
1691 
1692     spapr->nvram = (struct sPAPRNVRAM *)dev;
1693 }
1694 
1695 static void spapr_rtc_create(sPAPRMachineState *spapr)
1696 {
1697     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1698     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1699                               &error_fatal);
1700     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1701                               &error_fatal);
1702     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1703                               "date", &error_fatal);
1704 }
1705 
1706 /* Returns whether we want to use VGA or not */
1707 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1708 {
1709     switch (vga_interface_type) {
1710     case VGA_NONE:
1711         return false;
1712     case VGA_DEVICE:
1713         return true;
1714     case VGA_STD:
1715     case VGA_VIRTIO:
1716         return pci_vga_init(pci_bus) != NULL;
1717     default:
1718         error_setg(errp,
1719                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1720         return false;
1721     }
1722 }
1723 
1724 static int spapr_pre_load(void *opaque)
1725 {
1726     int rc;
1727 
1728     rc = spapr_caps_pre_load(opaque);
1729     if (rc) {
1730         return rc;
1731     }
1732 
1733     return 0;
1734 }
1735 
1736 static int spapr_post_load(void *opaque, int version_id)
1737 {
1738     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1739     int err = 0;
1740 
1741     err = spapr_caps_post_migration(spapr);
1742     if (err) {
1743         return err;
1744     }
1745 
1746     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1747         CPUState *cs;
1748         CPU_FOREACH(cs) {
1749             PowerPCCPU *cpu = POWERPC_CPU(cs);
1750             icp_resend(ICP(cpu->intc));
1751         }
1752     }
1753 
1754     /* In earlier versions, there was no separate qdev for the PAPR
1755      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1756      * So when migrating from those versions, poke the incoming offset
1757      * value into the RTC device */
1758     if (version_id < 3) {
1759         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1760     }
1761 
1762     if (kvm_enabled() && spapr->patb_entry) {
1763         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1764         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1765         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1766 
1767         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1768         if (err) {
1769             error_report("Process table config unsupported by the host");
1770             return -EINVAL;
1771         }
1772     }
1773 
1774     return err;
1775 }
1776 
1777 static int spapr_pre_save(void *opaque)
1778 {
1779     int rc;
1780 
1781     rc = spapr_caps_pre_save(opaque);
1782     if (rc) {
1783         return rc;
1784     }
1785 
1786     return 0;
1787 }
1788 
1789 static bool version_before_3(void *opaque, int version_id)
1790 {
1791     return version_id < 3;
1792 }
1793 
1794 static bool spapr_pending_events_needed(void *opaque)
1795 {
1796     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1797     return !QTAILQ_EMPTY(&spapr->pending_events);
1798 }
1799 
1800 static const VMStateDescription vmstate_spapr_event_entry = {
1801     .name = "spapr_event_log_entry",
1802     .version_id = 1,
1803     .minimum_version_id = 1,
1804     .fields = (VMStateField[]) {
1805         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1806         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1807         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1808                                      NULL, extended_length),
1809         VMSTATE_END_OF_LIST()
1810     },
1811 };
1812 
1813 static const VMStateDescription vmstate_spapr_pending_events = {
1814     .name = "spapr_pending_events",
1815     .version_id = 1,
1816     .minimum_version_id = 1,
1817     .needed = spapr_pending_events_needed,
1818     .fields = (VMStateField[]) {
1819         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1820                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1821         VMSTATE_END_OF_LIST()
1822     },
1823 };
1824 
1825 static bool spapr_ov5_cas_needed(void *opaque)
1826 {
1827     sPAPRMachineState *spapr = opaque;
1828     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1829     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1830     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1831     bool cas_needed;
1832 
1833     /* Prior to the introduction of sPAPROptionVector, we had two option
1834      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1835      * Both of these options encode machine topology into the device-tree
1836      * in such a way that the now-booted OS should still be able to interact
1837      * appropriately with QEMU regardless of what options were actually
1838      * negotiatied on the source side.
1839      *
1840      * As such, we can avoid migrating the CAS-negotiated options if these
1841      * are the only options available on the current machine/platform.
1842      * Since these are the only options available for pseries-2.7 and
1843      * earlier, this allows us to maintain old->new/new->old migration
1844      * compatibility.
1845      *
1846      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1847      * via default pseries-2.8 machines and explicit command-line parameters.
1848      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1849      * of the actual CAS-negotiated values to continue working properly. For
1850      * example, availability of memory unplug depends on knowing whether
1851      * OV5_HP_EVT was negotiated via CAS.
1852      *
1853      * Thus, for any cases where the set of available CAS-negotiatable
1854      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1855      * include the CAS-negotiated options in the migration stream, unless
1856      * if they affect boot time behaviour only.
1857      */
1858     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1859     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1860     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1861 
1862     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1863      * the mask itself since in the future it's possible "legacy" bits may be
1864      * removed via machine options, which could generate a false positive
1865      * that breaks migration.
1866      */
1867     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1868     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1869 
1870     spapr_ovec_cleanup(ov5_mask);
1871     spapr_ovec_cleanup(ov5_legacy);
1872     spapr_ovec_cleanup(ov5_removed);
1873 
1874     return cas_needed;
1875 }
1876 
1877 static const VMStateDescription vmstate_spapr_ov5_cas = {
1878     .name = "spapr_option_vector_ov5_cas",
1879     .version_id = 1,
1880     .minimum_version_id = 1,
1881     .needed = spapr_ov5_cas_needed,
1882     .fields = (VMStateField[]) {
1883         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1884                                  vmstate_spapr_ovec, sPAPROptionVector),
1885         VMSTATE_END_OF_LIST()
1886     },
1887 };
1888 
1889 static bool spapr_patb_entry_needed(void *opaque)
1890 {
1891     sPAPRMachineState *spapr = opaque;
1892 
1893     return !!spapr->patb_entry;
1894 }
1895 
1896 static const VMStateDescription vmstate_spapr_patb_entry = {
1897     .name = "spapr_patb_entry",
1898     .version_id = 1,
1899     .minimum_version_id = 1,
1900     .needed = spapr_patb_entry_needed,
1901     .fields = (VMStateField[]) {
1902         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1903         VMSTATE_END_OF_LIST()
1904     },
1905 };
1906 
1907 static const VMStateDescription vmstate_spapr = {
1908     .name = "spapr",
1909     .version_id = 3,
1910     .minimum_version_id = 1,
1911     .pre_load = spapr_pre_load,
1912     .post_load = spapr_post_load,
1913     .pre_save = spapr_pre_save,
1914     .fields = (VMStateField[]) {
1915         /* used to be @next_irq */
1916         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1917 
1918         /* RTC offset */
1919         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1920 
1921         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1922         VMSTATE_END_OF_LIST()
1923     },
1924     .subsections = (const VMStateDescription*[]) {
1925         &vmstate_spapr_ov5_cas,
1926         &vmstate_spapr_patb_entry,
1927         &vmstate_spapr_pending_events,
1928         &vmstate_spapr_cap_htm,
1929         &vmstate_spapr_cap_vsx,
1930         &vmstate_spapr_cap_dfp,
1931         &vmstate_spapr_cap_cfpc,
1932         &vmstate_spapr_cap_sbbc,
1933         &vmstate_spapr_cap_ibs,
1934         NULL
1935     }
1936 };
1937 
1938 static int htab_save_setup(QEMUFile *f, void *opaque)
1939 {
1940     sPAPRMachineState *spapr = opaque;
1941 
1942     /* "Iteration" header */
1943     if (!spapr->htab_shift) {
1944         qemu_put_be32(f, -1);
1945     } else {
1946         qemu_put_be32(f, spapr->htab_shift);
1947     }
1948 
1949     if (spapr->htab) {
1950         spapr->htab_save_index = 0;
1951         spapr->htab_first_pass = true;
1952     } else {
1953         if (spapr->htab_shift) {
1954             assert(kvm_enabled());
1955         }
1956     }
1957 
1958 
1959     return 0;
1960 }
1961 
1962 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1963                             int chunkstart, int n_valid, int n_invalid)
1964 {
1965     qemu_put_be32(f, chunkstart);
1966     qemu_put_be16(f, n_valid);
1967     qemu_put_be16(f, n_invalid);
1968     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1969                     HASH_PTE_SIZE_64 * n_valid);
1970 }
1971 
1972 static void htab_save_end_marker(QEMUFile *f)
1973 {
1974     qemu_put_be32(f, 0);
1975     qemu_put_be16(f, 0);
1976     qemu_put_be16(f, 0);
1977 }
1978 
1979 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1980                                  int64_t max_ns)
1981 {
1982     bool has_timeout = max_ns != -1;
1983     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1984     int index = spapr->htab_save_index;
1985     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1986 
1987     assert(spapr->htab_first_pass);
1988 
1989     do {
1990         int chunkstart;
1991 
1992         /* Consume invalid HPTEs */
1993         while ((index < htabslots)
1994                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1995             CLEAN_HPTE(HPTE(spapr->htab, index));
1996             index++;
1997         }
1998 
1999         /* Consume valid HPTEs */
2000         chunkstart = index;
2001         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2002                && HPTE_VALID(HPTE(spapr->htab, index))) {
2003             CLEAN_HPTE(HPTE(spapr->htab, index));
2004             index++;
2005         }
2006 
2007         if (index > chunkstart) {
2008             int n_valid = index - chunkstart;
2009 
2010             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2011 
2012             if (has_timeout &&
2013                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2014                 break;
2015             }
2016         }
2017     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2018 
2019     if (index >= htabslots) {
2020         assert(index == htabslots);
2021         index = 0;
2022         spapr->htab_first_pass = false;
2023     }
2024     spapr->htab_save_index = index;
2025 }
2026 
