xref: /openbmc/qemu/hw/ppc/spapr.c (revision f1aa45fffeeb084a9ad8bd08e83c5ec6af223884)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54 
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58 
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70 
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 
86 #include "monitor/monitor.h"
87 
88 #include <libfdt.h>
89 
90 /* SLOF memory layout:
91  *
92  * SLOF raw image loaded at 0, copies its romfs right below the flat
93  * device-tree, then position SLOF itself 31M below that
94  *
95  * So we set FW_OVERHEAD to 40MB which should account for all of that
96  * and more
97  *
98  * We load our kernel at 4M, leaving space for SLOF initial image
99  */
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            (128 * MiB)
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207     int index = spapr_get_vcpu_id(cpu);
208     uint32_t associativity[] = {cpu_to_be32(0x5),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(0x0),
212                                 cpu_to_be32(cpu->node_id),
213                                 cpu_to_be32(index)};
214 
215     /* Advertise NUMA via ibm,associativity */
216     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217                           sizeof(associativity));
218 }
219 
220 static void spapr_dt_pa_features(SpaprMachineState *spapr,
221                                  PowerPCCPU *cpu,
222                                  void *fdt, int offset)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300     if (machine->numa_state->num_nodes) {
301         int i;
302         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303             if (machine->numa_state->nodes[i].node_mem) {
304                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305                            machine->ram_size);
306             }
307         }
308     }
309     return machine->ram_size;
310 }
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
318                                 hwaddr start, hwaddr size)
319 {
320     char mem_name[32];
321     uint64_t mem_reg_property[2];
322     int off;
323 
324     mem_reg_property[0] = cpu_to_be64(start);
325     mem_reg_property[1] = cpu_to_be64(size);
326 
327     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
328     off = fdt_add_subnode(fdt, 0, mem_name);
329     _FDT(off);
330     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
331     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
332                       sizeof(mem_reg_property))));
333     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
334     return off;
335 }
336 
337 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
338 {
339     MemoryDeviceInfoList *info;
340 
341     for (info = list; info; info = info->next) {
342         MemoryDeviceInfo *value = info->value;
343 
344         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
345             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
346 
347             if (addr >= pcdimm_info->addr &&
348                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
349                 return pcdimm_info->node;
350             }
351         }
352     }
353 
354     return -1;
355 }
356 
357 struct sPAPRDrconfCellV2 {
358      uint32_t seq_lmbs;
359      uint64_t base_addr;
360      uint32_t drc_index;
361      uint32_t aa_index;
362      uint32_t flags;
363 } QEMU_PACKED;
364 
365 typedef struct DrconfCellQueue {
366     struct sPAPRDrconfCellV2 cell;
367     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
368 } DrconfCellQueue;
369 
370 static DrconfCellQueue *
371 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
372                       uint32_t drc_index, uint32_t aa_index,
373                       uint32_t flags)
374 {
375     DrconfCellQueue *elem;
376 
377     elem = g_malloc0(sizeof(*elem));
378     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
379     elem->cell.base_addr = cpu_to_be64(base_addr);
380     elem->cell.drc_index = cpu_to_be32(drc_index);
381     elem->cell.aa_index = cpu_to_be32(aa_index);
382     elem->cell.flags = cpu_to_be32(flags);
383 
384     return elem;
385 }
386 
387 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
388                                       int offset, MemoryDeviceInfoList *dimms)
389 {
390     MachineState *machine = MACHINE(spapr);
391     uint8_t *int_buf, *cur_index;
392     int ret;
393     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
394     uint64_t addr, cur_addr, size;
395     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
396     uint64_t mem_end = machine->device_memory->base +
397                        memory_region_size(&machine->device_memory->mr);
398     uint32_t node, buf_len, nr_entries = 0;
399     SpaprDrc *drc;
400     DrconfCellQueue *elem, *next;
401     MemoryDeviceInfoList *info;
402     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
403         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
404 
405     /* Entry to cover RAM and the gap area */
406     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
407                                  SPAPR_LMB_FLAGS_RESERVED |
408                                  SPAPR_LMB_FLAGS_DRC_INVALID);
409     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
410     nr_entries++;
411 
412     cur_addr = machine->device_memory->base;
413     for (info = dimms; info; info = info->next) {
414         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
415 
416         addr = di->addr;
417         size = di->size;
418         node = di->node;
419 
420         /*
421          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
422          * area is marked hotpluggable in the next iteration for the bigger
423          * chunk including the NVDIMM occupied area.
424          */
425         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
426             continue;
427 
428         /* Entry for hot-pluggable area */
429         if (cur_addr < addr) {
430             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
431             g_assert(drc);
432             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
433                                          cur_addr, spapr_drc_index(drc), -1, 0);
434             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
435             nr_entries++;
436         }
437 
438         /* Entry for DIMM */
439         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
440         g_assert(drc);
441         elem = spapr_get_drconf_cell(size / lmb_size, addr,
442                                      spapr_drc_index(drc), node,
443                                      (SPAPR_LMB_FLAGS_ASSIGNED |
444                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
445         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
446         nr_entries++;
447         cur_addr = addr + size;
448     }
449 
450     /* Entry for remaining hotpluggable area */
451     if (cur_addr < mem_end) {
452         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
453         g_assert(drc);
454         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
455                                      cur_addr, spapr_drc_index(drc), -1, 0);
456         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
457         nr_entries++;
458     }
459 
460     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
461     int_buf = cur_index = g_malloc0(buf_len);
462     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
463     cur_index += sizeof(nr_entries);
464 
465     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
466         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
467         cur_index += sizeof(elem->cell);
468         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
469         g_free(elem);
470     }
471 
472     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
473     g_free(int_buf);
474     if (ret < 0) {
475         return -1;
476     }
477     return 0;
478 }
479 
480 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
481                                    int offset, MemoryDeviceInfoList *dimms)
482 {
483     MachineState *machine = MACHINE(spapr);
484     int i, ret;
485     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
486     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
487     uint32_t nr_lmbs = (machine->device_memory->base +
488                        memory_region_size(&machine->device_memory->mr)) /
489                        lmb_size;
490     uint32_t *int_buf, *cur_index, buf_len;
491 
492     /*
493      * Allocate enough buffer size to fit in ibm,dynamic-memory
494      */
495     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
496     cur_index = int_buf = g_malloc0(buf_len);
497     int_buf[0] = cpu_to_be32(nr_lmbs);
498     cur_index++;
499     for (i = 0; i < nr_lmbs; i++) {
500         uint64_t addr = i * lmb_size;
501         uint32_t *dynamic_memory = cur_index;
502 
503         if (i >= device_lmb_start) {
504             SpaprDrc *drc;
505 
506             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
507             g_assert(drc);
508 
509             dynamic_memory[0] = cpu_to_be32(addr >> 32);
510             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
511             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
512             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
513             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
514             if (memory_region_present(get_system_memory(), addr)) {
515                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
516             } else {
517                 dynamic_memory[5] = cpu_to_be32(0);
518             }
519         } else {
520             /*
521              * LMB information for RMA, boot time RAM and gap b/n RAM and
522              * device memory region -- all these are marked as reserved
523              * and as having no valid DRC.
524              */
525             dynamic_memory[0] = cpu_to_be32(addr >> 32);
526             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
527             dynamic_memory[2] = cpu_to_be32(0);
528             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
529             dynamic_memory[4] = cpu_to_be32(-1);
530             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
531                                             SPAPR_LMB_FLAGS_DRC_INVALID);
532         }
533 
534         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
535     }
536     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
537     g_free(int_buf);
538     if (ret < 0) {
539         return -1;
540     }
541     return 0;
542 }
543 
544 /*
545  * Adds ibm,dynamic-reconfiguration-memory node.
546  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
547  * of this device tree node.
548  */
549 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
550                                                    void *fdt)
551 {
552     MachineState *machine = MACHINE(spapr);
553     int nb_numa_nodes = machine->numa_state->num_nodes;
554     int ret, i, offset;
555     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
556     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
557                                 cpu_to_be32(lmb_size & 0xffffffff)};
558     uint32_t *int_buf, *cur_index, buf_len;
559     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
560     MemoryDeviceInfoList *dimms = NULL;
561 
562     /*
563      * Don't create the node if there is no device memory
564      */
565     if (machine->ram_size == machine->maxram_size) {
566         return 0;
567     }
568 
569     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
570 
571     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
572                     sizeof(prop_lmb_size));
573     if (ret < 0) {
574         return ret;
575     }
576 
577     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
578     if (ret < 0) {
579         return ret;
580     }
581 
582     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
583     if (ret < 0) {
584         return ret;
585     }
586 
587     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
588     dimms = qmp_memory_device_list();
589     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
590         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
591     } else {
592         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
593     }
594     qapi_free_MemoryDeviceInfoList(dimms);
595 
596     if (ret < 0) {
597         return ret;
598     }
599 
600     /* ibm,associativity-lookup-arrays */
601     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
602     cur_index = int_buf = g_malloc0(buf_len);
603     int_buf[0] = cpu_to_be32(nr_nodes);
604     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
605     cur_index += 2;
606     for (i = 0; i < nr_nodes; i++) {
607         uint32_t associativity[] = {
608             cpu_to_be32(0x0),
609             cpu_to_be32(0x0),
610             cpu_to_be32(0x0),
611             cpu_to_be32(i)
612         };
613         memcpy(cur_index, associativity, sizeof(associativity));
614         cur_index += 4;
615     }
616     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
617             (cur_index - int_buf) * sizeof(uint32_t));
618     g_free(int_buf);
619 
620     return ret;
621 }
622 
623 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
624 {
625     MachineState *machine = MACHINE(spapr);
626     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
627     hwaddr mem_start, node_size;
628     int i, nb_nodes = machine->numa_state->num_nodes;
629     NodeInfo *nodes = machine->numa_state->nodes;
630 
631     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
632         if (!nodes[i].node_mem) {
633             continue;
634         }
635         if (mem_start >= machine->ram_size) {
636             node_size = 0;
637         } else {
638             node_size = nodes[i].node_mem;
639             if (node_size > machine->ram_size - mem_start) {
640                 node_size = machine->ram_size - mem_start;
641             }
642         }
643         if (!mem_start) {
644             /* spapr_machine_init() checks for rma_size <= node0_size
645              * already */
646             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
647             mem_start += spapr->rma_size;
648             node_size -= spapr->rma_size;
649         }
650         for ( ; node_size; ) {
651             hwaddr sizetmp = pow2floor(node_size);
652 
653             /* mem_start != 0 here */
654             if (ctzl(mem_start) < ctzl(sizetmp)) {
655                 sizetmp = 1ULL << ctzl(mem_start);
656             }
657 
658             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
659             node_size -= sizetmp;
660             mem_start += sizetmp;
661         }
662     }
663 
664     /* Generate ibm,dynamic-reconfiguration-memory node if required */
665     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
666         int ret;
667 
668         g_assert(smc->dr_lmb_enabled);
669         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
670         if (ret) {
671             return ret;
672         }
673     }
674 
675     return 0;
676 }
677 
678 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
679                          SpaprMachineState *spapr)
680 {
681     MachineState *ms = MACHINE(spapr);
682     PowerPCCPU *cpu = POWERPC_CPU(cs);
683     CPUPPCState *env = &cpu->env;
684     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
685     int index = spapr_get_vcpu_id(cpu);
686     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
687                        0xffffffff, 0xffffffff};
688     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
689         : SPAPR_TIMEBASE_FREQ;
690     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
691     uint32_t page_sizes_prop[64];
692     size_t page_sizes_prop_size;
693     unsigned int smp_threads = ms->smp.threads;
694     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
695     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
696     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
697     SpaprDrc *drc;
698     int drc_index;
699     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
700     int i;
701 
702     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
703     if (drc) {
704         drc_index = spapr_drc_index(drc);
705         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
706     }
707 
708     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
709     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
710 
711     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
712     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
713                            env->dcache_line_size)));
714     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
715                            env->dcache_line_size)));
716     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
717                            env->icache_line_size)));
718     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
719                            env->icache_line_size)));
720 
721     if (pcc->l1_dcache_size) {
722         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
723                                pcc->l1_dcache_size)));
724     } else {
725         warn_report("Unknown L1 dcache size for cpu");
726     }
727     if (pcc->l1_icache_size) {
728         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
729                                pcc->l1_icache_size)));
730     } else {
731         warn_report("Unknown L1 icache size for cpu");
732     }
733 
734     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
735     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
736     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
737     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
738     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
739     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
740 
741     if (env->spr_cb[SPR_PURR].oea_read) {
742         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
743     }
744     if (env->spr_cb[SPR_SPURR].oea_read) {
745         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
746     }
747 
748     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
749         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
750                           segs, sizeof(segs))));
751     }
752 
753     /* Advertise VSX (vector extensions) if available
754      *   1               == VMX / Altivec available
755      *   2               == VSX available
756      *
757      * Only CPUs for which we create core types in spapr_cpu_core.c
758      * are possible, and all of those have VMX */
759     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
760         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
761     } else {
762         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
763     }
764 
765     /* Advertise DFP (Decimal Floating Point) if available
766      *   0 / no property == no DFP
767      *   1               == DFP available */
768     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
769         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
770     }
771 
772     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
773                                                       sizeof(page_sizes_prop));
774     if (page_sizes_prop_size) {
775         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
776                           page_sizes_prop, page_sizes_prop_size)));
777     }
778 
779     spapr_dt_pa_features(spapr, cpu, fdt, offset);
780 
781     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
782                            cs->cpu_index / vcpus_per_socket)));
783 
784     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
785                       pft_size_prop, sizeof(pft_size_prop))));
786 
787     if (ms->numa_state->num_nodes > 1) {
788         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
789     }
790 
791     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
792 
793     if (pcc->radix_page_info) {
794         for (i = 0; i < pcc->radix_page_info->count; i++) {
795             radix_AP_encodings[i] =
796                 cpu_to_be32(pcc->radix_page_info->entries[i]);
797         }
798         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
799                           radix_AP_encodings,
800                           pcc->radix_page_info->count *
801                           sizeof(radix_AP_encodings[0]))));
802     }
803 
804     /*
805      * We set this property to let the guest know that it can use the large
806      * decrementer and its width in bits.
807      */
808     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
809         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
810                               pcc->lrg_decr_bits)));
811 }
812 
813 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
814 {
815     CPUState **rev;
816     CPUState *cs;
817     int n_cpus;
818     int cpus_offset;
819     char *nodename;
820     int i;
821 
822     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
823     _FDT(cpus_offset);
824     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
825     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
826 
827     /*
828      * We walk the CPUs in reverse order to ensure that CPU DT nodes
829      * created by fdt_add_subnode() end up in the right order in FDT
830      * for the guest kernel the enumerate the CPUs correctly.
831      *
832      * The CPU list cannot be traversed in reverse order, so we need
833      * to do extra work.
