xref: /openbmc/qemu/hw/ppc/spapr.c (revision ec132efaa81f09861a3bd6afad94827e74543b3f)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
33 #include "hw/hw.h"
34 #include "qemu/log.h"
35 #include "hw/fw-path-provider.h"
36 #include "elf.h"
37 #include "net/net.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
59 
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64 
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_INTC            0x00001111
101 
102 /* These two functions implement the VCPU id numbering: one to compute them
103  * all and one to identify thread 0 of a VCORE. Any change to the first one
104  * is likely to have an impact on the second one, so let's keep them close.
105  */
106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
107 {
108     assert(spapr->vsmt);
109     return
110         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
113                                       PowerPCCPU *cpu)
114 {
115     assert(spapr->vsmt);
116     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118 
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122      * and newer QEMUs don't even have them. In both cases, we don't want
123      * to send anything on the wire.
124      */
125     return false;
126 }
127 
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129     .name = "icp/server",
130     .version_id = 1,
131     .minimum_version_id = 1,
132     .needed = pre_2_10_vmstate_dummy_icp_needed,
133     .fields = (VMStateField[]) {
134         VMSTATE_UNUSED(4), /* uint32_t xirr */
135         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136         VMSTATE_UNUSED(1), /* uint8_t mfrr */
137         VMSTATE_END_OF_LIST()
138     },
139 };
140 
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144                      (void *)(uintptr_t) i);
145 }
146 
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150                        (void *)(uintptr_t) i);
151 }
152 
153 int spapr_max_server_number(SpaprMachineState *spapr)
154 {
155     assert(spapr->vsmt);
156     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158 
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160                                   int smt_threads)
161 {
162     int i, ret = 0;
163     uint32_t servers_prop[smt_threads];
164     uint32_t gservers_prop[smt_threads * 2];
165     int index = spapr_get_vcpu_id(cpu);
166 
167     if (cpu->compat_pvr) {
168         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169         if (ret < 0) {
170             return ret;
171         }
172     }
173 
174     /* Build interrupt servers and gservers properties */
175     for (i = 0; i < smt_threads; i++) {
176         servers_prop[i] = cpu_to_be32(index + i);
177         /* Hack, direct the group queues back to cpu 0 */
178         gservers_prop[i*2] = cpu_to_be32(index + i);
179         gservers_prop[i*2 + 1] = 0;
180     }
181     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182                       servers_prop, sizeof(servers_prop));
183     if (ret < 0) {
184         return ret;
185     }
186     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187                       gservers_prop, sizeof(gservers_prop));
188 
189     return ret;
190 }
191 
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194     int index = spapr_get_vcpu_id(cpu);
195     uint32_t associativity[] = {cpu_to_be32(0x5),
196                                 cpu_to_be32(0x0),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(0x0),
199                                 cpu_to_be32(cpu->node_id),
200                                 cpu_to_be32(index)};
201 
202     /* Advertise NUMA via ibm,associativity */
203     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204                           sizeof(associativity));
205 }
206 
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(SpaprMachineState *spapr,
209                                        PowerPCCPU *cpu,
210                                        void *fdt, int offset,
211                                        bool legacy_guest)
212 {
213     uint8_t pa_features_206[] = { 6, 0,
214         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215     uint8_t pa_features_207[] = { 24, 0,
216         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220     uint8_t pa_features_300[] = { 66, 0,
221         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224         /* 6: DS207 */
225         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226         /* 16: Vector */
227         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236         /* 42: PM, 44: PC RA, 46: SC vec'd */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238         /* 48: SIMD, 50: QP BFP, 52: String */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240         /* 54: DecFP, 56: DecI, 58: SHA */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242         /* 60: NM atomic, 62: RNG */
243         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244     };
245     uint8_t *pa_features = NULL;
246     size_t pa_size;
247 
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_206;
250         pa_size = sizeof(pa_features_206);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_207;
254         pa_size = sizeof(pa_features_207);
255     }
256     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257         pa_features = pa_features_300;
258         pa_size = sizeof(pa_features_300);
259     }
260     if (!pa_features) {
261         return;
262     }
263 
264     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265         /*
266          * Note: we keep CI large pages off by default because a 64K capable
267          * guest provisioned with large pages might otherwise try to map a qemu
268          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269          * even if that qemu runs on a 4k host.
270          * We dd this bit back here if we are confident this is not an issue
271          */
272         pa_features[3] |= 0x20;
273     }
274     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275         pa_features[24] |= 0x80;    /* Transactional memory support */
276     }
277     if (legacy_guest && pa_size > 40) {
278         /* Workaround for broken kernels that attempt (guest) radix
279          * mode when they can't handle it, if they see the radix bit set
280          * in pa-features. So hide it from them. */
281         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282     }
283 
284     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286 
287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
288 {
289     int ret = 0, offset, cpus_offset;
290     CPUState *cs;
291     char cpu_model[32];
292     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293 
294     CPU_FOREACH(cs) {
295         PowerPCCPU *cpu = POWERPC_CPU(cs);
296         DeviceClass *dc = DEVICE_GET_CLASS(cs);
297         int index = spapr_get_vcpu_id(cpu);
298         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299 
300         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301             continue;
302         }
303 
304         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305 
306         cpus_offset = fdt_path_offset(fdt, "/cpus");
307         if (cpus_offset < 0) {
308             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309             if (cpus_offset < 0) {
310                 return cpus_offset;
311             }
312         }
313         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314         if (offset < 0) {
315             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316             if (offset < 0) {
317                 return offset;
318             }
319         }
320 
321         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322                           pft_size_prop, sizeof(pft_size_prop));
323         if (ret < 0) {
324             return ret;
325         }
326 
327         if (nb_numa_nodes > 1) {
328             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329             if (ret < 0) {
330                 return ret;
331             }
332         }
333 
334         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335         if (ret < 0) {
336             return ret;
337         }
338 
339         spapr_populate_pa_features(spapr, cpu, fdt, offset,
340                                    spapr->cas_legacy_guest_workaround);
341     }
342     return ret;
343 }
344 
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347     if (nb_numa_nodes) {
348         int i;
