1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include "monitor/monitor.h" 85 86 #include <libfdt.h> 87 88 /* SLOF memory layout: 89 * 90 * SLOF raw image loaded at 0, copies its romfs right below the flat 91 * device-tree, then position SLOF itself 31M below that 92 * 93 * So we set FW_OVERHEAD to 40MB which should account for all of that 94 * and more 95 * 96 * We load our kernel at 4M, leaving space for SLOF initial image 97 */ 98 #define FDT_MAX_SIZE 0x100000 99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 100 #define FW_MAX_SIZE 0x400000 101 #define FW_FILE_NAME "slof.bin" 102 #define FW_OVERHEAD 0x2800000 103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 104 105 #define MIN_RMA_SLOF 128UL 106 107 #define PHANDLE_INTC 0x00001111 108 109 /* These two functions implement the VCPU id numbering: one to compute them 110 * all and one to identify thread 0 of a VCORE. Any change to the first one 111 * is likely to have an impact on the second one, so let's keep them close. 112 */ 113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 114 { 115 MachineState *ms = MACHINE(spapr); 116 unsigned int smp_threads = ms->smp.threads; 117 118 assert(spapr->vsmt); 119 return 120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 121 } 122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 123 PowerPCCPU *cpu) 124 { 125 assert(spapr->vsmt); 126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 127 } 128 129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 130 { 131 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 132 * and newer QEMUs don't even have them. In both cases, we don't want 133 * to send anything on the wire. 134 */ 135 return false; 136 } 137 138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 139 .name = "icp/server", 140 .version_id = 1, 141 .minimum_version_id = 1, 142 .needed = pre_2_10_vmstate_dummy_icp_needed, 143 .fields = (VMStateField[]) { 144 VMSTATE_UNUSED(4), /* uint32_t xirr */ 145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 146 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 147 VMSTATE_END_OF_LIST() 148 }, 149 }; 150 151 static void pre_2_10_vmstate_register_dummy_icp(int i) 152 { 153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 154 (void *)(uintptr_t) i); 155 } 156 157 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 158 { 159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 160 (void *)(uintptr_t) i); 161 } 162 163 int spapr_max_server_number(SpaprMachineState *spapr) 164 { 165 MachineState *ms = MACHINE(spapr); 166 167 assert(spapr->vsmt); 168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 169 } 170 171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 172 int smt_threads) 173 { 174 int i, ret = 0; 175 uint32_t servers_prop[smt_threads]; 176 uint32_t gservers_prop[smt_threads * 2]; 177 int index = spapr_get_vcpu_id(cpu); 178 179 if (cpu->compat_pvr) { 180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 181 if (ret < 0) { 182 return ret; 183 } 184 } 185 186 /* Build interrupt servers and gservers properties */ 187 for (i = 0; i < smt_threads; i++) { 188 servers_prop[i] = cpu_to_be32(index + i); 189 /* Hack, direct the group queues back to cpu 0 */ 190 gservers_prop[i*2] = cpu_to_be32(index + i); 191 gservers_prop[i*2 + 1] = 0; 192 } 193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 194 servers_prop, sizeof(servers_prop)); 195 if (ret < 0) { 196 return ret; 197 } 198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 199 gservers_prop, sizeof(gservers_prop)); 200 201 return ret; 202 } 203 204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 205 { 206 int index = spapr_get_vcpu_id(cpu); 207 uint32_t associativity[] = {cpu_to_be32(0x5), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(0x0), 211 cpu_to_be32(cpu->node_id), 212 cpu_to_be32(index)}; 213 214 /* Advertise NUMA via ibm,associativity */ 215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 216 sizeof(associativity)); 217 } 218 219 /* Populate the "ibm,pa-features" property */ 220 static void spapr_populate_pa_features(SpaprMachineState *spapr, 221 PowerPCCPU *cpu, 222 void *fdt, int offset) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static hwaddr spapr_node0_size(MachineState *machine) 299 { 300 if (machine->numa_state->num_nodes) { 301 int i; 302 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 303 if (machine->numa_state->nodes[i].node_mem) { 304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 305 machine->ram_size); 306 } 307 } 308 } 309 return machine->ram_size; 310 } 311 312 static void add_str(GString *s, const gchar *s1) 313 { 314 g_string_append_len(s, s1, strlen(s1) + 1); 315 } 316 317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 318 hwaddr size) 319 { 320 uint32_t associativity[] = { 321 cpu_to_be32(0x4), /* length */ 322 cpu_to_be32(0x0), cpu_to_be32(0x0), 323 cpu_to_be32(0x0), cpu_to_be32(nodeid) 324 }; 325 char mem_name[32]; 326 uint64_t mem_reg_property[2]; 327 int off; 328 329 mem_reg_property[0] = cpu_to_be64(start); 330 mem_reg_property[1] = cpu_to_be64(size); 331 332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 333 off = fdt_add_subnode(fdt, 0, mem_name); 334 _FDT(off); 335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 337 sizeof(mem_reg_property)))); 338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 339 sizeof(associativity)))); 340 return off; 341 } 342 343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 344 { 345 MachineState *machine = MACHINE(spapr); 346 hwaddr mem_start, node_size; 347 int i, nb_nodes = machine->numa_state->num_nodes; 348 NodeInfo *nodes = machine->numa_state->nodes; 349 350 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 351 if (!nodes[i].node_mem) { 352 continue; 353 } 354 if (mem_start >= machine->ram_size) { 355 node_size = 0; 356 } else { 357 node_size = nodes[i].node_mem; 358 if (node_size > machine->ram_size - mem_start) { 359 node_size = machine->ram_size - mem_start; 360 } 361 } 362 if (!mem_start) { 363 /* spapr_machine_init() checks for rma_size <= node0_size 364 * already */ 365 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 366 mem_start += spapr->rma_size; 367 node_size -= spapr->rma_size; 368 } 369 for ( ; node_size; ) { 370 hwaddr sizetmp = pow2floor(node_size); 371 372 /* mem_start != 0 here */ 373 if (ctzl(mem_start) < ctzl(sizetmp)) { 374 sizetmp = 1ULL << ctzl(mem_start); 375 } 376 377 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 378 node_size -= sizetmp; 379 mem_start += sizetmp; 380 } 381 } 382 383 return 0; 384 } 385 386 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 387 SpaprMachineState *spapr) 388 { 389 MachineState *ms = MACHINE(spapr); 390 PowerPCCPU *cpu = POWERPC_CPU(cs); 391 CPUPPCState *env = &cpu->env; 392 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 393 int index = spapr_get_vcpu_id(cpu); 394 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 395 0xffffffff, 0xffffffff}; 396 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 397 : SPAPR_TIMEBASE_FREQ; 398 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 399 uint32_t page_sizes_prop[64]; 400 size_t page_sizes_prop_size; 401 unsigned int smp_threads = ms->smp.threads; 402 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 403 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 404 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 405 SpaprDrc *drc; 406 int drc_index; 407 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 408 int i; 409 410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 411 if (drc) { 412 drc_index = spapr_drc_index(drc); 413 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 414 } 415 416 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 417 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 418 419 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 420 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 421 env->dcache_line_size))); 422 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 423 env->dcache_line_size))); 424 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 425 env->icache_line_size))); 426 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 427 env->icache_line_size))); 428 429 if (pcc->l1_dcache_size) { 430 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 431 pcc->l1_dcache_size))); 432 } else { 433 warn_report("Unknown L1 dcache size for cpu"); 434 } 435 if (pcc->l1_icache_size) { 436 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 437 pcc->l1_icache_size))); 438 } else { 439 warn_report("Unknown L1 icache size for cpu"); 440 } 441 442 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 443 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 444 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 445 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 446 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 447 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 448 449 if (env->spr_cb[SPR_PURR].oea_read) { 450 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 451 } 452 if (env->spr_cb[SPR_SPURR].oea_read) { 453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 454 } 455 456 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 457 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 458 segs, sizeof(segs)))); 459 } 460 461 /* Advertise VSX (vector extensions) if available 462 * 1 == VMX / Altivec available 463 * 2 == VSX available 464 * 465 * Only CPUs for which we create core types in spapr_cpu_core.c 466 * are possible, and all of those have VMX */ 467 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 468 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 469 } else { 470 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 471 } 472 473 /* Advertise DFP (Decimal Floating Point) if available 474 * 0 / no property == no DFP 475 * 1 == DFP available */ 476 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 477 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 478 } 479 480 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 481 sizeof(page_sizes_prop)); 482 if (page_sizes_prop_size) { 483 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 484 page_sizes_prop, page_sizes_prop_size))); 485 } 486 487 spapr_populate_pa_features(spapr, cpu, fdt, offset); 488 489 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 490 cs->cpu_index / vcpus_per_socket))); 491 492 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 493 pft_size_prop, sizeof(pft_size_prop)))); 494 495 if (ms->numa_state->num_nodes > 1) { 496 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 497 } 498 499 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 500 501 if (pcc->radix_page_info) { 502 for (i = 0; i < pcc->radix_page_info->count; i++) { 503 radix_AP_encodings[i] = 504 cpu_to_be32(pcc->radix_page_info->entries[i]); 505 } 506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 507 radix_AP_encodings, 508 pcc->radix_page_info->count * 509 sizeof(radix_AP_encodings[0])))); 510 } 511 512 /* 513 * We set this property to let the guest know that it can use the large 514 * decrementer and its width in bits. 515 */ 516 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 517 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 518 pcc->lrg_decr_bits))); 519 } 520 521 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 522 { 523 CPUState **rev; 524 CPUState *cs; 525 int n_cpus; 526 int cpus_offset; 527 char *nodename; 528 int i; 529 530 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 531 _FDT(cpus_offset); 532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 533 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 534 535 /* 536 * We walk the CPUs in reverse order to ensure that CPU DT nodes 537 * created by fdt_add_subnode() end up in the right order in FDT 538 * for the guest kernel the enumerate the CPUs correctly. 539 * 540 * The CPU list cannot be traversed in reverse order, so we need 541 * to do extra work. 542 */ 543 n_cpus = 0; 544 rev = NULL; 545 CPU_FOREACH(cs) { 546 rev = g_renew(CPUState *, rev, n_cpus + 1); 547 rev[n_cpus++] = cs; 548 } 549 550 for (i = n_cpus - 1; i >= 0; i--) { 551 CPUState *cs = rev[i]; 552 PowerPCCPU *cpu = POWERPC_CPU(cs); 553 int index = spapr_get_vcpu_id(cpu); 554 DeviceClass *dc = DEVICE_GET_CLASS(cs); 555 int offset; 556 557 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 558 continue; 559 } 560 561 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 562 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 563 g_free(nodename); 564 _FDT(offset); 565 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 566 } 567 568 g_free(rev); 569 } 570 571 static int spapr_rng_populate_dt(void *fdt) 572 { 573 int node; 574 int ret; 575 576 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 577 if (node <= 0) { 578 return -1; 579 } 580 ret = fdt_setprop_string(fdt, node, "device_type", 581 "ibm,platform-facilities"); 582 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 583 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 584 585 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 586 if (node <= 0) { 587 return -1; 588 } 589 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 590 591 return ret ? -1 : 0; 592 } 593 594 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 595 { 596 MemoryDeviceInfoList *info; 597 598 for (info = list; info; info = info->next) { 599 MemoryDeviceInfo *value = info->value; 600 601 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 602 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 603 604 if (addr >= pcdimm_info->addr && 605 addr < (pcdimm_info->addr + pcdimm_info->size)) { 606 return pcdimm_info->node; 607 } 608 } 609 } 610 611 return -1; 612 } 613 614 struct sPAPRDrconfCellV2 { 615 uint32_t seq_lmbs; 616 uint64_t base_addr; 617 uint32_t drc_index; 618 uint32_t aa_index; 619 uint32_t flags; 620 } QEMU_PACKED; 621 622 typedef struct DrconfCellQueue { 623 struct sPAPRDrconfCellV2 cell; 624 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 625 } DrconfCellQueue; 626 627 static DrconfCellQueue * 628 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 629 uint32_t drc_index, uint32_t aa_index, 630 uint32_t flags) 631 { 632 DrconfCellQueue *elem; 633 634 elem = g_malloc0(sizeof(*elem)); 635 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 636 elem->cell.base_addr = cpu_to_be64(base_addr); 637 elem->cell.drc_index = cpu_to_be32(drc_index); 638 elem->cell.aa_index = cpu_to_be32(aa_index); 639 elem->cell.flags = cpu_to_be32(flags); 640 641 return elem; 642 } 643 644 /* ibm,dynamic-memory-v2 */ 645 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 646 int offset, MemoryDeviceInfoList *dimms) 647 { 648 MachineState *machine = MACHINE(spapr); 649 uint8_t *int_buf, *cur_index; 650 int ret; 651 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 652 uint64_t addr, cur_addr, size; 653 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 654 uint64_t mem_end = machine->device_memory->base + 655 memory_region_size(&machine->device_memory->mr); 656 uint32_t node, buf_len, nr_entries = 0; 657 SpaprDrc *drc; 658 DrconfCellQueue *elem, *next; 659 MemoryDeviceInfoList *info; 660 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 661 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 662 663 /* Entry to cover RAM and the gap area */ 664 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 665 SPAPR_LMB_FLAGS_RESERVED | 666 SPAPR_LMB_FLAGS_DRC_INVALID); 667 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 668 nr_entries++; 669 670 cur_addr = machine->device_memory->base; 671 for (info = dimms; info; info = info->next) { 672 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 673 674 addr = di->addr; 675 size = di->size; 676 node = di->node; 677 678 /* Entry for hot-pluggable area */ 679 if (cur_addr < addr) { 680 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 681 g_assert(drc); 682 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 683 cur_addr, spapr_drc_index(drc), -1, 0); 684 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 685 nr_entries++; 686 } 687 688 /* Entry for DIMM */ 689 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 690 g_assert(drc); 691 elem = spapr_get_drconf_cell(size / lmb_size, addr, 692 spapr_drc_index(drc), node, 693 SPAPR_LMB_FLAGS_ASSIGNED); 694 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 695 nr_entries++; 696 cur_addr = addr + size; 697 } 698 699 /* Entry for remaining hotpluggable area */ 700 if (cur_addr < mem_end) { 701 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 702 g_assert(drc); 703 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 704 cur_addr, spapr_drc_index(drc), -1, 0); 705 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 706 nr_entries++; 707 } 708 709 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 710 int_buf = cur_index = g_malloc0(buf_len); 711 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 712 cur_index += sizeof(nr_entries); 713 714 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 715 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 716 cur_index += sizeof(elem->cell); 717 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 718 g_free(elem); 719 } 720 721 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 722 g_free(int_buf); 723 if (ret < 0) { 724 return -1; 725 } 726 return 0; 727 } 728 729 /* ibm,dynamic-memory */ 730 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 731 int offset, MemoryDeviceInfoList *dimms) 732 { 733 MachineState *machine = MACHINE(spapr); 734 int i, ret; 735 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 736 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 737 uint32_t nr_lmbs = (machine->device_memory->base + 738 memory_region_size(&machine->device_memory->mr)) / 739 lmb_size; 740 uint32_t *int_buf, *cur_index, buf_len; 741 742 /* 743 * Allocate enough buffer size to fit in ibm,dynamic-memory 744 */ 745 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 746 cur_index = int_buf = g_malloc0(buf_len); 747 int_buf[0] = cpu_to_be32(nr_lmbs); 748 cur_index++; 749 for (i = 0; i < nr_lmbs; i++) { 750 uint64_t addr = i * lmb_size; 751 uint32_t *dynamic_memory = cur_index; 752 753 if (i >= device_lmb_start) { 754 SpaprDrc *drc; 755 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 757 g_assert(drc); 758 759 dynamic_memory[0] = cpu_to_be32(addr >> 32); 760 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 761 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 762 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 763 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 764 if (memory_region_present(get_system_memory(), addr)) { 765 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 766 } else { 767 dynamic_memory[5] = cpu_to_be32(0); 768 } 769 } else { 770 /* 771 * LMB information for RMA, boot time RAM and gap b/n RAM and 772 * device memory region -- all these are marked as reserved 773 * and as having no valid DRC. 774 */ 775 dynamic_memory[0] = cpu_to_be32(addr >> 32); 776 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 777 dynamic_memory[2] = cpu_to_be32(0); 778 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 779 dynamic_memory[4] = cpu_to_be32(-1); 780 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 781 SPAPR_LMB_FLAGS_DRC_INVALID); 782 } 783 784 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 785 } 786 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 787 g_free(int_buf); 788 if (ret < 0) { 789 return -1; 790 } 791 return 0; 792 } 793 794 /* 795 * Adds ibm,dynamic-reconfiguration-memory node. 796 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 797 * of this device tree node. 798 */ 799 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 800 { 801 MachineState *machine = MACHINE(spapr); 802 int nb_numa_nodes = machine->numa_state->num_nodes; 803 int ret, i, offset; 804 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 805 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 806 uint32_t *int_buf, *cur_index, buf_len; 807 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 808 MemoryDeviceInfoList *dimms = NULL; 809 810 /* 811 * Don't create the node if there is no device memory 812 */ 813 if (machine->ram_size == machine->maxram_size) { 814 return 0; 815 } 816 817 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 818 819 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 820 sizeof(prop_lmb_size)); 821 if (ret < 0) { 822 return ret; 823 } 824 825 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 826 if (ret < 0) { 827 return ret; 828 } 829 830 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 831 if (ret < 0) { 832 return ret; 833 } 834 835 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 836 dimms = qmp_memory_device_list(); 837 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 838 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 839 } else { 840 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 841 } 842 qapi_free_MemoryDeviceInfoList(dimms); 843 844 if (ret < 0) { 845 return ret; 846 } 847 848 /* ibm,associativity-lookup-arrays */ 849 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 850 cur_index = int_buf = g_malloc0(buf_len); 851 int_buf[0] = cpu_to_be32(nr_nodes); 852 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 853 cur_index += 2; 854 for (i = 0; i < nr_nodes; i++) { 855 uint32_t associativity[] = { 856 cpu_to_be32(0x0), 857 cpu_to_be32(0x0), 858 cpu_to_be32(0x0), 859 cpu_to_be32(i) 860 }; 861 memcpy(cur_index, associativity, sizeof(associativity)); 862 cur_index += 4; 863 } 864 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 865 (cur_index - int_buf) * sizeof(uint32_t)); 866 g_free(int_buf); 867 868 return ret; 869 } 870 871 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 872 SpaprOptionVector *ov5_updates) 873 { 874 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 875 int ret = 0, offset; 876 877 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 878 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 879 g_assert(smc->dr_lmb_enabled); 880 ret = spapr_populate_drconf_memory(spapr, fdt); 881 if (ret) { 882 goto out; 883 } 884 } 885 886 offset = fdt_path_offset(fdt, "/chosen"); 887 if (offset < 0) { 888 offset = fdt_add_subnode(fdt, 0, "chosen"); 889 if (offset < 0) { 890 return offset; 891 } 892 } 893 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 894 "ibm,architecture-vec-5"); 895 896 out: 897 return ret; 898 } 899 900 static bool spapr_hotplugged_dev_before_cas(void) 901 { 902 Object *drc_container, *obj; 903 ObjectProperty *prop; 904 ObjectPropertyIterator iter; 905 906 drc_container = container_get(object_get_root(), "/dr-connector"); 907 object_property_iter_init(&iter, drc_container); 908 while ((prop = object_property_iter_next(&iter))) { 909 if (!strstart(prop->type, "link<", NULL)) { 910 continue; 911 } 912 obj = object_property_get_link(drc_container, prop->name, NULL); 913 if (spapr_drc_needed(obj)) { 914 return true; 915 } 916 } 917 return false; 918 } 919 920 static void *spapr_build_fdt(SpaprMachineState *spapr, bool reset); 921 922 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 923 target_ulong addr, target_ulong size, 924 SpaprOptionVector *ov5_updates) 925 { 926 void *fdt; 927 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 928 929 if (spapr_hotplugged_dev_before_cas()) { 930 return 1; 931 } 932 933 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 934 error_report("SLOF provided an unexpected CAS buffer size " 935 TARGET_FMT_lu " (min: %zu, max: %u)", 936 size, sizeof(hdr), FW_MAX_SIZE); 937 exit(EXIT_FAILURE); 938 } 939 940 size -= sizeof(hdr); 941 942 fdt = spapr_build_fdt(spapr, false); 943 _FDT((fdt_pack(fdt))); 944 945 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 946 g_free(fdt); 947 trace_spapr_cas_failed(size); 948 return -1; 949 } 950 951 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 952 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 953 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 954 955 g_free(spapr->fdt_blob); 956 spapr->fdt_size = fdt_totalsize(fdt); 957 spapr->fdt_initial_size = spapr->fdt_size; 958 spapr->fdt_blob = fdt; 959 960 return 0; 961 } 962 963 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 964 { 965 MachineState *ms = MACHINE(spapr); 966 int rtas; 967 GString *hypertas = g_string_sized_new(256); 968 GString *qemu_hypertas = g_string_sized_new(256); 969 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 970 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 971 memory_region_size(&MACHINE(spapr)->device_memory->mr); 972 uint32_t lrdr_capacity[] = { 973 cpu_to_be32(max_device_addr >> 32), 974 cpu_to_be32(max_device_addr & 0xffffffff), 975 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 976 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 977 }; 978 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 979 uint32_t maxdomains[] = { 980 cpu_to_be32(4), 981 maxdomain, 982 maxdomain, 983 maxdomain, 984 cpu_to_be32(spapr->gpu_numa_id), 985 }; 986 987 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 988 989 /* hypertas */ 990 add_str(hypertas, "hcall-pft"); 991 add_str(hypertas, "hcall-term"); 992 add_str(hypertas, "hcall-dabr"); 993 add_str(hypertas, "hcall-interrupt"); 994 add_str(hypertas, "hcall-tce"); 995 add_str(hypertas, "hcall-vio"); 996 add_str(hypertas, "hcall-splpar"); 997 add_str(hypertas, "hcall-join"); 998 add_str(hypertas, "hcall-bulk"); 999 add_str(hypertas, "hcall-set-mode"); 1000 add_str(hypertas, "hcall-sprg0"); 1001 add_str(hypertas, "hcall-copy"); 1002 add_str(hypertas, "hcall-debug"); 1003 add_str(hypertas, "hcall-vphn"); 1004 add_str(qemu_hypertas, "hcall-memop1"); 1005 1006 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1007 add_str(hypertas, "hcall-multi-tce"); 1008 } 1009 1010 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1011 add_str(hypertas, "hcall-hpt-resize"); 1012 } 1013 1014 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1015 hypertas->str, hypertas->len)); 1016 g_string_free(hypertas, TRUE); 1017 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1018 qemu_hypertas->str, qemu_hypertas->len)); 1019 g_string_free(qemu_hypertas, TRUE); 1020 1021 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1022 refpoints, sizeof(refpoints))); 1023 1024 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1025 maxdomains, sizeof(maxdomains))); 1026 1027 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1028 RTAS_ERROR_LOG_MAX)); 1029 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1030 RTAS_EVENT_SCAN_RATE)); 1031 1032 g_assert(msi_nonbroken); 1033 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1034 1035 /* 1036 * According to PAPR, rtas ibm,os-term does not guarantee a return 1037 * back to the guest cpu. 1038 * 1039 * While an additional ibm,extended-os-term property indicates 1040 * that rtas call return will always occur. Set this property. 1041 */ 1042 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1043 1044 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1045 lrdr_capacity, sizeof(lrdr_capacity))); 1046 1047 spapr_dt_rtas_tokens(fdt, rtas); 1048 } 1049 1050 /* 1051 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1052 * and the XIVE features that the guest may request and thus the valid 1053 * values for bytes 23..26 of option vector 5: 1054 */ 1055 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1056 int chosen) 1057 { 1058 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1059 1060 char val[2 * 4] = { 1061 23, 0x00, /* XICS / XIVE mode */ 1062 24, 0x00, /* Hash/Radix, filled in below. */ 1063 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1064 26, 0x40, /* Radix options: GTSE == yes. */ 1065 }; 1066 1067 if (spapr->irq->xics && spapr->irq->xive) { 1068 val[1] = SPAPR_OV5_XIVE_BOTH; 1069 } else if (spapr->irq->xive) { 1070 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1071 } else { 1072 assert(spapr->irq->xics); 1073 val[1] = SPAPR_OV5_XIVE_LEGACY; 1074 } 1075 1076 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1077 first_ppc_cpu->compat_pvr)) { 1078 /* 1079 * If we're in a pre POWER9 compat mode then the guest should 1080 * do hash and use the legacy interrupt mode 1081 */ 1082 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1083 val[3] = 0x00; /* Hash */ 1084 } else if (kvm_enabled()) { 1085 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1086 val[3] = 0x80; /* OV5_MMU_BOTH */ 1087 } else if (kvmppc_has_cap_mmu_radix()) { 1088 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1089 } else { 1090 val[3] = 0x00; /* Hash */ 1091 } 1092 } else { 1093 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1094 val[3] = 0xC0; 1095 } 1096 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1097 val, sizeof(val))); 1098 } 1099 1100 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1101 { 1102 MachineState *machine = MACHINE(spapr); 1103 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1104 int chosen; 1105 const char *boot_device = machine->boot_order; 1106 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1107 size_t cb = 0; 1108 char *bootlist = get_boot_devices_list(&cb); 1109 1110 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1111 1112 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1113 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1114 machine->kernel_cmdline)); 1115 } 1116 if (spapr->initrd_size) { 1117 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1118 spapr->initrd_base)); 1119 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1120 spapr->initrd_base + spapr->initrd_size)); 1121 } 1122 1123 if (spapr->kernel_size) { 1124 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1125 cpu_to_be64(spapr->kernel_size) }; 1126 1127 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1128 &kprop, sizeof(kprop))); 1129 if (spapr->kernel_le) { 1130 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1131 } 1132 } 1133 if (boot_menu) { 1134 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1135 } 1136 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1137 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1138 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1139 1140 if (cb && bootlist) { 1141 int i; 1142 1143 for (i = 0; i < cb; i++) { 1144 if (bootlist[i] == '\n') { 1145 bootlist[i] = ' '; 1146 } 1147 } 1148 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1149 } 1150 1151 if (boot_device && strlen(boot_device)) { 1152 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1153 } 1154 1155 if (!spapr->has_graphics && stdout_path) { 1156 /* 1157 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1158 * kernel. New platforms should only use the "stdout-path" property. Set 1159 * the new property and continue using older property to remain 1160 * compatible with the existing firmware. 1161 */ 1162 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1163 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1164 } 1165 1166 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1167 if (smc->linux_pci_probe) { 1168 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1169 } 1170 1171 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1172 1173 g_free(stdout_path); 1174 g_free(bootlist); 1175 } 1176 1177 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1178 { 1179 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1180 * KVM to work under pHyp with some guest co-operation */ 1181 int hypervisor; 1182 uint8_t hypercall[16]; 1183 1184 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1185 /* indicate KVM hypercall interface */ 1186 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1187 if (kvmppc_has_cap_fixup_hcalls()) { 1188 /* 1189 * Older KVM versions with older guest kernels were broken 1190 * with the magic page, don't allow the guest to map it. 1191 */ 1192 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1193 sizeof(hypercall))) { 1194 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1195 hypercall, sizeof(hypercall))); 1196 } 1197 } 1198 } 1199 1200 static void *spapr_build_fdt(SpaprMachineState *spapr, bool reset) 1201 { 1202 MachineState *machine = MACHINE(spapr); 1203 MachineClass *mc = MACHINE_GET_CLASS(machine); 1204 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1205 int ret; 1206 void *fdt; 1207 SpaprPhbState *phb; 1208 char *buf; 1209 1210 fdt = g_malloc0(FDT_MAX_SIZE); 1211 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1212 1213 /* Root node */ 1214 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1215 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1216 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1217 1218 /* Guest UUID & Name*/ 1219 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1220 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1221 if (qemu_uuid_set) { 1222 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1223 } 1224 g_free(buf); 1225 1226 if (qemu_get_vm_name()) { 1227 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1228 qemu_get_vm_name())); 1229 } 1230 1231 /* Host Model & Serial Number */ 1232 if (spapr->host_model) { 1233 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1234 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1235 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1236 g_free(buf); 1237 } 1238 1239 if (spapr->host_serial) { 1240 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1241 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1242 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1243 g_free(buf); 1244 } 1245 1246 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1247 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1248 1249 /* /interrupt controller */ 1250 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1251 1252 ret = spapr_populate_memory(spapr, fdt); 1253 if (ret < 0) { 1254 error_report("couldn't setup memory nodes in fdt"); 1255 exit(1); 1256 } 1257 1258 /* /vdevice */ 1259 spapr_dt_vdevice(spapr->vio_bus, fdt); 1260 1261 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1262 ret = spapr_rng_populate_dt(fdt); 1263 if (ret < 0) { 1264 error_report("could not set up rng device in the fdt"); 1265 exit(1); 1266 } 1267 } 1268 1269 QLIST_FOREACH(phb, &spapr->phbs, list) { 1270 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1271 if (ret < 0) { 1272 error_report("couldn't setup PCI devices in fdt"); 1273 exit(1); 1274 } 1275 } 1276 1277 /* cpus */ 1278 spapr_populate_cpus_dt_node(fdt, spapr); 1279 1280 if (smc->dr_lmb_enabled) { 1281 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1282 } 1283 1284 if (mc->has_hotpluggable_cpus) { 1285 int offset = fdt_path_offset(fdt, "/cpus"); 1286 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1287 if (ret < 0) { 1288 error_report("Couldn't set up CPU DR device tree properties"); 1289 exit(1); 1290 } 1291 } 1292 1293 /* /event-sources */ 1294 spapr_dt_events(spapr, fdt); 1295 1296 /* /rtas */ 1297 spapr_dt_rtas(spapr, fdt); 1298 1299 /* /chosen */ 1300 if (reset) { 1301 spapr_dt_chosen(spapr, fdt); 1302 } 1303 1304 /* /hypervisor */ 1305 if (kvm_enabled()) { 1306 spapr_dt_hypervisor(spapr, fdt); 1307 } 1308 1309 /* Build memory reserve map */ 1310 if (reset) { 1311 if (spapr->kernel_size) { 1312 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1313 } 1314 if (spapr->initrd_size) { 1315 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1316 spapr->initrd_size))); 1317 } 1318 } 1319 1320 /* ibm,client-architecture-support updates */ 1321 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1322 if (ret < 0) { 1323 error_report("couldn't setup CAS properties fdt"); 1324 exit(1); 1325 } 1326 1327 if (smc->dr_phb_enabled) { 1328 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1329 if (ret < 0) { 1330 error_report("Couldn't set up PHB DR device tree properties"); 1331 exit(1); 1332 } 1333 } 1334 1335 return fdt; 1336 } 1337 1338 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1339 { 1340 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1341 } 1342 1343 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1344 PowerPCCPU *cpu) 1345 { 1346 CPUPPCState *env = &cpu->env; 1347 1348 /* The TCG path should also be holding the BQL at this point */ 1349 g_assert(qemu_mutex_iothread_locked()); 1350 1351 if (msr_pr) { 1352 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1353 env->gpr[3] = H_PRIVILEGE; 1354 } else { 1355 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1356 } 1357 } 1358 1359 struct LPCRSyncState { 1360 target_ulong value; 1361 target_ulong mask; 1362 }; 1363 1364 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1365 { 1366 struct LPCRSyncState *s = arg.host_ptr; 1367 PowerPCCPU *cpu = POWERPC_CPU(cs); 1368 CPUPPCState *env = &cpu->env; 1369 target_ulong lpcr; 1370 1371 cpu_synchronize_state(cs); 1372 lpcr = env->spr[SPR_LPCR]; 1373 lpcr &= ~s->mask; 1374 lpcr |= s->value; 1375 ppc_store_lpcr(cpu, lpcr); 1376 } 1377 1378 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1379 { 1380 CPUState *cs; 1381 struct LPCRSyncState s = { 1382 .value = value, 1383 .mask = mask 1384 }; 1385 CPU_FOREACH(cs) { 1386 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1387 } 1388 } 1389 1390 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1391 { 1392 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1393 1394 /* Copy PATE1:GR into PATE0:HR */ 1395 entry->dw0 = spapr->patb_entry & PATE0_HR; 1396 entry->dw1 = spapr->patb_entry; 1397 } 1398 1399 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1400 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1401 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1402 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1403 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1404 1405 /* 1406 * Get the fd to access the kernel htab, re-opening it if necessary 1407 */ 1408 static int get_htab_fd(SpaprMachineState *spapr) 1409 { 1410 Error *local_err = NULL; 1411 1412 if (spapr->htab_fd >= 0) { 1413 return spapr->htab_fd; 1414 } 1415 1416 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1417 if (spapr->htab_fd < 0) { 1418 error_report_err(local_err); 1419 } 1420 1421 return spapr->htab_fd; 1422 } 1423 1424 void close_htab_fd(SpaprMachineState *spapr) 1425 { 1426 if (spapr->htab_fd >= 0) { 1427 close(spapr->htab_fd); 1428 } 1429 spapr->htab_fd = -1; 1430 } 1431 1432 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1433 { 1434 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1435 1436 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1437 } 1438 1439 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1440 { 1441 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1442 1443 assert(kvm_enabled()); 1444 1445 if (!spapr->htab) { 1446 return 0; 1447 } 1448 1449 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1450 } 1451 1452 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1453 hwaddr ptex, int n) 1454 { 1455 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1456 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1457 1458 if (!spapr->htab) { 1459 /* 1460 * HTAB is controlled by KVM. Fetch into temporary buffer 1461 */ 1462 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1463 kvmppc_read_hptes(hptes, ptex, n); 1464 return hptes; 1465 } 1466 1467 /* 1468 * HTAB is controlled by QEMU. Just point to the internally 1469 * accessible PTEG. 1470 */ 1471 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1472 } 1473 1474 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1475 const ppc_hash_pte64_t *hptes, 1476 hwaddr ptex, int n) 1477 { 1478 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1479 1480 if (!spapr->htab) { 1481 g_free((void *)hptes); 1482 } 1483 1484 /* Nothing to do for qemu managed HPT */ 1485 } 1486 1487 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1488 uint64_t pte0, uint64_t pte1) 1489 { 1490 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1491 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1492 1493 if (!spapr->htab) { 1494 kvmppc_write_hpte(ptex, pte0, pte1); 1495 } else { 1496 if (pte0 & HPTE64_V_VALID) { 1497 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1498 /* 1499 * When setting valid, we write PTE1 first. This ensures 1500 * proper synchronization with the reading code in 1501 * ppc_hash64_pteg_search() 1502 */ 1503 smp_wmb(); 1504 stq_p(spapr->htab + offset, pte0); 1505 } else { 1506 stq_p(spapr->htab + offset, pte0); 1507 /* 1508 * When clearing it we set PTE0 first. This ensures proper 1509 * synchronization with the reading code in 1510 * ppc_hash64_pteg_search() 1511 */ 1512 smp_wmb(); 1513 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1514 } 1515 } 1516 } 1517 1518 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1519 uint64_t pte1) 1520 { 1521 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1522 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1523 1524 if (!spapr->htab) { 1525 /* There should always be a hash table when this is called */ 1526 error_report("spapr_hpte_set_c called with no hash table !"); 1527 return; 1528 } 1529 1530 /* The HW performs a non-atomic byte update */ 1531 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1532 } 1533 1534 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1535 uint64_t pte1) 1536 { 1537 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1538 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1539 1540 if (!spapr->htab) { 1541 /* There should always be a hash table when this is called */ 1542 error_report("spapr_hpte_set_r called with no hash table !"); 1543 return; 1544 } 1545 1546 /* The HW performs a non-atomic byte update */ 1547 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1548 } 1549 1550 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1551 { 1552 int shift; 1553 1554 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1555 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1556 * that's much more than is needed for Linux guests */ 1557 shift = ctz64(pow2ceil(ramsize)) - 7; 1558 shift = MAX(shift, 18); /* Minimum architected size */ 1559 shift = MIN(shift, 46); /* Maximum architected size */ 1560 return shift; 1561 } 1562 1563 void spapr_free_hpt(SpaprMachineState *spapr) 1564 { 1565 g_free(spapr->htab); 1566 spapr->htab = NULL; 1567 spapr->htab_shift = 0; 1568 close_htab_fd(spapr); 1569 } 1570 1571 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1572 Error **errp) 1573 { 1574 long rc; 1575 1576 /* Clean up any HPT info from a previous boot */ 1577 spapr_free_hpt(spapr); 1578 1579 rc = kvmppc_reset_htab(shift); 1580 if (rc < 0) { 1581 /* kernel-side HPT needed, but couldn't allocate one */ 1582 error_setg_errno(errp, errno, 1583 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1584 shift); 1585 /* This is almost certainly fatal, but if the caller really 1586 * wants to carry on with shift == 0, it's welcome to try */ 1587 } else if (rc > 0) { 1588 /* kernel-side HPT allocated */ 1589 if (rc != shift) { 1590 error_setg(errp, 1591 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1592 shift, rc); 1593 } 1594 1595 spapr->htab_shift = shift; 1596 spapr->htab = NULL; 1597 } else { 1598 /* kernel-side HPT not needed, allocate in userspace instead */ 1599 size_t size = 1ULL << shift; 1600 int i; 1601 1602 spapr->htab = qemu_memalign(size, size); 1603 if (!spapr->htab) { 1604 error_setg_errno(errp, errno, 1605 "Could not allocate HPT of order %d", shift); 1606 return; 1607 } 1608 1609 memset(spapr->htab, 0, size); 1610 spapr->htab_shift = shift; 1611 1612 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1613 DIRTY_HPTE(HPTE(spapr->htab, i)); 1614 } 1615 } 1616 /* We're setting up a hash table, so that means we're not radix */ 1617 spapr->patb_entry = 0; 1618 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1619 } 1620 1621 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1622 { 1623 int hpt_shift; 1624 1625 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1626 || (spapr->cas_reboot 1627 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1628 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1629 } else { 1630 uint64_t current_ram_size; 1631 1632 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1633 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1634 } 1635 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1636 1637 if (spapr->vrma_adjust) { 1638 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1639 spapr->htab_shift); 1640 } 1641 } 1642 1643 static int spapr_reset_drcs(Object *child, void *opaque) 1644 { 1645 SpaprDrc *drc = 1646 (SpaprDrc *) object_dynamic_cast(child, 1647 TYPE_SPAPR_DR_CONNECTOR); 1648 1649 if (drc) { 1650 spapr_drc_reset(drc); 1651 } 1652 1653 return 0; 1654 } 1655 1656 static void spapr_machine_reset(MachineState *machine) 1657 { 1658 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1659 PowerPCCPU *first_ppc_cpu; 1660 hwaddr fdt_addr; 1661 void *fdt; 1662 int rc; 1663 1664 spapr_caps_apply(spapr); 1665 1666 first_ppc_cpu = POWERPC_CPU(first_cpu); 1667 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1668 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1669 spapr->max_compat_pvr)) { 1670 /* 1671 * If using KVM with radix mode available, VCPUs can be started 1672 * without a HPT because KVM will start them in radix mode. 1673 * Set the GR bit in PATE so that we know there is no HPT. 1674 */ 1675 spapr->patb_entry = PATE1_GR; 1676 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1677 } else { 1678 spapr_setup_hpt_and_vrma(spapr); 1679 } 1680 1681 qemu_devices_reset(); 1682 1683 /* 1684 * If this reset wasn't generated by CAS, we should reset our 1685 * negotiated options and start from scratch 1686 */ 1687 if (!spapr->cas_reboot) { 1688 spapr_ovec_cleanup(spapr->ov5_cas); 1689 spapr->ov5_cas = spapr_ovec_new(); 1690 1691 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1692 } 1693 1694 /* 1695 * This is fixing some of the default configuration of the XIVE 1696 * devices. To be called after the reset of the machine devices. 1697 */ 1698 spapr_irq_reset(spapr, &error_fatal); 1699 1700 /* 1701 * There is no CAS under qtest. Simulate one to please the code that 1702 * depends on spapr->ov5_cas. This is especially needed to test device 1703 * unplug, so we do that before resetting the DRCs. 1704 */ 1705 if (qtest_enabled()) { 1706 spapr_ovec_cleanup(spapr->ov5_cas); 1707 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1708 } 1709 1710 /* DRC reset may cause a device to be unplugged. This will cause troubles 1711 * if this device is used by another device (eg, a running vhost backend 1712 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1713 * situations, we reset DRCs after all devices have been reset. 1714 */ 1715 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1716 1717 spapr_clear_pending_events(spapr); 1718 1719 /* 1720 * We place the device tree and RTAS just below either the top of the RMA, 1721 * or just below 2GB, whichever is lower, so that it can be 1722 * processed with 32-bit real mode code if necessary 1723 */ 1724 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE; 1725 1726 fdt = spapr_build_fdt(spapr, true); 1727 1728 rc = fdt_pack(fdt); 1729 1730 /* Should only fail if we've built a corrupted tree */ 1731 assert(rc == 0); 1732 1733 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1734 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1735 fdt_totalsize(fdt), FDT_MAX_SIZE); 1736 exit(1); 1737 } 1738 1739 /* Load the fdt */ 1740 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1741 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1742 g_free(spapr->fdt_blob); 1743 spapr->fdt_size = fdt_totalsize(fdt); 1744 spapr->fdt_initial_size = spapr->fdt_size; 1745 spapr->fdt_blob = fdt; 1746 1747 /* Set up the entry state */ 1748 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1749 first_ppc_cpu->env.gpr[5] = 0; 1750 1751 spapr->cas_reboot = false; 1752 } 1753 1754 static void spapr_create_nvram(SpaprMachineState *spapr) 1755 { 1756 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1757 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1758 1759 if (dinfo) { 1760 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1761 &error_fatal); 1762 } 1763 1764 qdev_init_nofail(dev); 1765 1766 spapr->nvram = (struct SpaprNvram *)dev; 1767 } 1768 1769 static void spapr_rtc_create(SpaprMachineState *spapr) 1770 { 1771 object_initialize_child(OBJECT(spapr), "rtc", 1772 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1773 &error_fatal, NULL); 1774 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1775 &error_fatal); 1776 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1777 "date", &error_fatal); 1778 } 1779 1780 /* Returns whether we want to use VGA or not */ 1781 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1782 { 1783 switch (vga_interface_type) { 1784 case VGA_NONE: 1785 return false; 1786 case VGA_DEVICE: 1787 return true; 1788 case VGA_STD: 1789 case VGA_VIRTIO: 1790 case VGA_CIRRUS: 1791 return pci_vga_init(pci_bus) != NULL; 1792 default: 1793 error_setg(errp, 1794 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1795 return false; 1796 } 1797 } 1798 1799 static int spapr_pre_load(void *opaque) 1800 { 1801 int rc; 1802 1803 rc = spapr_caps_pre_load(opaque); 1804 if (rc) { 1805 return rc; 1806 } 1807 1808 return 0; 1809 } 1810 1811 static int spapr_post_load(void *opaque, int version_id) 1812 { 1813 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1814 int err = 0; 1815 1816 err = spapr_caps_post_migration(spapr); 1817 if (err) { 1818 return err; 1819 } 1820 1821 /* 1822 * In earlier versions, there was no separate qdev for the PAPR 1823 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1824 * So when migrating from those versions, poke the incoming offset 1825 * value into the RTC device 1826 */ 1827 if (version_id < 3) { 1828 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1829 if (err) { 1830 return err; 1831 } 1832 } 1833 1834 if (kvm_enabled() && spapr->patb_entry) { 1835 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1836 bool radix = !!(spapr->patb_entry & PATE1_GR); 1837 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1838 1839 /* 1840 * Update LPCR:HR and UPRT as they may not be set properly in 1841 * the stream 1842 */ 1843 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1844 LPCR_HR | LPCR_UPRT); 1845 1846 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1847 if (err) { 1848 error_report("Process table config unsupported by the host"); 1849 return -EINVAL; 1850 } 1851 } 1852 1853 err = spapr_irq_post_load(spapr, version_id); 1854 if (err) { 1855 return err; 1856 } 1857 1858 return err; 1859 } 1860 1861 static int spapr_pre_save(void *opaque) 1862 { 1863 int rc; 1864 1865 rc = spapr_caps_pre_save(opaque); 1866 if (rc) { 1867 return rc; 1868 } 1869 1870 return 0; 1871 } 1872 1873 static bool version_before_3(void *opaque, int version_id) 1874 { 1875 return version_id < 3; 1876 } 1877 1878 static bool spapr_pending_events_needed(void *opaque) 1879 { 1880 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1881 return !QTAILQ_EMPTY(&spapr->pending_events); 1882 } 1883 1884 static const VMStateDescription vmstate_spapr_event_entry = { 1885 .name = "spapr_event_log_entry", 1886 .version_id = 1, 1887 .minimum_version_id = 1, 1888 .fields = (VMStateField[]) { 1889 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1890 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1891 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1892 NULL, extended_length), 1893 VMSTATE_END_OF_LIST() 1894 }, 1895 }; 1896 1897 static const VMStateDescription vmstate_spapr_pending_events = { 1898 .name = "spapr_pending_events", 1899 .version_id = 1, 1900 .minimum_version_id = 1, 1901 .needed = spapr_pending_events_needed, 1902 .fields = (VMStateField[]) { 1903 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1904 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1905 VMSTATE_END_OF_LIST() 1906 }, 1907 }; 1908 1909 static bool spapr_ov5_cas_needed(void *opaque) 1910 { 1911 SpaprMachineState *spapr = opaque; 1912 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1913 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1914 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1915 bool cas_needed; 1916 1917 /* Prior to the introduction of SpaprOptionVector, we had two option 1918 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1919 * Both of these options encode machine topology into the device-tree 1920 * in such a way that the now-booted OS should still be able to interact 1921 * appropriately with QEMU regardless of what options were actually 1922 * negotiatied on the source side. 1923 * 1924 * As such, we can avoid migrating the CAS-negotiated options if these 1925 * are the only options available on the current machine/platform. 1926 * Since these are the only options available for pseries-2.7 and 1927 * earlier, this allows us to maintain old->new/new->old migration 1928 * compatibility. 1929 * 1930 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1931 * via default pseries-2.8 machines and explicit command-line parameters. 