2027 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2028                                 int64_t max_ns)
2029 {
2030     bool final = max_ns < 0;
2031     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2032     int examined = 0, sent = 0;
2033     int index = spapr->htab_save_index;
2034     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2035 
2036     assert(!spapr->htab_first_pass);
2037 
2038     do {
2039         int chunkstart, invalidstart;
2040 
2041         /* Consume non-dirty HPTEs */
2042         while ((index < htabslots)
2043                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2044             index++;
2045             examined++;
2046         }
2047 
2048         chunkstart = index;
2049         /* Consume valid dirty HPTEs */
2050         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2051                && HPTE_DIRTY(HPTE(spapr->htab, index))
2052                && HPTE_VALID(HPTE(spapr->htab, index))) {
2053             CLEAN_HPTE(HPTE(spapr->htab, index));
2054             index++;
2055             examined++;
2056         }
2057 
2058         invalidstart = index;
2059         /* Consume invalid dirty HPTEs */
2060         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2061                && HPTE_DIRTY(HPTE(spapr->htab, index))
2062                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2063             CLEAN_HPTE(HPTE(spapr->htab, index));
2064             index++;
2065             examined++;
2066         }
2067 
2068         if (index > chunkstart) {
2069             int n_valid = invalidstart - chunkstart;
2070             int n_invalid = index - invalidstart;
2071 
2072             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2073             sent += index - chunkstart;
2074 
2075             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2076                 break;
2077             }
2078         }
2079 
2080         if (examined >= htabslots) {
2081             break;
2082         }
2083 
2084         if (index >= htabslots) {
2085             assert(index == htabslots);
2086             index = 0;
2087         }
2088     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2089 
2090     if (index >= htabslots) {
2091         assert(index == htabslots);
2092         index = 0;
2093     }
2094 
2095     spapr->htab_save_index = index;
2096 
2097     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2098 }
2099 
2100 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2101 #define MAX_KVM_BUF_SIZE    2048
2102 
2103 static int htab_save_iterate(QEMUFile *f, void *opaque)
2104 {
2105     sPAPRMachineState *spapr = opaque;
2106     int fd;
2107     int rc = 0;
2108 
2109     /* Iteration header */
2110     if (!spapr->htab_shift) {
2111         qemu_put_be32(f, -1);
2112         return 1;
2113     } else {
2114         qemu_put_be32(f, 0);
2115     }
2116 
2117     if (!spapr->htab) {
2118         assert(kvm_enabled());
2119 
2120         fd = get_htab_fd(spapr);
2121         if (fd < 0) {
2122             return fd;
2123         }
2124 
2125         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2126         if (rc < 0) {
2127             return rc;
2128         }
2129     } else  if (spapr->htab_first_pass) {
2130         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2131     } else {
2132         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2133     }
2134 
2135     htab_save_end_marker(f);
2136 
2137     return rc;
2138 }
2139 
2140 static int htab_save_complete(QEMUFile *f, void *opaque)
2141 {
2142     sPAPRMachineState *spapr = opaque;
2143     int fd;
2144 
2145     /* Iteration header */
2146     if (!spapr->htab_shift) {
2147         qemu_put_be32(f, -1);
2148         return 0;
2149     } else {
2150         qemu_put_be32(f, 0);
2151     }
2152 
2153     if (!spapr->htab) {
2154         int rc;
2155 
2156         assert(kvm_enabled());
2157 
2158         fd = get_htab_fd(spapr);
2159         if (fd < 0) {
2160             return fd;
2161         }
2162 
2163         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2164         if (rc < 0) {
2165             return rc;
2166         }
2167     } else {
2168         if (spapr->htab_first_pass) {
2169             htab_save_first_pass(f, spapr, -1);
2170         }
2171         htab_save_later_pass(f, spapr, -1);
2172     }
2173 
2174     /* End marker */
2175     htab_save_end_marker(f);
2176 
2177     return 0;
2178 }
2179 
2180 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2181 {
2182     sPAPRMachineState *spapr = opaque;
2183     uint32_t section_hdr;
2184     int fd = -1;
2185     Error *local_err = NULL;
2186 
2187     if (version_id < 1 || version_id > 1) {
2188         error_report("htab_load() bad version");
2189         return -EINVAL;
2190     }
2191 
2192     section_hdr = qemu_get_be32(f);
2193 
2194     if (section_hdr == -1) {
2195         spapr_free_hpt(spapr);
2196         return 0;
2197     }
2198 
2199     if (section_hdr) {
2200         /* First section gives the htab size */
2201         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2202         if (local_err) {
2203             error_report_err(local_err);
2204             return -EINVAL;
2205         }
2206         return 0;
2207     }
2208 
2209     if (!spapr->htab) {
2210         assert(kvm_enabled());
2211 
2212         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2213         if (fd < 0) {
2214             error_report_err(local_err);
2215             return fd;
2216         }
2217     }
2218 
2219     while (true) {
2220         uint32_t index;
2221         uint16_t n_valid, n_invalid;
2222 
2223         index = qemu_get_be32(f);
2224         n_valid = qemu_get_be16(f);
2225         n_invalid = qemu_get_be16(f);
2226 
2227         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2228             /* End of Stream */
2229             break;
2230         }
2231 
2232         if ((index + n_valid + n_invalid) >
2233             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2234             /* Bad index in stream */
2235             error_report(
2236                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2237                 index, n_valid, n_invalid, spapr->htab_shift);
2238             return -EINVAL;
2239         }
2240 
2241         if (spapr->htab) {
2242             if (n_valid) {
2243                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2244                                 HASH_PTE_SIZE_64 * n_valid);
2245             }
2246             if (n_invalid) {
2247                 memset(HPTE(spapr->htab, index + n_valid), 0,
2248                        HASH_PTE_SIZE_64 * n_invalid);
2249             }
2250         } else {
2251             int rc;
2252 
2253             assert(fd >= 0);
2254 
2255             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2256             if (rc < 0) {
2257                 return rc;
2258             }
2259         }
2260     }
2261 
2262     if (!spapr->htab) {
2263         assert(fd >= 0);
2264         close(fd);
2265     }
2266 
2267     return 0;
2268 }
2269 
2270 static void htab_save_cleanup(void *opaque)
2271 {
2272     sPAPRMachineState *spapr = opaque;
2273 
2274     close_htab_fd(spapr);
2275 }
2276 
2277 static SaveVMHandlers savevm_htab_handlers = {
2278     .save_setup = htab_save_setup,
2279     .save_live_iterate = htab_save_iterate,
2280     .save_live_complete_precopy = htab_save_complete,
2281     .save_cleanup = htab_save_cleanup,
2282     .load_state = htab_load,
2283 };
2284 
2285 static void spapr_boot_set(void *opaque, const char *boot_device,
2286                            Error **errp)
2287 {
2288     MachineState *machine = MACHINE(opaque);
2289     machine->boot_order = g_strdup(boot_device);
2290 }
2291 
2292 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2293 {
2294     MachineState *machine = MACHINE(spapr);
2295     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2296     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2297     int i;
2298 
2299     for (i = 0; i < nr_lmbs; i++) {
2300         uint64_t addr;
2301 
2302         addr = i * lmb_size + machine->device_memory->base;
2303         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2304                                addr / lmb_size);
2305     }
2306 }
2307 
2308 /*
2309  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2310  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2311  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2312  */
2313 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2314 {
2315     int i;
2316 
2317     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2318         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2319                    " is not aligned to %llu MiB",
2320                    machine->ram_size,
2321                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2322         return;
2323     }
2324 
2325     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2326         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2327                    " is not aligned to %llu MiB",
2328                    machine->ram_size,
2329                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2330         return;
2331     }
2332 
2333     for (i = 0; i < nb_numa_nodes; i++) {
2334         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2335             error_setg(errp,
2336                        "Node %d memory size 0x%" PRIx64
2337                        " is not aligned to %llu MiB",
2338                        i, numa_info[i].node_mem,
2339                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2340             return;
2341         }
2342     }
2343 }
2344 
2345 /* find cpu slot in machine->possible_cpus by core_id */
2346 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2347 {
2348     int index = id / smp_threads;
2349 
2350     if (index >= ms->possible_cpus->len) {
2351         return NULL;
2352     }
2353     if (idx) {
2354         *idx = index;
2355     }
2356     return &ms->possible_cpus->cpus[index];
2357 }
2358 
2359 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2360 {
2361     Error *local_err = NULL;
2362     bool vsmt_user = !!spapr->vsmt;
2363     int kvm_smt = kvmppc_smt_threads();
2364     int ret;
2365 
2366     if (!kvm_enabled() && (smp_threads > 1)) {
2367         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2368                      "on a pseries machine");
2369         goto out;
2370     }
2371     if (!is_power_of_2(smp_threads)) {
2372         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2373                      "machine because it must be a power of 2", smp_threads);
2374         goto out;
2375     }
2376 
2377     /* Detemine the VSMT mode to use: */
2378     if (vsmt_user) {
2379         if (spapr->vsmt < smp_threads) {
2380             error_setg(&local_err, "Cannot support VSMT mode %d"
2381                          " because it must be >= threads/core (%d)",
2382                          spapr->vsmt, smp_threads);
2383             goto out;
2384         }
2385         /* In this case, spapr->vsmt has been set by the command line */
2386     } else {
2387         /*
2388          * Default VSMT value is tricky, because we need it to be as
2389          * consistent as possible (for migration), but this requires
2390          * changing it for at least some existing cases.  We pick 8 as
2391          * the value that we'd get with KVM on POWER8, the
2392          * overwhelmingly common case in production systems.