349         for (i = 0; i < nb_numa_nodes; ++i) {
350             if (numa_info[i].node_mem) {
351                 return MIN(pow2floor(numa_info[i].node_mem),
352                            machine->ram_size);
353             }
354         }
355     }
356     return machine->ram_size;
357 }
358 
359 static void add_str(GString *s, const gchar *s1)
360 {
361     g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363 
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365                                        hwaddr size)
366 {
367     uint32_t associativity[] = {
368         cpu_to_be32(0x4), /* length */
369         cpu_to_be32(0x0), cpu_to_be32(0x0),
370         cpu_to_be32(0x0), cpu_to_be32(nodeid)
371     };
372     char mem_name[32];
373     uint64_t mem_reg_property[2];
374     int off;
375 
376     mem_reg_property[0] = cpu_to_be64(start);
377     mem_reg_property[1] = cpu_to_be64(size);
378 
379     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380     off = fdt_add_subnode(fdt, 0, mem_name);
381     _FDT(off);
382     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384                       sizeof(mem_reg_property))));
385     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386                       sizeof(associativity))));
387     return off;
388 }
389 
390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
391 {
392     MachineState *machine = MACHINE(spapr);
393     hwaddr mem_start, node_size;
394     int i, nb_nodes = nb_numa_nodes;
395     NodeInfo *nodes = numa_info;
396     NodeInfo ramnode;
397 
398     /* No NUMA nodes, assume there is just one node with whole RAM */
399     if (!nb_numa_nodes) {
400         nb_nodes = 1;
401         ramnode.node_mem = machine->ram_size;
402         nodes = &ramnode;
403     }
404 
405     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406         if (!nodes[i].node_mem) {
407             continue;
408         }
409         if (mem_start >= machine->ram_size) {
410             node_size = 0;
411         } else {
412             node_size = nodes[i].node_mem;
413             if (node_size > machine->ram_size - mem_start) {
414                 node_size = machine->ram_size - mem_start;
415             }
416         }
417         if (!mem_start) {
418             /* spapr_machine_init() checks for rma_size <= node0_size
419              * already */
420             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421             mem_start += spapr->rma_size;
422             node_size -= spapr->rma_size;
423         }
424         for ( ; node_size; ) {
425             hwaddr sizetmp = pow2floor(node_size);
426 
427             /* mem_start != 0 here */
428             if (ctzl(mem_start) < ctzl(sizetmp)) {
429                 sizetmp = 1ULL << ctzl(mem_start);
430             }
431 
432             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433             node_size -= sizetmp;
434             mem_start += sizetmp;
435         }
436     }
437 
438     return 0;
439 }
440 
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442                                   SpaprMachineState *spapr)
443 {
444     PowerPCCPU *cpu = POWERPC_CPU(cs);
445     CPUPPCState *env = &cpu->env;
446     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447     int index = spapr_get_vcpu_id(cpu);
448     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449                        0xffffffff, 0xffffffff};
450     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451         : SPAPR_TIMEBASE_FREQ;
452     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453     uint32_t page_sizes_prop[64];
454     size_t page_sizes_prop_size;
455     uint32_t vcpus_per_socket = smp_threads * smp_cores;
456     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458     SpaprDrc *drc;
459     int drc_index;
460     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461     int i;
462 
463     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464     if (drc) {
465         drc_index = spapr_drc_index(drc);
466         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467     }
468 
469     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471 
472     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474                            env->dcache_line_size)));
475     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476                            env->dcache_line_size)));
477     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478                            env->icache_line_size)));
479     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480                            env->icache_line_size)));
481 
482     if (pcc->l1_dcache_size) {
483         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484                                pcc->l1_dcache_size)));
485     } else {
486         warn_report("Unknown L1 dcache size for cpu");
487     }
488     if (pcc->l1_icache_size) {
489         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490                                pcc->l1_icache_size)));
491     } else {
492         warn_report("Unknown L1 icache size for cpu");
493     }
494 
495     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501 
502     if (env->spr_cb[SPR_PURR].oea_read) {
503         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504     }
505 
506     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508                           segs, sizeof(segs))));
509     }
510 
511     /* Advertise VSX (vector extensions) if available
512      *   1               == VMX / Altivec available
513      *   2               == VSX available
514      *
515      * Only CPUs for which we create core types in spapr_cpu_core.c
516      * are possible, and all of those have VMX */
517     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519     } else {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521     }
522 
523     /* Advertise DFP (Decimal Floating Point) if available
524      *   0 / no property == no DFP
525      *   1               == DFP available */
526     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528     }
529 
530     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531                                                       sizeof(page_sizes_prop));
532     if (page_sizes_prop_size) {
533         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534                           page_sizes_prop, page_sizes_prop_size)));
535     }
536 
537     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538 
539     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540                            cs->cpu_index / vcpus_per_socket)));
541 
542     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543                       pft_size_prop, sizeof(pft_size_prop))));
544 
545     if (nb_numa_nodes > 1) {
546         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547     }
548 
549     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550 
551     if (pcc->radix_page_info) {
552         for (i = 0; i < pcc->radix_page_info->count; i++) {
553             radix_AP_encodings[i] =
554                 cpu_to_be32(pcc->radix_page_info->entries[i]);
555         }
556         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557                           radix_AP_encodings,
558                           pcc->radix_page_info->count *
559                           sizeof(radix_AP_encodings[0]))));
560     }
561 
562     /*
563      * We set this property to let the guest know that it can use the large
564      * decrementer and its width in bits.
565      */
566     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
567         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
568                               pcc->lrg_decr_bits)));
569 }
570 
571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
572 {
573     CPUState **rev;
574     CPUState *cs;
575     int n_cpus;
576     int cpus_offset;
577     char *nodename;
578     int i;
579 
580     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
581     _FDT(cpus_offset);
582     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
583     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
584 
585     /*
586      * We walk the CPUs in reverse order to ensure that CPU DT nodes
587      * created by fdt_add_subnode() end up in the right order in FDT
588      * for the guest kernel the enumerate the CPUs correctly.
589      *
590      * The CPU list cannot be traversed in reverse order, so we need
591      * to do extra work.
