1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 /* 147 * Hack ahead. We can't have two devices with the same name and 148 * instance id. So I rename this to pass make check. 149 * Real help from people who knows the hardware is needed. 150 */ 151 .name = "icp/server", 152 .version_id = 1, 153 .minimum_version_id = 1, 154 .needed = pre_2_10_vmstate_dummy_icp_needed, 155 .fields = (const VMStateField[]) { 156 VMSTATE_UNUSED(4), /* uint32_t xirr */ 157 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 158 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 159 VMSTATE_END_OF_LIST() 160 }, 161 }; 162 163 /* 164 * See comment in hw/intc/xics.c:icp_realize() 165 * 166 * You have to remove vmstate_replace_hack_for_ppc() when you remove 167 * the machine types that need the following function. 168 */ 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 /* 176 * See comment in hw/intc/xics.c:icp_realize() 177 * 178 * You have to remove vmstate_replace_hack_for_ppc() when you remove 179 * the machine types that need the following function. 180 */ 181 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 182 { 183 /* 184 * This used to be: 185 * 186 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 187 * (void *)(uintptr_t) i); 188 */ 189 } 190 191 int spapr_max_server_number(SpaprMachineState *spapr) 192 { 193 MachineState *ms = MACHINE(spapr); 194 195 assert(spapr->vsmt); 196 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 197 } 198 199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 200 int smt_threads) 201 { 202 int i, ret = 0; 203 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 204 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 205 int index = spapr_get_vcpu_id(cpu); 206 207 if (cpu->compat_pvr) { 208 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 209 if (ret < 0) { 210 return ret; 211 } 212 } 213 214 /* Build interrupt servers and gservers properties */ 215 for (i = 0; i < smt_threads; i++) { 216 servers_prop[i] = cpu_to_be32(index + i); 217 /* Hack, direct the group queues back to cpu 0 */ 218 gservers_prop[i*2] = cpu_to_be32(index + i); 219 gservers_prop[i*2 + 1] = 0; 220 } 221 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 222 servers_prop, sizeof(*servers_prop) * smt_threads); 223 if (ret < 0) { 224 return ret; 225 } 226 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 227 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 228 229 return ret; 230 } 231 232 static void spapr_dt_pa_features(SpaprMachineState *spapr, 233 PowerPCCPU *cpu, 234 void *fdt, int offset) 235 { 236 uint8_t pa_features_206[] = { 6, 0, 237 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 238 uint8_t pa_features_207[] = { 24, 0, 239 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 240 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 241 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 243 uint8_t pa_features_300[] = { 66, 0, 244 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 245 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 246 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 247 /* 6: DS207 */ 248 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 249 /* 16: Vector */ 250 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 251 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 252 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 253 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 254 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 255 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 256 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 257 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 258 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 259 /* 42: PM, 44: PC RA, 46: SC vec'd */ 260 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 261 /* 48: SIMD, 50: QP BFP, 52: String */ 262 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 263 /* 54: DecFP, 56: DecI, 58: SHA */ 264 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 265 /* 60: NM atomic, 62: RNG */ 266 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 267 }; 268 uint8_t *pa_features = NULL; 269 size_t pa_size; 270 271 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 272 pa_features = pa_features_206; 273 pa_size = sizeof(pa_features_206); 274 } 275 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 276 pa_features = pa_features_207; 277 pa_size = sizeof(pa_features_207); 278 } 279 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 280 pa_features = pa_features_300; 281 pa_size = sizeof(pa_features_300); 282 } 283 if (!pa_features) { 284 return; 285 } 286 287 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 288 /* 289 * Note: we keep CI large pages off by default because a 64K capable 290 * guest provisioned with large pages might otherwise try to map a qemu 291 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 292 * even if that qemu runs on a 4k host. 293 * We dd this bit back here if we are confident this is not an issue 294 */ 295 pa_features[3] |= 0x20; 296 } 297 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 298 pa_features[24] |= 0x80; /* Transactional memory support */ 299 } 300 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 301 /* Workaround for broken kernels that attempt (guest) radix 302 * mode when they can't handle it, if they see the radix bit set 303 * in pa-features. So hide it from them. */ 304 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 305 } 306 307 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 308 } 309 310 static hwaddr spapr_node0_size(MachineState *machine) 311 { 312 if (machine->numa_state->num_nodes) { 313 int i; 314 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 315 if (machine->numa_state->nodes[i].node_mem) { 316 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 317 machine->ram_size); 318 } 319 } 320 } 321 return machine->ram_size; 322 } 323 324 static void add_str(GString *s, const gchar *s1) 325 { 326 g_string_append_len(s, s1, strlen(s1) + 1); 327 } 328 329 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 330 hwaddr start, hwaddr size) 331 { 332 char mem_name[32]; 333 uint64_t mem_reg_property[2]; 334 int off; 335 336 mem_reg_property[0] = cpu_to_be64(start); 337 mem_reg_property[1] = cpu_to_be64(size); 338 339 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 340 off = fdt_add_subnode(fdt, 0, mem_name); 341 _FDT(off); 342 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 343 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 344 sizeof(mem_reg_property)))); 345 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 346 return off; 347 } 348 349 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 350 { 351 MemoryDeviceInfoList *info; 352 353 for (info = list; info; info = info->next) { 354 MemoryDeviceInfo *value = info->value; 355 356 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 357 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 358 359 if (addr >= pcdimm_info->addr && 360 addr < (pcdimm_info->addr + pcdimm_info->size)) { 361 return pcdimm_info->node; 362 } 363 } 364 } 365 366 return -1; 367 } 368 369 struct sPAPRDrconfCellV2 { 370 uint32_t seq_lmbs; 371 uint64_t base_addr; 372 uint32_t drc_index; 373 uint32_t aa_index; 374 uint32_t flags; 375 } QEMU_PACKED; 376 377 typedef struct DrconfCellQueue { 378 struct sPAPRDrconfCellV2 cell; 379 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 380 } DrconfCellQueue; 381 382 static DrconfCellQueue * 383 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 384 uint32_t drc_index, uint32_t aa_index, 385 uint32_t flags) 386 { 387 DrconfCellQueue *elem; 388 389 elem = g_malloc0(sizeof(*elem)); 390 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 391 elem->cell.base_addr = cpu_to_be64(base_addr); 392 elem->cell.drc_index = cpu_to_be32(drc_index); 393 elem->cell.aa_index = cpu_to_be32(aa_index); 394 elem->cell.flags = cpu_to_be32(flags); 395 396 return elem; 397 } 398 399 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 400 int offset, MemoryDeviceInfoList *dimms) 401 { 402 MachineState *machine = MACHINE(spapr); 403 uint8_t *int_buf, *cur_index; 404 int ret; 405 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 406 uint64_t addr, cur_addr, size; 407 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 408 uint64_t mem_end = machine->device_memory->base + 409 memory_region_size(&machine->device_memory->mr); 410 uint32_t node, buf_len, nr_entries = 0; 411 SpaprDrc *drc; 412 DrconfCellQueue *elem, *next; 413 MemoryDeviceInfoList *info; 414 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 415 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 416 417 /* Entry to cover RAM and the gap area */ 418 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 419 SPAPR_LMB_FLAGS_RESERVED | 420 SPAPR_LMB_FLAGS_DRC_INVALID); 421 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 422 nr_entries++; 423 424 cur_addr = machine->device_memory->base; 425 for (info = dimms; info; info = info->next) { 426 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 427 428 addr = di->addr; 429 size = di->size; 430 node = di->node; 431 432 /* 433 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 434 * area is marked hotpluggable in the next iteration for the bigger 435 * chunk including the NVDIMM occupied area. 436 */ 437 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 438 continue; 439 440 /* Entry for hot-pluggable area */ 441 if (cur_addr < addr) { 442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 443 g_assert(drc); 444 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 445 cur_addr, spapr_drc_index(drc), -1, 0); 446 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 447 nr_entries++; 448 } 449 450 /* Entry for DIMM */ 451 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 452 g_assert(drc); 453 elem = spapr_get_drconf_cell(size / lmb_size, addr, 454 spapr_drc_index(drc), node, 455 (SPAPR_LMB_FLAGS_ASSIGNED | 456 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 457 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 458 nr_entries++; 459 cur_addr = addr + size; 460 } 461 462 /* Entry for remaining hotpluggable area */ 463 if (cur_addr < mem_end) { 464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 465 g_assert(drc); 466 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 467 cur_addr, spapr_drc_index(drc), -1, 0); 468 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 469 nr_entries++; 470 } 471 472 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 473 int_buf = cur_index = g_malloc0(buf_len); 474 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 475 cur_index += sizeof(nr_entries); 476 477 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 478 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 479 cur_index += sizeof(elem->cell); 480 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 481 g_free(elem); 482 } 483 484 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 485 g_free(int_buf); 486 if (ret < 0) { 487 return -1; 488 } 489 return 0; 490 } 491 492 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 493 int offset, MemoryDeviceInfoList *dimms) 494 { 495 MachineState *machine = MACHINE(spapr); 496 int i, ret; 497 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 498 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 499 uint32_t nr_lmbs = (machine->device_memory->base + 500 memory_region_size(&machine->device_memory->mr)) / 501 lmb_size; 502 uint32_t *int_buf, *cur_index, buf_len; 503 504 /* 505 * Allocate enough buffer size to fit in ibm,dynamic-memory 506 */ 507 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 508 cur_index = int_buf = g_malloc0(buf_len); 509 int_buf[0] = cpu_to_be32(nr_lmbs); 510 cur_index++; 511 for (i = 0; i < nr_lmbs; i++) { 512 uint64_t addr = i * lmb_size; 513 uint32_t *dynamic_memory = cur_index; 514 515 if (i >= device_lmb_start) { 516 SpaprDrc *drc; 517 518 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 519 g_assert(drc); 520 521 dynamic_memory[0] = cpu_to_be32(addr >> 32); 522 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 523 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 524 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 525 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 526 if (memory_region_present(get_system_memory(), addr)) { 527 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 528 } else { 529 dynamic_memory[5] = cpu_to_be32(0); 530 } 531 } else { 532 /* 533 * LMB information for RMA, boot time RAM and gap b/n RAM and 534 * device memory region -- all these are marked as reserved 535 * and as having no valid DRC. 536 */ 537 dynamic_memory[0] = cpu_to_be32(addr >> 32); 538 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 539 dynamic_memory[2] = cpu_to_be32(0); 540 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 541 dynamic_memory[4] = cpu_to_be32(-1); 542 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 543 SPAPR_LMB_FLAGS_DRC_INVALID); 544 } 545 546 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 547 } 548 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 549 g_free(int_buf); 550 if (ret < 0) { 551 return -1; 552 } 553 return 0; 554 } 555 556 /* 557 * Adds ibm,dynamic-reconfiguration-memory node. 558 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 559 * of this device tree node. 560 */ 561 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 562 void *fdt) 563 { 564 MachineState *machine = MACHINE(spapr); 565 int ret, offset; 566 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 567 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 568 cpu_to_be32(lmb_size & 0xffffffff)}; 569 MemoryDeviceInfoList *dimms = NULL; 570 571 /* Don't create the node if there is no device memory. */ 572 if (!machine->device_memory) { 573 return 0; 574 } 575 576 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 577 578 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 579 sizeof(prop_lmb_size)); 580 if (ret < 0) { 581 return ret; 582 } 583 584 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 585 if (ret < 0) { 586 return ret; 587 } 588 589 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 590 if (ret < 0) { 591 return ret; 592 } 593 594 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 595 dimms = qmp_memory_device_list(); 596 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 597 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 598 } else { 599 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 600 } 601 qapi_free_MemoryDeviceInfoList(dimms); 602 603 if (ret < 0) { 604 return ret; 605 } 606 607 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 608 609 return ret; 610 } 611 612 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 613 { 614 MachineState *machine = MACHINE(spapr); 615 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 616 hwaddr mem_start, node_size; 617 int i, nb_nodes = machine->numa_state->num_nodes; 618 NodeInfo *nodes = machine->numa_state->nodes; 619 620 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 621 if (!nodes[i].node_mem) { 622 continue; 623 } 624 if (mem_start >= machine->ram_size) { 625 node_size = 0; 626 } else { 627 node_size = nodes[i].node_mem; 628 if (node_size > machine->ram_size - mem_start) { 629 node_size = machine->ram_size - mem_start; 630 } 631 } 632 if (!mem_start) { 633 /* spapr_machine_init() checks for rma_size <= node0_size 634 * already */ 635 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 636 mem_start += spapr->rma_size; 637 node_size -= spapr->rma_size; 638 } 639 for ( ; node_size; ) { 640 hwaddr sizetmp = pow2floor(node_size); 641 642 /* mem_start != 0 here */ 643 if (ctzl(mem_start) < ctzl(sizetmp)) { 644 sizetmp = 1ULL << ctzl(mem_start); 645 } 646 647 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 648 node_size -= sizetmp; 649 mem_start += sizetmp; 650 } 651 } 652 653 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 654 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 655 int ret; 656 657 g_assert(smc->dr_lmb_enabled); 658 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 659 if (ret) { 660 return ret; 661 } 662 } 663 664 return 0; 665 } 666 667 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 668 SpaprMachineState *spapr) 669 { 670 MachineState *ms = MACHINE(spapr); 671 PowerPCCPU *cpu = POWERPC_CPU(cs); 672 CPUPPCState *env = &cpu->env; 673 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 674 int index = spapr_get_vcpu_id(cpu); 675 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 676 0xffffffff, 0xffffffff}; 677 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 678 : SPAPR_TIMEBASE_FREQ; 679 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 680 uint32_t page_sizes_prop[64]; 681 size_t page_sizes_prop_size; 682 unsigned int smp_threads = ms->smp.threads; 683 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 684 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 685 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 686 SpaprDrc *drc; 687 int drc_index; 688 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 689 int i; 690 691 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 692 if (drc) { 693 drc_index = spapr_drc_index(drc); 694 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 695 } 696 697 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 698 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 699 700 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 701 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 702 env->dcache_line_size))); 703 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 704 env->dcache_line_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 706 env->icache_line_size))); 707 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 708 env->icache_line_size))); 709 710 if (pcc->l1_dcache_size) { 711 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 712 pcc->l1_dcache_size))); 713 } else { 714 warn_report("Unknown L1 dcache size for cpu"); 715 } 716 if (pcc->l1_icache_size) { 717 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 718 pcc->l1_icache_size))); 719 } else { 720 warn_report("Unknown L1 icache size for cpu"); 721 } 722 723 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 724 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 725 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 727 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 728 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 729 730 if (ppc_has_spr(cpu, SPR_PURR)) { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 732 } 733 if (ppc_has_spr(cpu, SPR_PURR)) { 734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 735 } 736 737 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 738 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 739 segs, sizeof(segs)))); 740 } 741 742 /* Advertise VSX (vector extensions) if available 743 * 1 == VMX / Altivec available 744 * 2 == VSX available 745 * 746 * Only CPUs for which we create core types in spapr_cpu_core.c 747 * are possible, and all of those have VMX */ 748 if (env->insns_flags & PPC_ALTIVEC) { 749 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 751 } else { 752 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 753 } 754 } 755 756 /* Advertise DFP (Decimal Floating Point) if available 757 * 0 / no property == no DFP 758 * 1 == DFP available */ 759 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 760 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 761 } 762 763 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 764 sizeof(page_sizes_prop)); 765 if (page_sizes_prop_size) { 766 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 767 page_sizes_prop, page_sizes_prop_size))); 768 } 769 770 spapr_dt_pa_features(spapr, cpu, fdt, offset); 771 772 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 773 cs->cpu_index / vcpus_per_socket))); 774 775 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 776 pft_size_prop, sizeof(pft_size_prop)))); 777 778 if (ms->numa_state->num_nodes > 1) { 779 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 780 } 781 782 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 783 784 if (pcc->radix_page_info) { 785 for (i = 0; i < pcc->radix_page_info->count; i++) { 786 radix_AP_encodings[i] = 787 cpu_to_be32(pcc->radix_page_info->entries[i]); 788 } 789 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 790 radix_AP_encodings, 791 pcc->radix_page_info->count * 792 sizeof(radix_AP_encodings[0])))); 793 } 794 795 /* 796 * We set this property to let the guest know that it can use the large 797 * decrementer and its width in bits. 798 */ 799 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 800 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 801 pcc->lrg_decr_bits))); 802 } 803 804 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 805 int cpus_offset) 806 { 807 PowerPCCPU *cpu = POWERPC_CPU(cs); 808 int index = spapr_get_vcpu_id(cpu); 809 DeviceClass *dc = DEVICE_GET_CLASS(cs); 810 g_autofree char *nodename = NULL; 811 int offset; 812 813 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 814 return; 815 } 816 817 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 818 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 819 _FDT(offset); 820 spapr_dt_cpu(cs, fdt, offset, spapr); 821 } 822 823 824 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 825 { 826 CPUState **rev; 827 CPUState *cs; 828 int n_cpus; 829 int cpus_offset; 830 int i; 831 832 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 833 _FDT(cpus_offset); 834 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 835 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 836 837 /* 838 * We walk the CPUs in reverse order to ensure that CPU DT nodes 839 * created by fdt_add_subnode() end up in the right order in FDT 840 * for the guest kernel the enumerate the CPUs correctly. 