2393          */
2394         spapr->vsmt = MAX(8, smp_threads);
2395     }
2396 
2397     /* KVM: If necessary, set the SMT mode: */
2398     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2399         ret = kvmppc_set_smt_threads(spapr->vsmt);
2400         if (ret) {
2401             /* Looks like KVM isn't able to change VSMT mode */
2402             error_setg(&local_err,
2403                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2404                        spapr->vsmt, ret);
2405             /* We can live with that if the default one is big enough
2406              * for the number of threads, and a submultiple of the one
2407              * we want.  In this case we'll waste some vcpu ids, but
2408              * behaviour will be correct */
2409             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2410                 warn_report_err(local_err);
2411                 local_err = NULL;
2412                 goto out;
2413             } else {
2414                 if (!vsmt_user) {
2415                     error_append_hint(&local_err,
2416                                       "On PPC, a VM with %d threads/core"
2417                                       " on a host with %d threads/core"
2418                                       " requires the use of VSMT mode %d.\n",
2419                                       smp_threads, kvm_smt, spapr->vsmt);
2420                 }
2421                 kvmppc_hint_smt_possible(&local_err);
2422                 goto out;
2423             }
2424         }
2425     }
2426     /* else TCG: nothing to do currently */
2427 out:
2428     error_propagate(errp, local_err);
2429 }
2430 
2431 static void spapr_init_cpus(sPAPRMachineState *spapr)
2432 {
2433     MachineState *machine = MACHINE(spapr);
2434     MachineClass *mc = MACHINE_GET_CLASS(machine);
2435     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2436     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2437     const CPUArchIdList *possible_cpus;
2438     int boot_cores_nr = smp_cpus / smp_threads;
2439     int i;
2440 
2441     possible_cpus = mc->possible_cpu_arch_ids(machine);
2442     if (mc->has_hotpluggable_cpus) {
2443         if (smp_cpus % smp_threads) {
2444             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2445                          smp_cpus, smp_threads);
2446             exit(1);
2447         }
2448         if (max_cpus % smp_threads) {
2449             error_report("max_cpus (%u) must be multiple of threads (%u)",
2450                          max_cpus, smp_threads);
2451             exit(1);
2452         }
2453     } else {
2454         if (max_cpus != smp_cpus) {
2455             error_report("This machine version does not support CPU hotplug");
2456             exit(1);
2457         }
2458         boot_cores_nr = possible_cpus->len;
2459     }
2460 
2461     /* VSMT must be set in order to be able to compute VCPU ids, ie to
2462      * call xics_max_server_number() or spapr_vcpu_id().
2463      */
2464     spapr_set_vsmt_mode(spapr, &error_fatal);
2465 
2466     if (smc->pre_2_10_has_unused_icps) {
2467         int i;
2468 
2469         for (i = 0; i < xics_max_server_number(spapr); i++) {
2470             /* Dummy entries get deregistered when real ICPState objects
2471              * are registered during CPU core hotplug.
2472              */
2473             pre_2_10_vmstate_register_dummy_icp(i);
2474         }
2475     }
2476 
2477     for (i = 0; i < possible_cpus->len; i++) {
2478         int core_id = i * smp_threads;
2479 
2480         if (mc->has_hotpluggable_cpus) {
2481             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2482                                    spapr_vcpu_id(spapr, core_id));
2483         }
2484 
2485         if (i < boot_cores_nr) {
2486             Object *core  = object_new(type);
2487             int nr_threads = smp_threads;
2488 
2489             /* Handle the partially filled core for older machine types */
2490             if ((i + 1) * smp_threads >= smp_cpus) {
2491                 nr_threads = smp_cpus - i * smp_threads;
2492             }
2493 
2494             object_property_set_int(core, nr_threads, "nr-threads",
2495                                     &error_fatal);
2496             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2497                                     &error_fatal);
2498             object_property_set_bool(core, true, "realized", &error_fatal);
2499         }
2500     }
2501 }
2502 
2503 /* pSeries LPAR / sPAPR hardware init */
2504 static void spapr_machine_init(MachineState *machine)
2505 {
2506     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2507     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2508     const char *kernel_filename = machine->kernel_filename;
2509     const char *initrd_filename = machine->initrd_filename;
2510     PCIHostState *phb;
2511     int i;
2512     MemoryRegion *sysmem = get_system_memory();
2513     MemoryRegion *ram = g_new(MemoryRegion, 1);
2514     hwaddr node0_size = spapr_node0_size(machine);
2515     long load_limit, fw_size;
2516     char *filename;
2517     Error *resize_hpt_err = NULL;
2518     PowerPCCPU *first_ppc_cpu;
2519 
2520     msi_nonbroken = true;
2521 
2522     QLIST_INIT(&spapr->phbs);
2523     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2524 
2525     /* Check HPT resizing availability */
2526     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2527     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2528         /*
2529          * If the user explicitly requested a mode we should either
2530          * supply it, or fail completely (which we do below).  But if
2531          * it's not set explicitly, we reset our mode to something
2532          * that works
2533          */
2534         if (resize_hpt_err) {
2535             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2536             error_free(resize_hpt_err);
2537             resize_hpt_err = NULL;
2538         } else {
2539             spapr->resize_hpt = smc->resize_hpt_default;
2540         }
2541     }
2542 
2543     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2544 
2545     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2546         /*
2547          * User requested HPT resize, but this host can't supply it.  Bail out
2548          */
2549         error_report_err(resize_hpt_err);
2550         exit(1);
2551     }
2552 
2553     spapr->rma_size = node0_size;
2554 
2555     /* With KVM, we don't actually know whether KVM supports an
2556      * unbounded RMA (PR KVM) or is limited by the hash table size
2557      * (HV KVM using VRMA), so we always assume the latter
2558      *
2559      * In that case, we also limit the initial allocations for RTAS
2560      * etc... to 256M since we have no way to know what the VRMA size
2561      * is going to be as it depends on the size of the hash table
2562      * which isn't determined yet.
2563      */
2564     if (kvm_enabled()) {
2565         spapr->vrma_adjust = 1;
2566         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2567     }
2568 
2569     /* Actually we don't support unbounded RMA anymore since we added
2570      * proper emulation of HV mode. The max we can get is 16G which
2571      * also happens to be what we configure for PAPR mode so make sure
2572      * we don't do anything bigger than that
2573      */
2574     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2575 
2576     if (spapr->rma_size > node0_size) {
2577         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2578                      spapr->rma_size);
2579         exit(1);
2580     }
2581 
2582     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2583     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2584 
2585     /* Set up Interrupt Controller before we create the VCPUs */
2586     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2587 
2588     /* Set up containers for ibm,client-architecture-support negotiated options
2589      */
2590     spapr->ov5 = spapr_ovec_new();
2591     spapr->ov5_cas = spapr_ovec_new();
2592 
2593     if (smc->dr_lmb_enabled) {
2594         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2595         spapr_validate_node_memory(machine, &error_fatal);
2596     }
2597 
2598     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2599 
2600     /* advertise support for dedicated HP event source to guests */
2601     if (spapr->use_hotplug_event_source) {
2602         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2603     }
2604 
2605     /* advertise support for HPT resizing */
2606     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2607         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2608     }
2609 
2610     /* advertise support for ibm,dyamic-memory-v2 */
2611     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2612 
2613     /* init CPUs */
2614     spapr_init_cpus(spapr);
2615 
2616     first_ppc_cpu = POWERPC_CPU(first_cpu);
2617     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2618         ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
2619                          spapr->max_compat_pvr)) {
2620         /* KVM and TCG always allow GTSE with radix... */
2621         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2622     }
2623     /* ... but not with hash (currently). */
2624 
2625     if (kvm_enabled()) {
2626         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2627         kvmppc_enable_logical_ci_hcalls();
2628         kvmppc_enable_set_mode_hcall();
2629 
2630         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2631         kvmppc_enable_clear_ref_mod_hcalls();
2632     }
2633 
2634     /* allocate RAM */
2635     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2636                                          machine->ram_size);
2637     memory_region_add_subregion(sysmem, 0, ram);
2638 
2639     /* always allocate the device memory information */
2640     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2641 
2642     /* initialize hotplug memory address space */
2643     if (machine->ram_size < machine->maxram_size) {
2644         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2645         /*
2646          * Limit the number of hotpluggable memory slots to half the number
2647          * slots that KVM supports, leaving the other half for PCI and other
2648          * devices. However ensure that number of slots doesn't drop below 32.