1932 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1933 * of the actual CAS-negotiated values to continue working properly. For 1934 * example, availability of memory unplug depends on knowing whether 1935 * OV5_HP_EVT was negotiated via CAS. 1936 * 1937 * Thus, for any cases where the set of available CAS-negotiatable 1938 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1939 * include the CAS-negotiated options in the migration stream, unless 1940 * if they affect boot time behaviour only. 1941 */ 1942 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1943 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1944 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1945 1946 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1947 * the mask itself since in the future it's possible "legacy" bits may be 1948 * removed via machine options, which could generate a false positive 1949 * that breaks migration. 1950 */ 1951 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1952 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1953 1954 spapr_ovec_cleanup(ov5_mask); 1955 spapr_ovec_cleanup(ov5_legacy); 1956 spapr_ovec_cleanup(ov5_removed); 1957 1958 return cas_needed; 1959 } 1960 1961 static const VMStateDescription vmstate_spapr_ov5_cas = { 1962 .name = "spapr_option_vector_ov5_cas", 1963 .version_id = 1, 1964 .minimum_version_id = 1, 1965 .needed = spapr_ov5_cas_needed, 1966 .fields = (VMStateField[]) { 1967 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1968 vmstate_spapr_ovec, SpaprOptionVector), 1969 VMSTATE_END_OF_LIST() 1970 }, 1971 }; 1972 1973 static bool spapr_patb_entry_needed(void *opaque) 1974 { 1975 SpaprMachineState *spapr = opaque; 1976 1977 return !!spapr->patb_entry; 1978 } 1979 1980 static const VMStateDescription vmstate_spapr_patb_entry = { 1981 .name = "spapr_patb_entry", 1982 .version_id = 1, 1983 .minimum_version_id = 1, 1984 .needed = spapr_patb_entry_needed, 1985 .fields = (VMStateField[]) { 1986 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1987 VMSTATE_END_OF_LIST() 1988 }, 1989 }; 1990 1991 static bool spapr_irq_map_needed(void *opaque) 1992 { 1993 SpaprMachineState *spapr = opaque; 1994 1995 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1996 } 1997 1998 static const VMStateDescription vmstate_spapr_irq_map = { 1999 .name = "spapr_irq_map", 2000 .version_id = 1, 2001 .minimum_version_id = 1, 2002 .needed = spapr_irq_map_needed, 2003 .fields = (VMStateField[]) { 2004 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2005 VMSTATE_END_OF_LIST() 2006 }, 2007 }; 2008 2009 static bool spapr_dtb_needed(void *opaque) 2010 { 2011 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2012 2013 return smc->update_dt_enabled; 2014 } 2015 2016 static int spapr_dtb_pre_load(void *opaque) 2017 { 2018 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2019 2020 g_free(spapr->fdt_blob); 2021 spapr->fdt_blob = NULL; 2022 spapr->fdt_size = 0; 2023 2024 return 0; 2025 } 2026 2027 static const VMStateDescription vmstate_spapr_dtb = { 2028 .name = "spapr_dtb", 2029 .version_id = 1, 2030 .minimum_version_id = 1, 2031 .needed = spapr_dtb_needed, 2032 .pre_load = spapr_dtb_pre_load, 2033 .fields = (VMStateField[]) { 2034 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2035 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2036 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2037 fdt_size), 2038 VMSTATE_END_OF_LIST() 2039 }, 2040 }; 2041 2042 static const VMStateDescription vmstate_spapr = { 2043 .name = "spapr", 2044 .version_id = 3, 2045 .minimum_version_id = 1, 2046 .pre_load = spapr_pre_load, 2047 .post_load = spapr_post_load, 2048 .pre_save = spapr_pre_save, 2049 .fields = (VMStateField[]) { 2050 /* used to be @next_irq */ 2051 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2052 2053 /* RTC offset */ 2054 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2055 2056 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2057 VMSTATE_END_OF_LIST() 2058 }, 2059 .subsections = (const VMStateDescription*[]) { 2060 &vmstate_spapr_ov5_cas, 2061 &vmstate_spapr_patb_entry, 2062 &vmstate_spapr_pending_events, 2063 &vmstate_spapr_cap_htm, 2064 &vmstate_spapr_cap_vsx, 2065 &vmstate_spapr_cap_dfp, 2066 &vmstate_spapr_cap_cfpc, 2067 &vmstate_spapr_cap_sbbc, 2068 &vmstate_spapr_cap_ibs, 2069 &vmstate_spapr_cap_hpt_maxpagesize, 2070 &vmstate_spapr_irq_map, 2071 &vmstate_spapr_cap_nested_kvm_hv, 2072 &vmstate_spapr_dtb, 2073 &vmstate_spapr_cap_large_decr, 2074 &vmstate_spapr_cap_ccf_assist, 2075 NULL 2076 } 2077 }; 2078 2079 static int htab_save_setup(QEMUFile *f, void *opaque) 2080 { 2081 SpaprMachineState *spapr = opaque; 2082 2083 /* "Iteration" header */ 2084 if (!spapr->htab_shift) { 2085 qemu_put_be32(f, -1); 2086 } else { 2087 qemu_put_be32(f, spapr->htab_shift); 2088 } 2089 2090 if (spapr->htab) { 2091 spapr->htab_save_index = 0; 2092 spapr->htab_first_pass = true; 2093 } else { 2094 if (spapr->htab_shift) { 2095 assert(kvm_enabled()); 2096 } 2097 } 2098 2099 2100 return 0; 2101 } 2102 2103 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2104 int chunkstart, int n_valid, int n_invalid) 2105 { 2106 qemu_put_be32(f, chunkstart); 2107 qemu_put_be16(f, n_valid); 2108 qemu_put_be16(f, n_invalid); 2109 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2110 HASH_PTE_SIZE_64 * n_valid); 2111 } 2112 2113 static void htab_save_end_marker(QEMUFile *f) 2114 { 2115 qemu_put_be32(f, 0); 2116 qemu_put_be16(f, 0); 2117 qemu_put_be16(f, 0); 2118 } 2119 2120 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2121 int64_t max_ns) 2122 { 2123 bool has_timeout = max_ns != -1; 2124 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2125 int index = spapr->htab_save_index; 2126 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2127 2128 assert(spapr->htab_first_pass); 2129 2130 do { 2131 int chunkstart; 2132 2133 /* Consume invalid HPTEs */ 2134 while ((index < htabslots) 2135 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2136 CLEAN_HPTE(HPTE(spapr->htab, index)); 2137 index++; 2138 } 2139 2140 /* Consume valid HPTEs */ 2141 chunkstart = index; 2142 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2143 && HPTE_VALID(HPTE(spapr->htab, index))) { 2144 CLEAN_HPTE(HPTE(spapr->htab, index)); 2145 index++; 2146 } 2147 2148 if (index > chunkstart) { 2149 int n_valid = index - chunkstart; 2150 2151 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2152 2153 if (has_timeout && 2154 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2155 break; 2156 } 2157 } 2158 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2159 2160 if (index >= htabslots) { 2161 assert(index == htabslots); 2162 index = 0; 2163 spapr->htab_first_pass = false; 2164 } 2165 spapr->htab_save_index = index; 2166 } 2167 2168 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2169 int64_t max_ns) 2170 { 2171 bool final = max_ns < 0; 2172 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2173 int examined = 0, sent = 0; 2174 int index = spapr->htab_save_index; 2175 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2176 2177 assert(!spapr->htab_first_pass); 2178 2179 do { 2180 int chunkstart, invalidstart; 2181 2182 /* Consume non-dirty HPTEs */ 2183 while ((index < htabslots) 2184 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2185 index++; 2186 examined++; 2187 } 2188 2189 chunkstart = index; 2190 /* Consume valid dirty HPTEs */ 2191 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2192 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2193 && HPTE_VALID(HPTE(spapr->htab, index))) { 2194 CLEAN_HPTE(HPTE(spapr->htab, index)); 2195 index++; 2196 examined++; 2197 } 2198 2199 invalidstart = index; 2200 /* Consume invalid dirty HPTEs */ 2201 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2202 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2203 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2204 CLEAN_HPTE(HPTE(spapr->htab, index)); 2205 index++; 2206 examined++; 2207 } 2208 2209 if (index > chunkstart) { 2210 int n_valid = invalidstart - chunkstart; 2211 int n_invalid = index - invalidstart; 2212 2213 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2214 sent += index - chunkstart; 2215 2216 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2217 break; 2218 } 2219 } 2220 2221 if (examined >= htabslots) { 2222 break; 2223 } 2224 2225 if (index >= htabslots) { 2226 assert(index == htabslots); 2227 index = 0; 2228 } 2229 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2230 2231 if (index >= htabslots) { 2232 assert(index == htabslots); 2233 index = 0; 2234 } 2235 2236 spapr->htab_save_index = index; 2237 2238 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2239 } 2240 2241 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2242 #define MAX_KVM_BUF_SIZE 2048 2243 2244 static int htab_save_iterate(QEMUFile *f, void *opaque) 2245 { 2246 SpaprMachineState *spapr = opaque; 2247 int fd; 2248 int rc = 0; 2249 2250 /* Iteration header */ 2251 if (!spapr->htab_shift) { 2252 qemu_put_be32(f, -1); 2253 return 1; 2254 } else { 2255 qemu_put_be32(f, 0); 2256 } 2257 2258 if (!spapr->htab) { 2259 assert(kvm_enabled()); 2260 2261 fd = get_htab_fd(spapr); 2262 if (fd < 0) { 2263 return fd; 2264 } 2265 2266 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2267 if (rc < 0) { 2268 return rc; 2269 } 2270 } else if (spapr->htab_first_pass) { 2271 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2272 } else { 2273 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2274 } 2275 2276 htab_save_end_marker(f); 2277 2278 return rc; 2279 } 2280 2281 static int htab_save_complete(QEMUFile *f, void *opaque) 2282 { 2283 SpaprMachineState *spapr = opaque; 2284 int fd; 2285 2286 /* Iteration header */ 2287 if (!spapr->htab_shift) { 2288 qemu_put_be32(f, -1); 2289 return 0; 2290 } else { 2291 qemu_put_be32(f, 0); 2292 } 2293 2294 if (!spapr->htab) { 2295 int rc; 2296 2297 assert(kvm_enabled()); 2298 2299 fd = get_htab_fd(spapr); 2300 if (fd < 0) { 2301 return fd; 2302 } 2303 2304 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2305 if (rc < 0) { 2306 return rc; 2307 } 2308 } else { 2309 if (spapr->htab_first_pass) { 2310 htab_save_first_pass(f, spapr, -1); 2311 } 2312 htab_save_later_pass(f, spapr, -1); 2313 } 2314 2315 /* End marker */ 2316 htab_save_end_marker(f); 2317 2318 return 0; 2319 } 2320 2321 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2322 { 2323 SpaprMachineState *spapr = opaque; 2324 uint32_t section_hdr; 2325 int fd = -1; 2326 Error *local_err = NULL; 2327 2328 if (version_id < 1 || version_id > 1) { 2329 error_report("htab_load() bad version"); 2330 return -EINVAL; 2331 } 2332 2333 section_hdr = qemu_get_be32(f); 2334 2335 if (section_hdr == -1) { 2336 spapr_free_hpt(spapr); 2337 return 0; 2338 } 2339 2340 if (section_hdr) { 2341 /* First section gives the htab size */ 2342 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2343 if (local_err) { 2344 error_report_err(local_err); 2345 return -EINVAL; 2346 } 2347 return 0; 2348 } 2349 2350 if (!spapr->htab) { 2351 assert(kvm_enabled()); 2352 2353 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2354 if (fd < 0) { 2355 error_report_err(local_err); 2356 return fd; 2357 } 2358 } 2359 2360 while (true) { 2361 uint32_t index; 2362 uint16_t n_valid, n_invalid; 2363 2364 index = qemu_get_be32(f); 2365 n_valid = qemu_get_be16(f); 2366 n_invalid = qemu_get_be16(f); 2367 2368 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2369 /* End of Stream */ 2370 break; 2371 } 2372 2373 if ((index + n_valid + n_invalid) > 2374 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2375 /* Bad index in stream */ 2376 error_report( 2377 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2378 index, n_valid, n_invalid, spapr->htab_shift); 2379 return -EINVAL; 2380 } 2381 2382 if (spapr->htab) { 2383 if (n_valid) { 2384 qemu_get_buffer(f, HPTE(spapr->htab, index), 2385 HASH_PTE_SIZE_64 * n_valid); 2386 } 2387 if (n_invalid) { 2388 memset(HPTE(spapr->htab, index + n_valid), 0, 2389 HASH_PTE_SIZE_64 * n_invalid); 2390 } 2391 } else { 2392 int rc; 2393 2394 assert(fd >= 0); 2395 2396 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2397 if (rc < 0) { 2398 return rc; 2399 } 2400 } 2401 } 2402 2403 if (!spapr->htab) { 2404 assert(fd >= 0); 2405 close(fd); 2406 } 2407 2408 return 0; 2409 } 2410 2411 static void htab_save_cleanup(void *opaque) 2412 { 2413 SpaprMachineState *spapr = opaque; 2414 2415 close_htab_fd(spapr); 2416 } 2417 2418 static SaveVMHandlers savevm_htab_handlers = { 2419 .save_setup = htab_save_setup, 2420 .save_live_iterate = htab_save_iterate, 2421 .save_live_complete_precopy = htab_save_complete, 2422 .save_cleanup = htab_save_cleanup, 2423 .load_state = htab_load, 2424 }; 2425 2426 static void spapr_boot_set(void *opaque, const char *boot_device, 2427 Error **errp) 2428 { 2429 MachineState *machine = MACHINE(opaque); 2430 machine->boot_order = g_strdup(boot_device); 2431 } 2432 2433 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2434 { 2435 MachineState *machine = MACHINE(spapr); 2436 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2437 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2438 int i; 2439 2440 for (i = 0; i < nr_lmbs; i++) { 2441 uint64_t addr; 2442 2443 addr = i * lmb_size + machine->device_memory->base; 2444 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2445 addr / lmb_size); 2446 } 2447 } 2448 2449 /* 2450 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2451 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2452 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2453 */ 2454 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2455 { 2456 int i; 2457 2458 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2459 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2460 " is not aligned to %" PRIu64 " MiB", 2461 machine->ram_size, 2462 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2463 return; 2464 } 2465 2466 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2467 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2468 " is not aligned to %" PRIu64 " MiB", 2469 machine->ram_size, 2470 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2471 return; 2472 } 2473 2474 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2475 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2476 error_setg(errp, 2477 "Node %d memory size 0x%" PRIx64 2478 " is not aligned to %" PRIu64 " MiB", 2479 i, machine->numa_state->nodes[i].node_mem, 2480 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2481 return; 2482 } 2483 } 2484 } 2485 2486 /* find cpu slot in machine->possible_cpus by core_id */ 2487 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2488 { 2489 int index = id / ms->smp.threads; 2490 2491 if (index >= ms->possible_cpus->len) { 2492 return NULL; 2493 } 2494 if (idx) { 2495 *idx = index; 2496 } 2497 return &ms->possible_cpus->cpus[index]; 2498 } 2499 2500 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2501 { 2502 MachineState *ms = MACHINE(spapr); 2503 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2504 Error *local_err = NULL; 2505 bool vsmt_user = !!spapr->vsmt; 2506 int kvm_smt = kvmppc_smt_threads(); 2507 int ret; 2508 unsigned int smp_threads = ms->smp.threads; 2509 2510 if (!kvm_enabled() && (smp_threads > 1)) { 2511 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2512 "on a pseries machine"); 2513 goto out; 2514 } 2515 if (!is_power_of_2(smp_threads)) { 2516 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2517 "machine because it must be a power of 2", smp_threads); 2518 goto out; 2519 } 2520 2521 /* Detemine the VSMT mode to use: */ 2522 if (vsmt_user) { 2523 if (spapr->vsmt < smp_threads) { 2524 error_setg(&local_err, "Cannot support VSMT mode %d" 2525 " because it must be >= threads/core (%d)", 2526 spapr->vsmt, smp_threads); 2527 goto out; 2528 } 2529 /* In this case, spapr->vsmt has been set by the command line */ 2530 } else if (!smc->smp_threads_vsmt) { 2531 /* 2532 * Default VSMT value is tricky, because we need it to be as 2533 * consistent as possible (for migration), but this requires 2534 * changing it for at least some existing cases. We pick 8 as 2535 * the value that we'd get with KVM on POWER8, the 2536 * overwhelmingly common case in production systems. 2537 */ 2538 spapr->vsmt = MAX(8, smp_threads); 2539 } else { 2540 spapr->vsmt = smp_threads; 2541 } 2542 2543 /* KVM: If necessary, set the SMT mode: */ 2544 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2545 ret = kvmppc_set_smt_threads(spapr->vsmt); 2546 if (ret) { 2547 /* Looks like KVM isn't able to change VSMT mode */ 2548 error_setg(&local_err, 2549 "Failed to set KVM's VSMT mode to %d (errno %d)", 2550 spapr->vsmt, ret); 2551 /* We can live with that if the default one is big enough 2552 * for the number of threads, and a submultiple of the one 2553 * we want. In this case we'll waste some vcpu ids, but 2554 * behaviour will be correct */ 2555 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2556 warn_report_err(local_err); 2557 local_err = NULL; 2558 goto out; 2559 } else { 2560 if (!vsmt_user) { 2561 error_append_hint(&local_err, 2562 "On PPC, a VM with %d threads/core" 2563 " on a host with %d threads/core" 2564 " requires the use of VSMT mode %d.\n", 2565 smp_threads, kvm_smt, spapr->vsmt); 2566 } 2567 kvmppc_hint_smt_possible(&local_err); 2568 goto out; 2569 } 2570 } 2571 } 2572 /* else TCG: nothing to do currently */ 2573 out: 2574 error_propagate(errp, local_err); 2575 } 2576 2577 static void spapr_init_cpus(SpaprMachineState *spapr) 2578 { 2579 MachineState *machine = MACHINE(spapr); 2580 MachineClass *mc = MACHINE_GET_CLASS(machine); 2581 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2582 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2583 const CPUArchIdList *possible_cpus; 2584 unsigned int smp_cpus = machine->smp.cpus; 2585 unsigned int smp_threads = machine->smp.threads; 2586 unsigned int max_cpus = machine->smp.max_cpus; 2587 int boot_cores_nr = smp_cpus / smp_threads; 2588 int i; 2589 2590 possible_cpus = mc->possible_cpu_arch_ids(machine); 2591 if (mc->has_hotpluggable_cpus) { 2592 if (smp_cpus % smp_threads) { 2593 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2594 smp_cpus, smp_threads); 2595 exit(1); 2596 } 2597 if (max_cpus % smp_threads) { 2598 error_report("max_cpus (%u) must be multiple of threads (%u)", 2599 max_cpus, smp_threads); 2600 exit(1); 2601 } 2602 } else { 2603 if (max_cpus != smp_cpus) { 2604 error_report("This machine version does not support CPU hotplug"); 2605 exit(1); 2606 } 2607 boot_cores_nr = possible_cpus->len; 2608 } 2609 2610 if (smc->pre_2_10_has_unused_icps) { 2611 int i; 2612 2613 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2614 /* Dummy entries get deregistered when real ICPState objects 2615 * are registered during CPU core hotplug. 