834      */
835     n_cpus = 0;
836     rev = NULL;
837     CPU_FOREACH(cs) {
838         rev = g_renew(CPUState *, rev, n_cpus + 1);
839         rev[n_cpus++] = cs;
840     }
841 
842     for (i = n_cpus - 1; i >= 0; i--) {
843         CPUState *cs = rev[i];
844         PowerPCCPU *cpu = POWERPC_CPU(cs);
845         int index = spapr_get_vcpu_id(cpu);
846         DeviceClass *dc = DEVICE_GET_CLASS(cs);
847         int offset;
848 
849         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
850             continue;
851         }
852 
853         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
854         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
855         g_free(nodename);
856         _FDT(offset);
857         spapr_dt_cpu(cs, fdt, offset, spapr);
858     }
859 
860     g_free(rev);
861 }
862 
863 static int spapr_dt_rng(void *fdt)
864 {
865     int node;
866     int ret;
867 
868     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
869     if (node <= 0) {
870         return -1;
871     }
872     ret = fdt_setprop_string(fdt, node, "device_type",
873                              "ibm,platform-facilities");
874     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
875     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
876 
877     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
878     if (node <= 0) {
879         return -1;
880     }
881     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
882 
883     return ret ? -1 : 0;
884 }
885 
886 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
887 {
888     MachineState *ms = MACHINE(spapr);
889     int rtas;
890     GString *hypertas = g_string_sized_new(256);
891     GString *qemu_hypertas = g_string_sized_new(256);
892     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
893         memory_region_size(&MACHINE(spapr)->device_memory->mr);
894     uint32_t lrdr_capacity[] = {
895         cpu_to_be32(max_device_addr >> 32),
896         cpu_to_be32(max_device_addr & 0xffffffff),
897         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
898         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
899         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
900     };
901 
902     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
903 
904     /* hypertas */
905     add_str(hypertas, "hcall-pft");
906     add_str(hypertas, "hcall-term");
907     add_str(hypertas, "hcall-dabr");
908     add_str(hypertas, "hcall-interrupt");
909     add_str(hypertas, "hcall-tce");
910     add_str(hypertas, "hcall-vio");
911     add_str(hypertas, "hcall-splpar");
912     add_str(hypertas, "hcall-join");
913     add_str(hypertas, "hcall-bulk");
914     add_str(hypertas, "hcall-set-mode");
915     add_str(hypertas, "hcall-sprg0");
916     add_str(hypertas, "hcall-copy");
917     add_str(hypertas, "hcall-debug");
918     add_str(hypertas, "hcall-vphn");
919     add_str(qemu_hypertas, "hcall-memop1");
920 
921     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
922         add_str(hypertas, "hcall-multi-tce");
923     }
924 
925     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
926         add_str(hypertas, "hcall-hpt-resize");
927     }
928 
929     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
930                      hypertas->str, hypertas->len));
931     g_string_free(hypertas, TRUE);
932     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
933                      qemu_hypertas->str, qemu_hypertas->len));
934     g_string_free(qemu_hypertas, TRUE);
935 
936     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
937 
938     /*
939      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
940      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
941      *
942      * The system reset requirements are driven by existing Linux and PowerVM
943      * implementation which (contrary to PAPR) saves r3 in the error log
944      * structure like machine check, so Linux expects to find the saved r3
945      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
946      * does not look at the error value).
947      *
948      * System reset interrupts are not subject to interlock like machine
949      * check, so this memory area could be corrupted if the sreset is
950      * interrupted by a machine check (or vice versa) if it was shared. To
951      * prevent this, system reset uses per-CPU areas for the sreset save
952      * area. A system reset that interrupts a system reset handler could
953      * still overwrite this area, but Linux doesn't try to recover in that
954      * case anyway.
955      *
956      * The extra 8 bytes is required because Linux's FWNMI error log check
957      * is off-by-one.
958      */
959     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
960 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
961     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
962                           RTAS_ERROR_LOG_MAX));
963     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
964                           RTAS_EVENT_SCAN_RATE));
965 
966     g_assert(msi_nonbroken);
967     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
968 
969     /*
970      * According to PAPR, rtas ibm,os-term does not guarantee a return
971      * back to the guest cpu.
972      *
973      * While an additional ibm,extended-os-term property indicates
974      * that rtas call return will always occur. Set this property.
975      */
976     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
977 
978     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
979                      lrdr_capacity, sizeof(lrdr_capacity)));
980 
981     spapr_dt_rtas_tokens(fdt, rtas);
982 }
983 
984 /*
985  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
986  * and the XIVE features that the guest may request and thus the valid
987  * values for bytes 23..26 of option vector 5:
988  */
989 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
990                                           int chosen)
991 {
992     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
993 
994     char val[2 * 4] = {
995         23, 0x00, /* XICS / XIVE mode */
996         24, 0x00, /* Hash/Radix, filled in below. */
997         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
998         26, 0x40, /* Radix options: GTSE == yes. */
999     };
1000 
1001     if (spapr->irq->xics && spapr->irq->xive) {
1002         val[1] = SPAPR_OV5_XIVE_BOTH;
1003     } else if (spapr->irq->xive) {
1004         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1005     } else {
1006         assert(spapr->irq->xics);
1007         val[1] = SPAPR_OV5_XIVE_LEGACY;
1008     }
1009 
1010     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1011                           first_ppc_cpu->compat_pvr)) {
1012         /*
1013          * If we're in a pre POWER9 compat mode then the guest should
1014          * do hash and use the legacy interrupt mode
1015          */
1016         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1017         val[3] = 0x00; /* Hash */
1018     } else if (kvm_enabled()) {
1019         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1020             val[3] = 0x80; /* OV5_MMU_BOTH */
1021         } else if (kvmppc_has_cap_mmu_radix()) {
1022             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1023         } else {
1024             val[3] = 0x00; /* Hash */
1025         }
1026     } else {
1027         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1028         val[3] = 0xC0;
1029     }
1030     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1031                      val, sizeof(val)));
1032 }
1033 
1034 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1035 {
1036     MachineState *machine = MACHINE(spapr);
1037     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1038     int chosen;
1039 
1040     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1041 
1042     if (reset) {
1043         const char *boot_device = machine->boot_order;
1044         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1045         size_t cb = 0;
1046         char *bootlist = get_boot_devices_list(&cb);
1047 
1048         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1049             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1050                                     machine->kernel_cmdline));
1051         }
1052 
1053         if (spapr->initrd_size) {
1054             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1055                                   spapr->initrd_base));
1056             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1057                                   spapr->initrd_base + spapr->initrd_size));
1058         }
1059 
1060         if (spapr->kernel_size) {
1061             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1062                                   cpu_to_be64(spapr->kernel_size) };
1063 
1064             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1065                          &kprop, sizeof(kprop)));
1066             if (spapr->kernel_le) {
1067                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1068             }
1069         }
1070         if (boot_menu) {
1071             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1072         }
1073         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1074         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1075         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1076 
1077         if (cb && bootlist) {
1078             int i;
1079 
1080             for (i = 0; i < cb; i++) {
1081                 if (bootlist[i] == '\n') {
1082                     bootlist[i] = ' ';
1083                 }
1084             }
1085             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1086         }
1087 
1088         if (boot_device && strlen(boot_device)) {
1089             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1090         }
1091 
1092         if (!spapr->has_graphics && stdout_path) {
1093             /*
1094              * "linux,stdout-path" and "stdout" properties are
1095              * deprecated by linux kernel. New platforms should only
1096              * use the "stdout-path" property. Set the new property
1097              * and continue using older property to remain compatible
1098              * with the existing firmware.
1099              */
1100             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1101             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1102         }
1103 
1104         /*
1105          * We can deal with BAR reallocation just fine, advertise it
1106          * to the guest
1107          */
1108         if (smc->linux_pci_probe) {
1109             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1110         }
1111 
1112         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1113 
1114         g_free(stdout_path);
1115         g_free(bootlist);
1116     }
1117 
1118     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1119 }
1120 
1121 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1122 {
1123     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1124      * KVM to work under pHyp with some guest co-operation */
1125     int hypervisor;
1126     uint8_t hypercall[16];
1127 
1128     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1129     /* indicate KVM hypercall interface */
1130     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1131     if (kvmppc_has_cap_fixup_hcalls()) {
1132         /*
1133          * Older KVM versions with older guest kernels were broken
1134          * with the magic page, don't allow the guest to map it.
1135          */
1136         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1137                                   sizeof(hypercall))) {
1138             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1139                              hypercall, sizeof(hypercall)));
1140         }
1141     }
1142 }
1143 
1144 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1145 {
1146     MachineState *machine = MACHINE(spapr);
1147     MachineClass *mc = MACHINE_GET_CLASS(machine);
1148     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1149     int ret;
1150     void *fdt;
1151     SpaprPhbState *phb;
1152     char *buf;
1153 
1154     fdt = g_malloc0(space);
1155     _FDT((fdt_create_empty_tree(fdt, space)));
1156 
1157     /* Root node */
1158     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1159     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1160     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1161 
1162     /* Guest UUID & Name*/
1163     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1164     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1165     if (qemu_uuid_set) {
1166         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1167     }
1168     g_free(buf);
1169 
1170     if (qemu_get_vm_name()) {
1171         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1172                                 qemu_get_vm_name()));
1173     }
1174 
1175     /* Host Model & Serial Number */
1176     if (spapr->host_model) {
1177         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1178     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1179         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1180         g_free(buf);
1181     }
1182 
1183     if (spapr->host_serial) {
1184         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1185     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1186         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1187         g_free(buf);
1188     }
1189 
1190     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1191     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1192 
1193     /* /interrupt controller */
1194     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1195 
1196     ret = spapr_dt_memory(spapr, fdt);
1197     if (ret < 0) {
1198         error_report("couldn't setup memory nodes in fdt");
1199         exit(1);
1200     }
1201 
1202     /* /vdevice */
1203     spapr_dt_vdevice(spapr->vio_bus, fdt);
1204 
1205     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1206         ret = spapr_dt_rng(fdt);
1207         if (ret < 0) {
1208             error_report("could not set up rng device in the fdt");
1209             exit(1);
1210         }
1211     }
1212 
1213     QLIST_FOREACH(phb, &spapr->phbs, list) {
1214         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1215         if (ret < 0) {
1216             error_report("couldn't setup PCI devices in fdt");
1217             exit(1);
1218         }
1219     }
1220 
1221     spapr_dt_cpus(fdt, spapr);
1222 
1223     if (smc->dr_lmb_enabled) {
1224         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1225     }
1226 
1227     if (mc->has_hotpluggable_cpus) {
1228         int offset = fdt_path_offset(fdt, "/cpus");
1229         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1230         if (ret < 0) {
1231             error_report("Couldn't set up CPU DR device tree properties");
1232             exit(1);
1233         }
1234     }
1235 
1236     /* /event-sources */
1237     spapr_dt_events(spapr, fdt);
1238 
1239     /* /rtas */
1240     spapr_dt_rtas(spapr, fdt);
1241 
1242     /* /chosen */
1243     spapr_dt_chosen(spapr, fdt, reset);
1244 
1245     /* /hypervisor */
1246     if (kvm_enabled()) {
1247         spapr_dt_hypervisor(spapr, fdt);
1248     }
1249 
1250     /* Build memory reserve map */
1251     if (reset) {
1252         if (spapr->kernel_size) {
1253             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1254                                   spapr->kernel_size)));
1255         }
1256         if (spapr->initrd_size) {
1257             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1258                                   spapr->initrd_size)));
1259         }
1260     }
1261 
1262     if (smc->dr_phb_enabled) {
1263         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1264         if (ret < 0) {
1265             error_report("Couldn't set up PHB DR device tree properties");
1266             exit(1);
1267         }
1268     }
1269 
1270     /* NVDIMM devices */
1271     if (mc->nvdimm_supported) {
1272         spapr_dt_persistent_memory(spapr, fdt);
1273     }
1274 
1275     return fdt;
1276 }
1277 
1278 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1279 {
1280     SpaprMachineState *spapr = opaque;
1281 
1282     return (addr & 0x0fffffff) + spapr->kernel_addr;
1283 }
1284 
1285 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1286                                     PowerPCCPU *cpu)
1287 {
1288     CPUPPCState *env = &cpu->env;
1289 
1290     /* The TCG path should also be holding the BQL at this point */
1291     g_assert(qemu_mutex_iothread_locked());
1292 
1293     if (msr_pr) {
1294         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1295         env->gpr[3] = H_PRIVILEGE;
1296     } else {
1297         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1298     }
1299 }
1300 
1301 struct LPCRSyncState {
1302     target_ulong value;
1303     target_ulong mask;
1304 };
1305 
1306 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1307 {
1308     struct LPCRSyncState *s = arg.host_ptr;
1309     PowerPCCPU *cpu = POWERPC_CPU(cs);
1310     CPUPPCState *env = &cpu->env;
1311     target_ulong lpcr;
1312 
1313     cpu_synchronize_state(cs);
1314     lpcr = env->spr[SPR_LPCR];
1315     lpcr &= ~s->mask;
1316     lpcr |= s->value;
1317     ppc_store_lpcr(cpu, lpcr);
1318 }
1319 
1320 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1321 {
1322     CPUState *cs;
1323     struct LPCRSyncState s = {
1324         .value = value,
1325         .mask = mask
1326     };
1327     CPU_FOREACH(cs) {
1328         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1329     }
1330 }
1331 
1332 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1333 {
1334     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1335 
1336     /* Copy PATE1:GR into PATE0:HR */
1337     entry->dw0 = spapr->patb_entry & PATE0_HR;
1338     entry->dw1 = spapr->patb_entry;
1339 }
1340 
1341 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1342 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1343 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1344 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1345 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1346 
1347 /*
1348  * Get the fd to access the kernel htab, re-opening it if necessary
1349  */
1350 static int get_htab_fd(SpaprMachineState *spapr)
1351 {
1352     Error *local_err = NULL;
1353 
1354     if (spapr->htab_fd >= 0) {
1355         return spapr->htab_fd;
1356     }
1357 
1358     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1359     if (spapr->htab_fd < 0) {
1360         error_report_err(local_err);
1361     }
1362 
1363     return spapr->htab_fd;
1364 }
1365 
1366 void close_htab_fd(SpaprMachineState *spapr)
1367 {
1368     if (spapr->htab_fd >= 0) {
1369         close(spapr->htab_fd);
1370     }
1371     spapr->htab_fd = -1;
1372 }
1373 
1374 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1375 {
1376     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1377 
1378     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1379 }
1380 
1381 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1382 {
1383     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1384 
1385     assert(kvm_enabled());
1386 
1387     if (!spapr->htab) {
1388         return 0;
1389     }
1390 
1391     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1392 }
1393 
1394 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1395                                                 hwaddr ptex, int n)
1396 {
1397     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1398     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1399 
1400     if (!spapr->htab) {
1401         /*
1402          * HTAB is controlled by KVM. Fetch into temporary buffer
1403          */
1404         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1405         kvmppc_read_hptes(hptes, ptex, n);
1406         return hptes;
1407     }
1408 
1409     /*
1410      * HTAB is controlled by QEMU. Just point to the internally
1411      * accessible PTEG.