2649          */
2650         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2651                            SPAPR_MAX_RAM_SLOTS;
2652 
2653         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2654             max_memslots = SPAPR_MAX_RAM_SLOTS;
2655         }
2656         if (machine->ram_slots > max_memslots) {
2657             error_report("Specified number of memory slots %"
2658                          PRIu64" exceeds max supported %d",
2659                          machine->ram_slots, max_memslots);
2660             exit(1);
2661         }
2662 
2663         machine->device_memory->base = ROUND_UP(machine->ram_size,
2664                                                 SPAPR_DEVICE_MEM_ALIGN);
2665         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2666                            "device-memory", device_mem_size);
2667         memory_region_add_subregion(sysmem, machine->device_memory->base,
2668                                     &machine->device_memory->mr);
2669     }
2670 
2671     if (smc->dr_lmb_enabled) {
2672         spapr_create_lmb_dr_connectors(spapr);
2673     }
2674 
2675     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2676     if (!filename) {
2677         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2678         exit(1);
2679     }
2680     spapr->rtas_size = get_image_size(filename);
2681     if (spapr->rtas_size < 0) {
2682         error_report("Could not get size of LPAR rtas '%s'", filename);
2683         exit(1);
2684     }
2685     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2686     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2687         error_report("Could not load LPAR rtas '%s'", filename);
2688         exit(1);
2689     }
2690     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2691         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2692                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2693         exit(1);
2694     }
2695     g_free(filename);
2696 
2697     /* Set up RTAS event infrastructure */
2698     spapr_events_init(spapr);
2699 
2700     /* Set up the RTC RTAS interfaces */
2701     spapr_rtc_create(spapr);
2702 
2703     /* Set up VIO bus */
2704     spapr->vio_bus = spapr_vio_bus_init();
2705 
2706     for (i = 0; i < serial_max_hds(); i++) {
2707         if (serial_hd(i)) {
2708             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2709         }
2710     }
2711 
2712     /* We always have at least the nvram device on VIO */
2713     spapr_create_nvram(spapr);
2714 
2715     /* Set up PCI */
2716     spapr_pci_rtas_init();
2717 
2718     phb = spapr_create_phb(spapr, 0);
2719 
2720     for (i = 0; i < nb_nics; i++) {
2721         NICInfo *nd = &nd_table[i];
2722 
2723         if (!nd->model) {
2724             nd->model = g_strdup("spapr-vlan");
2725         }
2726 
2727         if (g_str_equal(nd->model, "spapr-vlan") ||
2728             g_str_equal(nd->model, "ibmveth")) {
2729             spapr_vlan_create(spapr->vio_bus, nd);
2730         } else {
2731             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2732         }
2733     }
2734 
2735     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2736         spapr_vscsi_create(spapr->vio_bus);
2737     }
2738 
2739     /* Graphics */
2740     if (spapr_vga_init(phb->bus, &error_fatal)) {
2741         spapr->has_graphics = true;
2742         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2743     }
2744 
2745     if (machine->usb) {
2746         if (smc->use_ohci_by_default) {
2747             pci_create_simple(phb->bus, -1, "pci-ohci");
2748         } else {
2749             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2750         }
2751 
2752         if (spapr->has_graphics) {
2753             USBBus *usb_bus = usb_bus_find(-1);
2754 
2755             usb_create_simple(usb_bus, "usb-kbd");
2756             usb_create_simple(usb_bus, "usb-mouse");
2757         }
2758     }
2759 
2760     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2761         error_report(
2762             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2763             MIN_RMA_SLOF);
2764         exit(1);
2765     }
2766 
2767     if (kernel_filename) {
2768         uint64_t lowaddr = 0;
2769 
2770         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2771                                       NULL, NULL, &lowaddr, NULL, 1,
2772                                       PPC_ELF_MACHINE, 0, 0);
2773         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2774             spapr->kernel_size = load_elf(kernel_filename,
2775                                           translate_kernel_address, NULL, NULL,
2776                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2777                                           0, 0);
2778             spapr->kernel_le = spapr->kernel_size > 0;
2779         }
2780         if (spapr->kernel_size < 0) {
2781             error_report("error loading %s: %s", kernel_filename,
2782                          load_elf_strerror(spapr->kernel_size));
2783             exit(1);
2784         }
2785 
2786         /* load initrd */
2787         if (initrd_filename) {
2788             /* Try to locate the initrd in the gap between the kernel
2789              * and the firmware. Add a bit of space just in case
2790              */
2791             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2792                                   + 0x1ffff) & ~0xffff;
2793             spapr->initrd_size = load_image_targphys(initrd_filename,
2794                                                      spapr->initrd_base,
2795                                                      load_limit
2796                                                      - spapr->initrd_base);
2797             if (spapr->initrd_size < 0) {
2798                 error_report("could not load initial ram disk '%s'",
2799                              initrd_filename);
2800                 exit(1);
2801             }
2802         }
2803     }
2804 
2805     if (bios_name == NULL) {
2806         bios_name = FW_FILE_NAME;
2807     }
2808     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2809     if (!filename) {
2810         error_report("Could not find LPAR firmware '%s'", bios_name);
2811         exit(1);
2812     }
2813     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2814     if (fw_size <= 0) {
2815         error_report("Could not load LPAR firmware '%s'", filename);
2816         exit(1);
2817     }
2818     g_free(filename);
2819 
2820     /* FIXME: Should register things through the MachineState's qdev
2821      * interface, this is a legacy from the sPAPREnvironment structure
2822      * which predated MachineState but had a similar function */
2823     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2824     register_savevm_live(NULL, "spapr/htab", -1, 1,
2825                          &savevm_htab_handlers, spapr);
2826 
2827     qemu_register_boot_set(spapr_boot_set, spapr);
2828 
2829     if (kvm_enabled()) {
2830         /* to stop and start vmclock */
2831         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2832                                          &spapr->tb);
2833 
2834         kvmppc_spapr_enable_inkernel_multitce();
2835     }
2836 }
2837 
2838 static int spapr_kvm_type(const char *vm_type)
2839 {
2840     if (!vm_type) {
2841         return 0;
2842     }
2843 
2844     if (!strcmp(vm_type, "HV")) {
2845         return 1;
2846     }
2847 
2848     if (!strcmp(vm_type, "PR")) {
2849         return 2;
2850     }
2851 
2852     error_report("Unknown kvm-type specified '%s'", vm_type);
2853     exit(1);
2854 }
2855 
2856 /*
2857  * Implementation of an interface to adjust firmware path
2858  * for the bootindex property handling.
2859  */
2860 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2861                                    DeviceState *dev)
2862 {
2863 #define CAST(type, obj, name) \
2864     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2865     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2866     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2867     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2868 
2869     if (d) {
2870         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2871         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2872         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2873 
2874         if (spapr) {
2875             /*
2876              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2877              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2878              * in the top 16 bits of the 64-bit LUN
2879              */
2880             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2881             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2882                                    (uint64_t)id << 48);
2883         } else if (virtio) {
2884             /*
2885              * We use SRP luns of the form 01000000 | (target << 8) | lun
2886              * in the top 32 bits of the 64-bit LUN
2887              * Note: the quote above is from SLOF and it is wrong,
2888              * the actual binding is:
2889              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2890              */
2891             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2892             if (d->lun >= 256) {
2893                 /* Use the LUN "flat space addressing method" */
2894                 id |= 0x4000;
2895             }
2896             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2897                                    (uint64_t)id << 32);
2898         } else if (usb) {
2899             /*
2900              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2901              * in the top 32 bits of the 64-bit LUN
2902              */
2903             unsigned usb_port = atoi(usb->port->path);
2904             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2905             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2906                                    (uint64_t)id << 32);
2907         }
2908     }
2909 
2910     /*
2911      * SLOF probes the USB devices, and if it recognizes that the device is a
2912      * storage device, it changes its name to "storage" instead of "usb-host",
2913      * and additionally adds a child node for the SCSI LUN, so the correct
2914      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2915      */
2916     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2917         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2918         if (usb_host_dev_is_scsi_storage(usbdev)) {
2919             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2920         }
2921     }
2922 
2923     if (phb) {
2924         /* Replace "pci" with "pci@800000020000000" */
2925         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2926     }
2927 
2928     if (vsc) {
2929         /* Same logic as virtio above */
2930         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2931         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2932     }
2933 
2934     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2935         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2936         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2937         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2938     }
2939 
2940     return NULL;
2941 }
2942 
2943 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2944 {
2945     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2946 
2947     return g_strdup(spapr->kvm_type);
2948 }
2949 
2950 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2951 {
2952     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2953 
2954     g_free(spapr->kvm_type);
2955     spapr->kvm_type = g_strdup(value);
2956 }
2957 
2958 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2959 {
2960     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2961 
2962     return spapr->use_hotplug_event_source;
2963 }
2964 
2965 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2966                                             Error **errp)
2967 {
2968     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2969 
2970     spapr->use_hotplug_event_source = value;
2971 }
2972 
2973 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2974 {
2975     return true;
2976 }
2977 
2978 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2979 {
2980     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2981 
2982     switch (spapr->resize_hpt) {
2983     case SPAPR_RESIZE_HPT_DEFAULT:
2984         return g_strdup("default");
2985     case SPAPR_RESIZE_HPT_DISABLED:
2986         return g_strdup("disabled");
2987     case SPAPR_RESIZE_HPT_ENABLED:
2988         return g_strdup("enabled");
2989     case SPAPR_RESIZE_HPT_REQUIRED:
2990         return g_strdup("required");
2991     }
2992     g_assert_not_reached();
2993 }
2994 
2995 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2996 {
2997     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2998 
2999     if (strcmp(value, "default") == 0) {