2616 */ 2617 pre_2_10_vmstate_register_dummy_icp(i); 2618 } 2619 } 2620 2621 for (i = 0; i < possible_cpus->len; i++) { 2622 int core_id = i * smp_threads; 2623 2624 if (mc->has_hotpluggable_cpus) { 2625 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2626 spapr_vcpu_id(spapr, core_id)); 2627 } 2628 2629 if (i < boot_cores_nr) { 2630 Object *core = object_new(type); 2631 int nr_threads = smp_threads; 2632 2633 /* Handle the partially filled core for older machine types */ 2634 if ((i + 1) * smp_threads >= smp_cpus) { 2635 nr_threads = smp_cpus - i * smp_threads; 2636 } 2637 2638 object_property_set_int(core, nr_threads, "nr-threads", 2639 &error_fatal); 2640 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2641 &error_fatal); 2642 object_property_set_bool(core, true, "realized", &error_fatal); 2643 2644 object_unref(core); 2645 } 2646 } 2647 } 2648 2649 static PCIHostState *spapr_create_default_phb(void) 2650 { 2651 DeviceState *dev; 2652 2653 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2654 qdev_prop_set_uint32(dev, "index", 0); 2655 qdev_init_nofail(dev); 2656 2657 return PCI_HOST_BRIDGE(dev); 2658 } 2659 2660 /* pSeries LPAR / sPAPR hardware init */ 2661 static void spapr_machine_init(MachineState *machine) 2662 { 2663 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2664 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2665 const char *kernel_filename = machine->kernel_filename; 2666 const char *initrd_filename = machine->initrd_filename; 2667 PCIHostState *phb; 2668 int i; 2669 MemoryRegion *sysmem = get_system_memory(); 2670 MemoryRegion *ram = g_new(MemoryRegion, 1); 2671 hwaddr node0_size = spapr_node0_size(machine); 2672 long load_limit, fw_size; 2673 char *filename; 2674 Error *resize_hpt_err = NULL; 2675 2676 msi_nonbroken = true; 2677 2678 QLIST_INIT(&spapr->phbs); 2679 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2680 2681 /* Determine capabilities to run with */ 2682 spapr_caps_init(spapr); 2683 2684 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2685 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2686 /* 2687 * If the user explicitly requested a mode we should either 2688 * supply it, or fail completely (which we do below). But if 2689 * it's not set explicitly, we reset our mode to something 2690 * that works 2691 */ 2692 if (resize_hpt_err) { 2693 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2694 error_free(resize_hpt_err); 2695 resize_hpt_err = NULL; 2696 } else { 2697 spapr->resize_hpt = smc->resize_hpt_default; 2698 } 2699 } 2700 2701 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2702 2703 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2704 /* 2705 * User requested HPT resize, but this host can't supply it. Bail out 2706 */ 2707 error_report_err(resize_hpt_err); 2708 exit(1); 2709 } 2710 2711 spapr->rma_size = node0_size; 2712 2713 /* With KVM, we don't actually know whether KVM supports an 2714 * unbounded RMA (PR KVM) or is limited by the hash table size 2715 * (HV KVM using VRMA), so we always assume the latter 2716 * 2717 * In that case, we also limit the initial allocations for RTAS 2718 * etc... to 256M since we have no way to know what the VRMA size 2719 * is going to be as it depends on the size of the hash table 2720 * which isn't determined yet. 2721 */ 2722 if (kvm_enabled()) { 2723 spapr->vrma_adjust = 1; 2724 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2725 } 2726 2727 /* Actually we don't support unbounded RMA anymore since we added 2728 * proper emulation of HV mode. The max we can get is 16G which 2729 * also happens to be what we configure for PAPR mode so make sure 2730 * we don't do anything bigger than that 2731 */ 2732 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2733 2734 if (spapr->rma_size > node0_size) { 2735 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2736 spapr->rma_size); 2737 exit(1); 2738 } 2739 2740 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2741 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2742 2743 /* 2744 * VSMT must be set in order to be able to compute VCPU ids, ie to 2745 * call spapr_max_server_number() or spapr_vcpu_id(). 2746 */ 2747 spapr_set_vsmt_mode(spapr, &error_fatal); 2748 2749 /* Set up Interrupt Controller before we create the VCPUs */ 2750 spapr_irq_init(spapr, &error_fatal); 2751 2752 /* Set up containers for ibm,client-architecture-support negotiated options 2753 */ 2754 spapr->ov5 = spapr_ovec_new(); 2755 spapr->ov5_cas = spapr_ovec_new(); 2756 2757 if (smc->dr_lmb_enabled) { 2758 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2759 spapr_validate_node_memory(machine, &error_fatal); 2760 } 2761 2762 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2763 2764 /* advertise support for dedicated HP event source to guests */ 2765 if (spapr->use_hotplug_event_source) { 2766 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2767 } 2768 2769 /* advertise support for HPT resizing */ 2770 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2771 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2772 } 2773 2774 /* advertise support for ibm,dyamic-memory-v2 */ 2775 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2776 2777 /* advertise XIVE on POWER9 machines */ 2778 if (spapr->irq->xive) { 2779 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2780 } 2781 2782 /* init CPUs */ 2783 spapr_init_cpus(spapr); 2784 2785 /* 2786 * check we don't have a memory-less/cpu-less NUMA node 2787 * Firmware relies on the existing memory/cpu topology to provide the 2788 * NUMA topology to the kernel. 2789 * And the linux kernel needs to know the NUMA topology at start 2790 * to be able to hotplug CPUs later. 2791 */ 2792 if (machine->numa_state->num_nodes) { 2793 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2794 /* check for memory-less node */ 2795 if (machine->numa_state->nodes[i].node_mem == 0) { 2796 CPUState *cs; 2797 int found = 0; 2798 /* check for cpu-less node */ 2799 CPU_FOREACH(cs) { 2800 PowerPCCPU *cpu = POWERPC_CPU(cs); 2801 if (cpu->node_id == i) { 2802 found = 1; 2803 break; 2804 } 2805 } 2806 /* memory-less and cpu-less node */ 2807 if (!found) { 2808 error_report( 2809 "Memory-less/cpu-less nodes are not supported (node %d)", 2810 i); 2811 exit(1); 2812 } 2813 } 2814 } 2815 2816 } 2817 2818 /* 2819 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2820 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2821 * called from vPHB reset handler so we initialize the counter here. 2822 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2823 * must be equally distant from any other node. 2824 * The final value of spapr->gpu_numa_id is going to be written to 2825 * max-associativity-domains in spapr_build_fdt(). 2826 */ 2827 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2828 2829 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2830 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2831 spapr->max_compat_pvr)) { 2832 /* KVM and TCG always allow GTSE with radix... */ 2833 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2834 } 2835 /* ... but not with hash (currently). */ 2836 2837 if (kvm_enabled()) { 2838 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2839 kvmppc_enable_logical_ci_hcalls(); 2840 kvmppc_enable_set_mode_hcall(); 2841 2842 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2843 kvmppc_enable_clear_ref_mod_hcalls(); 2844 2845 /* Enable H_PAGE_INIT */ 2846 kvmppc_enable_h_page_init(); 2847 } 2848 2849 /* allocate RAM */ 2850 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2851 machine->ram_size); 2852 memory_region_add_subregion(sysmem, 0, ram); 2853 2854 /* always allocate the device memory information */ 2855 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2856 2857 /* initialize hotplug memory address space */ 2858 if (machine->ram_size < machine->maxram_size) { 2859 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2860 /* 2861 * Limit the number of hotpluggable memory slots to half the number 2862 * slots that KVM supports, leaving the other half for PCI and other 2863 * devices. However ensure that number of slots doesn't drop below 32. 2864 */ 2865 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2866 SPAPR_MAX_RAM_SLOTS; 2867 2868 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2869 max_memslots = SPAPR_MAX_RAM_SLOTS; 2870 } 2871 if (machine->ram_slots > max_memslots) { 2872 error_report("Specified number of memory slots %" 2873 PRIu64" exceeds max supported %d", 2874 machine->ram_slots, max_memslots); 2875 exit(1); 2876 } 2877 2878 machine->device_memory->base = ROUND_UP(machine->ram_size, 2879 SPAPR_DEVICE_MEM_ALIGN); 2880 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2881 "device-memory", device_mem_size); 2882 memory_region_add_subregion(sysmem, machine->device_memory->base, 2883 &machine->device_memory->mr); 2884 } 2885 2886 if (smc->dr_lmb_enabled) { 2887 spapr_create_lmb_dr_connectors(spapr); 2888 } 2889 2890 /* Set up RTAS event infrastructure */ 2891 spapr_events_init(spapr); 2892 2893 /* Set up the RTC RTAS interfaces */ 2894 spapr_rtc_create(spapr); 2895 2896 /* Set up VIO bus */ 2897 spapr->vio_bus = spapr_vio_bus_init(); 2898 2899 for (i = 0; i < serial_max_hds(); i++) { 2900 if (serial_hd(i)) { 2901 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2902 } 2903 } 2904 2905 /* We always have at least the nvram device on VIO */ 2906 spapr_create_nvram(spapr); 2907 2908 /* 2909 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2910 * connectors (described in root DT node's "ibm,drc-types" property) 2911 * are pre-initialized here. additional child connectors (such as 2912 * connectors for a PHBs PCI slots) are added as needed during their 2913 * parent's realization. 2914 */ 2915 if (smc->dr_phb_enabled) { 2916 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2917 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2918 } 2919 } 2920 2921 /* Set up PCI */ 2922 spapr_pci_rtas_init(); 2923 2924 phb = spapr_create_default_phb(); 2925 2926 for (i = 0; i < nb_nics; i++) { 2927 NICInfo *nd = &nd_table[i]; 2928 2929 if (!nd->model) { 2930 nd->model = g_strdup("spapr-vlan"); 2931 } 2932 2933 if (g_str_equal(nd->model, "spapr-vlan") || 2934 g_str_equal(nd->model, "ibmveth")) { 2935 spapr_vlan_create(spapr->vio_bus, nd); 2936 } else { 2937 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2938 } 2939 } 2940 2941 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2942 spapr_vscsi_create(spapr->vio_bus); 2943 } 2944 2945 /* Graphics */ 2946 if (spapr_vga_init(phb->bus, &error_fatal)) { 2947 spapr->has_graphics = true; 2948 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2949 } 2950 2951 if (machine->usb) { 2952 if (smc->use_ohci_by_default) { 2953 pci_create_simple(phb->bus, -1, "pci-ohci"); 2954 } else { 2955 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2956 } 2957 2958 if (spapr->has_graphics) { 2959 USBBus *usb_bus = usb_bus_find(-1); 2960 2961 usb_create_simple(usb_bus, "usb-kbd"); 2962 usb_create_simple(usb_bus, "usb-mouse"); 2963 } 2964 } 2965 2966 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2967 error_report( 2968 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2969 MIN_RMA_SLOF); 2970 exit(1); 2971 } 2972 2973 if (kernel_filename) { 2974 uint64_t lowaddr = 0; 2975 2976 spapr->kernel_size = load_elf(kernel_filename, NULL, 2977 translate_kernel_address, NULL, 2978 NULL, &lowaddr, NULL, 1, 2979 PPC_ELF_MACHINE, 0, 0); 2980 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2981 spapr->kernel_size = load_elf(kernel_filename, NULL, 2982 translate_kernel_address, NULL, NULL, 2983 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2984 0, 0); 2985 spapr->kernel_le = spapr->kernel_size > 0; 2986 } 2987 if (spapr->kernel_size < 0) { 2988 error_report("error loading %s: %s", kernel_filename, 2989 load_elf_strerror(spapr->kernel_size)); 2990 exit(1); 2991 } 2992 2993 /* load initrd */ 2994 if (initrd_filename) { 2995 /* Try to locate the initrd in the gap between the kernel 2996 * and the firmware. Add a bit of space just in case 2997 */ 2998 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2999 + 0x1ffff) & ~0xffff; 3000 spapr->initrd_size = load_image_targphys(initrd_filename, 3001 spapr->initrd_base, 3002 load_limit 3003 - spapr->initrd_base); 3004 if (spapr->initrd_size < 0) { 3005 error_report("could not load initial ram disk '%s'", 3006 initrd_filename); 3007 exit(1); 3008 } 3009 } 3010 } 3011 3012 if (bios_name == NULL) { 3013 bios_name = FW_FILE_NAME; 3014 } 3015 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3016 if (!filename) { 3017 error_report("Could not find LPAR firmware '%s'", bios_name); 3018 exit(1); 3019 } 3020 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3021 if (fw_size <= 0) { 3022 error_report("Could not load LPAR firmware '%s'", filename); 3023 exit(1); 3024 } 3025 g_free(filename); 3026 3027 /* FIXME: Should register things through the MachineState's qdev 3028 * interface, this is a legacy from the sPAPREnvironment structure 3029 * which predated MachineState but had a similar function */ 3030 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3031 register_savevm_live("spapr/htab", -1, 1, 3032 &savevm_htab_handlers, spapr); 3033 3034 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3035 &error_fatal); 3036 3037 qemu_register_boot_set(spapr_boot_set, spapr); 3038 3039 /* 3040 * Nothing needs to be done to resume a suspended guest because 3041 * suspending does not change the machine state, so no need for 3042 * a ->wakeup method. 3043 */ 3044 qemu_register_wakeup_support(); 3045 3046 if (kvm_enabled()) { 3047 /* to stop and start vmclock */ 3048 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3049 &spapr->tb); 3050 3051 kvmppc_spapr_enable_inkernel_multitce(); 3052 } 3053 } 3054 3055 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3056 { 3057 if (!vm_type) { 3058 return 0; 3059 } 3060 3061 if (!strcmp(vm_type, "HV")) { 3062 return 1; 3063 } 3064 3065 if (!strcmp(vm_type, "PR")) { 3066 return 2; 3067 } 3068 3069 error_report("Unknown kvm-type specified '%s'", vm_type); 3070 exit(1); 3071 } 3072 3073 /* 3074 * Implementation of an interface to adjust firmware path 3075 * for the bootindex property handling. 3076 */ 3077 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3078 DeviceState *dev) 3079 { 3080 #define CAST(type, obj, name) \ 3081 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3082 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3083 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3084 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3085 3086 if (d) { 3087 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3088 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3089 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3090 3091 if (spapr) { 3092 /* 3093 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3094 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3095 * 0x8000 | (target << 8) | (bus << 5) | lun 3096 * (see the "Logical unit addressing format" table in SAM5) 3097 */ 3098 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3099 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3100 (uint64_t)id << 48); 3101 } else if (virtio) { 3102 /* 3103 * We use SRP luns of the form 01000000 | (target << 8) | lun 3104 * in the top 32 bits of the 64-bit LUN 3105 * Note: the quote above is from SLOF and it is wrong, 3106 * the actual binding is: 3107 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3108 */ 3109 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3110 if (d->lun >= 256) { 3111 /* Use the LUN "flat space addressing method" */ 3112 id |= 0x4000; 3113 } 3114 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3115 (uint64_t)id << 32); 3116 } else if (usb) { 3117 /* 3118 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3119 * in the top 32 bits of the 64-bit LUN 3120 */ 3121 unsigned usb_port = atoi(usb->port->path); 3122 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3123 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3124 (uint64_t)id << 32); 3125 } 3126 } 3127 3128 /* 3129 * SLOF probes the USB devices, and if it recognizes that the device is a 3130 * storage device, it changes its name to "storage" instead of "usb-host", 3131 * and additionally adds a child node for the SCSI LUN, so the correct 3132 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3133 */ 3134 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3135 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3136 if (usb_host_dev_is_scsi_storage(usbdev)) { 3137 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3138 } 3139 } 3140 3141 if (phb) { 3142 /* Replace "pci" with "pci@800000020000000" */ 3143 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3144 } 3145 3146 if (vsc) { 3147 /* Same logic as virtio above */ 3148 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3149 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3150 } 3151 3152 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3153 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3154 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3155 