841 * 842 * The CPU list cannot be traversed in reverse order, so we need 843 * to do extra work. 844 */ 845 n_cpus = 0; 846 rev = NULL; 847 CPU_FOREACH(cs) { 848 rev = g_renew(CPUState *, rev, n_cpus + 1); 849 rev[n_cpus++] = cs; 850 } 851 852 for (i = n_cpus - 1; i >= 0; i--) { 853 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 854 } 855 856 g_free(rev); 857 } 858 859 static int spapr_dt_rng(void *fdt) 860 { 861 int node; 862 int ret; 863 864 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 865 if (node <= 0) { 866 return -1; 867 } 868 ret = fdt_setprop_string(fdt, node, "device_type", 869 "ibm,platform-facilities"); 870 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 871 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 872 873 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 874 if (node <= 0) { 875 return -1; 876 } 877 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 878 879 return ret ? -1 : 0; 880 } 881 882 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 883 { 884 MachineState *ms = MACHINE(spapr); 885 int rtas; 886 GString *hypertas = g_string_sized_new(256); 887 GString *qemu_hypertas = g_string_sized_new(256); 888 uint32_t lrdr_capacity[] = { 889 0, 890 0, 891 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 892 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 893 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 894 }; 895 896 /* Do we have device memory? */ 897 if (MACHINE(spapr)->device_memory) { 898 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 899 memory_region_size(&MACHINE(spapr)->device_memory->mr); 900 901 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 902 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 903 } 904 905 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 906 907 /* hypertas */ 908 add_str(hypertas, "hcall-pft"); 909 add_str(hypertas, "hcall-term"); 910 add_str(hypertas, "hcall-dabr"); 911 add_str(hypertas, "hcall-interrupt"); 912 add_str(hypertas, "hcall-tce"); 913 add_str(hypertas, "hcall-vio"); 914 add_str(hypertas, "hcall-splpar"); 915 add_str(hypertas, "hcall-join"); 916 add_str(hypertas, "hcall-bulk"); 917 add_str(hypertas, "hcall-set-mode"); 918 add_str(hypertas, "hcall-sprg0"); 919 add_str(hypertas, "hcall-copy"); 920 add_str(hypertas, "hcall-debug"); 921 add_str(hypertas, "hcall-vphn"); 922 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 923 add_str(hypertas, "hcall-rpt-invalidate"); 924 } 925 926 add_str(qemu_hypertas, "hcall-memop1"); 927 928 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 929 add_str(hypertas, "hcall-multi-tce"); 930 } 931 932 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 933 add_str(hypertas, "hcall-hpt-resize"); 934 } 935 936 add_str(hypertas, "hcall-watchdog"); 937 938 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 939 hypertas->str, hypertas->len)); 940 g_string_free(hypertas, TRUE); 941 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 942 qemu_hypertas->str, qemu_hypertas->len)); 943 g_string_free(qemu_hypertas, TRUE); 944 945 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 946 947 /* 948 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 949 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 950 * 951 * The system reset requirements are driven by existing Linux and PowerVM 952 * implementation which (contrary to PAPR) saves r3 in the error log 953 * structure like machine check, so Linux expects to find the saved r3 954 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 955 * does not look at the error value). 956 * 957 * System reset interrupts are not subject to interlock like machine 958 * check, so this memory area could be corrupted if the sreset is 959 * interrupted by a machine check (or vice versa) if it was shared. To 960 * prevent this, system reset uses per-CPU areas for the sreset save 961 * area. A system reset that interrupts a system reset handler could 962 * still overwrite this area, but Linux doesn't try to recover in that 963 * case anyway. 964 * 965 * The extra 8 bytes is required because Linux's FWNMI error log check 966 * is off-by-one. 967 * 968 * RTAS_MIN_SIZE is required for the RTAS blob itself. 969 */ 970 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 971 RTAS_ERROR_LOG_MAX + 972 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 973 sizeof(uint64_t))); 974 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 975 RTAS_ERROR_LOG_MAX)); 976 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 977 RTAS_EVENT_SCAN_RATE)); 978 979 g_assert(msi_nonbroken); 980 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 981 982 /* 983 * According to PAPR, rtas ibm,os-term does not guarantee a return 984 * back to the guest cpu. 985 * 986 * While an additional ibm,extended-os-term property indicates 987 * that rtas call return will always occur. Set this property. 988 */ 989 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 990 991 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 992 lrdr_capacity, sizeof(lrdr_capacity))); 993 994 spapr_dt_rtas_tokens(fdt, rtas); 995 } 996 997 /* 998 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 999 * and the XIVE features that the guest may request and thus the valid 1000 * values for bytes 23..26 of option vector 5: 1001 */ 1002 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1003 int chosen) 1004 { 1005 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1006 1007 char val[2 * 4] = { 1008 23, 0x00, /* XICS / XIVE mode */ 1009 24, 0x00, /* Hash/Radix, filled in below. */ 1010 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1011 26, 0x40, /* Radix options: GTSE == yes. */ 1012 }; 1013 1014 if (spapr->irq->xics && spapr->irq->xive) { 1015 val[1] = SPAPR_OV5_XIVE_BOTH; 1016 } else if (spapr->irq->xive) { 1017 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1018 } else { 1019 assert(spapr->irq->xics); 1020 val[1] = SPAPR_OV5_XIVE_LEGACY; 1021 } 1022 1023 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1024 first_ppc_cpu->compat_pvr)) { 1025 /* 1026 * If we're in a pre POWER9 compat mode then the guest should 1027 * do hash and use the legacy interrupt mode 1028 */ 1029 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1030 val[3] = 0x00; /* Hash */ 1031 spapr_check_mmu_mode(false); 1032 } else if (kvm_enabled()) { 1033 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1034 val[3] = 0x80; /* OV5_MMU_BOTH */ 1035 } else if (kvmppc_has_cap_mmu_radix()) { 1036 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1037 } else { 1038 val[3] = 0x00; /* Hash */ 1039 } 1040 } else { 1041 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1042 val[3] = 0xC0; 1043 } 1044 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1045 val, sizeof(val))); 1046 } 1047 1048 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1049 { 1050 MachineState *machine = MACHINE(spapr); 1051 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1052 int chosen; 1053 1054 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1055 1056 if (reset) { 1057 const char *boot_device = spapr->boot_device; 1058 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1059 size_t cb = 0; 1060 g_autofree char *bootlist = get_boot_devices_list(&cb); 1061 1062 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1063 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1064 machine->kernel_cmdline)); 1065 } 1066 1067 if (spapr->initrd_size) { 1068 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1069 spapr->initrd_base)); 1070 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1071 spapr->initrd_base + spapr->initrd_size)); 1072 } 1073 1074 if (spapr->kernel_size) { 1075 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1076 cpu_to_be64(spapr->kernel_size) }; 1077 1078 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1079 &kprop, sizeof(kprop))); 1080 if (spapr->kernel_le) { 1081 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1082 } 1083 } 1084 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1085 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1086 } 1087 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1088 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1089 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1090 1091 if (cb && bootlist) { 1092 int i; 1093 1094 for (i = 0; i < cb; i++) { 1095 if (bootlist[i] == '\n') { 1096 bootlist[i] = ' '; 1097 } 1098 } 1099 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1100 } 1101 1102 if (boot_device && strlen(boot_device)) { 1103 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1104 } 1105 1106 if (spapr->want_stdout_path && stdout_path) { 1107 /* 1108 * "linux,stdout-path" and "stdout" properties are 1109 * deprecated by linux kernel. New platforms should only 1110 * use the "stdout-path" property. Set the new property 1111 * and continue using older property to remain compatible 1112 * with the existing firmware. 1113 */ 1114 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1115 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1116 } 1117 1118 /* 1119 * We can deal with BAR reallocation just fine, advertise it 1120 * to the guest 1121 */ 1122 if (smc->linux_pci_probe) { 1123 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1124 } 1125 1126 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1127 } 1128 1129 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1130 1131 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1132 } 1133 1134 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1135 { 1136 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1137 * KVM to work under pHyp with some guest co-operation */ 1138 int hypervisor; 1139 uint8_t hypercall[16]; 1140 1141 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1142 /* indicate KVM hypercall interface */ 1143 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1144 if (kvmppc_has_cap_fixup_hcalls()) { 1145 /* 1146 * Older KVM versions with older guest kernels were broken 1147 * with the magic page, don't allow the guest to map it. 1148 */ 1149 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1150 sizeof(hypercall))) { 1151 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1152 hypercall, sizeof(hypercall))); 1153 } 1154 } 1155 } 1156 1157 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1158 { 1159 MachineState *machine = MACHINE(spapr); 1160 MachineClass *mc = MACHINE_GET_CLASS(machine); 1161 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1162 uint32_t root_drc_type_mask = 0; 1163 int ret; 1164 void *fdt; 1165 SpaprPhbState *phb; 1166 char *buf; 1167 1168 fdt = g_malloc0(space); 1169 _FDT((fdt_create_empty_tree(fdt, space))); 1170 1171 /* Root node */ 1172 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1173 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1174 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1175 1176 /* Guest UUID & Name*/ 1177 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1178 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1179 if (qemu_uuid_set) { 1180 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1181 } 1182 g_free(buf); 1183 1184 if (qemu_get_vm_name()) { 1185 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1186 qemu_get_vm_name())); 1187 } 1188 1189 /* Host Model & Serial Number */ 1190 if (spapr->host_model) { 1191 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1192 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1193 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1194 g_free(buf); 1195 } 1196 1197 if (spapr->host_serial) { 1198 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1199 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1200 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1201 g_free(buf); 1202 } 1203 1204 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1205 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1206 1207 /* /interrupt controller */ 1208 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1209 1210 ret = spapr_dt_memory(spapr, fdt); 1211 if (ret < 0) { 1212 error_report("couldn't setup memory nodes in fdt"); 1213 exit(1); 1214 } 1215 1216 /* /vdevice */ 1217 spapr_dt_vdevice(spapr->vio_bus, fdt); 1218 1219 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1220 ret = spapr_dt_rng(fdt); 1221 if (ret < 0) { 1222 error_report("could not set up rng device in the fdt"); 1223 exit(1); 1224 } 1225 } 1226 1227 QLIST_FOREACH(phb, &spapr->phbs, list) { 1228 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1229 if (ret < 0) { 1230 error_report("couldn't setup PCI devices in fdt"); 1231 exit(1); 1232 } 1233 } 1234 1235 spapr_dt_cpus(fdt, spapr); 1236 1237 /* ibm,drc-indexes and friends */ 1238 if (smc->dr_lmb_enabled) { 1239 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1240 } 1241 if (smc->dr_phb_enabled) { 1242 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1243 } 1244 if (mc->nvdimm_supported) { 1245 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1246 } 1247 if (root_drc_type_mask) { 1248 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1249 } 1250 1251 if (mc->has_hotpluggable_cpus) { 1252 int offset = fdt_path_offset(fdt, "/cpus"); 1253 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1254 if (ret < 0) { 1255 error_report("Couldn't set up CPU DR device tree properties"); 1256 exit(1); 1257 } 1258 } 1259 1260 /* /event-sources */ 1261 spapr_dt_events(spapr, fdt); 1262 1263 /* /rtas */ 1264 spapr_dt_rtas(spapr, fdt); 1265 1266 /* /chosen */ 1267 spapr_dt_chosen(spapr, fdt, reset); 1268 1269 /* /hypervisor */ 1270 if (kvm_enabled()) { 1271 spapr_dt_hypervisor(spapr, fdt); 1272 } 1273 1274 /* Build memory reserve map */ 1275 if (reset) { 1276 if (spapr->kernel_size) { 1277 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1278 spapr->kernel_size))); 1279 } 1280 if (spapr->initrd_size) { 1281 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1282 spapr->initrd_size))); 1283 } 1284 } 1285 1286 /* NVDIMM devices */ 1287 if (mc->nvdimm_supported) { 1288 spapr_dt_persistent_memory(spapr, fdt); 1289 } 1290 1291 return fdt; 1292 } 1293 1294 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1295 { 1296 SpaprMachineState *spapr = opaque; 1297 1298 return (addr & 0x0fffffff) + spapr->kernel_addr; 1299 } 1300 1301 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1302 PowerPCCPU *cpu) 1303 { 1304 CPUPPCState *env = &cpu->env; 1305 1306 /* The TCG path should also be holding the BQL at this point */ 1307 g_assert(bql_locked()); 1308 1309 g_assert(!vhyp_cpu_in_nested(cpu)); 1310 1311 if (FIELD_EX64(env->msr, MSR, PR)) { 1312 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1313 env->gpr[3] = H_PRIVILEGE; 1314 } else { 1315 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1316 } 1317 } 1318 1319 struct LPCRSyncState { 1320 target_ulong value; 1321 target_ulong mask; 1322 }; 1323 1324 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1325 { 1326 struct LPCRSyncState *s = arg.host_ptr; 1327 PowerPCCPU *cpu = POWERPC_CPU(cs); 1328 CPUPPCState *env = &cpu->env; 1329 target_ulong lpcr; 1330 1331 cpu_synchronize_state(cs); 1332 lpcr = env->spr[SPR_LPCR]; 1333 lpcr &= ~s->mask; 1334 lpcr |= s->value; 1335 ppc_store_lpcr(cpu, lpcr); 1336 } 1337 1338 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1339 { 1340 CPUState *cs; 1341 struct LPCRSyncState s = { 1342 .value = value, 1343 .mask = mask 1344 }; 1345 CPU_FOREACH(cs) { 1346 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1347 } 1348 } 1349 1350 /* May be used when the machine is not running */ 1351 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1352 { 1353 CPUState *cs; 1354 CPU_FOREACH(cs) { 1355 PowerPCCPU *cpu = POWERPC_CPU(cs); 1356 CPUPPCState *env = &cpu->env; 1357 target_ulong lpcr; 1358 1359 lpcr = env->spr[SPR_LPCR]; 1360 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1361 ppc_store_lpcr(cpu, lpcr); 1362 } 1363 } 1364 1365 1366 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1367 target_ulong lpid, ppc_v3_pate_t *entry) 1368 { 1369 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1370 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1371 1372 if (!spapr_cpu->in_nested) { 1373 assert(lpid == 0); 1374 1375 /* Copy PATE1:GR into PATE0:HR */ 1376 entry->dw0 = spapr->patb_entry & PATE0_HR; 1377 entry->dw1 = spapr->patb_entry; 1378 1379 } else { 1380 uint64_t patb, pats; 1381 1382 assert(lpid != 0); 1383 1384 patb = spapr->nested_ptcr & PTCR_PATB; 1385 pats = spapr->nested_ptcr & PTCR_PATS; 1386 1387 /* Check if partition table is properly aligned */ 1388 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1389 return false; 1390 } 1391 1392 /* Calculate number of entries */ 1393 pats = 1ull << (pats + 12 - 4); 1394 if (pats <= lpid) { 1395 return false; 1396 } 1397 1398 /* Grab entry */ 1399 patb += 16 * lpid; 1400 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1401 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1402 } 1403 1404 return true; 1405 } 1406 1407 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1408 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1409 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1410 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1411 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1412 1413 /* 1414 * Get the fd to access the kernel htab, re-opening it if necessary 1415 */ 1416 static int get_htab_fd(SpaprMachineState *spapr) 1417 { 1418 Error *local_err = NULL; 1419 1420 if (spapr->htab_fd >= 0) { 1421 return spapr->htab_fd; 