3000         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3001     } else if (strcmp(value, "disabled") == 0) {
3002         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3003     } else if (strcmp(value, "enabled") == 0) {
3004         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3005     } else if (strcmp(value, "required") == 0) {
3006         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3007     } else {
3008         error_setg(errp, "Bad value for \"resize-hpt\" property");
3009     }
3010 }
3011 
3012 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3013                                    void *opaque, Error **errp)
3014 {
3015     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3016 }
3017 
3018 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3019                                    void *opaque, Error **errp)
3020 {
3021     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3022 }
3023 
3024 static void spapr_instance_init(Object *obj)
3025 {
3026     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3027 
3028     spapr->htab_fd = -1;
3029     spapr->use_hotplug_event_source = true;
3030     object_property_add_str(obj, "kvm-type",
3031                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3032     object_property_set_description(obj, "kvm-type",
3033                                     "Specifies the KVM virtualization mode (HV, PR)",
3034                                     NULL);
3035     object_property_add_bool(obj, "modern-hotplug-events",
3036                             spapr_get_modern_hotplug_events,
3037                             spapr_set_modern_hotplug_events,
3038                             NULL);
3039     object_property_set_description(obj, "modern-hotplug-events",
3040                                     "Use dedicated hotplug event mechanism in"
3041                                     " place of standard EPOW events when possible"
3042                                     " (required for memory hot-unplug support)",
3043                                     NULL);
3044     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3045                             "Maximum permitted CPU compatibility mode",
3046                             &error_fatal);
3047 
3048     object_property_add_str(obj, "resize-hpt",
3049                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3050     object_property_set_description(obj, "resize-hpt",
3051                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3052                                     NULL);
3053     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3054                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3055     object_property_set_description(obj, "vsmt",
3056                                     "Virtual SMT: KVM behaves as if this were"
3057                                     " the host's SMT mode", &error_abort);
3058     object_property_add_bool(obj, "vfio-no-msix-emulation",
3059                              spapr_get_msix_emulation, NULL, NULL);
3060 }
3061 
3062 static void spapr_machine_finalizefn(Object *obj)
3063 {
3064     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3065 
3066     g_free(spapr->kvm_type);
3067 }
3068 
3069 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3070 {
3071     cpu_synchronize_state(cs);
3072     ppc_cpu_do_system_reset(cs);
3073 }
3074 
3075 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3076 {
3077     CPUState *cs;
3078 
3079     CPU_FOREACH(cs) {
3080         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3081     }
3082 }
3083 
3084 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3085                            uint32_t node, bool dedicated_hp_event_source,
3086                            Error **errp)
3087 {
3088     sPAPRDRConnector *drc;
3089     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3090     int i, fdt_offset, fdt_size;
3091     void *fdt;
3092     uint64_t addr = addr_start;
3093     bool hotplugged = spapr_drc_hotplugged(dev);
3094     Error *local_err = NULL;
3095 
3096     for (i = 0; i < nr_lmbs; i++) {
3097         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3098                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3099         g_assert(drc);
3100 
3101         fdt = create_device_tree(&fdt_size);
3102         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3103                                                 SPAPR_MEMORY_BLOCK_SIZE);
3104 
3105         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3106         if (local_err) {
3107             while (addr > addr_start) {
3108                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3109                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3110                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3111                 spapr_drc_detach(drc);
3112             }
3113             g_free(fdt);
3114             error_propagate(errp, local_err);
3115             return;
3116         }
3117         if (!hotplugged) {
3118             spapr_drc_reset(drc);
3119         }
3120         addr += SPAPR_MEMORY_BLOCK_SIZE;
3121     }
3122     /* send hotplug notification to the
3123      * guest only in case of hotplugged memory
3124      */
3125     if (hotplugged) {
3126         if (dedicated_hp_event_source) {
3127             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3128                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3129             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3130                                                    nr_lmbs,
3131                                                    spapr_drc_index(drc));
3132         } else {
3133             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3134                                            nr_lmbs);
3135         }
3136     }
3137 }
3138 
3139 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3140                               uint32_t node, Error **errp)
3141 {
3142     Error *local_err = NULL;
3143     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3144     PCDIMMDevice *dimm = PC_DIMM(dev);
3145     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3146     MemoryRegion *mr;
3147     uint64_t align, size, addr;
3148 
3149     mr = ddc->get_memory_region(dimm, &local_err);
3150     if (local_err) {
3151         goto out;
3152     }
3153     align = memory_region_get_alignment(mr);
3154     size = memory_region_size(mr);
3155 
3156     pc_dimm_memory_plug(dev, MACHINE(ms), align, &local_err);
3157     if (local_err) {
3158         goto out;
3159     }
3160 
3161     addr = object_property_get_uint(OBJECT(dimm),
3162                                     PC_DIMM_ADDR_PROP, &local_err);
3163     if (local_err) {
3164         goto out_unplug;
3165     }
3166 
3167     spapr_add_lmbs(dev, addr, size, node,
3168                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3169                    &local_err);
3170     if (local_err) {
3171         goto out_unplug;
3172     }
3173 
3174     return;
3175 
3176 out_unplug:
3177     pc_dimm_memory_unplug(dev, MACHINE(ms));
3178 out:
3179     error_propagate(errp, local_err);
3180 }
3181 
3182 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3183                                   Error **errp)
3184 {
3185     PCDIMMDevice *dimm = PC_DIMM(dev);
3186     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3187     MemoryRegion *mr;
3188     uint64_t size;
3189     char *mem_dev;
3190 
3191     mr = ddc->get_memory_region(dimm, errp);
3192     if (!mr) {
3193         return;
3194     }
3195     size = memory_region_size(mr);
3196 
3197     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3198         error_setg(errp, "Hotplugged memory size must be a multiple of "
3199                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3200         return;
3201     }
3202 
3203     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3204     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3205         error_setg(errp, "Memory backend has bad page size. "
3206                    "Use 'memory-backend-file' with correct mem-path.");
3207         goto out;
3208     }
3209 
3210 out:
3211     g_free(mem_dev);
3212 }
3213 
3214 struct sPAPRDIMMState {
3215     PCDIMMDevice *dimm;
3216     uint32_t nr_lmbs;
3217     QTAILQ_ENTRY(sPAPRDIMMState) next;
3218 };
3219 
3220 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3221                                                        PCDIMMDevice *dimm)
3222 {
3223     sPAPRDIMMState *dimm_state = NULL;
3224 
3225     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3226         if (dimm_state->dimm == dimm) {
3227             break;
3228         }
3229     }
3230     return dimm_state;
3231 }
3232 
3233 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3234                                                       uint32_t nr_lmbs,
3235                                                       PCDIMMDevice *dimm)
3236 {
3237     sPAPRDIMMState *ds = NULL;
3238 
3239     /*
3240      * If this request is for a DIMM whose removal had failed earlier
3241      * (due to guest's refusal to remove the LMBs), we would have this
3242      * dimm already in the pending_dimm_unplugs list. In that
3243      * case don't add again.
3244      */
3245     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3246     if (!ds) {
3247         ds = g_malloc0(sizeof(sPAPRDIMMState));
3248         ds->nr_lmbs = nr_lmbs;
3249         ds->dimm = dimm;
3250         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3251     }
3252     return ds;
3253 }
3254 
3255 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3256                                               sPAPRDIMMState *dimm_state)
3257 {
3258     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3259     g_free(dimm_state);
3260 }
3261 
3262 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3263                                                         PCDIMMDevice *dimm)
3264 {
3265     sPAPRDRConnector *drc;
3266     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3267     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3268     uint64_t size = memory_region_size(mr);
3269     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3270     uint32_t avail_lmbs = 0;
3271     uint64_t addr_start, addr;
3272     int i;
3273 
3274     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3275                                          &error_abort);
3276 
3277     addr = addr_start;
3278     for (i = 0; i < nr_lmbs; i++) {
3279         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3280                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3281         g_assert(drc);
3282         if (drc->dev) {
3283             avail_lmbs++;
3284         }
3285         addr += SPAPR_MEMORY_BLOCK_SIZE;
3286     }
3287 
3288     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3289 }
3290 
3291 /* Callback to be called during DRC release. */
3292 void spapr_lmb_release(DeviceState *dev)
3293 {
3294     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3295     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3296 
3297     /* This information will get lost if a migration occurs
3298      * during the unplug process. In this case recover it. */
3299     if (ds == NULL) {
3300         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3301         g_assert(ds);
3302         /* The DRC being examined by the caller at least must be counted */
3303         g_assert(ds->nr_lmbs);
3304     }
3305 
3306     if (--ds->nr_lmbs) {
3307         return;
3308     }
3309 
3310     /*
3311      * Now that all the LMBs have been removed by the guest, call the
3312      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3313      */
3314     pc_dimm_memory_unplug(dev, MACHINE(spapr));
3315     object_unparent(OBJECT(dev));
3316     spapr_pending_dimm_unplugs_remove(spapr, ds);
3317 }
3318 
3319 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3320                                         DeviceState *dev, Error **errp)
3321 {
3322     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3323     Error *local_err = NULL;
3324     PCDIMMDevice *dimm = PC_DIMM(dev);
3325     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3326     MemoryRegion *mr;
3327     uint32_t nr_lmbs;
3328     uint64_t size, addr_start, addr;
3329     int i;
3330     sPAPRDRConnector *drc;
3331 
3332     mr = ddc->get_memory_region(dimm, &local_err);
3333     if (local_err) {
3334         goto out;
3335     }
3336     size = memory_region_size(mr);
3337     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3338 
3339     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3340                                          &local_err);
3341     if (local_err) {
3342         goto out;
3343     }
3344 
3345     /*
3346      * An existing pending dimm state for this DIMM means that there is an
3347      * unplug operation in progress, waiting for the spapr_lmb_release
3348      * callback to complete the job (BQL can't cover that far). In this case,
3349      * bail out to avoid detaching DRCs that were already released.