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3156 } 3157 3158 return NULL; 3159 } 3160 3161 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3162 { 3163 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3164 3165 return g_strdup(spapr->kvm_type); 3166 } 3167 3168 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3169 { 3170 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3171 3172 g_free(spapr->kvm_type); 3173 spapr->kvm_type = g_strdup(value); 3174 } 3175 3176 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3177 { 3178 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3179 3180 return spapr->use_hotplug_event_source; 3181 } 3182 3183 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3184 Error **errp) 3185 { 3186 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3187 3188 spapr->use_hotplug_event_source = value; 3189 } 3190 3191 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3192 { 3193 return true; 3194 } 3195 3196 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3197 { 3198 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3199 3200 switch (spapr->resize_hpt) { 3201 case SPAPR_RESIZE_HPT_DEFAULT: 3202 return g_strdup("default"); 3203 case SPAPR_RESIZE_HPT_DISABLED: 3204 return g_strdup("disabled"); 3205 case SPAPR_RESIZE_HPT_ENABLED: 3206 return g_strdup("enabled"); 3207 case SPAPR_RESIZE_HPT_REQUIRED: 3208 return g_strdup("required"); 3209 } 3210 g_assert_not_reached(); 3211 } 3212 3213 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3214 { 3215 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3216 3217 if (strcmp(value, "default") == 0) { 3218 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3219 } else if (strcmp(value, "disabled") == 0) { 3220 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3221 } else if (strcmp(value, "enabled") == 0) { 3222 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3223 } else if (strcmp(value, "required") == 0) { 3224 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3225 } else { 3226 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3227 } 3228 } 3229 3230 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3231 void *opaque, Error **errp) 3232 { 3233 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3234 } 3235 3236 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3237 void *opaque, Error **errp) 3238 { 3239 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3240 } 3241 3242 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3243 { 3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3245 3246 if (spapr->irq == &spapr_irq_xics_legacy) { 3247 return g_strdup("legacy"); 3248 } else if (spapr->irq == &spapr_irq_xics) { 3249 return g_strdup("xics"); 3250 } else if (spapr->irq == &spapr_irq_xive) { 3251 return g_strdup("xive"); 3252 } else if (spapr->irq == &spapr_irq_dual) { 3253 return g_strdup("dual"); 3254 } 3255 g_assert_not_reached(); 3256 } 3257 3258 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3259 { 3260 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3261 3262 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3263 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3264 return; 3265 } 3266 3267 /* The legacy IRQ backend can not be set */ 3268 if (strcmp(value, "xics") == 0) { 3269 spapr->irq = &spapr_irq_xics; 3270 } else if (strcmp(value, "xive") == 0) { 3271 spapr->irq = &spapr_irq_xive; 3272 } else if (strcmp(value, "dual") == 0) { 3273 spapr->irq = &spapr_irq_dual; 3274 } else { 3275 error_setg(errp, "Bad value for \"ic-mode\" property"); 3276 } 3277 } 3278 3279 static char *spapr_get_host_model(Object *obj, Error **errp) 3280 { 3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3282 3283 return g_strdup(spapr->host_model); 3284 } 3285 3286 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3287 { 3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3289 3290 g_free(spapr->host_model); 3291 spapr->host_model = g_strdup(value); 3292 } 3293 3294 static char *spapr_get_host_serial(Object *obj, Error **errp) 3295 { 3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3297 3298 return g_strdup(spapr->host_serial); 3299 } 3300 3301 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3302 { 3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3304 3305 g_free(spapr->host_serial); 3306 spapr->host_serial = g_strdup(value); 3307 } 3308 3309 static void spapr_instance_init(Object *obj) 3310 { 3311 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3312 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3313 3314 spapr->htab_fd = -1; 3315 spapr->use_hotplug_event_source = true; 3316 object_property_add_str(obj, "kvm-type", 3317 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3318 object_property_set_description(obj, "kvm-type", 3319 "Specifies the KVM virtualization mode (HV, PR)", 3320 NULL); 3321 object_property_add_bool(obj, "modern-hotplug-events", 3322 spapr_get_modern_hotplug_events, 3323 spapr_set_modern_hotplug_events, 3324 NULL); 3325 object_property_set_description(obj, "modern-hotplug-events", 3326 "Use dedicated hotplug event mechanism in" 3327 " place of standard EPOW events when possible" 3328 " (required for memory hot-unplug support)", 3329 NULL); 3330 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3331 "Maximum permitted CPU compatibility mode", 3332 &error_fatal); 3333 3334 object_property_add_str(obj, "resize-hpt", 3335 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3336 object_property_set_description(obj, "resize-hpt", 3337 "Resizing of the Hash Page Table (enabled, disabled, required)", 3338 NULL); 3339 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3340 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3341 object_property_set_description(obj, "vsmt", 3342 "Virtual SMT: KVM behaves as if this were" 3343 " the host's SMT mode", &error_abort); 3344 object_property_add_bool(obj, "vfio-no-msix-emulation", 3345 spapr_get_msix_emulation, NULL, NULL); 3346 3347 /* The machine class defines the default interrupt controller mode */ 3348 spapr->irq = smc->irq; 3349 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3350 spapr_set_ic_mode, NULL); 3351 object_property_set_description(obj, "ic-mode", 3352 "Specifies the interrupt controller mode (xics, xive, dual)", 3353 NULL); 3354 3355 object_property_add_str(obj, "host-model", 3356 spapr_get_host_model, spapr_set_host_model, 3357 &error_abort); 3358 object_property_set_description(obj, "host-model", 3359 "Host model to advertise in guest device tree", &error_abort); 3360 object_property_add_str(obj, "host-serial", 3361 spapr_get_host_serial, spapr_set_host_serial, 3362 &error_abort); 3363 object_property_set_description(obj, "host-serial", 3364 "Host serial number to advertise in guest device tree", &error_abort); 3365 } 3366 3367 static void spapr_machine_finalizefn(Object *obj) 3368 { 3369 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3370 3371 g_free(spapr->kvm_type); 3372 } 3373 3374 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3375 { 3376 cpu_synchronize_state(cs); 3377 ppc_cpu_do_system_reset(cs); 3378 } 3379 3380 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3381 { 3382 CPUState *cs; 3383 3384 CPU_FOREACH(cs) { 3385 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3386 } 3387 } 3388 3389 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3390 void *fdt, int *fdt_start_offset, Error **errp) 3391 { 3392 uint64_t addr; 3393 uint32_t node; 3394 3395 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3396 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3397 &error_abort); 3398 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3399 SPAPR_MEMORY_BLOCK_SIZE); 3400 return 0; 3401 } 3402 3403 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3404 bool dedicated_hp_event_source, Error **errp) 3405 { 3406 SpaprDrc *drc; 3407 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3408 int i; 3409 uint64_t addr = addr_start; 3410 bool hotplugged = spapr_drc_hotplugged(dev); 3411 Error *local_err = NULL; 3412 3413 for (i = 0; i < nr_lmbs; i++) { 3414 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3415 addr / SPAPR_MEMORY_BLOCK_SIZE); 3416 g_assert(drc); 3417 3418 spapr_drc_attach(drc, dev, &local_err); 3419 if (local_err) { 3420 while (addr > addr_start) { 3421 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3422 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3423 addr / SPAPR_MEMORY_BLOCK_SIZE); 3424 spapr_drc_detach(drc); 3425 } 3426 error_propagate(errp, local_err); 3427 return; 3428 } 3429 if (!hotplugged) { 3430 spapr_drc_reset(drc); 3431 } 3432 addr += SPAPR_MEMORY_BLOCK_SIZE; 3433 } 3434 /* send hotplug notification to the 3435 * guest only in case of hotplugged memory 3436 */ 3437 if (hotplugged) { 3438 if (dedicated_hp_event_source) { 3439 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3440 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3441 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3442 nr_lmbs, 3443 spapr_drc_index(drc)); 3444 } else { 3445 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3446 nr_lmbs); 3447 } 3448 } 3449 } 3450 3451 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3452 Error **errp) 3453 { 3454 Error *local_err = NULL; 3455 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3456 PCDIMMDevice *dimm = PC_DIMM(dev); 3457 uint64_t size, addr; 3458 3459 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3460 3461 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3462 if (local_err) { 3463 goto out; 3464 } 3465 3466 addr = object_property_get_uint(OBJECT(dimm), 3467 PC_DIMM_ADDR_PROP, &local_err); 3468 if (local_err) { 3469 goto out_unplug; 3470 } 3471 3472 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3473 &local_err); 3474 if (local_err) { 3475 goto out_unplug; 3476 } 3477 3478 return; 3479 3480 out_unplug: 3481 pc_dimm_unplug(dimm, MACHINE(ms)); 3482 out: 3483 error_propagate(errp, local_err); 3484 } 3485 3486 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3487 Error **errp) 3488 { 3489 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3490 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3491 PCDIMMDevice *dimm = PC_DIMM(dev); 3492 Error *local_err = NULL; 3493 uint64_t size; 3494 Object *memdev; 3495 hwaddr pagesize; 3496 3497 if (!smc->dr_lmb_enabled) { 3498 error_setg(errp, "Memory hotplug not supported for this machine"); 3499 return; 3500 } 3501 3502 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3503 if (local_err) { 3504 error_propagate(errp, local_err); 3505 return; 3506 } 3507 3508 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3509 error_setg(errp, "Hotplugged memory size must be a multiple of " 3510 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3511 return; 3512 } 3513 3514 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3515 &error_abort); 3516 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3517 spapr_check_pagesize(spapr, pagesize, &local_err); 3518 if (local_err) { 3519 error_propagate(errp, local_err); 3520 return; 3521 } 3522 3523 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3524 } 3525 3526 struct SpaprDimmState { 3527 PCDIMMDevice *dimm; 3528 uint32_t nr_lmbs; 3529 QTAILQ_ENTRY(SpaprDimmState) next; 3530 }; 3531 3532 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3533 PCDIMMDevice *dimm) 3534 { 3535 SpaprDimmState *dimm_state = NULL; 3536 3537 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3538 if (dimm_state->dimm == dimm) { 3539 break; 3540 } 3541 } 3542 return dimm_state; 3543 } 3544 3545 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3546 uint32_t nr_lmbs, 3547 PCDIMMDevice *dimm) 3548 { 3549 SpaprDimmState *ds = NULL; 3550 3551 /* 3552 * If this request is for a DIMM whose removal had failed earlier 3553 * (due to guest's refusal to remove the LMBs), we would have this 3554 * dimm already in the pending_dimm_unplugs list. In that 3555 * case don't add again. 3556 */ 3557 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3558 if (!ds) { 3559 ds = g_malloc0(sizeof(SpaprDimmState)); 3560 ds->nr_lmbs = nr_lmbs; 3561 ds->dimm = dimm; 3562 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3563 } 3564 return ds; 3565 } 3566 3567 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3568 SpaprDimmState *dimm_state) 3569 { 3570 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3571 g_free(dimm_state); 3572 } 3573 3574 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3575 PCDIMMDevice *dimm) 3576 { 3577 SpaprDrc *drc; 3578 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3579 &error_abort); 3580 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3581 uint32_t avail_lmbs = 0; 3582 uint64_t addr_start, addr; 3583 int i; 3584 3585 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3586 &error_abort); 3587 3588 addr = addr_start; 3589 for (i = 0; i < nr_lmbs; i++) { 3590 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3591 addr / SPAPR_MEMORY_BLOCK_SIZE); 3592 g_assert(drc); 3593 if (drc->dev) { 3594 avail_lmbs++; 3595 } 3596 addr += SPAPR_MEMORY_BLOCK_SIZE; 3597 } 3598 3599 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3600 } 3601 3602 /* Callback to be called during DRC release. */ 3603 void spapr_lmb_release(DeviceState *dev) 3604 { 3605 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3606 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3607 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3608 3609 /* This information will get lost if a migration occurs 3610 * during the unplug process. In this case recover it. */ 3611 if (ds == NULL) { 3612 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3613 g_assert(ds); 3614 /* The DRC being examined by the caller at least must be counted */ 3615 g_assert(ds->nr_lmbs); 3616 } 3617 3618 if (--ds->nr_lmbs) { 3619 return; 3620 } 3621 3622 /* 3623 * Now that all the LMBs have been removed by the guest, call the 3624 * unplug handler chain. This can never fail. 3625 */ 3626 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3627 object_unparent(OBJECT(dev)); 3628 } 3629 3630 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3631 { 3632 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3633 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3634 3635 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3636 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3637 spapr_pending_dimm_unplugs_remove(spapr, ds); 3638 } 3639 3640 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3641 DeviceState *dev, Error **errp) 3642 { 3643 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3644 Error *local_err = NULL; 3645 PCDIMMDevice *dimm = PC_DIMM(dev); 3646 uint32_t nr_lmbs; 3647 uint64_t size, addr_start, addr; 3648 int i; 3649 SpaprDrc *drc; 3650 3651 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3652 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3653 3654 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3655 &local_err); 3656 if (local_err) { 3657 goto out; 3658 } 3659 3660 /* 3661 * An existing pending dimm state for this DIMM means that there is an 3662 * unplug operation in progress, waiting for the spapr_lmb_release 3663 * callback to complete the job (BQL can't cover that far). In this case, 3664 * bail out to avoid detaching DRCs that were already released. 