592      */
593     n_cpus = 0;
594     rev = NULL;
595     CPU_FOREACH(cs) {
596         rev = g_renew(CPUState *, rev, n_cpus + 1);
597         rev[n_cpus++] = cs;
598     }
599 
600     for (i = n_cpus - 1; i >= 0; i--) {
601         CPUState *cs = rev[i];
602         PowerPCCPU *cpu = POWERPC_CPU(cs);
603         int index = spapr_get_vcpu_id(cpu);
604         DeviceClass *dc = DEVICE_GET_CLASS(cs);
605         int offset;
606 
607         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
608             continue;
609         }
610 
611         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
612         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
613         g_free(nodename);
614         _FDT(offset);
615         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
616     }
617 
618     g_free(rev);
619 }
620 
621 static int spapr_rng_populate_dt(void *fdt)
622 {
623     int node;
624     int ret;
625 
626     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
627     if (node <= 0) {
628         return -1;
629     }
630     ret = fdt_setprop_string(fdt, node, "device_type",
631                              "ibm,platform-facilities");
632     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
633     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
634 
635     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
636     if (node <= 0) {
637         return -1;
638     }
639     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
640 
641     return ret ? -1 : 0;
642 }
643 
644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
645 {
646     MemoryDeviceInfoList *info;
647 
648     for (info = list; info; info = info->next) {
649         MemoryDeviceInfo *value = info->value;
650 
651         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
653 
654             if (addr >= pcdimm_info->addr &&
655                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656                 return pcdimm_info->node;
657             }
658         }
659     }
660 
661     return -1;
662 }
663 
664 struct sPAPRDrconfCellV2 {
665      uint32_t seq_lmbs;
666      uint64_t base_addr;
667      uint32_t drc_index;
668      uint32_t aa_index;
669      uint32_t flags;
670 } QEMU_PACKED;
671 
672 typedef struct DrconfCellQueue {
673     struct sPAPRDrconfCellV2 cell;
674     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
675 } DrconfCellQueue;
676 
677 static DrconfCellQueue *
678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
679                       uint32_t drc_index, uint32_t aa_index,
680                       uint32_t flags)
681 {
682     DrconfCellQueue *elem;
683 
684     elem = g_malloc0(sizeof(*elem));
685     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
686     elem->cell.base_addr = cpu_to_be64(base_addr);
687     elem->cell.drc_index = cpu_to_be32(drc_index);
688     elem->cell.aa_index = cpu_to_be32(aa_index);
689     elem->cell.flags = cpu_to_be32(flags);
690 
691     return elem;
692 }
693 
694 /* ibm,dynamic-memory-v2 */
695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
696                                    int offset, MemoryDeviceInfoList *dimms)
697 {
698     MachineState *machine = MACHINE(spapr);
699     uint8_t *int_buf, *cur_index;
700     int ret;
701     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
702     uint64_t addr, cur_addr, size;
703     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
704     uint64_t mem_end = machine->device_memory->base +
705                        memory_region_size(&machine->device_memory->mr);
706     uint32_t node, buf_len, nr_entries = 0;
707     SpaprDrc *drc;
708     DrconfCellQueue *elem, *next;
709     MemoryDeviceInfoList *info;
710     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
711         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
712 
713     /* Entry to cover RAM and the gap area */
714     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
715                                  SPAPR_LMB_FLAGS_RESERVED |
716                                  SPAPR_LMB_FLAGS_DRC_INVALID);
717     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
718     nr_entries++;
719 
720     cur_addr = machine->device_memory->base;
721     for (info = dimms; info; info = info->next) {
722         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
723 
724         addr = di->addr;
725         size = di->size;
726         node = di->node;
727 
728         /* Entry for hot-pluggable area */
729         if (cur_addr < addr) {
730             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
731             g_assert(drc);
732             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
733                                          cur_addr, spapr_drc_index(drc), -1, 0);
734             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735             nr_entries++;
736         }
737 
738         /* Entry for DIMM */
739         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
740         g_assert(drc);
741         elem = spapr_get_drconf_cell(size / lmb_size, addr,
742                                      spapr_drc_index(drc), node,
743                                      SPAPR_LMB_FLAGS_ASSIGNED);
744         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
745         nr_entries++;
746         cur_addr = addr + size;
747     }
748 
749     /* Entry for remaining hotpluggable area */
750     if (cur_addr < mem_end) {
751         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
752         g_assert(drc);
753         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
754                                      cur_addr, spapr_drc_index(drc), -1, 0);
755         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
756         nr_entries++;
757     }
758 
759     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
760     int_buf = cur_index = g_malloc0(buf_len);
761     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
762     cur_index += sizeof(nr_entries);
763 
764     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
765         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
766         cur_index += sizeof(elem->cell);
767         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
768         g_free(elem);
769     }
770 
771     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
772     g_free(int_buf);
773     if (ret < 0) {
774         return -1;
775     }
776     return 0;
777 }
778 
779 /* ibm,dynamic-memory */
780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
781                                    int offset, MemoryDeviceInfoList *dimms)
782 {
783     MachineState *machine = MACHINE(spapr);
784     int i, ret;
785     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
786     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
787     uint32_t nr_lmbs = (machine->device_memory->base +
788                        memory_region_size(&machine->device_memory->mr)) /
789                        lmb_size;
790     uint32_t *int_buf, *cur_index, buf_len;
791 
792     /*
793      * Allocate enough buffer size to fit in ibm,dynamic-memory
794      */
795     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
796     cur_index = int_buf = g_malloc0(buf_len);
797     int_buf[0] = cpu_to_be32(nr_lmbs);
798     cur_index++;
799     for (i = 0; i < nr_lmbs; i++) {
800         uint64_t addr = i * lmb_size;
801         uint32_t *dynamic_memory = cur_index;
802 
803         if (i >= device_lmb_start) {
804             SpaprDrc *drc;
805 
806             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
807             g_assert(drc);
808 
809             dynamic_memory[0] = cpu_to_be32(addr >> 32);
810             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
811             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
812             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
813             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
814             if (memory_region_present(get_system_memory(), addr)) {
815                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
816             } else {
817                 dynamic_memory[5] = cpu_to_be32(0);
818             }
819         } else {
820             /*
821              * LMB information for RMA, boot time RAM and gap b/n RAM and
822              * device memory region -- all these are marked as reserved
823              * and as having no valid DRC.
824              */
825             dynamic_memory[0] = cpu_to_be32(addr >> 32);
826             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827             dynamic_memory[2] = cpu_to_be32(0);
828             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829             dynamic_memory[4] = cpu_to_be32(-1);
830             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
831                                             SPAPR_LMB_FLAGS_DRC_INVALID);
832         }
833 
834         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
835     }
836     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
837     g_free(int_buf);
838     if (ret < 0) {
839         return -1;
840     }
841     return 0;
842 }
843 
844 /*
845  * Adds ibm,dynamic-reconfiguration-memory node.
846  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
847  * of this device tree node.