3350      */
3351     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3352         error_setg(&local_err,
3353                    "Memory unplug already in progress for device %s",
3354                    dev->id);
3355         goto out;
3356     }
3357 
3358     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3359 
3360     addr = addr_start;
3361     for (i = 0; i < nr_lmbs; i++) {
3362         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3363                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3364         g_assert(drc);
3365 
3366         spapr_drc_detach(drc);
3367         addr += SPAPR_MEMORY_BLOCK_SIZE;
3368     }
3369 
3370     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3371                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3372     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3373                                               nr_lmbs, spapr_drc_index(drc));
3374 out:
3375     error_propagate(errp, local_err);
3376 }
3377 
3378 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3379                                            sPAPRMachineState *spapr)
3380 {
3381     PowerPCCPU *cpu = POWERPC_CPU(cs);
3382     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3383     int id = spapr_get_vcpu_id(cpu);
3384     void *fdt;
3385     int offset, fdt_size;
3386     char *nodename;
3387 
3388     fdt = create_device_tree(&fdt_size);
3389     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3390     offset = fdt_add_subnode(fdt, 0, nodename);
3391 
3392     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3393     g_free(nodename);
3394 
3395     *fdt_offset = offset;
3396     return fdt;
3397 }
3398 
3399 /* Callback to be called during DRC release. */
3400 void spapr_core_release(DeviceState *dev)
3401 {
3402     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3403     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3404     CPUCore *cc = CPU_CORE(dev);
3405     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3406 
3407     if (smc->pre_2_10_has_unused_icps) {
3408         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3409         int i;
3410 
3411         for (i = 0; i < cc->nr_threads; i++) {
3412             CPUState *cs = CPU(sc->threads[i]);
3413 
3414             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3415         }
3416     }
3417 
3418     assert(core_slot);
3419     core_slot->cpu = NULL;
3420     object_unparent(OBJECT(dev));
3421 }
3422 
3423 static
3424 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3425                                Error **errp)
3426 {
3427     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3428     int index;
3429     sPAPRDRConnector *drc;
3430     CPUCore *cc = CPU_CORE(dev);
3431 
3432     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3433         error_setg(errp, "Unable to find CPU core with core-id: %d",
3434                    cc->core_id);
3435         return;
3436     }
3437     if (index == 0) {
3438         error_setg(errp, "Boot CPU core may not be unplugged");
3439         return;
3440     }
3441 
3442     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3443                           spapr_vcpu_id(spapr, cc->core_id));
3444     g_assert(drc);
3445 
3446     spapr_drc_detach(drc);
3447 
3448     spapr_hotplug_req_remove_by_index(drc);
3449 }
3450 
3451 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3452                             Error **errp)
3453 {
3454     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3455     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3456     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3457     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3458     CPUCore *cc = CPU_CORE(dev);
3459     CPUState *cs = CPU(core->threads[0]);
3460     sPAPRDRConnector *drc;
3461     Error *local_err = NULL;
3462     CPUArchId *core_slot;
3463     int index;
3464     bool hotplugged = spapr_drc_hotplugged(dev);
3465 
3466     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3467     if (!core_slot) {
3468         error_setg(errp, "Unable to find CPU core with core-id: %d",
3469                    cc->core_id);
3470         return;
3471     }
3472     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3473                           spapr_vcpu_id(spapr, cc->core_id));
3474 
3475     g_assert(drc || !mc->has_hotpluggable_cpus);
3476 
3477     if (drc) {
3478         void *fdt;
3479         int fdt_offset;
3480 
3481         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3482 
3483         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3484         if (local_err) {
3485             g_free(fdt);
3486             error_propagate(errp, local_err);
3487             return;
3488         }
3489 
3490         if (hotplugged) {
3491             /*
3492              * Send hotplug notification interrupt to the guest only
3493              * in case of hotplugged CPUs.
3494              */
3495             spapr_hotplug_req_add_by_index(drc);
3496         } else {
3497             spapr_drc_reset(drc);
3498         }
3499     }
3500 
3501     core_slot->cpu = OBJECT(dev);
3502 
3503     if (smc->pre_2_10_has_unused_icps) {
3504         int i;
3505 
3506         for (i = 0; i < cc->nr_threads; i++) {
3507             cs = CPU(core->threads[i]);
3508             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3509         }
3510     }
3511 }
3512 
3513 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3514                                 Error **errp)
3515 {
3516     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3517     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3518     Error *local_err = NULL;
3519     CPUCore *cc = CPU_CORE(dev);
3520     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3521     const char *type = object_get_typename(OBJECT(dev));
3522     CPUArchId *core_slot;
3523     int index;
3524 
3525     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3526         error_setg(&local_err, "CPU hotplug not supported for this machine");
3527         goto out;
3528     }
3529 
3530     if (strcmp(base_core_type, type)) {
3531         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3532         goto out;
3533     }
3534 
3535     if (cc->core_id % smp_threads) {
3536         error_setg(&local_err, "invalid core id %d", cc->core_id);
3537         goto out;
3538     }
3539 
3540     /*
3541      * In general we should have homogeneous threads-per-core, but old
3542      * (pre hotplug support) machine types allow the last core to have
3543      * reduced threads as a compatibility hack for when we allowed
3544      * total vcpus not a multiple of threads-per-core.
3545      */
3546     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3547         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3548                    cc->nr_threads, smp_threads);
3549         goto out;
3550     }
3551 
3552     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3553     if (!core_slot) {
3554         error_setg(&local_err, "core id %d out of range", cc->core_id);
3555         goto out;
3556     }
3557 
3558     if (core_slot->cpu) {
3559         error_setg(&local_err, "core %d already populated", cc->core_id);
3560         goto out;
3561     }
3562 
3563     numa_cpu_pre_plug(core_slot, dev, &local_err);
3564 
3565 out:
3566     error_propagate(errp, local_err);
3567 }
3568 
3569 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3570                                       DeviceState *dev, Error **errp)
3571 {
3572     MachineState *ms = MACHINE(hotplug_dev);
3573     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3574 
3575     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3576         int node;
3577 
3578         if (!smc->dr_lmb_enabled) {
3579             error_setg(errp, "Memory hotplug not supported for this machine");
3580             return;
3581         }
3582         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3583         if (*errp) {
3584             return;
3585         }
3586         if (node < 0 || node >= MAX_NODES) {
3587             error_setg(errp, "Invaild node %d", node);
3588             return;
3589         }
3590 
3591         spapr_memory_plug(hotplug_dev, dev, node, errp);
3592     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3593         spapr_core_plug(hotplug_dev, dev, errp);
3594     }
3595 }
3596 
3597 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3598                                                 DeviceState *dev, Error **errp)
3599 {
3600     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3601     MachineClass *mc = MACHINE_GET_CLASS(sms);
3602 
3603     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3604         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3605             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3606         } else {
3607             /* NOTE: this means there is a window after guest reset, prior to
3608              * CAS negotiation, where unplug requests will fail due to the
3609              * capability not being detected yet. This is a bit different than
3610              * the case with PCI unplug, where the events will be queued and
3611              * eventually handled by the guest after boot
3612              */
3613             error_setg(errp, "Memory hot unplug not supported for this guest");
3614         }
3615     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3616         if (!mc->has_hotpluggable_cpus) {
3617             error_setg(errp, "CPU hot unplug not supported on this machine");
3618             return;
3619         }
3620         spapr_core_unplug_request(hotplug_dev, dev, errp);
3621     }
3622 }
3623 
3624 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3625                                           DeviceState *dev, Error **errp)
3626 {
3627     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3628         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3629     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3630         spapr_core_pre_plug(hotplug_dev, dev, errp);
3631     }
3632 }
3633 
3634 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3635                                                  DeviceState *dev)
3636 {
3637     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3638         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3639         return HOTPLUG_HANDLER(machine);
3640     }
3641     return NULL;
3642 }
3643 
3644 static CpuInstanceProperties
3645 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3646 {
3647     CPUArchId *core_slot;
3648     MachineClass *mc = MACHINE_GET_CLASS(machine);
3649 
3650     /* make sure possible_cpu are intialized */
3651     mc->possible_cpu_arch_ids(machine);
3652     /* get CPU core slot containing thread that matches cpu_index */
3653     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3654     assert(core_slot);
3655     return core_slot->props;
3656 }
3657 
3658 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3659 {
3660     return idx / smp_cores % nb_numa_nodes;
3661 }
3662 
3663 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3664 {
3665     int i;
3666     const char *core_type;
3667     int spapr_max_cores = max_cpus / smp_threads;
3668     MachineClass *mc = MACHINE_GET_CLASS(machine);
3669 
3670     if (!mc->has_hotpluggable_cpus) {
3671         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3672     }
3673     if (machine->possible_cpus) {
3674         assert(machine->possible_cpus->len == spapr_max_cores);
3675         return machine->possible_cpus;
3676     }
3677 
3678     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3679     if (!core_type) {
3680         error_report("Unable to find sPAPR CPU Core definition");
3681         exit(1);
3682     }
3683 
3684     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3685                              sizeof(CPUArchId) * spapr_max_cores);
3686     machine->possible_cpus->len = spapr_max_cores;
3687     for (i = 0; i < machine->possible_cpus->len; i++) {
3688         int core_id = i * smp_threads;
3689 
3690         machine->possible_cpus->cpus[i].type = core_type;
3691         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3692         machine->possible_cpus->cpus[i].arch_id = core_id;
3693         machine->possible_cpus->cpus[i].props.has_core_id = true;
3694         machine->possible_cpus->cpus[i].props.core_id = core_id;
3695     }
3696     return machine->possible_cpus;
3697 }
3698 
3699 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3700                                 uint64_t *buid, hwaddr *pio,
3701                                 hwaddr *mmio32, hwaddr *mmio64,
3702                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3703 {
3704     /*
3705      * New-style PHB window placement.
3706      *
3707      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3708      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3709      * windows.
3710      *
3711      * Some guest kernels can't work with MMIO windows above 1<<46
3712      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3713      *
3714      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3715      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3716      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3717      * 1TiB 64-bit MMIO windows for each PHB.
3718      */
3719     const uint64_t base_buid = 0x800000020000000ULL;
3720 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3721                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3722     int i;
3723 
3724     /* Sanity check natural alignments */
3725     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3726     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3727     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3728     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3729     /* Sanity check bounds */
3730     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3731                       SPAPR_PCI_MEM32_WIN_SIZE);
3732     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3733                       SPAPR_PCI_MEM64_WIN_SIZE);
3734 
3735     if (index >= SPAPR_MAX_PHBS) {
3736         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3737                    SPAPR_MAX_PHBS - 1);
3738         return;
3739     }
3740 
3741     *buid = base_buid + index;
3742     for (i = 0; i < n_dma; ++i) {
3743         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3744     }
3745 
3746     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3747     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3748     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3749 }
3750 
3751 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3752 {
3753     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3754 
3755     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3756 }
3757 
3758 static void spapr_ics_resend(XICSFabric *dev)
3759 {
3760     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3761 
3762     ics_resend(spapr->ics);
3763 }
3764 
3765 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3766 {
3767     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3768 
3769     return cpu ? ICP(cpu->intc) : NULL;
3770 }
3771 
3772 #define ICS_IRQ_FREE(ics, srcno)   \
3773     (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3774 
3775 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3776 {
3777     int first, i;
3778 
3779     for (first = 0; first < ics->nr_irqs; first += alignnum) {
3780         if (num > (ics->nr_irqs - first)) {
3781             return -1;
3782         }
3783         for (i = first; i < first + num; ++i) {
3784             if (!ICS_IRQ_FREE(ics, i)) {
3785                 break;
3786             }
3787         }
3788         if (i == (first + num)) {
3789             return first;
3790         }
3791     }
3792 
3793     return -1;
3794 }
3795 
3796 /*
3797  * Allocate the IRQ number and set the IRQ type, LSI or MSI
3798  */
3799 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3800 {
3801     ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3802 }
3803 
3804 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3805                     Error **errp)
3806 {
3807     ICSState *ics = spapr->ics;
3808     int irq;
3809 
3810     assert(ics);
3811 
3812     if (irq_hint) {
3813         if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3814             error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3815             return -1;
3816         }
3817         irq = irq_hint;
3818     } else {
3819         irq = ics_find_free_block(ics, 1, 1);
3820         if (irq < 0) {
3821             error_setg(errp, "can't allocate IRQ: no IRQ left");
3822             return -1;
3823         }
3824         irq += ics->offset;
3825     }
3826 
3827     spapr_irq_set_lsi(spapr, irq, lsi);
3828     trace_spapr_irq_alloc(irq);
3829 
3830     return irq;
3831 }
3832 
3833 /*
3834  * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3835  * the block. If align==true, aligns the first IRQ number to num.