1422 } 1423 1424 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1425 if (spapr->htab_fd < 0) { 1426 error_report_err(local_err); 1427 } 1428 1429 return spapr->htab_fd; 1430 } 1431 1432 void close_htab_fd(SpaprMachineState *spapr) 1433 { 1434 if (spapr->htab_fd >= 0) { 1435 close(spapr->htab_fd); 1436 } 1437 spapr->htab_fd = -1; 1438 } 1439 1440 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1441 { 1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1443 1444 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1445 } 1446 1447 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1448 { 1449 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1450 1451 assert(kvm_enabled()); 1452 1453 if (!spapr->htab) { 1454 return 0; 1455 } 1456 1457 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1458 } 1459 1460 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1461 hwaddr ptex, int n) 1462 { 1463 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1464 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1465 1466 if (!spapr->htab) { 1467 /* 1468 * HTAB is controlled by KVM. Fetch into temporary buffer 1469 */ 1470 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1471 kvmppc_read_hptes(hptes, ptex, n); 1472 return hptes; 1473 } 1474 1475 /* 1476 * HTAB is controlled by QEMU. Just point to the internally 1477 * accessible PTEG. 1478 */ 1479 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1480 } 1481 1482 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1483 const ppc_hash_pte64_t *hptes, 1484 hwaddr ptex, int n) 1485 { 1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1487 1488 if (!spapr->htab) { 1489 g_free((void *)hptes); 1490 } 1491 1492 /* Nothing to do for qemu managed HPT */ 1493 } 1494 1495 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1496 uint64_t pte0, uint64_t pte1) 1497 { 1498 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1499 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1500 1501 if (!spapr->htab) { 1502 kvmppc_write_hpte(ptex, pte0, pte1); 1503 } else { 1504 if (pte0 & HPTE64_V_VALID) { 1505 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1506 /* 1507 * When setting valid, we write PTE1 first. This ensures 1508 * proper synchronization with the reading code in 1509 * ppc_hash64_pteg_search() 1510 */ 1511 smp_wmb(); 1512 stq_p(spapr->htab + offset, pte0); 1513 } else { 1514 stq_p(spapr->htab + offset, pte0); 1515 /* 1516 * When clearing it we set PTE0 first. This ensures proper 1517 * synchronization with the reading code in 1518 * ppc_hash64_pteg_search() 1519 */ 1520 smp_wmb(); 1521 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1522 } 1523 } 1524 } 1525 1526 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1527 uint64_t pte1) 1528 { 1529 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1530 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1531 1532 if (!spapr->htab) { 1533 /* There should always be a hash table when this is called */ 1534 error_report("spapr_hpte_set_c called with no hash table !"); 1535 return; 1536 } 1537 1538 /* The HW performs a non-atomic byte update */ 1539 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1540 } 1541 1542 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1543 uint64_t pte1) 1544 { 1545 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1546 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1547 1548 if (!spapr->htab) { 1549 /* There should always be a hash table when this is called */ 1550 error_report("spapr_hpte_set_r called with no hash table !"); 1551 return; 1552 } 1553 1554 /* The HW performs a non-atomic byte update */ 1555 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1556 } 1557 1558 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1559 { 1560 int shift; 1561 1562 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1563 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1564 * that's much more than is needed for Linux guests */ 1565 shift = ctz64(pow2ceil(ramsize)) - 7; 1566 shift = MAX(shift, 18); /* Minimum architected size */ 1567 shift = MIN(shift, 46); /* Maximum architected size */ 1568 return shift; 1569 } 1570 1571 void spapr_free_hpt(SpaprMachineState *spapr) 1572 { 1573 qemu_vfree(spapr->htab); 1574 spapr->htab = NULL; 1575 spapr->htab_shift = 0; 1576 close_htab_fd(spapr); 1577 } 1578 1579 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1580 { 1581 ERRP_GUARD(); 1582 long rc; 1583 1584 /* Clean up any HPT info from a previous boot */ 1585 spapr_free_hpt(spapr); 1586 1587 rc = kvmppc_reset_htab(shift); 1588 1589 if (rc == -EOPNOTSUPP) { 1590 error_setg(errp, "HPT not supported in nested guests"); 1591 return -EOPNOTSUPP; 1592 } 1593 1594 if (rc < 0) { 1595 /* kernel-side HPT needed, but couldn't allocate one */ 1596 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1597 shift); 1598 error_append_hint(errp, "Try smaller maxmem?\n"); 1599 return -errno; 1600 } else if (rc > 0) { 1601 /* kernel-side HPT allocated */ 1602 if (rc != shift) { 1603 error_setg(errp, 1604 "Requested order %d HPT, but kernel allocated order %ld", 1605 shift, rc); 1606 error_append_hint(errp, "Try smaller maxmem?\n"); 1607 return -ENOSPC; 1608 } 1609 1610 spapr->htab_shift = shift; 1611 spapr->htab = NULL; 1612 } else { 1613 /* kernel-side HPT not needed, allocate in userspace instead */ 1614 size_t size = 1ULL << shift; 1615 int i; 1616 1617 spapr->htab = qemu_memalign(size, size); 1618 memset(spapr->htab, 0, size); 1619 spapr->htab_shift = shift; 1620 1621 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1622 DIRTY_HPTE(HPTE(spapr->htab, i)); 1623 } 1624 } 1625 /* We're setting up a hash table, so that means we're not radix */ 1626 spapr->patb_entry = 0; 1627 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1628 return 0; 1629 } 1630 1631 void spapr_setup_hpt(SpaprMachineState *spapr) 1632 { 1633 int hpt_shift; 1634 1635 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1636 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1637 } else { 1638 uint64_t current_ram_size; 1639 1640 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1641 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1642 } 1643 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1644 1645 if (kvm_enabled()) { 1646 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1647 1648 /* Check our RMA fits in the possible VRMA */ 1649 if (vrma_limit < spapr->rma_size) { 1650 error_report("Unable to create %" HWADDR_PRIu 1651 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1652 spapr->rma_size / MiB, vrma_limit / MiB); 1653 exit(EXIT_FAILURE); 1654 } 1655 } 1656 } 1657 1658 void spapr_check_mmu_mode(bool guest_radix) 1659 { 1660 if (guest_radix) { 1661 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1662 error_report("Guest requested unavailable MMU mode (radix)."); 1663 exit(EXIT_FAILURE); 1664 } 1665 } else { 1666 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1667 && !kvmppc_has_cap_mmu_hash_v3()) { 1668 error_report("Guest requested unavailable MMU mode (hash)."); 1669 exit(EXIT_FAILURE); 1670 } 1671 } 1672 } 1673 1674 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1675 { 1676 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1677 PowerPCCPU *first_ppc_cpu; 1678 hwaddr fdt_addr; 1679 void *fdt; 1680 int rc; 1681 1682 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1683 /* 1684 * Record-replay snapshot load must not consume random, this was 1685 * already replayed from initial machine reset. 1686 */ 1687 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1688 } 1689 1690 pef_kvm_reset(machine->cgs, &error_fatal); 1691 spapr_caps_apply(spapr); 1692 1693 first_ppc_cpu = POWERPC_CPU(first_cpu); 1694 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1695 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1696 spapr->max_compat_pvr)) { 1697 /* 1698 * If using KVM with radix mode available, VCPUs can be started 1699 * without a HPT because KVM will start them in radix mode. 1700 * Set the GR bit in PATE so that we know there is no HPT. 1701 */ 1702 spapr->patb_entry = PATE1_GR; 1703 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1704 } else { 1705 spapr_setup_hpt(spapr); 1706 } 1707 1708 qemu_devices_reset(reason); 1709 1710 spapr_ovec_cleanup(spapr->ov5_cas); 1711 spapr->ov5_cas = spapr_ovec_new(); 1712 1713 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1714 1715 /* 1716 * This is fixing some of the default configuration of the XIVE 1717 * devices. To be called after the reset of the machine devices. 1718 */ 1719 spapr_irq_reset(spapr, &error_fatal); 1720 1721 /* 1722 * There is no CAS under qtest. Simulate one to please the code that 1723 * depends on spapr->ov5_cas. This is especially needed to test device 1724 * unplug, so we do that before resetting the DRCs. 1725 */ 1726 if (qtest_enabled()) { 1727 spapr_ovec_cleanup(spapr->ov5_cas); 1728 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1729 } 1730 1731 spapr_nvdimm_finish_flushes(); 1732 1733 /* DRC reset may cause a device to be unplugged. This will cause troubles 1734 * if this device is used by another device (eg, a running vhost backend 1735 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1736 * situations, we reset DRCs after all devices have been reset. 1737 */ 1738 spapr_drc_reset_all(spapr); 1739 1740 spapr_clear_pending_events(spapr); 1741 1742 /* 1743 * We place the device tree just below either the top of the RMA, 1744 * or just below 2GB, whichever is lower, so that it can be 1745 * processed with 32-bit real mode code if necessary 1746 */ 1747 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1748 1749 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1750 if (spapr->vof) { 1751 spapr_vof_reset(spapr, fdt, &error_fatal); 1752 /* 1753 * Do not pack the FDT as the client may change properties. 1754 * VOF client does not expect the FDT so we do not load it to the VM. 1755 */ 1756 } else { 1757 rc = fdt_pack(fdt); 1758 /* Should only fail if we've built a corrupted tree */ 1759 assert(rc == 0); 1760 1761 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1762 0, fdt_addr, 0); 1763 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1764 } 1765 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1766 1767 g_free(spapr->fdt_blob); 1768 spapr->fdt_size = fdt_totalsize(fdt); 1769 spapr->fdt_initial_size = spapr->fdt_size; 1770 spapr->fdt_blob = fdt; 1771 1772 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1773 machine->fdt = fdt; 1774 1775 /* Set up the entry state */ 1776 first_ppc_cpu->env.gpr[5] = 0; 1777 1778 spapr->fwnmi_system_reset_addr = -1; 1779 spapr->fwnmi_machine_check_addr = -1; 1780 spapr->fwnmi_machine_check_interlock = -1; 1781 1782 /* Signal all vCPUs waiting on this condition */ 1783 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1784 1785 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1786 } 1787 1788 static void spapr_create_nvram(SpaprMachineState *spapr) 1789 { 1790 DeviceState *dev = qdev_new("spapr-nvram"); 1791 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1792 1793 if (dinfo) { 1794 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1795 &error_fatal); 1796 } 1797 1798 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1799 1800 spapr->nvram = (struct SpaprNvram *)dev; 1801 } 1802 1803 static void spapr_rtc_create(SpaprMachineState *spapr) 1804 { 1805 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1806 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1807 &error_fatal, NULL); 1808 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1809 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1810 "date"); 1811 } 1812 1813 /* Returns whether we want to use VGA or not */ 1814 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1815 { 1816 vga_interface_created = true; 1817 switch (vga_interface_type) { 1818 case VGA_NONE: 1819 return false; 1820 case VGA_DEVICE: 1821 return true; 1822 case VGA_STD: 1823 case VGA_VIRTIO: 1824 case VGA_CIRRUS: 1825 return pci_vga_init(pci_bus) != NULL; 1826 default: 1827 error_setg(errp, 1828 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1829 return false; 1830 } 1831 } 1832 1833 static int spapr_pre_load(void *opaque) 1834 { 1835 int rc; 1836 1837 rc = spapr_caps_pre_load(opaque); 1838 if (rc) { 1839 return rc; 1840 } 1841 1842 return 0; 1843 } 1844 1845 static int spapr_post_load(void *opaque, int version_id) 1846 { 1847 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1848 int err = 0; 1849 1850 err = spapr_caps_post_migration(spapr); 1851 if (err) { 1852 return err; 1853 } 1854 1855 /* 1856 * In earlier versions, there was no separate qdev for the PAPR 1857 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1858 * So when migrating from those versions, poke the incoming offset 1859 * value into the RTC device 1860 */ 1861 if (version_id < 3) { 1862 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1863 if (err) { 1864 return err; 1865 } 1866 } 1867 1868 if (kvm_enabled() && spapr->patb_entry) { 1869 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1870 bool radix = !!(spapr->patb_entry & PATE1_GR); 1871 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1872 1873 /* 1874 * Update LPCR:HR and UPRT as they may not be set properly in 1875 * the stream 1876 */ 1877 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1878 LPCR_HR | LPCR_UPRT); 1879 1880 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1881 if (err) { 1882 error_report("Process table config unsupported by the host"); 1883 return -EINVAL; 1884 } 1885 } 1886 1887 err = spapr_irq_post_load(spapr, version_id); 1888 if (err) { 1889 return err; 1890 } 1891 1892 return err; 1893 } 1894 1895 static int spapr_pre_save(void *opaque) 1896 { 1897 int rc; 1898 1899 rc = spapr_caps_pre_save(opaque); 1900 if (rc) { 1901 return rc; 1902 } 1903 1904 return 0; 1905 } 1906 1907 static bool version_before_3(void *opaque, int version_id) 1908 { 1909 return version_id < 3; 1910 } 1911 1912 static bool spapr_pending_events_needed(void *opaque) 1913 { 1914 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1915 return !QTAILQ_EMPTY(&spapr->pending_events); 1916 } 1917 1918 static const VMStateDescription vmstate_spapr_event_entry = { 1919 .name = "spapr_event_log_entry", 1920 .version_id = 1, 1921 .minimum_version_id = 1, 1922 .fields = (const VMStateField[]) { 1923 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1924 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1925 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1926 NULL, extended_length), 1927 VMSTATE_END_OF_LIST() 1928 }, 1929 }; 1930 1931 static const VMStateDescription vmstate_spapr_pending_events = { 1932 .name = "spapr_pending_events", 1933 .version_id = 1, 1934 .minimum_version_id = 1, 1935 .needed = spapr_pending_events_needed, 1936 .fields = (const VMStateField[]) { 1937 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1938 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1939 VMSTATE_END_OF_LIST() 1940 }, 1941 }; 1942 1943 static bool spapr_ov5_cas_needed(void *opaque) 1944 { 1945 SpaprMachineState *spapr = opaque; 1946 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1947 bool cas_needed; 1948 1949 /* Prior to the introduction of SpaprOptionVector, we had two option 1950 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1951 * Both of these options encode machine topology into the device-tree 1952 * in such a way that the now-booted OS should still be able to interact 1953 * appropriately with QEMU regardless of what options were actually 1954 * negotiatied on the source side. 1955 * 1956 * As such, we can avoid migrating the CAS-negotiated options if these 1957 * are the only options available on the current machine/platform. 1958 * Since these are the only options available for pseries-2.7 and 1959 * earlier, this allows us to maintain old->new/new->old migration 1960 * compatibility. 1961 * 1962 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1963 * via default pseries-2.8 machines and explicit command-line parameters. 1964 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1965 * of the actual CAS-negotiated values to continue working properly. For 1966 * example, availability of memory unplug depends on knowing whether 1967 * OV5_HP_EVT was negotiated via CAS. 1968 * 1969 * Thus, for any cases where the set of available CAS-negotiatable 1970 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1971 * include the CAS-negotiated options in the migration stream, unless 1972 * if they affect boot time behaviour only. 1973 */ 1974 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1975 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1976 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1977 1978 /* We need extra information if we have any bits outside the mask 1979 * defined above */ 1980 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1981 1982 spapr_ovec_cleanup(ov5_mask); 1983 1984 return cas_needed; 1985 } 1986 1987 static const VMStateDescription vmstate_spapr_ov5_cas = { 1988 .name = "spapr_option_vector_ov5_cas", 1989 .version_id = 1, 1990 .minimum_version_id = 1, 1991 .needed = spapr_ov5_cas_needed, 1992 .fields = (const VMStateField[]) { 1993 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1994 vmstate_spapr_ovec, SpaprOptionVector), 1995 VMSTATE_END_OF_LIST() 1996 }, 1997 }; 1998 1999 static bool spapr_patb_entry_needed(void *opaque) 2000 { 2001 SpaprMachineState *spapr = opaque; 2002 2003 return !!spapr->patb_entry; 2004 } 2005 2006 static const VMStateDescription vmstate_spapr_patb_entry = { 2007 .name = "spapr_patb_entry", 2008 .version_id = 1, 2009 .minimum_version_id = 1, 2010 .needed = spapr_patb_entry_needed, 2011 .fields = (const VMStateField[]) { 2012 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2013 VMSTATE_END_OF_LIST() 2014 }, 2015 }; 2016 2017 static bool spapr_irq_map_needed(void *opaque) 2018 { 2019 SpaprMachineState *spapr = opaque; 2020 2021 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2022 } 2023 2024 static const VMStateDescription vmstate_spapr_irq_map = { 2025 .name = "spapr_irq_map", 2026 .version_id = 1, 2027 .minimum_version_id = 1, 2028 .needed = spapr_irq_map_needed, 2029 .fields = (const VMStateField[]) { 2030 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2031 VMSTATE_END_OF_LIST() 2032 }, 2033 }; 2034 2035 static bool spapr_dtb_needed(void *opaque) 2036 { 2037 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2038 2039 return smc->update_dt_enabled; 2040 } 2041 2042 static int spapr_dtb_pre_load(void *opaque) 2043 { 2044 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2045 2046 g_free(spapr->fdt_blob); 2047 spapr->fdt_blob = NULL; 2048 spapr->fdt_size = 0; 2049 2050 return 0; 2051 } 2052 2053 static const VMStateDescription vmstate_spapr_dtb = { 2054 .name = "spapr_dtb", 2055 .version_id = 1, 2056 .minimum_version_id = 1, 2057 .needed = spapr_dtb_needed, 2058 .pre_load = spapr_dtb_pre_load, 2059 .fields = (const VMStateField[]) { 2060 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2061 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2062 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2063 fdt_size), 2064 VMSTATE_END_OF_LIST() 2065 }, 2066 }; 2067 2068 static bool spapr_fwnmi_needed(void *opaque) 2069 { 2070 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2071 2072 return spapr->fwnmi_machine_check_addr != -1; 2073 } 2074 2075 static int spapr_fwnmi_pre_save(void *opaque) 2076 { 2077 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2078 2079 /* 2080 * Check if machine check handling is in progress and print a 2081 * warning message. 