848  */
849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
850 {
851     MachineState *machine = MACHINE(spapr);
852     int ret, i, offset;
853     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
854     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
855     uint32_t *int_buf, *cur_index, buf_len;
856     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
857     MemoryDeviceInfoList *dimms = NULL;
858 
859     /*
860      * Don't create the node if there is no device memory
861      */
862     if (machine->ram_size == machine->maxram_size) {
863         return 0;
864     }
865 
866     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
867 
868     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
869                     sizeof(prop_lmb_size));
870     if (ret < 0) {
871         return ret;
872     }
873 
874     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
875     if (ret < 0) {
876         return ret;
877     }
878 
879     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
880     if (ret < 0) {
881         return ret;
882     }
883 
884     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
885     dimms = qmp_memory_device_list();
886     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
887         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
888     } else {
889         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
890     }
891     qapi_free_MemoryDeviceInfoList(dimms);
892 
893     if (ret < 0) {
894         return ret;
895     }
896 
897     /* ibm,associativity-lookup-arrays */
898     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
899     cur_index = int_buf = g_malloc0(buf_len);
900     int_buf[0] = cpu_to_be32(nr_nodes);
901     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
902     cur_index += 2;
903     for (i = 0; i < nr_nodes; i++) {
904         uint32_t associativity[] = {
905             cpu_to_be32(0x0),
906             cpu_to_be32(0x0),
907             cpu_to_be32(0x0),
908             cpu_to_be32(i)
909         };
910         memcpy(cur_index, associativity, sizeof(associativity));
911         cur_index += 4;
912     }
913     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
914             (cur_index - int_buf) * sizeof(uint32_t));
915     g_free(int_buf);
916 
917     return ret;
918 }
919 
920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
921                                 SpaprOptionVector *ov5_updates)
922 {
923     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
924     int ret = 0, offset;
925 
926     /* Generate ibm,dynamic-reconfiguration-memory node if required */
927     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
928         g_assert(smc->dr_lmb_enabled);
929         ret = spapr_populate_drconf_memory(spapr, fdt);
930         if (ret) {
931             goto out;
932         }
933     }
934 
935     offset = fdt_path_offset(fdt, "/chosen");
936     if (offset < 0) {
937         offset = fdt_add_subnode(fdt, 0, "chosen");
938         if (offset < 0) {
939             return offset;
940         }
941     }
942     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
943                                  "ibm,architecture-vec-5");
944 
945 out:
946     return ret;
947 }
948 
949 static bool spapr_hotplugged_dev_before_cas(void)
950 {
951     Object *drc_container, *obj;
952     ObjectProperty *prop;
953     ObjectPropertyIterator iter;
954 
955     drc_container = container_get(object_get_root(), "/dr-connector");
956     object_property_iter_init(&iter, drc_container);
957     while ((prop = object_property_iter_next(&iter))) {
958         if (!strstart(prop->type, "link<", NULL)) {
959             continue;
960         }
961         obj = object_property_get_link(drc_container, prop->name, NULL);
962         if (spapr_drc_needed(obj)) {
963             return true;
964         }
965     }
966     return false;
967 }
968 
969 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
970                                  target_ulong addr, target_ulong size,
971                                  SpaprOptionVector *ov5_updates)
972 {
973     void *fdt, *fdt_skel;
974     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
975 
976     if (spapr_hotplugged_dev_before_cas()) {
977         return 1;
978     }
979 
980     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
981         error_report("SLOF provided an unexpected CAS buffer size "
982                      TARGET_FMT_lu " (min: %zu, max: %u)",
983                      size, sizeof(hdr), FW_MAX_SIZE);
984         exit(EXIT_FAILURE);
985     }
986 
987     size -= sizeof(hdr);
988 
989     /* Create skeleton */
990     fdt_skel = g_malloc0(size);
991     _FDT((fdt_create(fdt_skel, size)));
992     _FDT((fdt_finish_reservemap(fdt_skel)));
993     _FDT((fdt_begin_node(fdt_skel, "")));
994     _FDT((fdt_end_node(fdt_skel)));
995     _FDT((fdt_finish(fdt_skel)));
996     fdt = g_malloc0(size);
997     _FDT((fdt_open_into(fdt_skel, fdt, size)));
998     g_free(fdt_skel);
999 
1000     /* Fixup cpu nodes */
1001     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1002 
1003     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004         return -1;
1005     }
1006 
1007     /* Pack resulting tree */
1008     _FDT((fdt_pack(fdt)));
1009 
1010     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011         trace_spapr_cas_failed(size);
1012         return -1;
1013     }
1014 
1015     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018     g_free(fdt);
1019 
1020     return 0;
1021 }
1022 
1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1024 {
1025     int rtas;
1026     GString *hypertas = g_string_sized_new(256);
1027     GString *qemu_hypertas = g_string_sized_new(256);
1028     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031     uint32_t lrdr_capacity[] = {
1032         cpu_to_be32(max_device_addr >> 32),
1033         cpu_to_be32(max_device_addr & 0xffffffff),
1034         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035         cpu_to_be32(max_cpus / smp_threads),
1036     };
1037     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1038     uint32_t maxdomains[] = {
1039         cpu_to_be32(4),
1040         maxdomain,
1041         maxdomain,
1042         maxdomain,
1043         cpu_to_be32(spapr->gpu_numa_id),
1044     };
1045 
1046     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1047 
1048     /* hypertas */
1049     add_str(hypertas, "hcall-pft");
1050     add_str(hypertas, "hcall-term");
1051     add_str(hypertas, "hcall-dabr");
1052     add_str(hypertas, "hcall-interrupt");
1053     add_str(hypertas, "hcall-tce");
1054     add_str(hypertas, "hcall-vio");
1055     add_str(hypertas, "hcall-splpar");
1056     add_str(hypertas, "hcall-bulk");
1057     add_str(hypertas, "hcall-set-mode");
1058     add_str(hypertas, "hcall-sprg0");
1059     add_str(hypertas, "hcall-copy");
1060     add_str(hypertas, "hcall-debug");
1061     add_str(hypertas, "hcall-vphn");
1062     add_str(qemu_hypertas, "hcall-memop1");
1063 
1064     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1065         add_str(hypertas, "hcall-multi-tce");
1066     }
1067 
1068     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1069         add_str(hypertas, "hcall-hpt-resize");
1070     }
1071 
1072     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1073                      hypertas->str, hypertas->len));
1074     g_string_free(hypertas, TRUE);
1075     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1076                      qemu_hypertas->str, qemu_hypertas->len));
1077     g_string_free(qemu_hypertas, TRUE);
1078 
1079     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1080                      refpoints, sizeof(refpoints)));
1081 
1082     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1083                      maxdomains, sizeof(maxdomains)));
1084 
1085     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1086                           RTAS_ERROR_LOG_MAX));
1087     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1088                           RTAS_EVENT_SCAN_RATE));
1089 
1090     g_assert(msi_nonbroken);
1091     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1092 
1093     /*
1094      * According to PAPR, rtas ibm,os-term does not guarantee a return
1095      * back to the guest cpu.