1412      */
1413     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1414 }
1415 
1416 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1417                               const ppc_hash_pte64_t *hptes,
1418                               hwaddr ptex, int n)
1419 {
1420     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1421 
1422     if (!spapr->htab) {
1423         g_free((void *)hptes);
1424     }
1425 
1426     /* Nothing to do for qemu managed HPT */
1427 }
1428 
1429 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1430                       uint64_t pte0, uint64_t pte1)
1431 {
1432     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1433     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1434 
1435     if (!spapr->htab) {
1436         kvmppc_write_hpte(ptex, pte0, pte1);
1437     } else {
1438         if (pte0 & HPTE64_V_VALID) {
1439             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1440             /*
1441              * When setting valid, we write PTE1 first. This ensures
1442              * proper synchronization with the reading code in
1443              * ppc_hash64_pteg_search()
1444              */
1445             smp_wmb();
1446             stq_p(spapr->htab + offset, pte0);
1447         } else {
1448             stq_p(spapr->htab + offset, pte0);
1449             /*
1450              * When clearing it we set PTE0 first. This ensures proper
1451              * synchronization with the reading code in
1452              * ppc_hash64_pteg_search()
1453              */
1454             smp_wmb();
1455             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1456         }
1457     }
1458 }
1459 
1460 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1461                              uint64_t pte1)
1462 {
1463     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1464     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1465 
1466     if (!spapr->htab) {
1467         /* There should always be a hash table when this is called */
1468         error_report("spapr_hpte_set_c called with no hash table !");
1469         return;
1470     }
1471 
1472     /* The HW performs a non-atomic byte update */
1473     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1474 }
1475 
1476 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1477                              uint64_t pte1)
1478 {
1479     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1480     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1481 
1482     if (!spapr->htab) {
1483         /* There should always be a hash table when this is called */
1484         error_report("spapr_hpte_set_r called with no hash table !");
1485         return;
1486     }
1487 
1488     /* The HW performs a non-atomic byte update */
1489     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1490 }
1491 
1492 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1493 {
1494     int shift;
1495 
1496     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1497      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1498      * that's much more than is needed for Linux guests */
1499     shift = ctz64(pow2ceil(ramsize)) - 7;
1500     shift = MAX(shift, 18); /* Minimum architected size */
1501     shift = MIN(shift, 46); /* Maximum architected size */
1502     return shift;
1503 }
1504 
1505 void spapr_free_hpt(SpaprMachineState *spapr)
1506 {
1507     g_free(spapr->htab);
1508     spapr->htab = NULL;
1509     spapr->htab_shift = 0;
1510     close_htab_fd(spapr);
1511 }
1512 
1513 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1514                           Error **errp)
1515 {
1516     long rc;
1517 
1518     /* Clean up any HPT info from a previous boot */
1519     spapr_free_hpt(spapr);
1520 
1521     rc = kvmppc_reset_htab(shift);
1522     if (rc < 0) {
1523         /* kernel-side HPT needed, but couldn't allocate one */
1524         error_setg_errno(errp, errno,
1525                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1526                          shift);
1527         /* This is almost certainly fatal, but if the caller really
1528          * wants to carry on with shift == 0, it's welcome to try */
1529     } else if (rc > 0) {
1530         /* kernel-side HPT allocated */
1531         if (rc != shift) {
1532             error_setg(errp,
1533                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1534                        shift, rc);
1535         }
1536 
1537         spapr->htab_shift = shift;
1538         spapr->htab = NULL;
1539     } else {
1540         /* kernel-side HPT not needed, allocate in userspace instead */
1541         size_t size = 1ULL << shift;
1542         int i;
1543 
1544         spapr->htab = qemu_memalign(size, size);
1545         if (!spapr->htab) {
1546             error_setg_errno(errp, errno,
1547                              "Could not allocate HPT of order %d", shift);
1548             return;
1549         }
1550 
1551         memset(spapr->htab, 0, size);
1552         spapr->htab_shift = shift;
1553 
1554         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1555             DIRTY_HPTE(HPTE(spapr->htab, i));
1556         }
1557     }
1558     /* We're setting up a hash table, so that means we're not radix */
1559     spapr->patb_entry = 0;
1560     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1561 }
1562 
1563 void spapr_setup_hpt(SpaprMachineState *spapr)
1564 {
1565     int hpt_shift;
1566 
1567     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1568         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1569     } else {
1570         uint64_t current_ram_size;
1571 
1572         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1573         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1574     }
1575     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1576 
1577     if (kvm_enabled()) {
1578         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1579 
1580         /* Check our RMA fits in the possible VRMA */
1581         if (vrma_limit < spapr->rma_size) {
1582             error_report("Unable to create %" HWADDR_PRIu
1583                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1584                          spapr->rma_size / MiB, vrma_limit / MiB);
1585             exit(EXIT_FAILURE);
1586         }
1587     }
1588 }
1589 
1590 static int spapr_reset_drcs(Object *child, void *opaque)
1591 {
1592     SpaprDrc *drc =
1593         (SpaprDrc *) object_dynamic_cast(child,
1594                                                  TYPE_SPAPR_DR_CONNECTOR);
1595 
1596     if (drc) {
1597         spapr_drc_reset(drc);
1598     }
1599 
1600     return 0;
1601 }
1602 
1603 static void spapr_machine_reset(MachineState *machine)
1604 {
1605     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1606     PowerPCCPU *first_ppc_cpu;
1607     hwaddr fdt_addr;
1608     void *fdt;
1609     int rc;
1610 
1611     kvmppc_svm_off(&error_fatal);
1612     spapr_caps_apply(spapr);
1613 
1614     first_ppc_cpu = POWERPC_CPU(first_cpu);
1615     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1616         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1617                               spapr->max_compat_pvr)) {
1618         /*
1619          * If using KVM with radix mode available, VCPUs can be started
1620          * without a HPT because KVM will start them in radix mode.
1621          * Set the GR bit in PATE so that we know there is no HPT.
1622          */
1623         spapr->patb_entry = PATE1_GR;
1624         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1625     } else {
1626         spapr_setup_hpt(spapr);
1627     }
1628 
1629     qemu_devices_reset();
1630 
1631     spapr_ovec_cleanup(spapr->ov5_cas);
1632     spapr->ov5_cas = spapr_ovec_new();
1633 
1634     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1635 
1636     /*
1637      * This is fixing some of the default configuration of the XIVE
1638      * devices. To be called after the reset of the machine devices.
1639      */
1640     spapr_irq_reset(spapr, &error_fatal);
1641 
1642     /*
1643      * There is no CAS under qtest. Simulate one to please the code that
1644      * depends on spapr->ov5_cas. This is especially needed to test device
1645      * unplug, so we do that before resetting the DRCs.
1646      */
1647     if (qtest_enabled()) {
1648         spapr_ovec_cleanup(spapr->ov5_cas);
1649         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1650     }
1651 
1652     /* DRC reset may cause a device to be unplugged. This will cause troubles
1653      * if this device is used by another device (eg, a running vhost backend
1654      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1655      * situations, we reset DRCs after all devices have been reset.
1656      */
1657     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1658 
1659     spapr_clear_pending_events(spapr);
1660 
1661     /*
1662      * We place the device tree and RTAS just below either the top of the RMA,
1663      * or just below 2GB, whichever is lower, so that it can be
1664      * processed with 32-bit real mode code if necessary
1665      */
1666     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1667 
1668     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1669 
1670     rc = fdt_pack(fdt);
1671 
1672     /* Should only fail if we've built a corrupted tree */
1673     assert(rc == 0);
1674 
1675     /* Load the fdt */
1676     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1677     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1678     g_free(spapr->fdt_blob);
1679     spapr->fdt_size = fdt_totalsize(fdt);
1680     spapr->fdt_initial_size = spapr->fdt_size;
1681     spapr->fdt_blob = fdt;
1682 
1683     /* Set up the entry state */
1684     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1685     first_ppc_cpu->env.gpr[5] = 0;
1686 
1687     spapr->fwnmi_system_reset_addr = -1;
1688     spapr->fwnmi_machine_check_addr = -1;
1689     spapr->fwnmi_machine_check_interlock = -1;
1690 
1691     /* Signal all vCPUs waiting on this condition */
1692     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1693 
1694     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1695 }
1696 
1697 static void spapr_create_nvram(SpaprMachineState *spapr)
1698 {
1699     DeviceState *dev = qdev_new("spapr-nvram");
1700     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1701 
1702     if (dinfo) {
1703         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1704                                 &error_fatal);
1705     }
1706 
1707     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1708 
1709     spapr->nvram = (struct SpaprNvram *)dev;
1710 }
1711 
1712 static void spapr_rtc_create(SpaprMachineState *spapr)
1713 {
1714     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1715                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1716                                        &error_fatal, NULL);
1717     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1718     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1719                               "date");
1720 }
1721 
1722 /* Returns whether we want to use VGA or not */
1723 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1724 {
1725     switch (vga_interface_type) {
1726     case VGA_NONE:
1727         return false;
1728     case VGA_DEVICE:
1729         return true;
1730     case VGA_STD:
1731     case VGA_VIRTIO:
1732     case VGA_CIRRUS:
1733         return pci_vga_init(pci_bus) != NULL;
1734     default:
1735         error_setg(errp,
1736                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1737         return false;
1738     }
1739 }
1740 
1741 static int spapr_pre_load(void *opaque)
1742 {
1743     int rc;
1744 
1745     rc = spapr_caps_pre_load(opaque);
1746     if (rc) {
1747         return rc;
1748     }
1749 
1750     return 0;
1751 }
1752 
1753 static int spapr_post_load(void *opaque, int version_id)
1754 {
1755     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1756     int err = 0;
1757 
1758     err = spapr_caps_post_migration(spapr);
1759     if (err) {
1760         return err;
1761     }
1762 
1763     /*
1764      * In earlier versions, there was no separate qdev for the PAPR
1765      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1766      * So when migrating from those versions, poke the incoming offset
1767      * value into the RTC device
1768      */
1769     if (version_id < 3) {
1770         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1771         if (err) {
1772             return err;
1773         }
1774     }
1775 
1776     if (kvm_enabled() && spapr->patb_entry) {
1777         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1778         bool radix = !!(spapr->patb_entry & PATE1_GR);
1779         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1780 
1781         /*
1782          * Update LPCR:HR and UPRT as they may not be set properly in
1783          * the stream
1784          */
1785         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1786                             LPCR_HR | LPCR_UPRT);
1787 
1788         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1789         if (err) {
1790             error_report("Process table config unsupported by the host");
1791             return -EINVAL;
1792         }
1793     }
1794 
1795     err = spapr_irq_post_load(spapr, version_id);
1796     if (err) {
1797         return err;
1798     }
1799 
1800     return err;
1801 }
1802 
1803 static int spapr_pre_save(void *opaque)
1804 {
1805     int rc;
1806 
1807     rc = spapr_caps_pre_save(opaque);
1808     if (rc) {
1809         return rc;
1810     }
1811 
1812     return 0;
1813 }
1814 
1815 static bool version_before_3(void *opaque, int version_id)
1816 {
1817     return version_id < 3;
1818 }
1819 
1820 static bool spapr_pending_events_needed(void *opaque)
1821 {
1822     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1823     return !QTAILQ_EMPTY(&spapr->pending_events);
1824 }
1825 
1826 static const VMStateDescription vmstate_spapr_event_entry = {
1827     .name = "spapr_event_log_entry",
1828     .version_id = 1,
1829     .minimum_version_id = 1,
1830     .fields = (VMStateField[]) {
1831         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1832         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1833         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1834                                      NULL, extended_length),
1835         VMSTATE_END_OF_LIST()
1836     },
1837 };
1838 
1839 static const VMStateDescription vmstate_spapr_pending_events = {
1840     .name = "spapr_pending_events",
1841     .version_id = 1,
1842     .minimum_version_id = 1,
1843     .needed = spapr_pending_events_needed,
1844     .fields = (VMStateField[]) {
1845         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1846                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1847         VMSTATE_END_OF_LIST()
1848     },
1849 };
1850 
1851 static bool spapr_ov5_cas_needed(void *opaque)
1852 {
1853     SpaprMachineState *spapr = opaque;
1854     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1855     bool cas_needed;
1856 
1857     /* Prior to the introduction of SpaprOptionVector, we had two option
1858      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1859      * Both of these options encode machine topology into the device-tree
1860      * in such a way that the now-booted OS should still be able to interact
1861      * appropriately with QEMU regardless of what options were actually
1862      * negotiatied on the source side.
1863      *
1864      * As such, we can avoid migrating the CAS-negotiated options if these
1865      * are the only options available on the current machine/platform.
1866      * Since these are the only options available for pseries-2.7 and
1867      * earlier, this allows us to maintain old->new/new->old migration
1868      * compatibility.
1869      *
1870      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1871      * via default pseries-2.8 machines and explicit command-line parameters.
1872      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1873      * of the actual CAS-negotiated values to continue working properly. For
1874      * example, availability of memory unplug depends on knowing whether
1875      * OV5_HP_EVT was negotiated via CAS.
1876      *
1877      * Thus, for any cases where the set of available CAS-negotiatable
1878      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1879      * include the CAS-negotiated options in the migration stream, unless
1880      * if they affect boot time behaviour only.
1881      */
1882     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1883     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1884     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1885 
1886     /* We need extra information if we have any bits outside the mask
1887      * defined above */
1888     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1889 
1890     spapr_ovec_cleanup(ov5_mask);
1891 
1892     return cas_needed;
1893 }
1894 
1895 static const VMStateDescription vmstate_spapr_ov5_cas = {
1896     .name = "spapr_option_vector_ov5_cas",
1897     .version_id = 1,
1898     .minimum_version_id = 1,
1899     .needed = spapr_ov5_cas_needed,
1900     .fields = (VMStateField[]) {
1901         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1902                                  vmstate_spapr_ovec, SpaprOptionVector),
1903         VMSTATE_END_OF_LIST()
1904     },
1905 };
1906 
1907 static bool spapr_patb_entry_needed(void *opaque)
1908 {
1909     SpaprMachineState *spapr = opaque;
1910 
1911     return !!spapr->patb_entry;
1912 }
1913 
1914 static const VMStateDescription vmstate_spapr_patb_entry = {
1915     .name = "spapr_patb_entry",
1916     .version_id = 1,
1917     .minimum_version_id = 1,
1918     .needed = spapr_patb_entry_needed,
1919     .fields = (VMStateField[]) {
1920         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1921         VMSTATE_END_OF_LIST()
1922     },
1923 };
1924 
1925 static bool spapr_irq_map_needed(void *opaque)
1926 {
1927     SpaprMachineState *spapr = opaque;
1928 
1929     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1930 }
1931 
1932 static const VMStateDescription vmstate_spapr_irq_map = {
1933     .name = "spapr_irq_map",
1934     .version_id = 1,
1935     .minimum_version_id = 1,
1936     .needed = spapr_irq_map_needed,
1937     .fields = (VMStateField[]) {
1938         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1939         VMSTATE_END_OF_LIST()
1940     },
1941 };
1942 
1943 static bool spapr_dtb_needed(void *opaque)
1944 {
1945     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1946 
1947     return smc->update_dt_enabled;
1948 }
1949 
1950 static int spapr_dtb_pre_load(void *opaque)
1951 {
1952     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1953 
1954     g_free(spapr->fdt_blob);
1955     spapr->fdt_blob = NULL;
1956     spapr->fdt_size = 0;
1957 
1958     return 0;
1959 }
1960 
1961 static const VMStateDescription vmstate_spapr_dtb = {
1962     .name = "spapr_dtb",
1963     .version_id = 1,
1964     .minimum_version_id = 1,
1965     .needed = spapr_dtb_needed,
1966     .pre_load = spapr_dtb_pre_load,
1967     .fields = (VMStateField[]) {
1968         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1969         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1970         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1971                                      fdt_size),
1972         VMSTATE_END_OF_LIST()
1973     },
1974 };
1975 
1976 static bool spapr_fwnmi_needed(void *opaque)
1977 {
1978     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1979 
1980     return spapr->fwnmi_machine_check_addr != -1;
1981 }
1982 
1983 static int spapr_fwnmi_pre_save(void *opaque)
1984 {
1985     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1986 
1987     /*
1988      * Check if machine check handling is in progress and print a
1989      * warning message.