3836  */
3837 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3838                           bool align, Error **errp)
3839 {
3840     ICSState *ics = spapr->ics;
3841     int i, first = -1;
3842 
3843     assert(ics);
3844 
3845     /*
3846      * MSIMesage::data is used for storing VIRQ so
3847      * it has to be aligned to num to support multiple
3848      * MSI vectors. MSI-X is not affected by this.
3849      * The hint is used for the first IRQ, the rest should
3850      * be allocated continuously.
3851      */
3852     if (align) {
3853         assert((num == 1) || (num == 2) || (num == 4) ||
3854                (num == 8) || (num == 16) || (num == 32));
3855         first = ics_find_free_block(ics, num, num);
3856     } else {
3857         first = ics_find_free_block(ics, num, 1);
3858     }
3859     if (first < 0) {
3860         error_setg(errp, "can't find a free %d-IRQ block", num);
3861         return -1;
3862     }
3863 
3864     first += ics->offset;
3865     for (i = first; i < first + num; ++i) {
3866         spapr_irq_set_lsi(spapr, i, lsi);
3867     }
3868 
3869     trace_spapr_irq_alloc_block(first, num, lsi, align);
3870 
3871     return first;
3872 }
3873 
3874 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3875 {
3876     ICSState *ics = spapr->ics;
3877     int srcno = irq - ics->offset;
3878     int i;
3879 
3880     if (ics_valid_irq(ics, irq)) {
3881         trace_spapr_irq_free(0, irq, num);
3882         for (i = srcno; i < srcno + num; ++i) {
3883             if (ICS_IRQ_FREE(ics, i)) {
3884                 trace_spapr_irq_free_warn(0, i + ics->offset);
3885             }
3886             memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3887         }
3888     }
3889 }
3890 
3891 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3892 {
3893     ICSState *ics = spapr->ics;
3894 
3895     if (ics_valid_irq(ics, irq)) {
3896         return ics->qirqs[irq - ics->offset];
3897     }
3898 
3899     return NULL;
3900 }
3901 
3902 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3903                                  Monitor *mon)
3904 {
3905     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3906     CPUState *cs;
3907 
3908     CPU_FOREACH(cs) {
3909         PowerPCCPU *cpu = POWERPC_CPU(cs);
3910 
3911         icp_pic_print_info(ICP(cpu->intc), mon);
3912     }
3913 
3914     ics_pic_print_info(spapr->ics, mon);
3915 }
3916 
3917 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3918 {
3919     return cpu->vcpu_id;
3920 }
3921 
3922 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3923 {
3924     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3925     int vcpu_id;
3926 
3927     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3928 
3929     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3930         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3931         error_append_hint(errp, "Adjust the number of cpus to %d "
3932                           "or try to raise the number of threads per core\n",
3933                           vcpu_id * smp_threads / spapr->vsmt);
3934         return;
3935     }
3936 
3937     cpu->vcpu_id = vcpu_id;
3938 }
3939 
3940 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3941 {
3942     CPUState *cs;
3943 
3944     CPU_FOREACH(cs) {
3945         PowerPCCPU *cpu = POWERPC_CPU(cs);
3946 
3947         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3948             return cpu;
3949         }
3950     }
3951 
3952     return NULL;
3953 }
3954 
3955 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3956 {
3957     MachineClass *mc = MACHINE_CLASS(oc);
3958     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3959     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3960     NMIClass *nc = NMI_CLASS(oc);
3961     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3962     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3963     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3964     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3965 
3966     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3967 
3968     /*
3969      * We set up the default / latest behaviour here.  The class_init
3970      * functions for the specific versioned machine types can override
3971      * these details for backwards compatibility
3972      */
3973     mc->init = spapr_machine_init;
3974     mc->reset = spapr_machine_reset;
3975     mc->block_default_type = IF_SCSI;
3976     mc->max_cpus = 1024;
3977     mc->no_parallel = 1;
3978     mc->default_boot_order = "";
3979     mc->default_ram_size = 512 * M_BYTE;
3980     mc->kvm_type = spapr_kvm_type;
3981     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3982     mc->pci_allow_0_address = true;
3983     assert(!mc->get_hotplug_handler);
3984     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3985     hc->pre_plug = spapr_machine_device_pre_plug;
3986     hc->plug = spapr_machine_device_plug;
3987     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3988     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3989     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3990     hc->unplug_request = spapr_machine_device_unplug_request;
3991 
3992     smc->dr_lmb_enabled = true;
3993     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3994     mc->has_hotpluggable_cpus = true;
3995     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3996     fwc->get_dev_path = spapr_get_fw_dev_path;
3997     nc->nmi_monitor_handler = spapr_nmi;
3998     smc->phb_placement = spapr_phb_placement;
3999     vhc->hypercall = emulate_spapr_hypercall;
4000     vhc->hpt_mask = spapr_hpt_mask;
4001     vhc->map_hptes = spapr_map_hptes;
4002     vhc->unmap_hptes = spapr_unmap_hptes;
4003     vhc->store_hpte = spapr_store_hpte;
4004     vhc->get_patbe = spapr_get_patbe;
4005     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4006     xic->ics_get = spapr_ics_get;
4007     xic->ics_resend = spapr_ics_resend;
4008     xic->icp_get = spapr_icp_get;
4009     ispc->print_info = spapr_pic_print_info;
4010     /* Force NUMA node memory size to be a multiple of
4011      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4012      * in which LMBs are represented and hot-added
4013      */
4014     mc->numa_mem_align_shift = 28;
4015 
4016     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4017     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4018     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4019     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4020     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4021     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4022     spapr_caps_add_properties(smc, &error_abort);
4023 }
4024 
4025 static const TypeInfo spapr_machine_info = {
4026     .name          = TYPE_SPAPR_MACHINE,
4027     .parent        = TYPE_MACHINE,
4028     .abstract      = true,
4029     .instance_size = sizeof(sPAPRMachineState),
4030     .instance_init = spapr_instance_init,
4031     .instance_finalize = spapr_machine_finalizefn,
4032     .class_size    = sizeof(sPAPRMachineClass),
4033     .class_init    = spapr_machine_class_init,
4034     .interfaces = (InterfaceInfo[]) {
4035         { TYPE_FW_PATH_PROVIDER },
4036         { TYPE_NMI },
4037         { TYPE_HOTPLUG_HANDLER },
4038         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4039         { TYPE_XICS_FABRIC },
4040         { TYPE_INTERRUPT_STATS_PROVIDER },
4041         { }
4042     },
4043 };
4044 
4045 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4046     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4047                                                     void *data)      \
4048     {                                                                \
4049         MachineClass *mc = MACHINE_CLASS(oc);                        \
4050         spapr_machine_##suffix##_class_options(mc);                  \
4051         if (latest) {                                                \
4052             mc->alias = "pseries";                                   \
4053             mc->is_default = 1;                                      \
4054         }                                                            \
4055     }                                                                \
4056     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
4057     {                                                                \
4058         MachineState *machine = MACHINE(obj);                        \
4059         spapr_machine_##suffix##_instance_options(machine);          \
4060     }                                                                \
4061     static const TypeInfo spapr_machine_##suffix##_info = {          \
4062         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4063         .parent = TYPE_SPAPR_MACHINE,                                \
4064         .class_init = spapr_machine_##suffix##_class_init,           \
4065         .instance_init = spapr_machine_##suffix##_instance_init,     \
4066     };                                                               \
4067     static void spapr_machine_register_##suffix(void)                \
4068     {                                                                \
4069         type_register(&spapr_machine_##suffix##_info);               \
4070     }                                                                \
4071     type_init(spapr_machine_register_##suffix)
4072 
4073 /*
4074  * pseries-2.13
4075  */
4076 static void spapr_machine_2_13_instance_options(MachineState *machine)
4077 {
4078 }
4079 
4080 static void spapr_machine_2_13_class_options(MachineClass *mc)
4081 {
4082     /* Defaults for the latest behaviour inherited from the base class */
4083 }
4084 
4085 DEFINE_SPAPR_MACHINE(2_13, "2.13", true);
4086 
4087 /*
4088  * pseries-2.12
4089  */
4090 #define SPAPR_COMPAT_2_12                                              \
4091     HW_COMPAT_2_12                                                     \
4092     {                                                                  \
4093         .driver = TYPE_POWERPC_CPU,                                    \
4094         .property = "pre-2.13-migration",                              \
4095         .value    = "on",                                              \
4096     },
4097 
4098 static void spapr_machine_2_12_instance_options(MachineState *machine)
4099 {
4100     spapr_machine_2_13_instance_options(machine);
4101 }
4102 
4103 static void spapr_machine_2_12_class_options(MachineClass *mc)
4104 {
4105     spapr_machine_2_13_class_options(mc);
4106     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4107 }
4108 
4109 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4110 
4111 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4112 {
4113     spapr_machine_2_12_instance_options(machine);
4114 }
4115 
4116 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4117 {
4118     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4119 
4120     spapr_machine_2_12_class_options(mc);
4121     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4122     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4123     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4124 }
4125 
4126 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4127 
4128 /*
4129  * pseries-2.11
4130  */
4131 #define SPAPR_COMPAT_2_11                                              \