1096      *
1097      * While an additional ibm,extended-os-term property indicates
1098      * that rtas call return will always occur. Set this property.
1099      */
1100     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1101 
1102     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1103                      lrdr_capacity, sizeof(lrdr_capacity)));
1104 
1105     spapr_dt_rtas_tokens(fdt, rtas);
1106 }
1107 
1108 /*
1109  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1110  * and the XIVE features that the guest may request and thus the valid
1111  * values for bytes 23..26 of option vector 5:
1112  */
1113 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1114                                           int chosen)
1115 {
1116     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1117 
1118     char val[2 * 4] = {
1119         23, spapr->irq->ov5, /* Xive mode. */
1120         24, 0x00, /* Hash/Radix, filled in below. */
1121         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1122         26, 0x40, /* Radix options: GTSE == yes. */
1123     };
1124 
1125     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1126                           first_ppc_cpu->compat_pvr)) {
1127         /*
1128          * If we're in a pre POWER9 compat mode then the guest should
1129          * do hash and use the legacy interrupt mode
1130          */
1131         val[1] = 0x00; /* XICS */
1132         val[3] = 0x00; /* Hash */
1133     } else if (kvm_enabled()) {
1134         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1135             val[3] = 0x80; /* OV5_MMU_BOTH */
1136         } else if (kvmppc_has_cap_mmu_radix()) {
1137             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1138         } else {
1139             val[3] = 0x00; /* Hash */
1140         }
1141     } else {
1142         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1143         val[3] = 0xC0;
1144     }
1145     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1146                      val, sizeof(val)));
1147 }
1148 
1149 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1150 {
1151     MachineState *machine = MACHINE(spapr);
1152     int chosen;
1153     const char *boot_device = machine->boot_order;
1154     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1155     size_t cb = 0;
1156     char *bootlist = get_boot_devices_list(&cb);
1157 
1158     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1159 
1160     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1161     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1162                           spapr->initrd_base));
1163     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1164                           spapr->initrd_base + spapr->initrd_size));
1165 
1166     if (spapr->kernel_size) {
1167         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1168                               cpu_to_be64(spapr->kernel_size) };
1169 
1170         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1171                          &kprop, sizeof(kprop)));
1172         if (spapr->kernel_le) {
1173             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1174         }
1175     }
1176     if (boot_menu) {
1177         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1178     }
1179     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1180     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1181     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1182 
1183     if (cb && bootlist) {
1184         int i;
1185 
1186         for (i = 0; i < cb; i++) {
1187             if (bootlist[i] == '\n') {
1188                 bootlist[i] = ' ';
1189             }
1190         }
1191         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1192     }
1193 
1194     if (boot_device && strlen(boot_device)) {
1195         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1196     }
1197 
1198     if (!spapr->has_graphics && stdout_path) {
1199         /*
1200          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1201          * kernel. New platforms should only use the "stdout-path" property. Set
1202          * the new property and continue using older property to remain
1203          * compatible with the existing firmware.
1204          */
1205         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1206         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1207     }
1208 
1209     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1210 
1211     g_free(stdout_path);
1212     g_free(bootlist);
1213 }
1214 
1215 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1216 {
1217     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1218      * KVM to work under pHyp with some guest co-operation */
1219     int hypervisor;
1220     uint8_t hypercall[16];
1221 
1222     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1223     /* indicate KVM hypercall interface */
1224     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1225     if (kvmppc_has_cap_fixup_hcalls()) {
1226         /*
1227          * Older KVM versions with older guest kernels were broken
1228          * with the magic page, don't allow the guest to map it.
1229          */
1230         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1231                                   sizeof(hypercall))) {
1232             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1233                              hypercall, sizeof(hypercall)));
1234         }
1235     }
1236 }
1237 
1238 static void *spapr_build_fdt(SpaprMachineState *spapr)
1239 {
1240     MachineState *machine = MACHINE(spapr);
1241     MachineClass *mc = MACHINE_GET_CLASS(machine);
1242     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1243     int ret;
1244     void *fdt;
1245     SpaprPhbState *phb;
1246     char *buf;
1247 
1248     fdt = g_malloc0(FDT_MAX_SIZE);
1249     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1250 
1251     /* Root node */
1252     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1253     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1254     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1255 
1256     /* Guest UUID & Name*/
1257     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1258     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1259     if (qemu_uuid_set) {
1260         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1261     }
1262     g_free(buf);
1263 
1264     if (qemu_get_vm_name()) {
1265         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1266                                 qemu_get_vm_name()));
1267     }
1268 
1269     /* Host Model & Serial Number */
1270     if (spapr->host_model) {
1271         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1272     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1273         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1274         g_free(buf);
1275     }
1276 
1277     if (spapr->host_serial) {