1990      */
1991     if (spapr->fwnmi_machine_check_interlock != -1) {
1992         warn_report("A machine check is being handled during migration. The"
1993                 "handler may run and log hardware error on the destination");
1994     }
1995 
1996     return 0;
1997 }
1998 
1999 static const VMStateDescription vmstate_spapr_fwnmi = {
2000     .name = "spapr_fwnmi",
2001     .version_id = 1,
2002     .minimum_version_id = 1,
2003     .needed = spapr_fwnmi_needed,
2004     .pre_save = spapr_fwnmi_pre_save,
2005     .fields = (VMStateField[]) {
2006         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2007         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2008         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2009         VMSTATE_END_OF_LIST()
2010     },
2011 };
2012 
2013 static const VMStateDescription vmstate_spapr = {
2014     .name = "spapr",
2015     .version_id = 3,
2016     .minimum_version_id = 1,
2017     .pre_load = spapr_pre_load,
2018     .post_load = spapr_post_load,
2019     .pre_save = spapr_pre_save,
2020     .fields = (VMStateField[]) {
2021         /* used to be @next_irq */
2022         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2023 
2024         /* RTC offset */
2025         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2026 
2027         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2028         VMSTATE_END_OF_LIST()
2029     },
2030     .subsections = (const VMStateDescription*[]) {
2031         &vmstate_spapr_ov5_cas,
2032         &vmstate_spapr_patb_entry,
2033         &vmstate_spapr_pending_events,
2034         &vmstate_spapr_cap_htm,
2035         &vmstate_spapr_cap_vsx,
2036         &vmstate_spapr_cap_dfp,
2037         &vmstate_spapr_cap_cfpc,
2038         &vmstate_spapr_cap_sbbc,
2039         &vmstate_spapr_cap_ibs,
2040         &vmstate_spapr_cap_hpt_maxpagesize,
2041         &vmstate_spapr_irq_map,
2042         &vmstate_spapr_cap_nested_kvm_hv,
2043         &vmstate_spapr_dtb,
2044         &vmstate_spapr_cap_large_decr,
2045         &vmstate_spapr_cap_ccf_assist,
2046         &vmstate_spapr_cap_fwnmi,
2047         &vmstate_spapr_fwnmi,
2048         NULL
2049     }
2050 };
2051 
2052 static int htab_save_setup(QEMUFile *f, void *opaque)
2053 {
2054     SpaprMachineState *spapr = opaque;
2055 
2056     /* "Iteration" header */
2057     if (!spapr->htab_shift) {
2058         qemu_put_be32(f, -1);
2059     } else {
2060         qemu_put_be32(f, spapr->htab_shift);
2061     }
2062 
2063     if (spapr->htab) {
2064         spapr->htab_save_index = 0;
2065         spapr->htab_first_pass = true;
2066     } else {
2067         if (spapr->htab_shift) {
2068             assert(kvm_enabled());
2069         }
2070     }
2071 
2072 
2073     return 0;
2074 }
2075 
2076 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2077                             int chunkstart, int n_valid, int n_invalid)
2078 {
2079     qemu_put_be32(f, chunkstart);
2080     qemu_put_be16(f, n_valid);
2081     qemu_put_be16(f, n_invalid);
2082     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2083                     HASH_PTE_SIZE_64 * n_valid);
2084 }
2085 
2086 static void htab_save_end_marker(QEMUFile *f)
2087 {
2088     qemu_put_be32(f, 0);
2089     qemu_put_be16(f, 0);
2090     qemu_put_be16(f, 0);
2091 }
2092 
2093 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2094                                  int64_t max_ns)
2095 {
2096     bool has_timeout = max_ns != -1;
2097     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2098     int index = spapr->htab_save_index;
2099     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2100 
2101     assert(spapr->htab_first_pass);
2102 
2103     do {
2104         int chunkstart;
2105 
2106         /* Consume invalid HPTEs */
2107         while ((index < htabslots)
2108                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2109             CLEAN_HPTE(HPTE(spapr->htab, index));
2110             index++;
2111         }
2112 
2113         /* Consume valid HPTEs */
2114         chunkstart = index;
2115         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2116                && HPTE_VALID(HPTE(spapr->htab, index))) {
2117             CLEAN_HPTE(HPTE(spapr->htab, index));
2118             index++;
2119         }
2120 
2121         if (index > chunkstart) {
2122             int n_valid = index - chunkstart;
2123 
2124             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2125 
2126             if (has_timeout &&
2127                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2128                 break;
2129             }
2130         }
2131     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2132 
2133     if (index >= htabslots) {
2134         assert(index == htabslots);
2135         index = 0;
2136         spapr->htab_first_pass = false;
2137     }
2138     spapr->htab_save_index = index;
2139 }
2140 
2141 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2142                                 int64_t max_ns)
2143 {
2144     bool final = max_ns < 0;
2145     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2146     int examined = 0, sent = 0;
2147     int index = spapr->htab_save_index;
2148     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2149 
2150     assert(!spapr->htab_first_pass);
2151 
2152     do {
2153         int chunkstart, invalidstart;
2154 
2155         /* Consume non-dirty HPTEs */
2156         while ((index < htabslots)
2157                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2158             index++;
2159             examined++;
2160         }
2161 
2162         chunkstart = index;
2163         /* Consume valid dirty HPTEs */
2164         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2165                && HPTE_DIRTY(HPTE(spapr->htab, index))
2166                && HPTE_VALID(HPTE(spapr->htab, index))) {
2167             CLEAN_HPTE(HPTE(spapr->htab, index));
2168             index++;
2169             examined++;
2170         }
2171 
2172         invalidstart = index;
2173         /* Consume invalid dirty HPTEs */
2174         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2175                && HPTE_DIRTY(HPTE(spapr->htab, index))
2176                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2177             CLEAN_HPTE(HPTE(spapr->htab, index));
2178             index++;
2179             examined++;
2180         }
2181 
2182         if (index > chunkstart) {
2183             int n_valid = invalidstart - chunkstart;
2184             int n_invalid = index - invalidstart;
2185 
2186             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2187             sent += index - chunkstart;
2188 
2189             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2190                 break;
2191             }
2192         }
2193 
2194         if (examined >= htabslots) {
2195             break;
2196         }
2197 
2198         if (index >= htabslots) {
2199             assert(index == htabslots);
2200             index = 0;
2201         }
2202     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2203 
2204     if (index >= htabslots) {
2205         assert(index == htabslots);
2206         index = 0;
2207     }
2208 
2209     spapr->htab_save_index = index;
2210 
2211     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2212 }
2213 
2214 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2215 #define MAX_KVM_BUF_SIZE    2048
2216 
2217 static int htab_save_iterate(QEMUFile *f, void *opaque)
2218 {
2219     SpaprMachineState *spapr = opaque;
2220     int fd;
2221     int rc = 0;
2222 
2223     /* Iteration header */
2224     if (!spapr->htab_shift) {
2225         qemu_put_be32(f, -1);
2226         return 1;
2227     } else {
2228         qemu_put_be32(f, 0);
2229     }
2230 
2231     if (!spapr->htab) {
2232         assert(kvm_enabled());
2233 
2234         fd = get_htab_fd(spapr);
2235         if (fd < 0) {
2236             return fd;
2237         }
2238 
2239         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2240         if (rc < 0) {
2241             return rc;
2242         }
2243     } else  if (spapr->htab_first_pass) {
2244         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2245     } else {
2246         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2247     }
2248 
2249     htab_save_end_marker(f);
2250 
2251     return rc;
2252 }
2253 
2254 static int htab_save_complete(QEMUFile *f, void *opaque)
2255 {
2256     SpaprMachineState *spapr = opaque;
2257     int fd;
2258 
2259     /* Iteration header */
2260     if (!spapr->htab_shift) {
2261         qemu_put_be32(f, -1);
2262         return 0;
2263     } else {
2264         qemu_put_be32(f, 0);
2265     }
2266 
2267     if (!spapr->htab) {
2268         int rc;
2269 
2270         assert(kvm_enabled());
2271 
2272         fd = get_htab_fd(spapr);
2273         if (fd < 0) {
2274             return fd;
2275         }
2276 
2277         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2278         if (rc < 0) {
2279             return rc;
2280         }
2281     } else {
2282         if (spapr->htab_first_pass) {
2283             htab_save_first_pass(f, spapr, -1);
2284         }
2285         htab_save_later_pass(f, spapr, -1);
2286     }
2287 
2288     /* End marker */
2289     htab_save_end_marker(f);
2290 
2291     return 0;
2292 }
2293 
2294 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2295 {
2296     SpaprMachineState *spapr = opaque;
2297     uint32_t section_hdr;
2298     int fd = -1;
2299     Error *local_err = NULL;
2300 
2301     if (version_id < 1 || version_id > 1) {
2302         error_report("htab_load() bad version");
2303         return -EINVAL;
2304     }
2305 
2306     section_hdr = qemu_get_be32(f);
2307 
2308     if (section_hdr == -1) {
2309         spapr_free_hpt(spapr);
2310         return 0;
2311     }
2312 
2313     if (section_hdr) {
2314         /* First section gives the htab size */
2315         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2316         if (local_err) {
2317             error_report_err(local_err);
2318             return -EINVAL;
2319         }
2320         return 0;
2321     }
2322 
2323     if (!spapr->htab) {
2324         assert(kvm_enabled());
2325 
2326         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2327         if (fd < 0) {
2328             error_report_err(local_err);
2329             return fd;
2330         }
2331     }
2332 
2333     while (true) {
2334         uint32_t index;
2335         uint16_t n_valid, n_invalid;
2336 
2337         index = qemu_get_be32(f);
2338         n_valid = qemu_get_be16(f);
2339         n_invalid = qemu_get_be16(f);
2340 
2341         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2342             /* End of Stream */
2343             break;
2344         }
2345 
2346         if ((index + n_valid + n_invalid) >
2347             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2348             /* Bad index in stream */
2349             error_report(
2350                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2351                 index, n_valid, n_invalid, spapr->htab_shift);
2352             return -EINVAL;
2353         }
2354 
2355         if (spapr->htab) {
2356             if (n_valid) {
2357                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2358                                 HASH_PTE_SIZE_64 * n_valid);
2359             }
2360             if (n_invalid) {
2361                 memset(HPTE(spapr->htab, index + n_valid), 0,
2362                        HASH_PTE_SIZE_64 * n_invalid);
2363             }
2364         } else {
2365             int rc;
2366 
2367             assert(fd >= 0);
2368 
2369             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2370             if (rc < 0) {
2371                 return rc;
2372             }
2373         }
2374     }
2375 
2376     if (!spapr->htab) {
2377         assert(fd >= 0);
2378         close(fd);
2379     }
2380 
2381     return 0;
2382 }
2383 
2384 static void htab_save_cleanup(void *opaque)
2385 {
2386     SpaprMachineState *spapr = opaque;
2387 
2388     close_htab_fd(spapr);
2389 }
2390 
2391 static SaveVMHandlers savevm_htab_handlers = {
2392     .save_setup = htab_save_setup,
2393     .save_live_iterate = htab_save_iterate,
2394     .save_live_complete_precopy = htab_save_complete,
2395     .save_cleanup = htab_save_cleanup,
2396     .load_state = htab_load,
2397 };
2398 
2399 static void spapr_boot_set(void *opaque, const char *boot_device,
2400                            Error **errp)
2401 {
2402     MachineState *machine = MACHINE(opaque);
2403     machine->boot_order = g_strdup(boot_device);
2404 }
2405 
2406 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2407 {
2408     MachineState *machine = MACHINE(spapr);
2409     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2410     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2411     int i;
2412 
2413     for (i = 0; i < nr_lmbs; i++) {
2414         uint64_t addr;
2415 
2416         addr = i * lmb_size + machine->device_memory->base;
2417         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2418                                addr / lmb_size);
2419     }
2420 }
2421 
2422 /*
2423  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2424  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2425  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2426  */
2427 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2428 {
2429     int i;
2430 
2431     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2432         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2433                    " is not aligned to %" PRIu64 " MiB",
2434                    machine->ram_size,
2435                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2436         return;
2437     }
2438 
2439     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2440         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2441                    " is not aligned to %" PRIu64 " MiB",
2442                    machine->ram_size,
2443                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2444         return;
2445     }
2446 
2447     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2448         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2449             error_setg(errp,
2450                        "Node %d memory size 0x%" PRIx64
2451                        " is not aligned to %" PRIu64 " MiB",
2452                        i, machine->numa_state->nodes[i].node_mem,
2453                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2454             return;
2455         }
2456     }
2457 }
2458 
2459 /* find cpu slot in machine->possible_cpus by core_id */
2460 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2461 {
2462     int index = id / ms->smp.threads;
2463 
2464     if (index >= ms->possible_cpus->len) {
2465         return NULL;
2466     }
2467     if (idx) {
2468         *idx = index;
2469     }
2470     return &ms->possible_cpus->cpus[index];
2471 }
2472 
2473 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2474 {
2475     MachineState *ms = MACHINE(spapr);
2476     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2477     Error *local_err = NULL;
2478     bool vsmt_user = !!spapr->vsmt;
2479     int kvm_smt = kvmppc_smt_threads();
2480     int ret;
2481     unsigned int smp_threads = ms->smp.threads;
2482 
2483     if (!kvm_enabled() && (smp_threads > 1)) {
2484         error_setg(errp, "TCG cannot support more than 1 thread/core "
2485                    "on a pseries machine");
2486         return;
2487     }
2488     if (!is_power_of_2(smp_threads)) {
2489         error_setg(errp, "Cannot support %d threads/core on a pseries "
2490                    "machine because it must be a power of 2", smp_threads);
2491         return;
2492     }
2493 
2494     /* Detemine the VSMT mode to use: */
2495     if (vsmt_user) {
2496         if (spapr->vsmt < smp_threads) {
2497             error_setg(errp, "Cannot support VSMT mode %d"
2498                        " because it must be >= threads/core (%d)",
2499                        spapr->vsmt, smp_threads);
2500             return;
2501         }
2502         /* In this case, spapr->vsmt has been set by the command line */
2503     } else if (!smc->smp_threads_vsmt) {
2504         /*
2505          * Default VSMT value is tricky, because we need it to be as
2506          * consistent as possible (for migration), but this requires
2507          * changing it for at least some existing cases.  We pick 8 as
2508          * the value that we'd get with KVM on POWER8, the
2509          * overwhelmingly common case in production systems.
2510          */
2511         spapr->vsmt = MAX(8, smp_threads);
2512     } else {
2513         spapr->vsmt = smp_threads;
2514     }
2515 
2516     /* KVM: If necessary, set the SMT mode: */
2517     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2518         ret = kvmppc_set_smt_threads(spapr->vsmt);
2519         if (ret) {
2520             /* Looks like KVM isn't able to change VSMT mode */
2521             error_setg(&local_err,
2522                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2523                        spapr->vsmt, ret);
2524             /* We can live with that if the default one is big enough
2525              * for the number of threads, and a submultiple of the one
2526              * we want.  In this case we'll waste some vcpu ids, but
2527              * behaviour will be correct */
2528             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2529                 warn_report_err(local_err);
2530             } else {
2531                 if (!vsmt_user) {
2532                     error_append_hint(&local_err,
2533                                       "On PPC, a VM with %d threads/core"
2534                                       " on a host with %d threads/core"
2535                                       " requires the use of VSMT mode %d.\n",
2536                                       smp_threads, kvm_smt, spapr->vsmt);
2537                 }
2538                 kvmppc_error_append_smt_possible_hint(&local_err);
2539                 error_propagate(errp, local_err);
2540             }
2541         }
2542     }
2543     /* else TCG: nothing to do currently */
2544 }
2545 
2546 static void spapr_init_cpus(SpaprMachineState *spapr)
2547 {
2548     MachineState *machine = MACHINE(spapr);
2549     MachineClass *mc = MACHINE_GET_CLASS(machine);
2550     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2551     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2552     const CPUArchIdList *possible_cpus;
2553     unsigned int smp_cpus = machine->smp.cpus;
2554     unsigned int smp_threads = machine->smp.threads;
2555     unsigned int max_cpus = machine->smp.max_cpus;
2556     int boot_cores_nr = smp_cpus / smp_threads;
2557     int i;
2558 
2559     possible_cpus = mc->possible_cpu_arch_ids(machine);
2560     if (mc->has_hotpluggable_cpus) {
2561         if (smp_cpus % smp_threads) {
2562             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2563                          smp_cpus, smp_threads);
2564             exit(1);
2565         }
2566         if (max_cpus % smp_threads) {
2567             error_report("max_cpus (%u) must be multiple of threads (%u)",
2568                          max_cpus, smp_threads);
2569             exit(1);
2570         }
2571     } else {
2572         if (max_cpus != smp_cpus) {
2573             error_report("This machine version does not support CPU hotplug");
2574             exit(1);
2575         }
2576         boot_cores_nr = possible_cpus->len;
2577     }
2578 
2579     if (smc->pre_2_10_has_unused_icps) {
2580         int i;
2581 
2582         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2583             /* Dummy entries get deregistered when real ICPState objects
2584              * are registered during CPU core hotplug.
