1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/numa.h" 33 #include "sysemu/qtest.h" 34 #include "hw/hw.h" 35 #include "qemu/log.h" 36 #include "hw/fw-path-provider.h" 37 #include "elf.h" 38 #include "net/net.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/cpus.h" 41 #include "sysemu/hw_accel.h" 42 #include "kvm_ppc.h" 43 #include "migration/misc.h" 44 #include "migration/global_state.h" 45 #include "migration/register.h" 46 #include "mmu-hash64.h" 47 #include "mmu-book3s-v3.h" 48 #include "cpu-models.h" 49 #include "qom/cpu.h" 50 51 #include "hw/boards.h" 52 #include "hw/ppc/ppc.h" 53 #include "hw/loader.h" 54 55 #include "hw/ppc/fdt.h" 56 #include "hw/ppc/spapr.h" 57 #include "hw/ppc/spapr_vio.h" 58 #include "hw/pci-host/spapr.h" 59 #include "hw/pci/msi.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/scsi/scsi.h" 63 #include "hw/virtio/virtio-scsi.h" 64 #include "hw/virtio/vhost-scsi-common.h" 65 66 #include "exec/address-spaces.h" 67 #include "exec/ram_addr.h" 68 #include "hw/usb.h" 69 #include "qemu/config-file.h" 70 #include "qemu/error-report.h" 71 #include "trace.h" 72 #include "hw/nmi.h" 73 #include "hw/intc/intc.h" 74 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 #include "hw/mem/memory-device.h" 78 79 #include <libfdt.h> 80 81 /* SLOF memory layout: 82 * 83 * SLOF raw image loaded at 0, copies its romfs right below the flat 84 * device-tree, then position SLOF itself 31M below that 85 * 86 * So we set FW_OVERHEAD to 40MB which should account for all of that 87 * and more 88 * 89 * We load our kernel at 4M, leaving space for SLOF initial image 90 */ 91 #define FDT_MAX_SIZE 0x100000 92 #define RTAS_MAX_SIZE 0x10000 93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 94 #define FW_MAX_SIZE 0x400000 95 #define FW_FILE_NAME "slof.bin" 96 #define FW_OVERHEAD 0x2800000 97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 98 99 #define MIN_RMA_SLOF 128UL 100 101 #define PHANDLE_INTC 0x00001111 102 103 /* These two functions implement the VCPU id numbering: one to compute them 104 * all and one to identify thread 0 of a VCORE. Any change to the first one 105 * is likely to have an impact on the second one, so let's keep them close. 106 */ 107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 108 { 109 MachineState *ms = MACHINE(spapr); 110 unsigned int smp_threads = ms->smp.threads; 111 112 assert(spapr->vsmt); 113 return 114 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 115 } 116 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 117 PowerPCCPU *cpu) 118 { 119 assert(spapr->vsmt); 120 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 121 } 122 123 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 124 { 125 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 126 * and newer QEMUs don't even have them. In both cases, we don't want 127 * to send anything on the wire. 128 */ 129 return false; 130 } 131 132 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 133 .name = "icp/server", 134 .version_id = 1, 135 .minimum_version_id = 1, 136 .needed = pre_2_10_vmstate_dummy_icp_needed, 137 .fields = (VMStateField[]) { 138 VMSTATE_UNUSED(4), /* uint32_t xirr */ 139 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 140 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 141 VMSTATE_END_OF_LIST() 142 }, 143 }; 144 145 static void pre_2_10_vmstate_register_dummy_icp(int i) 146 { 147 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 148 (void *)(uintptr_t) i); 149 } 150 151 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 152 { 153 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 154 (void *)(uintptr_t) i); 155 } 156 157 int spapr_max_server_number(SpaprMachineState *spapr) 158 { 159 MachineState *ms = MACHINE(spapr); 160 161 assert(spapr->vsmt); 162 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 163 } 164 165 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 166 int smt_threads) 167 { 168 int i, ret = 0; 169 uint32_t servers_prop[smt_threads]; 170 uint32_t gservers_prop[smt_threads * 2]; 171 int index = spapr_get_vcpu_id(cpu); 172 173 if (cpu->compat_pvr) { 174 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 175 if (ret < 0) { 176 return ret; 177 } 178 } 179 180 /* Build interrupt servers and gservers properties */ 181 for (i = 0; i < smt_threads; i++) { 182 servers_prop[i] = cpu_to_be32(index + i); 183 /* Hack, direct the group queues back to cpu 0 */ 184 gservers_prop[i*2] = cpu_to_be32(index + i); 185 gservers_prop[i*2 + 1] = 0; 186 } 187 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 188 servers_prop, sizeof(servers_prop)); 189 if (ret < 0) { 190 return ret; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 193 gservers_prop, sizeof(gservers_prop)); 194 195 return ret; 196 } 197 198 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 199 { 200 int index = spapr_get_vcpu_id(cpu); 201 uint32_t associativity[] = {cpu_to_be32(0x5), 202 cpu_to_be32(0x0), 203 cpu_to_be32(0x0), 204 cpu_to_be32(0x0), 205 cpu_to_be32(cpu->node_id), 206 cpu_to_be32(index)}; 207 208 /* Advertise NUMA via ibm,associativity */ 209 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 210 sizeof(associativity)); 211 } 212 213 /* Populate the "ibm,pa-features" property */ 214 static void spapr_populate_pa_features(SpaprMachineState *spapr, 215 PowerPCCPU *cpu, 216 void *fdt, int offset, 217 bool legacy_guest) 218 { 219 uint8_t pa_features_206[] = { 6, 0, 220 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 221 uint8_t pa_features_207[] = { 24, 0, 222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 226 uint8_t pa_features_300[] = { 66, 0, 227 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 228 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 229 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 230 /* 6: DS207 */ 231 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 232 /* 16: Vector */ 233 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 234 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 235 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 236 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 238 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 239 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 240 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 242 /* 42: PM, 44: PC RA, 46: SC vec'd */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 244 /* 48: SIMD, 50: QP BFP, 52: String */ 245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 246 /* 54: DecFP, 56: DecI, 58: SHA */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 248 /* 60: NM atomic, 62: RNG */ 249 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 250 }; 251 uint8_t *pa_features = NULL; 252 size_t pa_size; 253 254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 255 pa_features = pa_features_206; 256 pa_size = sizeof(pa_features_206); 257 } 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_207; 260 pa_size = sizeof(pa_features_207); 261 } 262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 263 pa_features = pa_features_300; 264 pa_size = sizeof(pa_features_300); 265 } 266 if (!pa_features) { 267 return; 268 } 269 270 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 271 /* 272 * Note: we keep CI large pages off by default because a 64K capable 273 * guest provisioned with large pages might otherwise try to map a qemu 274 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 275 * even if that qemu runs on a 4k host. 276 * We dd this bit back here if we are confident this is not an issue 277 */ 278 pa_features[3] |= 0x20; 279 } 280 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 281 pa_features[24] |= 0x80; /* Transactional memory support */ 282 } 283 if (legacy_guest && pa_size > 40) { 284 /* Workaround for broken kernels that attempt (guest) radix 285 * mode when they can't handle it, if they see the radix bit set 286 * in pa-features. So hide it from them. */ 287 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 288 } 289 290 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 291 } 292 293 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 294 { 295 MachineState *ms = MACHINE(spapr); 296 int ret = 0, offset, cpus_offset; 297 CPUState *cs; 298 char cpu_model[32]; 299 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 300 301 CPU_FOREACH(cs) { 302 PowerPCCPU *cpu = POWERPC_CPU(cs); 303 DeviceClass *dc = DEVICE_GET_CLASS(cs); 304 int index = spapr_get_vcpu_id(cpu); 305 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 306 307 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 308 continue; 309 } 310 311 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 312 313 cpus_offset = fdt_path_offset(fdt, "/cpus"); 314 if (cpus_offset < 0) { 315 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 316 if (cpus_offset < 0) { 317 return cpus_offset; 318 } 319 } 320 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 321 if (offset < 0) { 322 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 323 if (offset < 0) { 324 return offset; 325 } 326 } 327 328 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 329 pft_size_prop, sizeof(pft_size_prop)); 330 if (ret < 0) { 331 return ret; 332 } 333 334 if (nb_numa_nodes > 1) { 335 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 336 if (ret < 0) { 337 return ret; 338 } 339 } 340 341 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 342 if (ret < 0) { 343 return ret; 344 } 345 346 spapr_populate_pa_features(spapr, cpu, fdt, offset, 347 spapr->cas_legacy_guest_workaround); 348 } 349 return ret; 350 } 351 352 static hwaddr spapr_node0_size(MachineState *machine) 353 { 354 if (nb_numa_nodes) { 355 int i; 356 for (i = 0; i < nb_numa_nodes; ++i) { 357 if (numa_info[i].node_mem) { 358 return MIN(pow2floor(numa_info[i].node_mem), 359 machine->ram_size); 360 } 361 } 362 } 363 return machine->ram_size; 364 } 365 366 static void add_str(GString *s, const gchar *s1) 367 { 368 g_string_append_len(s, s1, strlen(s1) + 1); 369 } 370 371 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 372 hwaddr size) 373 { 374 uint32_t associativity[] = { 375 cpu_to_be32(0x4), /* length */ 376 cpu_to_be32(0x0), cpu_to_be32(0x0), 377 cpu_to_be32(0x0), cpu_to_be32(nodeid) 378 }; 379 char mem_name[32]; 380 uint64_t mem_reg_property[2]; 381 int off; 382 383 mem_reg_property[0] = cpu_to_be64(start); 384 mem_reg_property[1] = cpu_to_be64(size); 385 386 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 387 off = fdt_add_subnode(fdt, 0, mem_name); 388 _FDT(off); 389 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 390 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 391 sizeof(mem_reg_property)))); 392 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 393 sizeof(associativity)))); 394 return off; 395 } 396 397 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 398 { 399 MachineState *machine = MACHINE(spapr); 400 hwaddr mem_start, node_size; 401 int i, nb_nodes = nb_numa_nodes; 402 NodeInfo *nodes = numa_info; 403 NodeInfo ramnode; 404 405 /* No NUMA nodes, assume there is just one node with whole RAM */ 406 if (!nb_numa_nodes) { 407 nb_nodes = 1; 408 ramnode.node_mem = machine->ram_size; 409 nodes = &ramnode; 410 } 411 412 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 413 if (!nodes[i].node_mem) { 414 continue; 415 } 416 if (mem_start >= machine->ram_size) { 417 node_size = 0; 418 } else { 419 node_size = nodes[i].node_mem; 420 if (node_size > machine->ram_size - mem_start) { 421 node_size = machine->ram_size - mem_start; 422 } 423 } 424 if (!mem_start) { 425 /* spapr_machine_init() checks for rma_size <= node0_size 426 * already */ 427 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 428 mem_start += spapr->rma_size; 429 node_size -= spapr->rma_size; 430 } 431 for ( ; node_size; ) { 432 hwaddr sizetmp = pow2floor(node_size); 433 434 /* mem_start != 0 here */ 435 if (ctzl(mem_start) < ctzl(sizetmp)) { 436 sizetmp = 1ULL << ctzl(mem_start); 437 } 438 439 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 440 node_size -= sizetmp; 441 mem_start += sizetmp; 442 } 443 } 444 445 return 0; 446 } 447 448 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 449 SpaprMachineState *spapr) 450 { 451 MachineState *ms = MACHINE(spapr); 452 PowerPCCPU *cpu = POWERPC_CPU(cs); 453 CPUPPCState *env = &cpu->env; 454 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 455 int index = spapr_get_vcpu_id(cpu); 456 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 457 0xffffffff, 0xffffffff}; 458 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 459 : SPAPR_TIMEBASE_FREQ; 460 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 461 uint32_t page_sizes_prop[64]; 462 size_t page_sizes_prop_size; 463 unsigned int smp_threads = ms->smp.threads; 464 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 465 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 466 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 467 SpaprDrc *drc; 468 int drc_index; 469 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 470 int i; 471 472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 473 if (drc) { 474 drc_index = spapr_drc_index(drc); 475 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 476 } 477 478 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 479 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 480 481 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 483 env->dcache_line_size))); 484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 485 env->dcache_line_size))); 486 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 487 env->icache_line_size))); 488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 489 env->icache_line_size))); 490 491 if (pcc->l1_dcache_size) { 492 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 493 pcc->l1_dcache_size))); 494 } else { 495 warn_report("Unknown L1 dcache size for cpu"); 496 } 497 if (pcc->l1_icache_size) { 498 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 499 pcc->l1_icache_size))); 500 } else { 501 warn_report("Unknown L1 icache size for cpu"); 502 } 503 504 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 505 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 506 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 507 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 508 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 509 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 510 511 if (env->spr_cb[SPR_PURR].oea_read) { 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 513 } 514 if (env->spr_cb[SPR_SPURR].oea_read) { 515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 516 } 517 518 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 519 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 520 segs, sizeof(segs)))); 521 } 522 523 /* Advertise VSX (vector extensions) if available 524 * 1 == VMX / Altivec available 525 * 2 == VSX available 526 * 527 * Only CPUs for which we create core types in spapr_cpu_core.c 528 * are possible, and all of those have VMX */ 529 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 531 } else { 532 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 533 } 534 535 /* Advertise DFP (Decimal Floating Point) if available 536 * 0 / no property == no DFP 537 * 1 == DFP available */ 538 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 540 } 541 542 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 543 sizeof(page_sizes_prop)); 544 if (page_sizes_prop_size) { 545 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 546 page_sizes_prop, page_sizes_prop_size))); 547 } 548 549 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 550 551 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 552 cs->cpu_index / vcpus_per_socket))); 553 554 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 555 pft_size_prop, sizeof(pft_size_prop)))); 556 557 if (nb_numa_nodes > 1) { 558 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 559 } 560 561 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 562 563 if (pcc->radix_page_info) { 564 for (i = 0; i < pcc->radix_page_info->count; i++) { 565 radix_AP_encodings[i] = 566 cpu_to_be32(pcc->radix_page_info->entries[i]); 567 } 568 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 569 radix_AP_encodings, 570 pcc->radix_page_info->count * 571 sizeof(radix_AP_encodings[0])))); 572 } 573 574 /* 575 * We set this property to let the guest know that it can use the large 576 * decrementer and its width in bits. 577 */ 578 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 579 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 580 pcc->lrg_decr_bits))); 581 } 582 583 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 584 { 585 CPUState **rev; 586 CPUState *cs; 587 int n_cpus; 588 int cpus_offset; 589 char *nodename; 590 int i; 591 592 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 593 _FDT(cpus_offset); 594 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 595 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 596 597 /* 598 * We walk the CPUs in reverse order to ensure that CPU DT nodes 599 * created by fdt_add_subnode() end up in the right order in FDT 600 * for the guest kernel the enumerate the CPUs correctly. 