1278         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1279     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1280         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1281         g_free(buf);
1282     }
1283 
1284     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1285     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1286 
1287     /* /interrupt controller */
1288     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1289                           PHANDLE_INTC);
1290 
1291     ret = spapr_populate_memory(spapr, fdt);
1292     if (ret < 0) {
1293         error_report("couldn't setup memory nodes in fdt");
1294         exit(1);
1295     }
1296 
1297     /* /vdevice */
1298     spapr_dt_vdevice(spapr->vio_bus, fdt);
1299 
1300     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1301         ret = spapr_rng_populate_dt(fdt);
1302         if (ret < 0) {
1303             error_report("could not set up rng device in the fdt");
1304             exit(1);
1305         }
1306     }
1307 
1308     QLIST_FOREACH(phb, &spapr->phbs, list) {
1309         ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1310                                     spapr->irq->nr_msis, NULL);
1311         if (ret < 0) {
1312             error_report("couldn't setup PCI devices in fdt");
1313             exit(1);
1314         }
1315     }
1316 
1317     /* cpus */
1318     spapr_populate_cpus_dt_node(fdt, spapr);
1319 
1320     if (smc->dr_lmb_enabled) {
1321         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1322     }
1323 
1324     if (mc->has_hotpluggable_cpus) {
1325         int offset = fdt_path_offset(fdt, "/cpus");
1326         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1327                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1328         if (ret < 0) {
1329             error_report("Couldn't set up CPU DR device tree properties");
1330             exit(1);
1331         }
1332     }
1333 
1334     /* /event-sources */
1335     spapr_dt_events(spapr, fdt);
1336 
1337     /* /rtas */
1338     spapr_dt_rtas(spapr, fdt);
1339 
1340     /* /chosen */
1341     spapr_dt_chosen(spapr, fdt);
1342 
1343     /* /hypervisor */
1344     if (kvm_enabled()) {
1345         spapr_dt_hypervisor(spapr, fdt);
1346     }
1347 
1348     /* Build memory reserve map */
1349     if (spapr->kernel_size) {
1350         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1351     }
1352     if (spapr->initrd_size) {
1353         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1354     }
1355 
1356     /* ibm,client-architecture-support updates */
1357     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1358     if (ret < 0) {
1359         error_report("couldn't setup CAS properties fdt");
1360         exit(1);
1361     }
1362 
1363     if (smc->dr_phb_enabled) {
1364         ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1365         if (ret < 0) {
1366             error_report("Couldn't set up PHB DR device tree properties");
1367             exit(1);
1368         }
1369     }
1370 
1371     return fdt;
1372 }
1373 
1374 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1375 {
1376     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1377 }
1378 
1379 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1380                                     PowerPCCPU *cpu)
1381 {
1382     CPUPPCState *env = &cpu->env;
1383 
1384     /* The TCG path should also be holding the BQL at this point */
1385     g_assert(qemu_mutex_iothread_locked());
1386 
1387     if (msr_pr) {
1388         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1389         env->gpr[3] = H_PRIVILEGE;
1390     } else {
1391         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1392     }
1393 }
1394 
1395 struct LPCRSyncState {
1396     target_ulong value;
1397     target_ulong mask;
1398 };
1399 
1400 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1401 {
1402     struct LPCRSyncState *s = arg.host_ptr;
1403     PowerPCCPU *cpu = POWERPC_CPU(cs);
1404     CPUPPCState *env = &cpu->env;
1405     target_ulong lpcr;
1406 
1407     cpu_synchronize_state(cs);
1408     lpcr = env->spr[SPR_LPCR];
1409     lpcr &= ~s->mask;
1410     lpcr |= s->value;
1411     ppc_store_lpcr(cpu, lpcr);
1412 }
1413 
1414 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1415 {
1416     CPUState *cs;
1417     struct LPCRSyncState s = {
1418         .value = value,
1419         .mask = mask
1420     };
1421     CPU_FOREACH(cs) {
1422         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1423     }
1424 }
1425 
1426 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1427 {
1428     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1429 
1430     /* Copy PATE1:GR into PATE0:HR */
1431     entry->dw0 = spapr->patb_entry & PATE0_HR;
1432     entry->dw1 = spapr->patb_entry;
1433 }
1434 
1435 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1436 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1437 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1438 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1439 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1440 
1441 /*
1442  * Get the fd to access the kernel htab, re-opening it if necessary
1443  */
1444 static int get_htab_fd(SpaprMachineState *spapr)
1445 {
1446     Error *local_err = NULL;
1447 
1448     if (spapr->htab_fd >= 0) {
1449         return spapr->htab_fd;
1450     }
1451 
1452     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1453     if (spapr->htab_fd < 0) {
1454         error_report_err(local_err);
1455     }
1456 
1457     return spapr->htab_fd;
1458 }
1459 
1460 void close_htab_fd(SpaprMachineState *spapr)
1461 {
1462     if (spapr->htab_fd >= 0) {
1463         close(spapr->htab_fd);
1464     }
1465     spapr->htab_fd = -1;
1466 }
1467 
1468 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1469 {
1470     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1471 
1472     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1473 }
1474 
1475 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1476 {
1477     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1478 
1479     assert(kvm_enabled());
1480 
1481     if (!spapr->htab) {
1482         return 0;
1483     }
1484 
1485     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1486 }
1487 
1488 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1489                                                 hwaddr ptex, int n)
1490 {
1491     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1492     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1493 
1494     if (!spapr->htab) {
1495         /*
1496          * HTAB is controlled by KVM. Fetch into temporary buffer
1497          */
1498         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1499         kvmppc_read_hptes(hptes, ptex, n);
1500         return hptes;
1501     }
1502 
1503     /*
1504      * HTAB is controlled by QEMU. Just point to the internally
1505      * accessible PTEG.