2585              */
2586             pre_2_10_vmstate_register_dummy_icp(i);
2587         }
2588     }
2589 
2590     for (i = 0; i < possible_cpus->len; i++) {
2591         int core_id = i * smp_threads;
2592 
2593         if (mc->has_hotpluggable_cpus) {
2594             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2595                                    spapr_vcpu_id(spapr, core_id));
2596         }
2597 
2598         if (i < boot_cores_nr) {
2599             Object *core  = object_new(type);
2600             int nr_threads = smp_threads;
2601 
2602             /* Handle the partially filled core for older machine types */
2603             if ((i + 1) * smp_threads >= smp_cpus) {
2604                 nr_threads = smp_cpus - i * smp_threads;
2605             }
2606 
2607             object_property_set_int(core, "nr-threads", nr_threads,
2608                                     &error_fatal);
2609             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2610                                     &error_fatal);
2611             qdev_realize(DEVICE(core), NULL, &error_fatal);
2612 
2613             object_unref(core);
2614         }
2615     }
2616 }
2617 
2618 static PCIHostState *spapr_create_default_phb(void)
2619 {
2620     DeviceState *dev;
2621 
2622     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2623     qdev_prop_set_uint32(dev, "index", 0);
2624     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2625 
2626     return PCI_HOST_BRIDGE(dev);
2627 }
2628 
2629 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2630 {
2631     MachineState *machine = MACHINE(spapr);
2632     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2633     hwaddr rma_size = machine->ram_size;
2634     hwaddr node0_size = spapr_node0_size(machine);
2635 
2636     /* RMA has to fit in the first NUMA node */
2637     rma_size = MIN(rma_size, node0_size);
2638 
2639     /*
2640      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2641      * never exceed that
2642      */
2643     rma_size = MIN(rma_size, 1 * TiB);
2644 
2645     /*
2646      * Clamp the RMA size based on machine type.  This is for
2647      * migration compatibility with older qemu versions, which limited
2648      * the RMA size for complicated and mostly bad reasons.
2649      */
2650     if (smc->rma_limit) {
2651         rma_size = MIN(rma_size, smc->rma_limit);
2652     }
2653 
2654     if (rma_size < MIN_RMA_SLOF) {
2655         error_setg(errp,
2656                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2657                    "ldMiB guest RMA (Real Mode Area memory)",
2658                    MIN_RMA_SLOF / MiB);
2659         return 0;
2660     }
2661 
2662     return rma_size;
2663 }
2664 
2665 /* pSeries LPAR / sPAPR hardware init */
2666 static void spapr_machine_init(MachineState *machine)
2667 {
2668     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2669     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2670     MachineClass *mc = MACHINE_GET_CLASS(machine);
2671     const char *kernel_filename = machine->kernel_filename;
2672     const char *initrd_filename = machine->initrd_filename;
2673     PCIHostState *phb;
2674     int i;
2675     MemoryRegion *sysmem = get_system_memory();
2676     long load_limit, fw_size;
2677     char *filename;
2678     Error *resize_hpt_err = NULL;
2679 
2680     msi_nonbroken = true;
2681 
2682     QLIST_INIT(&spapr->phbs);
2683     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2684 
2685     /* Determine capabilities to run with */
2686     spapr_caps_init(spapr);
2687 
2688     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2689     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2690         /*
2691          * If the user explicitly requested a mode we should either
2692          * supply it, or fail completely (which we do below).  But if
2693          * it's not set explicitly, we reset our mode to something
2694          * that works
2695          */
2696         if (resize_hpt_err) {
2697             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2698             error_free(resize_hpt_err);
2699             resize_hpt_err = NULL;
2700         } else {
2701             spapr->resize_hpt = smc->resize_hpt_default;
2702         }
2703     }
2704 
2705     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2706 
2707     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2708         /*
2709          * User requested HPT resize, but this host can't supply it.  Bail out
2710          */
2711         error_report_err(resize_hpt_err);
2712         exit(1);
2713     }
2714     error_free(resize_hpt_err);
2715 
2716     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2717 
2718     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2719     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2720 
2721     /*
2722      * VSMT must be set in order to be able to compute VCPU ids, ie to
2723      * call spapr_max_server_number() or spapr_vcpu_id().
2724      */
2725     spapr_set_vsmt_mode(spapr, &error_fatal);
2726 
2727     /* Set up Interrupt Controller before we create the VCPUs */
2728     spapr_irq_init(spapr, &error_fatal);
2729 
2730     /* Set up containers for ibm,client-architecture-support negotiated options
2731      */
2732     spapr->ov5 = spapr_ovec_new();
2733     spapr->ov5_cas = spapr_ovec_new();
2734 
2735     if (smc->dr_lmb_enabled) {
2736         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2737         spapr_validate_node_memory(machine, &error_fatal);
2738     }
2739 
2740     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2741 
2742     /* advertise support for dedicated HP event source to guests */
2743     if (spapr->use_hotplug_event_source) {
2744         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2745     }
2746 
2747     /* advertise support for HPT resizing */
2748     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2749         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2750     }
2751 
2752     /* advertise support for ibm,dyamic-memory-v2 */
2753     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2754 
2755     /* advertise XIVE on POWER9 machines */
2756     if (spapr->irq->xive) {
2757         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2758     }
2759 
2760     /* init CPUs */
2761     spapr_init_cpus(spapr);
2762 
2763     /*
2764      * check we don't have a memory-less/cpu-less NUMA node
2765      * Firmware relies on the existing memory/cpu topology to provide the
2766      * NUMA topology to the kernel.
2767      * And the linux kernel needs to know the NUMA topology at start
2768      * to be able to hotplug CPUs later.
2769      */
2770     if (machine->numa_state->num_nodes) {
2771         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2772             /* check for memory-less node */
2773             if (machine->numa_state->nodes[i].node_mem == 0) {
2774                 CPUState *cs;
2775                 int found = 0;
2776                 /* check for cpu-less node */
2777                 CPU_FOREACH(cs) {
2778                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2779                     if (cpu->node_id == i) {
2780                         found = 1;
2781                         break;
2782                     }
2783                 }
2784                 /* memory-less and cpu-less node */
2785                 if (!found) {
2786                     error_report(
2787                        "Memory-less/cpu-less nodes are not supported (node %d)",
2788                                  i);
2789                     exit(1);
2790                 }
2791             }
2792         }
2793 
2794     }
2795 
2796     /*
2797      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2798      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2799      * called from vPHB reset handler so we initialize the counter here.
2800      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2801      * must be equally distant from any other node.
2802      * The final value of spapr->gpu_numa_id is going to be written to
2803      * max-associativity-domains in spapr_build_fdt().
2804      */
2805     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2806 
2807     /* Init numa_assoc_array */
2808     spapr_numa_associativity_init(spapr, machine);
2809 
2810     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2811         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2812                               spapr->max_compat_pvr)) {
2813         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2814         /* KVM and TCG always allow GTSE with radix... */
2815         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2816     }
2817     /* ... but not with hash (currently). */
2818 
2819     if (kvm_enabled()) {
2820         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2821         kvmppc_enable_logical_ci_hcalls();
2822         kvmppc_enable_set_mode_hcall();
2823 
2824         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2825         kvmppc_enable_clear_ref_mod_hcalls();
2826 
2827         /* Enable H_PAGE_INIT */
2828         kvmppc_enable_h_page_init();
2829     }
2830 
2831     /* map RAM */
2832     memory_region_add_subregion(sysmem, 0, machine->ram);
2833 
2834     /* always allocate the device memory information */
2835     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2836 
2837     /* initialize hotplug memory address space */
2838     if (machine->ram_size < machine->maxram_size) {
2839         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2840         /*
2841          * Limit the number of hotpluggable memory slots to half the number
2842          * slots that KVM supports, leaving the other half for PCI and other
2843          * devices. However ensure that number of slots doesn't drop below 32.
2844          */
2845         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2846                            SPAPR_MAX_RAM_SLOTS;
2847 
2848         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2849             max_memslots = SPAPR_MAX_RAM_SLOTS;
2850         }
2851         if (machine->ram_slots > max_memslots) {
2852             error_report("Specified number of memory slots %"
2853                          PRIu64" exceeds max supported %d",
2854                          machine->ram_slots, max_memslots);
2855             exit(1);
2856         }
2857 
2858         machine->device_memory->base = ROUND_UP(machine->ram_size,
2859                                                 SPAPR_DEVICE_MEM_ALIGN);
2860         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2861                            "device-memory", device_mem_size);
2862         memory_region_add_subregion(sysmem, machine->device_memory->base,
2863                                     &machine->device_memory->mr);
2864     }
2865 
2866     if (smc->dr_lmb_enabled) {
2867         spapr_create_lmb_dr_connectors(spapr);
2868     }
2869 
2870     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2871         /* Create the error string for live migration blocker */
2872         error_setg(&spapr->fwnmi_migration_blocker,
2873             "A machine check is being handled during migration. The handler"
2874             "may run and log hardware error on the destination");
2875     }
2876 
2877     if (mc->nvdimm_supported) {
2878         spapr_create_nvdimm_dr_connectors(spapr);
2879     }
2880 
2881     /* Set up RTAS event infrastructure */
2882     spapr_events_init(spapr);
2883 
2884     /* Set up the RTC RTAS interfaces */
2885     spapr_rtc_create(spapr);
2886 
2887     /* Set up VIO bus */
2888     spapr->vio_bus = spapr_vio_bus_init();
2889 
2890     for (i = 0; i < serial_max_hds(); i++) {
2891         if (serial_hd(i)) {
2892             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2893         }
2894     }
2895 
2896     /* We always have at least the nvram device on VIO */
2897     spapr_create_nvram(spapr);
2898 
2899     /*
2900      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2901      * connectors (described in root DT node's "ibm,drc-types" property)
2902      * are pre-initialized here. additional child connectors (such as
2903      * connectors for a PHBs PCI slots) are added as needed during their
2904      * parent's realization.
2905      */
2906     if (smc->dr_phb_enabled) {
2907         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2908             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2909         }
2910     }
2911 
2912     /* Set up PCI */
2913     spapr_pci_rtas_init();
2914 
2915     phb = spapr_create_default_phb();
2916 
2917     for (i = 0; i < nb_nics; i++) {
2918         NICInfo *nd = &nd_table[i];
2919 
2920         if (!nd->model) {
2921             nd->model = g_strdup("spapr-vlan");
2922         }
2923 
2924         if (g_str_equal(nd->model, "spapr-vlan") ||
2925             g_str_equal(nd->model, "ibmveth")) {
2926             spapr_vlan_create(spapr->vio_bus, nd);
2927         } else {
2928             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2929         }
2930     }
2931 
2932     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2933         spapr_vscsi_create(spapr->vio_bus);
2934     }
2935 
2936     /* Graphics */
2937     if (spapr_vga_init(phb->bus, &error_fatal)) {
2938         spapr->has_graphics = true;
2939         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2940     }
2941 
2942     if (machine->usb) {
2943         if (smc->use_ohci_by_default) {
2944             pci_create_simple(phb->bus, -1, "pci-ohci");
2945         } else {
2946             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2947         }
2948 
2949         if (spapr->has_graphics) {
2950             USBBus *usb_bus = usb_bus_find(-1);
2951 
2952             usb_create_simple(usb_bus, "usb-kbd");
2953             usb_create_simple(usb_bus, "usb-mouse");
2954         }
2955     }
2956 
2957     if (kernel_filename) {
2958         uint64_t lowaddr = 0;
2959 
2960         spapr->kernel_size = load_elf(kernel_filename, NULL,
2961                                       translate_kernel_address, spapr,
2962                                       NULL, &lowaddr, NULL, NULL, 1,
2963                                       PPC_ELF_MACHINE, 0, 0);
2964         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2965             spapr->kernel_size = load_elf(kernel_filename, NULL,
2966                                           translate_kernel_address, spapr, NULL,
2967                                           &lowaddr, NULL, NULL, 0,
2968                                           PPC_ELF_MACHINE,
2969                                           0, 0);
2970             spapr->kernel_le = spapr->kernel_size > 0;
2971         }
2972         if (spapr->kernel_size < 0) {
2973             error_report("error loading %s: %s", kernel_filename,
2974                          load_elf_strerror(spapr->kernel_size));
2975             exit(1);
2976         }
2977 
2978         /* load initrd */
2979         if (initrd_filename) {
2980             /* Try to locate the initrd in the gap between the kernel
2981              * and the firmware. Add a bit of space just in case
2982              */
2983             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2984                                   + 0x1ffff) & ~0xffff;
2985             spapr->initrd_size = load_image_targphys(initrd_filename,
2986                                                      spapr->initrd_base,
2987                                                      load_limit
2988                                                      - spapr->initrd_base);
2989             if (spapr->initrd_size < 0) {
2990                 error_report("could not load initial ram disk '%s'",
2991                              initrd_filename);
2992                 exit(1);
2993             }
2994         }
2995     }
2996 
2997     if (bios_name == NULL) {
2998         bios_name = FW_FILE_NAME;
2999     }
3000     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3001     if (!filename) {
3002         error_report("Could not find LPAR firmware '%s'", bios_name);
3003         exit(1);
3004     }
3005     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3006     if (fw_size <= 0) {
3007         error_report("Could not load LPAR firmware '%s'", filename);
3008         exit(1);
3009     }
3010     g_free(filename);
3011 
3012     /* FIXME: Should register things through the MachineState's qdev
3013      * interface, this is a legacy from the sPAPREnvironment structure
3014      * which predated MachineState but had a similar function */
3015     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3016     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3017                          &savevm_htab_handlers, spapr);
3018 
3019     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3020 
3021     qemu_register_boot_set(spapr_boot_set, spapr);
3022 
3023     /*
3024      * Nothing needs to be done to resume a suspended guest because
3025      * suspending does not change the machine state, so no need for
3026      * a ->wakeup method.
3027      */
3028     qemu_register_wakeup_support();
3029 
3030     if (kvm_enabled()) {
3031         /* to stop and start vmclock */
3032         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3033                                          &spapr->tb);
3034 
3035         kvmppc_spapr_enable_inkernel_multitce();
3036     }
3037 
3038     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3039 }
3040 
3041 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3042 {
3043     if (!vm_type) {
3044         return 0;
3045     }
3046 
3047     if (!strcmp(vm_type, "HV")) {
3048         return 1;
3049     }
3050 
3051     if (!strcmp(vm_type, "PR")) {
3052         return 2;
3053     }
3054 
3055     error_report("Unknown kvm-type specified '%s'", vm_type);
3056     exit(1);
3057 }
3058 
3059 /*
3060  * Implementation of an interface to adjust firmware path
3061  * for the bootindex property handling.