601 * 602 * The CPU list cannot be traversed in reverse order, so we need 603 * to do extra work. 604 */ 605 n_cpus = 0; 606 rev = NULL; 607 CPU_FOREACH(cs) { 608 rev = g_renew(CPUState *, rev, n_cpus + 1); 609 rev[n_cpus++] = cs; 610 } 611 612 for (i = n_cpus - 1; i >= 0; i--) { 613 CPUState *cs = rev[i]; 614 PowerPCCPU *cpu = POWERPC_CPU(cs); 615 int index = spapr_get_vcpu_id(cpu); 616 DeviceClass *dc = DEVICE_GET_CLASS(cs); 617 int offset; 618 619 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 620 continue; 621 } 622 623 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 624 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 625 g_free(nodename); 626 _FDT(offset); 627 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 628 } 629 630 g_free(rev); 631 } 632 633 static int spapr_rng_populate_dt(void *fdt) 634 { 635 int node; 636 int ret; 637 638 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 639 if (node <= 0) { 640 return -1; 641 } 642 ret = fdt_setprop_string(fdt, node, "device_type", 643 "ibm,platform-facilities"); 644 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 645 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 646 647 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 648 if (node <= 0) { 649 return -1; 650 } 651 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 652 653 return ret ? -1 : 0; 654 } 655 656 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 657 { 658 MemoryDeviceInfoList *info; 659 660 for (info = list; info; info = info->next) { 661 MemoryDeviceInfo *value = info->value; 662 663 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 664 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 665 666 if (addr >= pcdimm_info->addr && 667 addr < (pcdimm_info->addr + pcdimm_info->size)) { 668 return pcdimm_info->node; 669 } 670 } 671 } 672 673 return -1; 674 } 675 676 struct sPAPRDrconfCellV2 { 677 uint32_t seq_lmbs; 678 uint64_t base_addr; 679 uint32_t drc_index; 680 uint32_t aa_index; 681 uint32_t flags; 682 } QEMU_PACKED; 683 684 typedef struct DrconfCellQueue { 685 struct sPAPRDrconfCellV2 cell; 686 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 687 } DrconfCellQueue; 688 689 static DrconfCellQueue * 690 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 691 uint32_t drc_index, uint32_t aa_index, 692 uint32_t flags) 693 { 694 DrconfCellQueue *elem; 695 696 elem = g_malloc0(sizeof(*elem)); 697 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 698 elem->cell.base_addr = cpu_to_be64(base_addr); 699 elem->cell.drc_index = cpu_to_be32(drc_index); 700 elem->cell.aa_index = cpu_to_be32(aa_index); 701 elem->cell.flags = cpu_to_be32(flags); 702 703 return elem; 704 } 705 706 /* ibm,dynamic-memory-v2 */ 707 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 708 int offset, MemoryDeviceInfoList *dimms) 709 { 710 MachineState *machine = MACHINE(spapr); 711 uint8_t *int_buf, *cur_index; 712 int ret; 713 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 714 uint64_t addr, cur_addr, size; 715 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 716 uint64_t mem_end = machine->device_memory->base + 717 memory_region_size(&machine->device_memory->mr); 718 uint32_t node, buf_len, nr_entries = 0; 719 SpaprDrc *drc; 720 DrconfCellQueue *elem, *next; 721 MemoryDeviceInfoList *info; 722 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 723 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 724 725 /* Entry to cover RAM and the gap area */ 726 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 727 SPAPR_LMB_FLAGS_RESERVED | 728 SPAPR_LMB_FLAGS_DRC_INVALID); 729 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 730 nr_entries++; 731 732 cur_addr = machine->device_memory->base; 733 for (info = dimms; info; info = info->next) { 734 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 735 736 addr = di->addr; 737 size = di->size; 738 node = di->node; 739 740 /* Entry for hot-pluggable area */ 741 if (cur_addr < addr) { 742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 743 g_assert(drc); 744 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 745 cur_addr, spapr_drc_index(drc), -1, 0); 746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 747 nr_entries++; 748 } 749 750 /* Entry for DIMM */ 751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 752 g_assert(drc); 753 elem = spapr_get_drconf_cell(size / lmb_size, addr, 754 spapr_drc_index(drc), node, 755 SPAPR_LMB_FLAGS_ASSIGNED); 756 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 757 nr_entries++; 758 cur_addr = addr + size; 759 } 760 761 /* Entry for remaining hotpluggable area */ 762 if (cur_addr < mem_end) { 763 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 764 g_assert(drc); 765 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 766 cur_addr, spapr_drc_index(drc), -1, 0); 767 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 768 nr_entries++; 769 } 770 771 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 772 int_buf = cur_index = g_malloc0(buf_len); 773 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 774 cur_index += sizeof(nr_entries); 775 776 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 777 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 778 cur_index += sizeof(elem->cell); 779 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 780 g_free(elem); 781 } 782 783 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 784 g_free(int_buf); 785 if (ret < 0) { 786 return -1; 787 } 788 return 0; 789 } 790 791 /* ibm,dynamic-memory */ 792 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 793 int offset, MemoryDeviceInfoList *dimms) 794 { 795 MachineState *machine = MACHINE(spapr); 796 int i, ret; 797 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 798 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 799 uint32_t nr_lmbs = (machine->device_memory->base + 800 memory_region_size(&machine->device_memory->mr)) / 801 lmb_size; 802 uint32_t *int_buf, *cur_index, buf_len; 803 804 /* 805 * Allocate enough buffer size to fit in ibm,dynamic-memory 806 */ 807 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 808 cur_index = int_buf = g_malloc0(buf_len); 809 int_buf[0] = cpu_to_be32(nr_lmbs); 810 cur_index++; 811 for (i = 0; i < nr_lmbs; i++) { 812 uint64_t addr = i * lmb_size; 813 uint32_t *dynamic_memory = cur_index; 814 815 if (i >= device_lmb_start) { 816 SpaprDrc *drc; 817 818 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 819 g_assert(drc); 820 821 dynamic_memory[0] = cpu_to_be32(addr >> 32); 822 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 823 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 824 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 825 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 826 if (memory_region_present(get_system_memory(), addr)) { 827 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 828 } else { 829 dynamic_memory[5] = cpu_to_be32(0); 830 } 831 } else { 832 /* 833 * LMB information for RMA, boot time RAM and gap b/n RAM and 834 * device memory region -- all these are marked as reserved 835 * and as having no valid DRC. 836 */ 837 dynamic_memory[0] = cpu_to_be32(addr >> 32); 838 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 839 dynamic_memory[2] = cpu_to_be32(0); 840 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 841 dynamic_memory[4] = cpu_to_be32(-1); 842 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 843 SPAPR_LMB_FLAGS_DRC_INVALID); 844 } 845 846 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 847 } 848 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 849 g_free(int_buf); 850 if (ret < 0) { 851 return -1; 852 } 853 return 0; 854 } 855 856 /* 857 * Adds ibm,dynamic-reconfiguration-memory node. 858 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 859 * of this device tree node. 860 */ 861 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 862 { 863 MachineState *machine = MACHINE(spapr); 864 int ret, i, offset; 865 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 866 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 867 uint32_t *int_buf, *cur_index, buf_len; 868 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 869 MemoryDeviceInfoList *dimms = NULL; 870 871 /* 872 * Don't create the node if there is no device memory 873 */ 874 if (machine->ram_size == machine->maxram_size) { 875 return 0; 876 } 877 878 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 879 880 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 881 sizeof(prop_lmb_size)); 882 if (ret < 0) { 883 return ret; 884 } 885 886 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 887 if (ret < 0) { 888 return ret; 889 } 890 891 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 892 if (ret < 0) { 893 return ret; 894 } 895 896 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 897 dimms = qmp_memory_device_list(); 898 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 899 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 900 } else { 901 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 902 } 903 qapi_free_MemoryDeviceInfoList(dimms); 904 905 if (ret < 0) { 906 return ret; 907 } 908 909 /* ibm,associativity-lookup-arrays */ 910 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 911 cur_index = int_buf = g_malloc0(buf_len); 912 int_buf[0] = cpu_to_be32(nr_nodes); 913 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 914 cur_index += 2; 915 for (i = 0; i < nr_nodes; i++) { 916 uint32_t associativity[] = { 917 cpu_to_be32(0x0), 918 cpu_to_be32(0x0), 919 cpu_to_be32(0x0), 920 cpu_to_be32(i) 921 }; 922 memcpy(cur_index, associativity, sizeof(associativity)); 923 cur_index += 4; 924 } 925 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 926 (cur_index - int_buf) * sizeof(uint32_t)); 927 g_free(int_buf); 928 929 return ret; 930 } 931 932 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 933 SpaprOptionVector *ov5_updates) 934 { 935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 936 int ret = 0, offset; 937 938 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 939 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 940 g_assert(smc->dr_lmb_enabled); 941 ret = spapr_populate_drconf_memory(spapr, fdt); 942 if (ret) { 943 goto out; 944 } 945 } 946 947 offset = fdt_path_offset(fdt, "/chosen"); 948 if (offset < 0) { 949 offset = fdt_add_subnode(fdt, 0, "chosen"); 950 if (offset < 0) { 951 return offset; 952 } 953 } 954 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 955 "ibm,architecture-vec-5"); 956 957 out: 958 return ret; 959 } 960 961 static bool spapr_hotplugged_dev_before_cas(void) 962 { 963 Object *drc_container, *obj; 964 ObjectProperty *prop; 965 ObjectPropertyIterator iter; 966 967 drc_container = container_get(object_get_root(), "/dr-connector"); 968 object_property_iter_init(&iter, drc_container); 969 while ((prop = object_property_iter_next(&iter))) { 970 if (!strstart(prop->type, "link<", NULL)) { 971 continue; 972 } 973 obj = object_property_get_link(drc_container, prop->name, NULL); 974 if (spapr_drc_needed(obj)) { 975 return true; 976 } 977 } 978 return false; 979 } 980 981 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 982 target_ulong addr, target_ulong size, 983 SpaprOptionVector *ov5_updates) 984 { 985 void *fdt, *fdt_skel; 986 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 987 988 if (spapr_hotplugged_dev_before_cas()) { 989 return 1; 990 } 991 992 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 993 error_report("SLOF provided an unexpected CAS buffer size " 994 TARGET_FMT_lu " (min: %zu, max: %u)", 995 size, sizeof(hdr), FW_MAX_SIZE); 996 exit(EXIT_FAILURE); 997 } 998 999 size -= sizeof(hdr); 1000 1001 /* Create skeleton */ 1002 fdt_skel = g_malloc0(size); 1003 _FDT((fdt_create(fdt_skel, size))); 1004 _FDT((fdt_finish_reservemap(fdt_skel))); 1005 _FDT((fdt_begin_node(fdt_skel, ""))); 1006 _FDT((fdt_end_node(fdt_skel))); 1007 _FDT((fdt_finish(fdt_skel))); 1008 fdt = g_malloc0(size); 1009 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1010 g_free(fdt_skel); 1011 1012 /* Fixup cpu nodes */ 1013 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1014 1015 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1016 return -1; 1017 } 1018 1019 /* Pack resulting tree */ 1020 _FDT((fdt_pack(fdt))); 1021 1022 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1023 trace_spapr_cas_failed(size); 1024 return -1; 1025 } 1026 1027 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1028 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1029 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1030 g_free(fdt); 1031 1032 return 0; 1033 } 1034 1035 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1036 { 1037 MachineState *ms = MACHINE(spapr); 1038 int rtas; 1039 GString *hypertas = g_string_sized_new(256); 1040 GString *qemu_hypertas = g_string_sized_new(256); 1041 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1042 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1043 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1044 uint32_t lrdr_capacity[] = { 1045 cpu_to_be32(max_device_addr >> 32), 1046 cpu_to_be32(max_device_addr & 0xffffffff), 1047 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1048 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1049 }; 1050 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1051 uint32_t maxdomains[] = { 1052 cpu_to_be32(4), 1053 maxdomain, 1054 maxdomain, 1055 maxdomain, 1056 cpu_to_be32(spapr->gpu_numa_id), 1057 }; 1058 1059 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1060 1061 /* hypertas */ 1062 add_str(hypertas, "hcall-pft"); 1063 add_str(hypertas, "hcall-term"); 1064 add_str(hypertas, "hcall-dabr"); 1065 add_str(hypertas, "hcall-interrupt"); 1066 add_str(hypertas, "hcall-tce"); 1067 add_str(hypertas, "hcall-vio"); 1068 add_str(hypertas, "hcall-splpar"); 1069 add_str(hypertas, "hcall-bulk"); 1070 add_str(hypertas, "hcall-set-mode"); 1071 add_str(hypertas, "hcall-sprg0"); 1072 add_str(hypertas, "hcall-copy"); 1073 add_str(hypertas, "hcall-debug"); 1074 add_str(hypertas, "hcall-vphn"); 1075 add_str(qemu_hypertas, "hcall-memop1"); 1076 1077 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1078 add_str(hypertas, "hcall-multi-tce"); 1079 } 1080 1081 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1082 add_str(hypertas, "hcall-hpt-resize"); 1083 } 1084 1085 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1086 hypertas->str, hypertas->len)); 1087 g_string_free(hypertas, TRUE); 1088 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1089 qemu_hypertas->str, qemu_hypertas->len)); 1090 g_string_free(qemu_hypertas, TRUE); 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1093 refpoints, sizeof(refpoints))); 1094 1095 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1096 maxdomains, sizeof(maxdomains))); 1097 1098 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1099 RTAS_ERROR_LOG_MAX)); 1100 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1101 RTAS_EVENT_SCAN_RATE)); 1102 1103 g_assert(msi_nonbroken); 1104 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1105 1106 /* 1107 * According to PAPR, rtas ibm,os-term does not guarantee a return 1108 * back to the guest cpu. 1109 * 1110 * While an additional ibm,extended-os-term property indicates 1111 * that rtas call return will always occur. Set this property. 1112 */ 1113 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1114 1115 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1116 lrdr_capacity, sizeof(lrdr_capacity))); 1117 1118 spapr_dt_rtas_tokens(fdt, rtas); 1119 } 1120 1121 /* 1122 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1123 * and the XIVE features that the guest may request and thus the valid 1124 * values for bytes 23..26 of option vector 5: 1125 */ 1126 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1127 int chosen) 1128 { 1129 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1130 1131 char val[2 * 4] = { 1132 23, spapr->irq->ov5, /* Xive mode. */ 1133 24, 0x00, /* Hash/Radix, filled in below. */ 1134 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1135 26, 0x40, /* Radix options: GTSE == yes. */ 1136 }; 1137 1138 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1139 first_ppc_cpu->compat_pvr)) { 1140 /* 1141 * If we're in a pre POWER9 compat mode then the guest should 1142 * do hash and use the legacy interrupt mode 1143 */ 1144 val[1] = 0x00; /* XICS */ 1145 val[3] = 0x00; /* Hash */ 1146 } else if (kvm_enabled()) { 1147 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1148 val[3] = 0x80; /* OV5_MMU_BOTH */ 1149 } else if (kvmppc_has_cap_mmu_radix()) { 1150 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1151 } else { 1152 val[3] = 0x00; /* Hash */ 1153 } 1154 } else { 1155 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1156 val[3] = 0xC0; 1157 } 1158 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1159 val, sizeof(val))); 1160 } 1161 1162 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1163 { 1164 MachineState *machine = MACHINE(spapr); 1165 int chosen; 1166 const char *boot_device = machine->boot_order; 1167 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1168 size_t cb = 0; 1169 char *bootlist = get_boot_devices_list(&cb); 1170 1171 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1172 1173 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1174 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1175 spapr->initrd_base)); 1176 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1177 spapr->initrd_base + spapr->initrd_size)); 1178 1179 if (spapr->kernel_size) { 1180 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1181 cpu_to_be64(spapr->kernel_size) }; 1182 1183 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1184 &kprop, sizeof(kprop))); 1185 if (spapr->kernel_le) { 1186 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1187 } 1188 } 1189 if (boot_menu) { 1190 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1191 } 1192 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1193 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1194 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1195 1196 if (cb && bootlist) { 1197 int i; 1198 1199 for (i = 0; i < cb; i++) { 1200 if (bootlist[i] == '\n') { 1201 bootlist[i] = ' '; 1202 } 1203 } 1204 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1205 } 1206 1207 if (boot_device && strlen(boot_device)) { 1208 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1209 } 1210 1211 if (!spapr->has_graphics && stdout_path) { 1212 /* 1213 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1214 * kernel. New platforms should only use the "stdout-path" property. Set 1215 * the new property and continue using older property to remain 1216 * compatible with the existing firmware. 