1506      */
1507     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1508 }
1509 
1510 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1511                               const ppc_hash_pte64_t *hptes,
1512                               hwaddr ptex, int n)
1513 {
1514     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1515 
1516     if (!spapr->htab) {
1517         g_free((void *)hptes);
1518     }
1519 
1520     /* Nothing to do for qemu managed HPT */
1521 }
1522 
1523 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1524                              uint64_t pte0, uint64_t pte1)
1525 {
1526     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1527     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1528 
1529     if (!spapr->htab) {
1530         kvmppc_write_hpte(ptex, pte0, pte1);
1531     } else {
1532         if (pte0 & HPTE64_V_VALID) {
1533             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1534             /*
1535              * When setting valid, we write PTE1 first. This ensures
1536              * proper synchronization with the reading code in
1537              * ppc_hash64_pteg_search()
1538              */
1539             smp_wmb();
1540             stq_p(spapr->htab + offset, pte0);
1541         } else {
1542             stq_p(spapr->htab + offset, pte0);
1543             /*
1544              * When clearing it we set PTE0 first. This ensures proper
1545              * synchronization with the reading code in
1546              * ppc_hash64_pteg_search()
1547              */
1548             smp_wmb();
1549             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1550         }
1551     }
1552 }
1553 
1554 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1555 {
1556     int shift;
1557 
1558     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1559      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1560      * that's much more than is needed for Linux guests */
1561     shift = ctz64(pow2ceil(ramsize)) - 7;
1562     shift = MAX(shift, 18); /* Minimum architected size */
1563     shift = MIN(shift, 46); /* Maximum architected size */
1564     return shift;
1565 }
1566 
1567 void spapr_free_hpt(SpaprMachineState *spapr)
1568 {
1569     g_free(spapr->htab);
1570     spapr->htab = NULL;
1571     spapr->htab_shift = 0;
1572     close_htab_fd(spapr);
1573 }
1574 
1575 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1576                           Error **errp)
1577 {
1578     long rc;
1579 
1580     /* Clean up any HPT info from a previous boot */
1581     spapr_free_hpt(spapr);
1582 
1583     rc = kvmppc_reset_htab(shift);
1584     if (rc < 0) {
1585         /* kernel-side HPT needed, but couldn't allocate one */
1586         error_setg_errno(errp, errno,
1587                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1588                          shift);
1589         /* This is almost certainly fatal, but if the caller really
1590          * wants to carry on with shift == 0, it's welcome to try */
1591     } else if (rc > 0) {
1592         /* kernel-side HPT allocated */
1593         if (rc != shift) {
1594             error_setg(errp,
1595                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1596                        shift, rc);
1597         }
1598 
1599         spapr->htab_shift = shift;
1600         spapr->htab = NULL;
1601     } else {
1602         /* kernel-side HPT not needed, allocate in userspace instead */
1603         size_t size = 1ULL << shift;
1604         int i;
1605 
1606         spapr->htab = qemu_memalign(size, size);
1607         if (!spapr->htab) {
1608             error_setg_errno(errp, errno,
1609                              "Could not allocate HPT of order %d", shift);
1610             return;
1611         }
1612 
1613         memset(spapr->htab, 0, size);
1614         spapr->htab_shift = shift;
1615 
1616         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1617             DIRTY_HPTE(HPTE(spapr->htab, i));
1618         }
1619     }
1620     /* We're setting up a hash table, so that means we're not radix */
1621     spapr->patb_entry = 0;
1622     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1623 }
1624 
1625 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1626 {
1627     int hpt_shift;
1628 
1629     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1630         || (spapr->cas_reboot
1631             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1632         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1633     } else {
1634         uint64_t current_ram_size;
1635 
1636         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1637         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1638     }
1639     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1640 
1641     if (spapr->vrma_adjust) {
1642         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1643                                           spapr->htab_shift);
1644     }
1645 }
1646 
1647 static int spapr_reset_drcs(Object *child, void *opaque)
1648 {
1649     SpaprDrc *drc =
1650         (SpaprDrc *) object_dynamic_cast(child,
1651                                                  TYPE_SPAPR_DR_CONNECTOR);
1652 
1653     if (drc) {
1654         spapr_drc_reset(drc);
1655     }
1656 
1657     return 0;
1658 }
1659 
1660 static void spapr_machine_reset(void)
1661 {
1662     MachineState *machine = MACHINE(qdev_get_machine());
1663     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1664     PowerPCCPU *first_ppc_cpu;
1665     uint32_t rtas_limit;
1666     hwaddr rtas_addr, fdt_addr;
1667     void *fdt;
1668     int rc;
1669 
1670     spapr_caps_apply(spapr);
1671 
1672     first_ppc_cpu = POWERPC_CPU(first_cpu);
1673     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1674         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1675                               spapr->max_compat_pvr)) {
1676         /*
1677          * If using KVM with radix mode available, VCPUs can be started
1678          * without a HPT because KVM will start them in radix mode.
1679          * Set the GR bit in PATE so that we know there is no HPT.
1680          */
1681         spapr->patb_entry = PATE1_GR;
1682         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1683     } else {
1684         spapr_setup_hpt_and_vrma(spapr);
1685     }
1686 
1687     /*
1688      * If this reset wasn't generated by CAS, we should reset our
1689      * negotiated options and start from scratch
1690      */
1691     if (!spapr->cas_reboot) {
1692         spapr_ovec_cleanup(spapr->ov5_cas);
1693         spapr->ov5_cas = spapr_ovec_new();
1694 
1695         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1696     }
1697 
1698     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1699         spapr_irq_msi_reset(spapr);
1700     }
1701 
1702     /*
1703      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1704      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1705      * called from vPHB reset handler so we initialize the counter here.
1706      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1707      * must be equally distant from any other node.
1708      * The final value of spapr->gpu_numa_id is going to be written to
1709      * max-associativity-domains in spapr_build_fdt().
1710      */
1711     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1712     qemu_devices_reset();
1713 
1714     /*
1715      * This is fixing some of the default configuration of the XIVE
1716      * devices. To be called after the reset of the machine devices.
1717      */
1718     spapr_irq_reset(spapr, &error_fatal);
1719 
1720     /*
1721      * There is no CAS under qtest. Simulate one to please the code that
1722      * depends on spapr->ov5_cas. This is especially needed to test device
1723      * unplug, so we do that before resetting the DRCs.
1724      */
1725     if (qtest_enabled()) {
1726         spapr_ovec_cleanup(spapr->ov5_cas);
1727         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1728     }
1729 
1730     /* DRC reset may cause a device to be unplugged. This will cause troubles
1731      * if this device is used by another device (eg, a running vhost backend
1732      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1733      * situations, we reset DRCs after all devices have been reset.