3062  */
3063 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3064                                    DeviceState *dev)
3065 {
3066 #define CAST(type, obj, name) \
3067     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3068     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3069     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3070     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3071 
3072     if (d) {
3073         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3074         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3075         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3076 
3077         if (spapr) {
3078             /*
3079              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3080              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3081              * 0x8000 | (target << 8) | (bus << 5) | lun
3082              * (see the "Logical unit addressing format" table in SAM5)
3083              */
3084             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3085             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3086                                    (uint64_t)id << 48);
3087         } else if (virtio) {
3088             /*
3089              * We use SRP luns of the form 01000000 | (target << 8) | lun
3090              * in the top 32 bits of the 64-bit LUN
3091              * Note: the quote above is from SLOF and it is wrong,
3092              * the actual binding is:
3093              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3094              */
3095             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3096             if (d->lun >= 256) {
3097                 /* Use the LUN "flat space addressing method" */
3098                 id |= 0x4000;
3099             }
3100             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3101                                    (uint64_t)id << 32);
3102         } else if (usb) {
3103             /*
3104              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3105              * in the top 32 bits of the 64-bit LUN
3106              */
3107             unsigned usb_port = atoi(usb->port->path);
3108             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3109             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3110                                    (uint64_t)id << 32);
3111         }
3112     }
3113 
3114     /*
3115      * SLOF probes the USB devices, and if it recognizes that the device is a
3116      * storage device, it changes its name to "storage" instead of "usb-host",
3117      * and additionally adds a child node for the SCSI LUN, so the correct
3118      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3119      */
3120     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3121         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3122         if (usb_host_dev_is_scsi_storage(usbdev)) {
3123             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3124         }
3125     }
3126 
3127     if (phb) {
3128         /* Replace "pci" with "pci@800000020000000" */
3129         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3130     }
3131 
3132     if (vsc) {
3133         /* Same logic as virtio above */
3134         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3135         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3136     }
3137 
3138     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3139         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3140         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3141         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3142     }
3143 
3144     return NULL;
3145 }
3146 
3147 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3148 {
3149     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3150 
3151     return g_strdup(spapr->kvm_type);
3152 }
3153 
3154 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3155 {
3156     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3157 
3158     g_free(spapr->kvm_type);
3159     spapr->kvm_type = g_strdup(value);
3160 }
3161 
3162 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3163 {
3164     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165 
3166     return spapr->use_hotplug_event_source;
3167 }
3168 
3169 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3170                                             Error **errp)
3171 {
3172     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 
3174     spapr->use_hotplug_event_source = value;
3175 }
3176 
3177 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3178 {
3179     return true;
3180 }
3181 
3182 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3183 {
3184     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3185 
3186     switch (spapr->resize_hpt) {
3187     case SPAPR_RESIZE_HPT_DEFAULT:
3188         return g_strdup("default");
3189     case SPAPR_RESIZE_HPT_DISABLED:
3190         return g_strdup("disabled");
3191     case SPAPR_RESIZE_HPT_ENABLED:
3192         return g_strdup("enabled");
3193     case SPAPR_RESIZE_HPT_REQUIRED:
3194         return g_strdup("required");
3195     }
3196     g_assert_not_reached();
3197 }
3198 
3199 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3200 {
3201     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 
3203     if (strcmp(value, "default") == 0) {
3204         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3205     } else if (strcmp(value, "disabled") == 0) {
3206         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3207     } else if (strcmp(value, "enabled") == 0) {
3208         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3209     } else if (strcmp(value, "required") == 0) {
3210         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3211     } else {
3212         error_setg(errp, "Bad value for \"resize-hpt\" property");
3213     }
3214 }
3215 
3216 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3217 {
3218     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 
3220     if (spapr->irq == &spapr_irq_xics_legacy) {
3221         return g_strdup("legacy");
3222     } else if (spapr->irq == &spapr_irq_xics) {
3223         return g_strdup("xics");
3224     } else if (spapr->irq == &spapr_irq_xive) {
3225         return g_strdup("xive");
3226     } else if (spapr->irq == &spapr_irq_dual) {
3227         return g_strdup("dual");
3228     }
3229     g_assert_not_reached();
3230 }
3231 
3232 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3233 {
3234     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3235 
3236     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3237         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3238         return;
3239     }
3240 
3241     /* The legacy IRQ backend can not be set */
3242     if (strcmp(value, "xics") == 0) {
3243         spapr->irq = &spapr_irq_xics;
3244     } else if (strcmp(value, "xive") == 0) {
3245         spapr->irq = &spapr_irq_xive;
3246     } else if (strcmp(value, "dual") == 0) {
3247         spapr->irq = &spapr_irq_dual;
3248     } else {
3249         error_setg(errp, "Bad value for \"ic-mode\" property");
3250     }
3251 }
3252 
3253 static char *spapr_get_host_model(Object *obj, Error **errp)
3254 {
3255     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3256 
3257     return g_strdup(spapr->host_model);
3258 }
3259 
3260 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3261 {
3262     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3263 
3264     g_free(spapr->host_model);
3265     spapr->host_model = g_strdup(value);
3266 }
3267 
3268 static char *spapr_get_host_serial(Object *obj, Error **errp)
3269 {
3270     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271 
3272     return g_strdup(spapr->host_serial);
3273 }
3274 
3275 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3276 {
3277     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3278 
3279     g_free(spapr->host_serial);
3280     spapr->host_serial = g_strdup(value);
3281 }
3282 
3283 static void spapr_instance_init(Object *obj)
3284 {
3285     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3287 
3288     spapr->htab_fd = -1;
3289     spapr->use_hotplug_event_source = true;
3290     object_property_add_str(obj, "kvm-type",
3291                             spapr_get_kvm_type, spapr_set_kvm_type);
3292     object_property_set_description(obj, "kvm-type",
3293                                     "Specifies the KVM virtualization mode (HV, PR)");
3294     object_property_add_bool(obj, "modern-hotplug-events",
3295                             spapr_get_modern_hotplug_events,
3296                             spapr_set_modern_hotplug_events);
3297     object_property_set_description(obj, "modern-hotplug-events",
3298                                     "Use dedicated hotplug event mechanism in"
3299                                     " place of standard EPOW events when possible"
3300                                     " (required for memory hot-unplug support)");
3301     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3302                             "Maximum permitted CPU compatibility mode");
3303 
3304     object_property_add_str(obj, "resize-hpt",
3305                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3306     object_property_set_description(obj, "resize-hpt",
3307                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3308     object_property_add_uint32_ptr(obj, "vsmt",
3309                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3310     object_property_set_description(obj, "vsmt",
3311                                     "Virtual SMT: KVM behaves as if this were"
3312                                     " the host's SMT mode");
3313 
3314     object_property_add_bool(obj, "vfio-no-msix-emulation",
3315                              spapr_get_msix_emulation, NULL);
3316 
3317     object_property_add_uint64_ptr(obj, "kernel-addr",
3318                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3319     object_property_set_description(obj, "kernel-addr",
3320                                     stringify(KERNEL_LOAD_ADDR)
3321                                     " for -kernel is the default");
3322     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3323     /* The machine class defines the default interrupt controller mode */
3324     spapr->irq = smc->irq;
3325     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3326                             spapr_set_ic_mode);
3327     object_property_set_description(obj, "ic-mode",
3328                  "Specifies the interrupt controller mode (xics, xive, dual)");
3329 
3330     object_property_add_str(obj, "host-model",
3331         spapr_get_host_model, spapr_set_host_model);
3332     object_property_set_description(obj, "host-model",
3333         "Host model to advertise in guest device tree");
3334     object_property_add_str(obj, "host-serial",
3335         spapr_get_host_serial, spapr_set_host_serial);
3336     object_property_set_description(obj, "host-serial",
3337         "Host serial number to advertise in guest device tree");
3338 }
3339 
3340 static void spapr_machine_finalizefn(Object *obj)
3341 {
3342     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3343 
3344     g_free(spapr->kvm_type);
3345 }
3346 
3347 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3348 {
3349     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3350     PowerPCCPU *cpu = POWERPC_CPU(cs);
3351     CPUPPCState *env = &cpu->env;
3352 
3353     cpu_synchronize_state(cs);
3354     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3355     if (spapr->fwnmi_system_reset_addr != -1) {
3356         uint64_t rtas_addr, addr;
3357 
3358         /* get rtas addr from fdt */
3359         rtas_addr = spapr_get_rtas_addr();
3360         if (!rtas_addr) {
3361             qemu_system_guest_panicked(NULL);
3362             return;
3363         }
3364 
3365         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3366         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3367         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3368         env->gpr[3] = addr;
3369     }
3370     ppc_cpu_do_system_reset(cs);
3371     if (spapr->fwnmi_system_reset_addr != -1) {
3372         env->nip = spapr->fwnmi_system_reset_addr;
3373     }
3374 }
3375 
3376 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3377 {
3378     CPUState *cs;
3379 
3380     CPU_FOREACH(cs) {
3381         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3382     }
3383 }
3384 
3385 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3386                           void *fdt, int *fdt_start_offset, Error **errp)
3387 {
3388     uint64_t addr;
3389     uint32_t node;
3390 
3391     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3392     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3393                                     &error_abort);
3394     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3395                                              SPAPR_MEMORY_BLOCK_SIZE);
3396     return 0;
3397 }
3398 
3399 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3400                            bool dedicated_hp_event_source, Error **errp)
3401 {
3402     SpaprDrc *drc;
3403     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3404     int i;
3405     uint64_t addr = addr_start;
3406     bool hotplugged = spapr_drc_hotplugged(dev);
3407     Error *local_err = NULL;
3408 
3409     for (i = 0; i < nr_lmbs; i++) {
3410         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3411                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3412         g_assert(drc);
3413 
3414         spapr_drc_attach(drc, dev, &local_err);
3415         if (local_err) {
3416             while (addr > addr_start) {
3417                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3418                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3419                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3420                 spapr_drc_detach(drc);
3421             }
3422             error_propagate(errp, local_err);
3423             return;
3424         }
3425         if (!hotplugged) {
3426             spapr_drc_reset(drc);
3427         }
3428         addr += SPAPR_MEMORY_BLOCK_SIZE;
3429     }
3430     /* send hotplug notification to the
3431      * guest only in case of hotplugged memory
3432      */
3433     if (hotplugged) {
3434         if (dedicated_hp_event_source) {
3435             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3436                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3437             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3438                                                    nr_lmbs,
3439                                                    spapr_drc_index(drc));
3440         } else {
3441             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3442                                            nr_lmbs);
3443         }
3444     }
3445 }
3446 
3447 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3448                               Error **errp)
3449 {
3450     Error *local_err = NULL;
3451     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3452     PCDIMMDevice *dimm = PC_DIMM(dev);
3453     uint64_t size, addr, slot;
3454     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3455 
3456     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3457 
3458     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3459     if (local_err) {
3460         goto out;
3461     }
3462 
3463     if (!is_nvdimm) {
3464         addr = object_property_get_uint(OBJECT(dimm),
3465                                         PC_DIMM_ADDR_PROP, &local_err);
3466         if (local_err) {
3467             goto out_unplug;
3468         }
3469         spapr_add_lmbs(dev, addr, size,
3470                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3471                        &local_err);
3472     } else {
3473         slot = object_property_get_uint(OBJECT(dimm),
3474                                         PC_DIMM_SLOT_PROP, &local_err);
3475         if (local_err) {
3476             goto out_unplug;
3477         }
3478         spapr_add_nvdimm(dev, slot, &local_err);
3479     }
3480 
3481     if (local_err) {
3482         goto out_unplug;
3483     }
3484 
3485     return;
3486 
3487 out_unplug:
3488     pc_dimm_unplug(dimm, MACHINE(ms));
3489 out:
3490     error_propagate(errp, local_err);
3491 }
3492 
3493 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3494                                   Error **errp)
3495 {
3496     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3497     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3498     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3499     PCDIMMDevice *dimm = PC_DIMM(dev);
3500     Error *local_err = NULL;
3501     uint64_t size;
3502     Object *memdev;
3503     hwaddr pagesize;
3504 
3505     if (!smc->dr_lmb_enabled) {
3506         error_setg(errp, "Memory hotplug not supported for this machine");
3507         return;
3508     }
3509 
3510     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3511     if (local_err) {
3512         error_propagate(errp, local_err);
3513         return;
3514     }
3515 
3516     if (is_nvdimm) {
3517         spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, &local_err);
3518         if (local_err) {
3519             error_propagate(errp, local_err);
3520             return;
3521         }
3522     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3523         error_setg(errp, "Hotplugged memory size must be a multiple of "
3524                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3525         return;
3526     }
3527 
3528     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3529                                       &error_abort);
3530     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3531     spapr_check_pagesize(spapr, pagesize, &local_err);
3532     if (local_err) {
3533         error_propagate(errp, local_err);
3534         return;
3535     }
3536 
3537     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3538 }
3539 
3540 struct SpaprDimmState {
3541     PCDIMMDevice *dimm;
3542     uint32_t nr_lmbs;
3543     QTAILQ_ENTRY(SpaprDimmState) next;
3544 };
3545 
3546 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3547                                                        PCDIMMDevice *dimm)
3548 {
3549     SpaprDimmState *dimm_state = NULL;
3550 
3551     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3552         if (dimm_state->dimm == dimm) {
3553             break;
3554         }
3555     }
3556     return dimm_state;
3557 }
3558 
3559 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3560                                                       uint32_t nr_lmbs,
3561                                                       PCDIMMDevice *dimm)
3562 {
3563     SpaprDimmState *ds = NULL;
3564 
3565     /*
3566      * If this request is for a DIMM whose removal had failed earlier
3567      * (due to guest's refusal to remove the LMBs), we would have this
3568      * dimm already in the pending_dimm_unplugs list. In that
3569      * case don't add again.
3570      */
3571     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3572     if (!ds) {
3573         ds = g_malloc0(sizeof(SpaprDimmState));
3574         ds->nr_lmbs = nr_lmbs;
3575         ds->dimm = dimm;
3576         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3577     }
3578     return ds;
3579 }
3580 
3581 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3582                                               SpaprDimmState *dimm_state)
3583 {
3584     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3585     g_free(dimm_state);
3586 }
3587 
3588 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3589                                                         PCDIMMDevice *dimm)
3590 {
3591     SpaprDrc *drc;
3592     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3593                                                   &error_abort);
3594     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3595     uint32_t avail_lmbs = 0;
3596     uint64_t addr_start, addr;
3597     int i;
3598 
3599     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3600                                          &error_abort);
3601 
3602     addr = addr_start;
3603     for (i = 0; i < nr_lmbs; i++) {
3604         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3605                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3606         g_assert(drc);
3607         if (drc->dev) {
3608             avail_lmbs++;
3609         }
3610         addr += SPAPR_MEMORY_BLOCK_SIZE;
3611     }
3612 
3613     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3614 }
3615 
3616 /* Callback to be called during DRC release. */
3617 void spapr_lmb_release(DeviceState *dev)
3618 {
3619     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3620     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3621     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3622 
3623     /* This information will get lost if a migration occurs
3624      * during the unplug process. In this case recover it. */
3625     if (ds == NULL) {
3626         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3627         g_assert(ds);
3628         /* The DRC being examined by the caller at least must be counted */
3629         g_assert(ds->nr_lmbs);
3630     }
3631 
3632     if (--ds->nr_lmbs) {
3633         return;
3634     }
3635 
3636     /*
3637      * Now that all the LMBs have been removed by the guest, call the
3638      * unplug handler chain. This can never fail.
3639      */
3640     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3641     object_unparent(OBJECT(dev));
3642 }
3643 
3644 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3645 {
3646     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3647     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3648 
3649     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3650     qdev_unrealize(dev);
3651     spapr_pending_dimm_unplugs_remove(spapr, ds);
3652 }
3653 
3654 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3655                                         DeviceState *dev, Error **errp)
3656 {
3657     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3658     Error *local_err = NULL;
3659     PCDIMMDevice *dimm = PC_DIMM(dev);
3660     uint32_t nr_lmbs;
3661     uint64_t size, addr_start, addr;
3662     int i;
3663     SpaprDrc *drc;
3664 
3665     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3666         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3667         return;
3668     }
3669 
3670     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3671     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3672 
3673     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3674                                          &local_err);
3675     if (local_err) {
3676         error_propagate(errp, local_err);
3677         return;
3678     }
3679 
3680     /*
3681      * An existing pending dimm state for this DIMM means that there is an
3682      * unplug operation in progress, waiting for the spapr_lmb_release
3683      * callback to complete the job (BQL can't cover that far). In this case,
3684      * bail out to avoid detaching DRCs that were already released.