1217 */ 1218 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1219 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1220 } 1221 1222 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1223 1224 g_free(stdout_path); 1225 g_free(bootlist); 1226 } 1227 1228 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1229 { 1230 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1231 * KVM to work under pHyp with some guest co-operation */ 1232 int hypervisor; 1233 uint8_t hypercall[16]; 1234 1235 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1236 /* indicate KVM hypercall interface */ 1237 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1238 if (kvmppc_has_cap_fixup_hcalls()) { 1239 /* 1240 * Older KVM versions with older guest kernels were broken 1241 * with the magic page, don't allow the guest to map it. 1242 */ 1243 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1244 sizeof(hypercall))) { 1245 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1246 hypercall, sizeof(hypercall))); 1247 } 1248 } 1249 } 1250 1251 static void *spapr_build_fdt(SpaprMachineState *spapr) 1252 { 1253 MachineState *machine = MACHINE(spapr); 1254 MachineClass *mc = MACHINE_GET_CLASS(machine); 1255 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1256 int ret; 1257 void *fdt; 1258 SpaprPhbState *phb; 1259 char *buf; 1260 1261 fdt = g_malloc0(FDT_MAX_SIZE); 1262 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1263 1264 /* Root node */ 1265 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1266 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1267 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1268 1269 /* Guest UUID & Name*/ 1270 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1271 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1272 if (qemu_uuid_set) { 1273 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1274 } 1275 g_free(buf); 1276 1277 if (qemu_get_vm_name()) { 1278 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1279 qemu_get_vm_name())); 1280 } 1281 1282 /* Host Model & Serial Number */ 1283 if (spapr->host_model) { 1284 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1285 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1286 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1287 g_free(buf); 1288 } 1289 1290 if (spapr->host_serial) { 1291 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1292 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1293 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1294 g_free(buf); 1295 } 1296 1297 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1298 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1299 1300 /* /interrupt controller */ 1301 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1302 PHANDLE_INTC); 1303 1304 ret = spapr_populate_memory(spapr, fdt); 1305 if (ret < 0) { 1306 error_report("couldn't setup memory nodes in fdt"); 1307 exit(1); 1308 } 1309 1310 /* /vdevice */ 1311 spapr_dt_vdevice(spapr->vio_bus, fdt); 1312 1313 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1314 ret = spapr_rng_populate_dt(fdt); 1315 if (ret < 0) { 1316 error_report("could not set up rng device in the fdt"); 1317 exit(1); 1318 } 1319 } 1320 1321 QLIST_FOREACH(phb, &spapr->phbs, list) { 1322 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1323 if (ret < 0) { 1324 error_report("couldn't setup PCI devices in fdt"); 1325 exit(1); 1326 } 1327 } 1328 1329 /* cpus */ 1330 spapr_populate_cpus_dt_node(fdt, spapr); 1331 1332 if (smc->dr_lmb_enabled) { 1333 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1334 } 1335 1336 if (mc->has_hotpluggable_cpus) { 1337 int offset = fdt_path_offset(fdt, "/cpus"); 1338 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1339 if (ret < 0) { 1340 error_report("Couldn't set up CPU DR device tree properties"); 1341 exit(1); 1342 } 1343 } 1344 1345 /* /event-sources */ 1346 spapr_dt_events(spapr, fdt); 1347 1348 /* /rtas */ 1349 spapr_dt_rtas(spapr, fdt); 1350 1351 /* /chosen */ 1352 spapr_dt_chosen(spapr, fdt); 1353 1354 /* /hypervisor */ 1355 if (kvm_enabled()) { 1356 spapr_dt_hypervisor(spapr, fdt); 1357 } 1358 1359 /* Build memory reserve map */ 1360 if (spapr->kernel_size) { 1361 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1362 } 1363 if (spapr->initrd_size) { 1364 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1365 } 1366 1367 /* ibm,client-architecture-support updates */ 1368 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1369 if (ret < 0) { 1370 error_report("couldn't setup CAS properties fdt"); 1371 exit(1); 1372 } 1373 1374 if (smc->dr_phb_enabled) { 1375 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1376 if (ret < 0) { 1377 error_report("Couldn't set up PHB DR device tree properties"); 1378 exit(1); 1379 } 1380 } 1381 1382 return fdt; 1383 } 1384 1385 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1386 { 1387 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1388 } 1389 1390 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1391 PowerPCCPU *cpu) 1392 { 1393 CPUPPCState *env = &cpu->env; 1394 1395 /* The TCG path should also be holding the BQL at this point */ 1396 g_assert(qemu_mutex_iothread_locked()); 1397 1398 if (msr_pr) { 1399 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1400 env->gpr[3] = H_PRIVILEGE; 1401 } else { 1402 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1403 } 1404 } 1405 1406 struct LPCRSyncState { 1407 target_ulong value; 1408 target_ulong mask; 1409 }; 1410 1411 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1412 { 1413 struct LPCRSyncState *s = arg.host_ptr; 1414 PowerPCCPU *cpu = POWERPC_CPU(cs); 1415 CPUPPCState *env = &cpu->env; 1416 target_ulong lpcr; 1417 1418 cpu_synchronize_state(cs); 1419 lpcr = env->spr[SPR_LPCR]; 1420 lpcr &= ~s->mask; 1421 lpcr |= s->value; 1422 ppc_store_lpcr(cpu, lpcr); 1423 } 1424 1425 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1426 { 1427 CPUState *cs; 1428 struct LPCRSyncState s = { 1429 .value = value, 1430 .mask = mask 1431 }; 1432 CPU_FOREACH(cs) { 1433 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1434 } 1435 } 1436 1437 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1438 { 1439 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1440 1441 /* Copy PATE1:GR into PATE0:HR */ 1442 entry->dw0 = spapr->patb_entry & PATE0_HR; 1443 entry->dw1 = spapr->patb_entry; 1444 } 1445 1446 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1447 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1448 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1449 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1450 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1451 1452 /* 1453 * Get the fd to access the kernel htab, re-opening it if necessary 1454 */ 1455 static int get_htab_fd(SpaprMachineState *spapr) 1456 { 1457 Error *local_err = NULL; 1458 1459 if (spapr->htab_fd >= 0) { 1460 return spapr->htab_fd; 1461 } 1462 1463 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1464 if (spapr->htab_fd < 0) { 1465 error_report_err(local_err); 1466 } 1467 1468 return spapr->htab_fd; 1469 } 1470 1471 void close_htab_fd(SpaprMachineState *spapr) 1472 { 1473 if (spapr->htab_fd >= 0) { 1474 close(spapr->htab_fd); 1475 } 1476 spapr->htab_fd = -1; 1477 } 1478 1479 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1480 { 1481 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1482 1483 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1484 } 1485 1486 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1487 { 1488 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1489 1490 assert(kvm_enabled()); 1491 1492 if (!spapr->htab) { 1493 return 0; 1494 } 1495 1496 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1497 } 1498 1499 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1500 hwaddr ptex, int n) 1501 { 1502 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1503 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1504 1505 if (!spapr->htab) { 1506 /* 1507 * HTAB is controlled by KVM. Fetch into temporary buffer 1508 */ 1509 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1510 kvmppc_read_hptes(hptes, ptex, n); 1511 return hptes; 1512 } 1513 1514 /* 1515 * HTAB is controlled by QEMU. Just point to the internally 1516 * accessible PTEG. 1517 */ 1518 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1519 } 1520 1521 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1522 const ppc_hash_pte64_t *hptes, 1523 hwaddr ptex, int n) 1524 { 1525 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1526 1527 if (!spapr->htab) { 1528 g_free((void *)hptes); 1529 } 1530 1531 /* Nothing to do for qemu managed HPT */ 1532 } 1533 1534 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1535 uint64_t pte0, uint64_t pte1) 1536 { 1537 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1538 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1539 1540 if (!spapr->htab) { 1541 kvmppc_write_hpte(ptex, pte0, pte1); 1542 } else { 1543 if (pte0 & HPTE64_V_VALID) { 1544 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1545 /* 1546 * When setting valid, we write PTE1 first. This ensures 1547 * proper synchronization with the reading code in 1548 * ppc_hash64_pteg_search() 1549 */ 1550 smp_wmb(); 1551 stq_p(spapr->htab + offset, pte0); 1552 } else { 1553 stq_p(spapr->htab + offset, pte0); 1554 /* 1555 * When clearing it we set PTE0 first. This ensures proper 1556 * synchronization with the reading code in 1557 * ppc_hash64_pteg_search() 1558 */ 1559 smp_wmb(); 1560 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1561 } 1562 } 1563 } 1564 1565 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1566 uint64_t pte1) 1567 { 1568 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1569 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1570 1571 if (!spapr->htab) { 1572 /* There should always be a hash table when this is called */ 1573 error_report("spapr_hpte_set_c called with no hash table !"); 1574 return; 1575 } 1576 1577 /* The HW performs a non-atomic byte update */ 1578 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1579 } 1580 1581 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1582 uint64_t pte1) 1583 { 1584 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1585 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1586 1587 if (!spapr->htab) { 1588 /* There should always be a hash table when this is called */ 1589 error_report("spapr_hpte_set_r called with no hash table !"); 1590 return; 1591 } 1592 1593 /* The HW performs a non-atomic byte update */ 1594 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1595 } 1596 1597 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1598 { 1599 int shift; 1600 1601 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1602 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1603 * that's much more than is needed for Linux guests */ 1604 shift = ctz64(pow2ceil(ramsize)) - 7; 1605 shift = MAX(shift, 18); /* Minimum architected size */ 1606 shift = MIN(shift, 46); /* Maximum architected size */ 1607 return shift; 1608 } 1609 1610 void spapr_free_hpt(SpaprMachineState *spapr) 1611 { 1612 g_free(spapr->htab); 1613 spapr->htab = NULL; 1614 spapr->htab_shift = 0; 1615 close_htab_fd(spapr); 1616 } 1617 1618 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1619 Error **errp) 1620 { 1621 long rc; 1622 1623 /* Clean up any HPT info from a previous boot */ 1624 spapr_free_hpt(spapr); 1625 1626 rc = kvmppc_reset_htab(shift); 1627 if (rc < 0) { 1628 /* kernel-side HPT needed, but couldn't allocate one */ 1629 error_setg_errno(errp, errno, 1630 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1631 shift); 1632 /* This is almost certainly fatal, but if the caller really 1633 * wants to carry on with shift == 0, it's welcome to try */ 1634 } else if (rc > 0) { 1635 /* kernel-side HPT allocated */ 1636 if (rc != shift) { 1637 error_setg(errp, 1638 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1639 shift, rc); 1640 } 1641 1642 spapr->htab_shift = shift; 1643 spapr->htab = NULL; 1644 } else { 1645 /* kernel-side HPT not needed, allocate in userspace instead */ 1646 size_t size = 1ULL << shift; 1647 int i; 1648 1649 spapr->htab = qemu_memalign(size, size); 1650 if (!spapr->htab) { 1651 error_setg_errno(errp, errno, 1652 "Could not allocate HPT of order %d", shift); 1653 return; 1654 } 1655 1656 memset(spapr->htab, 0, size); 1657 spapr->htab_shift = shift; 1658 1659 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1660 DIRTY_HPTE(HPTE(spapr->htab, i)); 1661 } 1662 } 1663 /* We're setting up a hash table, so that means we're not radix */ 1664 spapr->patb_entry = 0; 1665 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1666 } 1667 1668 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1669 { 1670 int hpt_shift; 1671 1672 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1673 || (spapr->cas_reboot 1674 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1675 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1676 } else { 1677 uint64_t current_ram_size; 1678 1679 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1680 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1681 } 1682 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1683 1684 if (spapr->vrma_adjust) { 1685 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1686 spapr->htab_shift); 1687 } 1688 } 1689 1690 static int spapr_reset_drcs(Object *child, void *opaque) 1691 { 1692 SpaprDrc *drc = 1693 (SpaprDrc *) object_dynamic_cast(child, 1694 TYPE_SPAPR_DR_CONNECTOR); 1695 1696 if (drc) { 1697 spapr_drc_reset(drc); 1698 } 1699 1700 return 0; 1701 } 1702 1703 static void spapr_machine_reset(MachineState *machine) 1704 { 1705 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1706 PowerPCCPU *first_ppc_cpu; 1707 uint32_t rtas_limit; 1708 hwaddr rtas_addr, fdt_addr; 1709 void *fdt; 1710 int rc; 1711 1712 spapr_caps_apply(spapr); 1713 1714 first_ppc_cpu = POWERPC_CPU(first_cpu); 1715 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1716 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1717 spapr->max_compat_pvr)) { 1718 /* 1719 * If using KVM with radix mode available, VCPUs can be started 1720 * without a HPT because KVM will start them in radix mode. 1721 * Set the GR bit in PATE so that we know there is no HPT. 1722 */ 1723 spapr->patb_entry = PATE1_GR; 1724 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1725 } else { 1726 spapr_setup_hpt_and_vrma(spapr); 1727 } 1728 1729 /* 1730 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1731 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1732 * called from vPHB reset handler so we initialize the counter here. 1733 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1734 * must be equally distant from any other node. 1735 * The final value of spapr->gpu_numa_id is going to be written to 1736 * max-associativity-domains in spapr_build_fdt(). 1737 */ 1738 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1739 qemu_devices_reset(); 1740 1741 /* 1742 * If this reset wasn't generated by CAS, we should reset our 1743 * negotiated options and start from scratch 1744 */ 1745 if (!spapr->cas_reboot) { 1746 spapr_ovec_cleanup(spapr->ov5_cas); 1747 spapr->ov5_cas = spapr_ovec_new(); 1748 1749 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1750 } 1751 1752 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1753 spapr_irq_msi_reset(spapr); 1754 } 1755 1756 /* 1757 * This is fixing some of the default configuration of the XIVE 1758 * devices. To be called after the reset of the machine devices. 1759 */ 1760 spapr_irq_reset(spapr, &error_fatal); 1761 1762 /* 1763 * There is no CAS under qtest. Simulate one to please the code that 1764 * depends on spapr->ov5_cas. This is especially needed to test device 1765 * unplug, so we do that before resetting the DRCs. 1766 */ 1767 if (qtest_enabled()) { 1768 spapr_ovec_cleanup(spapr->ov5_cas); 1769 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1770 } 1771 1772 /* DRC reset may cause a device to be unplugged. This will cause troubles 1773 * if this device is used by another device (eg, a running vhost backend 1774 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1775 * situations, we reset DRCs after all devices have been reset. 