2082 */ 2083 if (spapr->fwnmi_machine_check_interlock != -1) { 2084 warn_report("A machine check is being handled during migration. The" 2085 "handler may run and log hardware error on the destination"); 2086 } 2087 2088 return 0; 2089 } 2090 2091 static const VMStateDescription vmstate_spapr_fwnmi = { 2092 .name = "spapr_fwnmi", 2093 .version_id = 1, 2094 .minimum_version_id = 1, 2095 .needed = spapr_fwnmi_needed, 2096 .pre_save = spapr_fwnmi_pre_save, 2097 .fields = (const VMStateField[]) { 2098 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2099 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2100 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2101 VMSTATE_END_OF_LIST() 2102 }, 2103 }; 2104 2105 static const VMStateDescription vmstate_spapr = { 2106 .name = "spapr", 2107 .version_id = 3, 2108 .minimum_version_id = 1, 2109 .pre_load = spapr_pre_load, 2110 .post_load = spapr_post_load, 2111 .pre_save = spapr_pre_save, 2112 .fields = (const VMStateField[]) { 2113 /* used to be @next_irq */ 2114 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2115 2116 /* RTC offset */ 2117 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2118 2119 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2120 VMSTATE_END_OF_LIST() 2121 }, 2122 .subsections = (const VMStateDescription * const []) { 2123 &vmstate_spapr_ov5_cas, 2124 &vmstate_spapr_patb_entry, 2125 &vmstate_spapr_pending_events, 2126 &vmstate_spapr_cap_htm, 2127 &vmstate_spapr_cap_vsx, 2128 &vmstate_spapr_cap_dfp, 2129 &vmstate_spapr_cap_cfpc, 2130 &vmstate_spapr_cap_sbbc, 2131 &vmstate_spapr_cap_ibs, 2132 &vmstate_spapr_cap_hpt_maxpagesize, 2133 &vmstate_spapr_irq_map, 2134 &vmstate_spapr_cap_nested_kvm_hv, 2135 &vmstate_spapr_dtb, 2136 &vmstate_spapr_cap_large_decr, 2137 &vmstate_spapr_cap_ccf_assist, 2138 &vmstate_spapr_cap_fwnmi, 2139 &vmstate_spapr_fwnmi, 2140 &vmstate_spapr_cap_rpt_invalidate, 2141 NULL 2142 } 2143 }; 2144 2145 static int htab_save_setup(QEMUFile *f, void *opaque) 2146 { 2147 SpaprMachineState *spapr = opaque; 2148 2149 /* "Iteration" header */ 2150 if (!spapr->htab_shift) { 2151 qemu_put_be32(f, -1); 2152 } else { 2153 qemu_put_be32(f, spapr->htab_shift); 2154 } 2155 2156 if (spapr->htab) { 2157 spapr->htab_save_index = 0; 2158 spapr->htab_first_pass = true; 2159 } else { 2160 if (spapr->htab_shift) { 2161 assert(kvm_enabled()); 2162 } 2163 } 2164 2165 2166 return 0; 2167 } 2168 2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2170 int chunkstart, int n_valid, int n_invalid) 2171 { 2172 qemu_put_be32(f, chunkstart); 2173 qemu_put_be16(f, n_valid); 2174 qemu_put_be16(f, n_invalid); 2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2176 HASH_PTE_SIZE_64 * n_valid); 2177 } 2178 2179 static void htab_save_end_marker(QEMUFile *f) 2180 { 2181 qemu_put_be32(f, 0); 2182 qemu_put_be16(f, 0); 2183 qemu_put_be16(f, 0); 2184 } 2185 2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2187 int64_t max_ns) 2188 { 2189 bool has_timeout = max_ns != -1; 2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2191 int index = spapr->htab_save_index; 2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2193 2194 assert(spapr->htab_first_pass); 2195 2196 do { 2197 int chunkstart; 2198 2199 /* Consume invalid HPTEs */ 2200 while ((index < htabslots) 2201 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2202 CLEAN_HPTE(HPTE(spapr->htab, index)); 2203 index++; 2204 } 2205 2206 /* Consume valid HPTEs */ 2207 chunkstart = index; 2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2209 && HPTE_VALID(HPTE(spapr->htab, index))) { 2210 CLEAN_HPTE(HPTE(spapr->htab, index)); 2211 index++; 2212 } 2213 2214 if (index > chunkstart) { 2215 int n_valid = index - chunkstart; 2216 2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2218 2219 if (has_timeout && 2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2221 break; 2222 } 2223 } 2224 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2225 2226 if (index >= htabslots) { 2227 assert(index == htabslots); 2228 index = 0; 2229 spapr->htab_first_pass = false; 2230 } 2231 spapr->htab_save_index = index; 2232 } 2233 2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2235 int64_t max_ns) 2236 { 2237 bool final = max_ns < 0; 2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2239 int examined = 0, sent = 0; 2240 int index = spapr->htab_save_index; 2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2242 2243 assert(!spapr->htab_first_pass); 2244 2245 do { 2246 int chunkstart, invalidstart; 2247 2248 /* Consume non-dirty HPTEs */ 2249 while ((index < htabslots) 2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2251 index++; 2252 examined++; 2253 } 2254 2255 chunkstart = index; 2256 /* Consume valid dirty HPTEs */ 2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2258 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2259 && HPTE_VALID(HPTE(spapr->htab, index))) { 2260 CLEAN_HPTE(HPTE(spapr->htab, index)); 2261 index++; 2262 examined++; 2263 } 2264 2265 invalidstart = index; 2266 /* Consume invalid dirty HPTEs */ 2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2268 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2269 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2270 CLEAN_HPTE(HPTE(spapr->htab, index)); 2271 index++; 2272 examined++; 2273 } 2274 2275 if (index > chunkstart) { 2276 int n_valid = invalidstart - chunkstart; 2277 int n_invalid = index - invalidstart; 2278 2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2280 sent += index - chunkstart; 2281 2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2283 break; 2284 } 2285 } 2286 2287 if (examined >= htabslots) { 2288 break; 2289 } 2290 2291 if (index >= htabslots) { 2292 assert(index == htabslots); 2293 index = 0; 2294 } 2295 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 2302 spapr->htab_save_index = index; 2303 2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2305 } 2306 2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2308 #define MAX_KVM_BUF_SIZE 2048 2309 2310 static int htab_save_iterate(QEMUFile *f, void *opaque) 2311 { 2312 SpaprMachineState *spapr = opaque; 2313 int fd; 2314 int rc = 0; 2315 2316 /* Iteration header */ 2317 if (!spapr->htab_shift) { 2318 qemu_put_be32(f, -1); 2319 return 1; 2320 } else { 2321 qemu_put_be32(f, 0); 2322 } 2323 2324 if (!spapr->htab) { 2325 assert(kvm_enabled()); 2326 2327 fd = get_htab_fd(spapr); 2328 if (fd < 0) { 2329 return fd; 2330 } 2331 2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2333 if (rc < 0) { 2334 return rc; 2335 } 2336 } else if (spapr->htab_first_pass) { 2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2338 } else { 2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2340 } 2341 2342 htab_save_end_marker(f); 2343 2344 return rc; 2345 } 2346 2347 static int htab_save_complete(QEMUFile *f, void *opaque) 2348 { 2349 SpaprMachineState *spapr = opaque; 2350 int fd; 2351 2352 /* Iteration header */ 2353 if (!spapr->htab_shift) { 2354 qemu_put_be32(f, -1); 2355 return 0; 2356 } else { 2357 qemu_put_be32(f, 0); 2358 } 2359 2360 if (!spapr->htab) { 2361 int rc; 2362 2363 assert(kvm_enabled()); 2364 2365 fd = get_htab_fd(spapr); 2366 if (fd < 0) { 2367 return fd; 2368 } 2369 2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2371 if (rc < 0) { 2372 return rc; 2373 } 2374 } else { 2375 if (spapr->htab_first_pass) { 2376 htab_save_first_pass(f, spapr, -1); 2377 } 2378 htab_save_later_pass(f, spapr, -1); 2379 } 2380 2381 /* End marker */ 2382 htab_save_end_marker(f); 2383 2384 return 0; 2385 } 2386 2387 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2388 { 2389 SpaprMachineState *spapr = opaque; 2390 uint32_t section_hdr; 2391 int fd = -1; 2392 Error *local_err = NULL; 2393 2394 if (version_id < 1 || version_id > 1) { 2395 error_report("htab_load() bad version"); 2396 return -EINVAL; 2397 } 2398 2399 section_hdr = qemu_get_be32(f); 2400 2401 if (section_hdr == -1) { 2402 spapr_free_hpt(spapr); 2403 return 0; 2404 } 2405 2406 if (section_hdr) { 2407 int ret; 2408 2409 /* First section gives the htab size */ 2410 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2411 if (ret < 0) { 2412 error_report_err(local_err); 2413 return ret; 2414 } 2415 return 0; 2416 } 2417 2418 if (!spapr->htab) { 2419 assert(kvm_enabled()); 2420 2421 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2422 if (fd < 0) { 2423 error_report_err(local_err); 2424 return fd; 2425 } 2426 } 2427 2428 while (true) { 2429 uint32_t index; 2430 uint16_t n_valid, n_invalid; 2431 2432 index = qemu_get_be32(f); 2433 n_valid = qemu_get_be16(f); 2434 n_invalid = qemu_get_be16(f); 2435 2436 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2437 /* End of Stream */ 2438 break; 2439 } 2440 2441 if ((index + n_valid + n_invalid) > 2442 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2443 /* Bad index in stream */ 2444 error_report( 2445 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2446 index, n_valid, n_invalid, spapr->htab_shift); 2447 return -EINVAL; 2448 } 2449 2450 if (spapr->htab) { 2451 if (n_valid) { 2452 qemu_get_buffer(f, HPTE(spapr->htab, index), 2453 HASH_PTE_SIZE_64 * n_valid); 2454 } 2455 if (n_invalid) { 2456 memset(HPTE(spapr->htab, index + n_valid), 0, 2457 HASH_PTE_SIZE_64 * n_invalid); 2458 } 2459 } else { 2460 int rc; 2461 2462 assert(fd >= 0); 2463 2464 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2465 &local_err); 2466 if (rc < 0) { 2467 error_report_err(local_err); 2468 return rc; 2469 } 2470 } 2471 } 2472 2473 if (!spapr->htab) { 2474 assert(fd >= 0); 2475 close(fd); 2476 } 2477 2478 return 0; 2479 } 2480 2481 static void htab_save_cleanup(void *opaque) 2482 { 2483 SpaprMachineState *spapr = opaque; 2484 2485 close_htab_fd(spapr); 2486 } 2487 2488 static SaveVMHandlers savevm_htab_handlers = { 2489 .save_setup = htab_save_setup, 2490 .save_live_iterate = htab_save_iterate, 2491 .save_live_complete_precopy = htab_save_complete, 2492 .save_cleanup = htab_save_cleanup, 2493 .load_state = htab_load, 2494 }; 2495 2496 static void spapr_boot_set(void *opaque, const char *boot_device, 2497 Error **errp) 2498 { 2499 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2500 2501 g_free(spapr->boot_device); 2502 spapr->boot_device = g_strdup(boot_device); 2503 } 2504 2505 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2506 { 2507 MachineState *machine = MACHINE(spapr); 2508 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2509 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2510 int i; 2511 2512 g_assert(!nr_lmbs || machine->device_memory); 2513 for (i = 0; i < nr_lmbs; i++) { 2514 uint64_t addr; 2515 2516 addr = i * lmb_size + machine->device_memory->base; 2517 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2518 addr / lmb_size); 2519 } 2520 } 2521 2522 /* 2523 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2524 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2525 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2526 */ 2527 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2528 { 2529 int i; 2530 2531 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2532 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2533 " is not aligned to %" PRIu64 " MiB", 2534 machine->ram_size, 2535 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2536 return; 2537 } 2538 2539 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2540 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2541 " is not aligned to %" PRIu64 " MiB", 2542 machine->ram_size, 2543 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2544 return; 2545 } 2546 2547 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2548 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2549 error_setg(errp, 2550 "Node %d memory size 0x%" PRIx64 2551 " is not aligned to %" PRIu64 " MiB", 2552 i, machine->numa_state->nodes[i].node_mem, 2553 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2554 return; 2555 } 2556 } 2557 } 2558 2559 /* find cpu slot in machine->possible_cpus by core_id */ 2560 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2561 { 2562 int index = id / ms->smp.threads; 2563 2564 if (index >= ms->possible_cpus->len) { 2565 return NULL; 2566 } 2567 if (idx) { 2568 *idx = index; 2569 } 2570 return &ms->possible_cpus->cpus[index]; 2571 } 2572 2573 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2574 { 2575 MachineState *ms = MACHINE(spapr); 2576 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2577 Error *local_err = NULL; 2578 bool vsmt_user = !!spapr->vsmt; 2579 int kvm_smt = kvmppc_smt_threads(); 2580 int ret; 2581 unsigned int smp_threads = ms->smp.threads; 2582 2583 if (tcg_enabled()) { 2584 if (smp_threads > 1 && 2585 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2586 spapr->max_compat_pvr)) { 2587 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2588 return; 2589 } 2590 2591 if (smp_threads > 8) { 2592 error_setg(errp, "TCG cannot support more than 8 threads/core " 2593 "on a pseries machine"); 2594 return; 2595 } 2596 } 2597 if (!is_power_of_2(smp_threads)) { 2598 error_setg(errp, "Cannot support %d threads/core on a pseries " 2599 "machine because it must be a power of 2", smp_threads); 2600 return; 2601 } 2602 2603 /* Determine the VSMT mode to use: */ 2604 if (vsmt_user) { 2605 if (spapr->vsmt < smp_threads) { 2606 error_setg(errp, "Cannot support VSMT mode %d" 2607 " because it must be >= threads/core (%d)", 2608 spapr->vsmt, smp_threads); 2609 return; 2610 } 2611 /* In this case, spapr->vsmt has been set by the command line */ 2612 } else if (!smc->smp_threads_vsmt) { 2613 /* 2614 * Default VSMT value is tricky, because we need it to be as 2615 * consistent as possible (for migration), but this requires 2616 * changing it for at least some existing cases. We pick 8 as 2617 * the value that we'd get with KVM on POWER8, the 2618 * overwhelmingly common case in production systems. 2619 */ 2620 spapr->vsmt = MAX(8, smp_threads); 2621 } else { 2622 spapr->vsmt = smp_threads; 2623 } 2624 2625 /* KVM: If necessary, set the SMT mode: */ 2626 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2627 ret = kvmppc_set_smt_threads(spapr->vsmt); 2628 if (ret) { 2629 /* Looks like KVM isn't able to change VSMT mode */ 2630 error_setg(&local_err, 2631 "Failed to set KVM's VSMT mode to %d (errno %d)", 2632 spapr->vsmt, ret); 2633 /* We can live with that if the default one is big enough 2634 * for the number of threads, and a submultiple of the one 2635 * we want. In this case we'll waste some vcpu ids, but 2636 * behaviour will be correct */ 2637 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2638 warn_report_err(local_err); 2639 } else { 2640 if (!vsmt_user) { 2641 error_append_hint(&local_err, 2642 "On PPC, a VM with %d threads/core" 2643 " on a host with %d threads/core" 2644 " requires the use of VSMT mode %d.\n", 2645 smp_threads, kvm_smt, spapr->vsmt); 2646 } 2647 kvmppc_error_append_smt_possible_hint(&local_err); 2648 error_propagate(errp, local_err); 2649 } 2650 } 2651 } 2652 /* else TCG: nothing to do currently */ 2653 } 2654 2655 static void spapr_init_cpus(SpaprMachineState *spapr) 2656 { 2657 MachineState *machine = MACHINE(spapr); 2658 MachineClass *mc = MACHINE_GET_CLASS(machine); 2659 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2660 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2661 const CPUArchIdList *possible_cpus; 2662 unsigned int smp_cpus = machine->smp.cpus; 2663 unsigned int smp_threads = machine->smp.threads; 2664 unsigned int max_cpus = machine->smp.max_cpus; 2665 int boot_cores_nr = smp_cpus / smp_threads; 2666 int i; 2667 2668 possible_cpus = mc->possible_cpu_arch_ids(machine); 2669 if (mc->has_hotpluggable_cpus) { 2670 if (smp_cpus % smp_threads) { 2671 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2672 smp_cpus, smp_threads); 2673 exit(1); 2674 } 2675 if (max_cpus % smp_threads) { 2676 error_report("max_cpus (%u) must be multiple of threads (%u)", 2677 max_cpus, smp_threads); 2678 exit(1); 2679 } 2680 } else { 2681 if (max_cpus != smp_cpus) { 2682 error_report("This machine version does not support CPU hotplug"); 2683 exit(1); 2684 } 2685 boot_cores_nr = possible_cpus->len; 2686 } 2687 2688 if (smc->pre_2_10_has_unused_icps) { 2689 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2690 /* Dummy entries get deregistered when real ICPState objects 2691 * are registered during CPU core hotplug. 2692 */ 2693 pre_2_10_vmstate_register_dummy_icp(i); 2694 } 2695 } 2696 2697 for (i = 0; i < possible_cpus->len; i++) { 2698 int core_id = i * smp_threads; 2699 2700 if (mc->has_hotpluggable_cpus) { 2701 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2702 spapr_vcpu_id(spapr, core_id)); 2703 } 2704 2705 if (i < boot_cores_nr) { 2706 Object *core = object_new(type); 2707 int nr_threads = smp_threads; 2708 2709 /* Handle the partially filled core for older machine types */ 2710 if ((i + 1) * smp_threads >= smp_cpus) { 2711 nr_threads = smp_cpus - i * smp_threads; 2712 } 2713 2714 object_property_set_int(core, "nr-threads", nr_threads, 2715 &error_fatal); 2716 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2717 &error_fatal); 2718 qdev_realize(DEVICE(core), NULL, &error_fatal); 2719 2720 object_unref(core); 2721 } 2722 } 2723 } 2724 2725 static PCIHostState *spapr_create_default_phb(void) 2726 { 2727 DeviceState *dev; 2728 2729 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2730 qdev_prop_set_uint32(dev, "index", 0); 2731 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2732 2733 return PCI_HOST_BRIDGE(dev); 2734 } 2735 2736 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2737 { 2738 MachineState *machine = MACHINE(spapr); 2739 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2740 hwaddr rma_size = machine->ram_size; 2741 hwaddr node0_size = spapr_node0_size(machine); 2742 2743 /* RMA has to fit in the first NUMA node */ 2744 rma_size = MIN(rma_size, node0_size); 2745 2746 /* 2747 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2748 * never exceed that 2749 */ 2750 rma_size = MIN(rma_size, 1 * TiB); 2751 2752 /* 2753 * Clamp the RMA size based on machine type. This is for 2754 * migration compatibility with older qemu versions, which limited 2755 * the RMA size for complicated and mostly bad reasons. 