3685      */
3686     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3687         error_setg(errp, "Memory unplug already in progress for device %s",
3688                    dev->id);
3689         return;
3690     }
3691 
3692     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3693 
3694     addr = addr_start;
3695     for (i = 0; i < nr_lmbs; i++) {
3696         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3697                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3698         g_assert(drc);
3699 
3700         spapr_drc_detach(drc);
3701         addr += SPAPR_MEMORY_BLOCK_SIZE;
3702     }
3703 
3704     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3705                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3706     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3707                                               nr_lmbs, spapr_drc_index(drc));
3708 }
3709 
3710 /* Callback to be called during DRC release. */
3711 void spapr_core_release(DeviceState *dev)
3712 {
3713     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3714 
3715     /* Call the unplug handler chain. This can never fail. */
3716     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3717     object_unparent(OBJECT(dev));
3718 }
3719 
3720 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3721 {
3722     MachineState *ms = MACHINE(hotplug_dev);
3723     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3724     CPUCore *cc = CPU_CORE(dev);
3725     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3726 
3727     if (smc->pre_2_10_has_unused_icps) {
3728         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3729         int i;
3730 
3731         for (i = 0; i < cc->nr_threads; i++) {
3732             CPUState *cs = CPU(sc->threads[i]);
3733 
3734             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3735         }
3736     }
3737 
3738     assert(core_slot);
3739     core_slot->cpu = NULL;
3740     qdev_unrealize(dev);
3741 }
3742 
3743 static
3744 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3745                                Error **errp)
3746 {
3747     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3748     int index;
3749     SpaprDrc *drc;
3750     CPUCore *cc = CPU_CORE(dev);
3751 
3752     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3753         error_setg(errp, "Unable to find CPU core with core-id: %d",
3754                    cc->core_id);
3755         return;
3756     }
3757     if (index == 0) {
3758         error_setg(errp, "Boot CPU core may not be unplugged");
3759         return;
3760     }
3761 
3762     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3763                           spapr_vcpu_id(spapr, cc->core_id));
3764     g_assert(drc);
3765 
3766     if (!spapr_drc_unplug_requested(drc)) {
3767         spapr_drc_detach(drc);
3768         spapr_hotplug_req_remove_by_index(drc);
3769     }
3770 }
3771 
3772 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3773                            void *fdt, int *fdt_start_offset, Error **errp)
3774 {
3775     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3776     CPUState *cs = CPU(core->threads[0]);
3777     PowerPCCPU *cpu = POWERPC_CPU(cs);
3778     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3779     int id = spapr_get_vcpu_id(cpu);
3780     char *nodename;
3781     int offset;
3782 
3783     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3784     offset = fdt_add_subnode(fdt, 0, nodename);
3785     g_free(nodename);
3786 
3787     spapr_dt_cpu(cs, fdt, offset, spapr);
3788 
3789     *fdt_start_offset = offset;
3790     return 0;
3791 }
3792 
3793 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3794                             Error **errp)
3795 {
3796     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3797     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3798     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3799     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3800     CPUCore *cc = CPU_CORE(dev);
3801     CPUState *cs;
3802     SpaprDrc *drc;
3803     Error *local_err = NULL;
3804     CPUArchId *core_slot;
3805     int index;
3806     bool hotplugged = spapr_drc_hotplugged(dev);
3807     int i;
3808 
3809     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3810     if (!core_slot) {
3811         error_setg(errp, "Unable to find CPU core with core-id: %d",
3812                    cc->core_id);
3813         return;
3814     }
3815     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3816                           spapr_vcpu_id(spapr, cc->core_id));
3817 
3818     g_assert(drc || !mc->has_hotpluggable_cpus);
3819 
3820     if (drc) {
3821         spapr_drc_attach(drc, dev, &local_err);
3822         if (local_err) {
3823             error_propagate(errp, local_err);
3824             return;
3825         }
3826 
3827         if (hotplugged) {
3828             /*
3829              * Send hotplug notification interrupt to the guest only
3830              * in case of hotplugged CPUs.
3831              */
3832             spapr_hotplug_req_add_by_index(drc);
3833         } else {
3834             spapr_drc_reset(drc);
3835         }
3836     }
3837 
3838     core_slot->cpu = OBJECT(dev);
3839 
3840     if (smc->pre_2_10_has_unused_icps) {
3841         for (i = 0; i < cc->nr_threads; i++) {
3842             cs = CPU(core->threads[i]);
3843             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3844         }
3845     }
3846 
3847     /*
3848      * Set compatibility mode to match the boot CPU, which was either set
3849      * by the machine reset code or by CAS.
3850      */
3851     if (hotplugged) {
3852         for (i = 0; i < cc->nr_threads; i++) {
3853             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3854                            &local_err);
3855             if (local_err) {
3856                 error_propagate(errp, local_err);
3857                 return;
3858             }
3859         }
3860     }
3861 }
3862 
3863 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3864                                 Error **errp)
3865 {
3866     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3867     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3868     CPUCore *cc = CPU_CORE(dev);
3869     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3870     const char *type = object_get_typename(OBJECT(dev));
3871     CPUArchId *core_slot;
3872     int index;
3873     unsigned int smp_threads = machine->smp.threads;
3874 
3875     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3876         error_setg(errp, "CPU hotplug not supported for this machine");
3877         return;
3878     }
3879 
3880     if (strcmp(base_core_type, type)) {
3881         error_setg(errp, "CPU core type should be %s", base_core_type);
3882         return;
3883     }
3884 
3885     if (cc->core_id % smp_threads) {
3886         error_setg(errp, "invalid core id %d", cc->core_id);
3887         return;
3888     }
3889 
3890     /*
3891      * In general we should have homogeneous threads-per-core, but old
3892      * (pre hotplug support) machine types allow the last core to have
3893      * reduced threads as a compatibility hack for when we allowed
3894      * total vcpus not a multiple of threads-per-core.
3895      */
3896     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3897         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3898                    smp_threads);
3899         return;
3900     }
3901 
3902     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3903     if (!core_slot) {
3904         error_setg(errp, "core id %d out of range", cc->core_id);
3905         return;
3906     }
3907 
3908     if (core_slot->cpu) {
3909         error_setg(errp, "core %d already populated", cc->core_id);
3910         return;
3911     }
3912 
3913     numa_cpu_pre_plug(core_slot, dev, errp);
3914 }
3915 
3916 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3917                           void *fdt, int *fdt_start_offset, Error **errp)
3918 {
3919     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3920     int intc_phandle;
3921 
3922     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3923     if (intc_phandle <= 0) {
3924         return -1;
3925     }
3926 
3927     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3928         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3929         return -1;
3930     }
3931 
3932     /* generally SLOF creates these, for hotplug it's up to QEMU */
3933     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3934 
3935     return 0;
3936 }
3937 
3938 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3939                                Error **errp)
3940 {
3941     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3942     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3943     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3944     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3945 
3946     if (dev->hotplugged && !smc->dr_phb_enabled) {
3947         error_setg(errp, "PHB hotplug not supported for this machine");
3948         return;
3949     }
3950 
3951     if (sphb->index == (uint32_t)-1) {
3952         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3953         return;
3954     }
3955 
3956     /*
3957      * This will check that sphb->index doesn't exceed the maximum number of
3958      * PHBs for the current machine type.
3959      */
3960     smc->phb_placement(spapr, sphb->index,
3961                        &sphb->buid, &sphb->io_win_addr,
3962                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3963                        windows_supported, sphb->dma_liobn,
3964                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3965                        errp);
3966 }
3967 
3968 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3969                            Error **errp)
3970 {
3971     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3972     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3973     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3974     SpaprDrc *drc;
3975     bool hotplugged = spapr_drc_hotplugged(dev);
3976     Error *local_err = NULL;
3977 
3978     if (!smc->dr_phb_enabled) {
3979         return;
3980     }
3981 
3982     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3983     /* hotplug hooks should check it's enabled before getting this far */
3984     assert(drc);
3985 
3986     spapr_drc_attach(drc, dev, &local_err);
3987     if (local_err) {
3988         error_propagate(errp, local_err);
3989         return;
3990     }
3991 
3992     if (hotplugged) {
3993         spapr_hotplug_req_add_by_index(drc);
3994     } else {
3995         spapr_drc_reset(drc);
3996     }
3997 }
3998 
3999 void spapr_phb_release(DeviceState *dev)
4000 {
4001     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4002 
4003     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4004     object_unparent(OBJECT(dev));
4005 }
4006 
4007 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4008 {
4009     qdev_unrealize(dev);
4010 }
4011 
4012 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4013                                      DeviceState *dev, Error **errp)
4014 {
4015     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4016     SpaprDrc *drc;
4017 
4018     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4019     assert(drc);
4020 
4021     if (!spapr_drc_unplug_requested(drc)) {
4022         spapr_drc_detach(drc);
4023         spapr_hotplug_req_remove_by_index(drc);
4024     }
4025 }
4026 
4027 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4028                                  Error **errp)
4029 {
4030     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4031     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4032 
4033     if (spapr->tpm_proxy != NULL) {
4034         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4035         return;
4036     }
4037 
4038     spapr->tpm_proxy = tpm_proxy;
4039 }
4040 
4041 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4042 {
4043     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044 
4045     qdev_unrealize(dev);
4046     object_unparent(OBJECT(dev));
4047     spapr->tpm_proxy = NULL;
4048 }
4049 
4050 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4051                                       DeviceState *dev, Error **errp)
4052 {
4053     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4054         spapr_memory_plug(hotplug_dev, dev, errp);
4055     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4056         spapr_core_plug(hotplug_dev, dev, errp);
4057     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4058         spapr_phb_plug(hotplug_dev, dev, errp);
4059     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4060         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4061     }
4062 }
4063 
4064 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4065                                         DeviceState *dev, Error **errp)
4066 {
4067     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4068         spapr_memory_unplug(hotplug_dev, dev);
4069     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4070         spapr_core_unplug(hotplug_dev, dev);
4071     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4072         spapr_phb_unplug(hotplug_dev, dev);
4073     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4074         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4075     }
4076 }
4077 
4078 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4079                                                 DeviceState *dev, Error **errp)
4080 {
4081     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4082     MachineClass *mc = MACHINE_GET_CLASS(sms);
4083     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4084 
4085     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4086         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4087             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4088         } else {
4089             /* NOTE: this means there is a window after guest reset, prior to
4090              * CAS negotiation, where unplug requests will fail due to the
4091              * capability not being detected yet. This is a bit different than
4092              * the case with PCI unplug, where the events will be queued and
4093              * eventually handled by the guest after boot
4094              */
4095             error_setg(errp, "Memory hot unplug not supported for this guest");
4096         }
4097     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098         if (!mc->has_hotpluggable_cpus) {
4099             error_setg(errp, "CPU hot unplug not supported on this machine");
4100             return;
4101         }
4102         spapr_core_unplug_request(hotplug_dev, dev, errp);
4103     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4104         if (!smc->dr_phb_enabled) {
4105             error_setg(errp, "PHB hot unplug not supported on this machine");
4106             return;
4107         }
4108         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4109     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4110         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4111     }
4112 }
4113 
4114 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4115                                           DeviceState *dev, Error **errp)
4116 {
4117     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4118         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4119     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4120         spapr_core_pre_plug(hotplug_dev, dev, errp);
4121     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4122         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4123     }
4124 }
4125 
4126 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4127                                                  DeviceState *dev)
4128 {
4129     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4130         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4131         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4132         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4133         return HOTPLUG_HANDLER(machine);
4134     }
4135     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4136         PCIDevice *pcidev = PCI_DEVICE(dev);
4137         PCIBus *root = pci_device_root_bus(pcidev);
4138         SpaprPhbState *phb =
4139             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4140                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4141 
4142         if (phb) {
4143             return HOTPLUG_HANDLER(phb);
4144         }
4145     }
4146     return NULL;
4147 }
4148 
4149 static CpuInstanceProperties
4150 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4151 {
4152     CPUArchId *core_slot;
4153     MachineClass *mc = MACHINE_GET_CLASS(machine);
4154 
4155     /* make sure possible_cpu are intialized */
4156     mc->possible_cpu_arch_ids(machine);
4157     /* get CPU core slot containing thread that matches cpu_index */
4158     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4159     assert(core_slot);
4160     return core_slot->props;
4161 }
4162 
4163 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4164 {
4165     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4166 }
4167 
4168 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4169 {
4170     int i;
4171     unsigned int smp_threads = machine->smp.threads;
4172     unsigned int smp_cpus = machine->smp.cpus;
4173     const char *core_type;
4174     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4175     MachineClass *mc = MACHINE_GET_CLASS(machine);
4176 
4177     if (!mc->has_hotpluggable_cpus) {
4178         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4179     }
4180     if (machine->possible_cpus) {
4181         assert(machine->possible_cpus->len == spapr_max_cores);
4182         return machine->possible_cpus;
4183     }
4184 
4185     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4186     if (!core_type) {
4187         error_report("Unable to find sPAPR CPU Core definition");
4188         exit(1);
4189     }
4190 
4191     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4192                              sizeof(CPUArchId) * spapr_max_cores);
4193     machine->possible_cpus->len = spapr_max_cores;
4194     for (i = 0; i < machine->possible_cpus->len; i++) {
4195         int core_id = i * smp_threads;
4196 
4197         machine->possible_cpus->cpus[i].type = core_type;
4198         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4199         machine->possible_cpus->cpus[i].arch_id = core_id;
4200         machine->possible_cpus->cpus[i].props.has_core_id = true;
4201         machine->possible_cpus->cpus[i].props.core_id = core_id;
4202     }
4203     return machine->possible_cpus;
4204 }
4205 
4206 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4207                                 uint64_t *buid, hwaddr *pio,
4208                                 hwaddr *mmio32, hwaddr *mmio64,
4209                                 unsigned n_dma, uint32_t *liobns,
4210                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4211 {
4212     /*
4213      * New-style PHB window placement.
4214      *
4215      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4216      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4217      * windows.
4218      *
4219      * Some guest kernels can't work with MMIO windows above 1<<46
4220      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4221      *
4222      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4223      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4224      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4225      * 1TiB 64-bit MMIO windows for each PHB.
4226      */
4227     const uint64_t base_buid = 0x800000020000000ULL;
4228     int i;
4229 
4230     /* Sanity check natural alignments */
4231     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4232     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4233     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4234     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4235     /* Sanity check bounds */
4236     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4237                       SPAPR_PCI_MEM32_WIN_SIZE);
4238     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4239                       SPAPR_PCI_MEM64_WIN_SIZE);
4240 
4241     if (index >= SPAPR_MAX_PHBS) {
4242         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4243                    SPAPR_MAX_PHBS - 1);
4244         return;
4245     }
4246 
4247     *buid = base_buid + index;
4248     for (i = 0; i < n_dma; ++i) {
4249         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4250     }
4251 
4252     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4253     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4254     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4255 
4256     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4257     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4258 }
4259 
4260 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4261 {
4262     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4263 
4264     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4265 }
4266 
4267 static void spapr_ics_resend(XICSFabric *dev)
4268 {
4269     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4270 
4271     ics_resend(spapr->ics);
4272 }
4273 
4274 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4275 {
4276     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4277 
4278     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4279 }
4280 
4281 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4282                                  Monitor *mon)
4283 {
4284     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4285 
4286     spapr_irq_print_info(spapr, mon);
4287     monitor_printf(mon, "irqchip: %s\n",
4288                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4289 }
4290 
4291 /*
4292  * This is a XIVE only operation
4293  */
4294 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4295                            uint8_t nvt_blk, uint32_t nvt_idx,
4296                            bool cam_ignore, uint8_t priority,
4297                            uint32_t logic_serv, XiveTCTXMatch *match)
4298 {
4299     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4300     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4301     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4302     int count;
4303 
4304     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4305                            priority, logic_serv, match);
4306     if (count < 0) {
4307         return count;
4308     }
4309 
4310     /*
4311      * When we implement the save and restore of the thread interrupt
4312      * contexts in the enter/exit CPU handlers of the machine and the
4313      * escalations in QEMU, we should be able to handle non dispatched
4314      * vCPUs.
4315      *
4316      * Until this is done, the sPAPR machine should find at least one
4317      * matching context always.