1776 */ 1777 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1778 1779 spapr_clear_pending_events(spapr); 1780 1781 /* 1782 * We place the device tree and RTAS just below either the top of the RMA, 1783 * or just below 2GB, whichever is lower, so that it can be 1784 * processed with 32-bit real mode code if necessary 1785 */ 1786 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1787 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1788 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1789 1790 fdt = spapr_build_fdt(spapr); 1791 1792 spapr_load_rtas(spapr, fdt, rtas_addr); 1793 1794 rc = fdt_pack(fdt); 1795 1796 /* Should only fail if we've built a corrupted tree */ 1797 assert(rc == 0); 1798 1799 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1800 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1801 fdt_totalsize(fdt), FDT_MAX_SIZE); 1802 exit(1); 1803 } 1804 1805 /* Load the fdt */ 1806 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1807 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1808 g_free(spapr->fdt_blob); 1809 spapr->fdt_size = fdt_totalsize(fdt); 1810 spapr->fdt_initial_size = spapr->fdt_size; 1811 spapr->fdt_blob = fdt; 1812 1813 /* Set up the entry state */ 1814 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1815 first_ppc_cpu->env.gpr[5] = 0; 1816 1817 spapr->cas_reboot = false; 1818 } 1819 1820 static void spapr_create_nvram(SpaprMachineState *spapr) 1821 { 1822 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1823 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1824 1825 if (dinfo) { 1826 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1827 &error_fatal); 1828 } 1829 1830 qdev_init_nofail(dev); 1831 1832 spapr->nvram = (struct SpaprNvram *)dev; 1833 } 1834 1835 static void spapr_rtc_create(SpaprMachineState *spapr) 1836 { 1837 object_initialize_child(OBJECT(spapr), "rtc", 1838 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1839 &error_fatal, NULL); 1840 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1841 &error_fatal); 1842 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1843 "date", &error_fatal); 1844 } 1845 1846 /* Returns whether we want to use VGA or not */ 1847 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1848 { 1849 switch (vga_interface_type) { 1850 case VGA_NONE: 1851 return false; 1852 case VGA_DEVICE: 1853 return true; 1854 case VGA_STD: 1855 case VGA_VIRTIO: 1856 case VGA_CIRRUS: 1857 return pci_vga_init(pci_bus) != NULL; 1858 default: 1859 error_setg(errp, 1860 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1861 return false; 1862 } 1863 } 1864 1865 static int spapr_pre_load(void *opaque) 1866 { 1867 int rc; 1868 1869 rc = spapr_caps_pre_load(opaque); 1870 if (rc) { 1871 return rc; 1872 } 1873 1874 return 0; 1875 } 1876 1877 static int spapr_post_load(void *opaque, int version_id) 1878 { 1879 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1880 int err = 0; 1881 1882 err = spapr_caps_post_migration(spapr); 1883 if (err) { 1884 return err; 1885 } 1886 1887 /* 1888 * In earlier versions, there was no separate qdev for the PAPR 1889 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1890 * So when migrating from those versions, poke the incoming offset 1891 * value into the RTC device 1892 */ 1893 if (version_id < 3) { 1894 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1895 if (err) { 1896 return err; 1897 } 1898 } 1899 1900 if (kvm_enabled() && spapr->patb_entry) { 1901 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1902 bool radix = !!(spapr->patb_entry & PATE1_GR); 1903 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1904 1905 /* 1906 * Update LPCR:HR and UPRT as they may not be set properly in 1907 * the stream 1908 */ 1909 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1910 LPCR_HR | LPCR_UPRT); 1911 1912 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1913 if (err) { 1914 error_report("Process table config unsupported by the host"); 1915 return -EINVAL; 1916 } 1917 } 1918 1919 err = spapr_irq_post_load(spapr, version_id); 1920 if (err) { 1921 return err; 1922 } 1923 1924 return err; 1925 } 1926 1927 static int spapr_pre_save(void *opaque) 1928 { 1929 int rc; 1930 1931 rc = spapr_caps_pre_save(opaque); 1932 if (rc) { 1933 return rc; 1934 } 1935 1936 return 0; 1937 } 1938 1939 static bool version_before_3(void *opaque, int version_id) 1940 { 1941 return version_id < 3; 1942 } 1943 1944 static bool spapr_pending_events_needed(void *opaque) 1945 { 1946 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1947 return !QTAILQ_EMPTY(&spapr->pending_events); 1948 } 1949 1950 static const VMStateDescription vmstate_spapr_event_entry = { 1951 .name = "spapr_event_log_entry", 1952 .version_id = 1, 1953 .minimum_version_id = 1, 1954 .fields = (VMStateField[]) { 1955 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1956 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1957 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1958 NULL, extended_length), 1959 VMSTATE_END_OF_LIST() 1960 }, 1961 }; 1962 1963 static const VMStateDescription vmstate_spapr_pending_events = { 1964 .name = "spapr_pending_events", 1965 .version_id = 1, 1966 .minimum_version_id = 1, 1967 .needed = spapr_pending_events_needed, 1968 .fields = (VMStateField[]) { 1969 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1970 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1971 VMSTATE_END_OF_LIST() 1972 }, 1973 }; 1974 1975 static bool spapr_ov5_cas_needed(void *opaque) 1976 { 1977 SpaprMachineState *spapr = opaque; 1978 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1979 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1980 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1981 bool cas_needed; 1982 1983 /* Prior to the introduction of SpaprOptionVector, we had two option 1984 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1985 * Both of these options encode machine topology into the device-tree 1986 * in such a way that the now-booted OS should still be able to interact 1987 * appropriately with QEMU regardless of what options were actually 1988 * negotiatied on the source side. 1989 * 1990 * As such, we can avoid migrating the CAS-negotiated options if these 1991 * are the only options available on the current machine/platform. 1992 * Since these are the only options available for pseries-2.7 and 1993 * earlier, this allows us to maintain old->new/new->old migration 1994 * compatibility. 1995 * 1996 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1997 * via default pseries-2.8 machines and explicit command-line parameters. 1998 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1999 * of the actual CAS-negotiated values to continue working properly. For 2000 * example, availability of memory unplug depends on knowing whether 2001 * OV5_HP_EVT was negotiated via CAS. 2002 * 2003 * Thus, for any cases where the set of available CAS-negotiatable 2004 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2005 * include the CAS-negotiated options in the migration stream, unless 2006 * if they affect boot time behaviour only. 2007 */ 2008 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2009 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2010 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2011 2012 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2013 * the mask itself since in the future it's possible "legacy" bits may be 2014 * removed via machine options, which could generate a false positive 2015 * that breaks migration. 2016 */ 2017 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2018 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2019 2020 spapr_ovec_cleanup(ov5_mask); 2021 spapr_ovec_cleanup(ov5_legacy); 2022 spapr_ovec_cleanup(ov5_removed); 2023 2024 return cas_needed; 2025 } 2026 2027 static const VMStateDescription vmstate_spapr_ov5_cas = { 2028 .name = "spapr_option_vector_ov5_cas", 2029 .version_id = 1, 2030 .minimum_version_id = 1, 2031 .needed = spapr_ov5_cas_needed, 2032 .fields = (VMStateField[]) { 2033 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2034 vmstate_spapr_ovec, SpaprOptionVector), 2035 VMSTATE_END_OF_LIST() 2036 }, 2037 }; 2038 2039 static bool spapr_patb_entry_needed(void *opaque) 2040 { 2041 SpaprMachineState *spapr = opaque; 2042 2043 return !!spapr->patb_entry; 2044 } 2045 2046 static const VMStateDescription vmstate_spapr_patb_entry = { 2047 .name = "spapr_patb_entry", 2048 .version_id = 1, 2049 .minimum_version_id = 1, 2050 .needed = spapr_patb_entry_needed, 2051 .fields = (VMStateField[]) { 2052 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2053 VMSTATE_END_OF_LIST() 2054 }, 2055 }; 2056 2057 static bool spapr_irq_map_needed(void *opaque) 2058 { 2059 SpaprMachineState *spapr = opaque; 2060 2061 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2062 } 2063 2064 static const VMStateDescription vmstate_spapr_irq_map = { 2065 .name = "spapr_irq_map", 2066 .version_id = 1, 2067 .minimum_version_id = 1, 2068 .needed = spapr_irq_map_needed, 2069 .fields = (VMStateField[]) { 2070 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2071 VMSTATE_END_OF_LIST() 2072 }, 2073 }; 2074 2075 static bool spapr_dtb_needed(void *opaque) 2076 { 2077 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2078 2079 return smc->update_dt_enabled; 2080 } 2081 2082 static int spapr_dtb_pre_load(void *opaque) 2083 { 2084 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2085 2086 g_free(spapr->fdt_blob); 2087 spapr->fdt_blob = NULL; 2088 spapr->fdt_size = 0; 2089 2090 return 0; 2091 } 2092 2093 static const VMStateDescription vmstate_spapr_dtb = { 2094 .name = "spapr_dtb", 2095 .version_id = 1, 2096 .minimum_version_id = 1, 2097 .needed = spapr_dtb_needed, 2098 .pre_load = spapr_dtb_pre_load, 2099 .fields = (VMStateField[]) { 2100 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2101 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2102 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2103 fdt_size), 2104 VMSTATE_END_OF_LIST() 2105 }, 2106 }; 2107 2108 static const VMStateDescription vmstate_spapr = { 2109 .name = "spapr", 2110 .version_id = 3, 2111 .minimum_version_id = 1, 2112 .pre_load = spapr_pre_load, 2113 .post_load = spapr_post_load, 2114 .pre_save = spapr_pre_save, 2115 .fields = (VMStateField[]) { 2116 /* used to be @next_irq */ 2117 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2118 2119 /* RTC offset */ 2120 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2121 2122 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2123 VMSTATE_END_OF_LIST() 2124 }, 2125 .subsections = (const VMStateDescription*[]) { 2126 &vmstate_spapr_ov5_cas, 2127 &vmstate_spapr_patb_entry, 2128 &vmstate_spapr_pending_events, 2129 &vmstate_spapr_cap_htm, 2130 &vmstate_spapr_cap_vsx, 2131 &vmstate_spapr_cap_dfp, 2132 &vmstate_spapr_cap_cfpc, 2133 &vmstate_spapr_cap_sbbc, 2134 &vmstate_spapr_cap_ibs, 2135 &vmstate_spapr_cap_hpt_maxpagesize, 2136 &vmstate_spapr_irq_map, 2137 &vmstate_spapr_cap_nested_kvm_hv, 2138 &vmstate_spapr_dtb, 2139 &vmstate_spapr_cap_large_decr, 2140 &vmstate_spapr_cap_ccf_assist, 2141 NULL 2142 } 2143 }; 2144 2145 static int htab_save_setup(QEMUFile *f, void *opaque) 2146 { 2147 SpaprMachineState *spapr = opaque; 2148 2149 /* "Iteration" header */ 2150 if (!spapr->htab_shift) { 2151 qemu_put_be32(f, -1); 2152 } else { 2153 qemu_put_be32(f, spapr->htab_shift); 2154 } 2155 2156 if (spapr->htab) { 2157 spapr->htab_save_index = 0; 2158 spapr->htab_first_pass = true; 2159 } else { 2160 if (spapr->htab_shift) { 2161 assert(kvm_enabled()); 2162 } 2163 } 2164 2165 2166 return 0; 2167 } 2168 2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2170 int chunkstart, int n_valid, int n_invalid) 2171 { 2172 qemu_put_be32(f, chunkstart); 2173 qemu_put_be16(f, n_valid); 2174 qemu_put_be16(f, n_invalid); 2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2176 HASH_PTE_SIZE_64 * n_valid); 2177 } 2178 2179 static void htab_save_end_marker(QEMUFile *f) 2180 { 2181 qemu_put_be32(f, 0); 2182 qemu_put_be16(f, 0); 2183 qemu_put_be16(f, 0); 2184 } 2185 2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2187 int64_t max_ns) 2188 { 2189 bool has_timeout = max_ns != -1; 2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2191 int index = spapr->htab_save_index; 2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2193 2194 assert(spapr->htab_first_pass); 2195 2196 do { 2197 int chunkstart; 2198 2199 /* Consume invalid HPTEs */ 2200 while ((index < htabslots) 2201 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2202 CLEAN_HPTE(HPTE(spapr->htab, index)); 2203 index++; 2204 } 2205 2206 /* Consume valid HPTEs */ 2207 chunkstart = index; 2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2209 && HPTE_VALID(HPTE(spapr->htab, index))) { 2210 CLEAN_HPTE(HPTE(spapr->htab, index)); 2211 index++; 2212 } 2213 2214 if (index > chunkstart) { 2215 int n_valid = index - chunkstart; 2216 2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2218 2219 if (has_timeout && 2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2221 break; 2222 } 2223 } 2224 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2225 2226 if (index >= htabslots) { 2227 assert(index == htabslots); 2228 index = 0; 2229 spapr->htab_first_pass = false; 2230 } 2231 spapr->htab_save_index = index; 2232 } 2233 2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2235 int64_t max_ns) 2236 { 2237 bool final = max_ns < 0; 2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2239 int examined = 0, sent = 0; 2240 int index = spapr->htab_save_index; 2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2242 2243 assert(!spapr->htab_first_pass); 2244 2245 do { 2246 int chunkstart, invalidstart; 2247 2248 /* Consume non-dirty HPTEs */ 2249 while ((index < htabslots) 2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2251 index++; 2252 examined++; 2253 } 2254 2255 chunkstart = index; 2256 /* Consume valid dirty HPTEs */ 2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2258 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2259 && HPTE_VALID(HPTE(spapr->htab, index))) { 2260 CLEAN_HPTE(HPTE(spapr->htab, index)); 2261 index++; 2262 examined++; 2263 } 2264 2265 invalidstart = index; 2266 /* Consume invalid dirty HPTEs */ 2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2268 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2269 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2270 CLEAN_HPTE(HPTE(spapr->htab, index)); 2271 index++; 2272 examined++; 2273 } 2274 2275 if (index > chunkstart) { 2276 int n_valid = invalidstart - chunkstart; 2277 int n_invalid = index - invalidstart; 2278 2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2280 sent += index - chunkstart; 2281 2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2283 break; 2284 } 2285 } 2286 2287 if (examined >= htabslots) { 2288 break; 2289 } 2290 2291 if (index >= htabslots) { 2292 assert(index == htabslots); 2293 index = 0; 2294 } 2295 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 2302 spapr->htab_save_index = index; 2303 2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2305 } 2306 2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2308 #define MAX_KVM_BUF_SIZE 2048 2309 2310 static int htab_save_iterate(QEMUFile *f, void *opaque) 2311 { 2312 SpaprMachineState *spapr = opaque; 2313 int fd; 2314 int rc = 0; 2315 2316 /* Iteration header */ 2317 if (!spapr->htab_shift) { 2318 qemu_put_be32(f, -1); 2319 return 1; 2320 } else { 2321 qemu_put_be32(f, 0); 2322 } 2323 2324 if (!spapr->htab) { 2325 assert(kvm_enabled()); 2326 2327 fd = get_htab_fd(spapr); 2328 if (fd < 0) { 2329 return fd; 2330 } 2331 2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2333 if (rc < 0) { 2334 return rc; 2335 } 2336 } else if (spapr->htab_first_pass) { 2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2338 } else { 2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2340 } 2341 2342 htab_save_end_marker(f); 2343 2344 return rc; 2345 } 2346 2347 static int htab_save_complete(QEMUFile *f, void *opaque) 2348 { 2349 SpaprMachineState *spapr = opaque; 2350 int fd; 2351 2352 /* Iteration header */ 2353 if (!spapr->htab_shift) { 2354 qemu_put_be32(f, -1); 2355 return 0; 2356 } else { 2357 qemu_put_be32(f, 0); 2358 } 2359 2360 if (!spapr->htab) { 2361 int rc; 2362 2363 assert(kvm_enabled()); 2364 2365 fd = get_htab_fd(spapr); 2366 if (fd < 0) { 2367 return fd; 2368 } 2369 2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2371 if (rc < 0) { 2372 return rc; 2373 } 2374 } else { 2375 if (spapr->htab_first_pass) { 2376 htab_save_first_pass(f, spapr, -1); 2377 } 2378 htab_save_later_pass(f, spapr, -1); 2379 } 2380 2381 /* End marker */ 2382 htab_save_end_marker(f); 2383 2384 return 0; 2385 } 2386 2387 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2388 { 2389 SpaprMachineState *spapr = opaque; 2390 uint32_t section_hdr; 2391 int fd = -1; 2392 Error *local_err = NULL; 2393 2394 if (version_id < 1 || version_id > 1) { 2395 error_report("htab_load() bad version"); 2396 return -EINVAL; 2397 } 2398 2399 section_hdr = qemu_get_be32(f); 2400 2401 if (section_hdr == -1) { 2402 spapr_free_hpt(spapr); 2403 return 0; 2404 } 2405 2406 if (section_hdr) { 2407 /* First section gives the htab size */ 2408 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2409 if (local_err) { 2410 error_report_err(local_err); 2411 return -EINVAL; 2412 } 2413 return 0; 2414 } 2415 2416 if (!spapr->htab) { 2417 assert(kvm_enabled()); 2418 2419 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2420 if (fd < 0) { 2421 error_report_err(local_err); 2422 return fd; 2423 } 2424 } 2425 2426 while (true) { 2427 uint32_t index; 2428 uint16_t n_valid, n_invalid; 2429 2430 index = qemu_get_be32(f); 2431 n_valid = qemu_get_be16(f); 2432 n_invalid = qemu_get_be16(f); 2433 2434 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2435 /* End of Stream */ 2436 break; 2437 } 2438 2439 if ((index + n_valid + n_invalid) > 2440 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2441 /* Bad index in stream */ 2442 error_report( 2443 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2444 index, n_valid, n_invalid, spapr->htab_shift); 2445 return -EINVAL; 2446 } 2447 2448 if (spapr->htab) { 2449 if (n_valid) { 2450 qemu_get_buffer(f, HPTE(spapr->htab, index), 2451 HASH_PTE_SIZE_64 * n_valid); 2452 } 2453 if (n_invalid) { 2454 memset(HPTE(spapr->htab, index + n_valid), 0, 2455 HASH_PTE_SIZE_64 * n_invalid); 2456 } 2457 } else { 2458 int rc; 2459 2460 assert(fd >= 0); 2461 2462 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2463 if (rc < 0) { 2464 return rc; 2465 } 2466 } 2467 } 2468 2469 if (!spapr->htab) { 2470 assert(fd >= 0); 2471 close(fd); 2472 } 2473 2474 return 0; 2475 } 2476 2477 static void htab_save_cleanup(void *opaque) 2478 { 2479 SpaprMachineState *spapr = opaque; 2480 2481 close_htab_fd(spapr); 2482 } 2483 2484 static SaveVMHandlers savevm_htab_handlers = { 2485 .save_setup = htab_save_setup, 2486 .save_live_iterate = htab_save_iterate, 2487 .save_live_complete_precopy = htab_save_complete, 2488 .save_cleanup = htab_save_cleanup, 2489 .load_state = htab_load, 2490 }; 2491 2492 static void spapr_boot_set(void *opaque, const char *boot_device, 2493 Error **errp) 2494 { 2495 MachineState *machine = MACHINE(opaque); 2496 machine->boot_order = g_strdup(boot_device); 2497 } 2498 2499 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2500 { 2501 MachineState *machine = MACHINE(spapr); 2502 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2503 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2504 int i; 2505 2506 for (i = 0; i < nr_lmbs; i++) { 2507 uint64_t addr; 2508 2509 addr = i * lmb_size + machine->device_memory->base; 2510 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2511 addr / lmb_size); 2512 } 2513 } 2514 2515 /* 2516 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2517 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2518 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2519 */ 2520 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2521 { 2522 int i; 2523 2524 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2525 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2526 " is not aligned to %" PRIu64 " MiB", 2527 machine->ram_size, 2528 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2529 return; 2530 } 2531 2532 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2533 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2534 " is not aligned to %" PRIu64 " MiB", 2535 machine->ram_size, 2536 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2537 return; 2538 } 2539 2540 for (i = 0; i < nb_numa_nodes; i++) { 2541 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2542 error_setg(errp, 2543 "Node %d memory size 0x%" PRIx64 2544 " is not aligned to %" PRIu64 " MiB", 2545 i, numa_info[i].node_mem, 2546 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2547 return; 2548 } 2549 } 2550 } 2551 2552 /* find cpu slot in machine->possible_cpus by core_id */ 2553 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2554 { 2555 int index = id / ms->smp.threads; 2556 2557 if (index >= ms->possible_cpus->len) { 2558 return NULL; 2559 } 2560 if (idx) { 2561 *idx = index; 2562 } 2563 return &ms->possible_cpus->cpus[index]; 2564 } 2565 2566 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2567 { 2568 MachineState *ms = MACHINE(spapr); 2569 Error *local_err = NULL; 2570 bool vsmt_user = !!spapr->vsmt; 2571 int kvm_smt = kvmppc_smt_threads(); 2572 int ret; 2573 unsigned int smp_threads = ms->smp.threads; 2574 2575 if (!kvm_enabled() && (smp_threads > 1)) { 2576 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2577 "on a pseries machine"); 2578 goto out; 2579 } 2580 if (!is_power_of_2(smp_threads)) { 2581 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2582 "machine because it must be a power of 2", smp_threads); 2583 goto out; 2584 } 2585 2586 /* Detemine the VSMT mode to use: */ 2587 if (vsmt_user) { 2588 if (spapr->vsmt < smp_threads) { 2589 error_setg(&local_err, "Cannot support VSMT mode %d" 2590 " because it must be >= threads/core (%d)", 2591 spapr->vsmt, smp_threads); 2592 goto out; 2593 } 2594 /* In this case, spapr->vsmt has been set by the command line */ 2595 } else { 2596 /* 2597 * Default VSMT value is tricky, because we need it to be as 2598 * consistent as possible (for migration), but this requires 2599 * changing it for at least some existing cases. We pick 8 as 2600 * the value that we'd get with KVM on POWER8, the 2601 * overwhelmingly common case in production systems. 2602 */ 2603 spapr->vsmt = MAX(8, smp_threads); 2604 } 2605 2606 /* KVM: If necessary, set the SMT mode: */ 2607 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2608 ret = kvmppc_set_smt_threads(spapr->vsmt); 2609 if (ret) { 2610 /* Looks like KVM isn't able to change VSMT mode */ 2611 error_setg(&local_err, 2612 "Failed to set KVM's VSMT mode to %d (errno %d)", 2613 spapr->vsmt, ret); 2614 /* We can live with that if the default one is big enough 2615 * for the number of threads, and a submultiple of the one 2616 * we want. In this case we'll waste some vcpu ids, but 2617 * behaviour will be correct */ 2618 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2619 warn_report_err(local_err); 2620 local_err = NULL; 2621 goto out; 2622 } else { 2623 if (!vsmt_user) { 2624 error_append_hint(&local_err, 2625 "On PPC, a VM with %d threads/core" 2626 " on a host with %d threads/core" 2627 " requires the use of VSMT mode %d.\n", 2628 smp_threads, kvm_smt, spapr->vsmt); 2629 } 2630 kvmppc_hint_smt_possible(&local_err); 2631 goto out; 2632 } 2633 } 2634 } 2635 /* else TCG: nothing to do currently */ 2636 out: 2637 error_propagate(errp, local_err); 2638 } 2639 2640 static void spapr_init_cpus(SpaprMachineState *spapr) 2641 { 2642 MachineState *machine = MACHINE(spapr); 2643 MachineClass *mc = MACHINE_GET_CLASS(machine); 2644 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2645 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2646 const CPUArchIdList *possible_cpus; 2647 unsigned int smp_cpus = machine->smp.cpus; 2648 unsigned int smp_threads = machine->smp.threads; 2649 unsigned int max_cpus = machine->smp.max_cpus; 2650 int boot_cores_nr = smp_cpus / smp_threads; 2651 int i; 2652 2653 possible_cpus = mc->possible_cpu_arch_ids(machine); 2654 if (mc->has_hotpluggable_cpus) { 2655 if (smp_cpus % smp_threads) { 2656 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2657 smp_cpus, smp_threads); 2658 exit(1); 2659 } 2660 if (max_cpus % smp_threads) { 2661 error_report("max_cpus (%u) must be multiple of threads (%u)", 2662 max_cpus, smp_threads); 2663 exit(1); 2664 } 2665 } else { 2666 if (max_cpus != smp_cpus) { 2667 error_report("This machine version does not support CPU hotplug"); 2668 exit(1); 2669 } 2670 boot_cores_nr = possible_cpus->len; 2671 } 2672 2673 if (smc->pre_2_10_has_unused_icps) { 2674 int i; 2675 2676 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2677 /* Dummy entries get deregistered when real ICPState objects 2678 * are registered during CPU core hotplug. 2679 */ 2680 pre_2_10_vmstate_register_dummy_icp(i); 2681 } 2682 } 2683 2684 for (i = 0; i < possible_cpus->len; i++) { 2685 int core_id = i * smp_threads; 2686 2687 if (mc->has_hotpluggable_cpus) { 2688 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2689 spapr_vcpu_id(spapr, core_id)); 2690 } 2691 2692 if (i < boot_cores_nr) { 2693 Object *core = object_new(type); 2694 int nr_threads = smp_threads; 2695 2696 /* Handle the partially filled core for older machine types */ 2697 if ((i + 1) * smp_threads >= smp_cpus) { 2698 nr_threads = smp_cpus - i * smp_threads; 2699 } 2700 2701 object_property_set_int(core, nr_threads, "nr-threads", 2702 &error_fatal); 2703 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2704 &error_fatal); 2705 object_property_set_bool(core, true, "realized", &error_fatal); 2706 2707 object_unref(core); 2708 } 2709 } 2710 } 2711 2712 static PCIHostState *spapr_create_default_phb(void) 2713 { 2714 DeviceState *dev; 2715 2716 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2717 qdev_prop_set_uint32(dev, "index", 0); 2718 qdev_init_nofail(dev); 2719 2720 return PCI_HOST_BRIDGE(dev); 2721 } 2722 2723 /* pSeries LPAR / sPAPR hardware init */ 2724 static void spapr_machine_init(MachineState *machine) 2725 { 2726 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2727 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2728 const char *kernel_filename = machine->kernel_filename; 2729 const char *initrd_filename = machine->initrd_filename; 2730 PCIHostState *phb; 2731 int i; 2732 MemoryRegion *sysmem = get_system_memory(); 2733 MemoryRegion *ram = g_new(MemoryRegion, 1); 2734 hwaddr node0_size = spapr_node0_size(machine); 2735 long load_limit, fw_size; 2736 char *filename; 2737 Error *resize_hpt_err = NULL; 2738 2739 msi_nonbroken = true; 2740 2741 QLIST_INIT(&spapr->phbs); 2742 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2743 2744 /* Determine capabilities to run with */ 2745 spapr_caps_init(spapr); 2746 2747 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2748 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2749 /* 2750 * If the user explicitly requested a mode we should either 2751 * supply it, or fail completely (which we do below). But if 2752 * it's not set explicitly, we reset our mode to something 2753 * that works 2754 */ 2755 if (resize_hpt_err) { 2756 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2757 error_free(resize_hpt_err); 2758 resize_hpt_err = NULL; 2759 } else { 2760 spapr->resize_hpt = smc->resize_hpt_default; 2761 } 2762 } 2763 2764 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2765 2766 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2767 /* 2768 * User requested HPT resize, but this host can't supply it. Bail out 2769 */ 2770 error_report_err(resize_hpt_err); 2771 exit(1); 2772 } 2773 2774 spapr->rma_size = node0_size; 2775 2776 /* With KVM, we don't actually know whether KVM supports an 2777 * unbounded RMA (PR KVM) or is limited by the hash table size 2778 * (HV KVM using VRMA), so we always assume the latter 2779 * 2780 * In that case, we also limit the initial allocations for RTAS 2781 * etc... to 256M since we have no way to know what the VRMA size 2782 * is going to be as it depends on the size of the hash table 2783 * which isn't determined yet. 2784 */ 2785 if (kvm_enabled()) { 2786 spapr->vrma_adjust = 1; 2787 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2788 } 2789 2790 /* Actually we don't support unbounded RMA anymore since we added 2791 * proper emulation of HV mode. The max we can get is 16G which 2792 * also happens to be what we configure for PAPR mode so make sure 2793 * we don't do anything bigger than that 2794 */ 2795 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2796 2797 if (spapr->rma_size > node0_size) { 2798 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2799 spapr->rma_size); 2800 exit(1); 2801 } 2802 2803 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2804 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2805 2806 /* 2807 * VSMT must be set in order to be able to compute VCPU ids, ie to 2808 * call spapr_max_server_number() or spapr_vcpu_id(). 2809 */ 2810 spapr_set_vsmt_mode(spapr, &error_fatal); 2811 2812 /* Set up Interrupt Controller before we create the VCPUs */ 2813 spapr_irq_init(spapr, &error_fatal); 2814 2815 /* Set up containers for ibm,client-architecture-support negotiated options 2816 */ 2817 spapr->ov5 = spapr_ovec_new(); 2818 spapr->ov5_cas = spapr_ovec_new(); 2819 2820 if (smc->dr_lmb_enabled) { 2821 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2822 spapr_validate_node_memory(machine, &error_fatal); 2823 } 2824 2825 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2826 2827 /* advertise support for dedicated HP event source to guests */ 2828 if (spapr->use_hotplug_event_source) { 2829 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2830 } 2831 2832 /* advertise support for HPT resizing */ 2833 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2834 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2835 } 2836 2837 /* advertise support for ibm,dyamic-memory-v2 */ 2838 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2839 2840 /* advertise XIVE on POWER9 machines */ 2841 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2842 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2843 } 2844 2845 /* init CPUs */ 2846 spapr_init_cpus(spapr); 2847 2848 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2849 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2850 spapr->max_compat_pvr)) { 2851 /* KVM and TCG always allow GTSE with radix... */ 2852 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2853 } 2854 /* ... but not with hash (currently). */ 2855 2856 if (kvm_enabled()) { 2857 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2858 kvmppc_enable_logical_ci_hcalls(); 2859 kvmppc_enable_set_mode_hcall(); 2860 2861 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2862 kvmppc_enable_clear_ref_mod_hcalls(); 2863 2864 /* Enable H_PAGE_INIT */ 2865 kvmppc_enable_h_page_init(); 2866 } 2867 2868 /* allocate RAM */ 2869 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2870 machine->ram_size); 2871 memory_region_add_subregion(sysmem, 0, ram); 2872 2873 /* always allocate the device memory information */ 2874 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2875 2876 /* initialize hotplug memory address space */ 2877 if (machine->ram_size < machine->maxram_size) { 2878 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2879 /* 2880 * Limit the number of hotpluggable memory slots to half the number 2881 * slots that KVM supports, leaving the other half for PCI and other 2882 * devices. However ensure that number of slots doesn't drop below 32. 2883 */ 2884 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2885 SPAPR_MAX_RAM_SLOTS; 2886 2887 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2888 max_memslots = SPAPR_MAX_RAM_SLOTS; 2889 } 2890 if (machine->ram_slots > max_memslots) { 2891 error_report("Specified number of memory slots %" 2892 PRIu64" exceeds max supported %d", 2893 machine->ram_slots, max_memslots); 2894 exit(1); 2895 } 2896 2897 machine->device_memory->base = ROUND_UP(machine->ram_size, 2898 SPAPR_DEVICE_MEM_ALIGN); 2899 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2900 "device-memory", device_mem_size); 2901 memory_region_add_subregion(sysmem, machine->device_memory->base, 2902 &machine->device_memory->mr); 2903 } 2904 2905 if (smc->dr_lmb_enabled) { 2906 spapr_create_lmb_dr_connectors(spapr); 2907 } 2908 2909 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2910 if (!filename) { 2911 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2912 exit(1); 2913 } 2914 spapr->rtas_size = get_image_size(filename); 2915 if (spapr->rtas_size < 0) { 2916 error_report("Could not get size of LPAR rtas '%s'", filename); 2917 exit(1); 2918 } 2919 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2920 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2921 error_report("Could not load LPAR rtas '%s'", filename); 2922 exit(1); 2923 } 2924 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2925 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2926 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2927 exit(1); 2928 } 2929 g_free(filename); 2930 2931 /* Set up RTAS event infrastructure */ 2932 spapr_events_init(spapr); 2933 2934 /* Set up the RTC RTAS interfaces */ 2935 spapr_rtc_create(spapr); 2936 2937 /* Set up VIO bus */ 2938 spapr->vio_bus = spapr_vio_bus_init(); 2939 2940 for (i = 0; i < serial_max_hds(); i++) { 2941 if (serial_hd(i)) { 2942 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2943 } 2944 } 2945 2946 /* We always have at least the nvram device on VIO */ 2947 spapr_create_nvram(spapr); 2948 2949 /* 2950 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2951 * connectors (described in root DT node's "ibm,drc-types" property) 2952 * are pre-initialized here. additional child connectors (such as 2953 * connectors for a PHBs PCI slots) are added as needed during their 2954 * parent's realization. 2955 */ 2956 if (smc->dr_phb_enabled) { 2957 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2958 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2959 } 2960 } 2961 2962 /* Set up PCI */ 2963 spapr_pci_rtas_init(); 2964 2965 phb = spapr_create_default_phb(); 2966 2967 for (i = 0; i < nb_nics; i++) { 2968 NICInfo *nd = &nd_table[i]; 2969 2970 if (!nd->model) { 2971 nd->model = g_strdup("spapr-vlan"); 2972 } 2973 2974 if (g_str_equal(nd->model, "spapr-vlan") || 2975 g_str_equal(nd->model, "ibmveth")) { 2976 spapr_vlan_create(spapr->vio_bus, nd); 2977 } else { 2978 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2979 } 2980 } 2981 2982 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2983 spapr_vscsi_create(spapr->vio_bus); 2984 } 2985 2986 /* Graphics */ 2987 if (spapr_vga_init(phb->bus, &error_fatal)) { 2988 spapr->has_graphics = true; 2989 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2990 } 2991 2992 if (machine->usb) { 2993 if (smc->use_ohci_by_default) { 2994 pci_create_simple(phb->bus, -1, "pci-ohci"); 2995 } else { 2996 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2997 } 2998 2999 if (spapr->has_graphics) { 3000 USBBus *usb_bus = usb_bus_find(-1); 3001 3002 usb_create_simple(usb_bus, "usb-kbd"); 3003 usb_create_simple(usb_bus, "usb-mouse"); 3004 } 3005 } 3006 3007 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3008 error_report( 3009 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3010 MIN_RMA_SLOF); 3011 exit(1); 3012 } 3013 3014 if (kernel_filename) { 3015 uint64_t lowaddr = 0; 3016 3017 spapr->kernel_size = load_elf(kernel_filename, NULL, 3018 translate_kernel_address, NULL, 3019 NULL, &lowaddr, NULL, 1, 3020 PPC_ELF_MACHINE, 0, 0); 3021 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3022 spapr->kernel_size = load_elf(kernel_filename, NULL, 3023 translate_kernel_address, NULL, NULL, 3024 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3025 0, 0); 3026 spapr->kernel_le = spapr->kernel_size > 0; 3027 } 3028 if (spapr->kernel_size < 0) { 3029 error_report("error loading %s: %s", kernel_filename, 3030 load_elf_strerror(spapr->kernel_size)); 3031 exit(1); 3032 } 3033 3034 /* load initrd */ 3035 if (initrd_filename) { 3036 /* Try to locate the initrd in the gap between the kernel 3037 * and the firmware. Add a bit of space just in case 3038 */ 3039 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3040 + 0x1ffff) & ~0xffff; 3041 spapr->initrd_size = load_image_targphys(initrd_filename, 3042 spapr->initrd_base, 3043 load_limit 3044 - spapr->initrd_base); 3045 if (spapr->initrd_size < 0) { 3046 error_report("could not load initial ram disk '%s'", 3047 initrd_filename); 3048 exit(1); 3049 } 3050 } 3051 } 3052 3053 if (bios_name == NULL) { 3054 bios_name = FW_FILE_NAME; 3055 } 3056 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3057 if (!filename) { 3058 error_report("Could not find LPAR firmware '%s'", bios_name); 3059 exit(1); 3060 } 3061 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3062 if (fw_size <= 0) { 3063 error_report("Could not load LPAR firmware '%s'", filename); 3064 exit(1); 3065 } 3066 g_free(filename); 3067 3068 /* FIXME: Should register things through the MachineState's qdev 3069 * interface, this is a legacy from the sPAPREnvironment structure 3070 * which predated MachineState but had a similar function */ 3071 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3072 register_savevm_live(NULL, "spapr/htab", -1, 1, 3073 &savevm_htab_handlers, spapr); 3074 3075 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3076 &error_fatal); 3077 3078 qemu_register_boot_set(spapr_boot_set, spapr); 3079 3080 if (kvm_enabled()) { 3081 /* to stop and start vmclock */ 3082 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3083 &spapr->tb); 3084 3085 kvmppc_spapr_enable_inkernel_multitce(); 3086 } 3087 } 3088 3089 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3090 { 3091 if (!vm_type) { 3092 return 0; 3093 } 3094 3095 if (!strcmp(vm_type, "HV")) { 3096 return 1; 3097 } 3098 3099 if (!strcmp(vm_type, "PR")) { 3100 return 2; 3101 } 3102 3103 error_report("Unknown kvm-type specified '%s'", vm_type); 3104 exit(1); 3105 } 3106 3107 /* 3108 * Implementation of an interface to adjust firmware path 3109 * for the bootindex property handling. 