2756 */ 2757 if (smc->rma_limit) { 2758 rma_size = MIN(rma_size, smc->rma_limit); 2759 } 2760 2761 if (rma_size < MIN_RMA_SLOF) { 2762 error_setg(errp, 2763 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2764 "ldMiB guest RMA (Real Mode Area memory)", 2765 MIN_RMA_SLOF / MiB); 2766 return 0; 2767 } 2768 2769 return rma_size; 2770 } 2771 2772 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2773 { 2774 MachineState *machine = MACHINE(spapr); 2775 int i; 2776 2777 for (i = 0; i < machine->ram_slots; i++) { 2778 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2779 } 2780 } 2781 2782 /* pSeries LPAR / sPAPR hardware init */ 2783 static void spapr_machine_init(MachineState *machine) 2784 { 2785 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2786 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2787 MachineClass *mc = MACHINE_GET_CLASS(machine); 2788 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2789 const char *bios_name = machine->firmware ?: bios_default; 2790 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2791 const char *kernel_filename = machine->kernel_filename; 2792 const char *initrd_filename = machine->initrd_filename; 2793 PCIHostState *phb; 2794 bool has_vga; 2795 int i; 2796 MemoryRegion *sysmem = get_system_memory(); 2797 long load_limit, fw_size; 2798 Error *resize_hpt_err = NULL; 2799 NICInfo *nd; 2800 2801 if (!filename) { 2802 error_report("Could not find LPAR firmware '%s'", bios_name); 2803 exit(1); 2804 } 2805 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2806 if (fw_size <= 0) { 2807 error_report("Could not load LPAR firmware '%s'", filename); 2808 exit(1); 2809 } 2810 2811 /* 2812 * if Secure VM (PEF) support is configured, then initialize it 2813 */ 2814 pef_kvm_init(machine->cgs, &error_fatal); 2815 2816 msi_nonbroken = true; 2817 2818 QLIST_INIT(&spapr->phbs); 2819 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2820 2821 /* Determine capabilities to run with */ 2822 spapr_caps_init(spapr); 2823 2824 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2825 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2826 /* 2827 * If the user explicitly requested a mode we should either 2828 * supply it, or fail completely (which we do below). But if 2829 * it's not set explicitly, we reset our mode to something 2830 * that works 2831 */ 2832 if (resize_hpt_err) { 2833 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2834 error_free(resize_hpt_err); 2835 resize_hpt_err = NULL; 2836 } else { 2837 spapr->resize_hpt = smc->resize_hpt_default; 2838 } 2839 } 2840 2841 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2842 2843 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2844 /* 2845 * User requested HPT resize, but this host can't supply it. Bail out 2846 */ 2847 error_report_err(resize_hpt_err); 2848 exit(1); 2849 } 2850 error_free(resize_hpt_err); 2851 2852 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2853 2854 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2855 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2856 2857 /* 2858 * VSMT must be set in order to be able to compute VCPU ids, ie to 2859 * call spapr_max_server_number() or spapr_vcpu_id(). 2860 */ 2861 spapr_set_vsmt_mode(spapr, &error_fatal); 2862 2863 /* Set up Interrupt Controller before we create the VCPUs */ 2864 spapr_irq_init(spapr, &error_fatal); 2865 2866 /* Set up containers for ibm,client-architecture-support negotiated options 2867 */ 2868 spapr->ov5 = spapr_ovec_new(); 2869 spapr->ov5_cas = spapr_ovec_new(); 2870 2871 if (smc->dr_lmb_enabled) { 2872 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2873 spapr_validate_node_memory(machine, &error_fatal); 2874 } 2875 2876 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2877 2878 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2879 if (!smc->pre_6_2_numa_affinity) { 2880 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2881 } 2882 2883 /* advertise support for dedicated HP event source to guests */ 2884 if (spapr->use_hotplug_event_source) { 2885 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2886 } 2887 2888 /* advertise support for HPT resizing */ 2889 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2890 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2891 } 2892 2893 /* advertise support for ibm,dyamic-memory-v2 */ 2894 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2895 2896 /* advertise XIVE on POWER9 machines */ 2897 if (spapr->irq->xive) { 2898 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2899 } 2900 2901 /* init CPUs */ 2902 spapr_init_cpus(spapr); 2903 2904 /* Init numa_assoc_array */ 2905 spapr_numa_associativity_init(spapr, machine); 2906 2907 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2908 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2909 spapr->max_compat_pvr)) { 2910 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2911 /* KVM and TCG always allow GTSE with radix... */ 2912 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2913 } 2914 /* ... but not with hash (currently). */ 2915 2916 if (kvm_enabled()) { 2917 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2918 kvmppc_enable_logical_ci_hcalls(); 2919 kvmppc_enable_set_mode_hcall(); 2920 2921 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2922 kvmppc_enable_clear_ref_mod_hcalls(); 2923 2924 /* Enable H_PAGE_INIT */ 2925 kvmppc_enable_h_page_init(); 2926 } 2927 2928 /* map RAM */ 2929 memory_region_add_subregion(sysmem, 0, machine->ram); 2930 2931 /* initialize hotplug memory address space */ 2932 if (machine->ram_size < machine->maxram_size) { 2933 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2934 hwaddr device_mem_base; 2935 2936 /* 2937 * Limit the number of hotpluggable memory slots to half the number 2938 * slots that KVM supports, leaving the other half for PCI and other 2939 * devices. However ensure that number of slots doesn't drop below 32. 2940 */ 2941 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2942 SPAPR_MAX_RAM_SLOTS; 2943 2944 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2945 max_memslots = SPAPR_MAX_RAM_SLOTS; 2946 } 2947 if (machine->ram_slots > max_memslots) { 2948 error_report("Specified number of memory slots %" 2949 PRIu64" exceeds max supported %d", 2950 machine->ram_slots, max_memslots); 2951 exit(1); 2952 } 2953 2954 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2955 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2956 } 2957 2958 if (smc->dr_lmb_enabled) { 2959 spapr_create_lmb_dr_connectors(spapr); 2960 } 2961 2962 if (mc->nvdimm_supported) { 2963 spapr_create_nvdimm_dr_connectors(spapr); 2964 } 2965 2966 /* Set up RTAS event infrastructure */ 2967 spapr_events_init(spapr); 2968 2969 /* Set up the RTC RTAS interfaces */ 2970 spapr_rtc_create(spapr); 2971 2972 /* Set up VIO bus */ 2973 spapr->vio_bus = spapr_vio_bus_init(); 2974 2975 for (i = 0; serial_hd(i); i++) { 2976 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2977 } 2978 2979 /* We always have at least the nvram device on VIO */ 2980 spapr_create_nvram(spapr); 2981 2982 /* 2983 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2984 * connectors (described in root DT node's "ibm,drc-types" property) 2985 * are pre-initialized here. additional child connectors (such as 2986 * connectors for a PHBs PCI slots) are added as needed during their 2987 * parent's realization. 2988 */ 2989 if (smc->dr_phb_enabled) { 2990 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2991 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2992 } 2993 } 2994 2995 /* Set up PCI */ 2996 spapr_pci_rtas_init(); 2997 2998 phb = spapr_create_default_phb(); 2999 3000 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3001 spapr_vlan_create(spapr->vio_bus, nd); 3002 } 3003 3004 pci_init_nic_devices(phb->bus, NULL); 3005 3006 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3007 spapr_vscsi_create(spapr->vio_bus); 3008 } 3009 3010 /* Graphics */ 3011 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3012 if (has_vga) { 3013 spapr->want_stdout_path = !machine->enable_graphics; 3014 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3015 } else { 3016 spapr->want_stdout_path = true; 3017 } 3018 3019 if (machine->usb) { 3020 if (smc->use_ohci_by_default) { 3021 pci_create_simple(phb->bus, -1, "pci-ohci"); 3022 } else { 3023 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3024 } 3025 3026 if (has_vga) { 3027 USBBus *usb_bus = usb_bus_find(-1); 3028 3029 usb_create_simple(usb_bus, "usb-kbd"); 3030 usb_create_simple(usb_bus, "usb-mouse"); 3031 } 3032 } 3033 3034 if (kernel_filename) { 3035 uint64_t loaded_addr = 0; 3036 3037 spapr->kernel_size = load_elf(kernel_filename, NULL, 3038 translate_kernel_address, spapr, 3039 NULL, &loaded_addr, NULL, NULL, 1, 3040 PPC_ELF_MACHINE, 0, 0); 3041 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3042 spapr->kernel_size = load_elf(kernel_filename, NULL, 3043 translate_kernel_address, spapr, 3044 NULL, &loaded_addr, NULL, NULL, 0, 3045 PPC_ELF_MACHINE, 0, 0); 3046 spapr->kernel_le = spapr->kernel_size > 0; 3047 } 3048 if (spapr->kernel_size < 0) { 3049 error_report("error loading %s: %s", kernel_filename, 3050 load_elf_strerror(spapr->kernel_size)); 3051 exit(1); 3052 } 3053 3054 if (spapr->kernel_addr != loaded_addr) { 3055 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3056 " to 0x%"PRIx64, 3057 spapr->kernel_addr, loaded_addr); 3058 spapr->kernel_addr = loaded_addr; 3059 } 3060 3061 /* load initrd */ 3062 if (initrd_filename) { 3063 /* Try to locate the initrd in the gap between the kernel 3064 * and the firmware. Add a bit of space just in case 3065 */ 3066 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3067 + 0x1ffff) & ~0xffff; 3068 spapr->initrd_size = load_image_targphys(initrd_filename, 3069 spapr->initrd_base, 3070 load_limit 3071 - spapr->initrd_base); 3072 if (spapr->initrd_size < 0) { 3073 error_report("could not load initial ram disk '%s'", 3074 initrd_filename); 3075 exit(1); 3076 } 3077 } 3078 } 3079 3080 /* FIXME: Should register things through the MachineState's qdev 3081 * interface, this is a legacy from the sPAPREnvironment structure 3082 * which predated MachineState but had a similar function */ 3083 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3084 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3085 &savevm_htab_handlers, spapr); 3086 3087 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3088 3089 qemu_register_boot_set(spapr_boot_set, spapr); 3090 3091 /* 3092 * Nothing needs to be done to resume a suspended guest because 3093 * suspending does not change the machine state, so no need for 3094 * a ->wakeup method. 3095 */ 3096 qemu_register_wakeup_support(); 3097 3098 if (kvm_enabled()) { 3099 /* to stop and start vmclock */ 3100 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3101 &spapr->tb); 3102 3103 kvmppc_spapr_enable_inkernel_multitce(); 3104 } 3105 3106 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3107 if (spapr->vof) { 3108 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3109 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3110 } 3111 3112 spapr_watchdog_init(spapr); 3113 } 3114 3115 #define DEFAULT_KVM_TYPE "auto" 3116 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3117 { 3118 /* 3119 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3120 * accommodate the 'HV' and 'PV' formats that exists in the 3121 * wild. The 'auto' mode is being introduced already as 3122 * lower-case, thus we don't need to bother checking for 3123 * "AUTO". 3124 */ 3125 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3126 return 0; 3127 } 3128 3129 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3130 return 1; 3131 } 3132 3133 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3134 return 2; 3135 } 3136 3137 error_report("Unknown kvm-type specified '%s'", vm_type); 3138 return -1; 3139 } 3140 3141 /* 3142 * Implementation of an interface to adjust firmware path 3143 * for the bootindex property handling. 3144 */ 3145 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3146 DeviceState *dev) 3147 { 3148 #define CAST(type, obj, name) \ 3149 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3150 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3151 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3152 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3153 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3154 3155 if (d && bus) { 3156 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3157 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3158 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3159 3160 if (spapr) { 3161 /* 3162 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3163 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3164 * 0x8000 | (target << 8) | (bus << 5) | lun 3165 * (see the "Logical unit addressing format" table in SAM5) 3166 */ 3167 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3168 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3169 (uint64_t)id << 48); 3170 } else if (virtio) { 3171 /* 3172 * We use SRP luns of the form 01000000 | (target << 8) | lun 3173 * in the top 32 bits of the 64-bit LUN 3174 * Note: the quote above is from SLOF and it is wrong, 3175 * the actual binding is: 3176 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3177 */ 3178 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3179 if (d->lun >= 256) { 3180 /* Use the LUN "flat space addressing method" */ 3181 id |= 0x4000; 3182 } 3183 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3184 (uint64_t)id << 32); 3185 } else if (usb) { 3186 /* 3187 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3188 * in the top 32 bits of the 64-bit LUN 3189 */ 3190 unsigned usb_port = atoi(usb->port->path); 3191 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3192 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3193 (uint64_t)id << 32); 3194 } 3195 } 3196 3197 /* 3198 * SLOF probes the USB devices, and if it recognizes that the device is a 3199 * storage device, it changes its name to "storage" instead of "usb-host", 3200 * and additionally adds a child node for the SCSI LUN, so the correct 3201 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3202 */ 3203 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3204 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3205 if (usb_device_is_scsi_storage(usbdev)) { 3206 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3207 } 3208 } 3209 3210 if (phb) { 3211 /* Replace "pci" with "pci@800000020000000" */ 3212 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3213 } 3214 3215 if (vsc) { 3216 /* Same logic as virtio above */ 3217 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3218 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3219 } 3220 3221 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3222 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3223 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3224 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3225 } 3226 3227 if (pcidev) { 3228 return spapr_pci_fw_dev_name(pcidev); 3229 } 3230 3231 return NULL; 3232 } 3233 3234 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3235 { 3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3237 3238 return g_strdup(spapr->kvm_type); 3239 } 3240 3241 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3242 { 3243 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3244 3245 g_free(spapr->kvm_type); 3246 spapr->kvm_type = g_strdup(value); 3247 } 3248 3249 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3250 { 3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3252 3253 return spapr->use_hotplug_event_source; 3254 } 3255 3256 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3257 Error **errp) 3258 { 3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3260 3261 spapr->use_hotplug_event_source = value; 3262 } 3263 3264 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3265 { 3266 return true; 3267 } 3268 3269 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3270 { 3271 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3272 3273 switch (spapr->resize_hpt) { 3274 case SPAPR_RESIZE_HPT_DEFAULT: 3275 return g_strdup("default"); 3276 case SPAPR_RESIZE_HPT_DISABLED: 3277 return g_strdup("disabled"); 3278 case SPAPR_RESIZE_HPT_ENABLED: 3279 return g_strdup("enabled"); 3280 case SPAPR_RESIZE_HPT_REQUIRED: 3281 return g_strdup("required"); 3282 } 3283 g_assert_not_reached(); 3284 } 3285 3286 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3287 { 3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3289 3290 if (strcmp(value, "default") == 0) { 3291 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3292 } else if (strcmp(value, "disabled") == 0) { 3293 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3294 } else if (strcmp(value, "enabled") == 0) { 3295 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3296 } else if (strcmp(value, "required") == 0) { 3297 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3298 } else { 3299 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3300 } 3301 } 3302 3303 static bool spapr_get_vof(Object *obj, Error **errp) 3304 { 3305 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3306 3307 return spapr->vof != NULL; 3308 } 3309 3310 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3311 { 3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3313 3314 if (spapr->vof) { 3315 vof_cleanup(spapr->vof); 3316 g_free(spapr->vof); 3317 spapr->vof = NULL; 3318 } 3319 if (!value) { 3320 return; 3321 } 3322 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3323 } 3324 3325 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3326 { 3327 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3328 3329 if (spapr->irq == &spapr_irq_xics_legacy) { 3330 return g_strdup("legacy"); 3331 } else if (spapr->irq == &spapr_irq_xics) { 3332 return g_strdup("xics"); 3333 } else if (spapr->irq == &spapr_irq_xive) { 3334 return g_strdup("xive"); 3335 } else if (spapr->irq == &spapr_irq_dual) { 3336 return g_strdup("dual"); 3337 } 3338 g_assert_not_reached(); 3339 } 3340 3341 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3342 { 3343 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3344 3345 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3346 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3347 return; 3348 } 3349 3350 /* The legacy IRQ backend can not be set */ 3351 if (strcmp(value, "xics") == 0) { 3352 spapr->irq = &spapr_irq_xics; 3353 } else if (strcmp(value, "xive") == 0) { 3354 spapr->irq = &spapr_irq_xive; 3355 } else if (strcmp(value, "dual") == 0) { 3356 spapr->irq = &spapr_irq_dual; 3357 } else { 3358 error_setg(errp, "Bad value for \"ic-mode\" property"); 3359 } 3360 } 3361 3362 static char *spapr_get_host_model(Object *obj, Error **errp) 3363 { 3364 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3365 3366 return g_strdup(spapr->host_model); 3367 } 3368 3369 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3370 { 3371 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3372 3373 g_free(spapr->host_model); 3374 spapr->host_model = g_strdup(value); 3375 } 3376 3377 static char *spapr_get_host_serial(Object *obj, Error **errp) 3378 { 3379 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3380 3381 return g_strdup(spapr->host_serial); 3382 } 3383 3384 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3385 { 3386 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3387 3388 g_free(spapr->host_serial); 3389 spapr->host_serial = g_strdup(value); 3390 } 3391 3392 static void spapr_instance_init(Object *obj) 3393 { 3394 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3395 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3396 MachineState *ms = MACHINE(spapr); 3397 MachineClass *mc = MACHINE_GET_CLASS(ms); 3398 3399 /* 3400 * NVDIMM support went live in 5.1 without considering that, in 3401 * other archs, the user needs to enable NVDIMM support with the 3402 * 'nvdimm' machine option and the default behavior is NVDIMM 3403 * support disabled. It is too late to roll back to the standard 3404 * behavior without breaking 5.1 guests. 