3665 */ 3666 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3667 error_setg(&local_err, 3668 "Memory unplug already in progress for device %s", 3669 dev->id); 3670 goto out; 3671 } 3672 3673 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3674 3675 addr = addr_start; 3676 for (i = 0; i < nr_lmbs; i++) { 3677 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3678 addr / SPAPR_MEMORY_BLOCK_SIZE); 3679 g_assert(drc); 3680 3681 spapr_drc_detach(drc); 3682 addr += SPAPR_MEMORY_BLOCK_SIZE; 3683 } 3684 3685 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3686 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3687 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3688 nr_lmbs, spapr_drc_index(drc)); 3689 out: 3690 error_propagate(errp, local_err); 3691 } 3692 3693 /* Callback to be called during DRC release. */ 3694 void spapr_core_release(DeviceState *dev) 3695 { 3696 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3697 3698 /* Call the unplug handler chain. This can never fail. */ 3699 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3700 object_unparent(OBJECT(dev)); 3701 } 3702 3703 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3704 { 3705 MachineState *ms = MACHINE(hotplug_dev); 3706 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3707 CPUCore *cc = CPU_CORE(dev); 3708 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3709 3710 if (smc->pre_2_10_has_unused_icps) { 3711 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3712 int i; 3713 3714 for (i = 0; i < cc->nr_threads; i++) { 3715 CPUState *cs = CPU(sc->threads[i]); 3716 3717 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3718 } 3719 } 3720 3721 assert(core_slot); 3722 core_slot->cpu = NULL; 3723 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3724 } 3725 3726 static 3727 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3728 Error **errp) 3729 { 3730 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3731 int index; 3732 SpaprDrc *drc; 3733 CPUCore *cc = CPU_CORE(dev); 3734 3735 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3736 error_setg(errp, "Unable to find CPU core with core-id: %d", 3737 cc->core_id); 3738 return; 3739 } 3740 if (index == 0) { 3741 error_setg(errp, "Boot CPU core may not be unplugged"); 3742 return; 3743 } 3744 3745 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3746 spapr_vcpu_id(spapr, cc->core_id)); 3747 g_assert(drc); 3748 3749 if (!spapr_drc_unplug_requested(drc)) { 3750 spapr_drc_detach(drc); 3751 spapr_hotplug_req_remove_by_index(drc); 3752 } 3753 } 3754 3755 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3756 void *fdt, int *fdt_start_offset, Error **errp) 3757 { 3758 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3759 CPUState *cs = CPU(core->threads[0]); 3760 PowerPCCPU *cpu = POWERPC_CPU(cs); 3761 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3762 int id = spapr_get_vcpu_id(cpu); 3763 char *nodename; 3764 int offset; 3765 3766 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3767 offset = fdt_add_subnode(fdt, 0, nodename); 3768 g_free(nodename); 3769 3770 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3771 3772 *fdt_start_offset = offset; 3773 return 0; 3774 } 3775 3776 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3777 Error **errp) 3778 { 3779 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3780 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3782 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3783 CPUCore *cc = CPU_CORE(dev); 3784 CPUState *cs; 3785 SpaprDrc *drc; 3786 Error *local_err = NULL; 3787 CPUArchId *core_slot; 3788 int index; 3789 bool hotplugged = spapr_drc_hotplugged(dev); 3790 int i; 3791 3792 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3793 if (!core_slot) { 3794 error_setg(errp, "Unable to find CPU core with core-id: %d", 3795 cc->core_id); 3796 return; 3797 } 3798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3799 spapr_vcpu_id(spapr, cc->core_id)); 3800 3801 g_assert(drc || !mc->has_hotpluggable_cpus); 3802 3803 if (drc) { 3804 spapr_drc_attach(drc, dev, &local_err); 3805 if (local_err) { 3806 error_propagate(errp, local_err); 3807 return; 3808 } 3809 3810 if (hotplugged) { 3811 /* 3812 * Send hotplug notification interrupt to the guest only 3813 * in case of hotplugged CPUs. 3814 */ 3815 spapr_hotplug_req_add_by_index(drc); 3816 } else { 3817 spapr_drc_reset(drc); 3818 } 3819 } 3820 3821 core_slot->cpu = OBJECT(dev); 3822 3823 if (smc->pre_2_10_has_unused_icps) { 3824 for (i = 0; i < cc->nr_threads; i++) { 3825 cs = CPU(core->threads[i]); 3826 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3827 } 3828 } 3829 3830 /* 3831 * Set compatibility mode to match the boot CPU, which was either set 3832 * by the machine reset code or by CAS. 3833 */ 3834 if (hotplugged) { 3835 for (i = 0; i < cc->nr_threads; i++) { 3836 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3837 &local_err); 3838 if (local_err) { 3839 error_propagate(errp, local_err); 3840 return; 3841 } 3842 } 3843 } 3844 } 3845 3846 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3847 Error **errp) 3848 { 3849 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3850 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3851 Error *local_err = NULL; 3852 CPUCore *cc = CPU_CORE(dev); 3853 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3854 const char *type = object_get_typename(OBJECT(dev)); 3855 CPUArchId *core_slot; 3856 int index; 3857 unsigned int smp_threads = machine->smp.threads; 3858 3859 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3860 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3861 goto out; 3862 } 3863 3864 if (strcmp(base_core_type, type)) { 3865 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3866 goto out; 3867 } 3868 3869 if (cc->core_id % smp_threads) { 3870 error_setg(&local_err, "invalid core id %d", cc->core_id); 3871 goto out; 3872 } 3873 3874 /* 3875 * In general we should have homogeneous threads-per-core, but old 3876 * (pre hotplug support) machine types allow the last core to have 3877 * reduced threads as a compatibility hack for when we allowed 3878 * total vcpus not a multiple of threads-per-core. 3879 */ 3880 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3881 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3882 cc->nr_threads, smp_threads); 3883 goto out; 3884 } 3885 3886 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3887 if (!core_slot) { 3888 error_setg(&local_err, "core id %d out of range", cc->core_id); 3889 goto out; 3890 } 3891 3892 if (core_slot->cpu) { 3893 error_setg(&local_err, "core %d already populated", cc->core_id); 3894 goto out; 3895 } 3896 3897 numa_cpu_pre_plug(core_slot, dev, &local_err); 3898 3899 out: 3900 error_propagate(errp, local_err); 3901 } 3902 3903 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3904 void *fdt, int *fdt_start_offset, Error **errp) 3905 { 3906 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3907 int intc_phandle; 3908 3909 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3910 if (intc_phandle <= 0) { 3911 return -1; 3912 } 3913 3914 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 3915 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3916 return -1; 3917 } 3918 3919 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3920 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3921 3922 return 0; 3923 } 3924 3925 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3926 Error **errp) 3927 { 3928 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3929 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3930 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3931 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3932 3933 if (dev->hotplugged && !smc->dr_phb_enabled) { 3934 error_setg(errp, "PHB hotplug not supported for this machine"); 3935 return; 3936 } 3937 3938 if (sphb->index == (uint32_t)-1) { 3939 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3940 return; 3941 } 3942 3943 /* 3944 * This will check that sphb->index doesn't exceed the maximum number of 3945 * PHBs for the current machine type. 3946 */ 3947 smc->phb_placement(spapr, sphb->index, 3948 &sphb->buid, &sphb->io_win_addr, 3949 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3950 windows_supported, sphb->dma_liobn, 3951 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3952 errp); 3953 } 3954 3955 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3956 Error **errp) 3957 { 3958 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3959 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3960 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3961 SpaprDrc *drc; 3962 bool hotplugged = spapr_drc_hotplugged(dev); 3963 Error *local_err = NULL; 3964 3965 if (!smc->dr_phb_enabled) { 3966 return; 3967 } 3968 3969 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3970 /* hotplug hooks should check it's enabled before getting this far */ 3971 assert(drc); 3972 3973 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3974 if (local_err) { 3975 error_propagate(errp, local_err); 3976 return; 3977 } 3978 3979 if (hotplugged) { 3980 spapr_hotplug_req_add_by_index(drc); 3981 } else { 3982 spapr_drc_reset(drc); 3983 } 3984 } 3985 3986 void spapr_phb_release(DeviceState *dev) 3987 { 3988 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3989 3990 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3991 object_unparent(OBJECT(dev)); 3992 } 3993 3994 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3995 { 3996 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3997 } 3998 3999 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4000 DeviceState *dev, Error **errp) 4001 { 4002 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4003 SpaprDrc *drc; 4004 4005 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4006 assert(drc); 4007 4008 if (!spapr_drc_unplug_requested(drc)) { 4009 spapr_drc_detach(drc); 4010 spapr_hotplug_req_remove_by_index(drc); 4011 } 4012 } 4013 4014 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4015 Error **errp) 4016 { 4017 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4018 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4019 4020 if (spapr->tpm_proxy != NULL) { 4021 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4022 return; 4023 } 4024 4025 spapr->tpm_proxy = tpm_proxy; 4026 } 4027 4028 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4029 { 4030 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4031 4032 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4033 object_unparent(OBJECT(dev)); 4034 spapr->tpm_proxy = NULL; 4035 } 4036 4037 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4038 DeviceState *dev, Error **errp) 4039 { 4040 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4041 spapr_memory_plug(hotplug_dev, dev, errp); 4042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4043 spapr_core_plug(hotplug_dev, dev, errp); 4044 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4045 spapr_phb_plug(hotplug_dev, dev, errp); 4046 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4047 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4048 } 4049 } 4050 4051 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4052 DeviceState *dev, Error **errp) 4053 { 4054 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4055 spapr_memory_unplug(hotplug_dev, dev); 4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4057 spapr_core_unplug(hotplug_dev, dev); 4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4059 spapr_phb_unplug(hotplug_dev, dev); 4060 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4061 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4062 } 4063 } 4064 4065 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4066 DeviceState *dev, Error **errp) 4067 { 4068 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4069 MachineClass *mc = MACHINE_GET_CLASS(sms); 4070 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4071 4072 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4073 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4074 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4075 } else { 4076 /* NOTE: this means there is a window after guest reset, prior to 4077 * CAS negotiation, where unplug requests will fail due to the 4078 * capability not being detected yet. This is a bit different than 4079 * the case with PCI unplug, where the events will be queued and 4080 * eventually handled by the guest after boot 4081 */ 4082 error_setg(errp, "Memory hot unplug not supported for this guest"); 4083 } 4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4085 if (!mc->has_hotpluggable_cpus) { 4086 error_setg(errp, "CPU hot unplug not supported on this machine"); 4087 return; 4088 } 4089 spapr_core_unplug_request(hotplug_dev, dev, errp); 4090 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4091 if (!smc->dr_phb_enabled) { 4092 error_setg(errp, "PHB hot unplug not supported on this machine"); 4093 return; 4094 } 4095 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4096 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4097 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4098 } 4099 } 4100 4101 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4102 DeviceState *dev, Error **errp) 4103 { 4104 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4105 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4106 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4107 spapr_core_pre_plug(hotplug_dev, dev, errp); 4108 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4109 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4110 } 4111 } 4112 4113 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4114 DeviceState *dev) 4115 { 4116 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4117 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4118 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4119 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4120 return HOTPLUG_HANDLER(machine); 4121 } 4122 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4123 PCIDevice *pcidev = PCI_DEVICE(dev); 4124 PCIBus *root = pci_device_root_bus(pcidev); 4125 SpaprPhbState *phb = 4126 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4127 TYPE_SPAPR_PCI_HOST_BRIDGE); 4128 4129 if (phb) { 4130 return HOTPLUG_HANDLER(phb); 4131 } 4132 } 4133 return NULL; 4134 } 4135 4136 static CpuInstanceProperties 4137 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4138 { 4139 CPUArchId *core_slot; 4140 MachineClass *mc = MACHINE_GET_CLASS(machine); 4141 4142 /* make sure possible_cpu are intialized */ 4143 mc->possible_cpu_arch_ids(machine); 4144 /* get CPU core slot containing thread that matches cpu_index */ 4145 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4146 assert(core_slot); 4147 return core_slot->props; 4148 } 4149 4150 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4151 { 4152 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4153 } 4154 4155 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4156 { 4157 int i; 4158 unsigned int smp_threads = machine->smp.threads; 4159 unsigned int smp_cpus = machine->smp.cpus; 4160 const char *core_type; 4161 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4162 MachineClass *mc = MACHINE_GET_CLASS(machine); 4163 4164 if (!mc->has_hotpluggable_cpus) { 4165 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4166 } 4167 if (machine->possible_cpus) { 4168 assert(machine->possible_cpus->len == spapr_max_cores); 4169 return machine->possible_cpus; 4170 } 4171 4172 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4173 if (!core_type) { 4174 error_report("Unable to find sPAPR CPU Core definition"); 4175 exit(1); 4176 } 4177 4178 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4179 sizeof(CPUArchId) * spapr_max_cores); 4180 machine->possible_cpus->len = spapr_max_cores; 4181 for (i = 0; i < machine->possible_cpus->len; i++) { 4182 int core_id = i * smp_threads; 4183 4184 machine->possible_cpus->cpus[i].type = core_type; 4185 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4186 machine->possible_cpus->cpus[i].arch_id = core_id; 4187 machine->possible_cpus->cpus[i].props.has_core_id = true; 4188 machine->possible_cpus->cpus[i].props.core_id = core_id; 4189 } 4190 return machine->possible_cpus; 4191 } 4192 4193 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4194 uint64_t *buid, hwaddr *pio, 4195 hwaddr *mmio32, hwaddr *mmio64, 4196 unsigned n_dma, uint32_t *liobns, 4197 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4198 { 4199 /* 4200 * New-style PHB window placement. 4201 * 4202 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4203 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4204 * windows. 4205 * 4206 * Some guest kernels can't work with MMIO windows above 1<<46 4207 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4208 * 4209 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4210 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4211 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4212 * 1TiB 64-bit MMIO windows for each PHB. 4213 */ 4214 const uint64_t base_buid = 0x800000020000000ULL; 4215 int i; 4216 4217 /* Sanity check natural alignments */ 4218 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4220 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4221 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4222 /* Sanity check bounds */ 4223 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4224 SPAPR_PCI_MEM32_WIN_SIZE); 4225 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4226 SPAPR_PCI_MEM64_WIN_SIZE); 4227 4228 if (index >= SPAPR_MAX_PHBS) { 4229 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4230 SPAPR_MAX_PHBS - 1); 4231 return; 4232 } 4233 4234 *buid = base_buid + index; 4235 for (i = 0; i < n_dma; ++i) { 4236 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4237 } 4238 4239 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4240 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4241 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4242 4243 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4244 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4245 } 4246 4247 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4248 { 4249 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4250 4251 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4252 } 4253 4254 static void spapr_ics_resend(XICSFabric *dev) 4255 { 4256 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4257 4258 ics_resend(spapr->ics); 4259 } 4260 4261 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4262 { 4263 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4264 4265 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4266 } 4267 4268 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4269 Monitor *mon) 4270 { 4271 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4272 4273 spapr_irq_print_info(spapr, mon); 4274 monitor_printf(mon, "irqchip: %s\n", 4275 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4276 } 4277 4278 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4279 { 4280 return cpu->vcpu_id; 4281 } 4282 4283 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4284 { 4285 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4286 MachineState *ms = MACHINE(spapr); 4287 int vcpu_id; 4288 4289 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4290 4291 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4292 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4293 error_append_hint(errp, "Adjust the number of cpus to %d " 4294 "or try to raise the number of threads per core\n", 4295 vcpu_id * ms->smp.threads / spapr->vsmt); 4296 return; 4297 } 4298 4299 cpu->vcpu_id = vcpu_id; 4300 } 4301 4302 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4303 { 4304 CPUState *cs; 4305 4306 CPU_FOREACH(cs) { 4307 PowerPCCPU *cpu = POWERPC_CPU(cs); 4308 4309 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4310 return cpu; 4311 } 4312 } 4313 4314 return NULL; 4315 } 4316 4317 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4318 { 4319 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4320 4321 /* These are only called by TCG, KVM maintains dispatch state */ 4322 4323 spapr_cpu->prod = false; 4324 if (spapr_cpu->vpa_addr) { 4325 CPUState *cs = CPU(cpu); 4326 uint32_t dispatch; 4327 4328 dispatch = ldl_be_phys(cs->as, 4329 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4330 dispatch++; 4331 if ((dispatch & 1) != 0) { 4332 qemu_log_mask(LOG_GUEST_ERROR, 4333 "VPA: incorrect dispatch counter value for " 4334 "dispatched partition %u, correcting.