3110 */ 3111 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3112 DeviceState *dev) 3113 { 3114 #define CAST(type, obj, name) \ 3115 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3116 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3117 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3118 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3119 3120 if (d) { 3121 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3122 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3123 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3124 3125 if (spapr) { 3126 /* 3127 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3128 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3129 * 0x8000 | (target << 8) | (bus << 5) | lun 3130 * (see the "Logical unit addressing format" table in SAM5) 3131 */ 3132 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3133 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3134 (uint64_t)id << 48); 3135 } else if (virtio) { 3136 /* 3137 * We use SRP luns of the form 01000000 | (target << 8) | lun 3138 * in the top 32 bits of the 64-bit LUN 3139 * Note: the quote above is from SLOF and it is wrong, 3140 * the actual binding is: 3141 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3142 */ 3143 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3144 if (d->lun >= 256) { 3145 /* Use the LUN "flat space addressing method" */ 3146 id |= 0x4000; 3147 } 3148 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3149 (uint64_t)id << 32); 3150 } else if (usb) { 3151 /* 3152 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3153 * in the top 32 bits of the 64-bit LUN 3154 */ 3155 unsigned usb_port = atoi(usb->port->path); 3156 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3157 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3158 (uint64_t)id << 32); 3159 } 3160 } 3161 3162 /* 3163 * SLOF probes the USB devices, and if it recognizes that the device is a 3164 * storage device, it changes its name to "storage" instead of "usb-host", 3165 * and additionally adds a child node for the SCSI LUN, so the correct 3166 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3167 */ 3168 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3169 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3170 if (usb_host_dev_is_scsi_storage(usbdev)) { 3171 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3172 } 3173 } 3174 3175 if (phb) { 3176 /* Replace "pci" with "pci@800000020000000" */ 3177 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3178 } 3179 3180 if (vsc) { 3181 /* Same logic as virtio above */ 3182 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3183 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3184 } 3185 3186 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3187 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3188 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3189 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3190 } 3191 3192 return NULL; 3193 } 3194 3195 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3196 { 3197 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3198 3199 return g_strdup(spapr->kvm_type); 3200 } 3201 3202 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3203 { 3204 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3205 3206 g_free(spapr->kvm_type); 3207 spapr->kvm_type = g_strdup(value); 3208 } 3209 3210 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3211 { 3212 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3213 3214 return spapr->use_hotplug_event_source; 3215 } 3216 3217 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3218 Error **errp) 3219 { 3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3221 3222 spapr->use_hotplug_event_source = value; 3223 } 3224 3225 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3226 { 3227 return true; 3228 } 3229 3230 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3231 { 3232 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3233 3234 switch (spapr->resize_hpt) { 3235 case SPAPR_RESIZE_HPT_DEFAULT: 3236 return g_strdup("default"); 3237 case SPAPR_RESIZE_HPT_DISABLED: 3238 return g_strdup("disabled"); 3239 case SPAPR_RESIZE_HPT_ENABLED: 3240 return g_strdup("enabled"); 3241 case SPAPR_RESIZE_HPT_REQUIRED: 3242 return g_strdup("required"); 3243 } 3244 g_assert_not_reached(); 3245 } 3246 3247 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3248 { 3249 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3250 3251 if (strcmp(value, "default") == 0) { 3252 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3253 } else if (strcmp(value, "disabled") == 0) { 3254 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3255 } else if (strcmp(value, "enabled") == 0) { 3256 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3257 } else if (strcmp(value, "required") == 0) { 3258 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3259 } else { 3260 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3261 } 3262 } 3263 3264 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3265 void *opaque, Error **errp) 3266 { 3267 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3268 } 3269 3270 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3271 void *opaque, Error **errp) 3272 { 3273 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3274 } 3275 3276 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3277 { 3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3279 3280 if (spapr->irq == &spapr_irq_xics_legacy) { 3281 return g_strdup("legacy"); 3282 } else if (spapr->irq == &spapr_irq_xics) { 3283 return g_strdup("xics"); 3284 } else if (spapr->irq == &spapr_irq_xive) { 3285 return g_strdup("xive"); 3286 } else if (spapr->irq == &spapr_irq_dual) { 3287 return g_strdup("dual"); 3288 } 3289 g_assert_not_reached(); 3290 } 3291 3292 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3293 { 3294 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3295 3296 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3297 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3298 return; 3299 } 3300 3301 /* The legacy IRQ backend can not be set */ 3302 if (strcmp(value, "xics") == 0) { 3303 spapr->irq = &spapr_irq_xics; 3304 } else if (strcmp(value, "xive") == 0) { 3305 spapr->irq = &spapr_irq_xive; 3306 } else if (strcmp(value, "dual") == 0) { 3307 spapr->irq = &spapr_irq_dual; 3308 } else { 3309 error_setg(errp, "Bad value for \"ic-mode\" property"); 3310 } 3311 } 3312 3313 static char *spapr_get_host_model(Object *obj, Error **errp) 3314 { 3315 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3316 3317 return g_strdup(spapr->host_model); 3318 } 3319 3320 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3321 { 3322 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3323 3324 g_free(spapr->host_model); 3325 spapr->host_model = g_strdup(value); 3326 } 3327 3328 static char *spapr_get_host_serial(Object *obj, Error **errp) 3329 { 3330 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3331 3332 return g_strdup(spapr->host_serial); 3333 } 3334 3335 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3336 { 3337 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3338 3339 g_free(spapr->host_serial); 3340 spapr->host_serial = g_strdup(value); 3341 } 3342 3343 static void spapr_instance_init(Object *obj) 3344 { 3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3346 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3347 3348 spapr->htab_fd = -1; 3349 spapr->use_hotplug_event_source = true; 3350 object_property_add_str(obj, "kvm-type", 3351 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3352 object_property_set_description(obj, "kvm-type", 3353 "Specifies the KVM virtualization mode (HV, PR)", 3354 NULL); 3355 object_property_add_bool(obj, "modern-hotplug-events", 3356 spapr_get_modern_hotplug_events, 3357 spapr_set_modern_hotplug_events, 3358 NULL); 3359 object_property_set_description(obj, "modern-hotplug-events", 3360 "Use dedicated hotplug event mechanism in" 3361 " place of standard EPOW events when possible" 3362 " (required for memory hot-unplug support)", 3363 NULL); 3364 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3365 "Maximum permitted CPU compatibility mode", 3366 &error_fatal); 3367 3368 object_property_add_str(obj, "resize-hpt", 3369 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3370 object_property_set_description(obj, "resize-hpt", 3371 "Resizing of the Hash Page Table (enabled, disabled, required)", 3372 NULL); 3373 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3374 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3375 object_property_set_description(obj, "vsmt", 3376 "Virtual SMT: KVM behaves as if this were" 3377 " the host's SMT mode", &error_abort); 3378 object_property_add_bool(obj, "vfio-no-msix-emulation", 3379 spapr_get_msix_emulation, NULL, NULL); 3380 3381 /* The machine class defines the default interrupt controller mode */ 3382 spapr->irq = smc->irq; 3383 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3384 spapr_set_ic_mode, NULL); 3385 object_property_set_description(obj, "ic-mode", 3386 "Specifies the interrupt controller mode (xics, xive, dual)", 3387 NULL); 3388 3389 object_property_add_str(obj, "host-model", 3390 spapr_get_host_model, spapr_set_host_model, 3391 &error_abort); 3392 object_property_set_description(obj, "host-model", 3393 "Host model to advertise in guest device tree", &error_abort); 3394 object_property_add_str(obj, "host-serial", 3395 spapr_get_host_serial, spapr_set_host_serial, 3396 &error_abort); 3397 object_property_set_description(obj, "host-serial", 3398 "Host serial number to advertise in guest device tree", &error_abort); 3399 } 3400 3401 static void spapr_machine_finalizefn(Object *obj) 3402 { 3403 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3404 3405 g_free(spapr->kvm_type); 3406 } 3407 3408 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3409 { 3410 cpu_synchronize_state(cs); 3411 ppc_cpu_do_system_reset(cs); 3412 } 3413 3414 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3415 { 3416 CPUState *cs; 3417 3418 CPU_FOREACH(cs) { 3419 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3420 } 3421 } 3422 3423 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3424 void *fdt, int *fdt_start_offset, Error **errp) 3425 { 3426 uint64_t addr; 3427 uint32_t node; 3428 3429 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3430 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3431 &error_abort); 3432 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3433 SPAPR_MEMORY_BLOCK_SIZE); 3434 return 0; 3435 } 3436 3437 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3438 bool dedicated_hp_event_source, Error **errp) 3439 { 3440 SpaprDrc *drc; 3441 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3442 int i; 3443 uint64_t addr = addr_start; 3444 bool hotplugged = spapr_drc_hotplugged(dev); 3445 Error *local_err = NULL; 3446 3447 for (i = 0; i < nr_lmbs; i++) { 3448 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3449 addr / SPAPR_MEMORY_BLOCK_SIZE); 3450 g_assert(drc); 3451 3452 spapr_drc_attach(drc, dev, &local_err); 3453 if (local_err) { 3454 while (addr > addr_start) { 3455 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3456 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3457 addr / SPAPR_MEMORY_BLOCK_SIZE); 3458 spapr_drc_detach(drc); 3459 } 3460 error_propagate(errp, local_err); 3461 return; 3462 } 3463 if (!hotplugged) { 3464 spapr_drc_reset(drc); 3465 } 3466 addr += SPAPR_MEMORY_BLOCK_SIZE; 3467 } 3468 /* send hotplug notification to the 3469 * guest only in case of hotplugged memory 3470 */ 3471 if (hotplugged) { 3472 if (dedicated_hp_event_source) { 3473 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3474 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3475 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3476 nr_lmbs, 3477 spapr_drc_index(drc)); 3478 } else { 3479 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3480 nr_lmbs); 3481 } 3482 } 3483 } 3484 3485 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3486 Error **errp) 3487 { 3488 Error *local_err = NULL; 3489 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3490 PCDIMMDevice *dimm = PC_DIMM(dev); 3491 uint64_t size, addr; 3492 3493 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3494 3495 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3496 if (local_err) { 3497 goto out; 3498 } 3499 3500 addr = object_property_get_uint(OBJECT(dimm), 3501 PC_DIMM_ADDR_PROP, &local_err); 3502 if (local_err) { 3503 goto out_unplug; 3504 } 3505 3506 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3507 &local_err); 3508 if (local_err) { 3509 goto out_unplug; 3510 } 3511 3512 return; 3513 3514 out_unplug: 3515 pc_dimm_unplug(dimm, MACHINE(ms)); 3516 out: 3517 error_propagate(errp, local_err); 3518 } 3519 3520 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3521 Error **errp) 3522 { 3523 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3524 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3525 PCDIMMDevice *dimm = PC_DIMM(dev); 3526 Error *local_err = NULL; 3527 uint64_t size; 3528 Object *memdev; 3529 hwaddr pagesize; 3530 3531 if (!smc->dr_lmb_enabled) { 3532 error_setg(errp, "Memory hotplug not supported for this machine"); 3533 return; 3534 } 3535 3536 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3537 if (local_err) { 3538 error_propagate(errp, local_err); 3539 return; 3540 } 3541 3542 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3543 error_setg(errp, "Hotplugged memory size must be a multiple of " 3544 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3545 return; 3546 } 3547 3548 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3549 &error_abort); 3550 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3551 spapr_check_pagesize(spapr, pagesize, &local_err); 3552 if (local_err) { 3553 error_propagate(errp, local_err); 3554 return; 3555 } 3556 3557 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3558 } 3559 3560 struct SpaprDimmState { 3561 PCDIMMDevice *dimm; 3562 uint32_t nr_lmbs; 3563 QTAILQ_ENTRY(SpaprDimmState) next; 3564 }; 3565 3566 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3567 PCDIMMDevice *dimm) 3568 { 3569 SpaprDimmState *dimm_state = NULL; 3570 3571 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3572 if (dimm_state->dimm == dimm) { 3573 break; 3574 } 3575 } 3576 return dimm_state; 3577 } 3578 3579 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3580 uint32_t nr_lmbs, 3581 PCDIMMDevice *dimm) 3582 { 3583 SpaprDimmState *ds = NULL; 3584 3585 /* 3586 * If this request is for a DIMM whose removal had failed earlier 3587 * (due to guest's refusal to remove the LMBs), we would have this 3588 * dimm already in the pending_dimm_unplugs list. In that 3589 * case don't add again. 3590 */ 3591 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3592 if (!ds) { 3593 ds = g_malloc0(sizeof(SpaprDimmState)); 3594 ds->nr_lmbs = nr_lmbs; 3595 ds->dimm = dimm; 3596 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3597 } 3598 return ds; 3599 } 3600 3601 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3602 SpaprDimmState *dimm_state) 3603 { 3604 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3605 g_free(dimm_state); 3606 } 3607 3608 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3609 PCDIMMDevice *dimm) 3610 { 3611 SpaprDrc *drc; 3612 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3613 &error_abort); 3614 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3615 uint32_t avail_lmbs = 0; 3616 uint64_t addr_start, addr; 3617 int i; 3618 3619 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3620 &error_abort); 3621 3622 addr = addr_start; 3623 for (i = 0; i < nr_lmbs; i++) { 3624 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3625 addr / SPAPR_MEMORY_BLOCK_SIZE); 3626 g_assert(drc); 3627 if (drc->dev) { 3628 avail_lmbs++; 3629 } 3630 addr += SPAPR_MEMORY_BLOCK_SIZE; 3631 } 3632 3633 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3634 } 3635 3636 /* Callback to be called during DRC release. */ 3637 void spapr_lmb_release(DeviceState *dev) 3638 { 3639 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3640 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3641 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3642 3643 /* This information will get lost if a migration occurs 3644 * during the unplug process. In this case recover it. */ 3645 if (ds == NULL) { 3646 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3647 g_assert(ds); 3648 /* The DRC being examined by the caller at least must be counted */ 3649 g_assert(ds->nr_lmbs); 3650 } 3651 3652 if (--ds->nr_lmbs) { 3653 return; 3654 } 3655 3656 /* 3657 * Now that all the LMBs have been removed by the guest, call the 3658 * unplug handler chain. This can never fail. 3659 */ 3660 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3661 object_unparent(OBJECT(dev)); 3662 } 3663 3664 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3665 { 3666 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3667 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3668 3669 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3670 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3671 spapr_pending_dimm_unplugs_remove(spapr, ds); 3672 } 3673 3674 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3675 DeviceState *dev, Error **errp) 3676 { 3677 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3678 Error *local_err = NULL; 3679 PCDIMMDevice *dimm = PC_DIMM(dev); 3680 uint32_t nr_lmbs; 3681 uint64_t size, addr_start, addr; 3682 int i; 3683 SpaprDrc *drc; 3684 3685 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3686 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3687 3688 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3689 &local_err); 3690 if (local_err) { 3691 goto out; 3692 } 3693 3694 /* 3695 * An existing pending dimm state for this DIMM means that there is an 3696 * unplug operation in progress, waiting for the spapr_lmb_release 3697 * callback to complete the job (BQL can't cover that far). In this case, 3698 * bail out to avoid detaching DRCs that were already released. 