4318      */
4319     if (count == 0) {
4320         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4321                       nvt_blk, nvt_idx);
4322     }
4323 
4324     return count;
4325 }
4326 
4327 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4328 {
4329     return cpu->vcpu_id;
4330 }
4331 
4332 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4333 {
4334     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4335     MachineState *ms = MACHINE(spapr);
4336     int vcpu_id;
4337 
4338     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4339 
4340     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4341         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4342         error_append_hint(errp, "Adjust the number of cpus to %d "
4343                           "or try to raise the number of threads per core\n",
4344                           vcpu_id * ms->smp.threads / spapr->vsmt);
4345         return;
4346     }
4347 
4348     cpu->vcpu_id = vcpu_id;
4349 }
4350 
4351 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4352 {
4353     CPUState *cs;
4354 
4355     CPU_FOREACH(cs) {
4356         PowerPCCPU *cpu = POWERPC_CPU(cs);
4357 
4358         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4359             return cpu;
4360         }
4361     }
4362 
4363     return NULL;
4364 }
4365 
4366 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4367 {
4368     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4369 
4370     /* These are only called by TCG, KVM maintains dispatch state */
4371 
4372     spapr_cpu->prod = false;
4373     if (spapr_cpu->vpa_addr) {
4374         CPUState *cs = CPU(cpu);
4375         uint32_t dispatch;
4376 
4377         dispatch = ldl_be_phys(cs->as,
4378                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4379         dispatch++;
4380         if ((dispatch & 1) != 0) {
4381             qemu_log_mask(LOG_GUEST_ERROR,
4382                           "VPA: incorrect dispatch counter value for "
4383                           "dispatched partition %u, correcting.\n", dispatch);
4384             dispatch++;
4385         }
4386         stl_be_phys(cs->as,
4387                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4388     }
4389 }
4390 
4391 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4392 {
4393     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4394 
4395     if (spapr_cpu->vpa_addr) {
4396         CPUState *cs = CPU(cpu);
4397         uint32_t dispatch;
4398 
4399         dispatch = ldl_be_phys(cs->as,
4400                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4401         dispatch++;
4402         if ((dispatch & 1) != 1) {
4403             qemu_log_mask(LOG_GUEST_ERROR,
4404                           "VPA: incorrect dispatch counter value for "
4405                           "preempted partition %u, correcting.\n", dispatch);
4406             dispatch++;
4407         }
4408         stl_be_phys(cs->as,
4409                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4410     }
4411 }
4412 
4413 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4414 {
4415     MachineClass *mc = MACHINE_CLASS(oc);
4416     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4417     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4418     NMIClass *nc = NMI_CLASS(oc);
4419     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4420     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4421     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4422     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4423     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4424 
4425     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4426     mc->ignore_boot_device_suffixes = true;
4427 
4428     /*
4429      * We set up the default / latest behaviour here.  The class_init
4430      * functions for the specific versioned machine types can override
4431      * these details for backwards compatibility
4432      */
4433     mc->init = spapr_machine_init;
4434     mc->reset = spapr_machine_reset;
4435     mc->block_default_type = IF_SCSI;
4436     mc->max_cpus = 1024;
4437     mc->no_parallel = 1;
4438     mc->default_boot_order = "";
4439     mc->default_ram_size = 512 * MiB;
4440     mc->default_ram_id = "ppc_spapr.ram";
4441     mc->default_display = "std";
4442     mc->kvm_type = spapr_kvm_type;
4443     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4444     mc->pci_allow_0_address = true;
4445     assert(!mc->get_hotplug_handler);
4446     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4447     hc->pre_plug = spapr_machine_device_pre_plug;
4448     hc->plug = spapr_machine_device_plug;
4449     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4450     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4451     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4452     hc->unplug_request = spapr_machine_device_unplug_request;
4453     hc->unplug = spapr_machine_device_unplug;
4454 
4455     smc->dr_lmb_enabled = true;
4456     smc->update_dt_enabled = true;
4457     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4458     mc->has_hotpluggable_cpus = true;
4459     mc->nvdimm_supported = true;
4460     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4461     fwc->get_dev_path = spapr_get_fw_dev_path;
4462     nc->nmi_monitor_handler = spapr_nmi;
4463     smc->phb_placement = spapr_phb_placement;
4464     vhc->hypercall = emulate_spapr_hypercall;
4465     vhc->hpt_mask = spapr_hpt_mask;
4466     vhc->map_hptes = spapr_map_hptes;
4467     vhc->unmap_hptes = spapr_unmap_hptes;
4468     vhc->hpte_set_c = spapr_hpte_set_c;
4469     vhc->hpte_set_r = spapr_hpte_set_r;
4470     vhc->get_pate = spapr_get_pate;
4471     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4472     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4473     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4474     xic->ics_get = spapr_ics_get;
4475     xic->ics_resend = spapr_ics_resend;
4476     xic->icp_get = spapr_icp_get;
4477     ispc->print_info = spapr_pic_print_info;
4478     /* Force NUMA node memory size to be a multiple of
4479      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4480      * in which LMBs are represented and hot-added
4481      */
4482     mc->numa_mem_align_shift = 28;
4483     mc->auto_enable_numa = true;
4484 
4485     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4486     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4487     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4488     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4489     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4490     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4491     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4492     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4493     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4494     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4495     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4496     spapr_caps_add_properties(smc);
4497     smc->irq = &spapr_irq_dual;
4498     smc->dr_phb_enabled = true;
4499     smc->linux_pci_probe = true;
4500     smc->smp_threads_vsmt = true;
4501     smc->nr_xirqs = SPAPR_NR_XIRQS;
4502     xfc->match_nvt = spapr_match_nvt;
4503 }
4504 
4505 static const TypeInfo spapr_machine_info = {
4506     .name          = TYPE_SPAPR_MACHINE,
4507     .parent        = TYPE_MACHINE,
4508     .abstract      = true,
4509     .instance_size = sizeof(SpaprMachineState),
4510     .instance_init = spapr_instance_init,
4511     .instance_finalize = spapr_machine_finalizefn,
4512     .class_size    = sizeof(SpaprMachineClass),
4513     .class_init    = spapr_machine_class_init,
4514     .interfaces = (InterfaceInfo[]) {
4515         { TYPE_FW_PATH_PROVIDER },
4516         { TYPE_NMI },
4517         { TYPE_HOTPLUG_HANDLER },
4518         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4519         { TYPE_XICS_FABRIC },
4520         { TYPE_INTERRUPT_STATS_PROVIDER },
4521         { TYPE_XIVE_FABRIC },
4522         { }
4523     },
4524 };
4525 
4526 static void spapr_machine_latest_class_options(MachineClass *mc)
4527 {
4528     mc->alias = "pseries";
4529     mc->is_default = true;
4530 }
4531 
4532 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4533     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4534                                                     void *data)      \
4535     {                                                                \
4536         MachineClass *mc = MACHINE_CLASS(oc);                        \
4537         spapr_machine_##suffix##_class_options(mc);                  \
4538         if (latest) {                                                \
4539             spapr_machine_latest_class_options(mc);                  \
4540         }                                                            \
4541     }                                                                \
4542     static const TypeInfo spapr_machine_##suffix##_info = {          \
4543         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4544         .parent = TYPE_SPAPR_MACHINE,                                \
4545         .class_init = spapr_machine_##suffix##_class_init,           \
4546     };                                                               \
4547     static void spapr_machine_register_##suffix(void)                \
4548     {                                                                \
4549         type_register(&spapr_machine_##suffix##_info);               \
4550     }                                                                \
4551     type_init(spapr_machine_register_##suffix)
4552 
4553 /*
4554  * pseries-5.2
4555  */
4556 static void spapr_machine_5_2_class_options(MachineClass *mc)
4557 {
4558     /* Defaults for the latest behaviour inherited from the base class */
4559 }
4560 
4561 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4562 
4563 /*
4564  * pseries-5.1
4565  */
4566 static void spapr_machine_5_1_class_options(MachineClass *mc)
4567 {
4568     spapr_machine_5_2_class_options(mc);
4569     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4570 }
4571 
4572 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4573 
4574 /*
4575  * pseries-5.0
4576  */
4577 static void spapr_machine_5_0_class_options(MachineClass *mc)
4578 {
4579     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4580     static GlobalProperty compat[] = {
4581         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4582     };
4583 
4584     spapr_machine_5_1_class_options(mc);
4585     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4586     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4587     mc->numa_mem_supported = true;
4588     smc->pre_5_1_assoc_refpoints = true;
4589 }
4590 
4591 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4592 
4593 /*
4594  * pseries-4.2
4595  */
4596 static void spapr_machine_4_2_class_options(MachineClass *mc)
4597 {
4598     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4599 
4600     spapr_machine_5_0_class_options(mc);
4601     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4602     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4603     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4604     smc->rma_limit = 16 * GiB;
4605     mc->nvdimm_supported = false;
4606 }
4607 
4608 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4609 
4610 /*
4611  * pseries-4.1
4612  */
4613 static void spapr_machine_4_1_class_options(MachineClass *mc)
4614 {
4615     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4616     static GlobalProperty compat[] = {
4617         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4618         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4619     };
4620 
4621     spapr_machine_4_2_class_options(mc);
4622     smc->linux_pci_probe = false;
4623     smc->smp_threads_vsmt = false;
4624     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4625     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4626 }
4627 
4628 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4629 
4630 /*
4631  * pseries-4.0
4632  */
4633 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4634                               uint64_t *buid, hwaddr *pio,
4635                               hwaddr *mmio32, hwaddr *mmio64,
4636                               unsigned n_dma, uint32_t *liobns,
4637                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4638 {
4639     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4640                         nv2gpa, nv2atsd, errp);
4641     *nv2gpa = 0;
4642     *nv2atsd = 0;
4643 }
4644 
4645 static void spapr_machine_4_0_class_options(MachineClass *mc)
4646 {
4647     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4648 
4649     spapr_machine_4_1_class_options(mc);
4650     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4651     smc->phb_placement = phb_placement_4_0;
4652     smc->irq = &spapr_irq_xics;
4653     smc->pre_4_1_migration = true;
4654 }
4655 
4656 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4657 
4658 /*
4659  * pseries-3.1
4660  */
4661 static void spapr_machine_3_1_class_options(MachineClass *mc)
4662 {
4663     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4664 
4665     spapr_machine_4_0_class_options(mc);
4666     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4667 
4668     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4669     smc->update_dt_enabled = false;
4670     smc->dr_phb_enabled = false;
4671     smc->broken_host_serial_model = true;
4672     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4673     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4674     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4675     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4676 }
4677 
4678 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4679 
4680 /*
4681  * pseries-3.0
4682  */
4683 
4684 static void spapr_machine_3_0_class_options(MachineClass *mc)
4685 {
4686     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4687 
4688     spapr_machine_3_1_class_options(mc);
4689     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4690 
4691     smc->legacy_irq_allocation = true;
4692     smc->nr_xirqs = 0x400;
4693     smc->irq = &spapr_irq_xics_legacy;
4694 }
4695 
4696 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4697 
4698 /*
4699  * pseries-2.12
4700  */
4701 static void spapr_machine_2_12_class_options(MachineClass *mc)
4702 {
4703     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4704     static GlobalProperty compat[] = {
4705         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4706         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4707     };
4708 
4709     spapr_machine_3_0_class_options(mc);
4710     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4711     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4712 
4713     /* We depend on kvm_enabled() to choose a default value for the
4714      * hpt-max-page-size capability. Of course we can't do it here
4715      * because this is too early and the HW accelerator isn't initialzed
4716      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4717      */
4718     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4719 }
4720 
4721 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4722 
4723 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4724 {
4725     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4726 
4727     spapr_machine_2_12_class_options(mc);
4728     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4729     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4730     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4731 }
4732 
4733 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4734 
4735 /*
4736  * pseries-2.11
4737  */
4738 
4739 static void spapr_machine_2_11_class_options(MachineClass *mc)
4740 {
4741     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4742 
4743     spapr_machine_2_12_class_options(mc);
4744     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4745     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4746 }
4747 
4748 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4749 
4750 /*
4751  * pseries-2.10
4752  */
4753 
4754 static void spapr_machine_2_10_class_options(MachineClass *mc)
4755 {
4756     spapr_machine_2_11_class_options(mc);
4757     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4758 }
4759 
4760 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4761 
4762 /*
4763  * pseries-2.9
4764  */
4765 
4766 static void spapr_machine_2_9_class_options(MachineClass *mc)
4767 {
4768     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4769     static GlobalProperty compat[] = {
4770         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4771     };
4772 
4773     spapr_machine_2_10_class_options(mc);
4774     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4775     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4776     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4777     smc->pre_2_10_has_unused_icps = true;
4778     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4779 }
4780 
4781 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4782 
4783 /*
4784  * pseries-2.8
4785  */
4786 
4787 static void spapr_machine_2_8_class_options(MachineClass *mc)
4788 {
4789     static GlobalProperty compat[] = {
4790         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4791     };
4792 
4793     spapr_machine_2_9_class_options(mc);
4794     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4795     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4796     mc->numa_mem_align_shift = 23;
4797 }
4798 
4799 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4800 
4801 /*
4802  * pseries-2.7
4803  */
4804 
4805 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4806                               uint64_t *buid, hwaddr *pio,
4807                               hwaddr *mmio32, hwaddr *mmio64,
4808                               unsigned n_dma, uint32_t *liobns,
4809                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4810 {
4811     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4812     const uint64_t base_buid = 0x800000020000000ULL;
4813     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4814     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4815     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4816     const uint32_t max_index = 255;
4817     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4818 
4819     uint64_t ram_top = MACHINE(spapr)->ram_size;
4820     hwaddr phb0_base, phb_base;
4821     int i;
4822 
4823     /* Do we have device memory? */
4824     if (MACHINE(spapr)->maxram_size > ram_top) {
4825         /* Can't just use maxram_size, because there may be an
4826          * alignment gap between normal and device memory regions
4827          */
4828         ram_top = MACHINE(spapr)->device_memory->base +
4829             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4830     }
4831 
4832     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4833 
4834     if (index > max_index) {
4835         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4836                    max_index);
4837         return;
4838     }
4839 
4840     *buid = base_buid + index;
4841     for (i = 0; i < n_dma; ++i) {
4842         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4843     }
4844 
4845     phb_base = phb0_base + index * phb_spacing;
4846     *pio = phb_base + pio_offset;
4847     *mmio32 = phb_base + mmio_offset;
4848     /*
4849      * We don't set the 64-bit MMIO window, relying on the PHB's
4850      * fallback behaviour of automatically splitting a large "32-bit"
4851      * window into contiguous 32-bit and 64-bit windows
4852      */
4853 
4854     *nv2gpa = 0;
4855     *nv2atsd = 0;
4856 }
4857 
4858 static void spapr_machine_2_7_class_options(MachineClass *mc)
4859 {
4860     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4861     static GlobalProperty compat[] = {
4862         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4863         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4864         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4865         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4866     };
4867 
4868     spapr_machine_2_8_class_options(mc);
4869     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4870     mc->default_machine_opts = "modern-hotplug-events=off";
4871     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4872     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4873     smc->phb_placement = phb_placement_2_7;
4874 }
4875 
4876 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4877 
4878 /*
4879  * pseries-2.6
4880  */
4881 
4882 static void spapr_machine_2_6_class_options(MachineClass *mc)
4883 {
4884     static GlobalProperty compat[] = {
4885         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4886     };
4887 
4888     spapr_machine_2_7_class_options(mc);
4889     mc->has_hotpluggable_cpus = false;
4890     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4891     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4892 }
4893 
4894 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4895 
4896 /*
4897  * pseries-2.5
4898  */
4899 
4900 static void spapr_machine_2_5_class_options(MachineClass *mc)
4901 {
4902     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4903     static GlobalProperty compat[] = {
4904         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4905     };
4906 
4907     spapr_machine_2_6_class_options(mc);
4908     smc->use_ohci_by_default = true;
4909     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4910     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4911 }
4912 
4913 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4914 
4915 /*
4916  * pseries-2.4
4917  */
4918 
4919 static void spapr_machine_2_4_class_options(MachineClass *mc)
4920 {
4921     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4922 
4923     spapr_machine_2_5_class_options(mc);
4924     smc->dr_lmb_enabled = false;
4925     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4926 }
4927 
4928 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4929 
4930 /*
4931  * pseries-2.3
4932  */
4933 
4934 static void spapr_machine_2_3_class_options(MachineClass *mc)
4935 {
4936     static GlobalProperty compat[] = {
4937         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4938     };
4939     spapr_machine_2_4_class_options(mc);
4940     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4941     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4942 }
4943 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4944 
4945 /*
4946  * pseries-2.2
4947  */
4948 
4949 static void spapr_machine_2_2_class_options(MachineClass *mc)
4950 {
4951     static GlobalProperty compat[] = {
4952         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4953     };
4954 
4955     spapr_machine_2_3_class_options(mc);
4956     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4957     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4958     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4959 }
4960 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4961 
4962 /*
4963  * pseries-2.1
4964  */
4965 
4966 static void spapr_machine_2_1_class_options(MachineClass *mc)
4967 {
4968     spapr_machine_2_2_class_options(mc);
4969     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4970 }
4971 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4972 
4973 static void spapr_machine_register_types(void)
4974 {
4975     type_register_static(&spapr_machine_info);
4976 }
4977 
4978 type_init(spapr_machine_register_types)
4979