3405 */ 3406 if (mc->nvdimm_supported) { 3407 ms->nvdimms_state->is_enabled = true; 3408 } 3409 3410 spapr->htab_fd = -1; 3411 spapr->use_hotplug_event_source = true; 3412 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3413 object_property_add_str(obj, "kvm-type", 3414 spapr_get_kvm_type, spapr_set_kvm_type); 3415 object_property_set_description(obj, "kvm-type", 3416 "Specifies the KVM virtualization mode (auto," 3417 " hv, pr). Defaults to 'auto'. This mode will use" 3418 " any available KVM module loaded in the host," 3419 " where kvm_hv takes precedence if both kvm_hv and" 3420 " kvm_pr are loaded."); 3421 object_property_add_bool(obj, "modern-hotplug-events", 3422 spapr_get_modern_hotplug_events, 3423 spapr_set_modern_hotplug_events); 3424 object_property_set_description(obj, "modern-hotplug-events", 3425 "Use dedicated hotplug event mechanism in" 3426 " place of standard EPOW events when possible" 3427 " (required for memory hot-unplug support)"); 3428 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3429 "Maximum permitted CPU compatibility mode"); 3430 3431 object_property_add_str(obj, "resize-hpt", 3432 spapr_get_resize_hpt, spapr_set_resize_hpt); 3433 object_property_set_description(obj, "resize-hpt", 3434 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3435 object_property_add_uint32_ptr(obj, "vsmt", 3436 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3437 object_property_set_description(obj, "vsmt", 3438 "Virtual SMT: KVM behaves as if this were" 3439 " the host's SMT mode"); 3440 3441 object_property_add_bool(obj, "vfio-no-msix-emulation", 3442 spapr_get_msix_emulation, NULL); 3443 3444 object_property_add_uint64_ptr(obj, "kernel-addr", 3445 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3446 object_property_set_description(obj, "kernel-addr", 3447 stringify(KERNEL_LOAD_ADDR) 3448 " for -kernel is the default"); 3449 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3450 3451 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3452 object_property_set_description(obj, "x-vof", 3453 "Enable Virtual Open Firmware (experimental)"); 3454 3455 /* The machine class defines the default interrupt controller mode */ 3456 spapr->irq = smc->irq; 3457 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3458 spapr_set_ic_mode); 3459 object_property_set_description(obj, "ic-mode", 3460 "Specifies the interrupt controller mode (xics, xive, dual)"); 3461 3462 object_property_add_str(obj, "host-model", 3463 spapr_get_host_model, spapr_set_host_model); 3464 object_property_set_description(obj, "host-model", 3465 "Host model to advertise in guest device tree"); 3466 object_property_add_str(obj, "host-serial", 3467 spapr_get_host_serial, spapr_set_host_serial); 3468 object_property_set_description(obj, "host-serial", 3469 "Host serial number to advertise in guest device tree"); 3470 } 3471 3472 static void spapr_machine_finalizefn(Object *obj) 3473 { 3474 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3475 3476 g_free(spapr->kvm_type); 3477 } 3478 3479 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3480 { 3481 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3482 PowerPCCPU *cpu = POWERPC_CPU(cs); 3483 CPUPPCState *env = &cpu->env; 3484 3485 cpu_synchronize_state(cs); 3486 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3487 if (spapr->fwnmi_system_reset_addr != -1) { 3488 uint64_t rtas_addr, addr; 3489 3490 /* get rtas addr from fdt */ 3491 rtas_addr = spapr_get_rtas_addr(); 3492 if (!rtas_addr) { 3493 qemu_system_guest_panicked(NULL); 3494 return; 3495 } 3496 3497 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3498 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3499 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3500 env->gpr[3] = addr; 3501 } 3502 ppc_cpu_do_system_reset(cs); 3503 if (spapr->fwnmi_system_reset_addr != -1) { 3504 env->nip = spapr->fwnmi_system_reset_addr; 3505 } 3506 } 3507 3508 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3509 { 3510 CPUState *cs; 3511 3512 CPU_FOREACH(cs) { 3513 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3514 } 3515 } 3516 3517 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3518 void *fdt, int *fdt_start_offset, Error **errp) 3519 { 3520 uint64_t addr; 3521 uint32_t node; 3522 3523 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3524 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3525 &error_abort); 3526 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3527 SPAPR_MEMORY_BLOCK_SIZE); 3528 return 0; 3529 } 3530 3531 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3532 bool dedicated_hp_event_source) 3533 { 3534 SpaprDrc *drc; 3535 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3536 int i; 3537 uint64_t addr = addr_start; 3538 bool hotplugged = spapr_drc_hotplugged(dev); 3539 3540 for (i = 0; i < nr_lmbs; i++) { 3541 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3542 addr / SPAPR_MEMORY_BLOCK_SIZE); 3543 g_assert(drc); 3544 3545 /* 3546 * memory_device_get_free_addr() provided a range of free addresses 3547 * that doesn't overlap with any existing mapping at pre-plug. The 3548 * corresponding LMB DRCs are thus assumed to be all attachable. 3549 */ 3550 spapr_drc_attach(drc, dev); 3551 if (!hotplugged) { 3552 spapr_drc_reset(drc); 3553 } 3554 addr += SPAPR_MEMORY_BLOCK_SIZE; 3555 } 3556 /* send hotplug notification to the 3557 * guest only in case of hotplugged memory 3558 */ 3559 if (hotplugged) { 3560 if (dedicated_hp_event_source) { 3561 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3562 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3563 g_assert(drc); 3564 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3565 nr_lmbs, 3566 spapr_drc_index(drc)); 3567 } else { 3568 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3569 nr_lmbs); 3570 } 3571 } 3572 } 3573 3574 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3575 { 3576 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3577 PCDIMMDevice *dimm = PC_DIMM(dev); 3578 uint64_t size, addr; 3579 int64_t slot; 3580 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3581 3582 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3583 3584 pc_dimm_plug(dimm, MACHINE(ms)); 3585 3586 if (!is_nvdimm) { 3587 addr = object_property_get_uint(OBJECT(dimm), 3588 PC_DIMM_ADDR_PROP, &error_abort); 3589 spapr_add_lmbs(dev, addr, size, 3590 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3591 } else { 3592 slot = object_property_get_int(OBJECT(dimm), 3593 PC_DIMM_SLOT_PROP, &error_abort); 3594 /* We should have valid slot number at this point */ 3595 g_assert(slot >= 0); 3596 spapr_add_nvdimm(dev, slot); 3597 } 3598 } 3599 3600 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3601 Error **errp) 3602 { 3603 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3604 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3605 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3606 PCDIMMDevice *dimm = PC_DIMM(dev); 3607 Error *local_err = NULL; 3608 uint64_t size; 3609 Object *memdev; 3610 hwaddr pagesize; 3611 3612 if (!smc->dr_lmb_enabled) { 3613 error_setg(errp, "Memory hotplug not supported for this machine"); 3614 return; 3615 } 3616 3617 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3618 if (local_err) { 3619 error_propagate(errp, local_err); 3620 return; 3621 } 3622 3623 if (is_nvdimm) { 3624 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3625 return; 3626 } 3627 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3628 error_setg(errp, "Hotplugged memory size must be a multiple of " 3629 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3630 return; 3631 } 3632 3633 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3634 &error_abort); 3635 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3636 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3637 return; 3638 } 3639 3640 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3641 } 3642 3643 struct SpaprDimmState { 3644 PCDIMMDevice *dimm; 3645 uint32_t nr_lmbs; 3646 QTAILQ_ENTRY(SpaprDimmState) next; 3647 }; 3648 3649 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3650 PCDIMMDevice *dimm) 3651 { 3652 SpaprDimmState *dimm_state = NULL; 3653 3654 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3655 if (dimm_state->dimm == dimm) { 3656 break; 3657 } 3658 } 3659 return dimm_state; 3660 } 3661 3662 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3663 uint32_t nr_lmbs, 3664 PCDIMMDevice *dimm) 3665 { 3666 SpaprDimmState *ds = NULL; 3667 3668 /* 3669 * If this request is for a DIMM whose removal had failed earlier 3670 * (due to guest's refusal to remove the LMBs), we would have this 3671 * dimm already in the pending_dimm_unplugs list. In that 3672 * case don't add again. 3673 */ 3674 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3675 if (!ds) { 3676 ds = g_new0(SpaprDimmState, 1); 3677 ds->nr_lmbs = nr_lmbs; 3678 ds->dimm = dimm; 3679 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3680 } 3681 return ds; 3682 } 3683 3684 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3685 SpaprDimmState *dimm_state) 3686 { 3687 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3688 g_free(dimm_state); 3689 } 3690 3691 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3692 PCDIMMDevice *dimm) 3693 { 3694 SpaprDrc *drc; 3695 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3696 &error_abort); 3697 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3698 uint32_t avail_lmbs = 0; 3699 uint64_t addr_start, addr; 3700 int i; 3701 3702 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3703 &error_abort); 3704 3705 addr = addr_start; 3706 for (i = 0; i < nr_lmbs; i++) { 3707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3708 addr / SPAPR_MEMORY_BLOCK_SIZE); 3709 g_assert(drc); 3710 if (drc->dev) { 3711 avail_lmbs++; 3712 } 3713 addr += SPAPR_MEMORY_BLOCK_SIZE; 3714 } 3715 3716 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3717 } 3718 3719 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3720 { 3721 SpaprDimmState *ds; 3722 PCDIMMDevice *dimm; 3723 SpaprDrc *drc; 3724 uint32_t nr_lmbs; 3725 uint64_t size, addr_start, addr; 3726 g_autofree char *qapi_error = NULL; 3727 int i; 3728 3729 if (!dev) { 3730 return; 3731 } 3732 3733 dimm = PC_DIMM(dev); 3734 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3735 3736 /* 3737 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3738 * unplug state, but one of its DRC is marked as unplug_requested. 3739 * This is bad and weird enough to g_assert() out. 3740 */ 3741 g_assert(ds); 3742 3743 spapr_pending_dimm_unplugs_remove(spapr, ds); 3744 3745 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3746 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3747 3748 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3749 &error_abort); 3750 3751 addr = addr_start; 3752 for (i = 0; i < nr_lmbs; i++) { 3753 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3754 addr / SPAPR_MEMORY_BLOCK_SIZE); 3755 g_assert(drc); 3756 3757 drc->unplug_requested = false; 3758 addr += SPAPR_MEMORY_BLOCK_SIZE; 3759 } 3760 3761 /* 3762 * Tell QAPI that something happened and the memory 3763 * hotunplug wasn't successful. Keep sending 3764 * MEM_UNPLUG_ERROR even while sending 3765 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3766 * MEM_UNPLUG_ERROR is due. 3767 */ 3768 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3769 "for device %s", dev->id); 3770 3771 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3772 3773 qapi_event_send_device_unplug_guest_error(dev->id, 3774 dev->canonical_path); 3775 } 3776 3777 /* Callback to be called during DRC release. */ 3778 void spapr_lmb_release(DeviceState *dev) 3779 { 3780 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3781 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3782 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3783 3784 /* This information will get lost if a migration occurs 3785 * during the unplug process. In this case recover it. */ 3786 if (ds == NULL) { 3787 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3788 g_assert(ds); 3789 /* The DRC being examined by the caller at least must be counted */ 3790 g_assert(ds->nr_lmbs); 3791 } 3792 3793 if (--ds->nr_lmbs) { 3794 return; 3795 } 3796 3797 /* 3798 * Now that all the LMBs have been removed by the guest, call the 3799 * unplug handler chain. This can never fail. 3800 */ 3801 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3802 object_unparent(OBJECT(dev)); 3803 } 3804 3805 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3806 { 3807 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3808 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3809 3810 /* We really shouldn't get this far without anything to unplug */ 3811 g_assert(ds); 3812 3813 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3814 qdev_unrealize(dev); 3815 spapr_pending_dimm_unplugs_remove(spapr, ds); 3816 } 3817 3818 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3819 DeviceState *dev, Error **errp) 3820 { 3821 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3822 PCDIMMDevice *dimm = PC_DIMM(dev); 3823 uint32_t nr_lmbs; 3824 uint64_t size, addr_start, addr; 3825 int i; 3826 SpaprDrc *drc; 3827 3828 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3829 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3830 return; 3831 } 3832 3833 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3834 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3835 3836 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3837 &error_abort); 3838 3839 /* 3840 * An existing pending dimm state for this DIMM means that there is an 3841 * unplug operation in progress, waiting for the spapr_lmb_release 3842 * callback to complete the job (BQL can't cover that far). In this case, 3843 * bail out to avoid detaching DRCs that were already released. 3844 */ 3845 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3846 error_setg(errp, "Memory unplug already in progress for device %s", 3847 dev->id); 3848 return; 3849 } 3850 3851 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3852 3853 addr = addr_start; 3854 for (i = 0; i < nr_lmbs; i++) { 3855 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3856 addr / SPAPR_MEMORY_BLOCK_SIZE); 3857 g_assert(drc); 3858 3859 spapr_drc_unplug_request(drc); 3860 addr += SPAPR_MEMORY_BLOCK_SIZE; 3861 } 3862 3863 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3864 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3865 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3866 nr_lmbs, spapr_drc_index(drc)); 3867 } 3868 3869 /* Callback to be called during DRC release. */ 3870 void spapr_core_release(DeviceState *dev) 3871 { 3872 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3873 3874 /* Call the unplug handler chain. This can never fail. */ 3875 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3876 object_unparent(OBJECT(dev)); 3877 } 3878 3879 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3880 { 3881 MachineState *ms = MACHINE(hotplug_dev); 3882 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3883 CPUCore *cc = CPU_CORE(dev); 3884 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3885 3886 if (smc->pre_2_10_has_unused_icps) { 3887 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3888 int i; 3889 3890 for (i = 0; i < cc->nr_threads; i++) { 3891 CPUState *cs = CPU(sc->threads[i]); 3892 3893 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3894 } 3895 } 3896 3897 assert(core_slot); 3898 core_slot->cpu = NULL; 3899 qdev_unrealize(dev); 3900 } 3901 3902 static 3903 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3904 Error **errp) 3905 { 3906 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3907 int index; 3908 SpaprDrc *drc; 3909 CPUCore *cc = CPU_CORE(dev); 3910 3911 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3912 error_setg(errp, "Unable to find CPU core with core-id: %d", 3913 cc->core_id); 3914 return; 3915 } 3916 if (index == 0) { 3917 error_setg(errp, "Boot CPU core may not be unplugged"); 3918 return; 3919 } 3920 3921 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3922 spapr_vcpu_id(spapr, cc->core_id)); 3923 g_assert(drc); 3924 3925 if (!spapr_drc_unplug_requested(drc)) { 3926 spapr_drc_unplug_request(drc); 3927 } 3928 3929 /* 3930 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3931 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3932 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3933 * attempt (e.g. the kernel will refuse to remove the last online 3934 * CPU), we will never attempt it again because unplug_requested 3935 * will still be 'true' in that case. 3936 */ 3937 spapr_hotplug_req_remove_by_index(drc); 3938 } 3939 3940 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3941 void *fdt, int *fdt_start_offset, Error **errp) 3942 { 3943 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3944 CPUState *cs = CPU(core->threads[0]); 3945 PowerPCCPU *cpu = POWERPC_CPU(cs); 3946 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3947 int id = spapr_get_vcpu_id(cpu); 3948 g_autofree char *nodename = NULL; 3949 int offset; 3950 3951 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3952 offset = fdt_add_subnode(fdt, 0, nodename); 3953 3954 spapr_dt_cpu(cs, fdt, offset, spapr); 3955 3956 /* 3957 * spapr_dt_cpu() does not fill the 'name' property in the 3958 * CPU node. The function is called during boot process, before 3959 * and after CAS, and overwriting the 'name' property written 3960 * by SLOF is not allowed. 3961 * 3962 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3963 * CPUs more compatible with the coldplugged ones, which have 3964 * the 'name' property. Linux Kernel also relies on this 3965 * property to identify CPU nodes. 3966 */ 3967 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3968 3969 *fdt_start_offset = offset; 3970 return 0; 3971 } 3972 3973 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3974 { 3975 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3976 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3977 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3978 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3979 CPUCore *cc = CPU_CORE(dev); 3980 CPUState *cs; 3981 SpaprDrc *drc; 3982 CPUArchId *core_slot; 3983 int index; 3984 bool hotplugged = spapr_drc_hotplugged(dev); 3985 int i; 3986 3987 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3988 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3989 3990 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3991 spapr_vcpu_id(spapr, cc->core_id)); 3992 3993 g_assert(drc || !mc->has_hotpluggable_cpus); 3994 3995 if (drc) { 3996 /* 3997 * spapr_core_pre_plug() already buys us this is a brand new 3998 * core being plugged into a free slot. Nothing should already 3999 * be attached to the corresponding DRC. 4000 */ 4001 spapr_drc_attach(drc, dev); 4002 4003 if (hotplugged) { 4004 /* 4005 * Send hotplug notification interrupt to the guest only 4006 * in case of hotplugged CPUs. 4007 */ 4008 spapr_hotplug_req_add_by_index(drc); 4009 } else { 4010 spapr_drc_reset(drc); 4011 } 4012 } 4013 4014 core_slot->cpu = OBJECT(dev); 4015 4016 /* 4017 * Set compatibility mode to match the boot CPU, which was either set 4018 * by the machine reset code or by CAS. This really shouldn't fail at 4019 * this point. 