3699 */ 3700 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3701 error_setg(&local_err, 3702 "Memory unplug already in progress for device %s", 3703 dev->id); 3704 goto out; 3705 } 3706 3707 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3708 3709 addr = addr_start; 3710 for (i = 0; i < nr_lmbs; i++) { 3711 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3712 addr / SPAPR_MEMORY_BLOCK_SIZE); 3713 g_assert(drc); 3714 3715 spapr_drc_detach(drc); 3716 addr += SPAPR_MEMORY_BLOCK_SIZE; 3717 } 3718 3719 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3720 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3721 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3722 nr_lmbs, spapr_drc_index(drc)); 3723 out: 3724 error_propagate(errp, local_err); 3725 } 3726 3727 /* Callback to be called during DRC release. */ 3728 void spapr_core_release(DeviceState *dev) 3729 { 3730 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3731 3732 /* Call the unplug handler chain. This can never fail. */ 3733 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3734 object_unparent(OBJECT(dev)); 3735 } 3736 3737 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3738 { 3739 MachineState *ms = MACHINE(hotplug_dev); 3740 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3741 CPUCore *cc = CPU_CORE(dev); 3742 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3743 3744 if (smc->pre_2_10_has_unused_icps) { 3745 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3746 int i; 3747 3748 for (i = 0; i < cc->nr_threads; i++) { 3749 CPUState *cs = CPU(sc->threads[i]); 3750 3751 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3752 } 3753 } 3754 3755 assert(core_slot); 3756 core_slot->cpu = NULL; 3757 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3758 } 3759 3760 static 3761 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3762 Error **errp) 3763 { 3764 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3765 int index; 3766 SpaprDrc *drc; 3767 CPUCore *cc = CPU_CORE(dev); 3768 3769 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3770 error_setg(errp, "Unable to find CPU core with core-id: %d", 3771 cc->core_id); 3772 return; 3773 } 3774 if (index == 0) { 3775 error_setg(errp, "Boot CPU core may not be unplugged"); 3776 return; 3777 } 3778 3779 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3780 spapr_vcpu_id(spapr, cc->core_id)); 3781 g_assert(drc); 3782 3783 spapr_drc_detach(drc); 3784 3785 spapr_hotplug_req_remove_by_index(drc); 3786 } 3787 3788 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3789 void *fdt, int *fdt_start_offset, Error **errp) 3790 { 3791 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3792 CPUState *cs = CPU(core->threads[0]); 3793 PowerPCCPU *cpu = POWERPC_CPU(cs); 3794 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3795 int id = spapr_get_vcpu_id(cpu); 3796 char *nodename; 3797 int offset; 3798 3799 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3800 offset = fdt_add_subnode(fdt, 0, nodename); 3801 g_free(nodename); 3802 3803 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3804 3805 *fdt_start_offset = offset; 3806 return 0; 3807 } 3808 3809 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3810 Error **errp) 3811 { 3812 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3813 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3814 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3815 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3816 CPUCore *cc = CPU_CORE(dev); 3817 CPUState *cs; 3818 SpaprDrc *drc; 3819 Error *local_err = NULL; 3820 CPUArchId *core_slot; 3821 int index; 3822 bool hotplugged = spapr_drc_hotplugged(dev); 3823 3824 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3825 if (!core_slot) { 3826 error_setg(errp, "Unable to find CPU core with core-id: %d", 3827 cc->core_id); 3828 return; 3829 } 3830 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3831 spapr_vcpu_id(spapr, cc->core_id)); 3832 3833 g_assert(drc || !mc->has_hotpluggable_cpus); 3834 3835 if (drc) { 3836 spapr_drc_attach(drc, dev, &local_err); 3837 if (local_err) { 3838 error_propagate(errp, local_err); 3839 return; 3840 } 3841 3842 if (hotplugged) { 3843 /* 3844 * Send hotplug notification interrupt to the guest only 3845 * in case of hotplugged CPUs. 3846 */ 3847 spapr_hotplug_req_add_by_index(drc); 3848 } else { 3849 spapr_drc_reset(drc); 3850 } 3851 } 3852 3853 core_slot->cpu = OBJECT(dev); 3854 3855 if (smc->pre_2_10_has_unused_icps) { 3856 int i; 3857 3858 for (i = 0; i < cc->nr_threads; i++) { 3859 cs = CPU(core->threads[i]); 3860 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3861 } 3862 } 3863 } 3864 3865 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3866 Error **errp) 3867 { 3868 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3869 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3870 Error *local_err = NULL; 3871 CPUCore *cc = CPU_CORE(dev); 3872 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3873 const char *type = object_get_typename(OBJECT(dev)); 3874 CPUArchId *core_slot; 3875 int index; 3876 unsigned int smp_threads = machine->smp.threads; 3877 3878 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3879 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3880 goto out; 3881 } 3882 3883 if (strcmp(base_core_type, type)) { 3884 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3885 goto out; 3886 } 3887 3888 if (cc->core_id % smp_threads) { 3889 error_setg(&local_err, "invalid core id %d", cc->core_id); 3890 goto out; 3891 } 3892 3893 /* 3894 * In general we should have homogeneous threads-per-core, but old 3895 * (pre hotplug support) machine types allow the last core to have 3896 * reduced threads as a compatibility hack for when we allowed 3897 * total vcpus not a multiple of threads-per-core. 3898 */ 3899 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3900 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3901 cc->nr_threads, smp_threads); 3902 goto out; 3903 } 3904 3905 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3906 if (!core_slot) { 3907 error_setg(&local_err, "core id %d out of range", cc->core_id); 3908 goto out; 3909 } 3910 3911 if (core_slot->cpu) { 3912 error_setg(&local_err, "core %d already populated", cc->core_id); 3913 goto out; 3914 } 3915 3916 numa_cpu_pre_plug(core_slot, dev, &local_err); 3917 3918 out: 3919 error_propagate(errp, local_err); 3920 } 3921 3922 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3923 void *fdt, int *fdt_start_offset, Error **errp) 3924 { 3925 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3926 int intc_phandle; 3927 3928 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3929 if (intc_phandle <= 0) { 3930 return -1; 3931 } 3932 3933 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3934 fdt_start_offset)) { 3935 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3936 return -1; 3937 } 3938 3939 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3940 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3941 3942 return 0; 3943 } 3944 3945 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3946 Error **errp) 3947 { 3948 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3949 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3950 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3951 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3952 3953 if (dev->hotplugged && !smc->dr_phb_enabled) { 3954 error_setg(errp, "PHB hotplug not supported for this machine"); 3955 return; 3956 } 3957 3958 if (sphb->index == (uint32_t)-1) { 3959 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3960 return; 3961 } 3962 3963 /* 3964 * This will check that sphb->index doesn't exceed the maximum number of 3965 * PHBs for the current machine type. 3966 */ 3967 smc->phb_placement(spapr, sphb->index, 3968 &sphb->buid, &sphb->io_win_addr, 3969 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3970 windows_supported, sphb->dma_liobn, 3971 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3972 errp); 3973 } 3974 3975 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3976 Error **errp) 3977 { 3978 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3979 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3980 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3981 SpaprDrc *drc; 3982 bool hotplugged = spapr_drc_hotplugged(dev); 3983 Error *local_err = NULL; 3984 3985 if (!smc->dr_phb_enabled) { 3986 return; 3987 } 3988 3989 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3990 /* hotplug hooks should check it's enabled before getting this far */ 3991 assert(drc); 3992 3993 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3994 if (local_err) { 3995 error_propagate(errp, local_err); 3996 return; 3997 } 3998 3999 if (hotplugged) { 4000 spapr_hotplug_req_add_by_index(drc); 4001 } else { 4002 spapr_drc_reset(drc); 4003 } 4004 } 4005 4006 void spapr_phb_release(DeviceState *dev) 4007 { 4008 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4009 4010 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4011 object_unparent(OBJECT(dev)); 4012 } 4013 4014 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4015 { 4016 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4017 } 4018 4019 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4020 DeviceState *dev, Error **errp) 4021 { 4022 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4023 SpaprDrc *drc; 4024 4025 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4026 assert(drc); 4027 4028 if (!spapr_drc_unplug_requested(drc)) { 4029 spapr_drc_detach(drc); 4030 spapr_hotplug_req_remove_by_index(drc); 4031 } 4032 } 4033 4034 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4035 DeviceState *dev, Error **errp) 4036 { 4037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4038 spapr_memory_plug(hotplug_dev, dev, errp); 4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4040 spapr_core_plug(hotplug_dev, dev, errp); 4041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4042 spapr_phb_plug(hotplug_dev, dev, errp); 4043 } 4044 } 4045 4046 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4047 DeviceState *dev, Error **errp) 4048 { 4049 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4050 spapr_memory_unplug(hotplug_dev, dev); 4051 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4052 spapr_core_unplug(hotplug_dev, dev); 4053 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4054 spapr_phb_unplug(hotplug_dev, dev); 4055 } 4056 } 4057 4058 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4059 DeviceState *dev, Error **errp) 4060 { 4061 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4062 MachineClass *mc = MACHINE_GET_CLASS(sms); 4063 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4064 4065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4066 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4067 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4068 } else { 4069 /* NOTE: this means there is a window after guest reset, prior to 4070 * CAS negotiation, where unplug requests will fail due to the 4071 * capability not being detected yet. This is a bit different than 4072 * the case with PCI unplug, where the events will be queued and 4073 * eventually handled by the guest after boot 4074 */ 4075 error_setg(errp, "Memory hot unplug not supported for this guest"); 4076 } 4077 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4078 if (!mc->has_hotpluggable_cpus) { 4079 error_setg(errp, "CPU hot unplug not supported on this machine"); 4080 return; 4081 } 4082 spapr_core_unplug_request(hotplug_dev, dev, errp); 4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4084 if (!smc->dr_phb_enabled) { 4085 error_setg(errp, "PHB hot unplug not supported on this machine"); 4086 return; 4087 } 4088 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4089 } 4090 } 4091 4092 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4093 DeviceState *dev, Error **errp) 4094 { 4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4096 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4098 spapr_core_pre_plug(hotplug_dev, dev, errp); 4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4100 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4101 } 4102 } 4103 4104 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4105 DeviceState *dev) 4106 { 4107 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4108 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4109 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4110 return HOTPLUG_HANDLER(machine); 4111 } 4112 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4113 PCIDevice *pcidev = PCI_DEVICE(dev); 4114 PCIBus *root = pci_device_root_bus(pcidev); 4115 SpaprPhbState *phb = 4116 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4117 TYPE_SPAPR_PCI_HOST_BRIDGE); 4118 4119 if (phb) { 4120 return HOTPLUG_HANDLER(phb); 4121 } 4122 } 4123 return NULL; 4124 } 4125 4126 static CpuInstanceProperties 4127 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4128 { 4129 CPUArchId *core_slot; 4130 MachineClass *mc = MACHINE_GET_CLASS(machine); 4131 4132 /* make sure possible_cpu are intialized */ 4133 mc->possible_cpu_arch_ids(machine); 4134 /* get CPU core slot containing thread that matches cpu_index */ 4135 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4136 assert(core_slot); 4137 return core_slot->props; 4138 } 4139 4140 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4141 { 4142 return idx / ms->smp.cores % nb_numa_nodes; 4143 } 4144 4145 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4146 { 4147 int i; 4148 unsigned int smp_threads = machine->smp.threads; 4149 unsigned int smp_cpus = machine->smp.cpus; 4150 const char *core_type; 4151 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4152 MachineClass *mc = MACHINE_GET_CLASS(machine); 4153 4154 if (!mc->has_hotpluggable_cpus) { 4155 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4156 } 4157 if (machine->possible_cpus) { 4158 assert(machine->possible_cpus->len == spapr_max_cores); 4159 return machine->possible_cpus; 4160 } 4161 4162 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4163 if (!core_type) { 4164 error_report("Unable to find sPAPR CPU Core definition"); 4165 exit(1); 4166 } 4167 4168 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4169 sizeof(CPUArchId) * spapr_max_cores); 4170 machine->possible_cpus->len = spapr_max_cores; 4171 for (i = 0; i < machine->possible_cpus->len; i++) { 4172 int core_id = i * smp_threads; 4173 4174 machine->possible_cpus->cpus[i].type = core_type; 4175 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4176 machine->possible_cpus->cpus[i].arch_id = core_id; 4177 machine->possible_cpus->cpus[i].props.has_core_id = true; 4178 machine->possible_cpus->cpus[i].props.core_id = core_id; 4179 } 4180 return machine->possible_cpus; 4181 } 4182 4183 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4184 uint64_t *buid, hwaddr *pio, 4185 hwaddr *mmio32, hwaddr *mmio64, 4186 unsigned n_dma, uint32_t *liobns, 4187 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4188 { 4189 /* 4190 * New-style PHB window placement. 4191 * 4192 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4193 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4194 * windows. 