\n", dispatch); 4335 dispatch++; 4336 } 4337 stl_be_phys(cs->as, 4338 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4339 } 4340 } 4341 4342 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4343 { 4344 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4345 4346 if (spapr_cpu->vpa_addr) { 4347 CPUState *cs = CPU(cpu); 4348 uint32_t dispatch; 4349 4350 dispatch = ldl_be_phys(cs->as, 4351 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4352 dispatch++; 4353 if ((dispatch & 1) != 1) { 4354 qemu_log_mask(LOG_GUEST_ERROR, 4355 "VPA: incorrect dispatch counter value for " 4356 "preempted partition %u, correcting.\n", dispatch); 4357 dispatch++; 4358 } 4359 stl_be_phys(cs->as, 4360 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4361 } 4362 } 4363 4364 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4365 { 4366 MachineClass *mc = MACHINE_CLASS(oc); 4367 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4368 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4369 NMIClass *nc = NMI_CLASS(oc); 4370 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4371 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4372 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4373 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4374 4375 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4376 mc->ignore_boot_device_suffixes = true; 4377 4378 /* 4379 * We set up the default / latest behaviour here. The class_init 4380 * functions for the specific versioned machine types can override 4381 * these details for backwards compatibility 4382 */ 4383 mc->init = spapr_machine_init; 4384 mc->reset = spapr_machine_reset; 4385 mc->block_default_type = IF_SCSI; 4386 mc->max_cpus = 1024; 4387 mc->no_parallel = 1; 4388 mc->default_boot_order = ""; 4389 mc->default_ram_size = 512 * MiB; 4390 mc->default_display = "std"; 4391 mc->kvm_type = spapr_kvm_type; 4392 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4393 mc->pci_allow_0_address = true; 4394 assert(!mc->get_hotplug_handler); 4395 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4396 hc->pre_plug = spapr_machine_device_pre_plug; 4397 hc->plug = spapr_machine_device_plug; 4398 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4399 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4400 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4401 hc->unplug_request = spapr_machine_device_unplug_request; 4402 hc->unplug = spapr_machine_device_unplug; 4403 4404 smc->dr_lmb_enabled = true; 4405 smc->update_dt_enabled = true; 4406 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4407 mc->has_hotpluggable_cpus = true; 4408 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4409 fwc->get_dev_path = spapr_get_fw_dev_path; 4410 nc->nmi_monitor_handler = spapr_nmi; 4411 smc->phb_placement = spapr_phb_placement; 4412 vhc->hypercall = emulate_spapr_hypercall; 4413 vhc->hpt_mask = spapr_hpt_mask; 4414 vhc->map_hptes = spapr_map_hptes; 4415 vhc->unmap_hptes = spapr_unmap_hptes; 4416 vhc->hpte_set_c = spapr_hpte_set_c; 4417 vhc->hpte_set_r = spapr_hpte_set_r; 4418 vhc->get_pate = spapr_get_pate; 4419 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4420 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4421 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4422 xic->ics_get = spapr_ics_get; 4423 xic->ics_resend = spapr_ics_resend; 4424 xic->icp_get = spapr_icp_get; 4425 ispc->print_info = spapr_pic_print_info; 4426 /* Force NUMA node memory size to be a multiple of 4427 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4428 * in which LMBs are represented and hot-added 4429 */ 4430 mc->numa_mem_align_shift = 28; 4431 mc->numa_mem_supported = true; 4432 mc->auto_enable_numa = true; 4433 4434 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4435 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4436 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4437 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4438 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4439 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4440 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4441 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4442 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4443 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4444 spapr_caps_add_properties(smc, &error_abort); 4445 smc->irq = &spapr_irq_dual; 4446 smc->dr_phb_enabled = true; 4447 smc->linux_pci_probe = true; 4448 smc->smp_threads_vsmt = true; 4449 smc->nr_xirqs = SPAPR_NR_XIRQS; 4450 } 4451 4452 static const TypeInfo spapr_machine_info = { 4453 .name = TYPE_SPAPR_MACHINE, 4454 .parent = TYPE_MACHINE, 4455 .abstract = true, 4456 .instance_size = sizeof(SpaprMachineState), 4457 .instance_init = spapr_instance_init, 4458 .instance_finalize = spapr_machine_finalizefn, 4459 .class_size = sizeof(SpaprMachineClass), 4460 .class_init = spapr_machine_class_init, 4461 .interfaces = (InterfaceInfo[]) { 4462 { TYPE_FW_PATH_PROVIDER }, 4463 { TYPE_NMI }, 4464 { TYPE_HOTPLUG_HANDLER }, 4465 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4466 { TYPE_XICS_FABRIC }, 4467 { TYPE_INTERRUPT_STATS_PROVIDER }, 4468 { } 4469 }, 4470 }; 4471 4472 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4473 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4474 void *data) \ 4475 { \ 4476 MachineClass *mc = MACHINE_CLASS(oc); \ 4477 spapr_machine_##suffix##_class_options(mc); \ 4478 if (latest) { \ 4479 mc->alias = "pseries"; \ 4480 mc->is_default = 1; \ 4481 } \ 4482 } \ 4483 static const TypeInfo spapr_machine_##suffix##_info = { \ 4484 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4485 .parent = TYPE_SPAPR_MACHINE, \ 4486 .class_init = spapr_machine_##suffix##_class_init, \ 4487 }; \ 4488 static void spapr_machine_register_##suffix(void) \ 4489 { \ 4490 type_register(&spapr_machine_##suffix##_info); \ 4491 } \ 4492 type_init(spapr_machine_register_##suffix) 4493 4494 /* 4495 * pseries-4.2 4496 */ 4497 static void spapr_machine_4_2_class_options(MachineClass *mc) 4498 { 4499 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4500 } 4501 4502 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4503 4504 /* 4505 * pseries-4.1 4506 */ 4507 static void spapr_machine_4_1_class_options(MachineClass *mc) 4508 { 4509 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4510 static GlobalProperty compat[] = { 4511 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4512 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4513 }; 4514 4515 spapr_machine_4_2_class_options(mc); 4516 smc->linux_pci_probe = false; 4517 smc->smp_threads_vsmt = false; 4518 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4519 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4520 } 4521 4522 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4523 4524 /* 4525 * pseries-4.0 4526 */ 4527 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4528 uint64_t *buid, hwaddr *pio, 4529 hwaddr *mmio32, hwaddr *mmio64, 4530 unsigned n_dma, uint32_t *liobns, 4531 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4532 { 4533 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4534 nv2gpa, nv2atsd, errp); 4535 *nv2gpa = 0; 4536 *nv2atsd = 0; 4537 } 4538 4539 static void spapr_machine_4_0_class_options(MachineClass *mc) 4540 { 4541 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4542 4543 spapr_machine_4_1_class_options(mc); 4544 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4545 smc->phb_placement = phb_placement_4_0; 4546 smc->irq = &spapr_irq_xics; 4547 smc->pre_4_1_migration = true; 4548 } 4549 4550 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4551 4552 /* 4553 * pseries-3.1 4554 */ 4555 static void spapr_machine_3_1_class_options(MachineClass *mc) 4556 { 4557 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4558 4559 spapr_machine_4_0_class_options(mc); 4560 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4561 4562 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4563 smc->update_dt_enabled = false; 4564 smc->dr_phb_enabled = false; 4565 smc->broken_host_serial_model = true; 4566 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4567 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4568 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4569 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4570 } 4571 4572 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4573 4574 /* 4575 * pseries-3.0 4576 */ 4577 4578 static void spapr_machine_3_0_class_options(MachineClass *mc) 4579 { 4580 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4581 4582 spapr_machine_3_1_class_options(mc); 4583 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4584 4585 smc->legacy_irq_allocation = true; 4586 smc->nr_xirqs = 0x400; 4587 smc->irq = &spapr_irq_xics_legacy; 4588 } 4589 4590 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4591 4592 /* 4593 * pseries-2.12 4594 */ 4595 static void spapr_machine_2_12_class_options(MachineClass *mc) 4596 { 4597 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4598 static GlobalProperty compat[] = { 4599 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4600 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4601 }; 4602 4603 spapr_machine_3_0_class_options(mc); 4604 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4605 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4606 4607 /* We depend on kvm_enabled() to choose a default value for the 4608 * hpt-max-page-size capability. Of course we can't do it here 4609 * because this is too early and the HW accelerator isn't initialzed 4610 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4611 */ 4612 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4613 } 4614 4615 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4616 4617 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4618 { 4619 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4620 4621 spapr_machine_2_12_class_options(mc); 4622 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4623 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4624 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4625 } 4626 4627 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4628 4629 /* 4630 * pseries-2.11 4631 */ 4632 4633 static void spapr_machine_2_11_class_options(MachineClass *mc) 4634 { 4635 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4636 4637 spapr_machine_2_12_class_options(mc); 4638 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4639 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4640 } 4641 4642 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4643 4644 /* 4645 * pseries-2.10 4646 */ 4647 4648 static void spapr_machine_2_10_class_options(MachineClass *mc) 4649 { 4650 spapr_machine_2_11_class_options(mc); 4651 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4652 } 4653 4654 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4655 4656 /* 4657 * pseries-2.9 4658 */ 4659 4660 static void spapr_machine_2_9_class_options(MachineClass *mc) 4661 { 4662 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4663 static GlobalProperty compat[] = { 4664 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4665 }; 4666 4667 spapr_machine_2_10_class_options(mc); 4668 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4669 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4670 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4671 smc->pre_2_10_has_unused_icps = true; 4672 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4673 } 4674 4675 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4676 4677 /* 4678 * pseries-2.8 4679 */ 4680 4681 static void spapr_machine_2_8_class_options(MachineClass *mc) 4682 { 4683 static GlobalProperty compat[] = { 4684 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4685 }; 4686 4687 spapr_machine_2_9_class_options(mc); 4688 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4689 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4690 mc->numa_mem_align_shift = 23; 4691 } 4692 4693 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4694 4695 /* 4696 * pseries-2.7 4697 */ 4698 4699 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4700 uint64_t *buid, hwaddr *pio, 4701 hwaddr *mmio32, hwaddr *mmio64, 4702 unsigned n_dma, uint32_t *liobns, 4703 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4704 { 4705 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4706 const uint64_t base_buid = 0x800000020000000ULL; 4707 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4708 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4709 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4710 const uint32_t max_index = 255; 4711 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4712 4713 uint64_t ram_top = MACHINE(spapr)->ram_size; 4714 hwaddr phb0_base, phb_base; 4715 int i; 4716 4717 /* Do we have device memory? */ 4718 if (MACHINE(spapr)->maxram_size > ram_top) { 4719 /* Can't just use maxram_size, because there may be an 4720 * alignment gap between normal and device memory regions 4721 */ 4722 ram_top = MACHINE(spapr)->device_memory->base + 4723 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4724 } 4725 4726 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4727 4728 if (index > max_index) { 4729 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4730 max_index); 4731 return; 4732 } 4733 4734 *buid = base_buid + index; 4735 for (i = 0; i < n_dma; ++i) { 4736 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4737 } 4738 4739 phb_base = phb0_base + index * phb_spacing; 4740 *pio = phb_base + pio_offset; 4741 *mmio32 = phb_base + mmio_offset; 4742 /* 4743 * We don't set the 64-bit MMIO window, relying on the PHB's 4744 * fallback behaviour of automatically splitting a large "32-bit" 4745 * window into contiguous 32-bit and 64-bit windows 4746 */ 4747 4748 *nv2gpa = 0; 4749 *nv2atsd = 0; 4750 } 4751 4752 static void spapr_machine_2_7_class_options(MachineClass *mc) 4753 { 4754 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4755 static GlobalProperty compat[] = { 4756 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4757 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4758 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4759 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4760 }; 4761 4762 spapr_machine_2_8_class_options(mc); 4763 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4764 mc->default_machine_opts = "modern-hotplug-events=off"; 4765 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4766 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4767 smc->phb_placement = phb_placement_2_7; 4768 } 4769 4770 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4771 4772 /* 4773 * pseries-2.6 4774 */ 4775 4776 static void spapr_machine_2_6_class_options(MachineClass *mc) 4777 { 4778 static GlobalProperty compat[] = { 4779 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4780 }; 4781 4782 spapr_machine_2_7_class_options(mc); 4783 mc->has_hotpluggable_cpus = false; 4784 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4785 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4786 } 4787 4788 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4789 4790 /* 4791 * pseries-2.5 4792 */ 4793 4794 static void spapr_machine_2_5_class_options(MachineClass *mc) 4795 { 4796 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4797 static GlobalProperty compat[] = { 4798 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4799 }; 4800 4801 spapr_machine_2_6_class_options(mc); 4802 smc->use_ohci_by_default = true; 4803 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4804 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4805 } 4806 4807 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4808 4809 /* 4810 * pseries-2.4 4811 */ 4812 4813 static void spapr_machine_2_4_class_options(MachineClass *mc) 4814 { 4815 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4816 4817 spapr_machine_2_5_class_options(mc); 4818 smc->dr_lmb_enabled = false; 4819 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4820 } 4821 4822 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4823 4824 /* 4825 * pseries-2.3 4826 */ 4827 4828 static void spapr_machine_2_3_class_options(MachineClass *mc) 4829 { 4830 static GlobalProperty compat[] = { 4831 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4832 }; 4833 spapr_machine_2_4_class_options(mc); 4834 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4835 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4836 } 4837 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4838 4839 /* 4840 * pseries-2.2 4841 */ 4842 4843 static void spapr_machine_2_2_class_options(MachineClass *mc) 4844 { 4845 static GlobalProperty compat[] = { 4846 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4847 }; 4848 4849 spapr_machine_2_3_class_options(mc); 4850 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4851 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4852 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4853 } 4854 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4855 4856 /* 4857 * pseries-2.1 4858 */ 4859 4860 static void spapr_machine_2_1_class_options(MachineClass *mc) 4861 { 4862 spapr_machine_2_2_class_options(mc); 4863 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4864 } 4865 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4866 4867 static void spapr_machine_register_types(void) 4868 { 4869 type_register_static(&spapr_machine_info); 4870 } 4871 4872 type_init(spapr_machine_register_types) 4873