4020 */ 4021 if (hotplugged) { 4022 for (i = 0; i < cc->nr_threads; i++) { 4023 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4024 &error_abort); 4025 } 4026 } 4027 4028 if (smc->pre_2_10_has_unused_icps) { 4029 for (i = 0; i < cc->nr_threads; i++) { 4030 cs = CPU(core->threads[i]); 4031 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4032 } 4033 } 4034 } 4035 4036 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4037 Error **errp) 4038 { 4039 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4040 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4041 CPUCore *cc = CPU_CORE(dev); 4042 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4043 const char *type = object_get_typename(OBJECT(dev)); 4044 CPUArchId *core_slot; 4045 int index; 4046 unsigned int smp_threads = machine->smp.threads; 4047 4048 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4049 error_setg(errp, "CPU hotplug not supported for this machine"); 4050 return; 4051 } 4052 4053 if (strcmp(base_core_type, type)) { 4054 error_setg(errp, "CPU core type should be %s", base_core_type); 4055 return; 4056 } 4057 4058 if (cc->core_id % smp_threads) { 4059 error_setg(errp, "invalid core id %d", cc->core_id); 4060 return; 4061 } 4062 4063 /* 4064 * In general we should have homogeneous threads-per-core, but old 4065 * (pre hotplug support) machine types allow the last core to have 4066 * reduced threads as a compatibility hack for when we allowed 4067 * total vcpus not a multiple of threads-per-core. 4068 */ 4069 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4070 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4071 smp_threads); 4072 return; 4073 } 4074 4075 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4076 if (!core_slot) { 4077 error_setg(errp, "core id %d out of range", cc->core_id); 4078 return; 4079 } 4080 4081 if (core_slot->cpu) { 4082 error_setg(errp, "core %d already populated", cc->core_id); 4083 return; 4084 } 4085 4086 numa_cpu_pre_plug(core_slot, dev, errp); 4087 } 4088 4089 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4090 void *fdt, int *fdt_start_offset, Error **errp) 4091 { 4092 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4093 int intc_phandle; 4094 4095 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4096 if (intc_phandle <= 0) { 4097 return -1; 4098 } 4099 4100 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4101 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4102 return -1; 4103 } 4104 4105 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4106 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4107 4108 return 0; 4109 } 4110 4111 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4112 Error **errp) 4113 { 4114 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4115 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4116 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4117 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4118 SpaprDrc *drc; 4119 4120 if (dev->hotplugged && !smc->dr_phb_enabled) { 4121 error_setg(errp, "PHB hotplug not supported for this machine"); 4122 return false; 4123 } 4124 4125 if (sphb->index == (uint32_t)-1) { 4126 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4127 return false; 4128 } 4129 4130 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4131 if (drc && drc->dev) { 4132 error_setg(errp, "PHB %d already attached", sphb->index); 4133 return false; 4134 } 4135 4136 /* 4137 * This will check that sphb->index doesn't exceed the maximum number of 4138 * PHBs for the current machine type. 4139 */ 4140 return 4141 smc->phb_placement(spapr, sphb->index, 4142 &sphb->buid, &sphb->io_win_addr, 4143 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4144 windows_supported, sphb->dma_liobn, 4145 errp); 4146 } 4147 4148 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4149 { 4150 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4151 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4152 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4153 SpaprDrc *drc; 4154 bool hotplugged = spapr_drc_hotplugged(dev); 4155 4156 if (!smc->dr_phb_enabled) { 4157 return; 4158 } 4159 4160 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4161 /* hotplug hooks should check it's enabled before getting this far */ 4162 assert(drc); 4163 4164 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4165 spapr_drc_attach(drc, dev); 4166 4167 if (hotplugged) { 4168 spapr_hotplug_req_add_by_index(drc); 4169 } else { 4170 spapr_drc_reset(drc); 4171 } 4172 } 4173 4174 void spapr_phb_release(DeviceState *dev) 4175 { 4176 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4177 4178 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4179 object_unparent(OBJECT(dev)); 4180 } 4181 4182 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4183 { 4184 qdev_unrealize(dev); 4185 } 4186 4187 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4188 DeviceState *dev, Error **errp) 4189 { 4190 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4191 SpaprDrc *drc; 4192 4193 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4194 assert(drc); 4195 4196 if (!spapr_drc_unplug_requested(drc)) { 4197 spapr_drc_unplug_request(drc); 4198 spapr_hotplug_req_remove_by_index(drc); 4199 } else { 4200 error_setg(errp, 4201 "PCI Host Bridge unplug already in progress for device %s", 4202 dev->id); 4203 } 4204 } 4205 4206 static 4207 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4208 Error **errp) 4209 { 4210 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4211 4212 if (spapr->tpm_proxy != NULL) { 4213 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4214 return false; 4215 } 4216 4217 return true; 4218 } 4219 4220 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4221 { 4222 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4223 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4224 4225 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4226 g_assert(spapr->tpm_proxy == NULL); 4227 4228 spapr->tpm_proxy = tpm_proxy; 4229 } 4230 4231 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4232 { 4233 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4234 4235 qdev_unrealize(dev); 4236 object_unparent(OBJECT(dev)); 4237 spapr->tpm_proxy = NULL; 4238 } 4239 4240 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4241 DeviceState *dev, Error **errp) 4242 { 4243 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4244 spapr_memory_plug(hotplug_dev, dev); 4245 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4246 spapr_core_plug(hotplug_dev, dev); 4247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4248 spapr_phb_plug(hotplug_dev, dev); 4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4250 spapr_tpm_proxy_plug(hotplug_dev, dev); 4251 } 4252 } 4253 4254 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4255 DeviceState *dev, Error **errp) 4256 { 4257 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4258 spapr_memory_unplug(hotplug_dev, dev); 4259 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4260 spapr_core_unplug(hotplug_dev, dev); 4261 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4262 spapr_phb_unplug(hotplug_dev, dev); 4263 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4264 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4265 } 4266 } 4267 4268 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4269 { 4270 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4271 /* 4272 * CAS will process all pending unplug requests. 4273 * 4274 * HACK: a guest could theoretically have cleared all bits in OV5, 4275 * but none of the guests we care for do. 4276 */ 4277 spapr_ovec_empty(spapr->ov5_cas); 4278 } 4279 4280 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4281 DeviceState *dev, Error **errp) 4282 { 4283 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4284 MachineClass *mc = MACHINE_GET_CLASS(sms); 4285 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4286 4287 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4288 if (spapr_memory_hot_unplug_supported(sms)) { 4289 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4290 } else { 4291 error_setg(errp, "Memory hot unplug not supported for this guest"); 4292 } 4293 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4294 if (!mc->has_hotpluggable_cpus) { 4295 error_setg(errp, "CPU hot unplug not supported on this machine"); 4296 return; 4297 } 4298 spapr_core_unplug_request(hotplug_dev, dev, errp); 4299 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4300 if (!smc->dr_phb_enabled) { 4301 error_setg(errp, "PHB hot unplug not supported on this machine"); 4302 return; 4303 } 4304 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4305 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4306 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4307 } 4308 } 4309 4310 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4311 DeviceState *dev, Error **errp) 4312 { 4313 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4314 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4315 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4316 spapr_core_pre_plug(hotplug_dev, dev, errp); 4317 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4318 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4319 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4320 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4321 } 4322 } 4323 4324 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4325 DeviceState *dev) 4326 { 4327 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4328 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4329 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4330 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4331 return HOTPLUG_HANDLER(machine); 4332 } 4333 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4334 PCIDevice *pcidev = PCI_DEVICE(dev); 4335 PCIBus *root = pci_device_root_bus(pcidev); 4336 SpaprPhbState *phb = 4337 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4338 TYPE_SPAPR_PCI_HOST_BRIDGE); 4339 4340 if (phb) { 4341 return HOTPLUG_HANDLER(phb); 4342 } 4343 } 4344 return NULL; 4345 } 4346 4347 static CpuInstanceProperties 4348 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4349 { 4350 CPUArchId *core_slot; 4351 MachineClass *mc = MACHINE_GET_CLASS(machine); 4352 4353 /* make sure possible_cpu are initialized */ 4354 mc->possible_cpu_arch_ids(machine); 4355 /* get CPU core slot containing thread that matches cpu_index */ 4356 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4357 assert(core_slot); 4358 return core_slot->props; 4359 } 4360 4361 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4362 { 4363 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4364 } 4365 4366 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4367 { 4368 int i; 4369 unsigned int smp_threads = machine->smp.threads; 4370 unsigned int smp_cpus = machine->smp.cpus; 4371 const char *core_type; 4372 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4373 MachineClass *mc = MACHINE_GET_CLASS(machine); 4374 4375 if (!mc->has_hotpluggable_cpus) { 4376 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4377 } 4378 if (machine->possible_cpus) { 4379 assert(machine->possible_cpus->len == spapr_max_cores); 4380 return machine->possible_cpus; 4381 } 4382 4383 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4384 if (!core_type) { 4385 error_report("Unable to find sPAPR CPU Core definition"); 4386 exit(1); 4387 } 4388 4389 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4390 sizeof(CPUArchId) * spapr_max_cores); 4391 machine->possible_cpus->len = spapr_max_cores; 4392 for (i = 0; i < machine->possible_cpus->len; i++) { 4393 int core_id = i * smp_threads; 4394 4395 machine->possible_cpus->cpus[i].type = core_type; 4396 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4397 machine->possible_cpus->cpus[i].arch_id = core_id; 4398 machine->possible_cpus->cpus[i].props.has_core_id = true; 4399 machine->possible_cpus->cpus[i].props.core_id = core_id; 4400 } 4401 return machine->possible_cpus; 4402 } 4403 4404 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4405 uint64_t *buid, hwaddr *pio, 4406 hwaddr *mmio32, hwaddr *mmio64, 4407 unsigned n_dma, uint32_t *liobns, Error **errp) 4408 { 4409 /* 4410 * New-style PHB window placement. 4411 * 4412 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4413 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4414 * windows. 4415 * 4416 * Some guest kernels can't work with MMIO windows above 1<<46 4417 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4418 * 4419 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4420 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4421 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4422 * 1TiB 64-bit MMIO windows for each PHB. 4423 */ 4424 const uint64_t base_buid = 0x800000020000000ULL; 4425 int i; 4426 4427 /* Sanity check natural alignments */ 4428 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4429 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4430 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4431 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4432 /* Sanity check bounds */ 4433 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4434 SPAPR_PCI_MEM32_WIN_SIZE); 4435 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4436 SPAPR_PCI_MEM64_WIN_SIZE); 4437 4438 if (index >= SPAPR_MAX_PHBS) { 4439 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4440 SPAPR_MAX_PHBS - 1); 4441 return false; 4442 } 4443 4444 *buid = base_buid + index; 4445 for (i = 0; i < n_dma; ++i) { 4446 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4447 } 4448 4449 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4450 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4451 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4452 return true; 4453 } 4454 4455 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4456 { 4457 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4458 4459 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4460 } 4461 4462 static void spapr_ics_resend(XICSFabric *dev) 4463 { 4464 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4465 4466 ics_resend(spapr->ics); 4467 } 4468 4469 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4470 { 4471 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4472 4473 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4474 } 4475 4476 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4477 Monitor *mon) 4478 { 4479 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4480 4481 spapr_irq_print_info(spapr, mon); 4482 monitor_printf(mon, "irqchip: %s\n", 4483 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4484 } 4485 4486 /* 4487 * This is a XIVE only operation 4488 */ 4489 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4490 uint8_t nvt_blk, uint32_t nvt_idx, 4491 bool cam_ignore, uint8_t priority, 4492 uint32_t logic_serv, XiveTCTXMatch *match) 4493 { 4494 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4495 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4496 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4497 int count; 4498 4499 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4500 priority, logic_serv, match); 4501 if (count < 0) { 4502 return count; 4503 } 4504 4505 /* 4506 * When we implement the save and restore of the thread interrupt 4507 * contexts in the enter/exit CPU handlers of the machine and the 4508 * escalations in QEMU, we should be able to handle non dispatched 4509 * vCPUs. 4510 * 4511 * Until this is done, the sPAPR machine should find at least one 4512 * matching context always. 4513 */ 4514 if (count == 0) { 4515 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4516 nvt_blk, nvt_idx); 4517 } 4518 4519 return count; 4520 } 4521 4522 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4523 { 4524 return cpu->vcpu_id; 4525 } 4526 4527 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4528 { 4529 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4530 MachineState *ms = MACHINE(spapr); 4531 int vcpu_id; 4532 4533 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4534 4535 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4536 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4537 error_append_hint(errp, "Adjust the number of cpus to %d " 4538 "or try to raise the number of threads per core\n", 4539 vcpu_id * ms->smp.threads / spapr->vsmt); 4540 return false; 4541 } 4542 4543 cpu->vcpu_id = vcpu_id; 4544 return true; 4545 } 4546 4547 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4548 { 4549 CPUState *cs; 4550 4551 CPU_FOREACH(cs) { 4552 PowerPCCPU *cpu = POWERPC_CPU(cs); 4553 4554 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4555 return cpu; 4556 } 4557 } 4558 4559 return NULL; 4560 } 4561 4562 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4563 { 4564 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4565 4566 return spapr_cpu->in_nested; 4567 } 4568 4569 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4570 { 4571 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4572 4573 /* These are only called by TCG, KVM maintains dispatch state */ 4574 4575 spapr_cpu->prod = false; 4576 if (spapr_cpu->vpa_addr) { 4577 CPUState *cs = CPU(cpu); 4578 uint32_t dispatch; 4579 4580 dispatch = ldl_be_phys(cs->as, 4581 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4582 dispatch++; 4583 if ((dispatch & 1) != 0) { 4584 qemu_log_mask(LOG_GUEST_ERROR, 4585 "VPA: incorrect dispatch counter value for " 4586 "dispatched partition %u, correcting.\n", dispatch); 4587 dispatch++; 4588 } 4589 stl_be_phys(cs->as, 4590 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4591 } 4592 } 4593 4594 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4595 { 4596 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4597 4598 if (spapr_cpu->vpa_addr) { 4599 CPUState *cs = CPU(cpu); 4600 uint32_t dispatch; 4601 4602 dispatch = ldl_be_phys(cs->as, 4603 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4604 dispatch++; 4605 if ((dispatch & 1) != 1) { 4606 qemu_log_mask(LOG_GUEST_ERROR, 4607 "VPA: incorrect dispatch counter value for " 4608 "preempted partition %u, correcting.\n", dispatch); 4609 dispatch++; 4610 } 4611 stl_be_phys(cs->as, 4612 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4613 } 4614 } 4615 4616 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4617 { 4618 MachineClass *mc = MACHINE_CLASS(oc); 4619 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4620 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4621 NMIClass *nc = NMI_CLASS(oc); 4622 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4623 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4624 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4625 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4626 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4627 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4628 4629 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4630 mc->ignore_boot_device_suffixes = true; 4631 4632 /* 4633 * We set up the default / latest behaviour here. The class_init 4634 * functions for the specific versioned machine types can override 4635 * these details for backwards compatibility 4636 */ 4637 mc->init = spapr_machine_init; 4638 mc->reset = spapr_machine_reset; 4639 mc->block_default_type = IF_SCSI; 4640 4641 /* 4642 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4643 * should be limited by the host capability instead of hardcoded. 4644 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4645 * guests are welcome to have as many CPUs as the host are capable 4646 * of emulate. 