4195 * 4196 * Some guest kernels can't work with MMIO windows above 1<<46 4197 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4198 * 4199 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4200 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4201 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4202 * 1TiB 64-bit MMIO windows for each PHB. 4203 */ 4204 const uint64_t base_buid = 0x800000020000000ULL; 4205 int i; 4206 4207 /* Sanity check natural alignments */ 4208 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4209 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4210 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4211 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4212 /* Sanity check bounds */ 4213 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4214 SPAPR_PCI_MEM32_WIN_SIZE); 4215 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4216 SPAPR_PCI_MEM64_WIN_SIZE); 4217 4218 if (index >= SPAPR_MAX_PHBS) { 4219 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4220 SPAPR_MAX_PHBS - 1); 4221 return; 4222 } 4223 4224 *buid = base_buid + index; 4225 for (i = 0; i < n_dma; ++i) { 4226 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4227 } 4228 4229 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4230 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4231 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4232 4233 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4234 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4235 } 4236 4237 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4238 { 4239 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4240 4241 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4242 } 4243 4244 static void spapr_ics_resend(XICSFabric *dev) 4245 { 4246 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4247 4248 ics_resend(spapr->ics); 4249 } 4250 4251 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4252 { 4253 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4254 4255 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4256 } 4257 4258 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4259 Monitor *mon) 4260 { 4261 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4262 4263 spapr->irq->print_info(spapr, mon); 4264 } 4265 4266 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4267 { 4268 return cpu->vcpu_id; 4269 } 4270 4271 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4272 { 4273 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4274 MachineState *ms = MACHINE(spapr); 4275 int vcpu_id; 4276 4277 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4278 4279 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4280 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4281 error_append_hint(errp, "Adjust the number of cpus to %d " 4282 "or try to raise the number of threads per core\n", 4283 vcpu_id * ms->smp.threads / spapr->vsmt); 4284 return; 4285 } 4286 4287 cpu->vcpu_id = vcpu_id; 4288 } 4289 4290 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4291 { 4292 CPUState *cs; 4293 4294 CPU_FOREACH(cs) { 4295 PowerPCCPU *cpu = POWERPC_CPU(cs); 4296 4297 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4298 return cpu; 4299 } 4300 } 4301 4302 return NULL; 4303 } 4304 4305 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4306 { 4307 MachineClass *mc = MACHINE_CLASS(oc); 4308 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4309 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4310 NMIClass *nc = NMI_CLASS(oc); 4311 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4312 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4313 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4314 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4315 4316 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4317 mc->ignore_boot_device_suffixes = true; 4318 4319 /* 4320 * We set up the default / latest behaviour here. The class_init 4321 * functions for the specific versioned machine types can override 4322 * these details for backwards compatibility 4323 */ 4324 mc->init = spapr_machine_init; 4325 mc->reset = spapr_machine_reset; 4326 mc->block_default_type = IF_SCSI; 4327 mc->max_cpus = 1024; 4328 mc->no_parallel = 1; 4329 mc->default_boot_order = ""; 4330 mc->default_ram_size = 512 * MiB; 4331 mc->default_display = "std"; 4332 mc->kvm_type = spapr_kvm_type; 4333 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4334 mc->pci_allow_0_address = true; 4335 assert(!mc->get_hotplug_handler); 4336 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4337 hc->pre_plug = spapr_machine_device_pre_plug; 4338 hc->plug = spapr_machine_device_plug; 4339 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4340 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4341 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4342 hc->unplug_request = spapr_machine_device_unplug_request; 4343 hc->unplug = spapr_machine_device_unplug; 4344 4345 smc->dr_lmb_enabled = true; 4346 smc->update_dt_enabled = true; 4347 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4348 mc->has_hotpluggable_cpus = true; 4349 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4350 fwc->get_dev_path = spapr_get_fw_dev_path; 4351 nc->nmi_monitor_handler = spapr_nmi; 4352 smc->phb_placement = spapr_phb_placement; 4353 vhc->hypercall = emulate_spapr_hypercall; 4354 vhc->hpt_mask = spapr_hpt_mask; 4355 vhc->map_hptes = spapr_map_hptes; 4356 vhc->unmap_hptes = spapr_unmap_hptes; 4357 vhc->hpte_set_c = spapr_hpte_set_c; 4358 vhc->hpte_set_r = spapr_hpte_set_r; 4359 vhc->get_pate = spapr_get_pate; 4360 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4361 xic->ics_get = spapr_ics_get; 4362 xic->ics_resend = spapr_ics_resend; 4363 xic->icp_get = spapr_icp_get; 4364 ispc->print_info = spapr_pic_print_info; 4365 /* Force NUMA node memory size to be a multiple of 4366 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4367 * in which LMBs are represented and hot-added 4368 */ 4369 mc->numa_mem_align_shift = 28; 4370 mc->numa_mem_supported = true; 4371 4372 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4373 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4374 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4375 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4376 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4377 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4378 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4379 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4380 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4381 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4382 spapr_caps_add_properties(smc, &error_abort); 4383 smc->irq = &spapr_irq_dual; 4384 smc->dr_phb_enabled = true; 4385 } 4386 4387 static const TypeInfo spapr_machine_info = { 4388 .name = TYPE_SPAPR_MACHINE, 4389 .parent = TYPE_MACHINE, 4390 .abstract = true, 4391 .instance_size = sizeof(SpaprMachineState), 4392 .instance_init = spapr_instance_init, 4393 .instance_finalize = spapr_machine_finalizefn, 4394 .class_size = sizeof(SpaprMachineClass), 4395 .class_init = spapr_machine_class_init, 4396 .interfaces = (InterfaceInfo[]) { 4397 { TYPE_FW_PATH_PROVIDER }, 4398 { TYPE_NMI }, 4399 { TYPE_HOTPLUG_HANDLER }, 4400 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4401 { TYPE_XICS_FABRIC }, 4402 { TYPE_INTERRUPT_STATS_PROVIDER }, 4403 { } 4404 }, 4405 }; 4406 4407 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4408 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4409 void *data) \ 4410 { \ 4411 MachineClass *mc = MACHINE_CLASS(oc); \ 4412 spapr_machine_##suffix##_class_options(mc); \ 4413 if (latest) { \ 4414 mc->alias = "pseries"; \ 4415 mc->is_default = 1; \ 4416 } \ 4417 } \ 4418 static const TypeInfo spapr_machine_##suffix##_info = { \ 4419 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4420 .parent = TYPE_SPAPR_MACHINE, \ 4421 .class_init = spapr_machine_##suffix##_class_init, \ 4422 }; \ 4423 static void spapr_machine_register_##suffix(void) \ 4424 { \ 4425 type_register(&spapr_machine_##suffix##_info); \ 4426 } \ 4427 type_init(spapr_machine_register_##suffix) 4428 4429 /* 4430 * pseries-4.1 4431 */ 4432 static void spapr_machine_4_1_class_options(MachineClass *mc) 4433 { 4434 /* Defaults for the latest behaviour inherited from the base class */ 4435 } 4436 4437 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4438 4439 /* 4440 * pseries-4.0 4441 */ 4442 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4443 uint64_t *buid, hwaddr *pio, 4444 hwaddr *mmio32, hwaddr *mmio64, 4445 unsigned n_dma, uint32_t *liobns, 4446 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4447 { 4448 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4449 nv2gpa, nv2atsd, errp); 4450 *nv2gpa = 0; 4451 *nv2atsd = 0; 4452 } 4453 4454 static void spapr_machine_4_0_class_options(MachineClass *mc) 4455 { 4456 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4457 4458 spapr_machine_4_1_class_options(mc); 4459 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4460 smc->phb_placement = phb_placement_4_0; 4461 smc->irq = &spapr_irq_xics; 4462 smc->pre_4_1_migration = true; 4463 } 4464 4465 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4466 4467 /* 4468 * pseries-3.1 4469 */ 4470 static void spapr_machine_3_1_class_options(MachineClass *mc) 4471 { 4472 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4473 4474 spapr_machine_4_0_class_options(mc); 4475 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4476 4477 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4478 smc->update_dt_enabled = false; 4479 smc->dr_phb_enabled = false; 4480 smc->broken_host_serial_model = true; 4481 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4482 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4483 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4484 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4485 } 4486 4487 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4488 4489 /* 4490 * pseries-3.0 4491 */ 4492 4493 static void spapr_machine_3_0_class_options(MachineClass *mc) 4494 { 4495 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4496 4497 spapr_machine_3_1_class_options(mc); 4498 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4499 4500 smc->legacy_irq_allocation = true; 4501 smc->irq = &spapr_irq_xics_legacy; 4502 } 4503 4504 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4505 4506 /* 4507 * pseries-2.12 4508 */ 4509 static void spapr_machine_2_12_class_options(MachineClass *mc) 4510 { 4511 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4512 static GlobalProperty compat[] = { 4513 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4514 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4515 }; 4516 4517 spapr_machine_3_0_class_options(mc); 4518 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4519 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4520 4521 /* We depend on kvm_enabled() to choose a default value for the 4522 * hpt-max-page-size capability. Of course we can't do it here 4523 * because this is too early and the HW accelerator isn't initialzed 4524 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4525 */ 4526 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4527 } 4528 4529 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4530 4531 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4532 { 4533 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4534 4535 spapr_machine_2_12_class_options(mc); 4536 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4537 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4538 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4539 } 4540 4541 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4542 4543 /* 4544 * pseries-2.11 4545 */ 4546 4547 static void spapr_machine_2_11_class_options(MachineClass *mc) 4548 { 4549 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4550 4551 spapr_machine_2_12_class_options(mc); 4552 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4553 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4554 } 4555 4556 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4557 4558 /* 4559 * pseries-2.10 4560 */ 4561 4562 static void spapr_machine_2_10_class_options(MachineClass *mc) 4563 { 4564 spapr_machine_2_11_class_options(mc); 4565 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4566 } 4567 4568 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4569 4570 /* 4571 * pseries-2.9 4572 */ 4573 4574 static void spapr_machine_2_9_class_options(MachineClass *mc) 4575 { 4576 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4577 static GlobalProperty compat[] = { 4578 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4579 }; 4580 4581 spapr_machine_2_10_class_options(mc); 4582 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4583 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4584 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4585 smc->pre_2_10_has_unused_icps = true; 4586 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4587 } 4588 4589 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4590 4591 /* 4592 * pseries-2.8 4593 */ 4594 4595 static void spapr_machine_2_8_class_options(MachineClass *mc) 4596 { 4597 static GlobalProperty compat[] = { 4598 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4599 }; 4600 4601 spapr_machine_2_9_class_options(mc); 4602 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4603 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4604 mc->numa_mem_align_shift = 23; 4605 } 4606 4607 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4608 4609 /* 4610 * pseries-2.7 4611 */ 4612 4613 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4614 uint64_t *buid, hwaddr *pio, 4615 hwaddr *mmio32, hwaddr *mmio64, 4616 unsigned n_dma, uint32_t *liobns, 4617 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4618 { 4619 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4620 const uint64_t base_buid = 0x800000020000000ULL; 4621 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4622 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4623 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4624 const uint32_t max_index = 255; 4625 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4626 4627 uint64_t ram_top = MACHINE(spapr)->ram_size; 4628 hwaddr phb0_base, phb_base; 4629 int i; 4630 4631 /* Do we have device memory? */ 4632 if (MACHINE(spapr)->maxram_size > ram_top) { 4633 /* Can't just use maxram_size, because there may be an 4634 * alignment gap between normal and device memory regions 4635 */ 4636 ram_top = MACHINE(spapr)->device_memory->base + 4637 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4638 } 4639 4640 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4641 4642 if (index > max_index) { 4643 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4644 max_index); 4645 return; 4646 } 4647 4648 *buid = base_buid + index; 4649 for (i = 0; i < n_dma; ++i) { 4650 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4651 } 4652 4653 phb_base = phb0_base + index * phb_spacing; 4654 *pio = phb_base + pio_offset; 4655 *mmio32 = phb_base + mmio_offset; 4656 /* 4657 * We don't set the 64-bit MMIO window, relying on the PHB's 4658 * fallback behaviour of automatically splitting a large "32-bit" 4659 * window into contiguous 32-bit and 64-bit windows 4660 */ 4661 4662 *nv2gpa = 0; 4663 *nv2atsd = 0; 4664 } 4665 4666 static void spapr_machine_2_7_class_options(MachineClass *mc) 4667 { 4668 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4669 static GlobalProperty compat[] = { 4670 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4671 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4672 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4673 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4674 }; 4675 4676 spapr_machine_2_8_class_options(mc); 4677 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4678 mc->default_machine_opts = "modern-hotplug-events=off"; 4679 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4680 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4681 smc->phb_placement = phb_placement_2_7; 4682 } 4683 4684 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4685 4686 /* 4687 * pseries-2.6 4688 */ 4689 4690 static void spapr_machine_2_6_class_options(MachineClass *mc) 4691 { 4692 static GlobalProperty compat[] = { 4693 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4694 }; 4695 4696 spapr_machine_2_7_class_options(mc); 4697 mc->has_hotpluggable_cpus = false; 4698 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4699 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4700 } 4701 4702 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4703 4704 /* 4705 * pseries-2.5 4706 */ 4707 4708 static void spapr_machine_2_5_class_options(MachineClass *mc) 4709 { 4710 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4711 static GlobalProperty compat[] = { 4712 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4713 }; 4714 4715 spapr_machine_2_6_class_options(mc); 4716 smc->use_ohci_by_default = true; 4717 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4718 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4719 } 4720 4721 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4722 4723 /* 4724 * pseries-2.4 4725 */ 4726 4727 static void spapr_machine_2_4_class_options(MachineClass *mc) 4728 { 4729 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4730 4731 spapr_machine_2_5_class_options(mc); 4732 smc->dr_lmb_enabled = false; 4733 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4734 } 4735 4736 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4737 4738 /* 4739 * pseries-2.3 4740 */ 4741 4742 static void spapr_machine_2_3_class_options(MachineClass *mc) 4743 { 4744 static GlobalProperty compat[] = { 4745 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4746 }; 4747 spapr_machine_2_4_class_options(mc); 4748 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4749 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4750 } 4751 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4752 4753 /* 4754 * pseries-2.2 4755 */ 4756 4757 static void spapr_machine_2_2_class_options(MachineClass *mc) 4758 { 4759 static GlobalProperty compat[] = { 4760 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4761 }; 4762 4763 spapr_machine_2_3_class_options(mc); 4764 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4765 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4766 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4767 } 4768 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4769 4770 /* 4771 * pseries-2.1 4772 */ 4773 4774 static void spapr_machine_2_1_class_options(MachineClass *mc) 4775 { 4776 spapr_machine_2_2_class_options(mc); 4777 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4778 } 4779 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4780 4781 static void spapr_machine_register_types(void) 4782 { 4783 type_register_static(&spapr_machine_info); 4784 } 4785 4786 type_init(spapr_machine_register_types) 4787