4132     HW_COMPAT_2_11
4133 
4134 static void spapr_machine_2_11_instance_options(MachineState *machine)
4135 {
4136     spapr_machine_2_12_instance_options(machine);
4137 }
4138 
4139 static void spapr_machine_2_11_class_options(MachineClass *mc)
4140 {
4141     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4142 
4143     spapr_machine_2_12_class_options(mc);
4144     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4145     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4146 }
4147 
4148 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4149 
4150 /*
4151  * pseries-2.10
4152  */
4153 #define SPAPR_COMPAT_2_10                                              \
4154     HW_COMPAT_2_10
4155 
4156 static void spapr_machine_2_10_instance_options(MachineState *machine)
4157 {
4158     spapr_machine_2_11_instance_options(machine);
4159 }
4160 
4161 static void spapr_machine_2_10_class_options(MachineClass *mc)
4162 {
4163     spapr_machine_2_11_class_options(mc);
4164     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4165 }
4166 
4167 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4168 
4169 /*
4170  * pseries-2.9
4171  */
4172 #define SPAPR_COMPAT_2_9                                               \
4173     HW_COMPAT_2_9                                                      \
4174     {                                                                  \
4175         .driver = TYPE_POWERPC_CPU,                                    \
4176         .property = "pre-2.10-migration",                              \
4177         .value    = "on",                                              \
4178     },                                                                 \
4179 
4180 static void spapr_machine_2_9_instance_options(MachineState *machine)
4181 {
4182     spapr_machine_2_10_instance_options(machine);
4183 }
4184 
4185 static void spapr_machine_2_9_class_options(MachineClass *mc)
4186 {
4187     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4188 
4189     spapr_machine_2_10_class_options(mc);
4190     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4191     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4192     smc->pre_2_10_has_unused_icps = true;
4193     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4194 }
4195 
4196 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4197 
4198 /*
4199  * pseries-2.8
4200  */
4201 #define SPAPR_COMPAT_2_8                                        \
4202     HW_COMPAT_2_8                                               \
4203     {                                                           \
4204         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4205         .property = "pcie-extended-configuration-space",        \
4206         .value    = "off",                                      \
4207     },
4208 
4209 static void spapr_machine_2_8_instance_options(MachineState *machine)
4210 {
4211     spapr_machine_2_9_instance_options(machine);
4212 }
4213 
4214 static void spapr_machine_2_8_class_options(MachineClass *mc)
4215 {
4216     spapr_machine_2_9_class_options(mc);
4217     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4218     mc->numa_mem_align_shift = 23;
4219 }
4220 
4221 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4222 
4223 /*
4224  * pseries-2.7
4225  */
4226 #define SPAPR_COMPAT_2_7                            \
4227     HW_COMPAT_2_7                                   \
4228     {                                               \
4229         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4230         .property = "mem_win_size",                 \
4231         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4232     },                                              \
4233     {                                               \
4234         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4235         .property = "mem64_win_size",               \
4236         .value    = "0",                            \
4237     },                                              \
4238     {                                               \
4239         .driver = TYPE_POWERPC_CPU,                 \
4240         .property = "pre-2.8-migration",            \
4241         .value    = "on",                           \
4242     },                                              \
4243     {                                               \
4244         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4245         .property = "pre-2.8-migration",            \
4246         .value    = "on",                           \
4247     },
4248 
4249 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4250                               uint64_t *buid, hwaddr *pio,
4251                               hwaddr *mmio32, hwaddr *mmio64,
4252                               unsigned n_dma, uint32_t *liobns, Error **errp)
4253 {
4254     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4255     const uint64_t base_buid = 0x800000020000000ULL;
4256     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4257     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4258     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4259     const uint32_t max_index = 255;
4260     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4261 
4262     uint64_t ram_top = MACHINE(spapr)->ram_size;
4263     hwaddr phb0_base, phb_base;
4264     int i;
4265 
4266     /* Do we have device memory? */
4267     if (MACHINE(spapr)->maxram_size > ram_top) {
4268         /* Can't just use maxram_size, because there may be an
4269          * alignment gap between normal and device memory regions
4270          */
4271         ram_top = MACHINE(spapr)->device_memory->base +
4272             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4273     }
4274 
4275     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4276 
4277     if (index > max_index) {
4278         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4279                    max_index);
4280         return;
4281     }
4282 
4283     *buid = base_buid + index;
4284     for (i = 0; i < n_dma; ++i) {
4285         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4286     }
4287 
4288     phb_base = phb0_base + index * phb_spacing;
4289     *pio = phb_base + pio_offset;
4290     *mmio32 = phb_base + mmio_offset;
4291     /*
4292      * We don't set the 64-bit MMIO window, relying on the PHB's
4293      * fallback behaviour of automatically splitting a large "32-bit"
4294      * window into contiguous 32-bit and 64-bit windows
4295      */
4296 }
4297 
4298 static void spapr_machine_2_7_instance_options(MachineState *machine)
4299 {
4300     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4301 
4302     spapr_machine_2_8_instance_options(machine);
4303     spapr->use_hotplug_event_source = false;
4304 }
4305 
4306 static void spapr_machine_2_7_class_options(MachineClass *mc)
4307 {
4308     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4309 
4310     spapr_machine_2_8_class_options(mc);
4311     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4312     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4313     smc->phb_placement = phb_placement_2_7;
4314 }
4315 
4316 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4317 
4318 /*
4319  * pseries-2.6
4320  */
4321 #define SPAPR_COMPAT_2_6 \
4322     HW_COMPAT_2_6 \
4323     { \
4324         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4325         .property = "ddw",\
4326         .value    = stringify(off),\
4327     },
4328 
4329 static void spapr_machine_2_6_instance_options(MachineState *machine)
4330 {
4331     spapr_machine_2_7_instance_options(machine);
4332 }
4333 
4334 static void spapr_machine_2_6_class_options(MachineClass *mc)
4335 {
4336     spapr_machine_2_7_class_options(mc);
4337     mc->has_hotpluggable_cpus = false;
4338     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4339 }
4340 
4341 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4342 
4343 /*
4344  * pseries-2.5
4345  */
4346 #define SPAPR_COMPAT_2_5 \
4347     HW_COMPAT_2_5 \
4348     { \
4349         .driver   = "spapr-vlan", \
4350         .property = "use-rx-buffer-pools", \
4351         .value    = "off", \
4352     },
4353 
4354 static void spapr_machine_2_5_instance_options(MachineState *machine)
4355 {
4356     spapr_machine_2_6_instance_options(machine);
4357 }
4358 
4359 static void spapr_machine_2_5_class_options(MachineClass *mc)
4360 {
4361     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4362 
4363     spapr_machine_2_6_class_options(mc);
4364     smc->use_ohci_by_default = true;
4365     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4366 }
4367 
4368 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4369 
4370 /*
4371  * pseries-2.4
4372  */
4373 #define SPAPR_COMPAT_2_4 \
4374         HW_COMPAT_2_4
4375 
4376 static void spapr_machine_2_4_instance_options(MachineState *machine)
4377 {
4378     spapr_machine_2_5_instance_options(machine);
4379 }
4380 
4381 static void spapr_machine_2_4_class_options(MachineClass *mc)
4382 {
4383     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4384 
4385     spapr_machine_2_5_class_options(mc);
4386     smc->dr_lmb_enabled = false;
4387     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4388 }
4389 
4390 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4391 
4392 /*
4393  * pseries-2.3
4394  */
4395 #define SPAPR_COMPAT_2_3 \
4396         HW_COMPAT_2_3 \
4397         {\
4398             .driver   = "spapr-pci-host-bridge",\
4399             .property = "dynamic-reconfiguration",\
4400             .value    = "off",\
4401         },
4402 
4403 static void spapr_machine_2_3_instance_options(MachineState *machine)
4404 {
4405     spapr_machine_2_4_instance_options(machine);
4406 }
4407 
4408 static void spapr_machine_2_3_class_options(MachineClass *mc)
4409 {
4410     spapr_machine_2_4_class_options(mc);
4411     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4412 }
4413 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4414 
4415 /*
4416  * pseries-2.2
4417  */
4418 
4419 #define SPAPR_COMPAT_2_2 \
4420         HW_COMPAT_2_2 \
4421         {\
4422             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4423             .property = "mem_win_size",\
4424             .value    = "0x20000000",\
4425         },
4426 
4427 static void spapr_machine_2_2_instance_options(MachineState *machine)
4428 {
4429     spapr_machine_2_3_instance_options(machine);
4430     machine->suppress_vmdesc = true;
4431 }
4432 
4433 static void spapr_machine_2_2_class_options(MachineClass *mc)
4434 {
4435     spapr_machine_2_3_class_options(mc);
4436     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4437 }
4438 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4439 
4440 /*
4441  * pseries-2.1
4442  */
4443 #define SPAPR_COMPAT_2_1 \
4444         HW_COMPAT_2_1
4445 
4446 static void spapr_machine_2_1_instance_options(MachineState *machine)
4447 {
4448     spapr_machine_2_2_instance_options(machine);
4449 }
4450 
4451 static void spapr_machine_2_1_class_options(MachineClass *mc)
4452 {
4453     spapr_machine_2_2_class_options(mc);
4454     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4455 }
4456 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4457 
4458 static void spapr_machine_register_types(void)
4459 {
4460     type_register_static(&spapr_machine_info);
4461 }
4462 
4463 type_init(spapr_machine_register_types)
4464