4647 */ 4648 mc->max_cpus = INT32_MAX; 4649 4650 mc->no_parallel = 1; 4651 mc->default_boot_order = ""; 4652 mc->default_ram_size = 512 * MiB; 4653 mc->default_ram_id = "ppc_spapr.ram"; 4654 mc->default_display = "std"; 4655 mc->kvm_type = spapr_kvm_type; 4656 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4657 mc->pci_allow_0_address = true; 4658 assert(!mc->get_hotplug_handler); 4659 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4660 hc->pre_plug = spapr_machine_device_pre_plug; 4661 hc->plug = spapr_machine_device_plug; 4662 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4663 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4664 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4665 hc->unplug_request = spapr_machine_device_unplug_request; 4666 hc->unplug = spapr_machine_device_unplug; 4667 4668 smc->dr_lmb_enabled = true; 4669 smc->update_dt_enabled = true; 4670 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4671 mc->has_hotpluggable_cpus = true; 4672 mc->nvdimm_supported = true; 4673 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4674 fwc->get_dev_path = spapr_get_fw_dev_path; 4675 nc->nmi_monitor_handler = spapr_nmi; 4676 smc->phb_placement = spapr_phb_placement; 4677 vhc->cpu_in_nested = spapr_cpu_in_nested; 4678 vhc->deliver_hv_excp = spapr_exit_nested; 4679 vhc->hypercall = emulate_spapr_hypercall; 4680 vhc->hpt_mask = spapr_hpt_mask; 4681 vhc->map_hptes = spapr_map_hptes; 4682 vhc->unmap_hptes = spapr_unmap_hptes; 4683 vhc->hpte_set_c = spapr_hpte_set_c; 4684 vhc->hpte_set_r = spapr_hpte_set_r; 4685 vhc->get_pate = spapr_get_pate; 4686 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4687 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4688 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4689 xic->ics_get = spapr_ics_get; 4690 xic->ics_resend = spapr_ics_resend; 4691 xic->icp_get = spapr_icp_get; 4692 ispc->print_info = spapr_pic_print_info; 4693 /* Force NUMA node memory size to be a multiple of 4694 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4695 * in which LMBs are represented and hot-added 4696 */ 4697 mc->numa_mem_align_shift = 28; 4698 mc->auto_enable_numa = true; 4699 4700 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4701 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4702 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4703 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4704 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4705 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4706 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4707 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4708 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4709 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4710 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4711 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4712 4713 /* 4714 * This cap specifies whether the AIL 3 mode for 4715 * H_SET_RESOURCE is supported. The default is modified 4716 * by default_caps_with_cpu(). 4717 */ 4718 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4719 spapr_caps_add_properties(smc); 4720 smc->irq = &spapr_irq_dual; 4721 smc->dr_phb_enabled = true; 4722 smc->linux_pci_probe = true; 4723 smc->smp_threads_vsmt = true; 4724 smc->nr_xirqs = SPAPR_NR_XIRQS; 4725 xfc->match_nvt = spapr_match_nvt; 4726 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4727 vmc->quiesce = spapr_vof_quiesce; 4728 vmc->setprop = spapr_vof_setprop; 4729 } 4730 4731 static const TypeInfo spapr_machine_info = { 4732 .name = TYPE_SPAPR_MACHINE, 4733 .parent = TYPE_MACHINE, 4734 .abstract = true, 4735 .instance_size = sizeof(SpaprMachineState), 4736 .instance_init = spapr_instance_init, 4737 .instance_finalize = spapr_machine_finalizefn, 4738 .class_size = sizeof(SpaprMachineClass), 4739 .class_init = spapr_machine_class_init, 4740 .interfaces = (InterfaceInfo[]) { 4741 { TYPE_FW_PATH_PROVIDER }, 4742 { TYPE_NMI }, 4743 { TYPE_HOTPLUG_HANDLER }, 4744 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4745 { TYPE_XICS_FABRIC }, 4746 { TYPE_INTERRUPT_STATS_PROVIDER }, 4747 { TYPE_XIVE_FABRIC }, 4748 { TYPE_VOF_MACHINE_IF }, 4749 { } 4750 }, 4751 }; 4752 4753 static void spapr_machine_latest_class_options(MachineClass *mc) 4754 { 4755 mc->alias = "pseries"; 4756 mc->is_default = true; 4757 } 4758 4759 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4760 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4761 void *data) \ 4762 { \ 4763 MachineClass *mc = MACHINE_CLASS(oc); \ 4764 spapr_machine_##suffix##_class_options(mc); \ 4765 if (latest) { \ 4766 spapr_machine_latest_class_options(mc); \ 4767 } \ 4768 } \ 4769 static const TypeInfo spapr_machine_##suffix##_info = { \ 4770 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4771 .parent = TYPE_SPAPR_MACHINE, \ 4772 .class_init = spapr_machine_##suffix##_class_init, \ 4773 }; \ 4774 static void spapr_machine_register_##suffix(void) \ 4775 { \ 4776 type_register(&spapr_machine_##suffix##_info); \ 4777 } \ 4778 type_init(spapr_machine_register_##suffix) 4779 4780 /* 4781 * pseries-9.0 4782 */ 4783 static void spapr_machine_9_0_class_options(MachineClass *mc) 4784 { 4785 /* Defaults for the latest behaviour inherited from the base class */ 4786 } 4787 4788 DEFINE_SPAPR_MACHINE(9_0, "9.0", true); 4789 4790 /* 4791 * pseries-8.2 4792 */ 4793 static void spapr_machine_8_2_class_options(MachineClass *mc) 4794 { 4795 spapr_machine_9_0_class_options(mc); 4796 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4797 } 4798 4799 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4800 4801 /* 4802 * pseries-8.1 4803 */ 4804 static void spapr_machine_8_1_class_options(MachineClass *mc) 4805 { 4806 spapr_machine_8_2_class_options(mc); 4807 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4808 } 4809 4810 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4811 4812 /* 4813 * pseries-8.0 4814 */ 4815 static void spapr_machine_8_0_class_options(MachineClass *mc) 4816 { 4817 spapr_machine_8_1_class_options(mc); 4818 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4819 } 4820 4821 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4822 4823 /* 4824 * pseries-7.2 4825 */ 4826 static void spapr_machine_7_2_class_options(MachineClass *mc) 4827 { 4828 spapr_machine_8_0_class_options(mc); 4829 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4830 } 4831 4832 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4833 4834 /* 4835 * pseries-7.1 4836 */ 4837 static void spapr_machine_7_1_class_options(MachineClass *mc) 4838 { 4839 spapr_machine_7_2_class_options(mc); 4840 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4841 } 4842 4843 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4844 4845 /* 4846 * pseries-7.0 4847 */ 4848 static void spapr_machine_7_0_class_options(MachineClass *mc) 4849 { 4850 spapr_machine_7_1_class_options(mc); 4851 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4852 } 4853 4854 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4855 4856 /* 4857 * pseries-6.2 4858 */ 4859 static void spapr_machine_6_2_class_options(MachineClass *mc) 4860 { 4861 spapr_machine_7_0_class_options(mc); 4862 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4863 } 4864 4865 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4866 4867 /* 4868 * pseries-6.1 4869 */ 4870 static void spapr_machine_6_1_class_options(MachineClass *mc) 4871 { 4872 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4873 4874 spapr_machine_6_2_class_options(mc); 4875 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4876 smc->pre_6_2_numa_affinity = true; 4877 mc->smp_props.prefer_sockets = true; 4878 } 4879 4880 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4881 4882 /* 4883 * pseries-6.0 4884 */ 4885 static void spapr_machine_6_0_class_options(MachineClass *mc) 4886 { 4887 spapr_machine_6_1_class_options(mc); 4888 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4889 } 4890 4891 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4892 4893 /* 4894 * pseries-5.2 4895 */ 4896 static void spapr_machine_5_2_class_options(MachineClass *mc) 4897 { 4898 spapr_machine_6_0_class_options(mc); 4899 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4900 } 4901 4902 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4903 4904 /* 4905 * pseries-5.1 4906 */ 4907 static void spapr_machine_5_1_class_options(MachineClass *mc) 4908 { 4909 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4910 4911 spapr_machine_5_2_class_options(mc); 4912 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4913 smc->pre_5_2_numa_associativity = true; 4914 } 4915 4916 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4917 4918 /* 4919 * pseries-5.0 4920 */ 4921 static void spapr_machine_5_0_class_options(MachineClass *mc) 4922 { 4923 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4924 static GlobalProperty compat[] = { 4925 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4926 }; 4927 4928 spapr_machine_5_1_class_options(mc); 4929 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4930 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4931 mc->numa_mem_supported = true; 4932 smc->pre_5_1_assoc_refpoints = true; 4933 } 4934 4935 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4936 4937 /* 4938 * pseries-4.2 4939 */ 4940 static void spapr_machine_4_2_class_options(MachineClass *mc) 4941 { 4942 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4943 4944 spapr_machine_5_0_class_options(mc); 4945 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4946 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4947 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4948 smc->rma_limit = 16 * GiB; 4949 mc->nvdimm_supported = false; 4950 } 4951 4952 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4953 4954 /* 4955 * pseries-4.1 4956 */ 4957 static void spapr_machine_4_1_class_options(MachineClass *mc) 4958 { 4959 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4960 static GlobalProperty compat[] = { 4961 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4962 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4963 }; 4964 4965 spapr_machine_4_2_class_options(mc); 4966 smc->linux_pci_probe = false; 4967 smc->smp_threads_vsmt = false; 4968 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4969 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4970 } 4971 4972 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4973 4974 /* 4975 * pseries-4.0 4976 */ 4977 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4978 uint64_t *buid, hwaddr *pio, 4979 hwaddr *mmio32, hwaddr *mmio64, 4980 unsigned n_dma, uint32_t *liobns, Error **errp) 4981 { 4982 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4983 liobns, errp)) { 4984 return false; 4985 } 4986 return true; 4987 } 4988 static void spapr_machine_4_0_class_options(MachineClass *mc) 4989 { 4990 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4991 4992 spapr_machine_4_1_class_options(mc); 4993 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4994 smc->phb_placement = phb_placement_4_0; 4995 smc->irq = &spapr_irq_xics; 4996 smc->pre_4_1_migration = true; 4997 } 4998 4999 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5000 5001 /* 5002 * pseries-3.1 5003 */ 5004 static void spapr_machine_3_1_class_options(MachineClass *mc) 5005 { 5006 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5007 5008 spapr_machine_4_0_class_options(mc); 5009 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5010 5011 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5012 smc->update_dt_enabled = false; 5013 smc->dr_phb_enabled = false; 5014 smc->broken_host_serial_model = true; 5015 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5016 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5017 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5018 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5019 } 5020 5021 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5022 5023 /* 5024 * pseries-3.0 5025 */ 5026 5027 static void spapr_machine_3_0_class_options(MachineClass *mc) 5028 { 5029 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5030 5031 spapr_machine_3_1_class_options(mc); 5032 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5033 5034 smc->legacy_irq_allocation = true; 5035 smc->nr_xirqs = 0x400; 5036 smc->irq = &spapr_irq_xics_legacy; 5037 } 5038 5039 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5040 5041 /* 5042 * pseries-2.12 5043 */ 5044 static void spapr_machine_2_12_class_options(MachineClass *mc) 5045 { 5046 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5047 static GlobalProperty compat[] = { 5048 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5049 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5050 }; 5051 5052 spapr_machine_3_0_class_options(mc); 5053 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5054 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5055 5056 /* We depend on kvm_enabled() to choose a default value for the 5057 * hpt-max-page-size capability. Of course we can't do it here 5058 * because this is too early and the HW accelerator isn't initialized 5059 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5060 */ 5061 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5062 } 5063 5064 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5065 5066 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5067 { 5068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5069 5070 spapr_machine_2_12_class_options(mc); 5071 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5072 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5073 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5074 } 5075 5076 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5077 5078 /* 5079 * pseries-2.11 5080 */ 5081 5082 static void spapr_machine_2_11_class_options(MachineClass *mc) 5083 { 5084 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5085 5086 spapr_machine_2_12_class_options(mc); 5087 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5088 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5089 } 5090 5091 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5092 5093 /* 5094 * pseries-2.10 5095 */ 5096 5097 static void spapr_machine_2_10_class_options(MachineClass *mc) 5098 { 5099 spapr_machine_2_11_class_options(mc); 5100 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5101 } 5102 5103 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5104 5105 /* 5106 * pseries-2.9 5107 */ 5108 5109 static void spapr_machine_2_9_class_options(MachineClass *mc) 5110 { 5111 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5112 static GlobalProperty compat[] = { 5113 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5114 }; 5115 5116 spapr_machine_2_10_class_options(mc); 5117 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5118 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5119 smc->pre_2_10_has_unused_icps = true; 5120 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5121 } 5122 5123 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5124 5125 /* 5126 * pseries-2.8 5127 */ 5128 5129 static void spapr_machine_2_8_class_options(MachineClass *mc) 5130 { 5131 static GlobalProperty compat[] = { 5132 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5133 }; 5134 5135 spapr_machine_2_9_class_options(mc); 5136 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5137 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5138 mc->numa_mem_align_shift = 23; 5139 } 5140 5141 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5142 5143 /* 5144 * pseries-2.7 5145 */ 5146 5147 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5148 uint64_t *buid, hwaddr *pio, 5149 hwaddr *mmio32, hwaddr *mmio64, 5150 unsigned n_dma, uint32_t *liobns, Error **errp) 5151 { 5152 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5153 const uint64_t base_buid = 0x800000020000000ULL; 5154 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5155 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5156 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5157 const uint32_t max_index = 255; 5158 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5159 5160 uint64_t ram_top = MACHINE(spapr)->ram_size; 5161 hwaddr phb0_base, phb_base; 5162 int i; 5163 5164 /* Do we have device memory? */ 5165 if (MACHINE(spapr)->device_memory) { 5166 /* Can't just use maxram_size, because there may be an 5167 * alignment gap between normal and device memory regions 5168 */ 5169 ram_top = MACHINE(spapr)->device_memory->base + 5170 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5171 } 5172 5173 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5174 5175 if (index > max_index) { 5176 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5177 max_index); 5178 return false; 5179 } 5180 5181 *buid = base_buid + index; 5182 for (i = 0; i < n_dma; ++i) { 5183 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5184 } 5185 5186 phb_base = phb0_base + index * phb_spacing; 5187 *pio = phb_base + pio_offset; 5188 *mmio32 = phb_base + mmio_offset; 5189 /* 5190 * We don't set the 64-bit MMIO window, relying on the PHB's 5191 * fallback behaviour of automatically splitting a large "32-bit" 5192 * window into contiguous 32-bit and 64-bit windows 5193 */ 5194 5195 return true; 5196 } 5197 5198 static void spapr_machine_2_7_class_options(MachineClass *mc) 5199 { 5200 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5201 static GlobalProperty compat[] = { 5202 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5203 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5204 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5205 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5206 }; 5207 5208 spapr_machine_2_8_class_options(mc); 5209 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5210 mc->default_machine_opts = "modern-hotplug-events=off"; 5211 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5212 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5213 smc->phb_placement = phb_placement_2_7; 5214 } 5215 5216 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5217 5218 /* 5219 * pseries-2.6 5220 */ 5221 5222 static void spapr_machine_2_6_class_options(MachineClass *mc) 5223 { 5224 static GlobalProperty compat[] = { 5225 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5226 }; 5227 5228 spapr_machine_2_7_class_options(mc); 5229 mc->has_hotpluggable_cpus = false; 5230 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5231 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5232 } 5233 5234 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5235 5236 /* 5237 * pseries-2.5 5238 */ 5239 5240 static void spapr_machine_2_5_class_options(MachineClass *mc) 5241 { 5242 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5243 static GlobalProperty compat[] = { 5244 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5245 }; 5246 5247 spapr_machine_2_6_class_options(mc); 5248 smc->use_ohci_by_default = true; 5249 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5250 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5251 } 5252 5253 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5254 5255 /* 5256 * pseries-2.4 5257 */ 5258 5259 static void spapr_machine_2_4_class_options(MachineClass *mc) 5260 { 5261 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5262 5263 spapr_machine_2_5_class_options(mc); 5264 smc->dr_lmb_enabled = false; 5265 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5266 } 5267 5268 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5269 5270 /* 5271 * pseries-2.3 5272 */ 5273 5274 static void spapr_machine_2_3_class_options(MachineClass *mc) 5275 { 5276 static GlobalProperty compat[] = { 5277 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5278 }; 5279 spapr_machine_2_4_class_options(mc); 5280 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5281 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5282 } 5283 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5284 5285 /* 5286 * pseries-2.2 5287 */ 5288 5289 static void spapr_machine_2_2_class_options(MachineClass *mc) 5290 { 5291 static GlobalProperty compat[] = { 5292 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5293 }; 5294 5295 spapr_machine_2_3_class_options(mc); 5296 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5297 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5298 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5299 } 5300 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5301 5302 /* 5303 * pseries-2.1 5304 */ 5305 5306 static void spapr_machine_2_1_class_options(MachineClass *mc) 5307 { 5308 spapr_machine_2_2_class_options(mc); 5309 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5310 } 5311 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5312 5313 static void spapr_machine_register_types(void) 5314 { 5315 type_register_static(&spapr_machine_info); 5316 } 5317 5318 type_init(spapr_machine_register_types) 5319