1734      */
1735     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1736 
1737     spapr_clear_pending_events(spapr);
1738 
1739     /*
1740      * We place the device tree and RTAS just below either the top of the RMA,
1741      * or just below 2GB, whichever is lower, so that it can be
1742      * processed with 32-bit real mode code if necessary
1743      */
1744     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1745     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1746     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1747 
1748     fdt = spapr_build_fdt(spapr);
1749 
1750     spapr_load_rtas(spapr, fdt, rtas_addr);
1751 
1752     rc = fdt_pack(fdt);
1753 
1754     /* Should only fail if we've built a corrupted tree */
1755     assert(rc == 0);
1756 
1757     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1758         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1759                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1760         exit(1);
1761     }
1762 
1763     /* Load the fdt */
1764     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1765     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1766     g_free(spapr->fdt_blob);
1767     spapr->fdt_size = fdt_totalsize(fdt);
1768     spapr->fdt_initial_size = spapr->fdt_size;
1769     spapr->fdt_blob = fdt;
1770 
1771     /* Set up the entry state */
1772     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1773     first_ppc_cpu->env.gpr[5] = 0;
1774 
1775     spapr->cas_reboot = false;
1776 }
1777 
1778 static void spapr_create_nvram(SpaprMachineState *spapr)
1779 {
1780     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1781     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1782 
1783     if (dinfo) {
1784         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1785                             &error_fatal);
1786     }
1787 
1788     qdev_init_nofail(dev);
1789 
1790     spapr->nvram = (struct SpaprNvram *)dev;
1791 }
1792 
1793 static void spapr_rtc_create(SpaprMachineState *spapr)
1794 {
1795     object_initialize_child(OBJECT(spapr), "rtc",
1796                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1797                             &error_fatal, NULL);
1798     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1799                               &error_fatal);
1800     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1801                               "date", &error_fatal);
1802 }
1803 
1804 /* Returns whether we want to use VGA or not */
1805 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1806 {
1807     switch (vga_interface_type) {
1808     case VGA_NONE:
1809         return false;
1810     case VGA_DEVICE:
1811         return true;
1812     case VGA_STD:
1813     case VGA_VIRTIO:
1814     case VGA_CIRRUS:
1815         return pci_vga_init(pci_bus) != NULL;
1816     default:
1817         error_setg(errp,
1818                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1819         return false;
1820     }
1821 }
1822 
1823 static int spapr_pre_load(void *opaque)
1824 {
1825     int rc;
1826 
1827     rc = spapr_caps_pre_load(opaque);
1828     if (rc) {
1829         return rc;
1830     }
1831 
1832     return 0;
1833 }
1834 
1835 static int spapr_post_load(void *opaque, int version_id)
1836 {
1837     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1838     int err = 0;
1839 
1840     err = spapr_caps_post_migration(spapr);
1841     if (err) {
1842         return err;
1843     }
1844 
1845     /*
1846      * In earlier versions, there was no separate qdev for the PAPR
1847      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1848      * So when migrating from those versions, poke the incoming offset
1849      * value into the RTC device
1850      */
1851     if (version_id < 3) {
1852         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1853         if (err) {
1854             return err;
1855         }
1856     }
1857 
1858     if (kvm_enabled() && spapr->patb_entry) {
1859         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1860         bool radix = !!(spapr->patb_entry & PATE1_GR);
1861         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1862 
1863         /*
1864          * Update LPCR:HR and UPRT as they may not be set properly in
1865          * the stream
1866          */
1867         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1868                             LPCR_HR | LPCR_UPRT);
1869 
1870         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1871         if (err) {
1872             error_report("Process table config unsupported by the host");
1873             return -EINVAL;
1874         }
1875     }
1876 
1877     err = spapr_irq_post_load(spapr, version_id);
1878     if (err) {
1879         return err;
1880     }
1881 
1882     return err;
1883 }
1884 
1885 static int spapr_pre_save(void *opaque)
1886 {
1887     int rc;
1888 
1889     rc = spapr_caps_pre_save(opaque);
1890     if (rc) {
1891         return rc;
1892     }
1893 
1894     return 0;
1895 }
1896 
1897 static bool version_before_3(void *opaque, int version_id)
1898 {
1899     return version_id < 3;
1900 }
1901 
1902 static bool spapr_pending_events_needed(void *opaque)
1903 {
1904     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1905     return !QTAILQ_EMPTY(&spapr->pending_events);
1906 }
1907 
1908 static const VMStateDescription vmstate_spapr_event_entry = {
1909     .name = "spapr_event_log_entry",
1910     .version_id = 1,
1911     .minimum_version_id = 1,
1912     .fields = (VMStateField[]) {
1913         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1914         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1915         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1916                                      NULL, extended_length),
1917         VMSTATE_END_OF_LIST()
1918     },
1919 };
1920 
1921 static const VMStateDescription vmstate_spapr_pending_events = {
1922     .name = "spapr_pending_events",
1923     .version_id = 1,
1924     .minimum_version_id = 1,
1925     .needed = spapr_pending_events_needed,
1926     .fields = (VMStateField[]) {
1927         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1928                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1929         VMSTATE_END_OF_LIST()
1930     },
1931 };
1932 
1933 static bool spapr_ov5_cas_needed(void *opaque)
1934 {
1935     SpaprMachineState *spapr = opaque;
1936     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1937     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1938     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1939     bool cas_needed;
1940 
1941     /* Prior to the introduction of SpaprOptionVector, we had two option
1942      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1943      * Both of these options encode machine topology into the device-tree
1944      * in such a way that the now-booted OS should still be able to interact
1945      * appropriately with QEMU regardless of what options were actually
1946      * negotiatied on the source side.
1947      *
1948      * As such, we can avoid migrating the CAS-negotiated options if these
1949      * are the only options available on the current machine/platform.
1950      * Since these are the only options available for pseries-2.7 and
1951      * earlier, this allows us to maintain old->new/new->old migration
1952      * compatibility.
1953      *
1954      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1955      * via default pseries-2.8 machines and explicit command-line parameters.
1956      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1957      * of the actual CAS-negotiated values to continue working properly. For
1958      * example, availability of memory unplug depends on knowing whether
1959      * OV5_HP_EVT was negotiated via CAS.
1960      *
1961      * Thus, for any cases where the set of available CAS-negotiatable
1962      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1963      * include the CAS-negotiated options in the migration stream, unless
1964      * if they affect boot time behaviour only.
1965      */
1966     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1967     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1968     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1969 
1970     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1971      * the mask itself since in the future it's possible "legacy" bits may be
1972      * removed via machine options, which could generate a false positive
1973      * that breaks migration.
1974      */
1975     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1976     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1977 
1978     spapr_ovec_cleanup(ov5_mask);
1979     spapr_ovec_cleanup(ov5_legacy);
1980     spapr_ovec_cleanup(ov5_removed);
1981 
1982     return cas_needed;
1983 }
1984 
1985 static const VMStateDescription vmstate_spapr_ov5_cas = {
1986     .name = "spapr_option_vector_ov5_cas",
1987     .version_id = 1,
1988     .minimum_version_id = 1,
1989     .needed = spapr_ov5_cas_needed,
1990     .fields = (VMStateField[]) {
1991         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1992                                  vmstate_spapr_ovec, SpaprOptionVector),
1993         VMSTATE_END_OF_LIST()
1994     },
1995 };
1996 
1997 static bool spapr_patb_entry_needed(void *opaque)
1998 {
1999     SpaprMachineState *spapr = opaque;
2000 
2001     return !!spapr->patb_entry;
2002 }
2003 
2004 static const VMStateDescription vmstate_spapr_patb_entry = {
2005     .name = "spapr_patb_entry",
2006     .version_id = 1,
2007     .minimum_version_id = 1,
2008     .needed = spapr_patb_entry_needed,
2009     .fields = (VMStateField[]) {
2010         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2011         VMSTATE_END_OF_LIST()
2012     },
2013 };
2014 
2015 static bool spapr_irq_map_needed(void *opaque)
2016 {
2017     SpaprMachineState *spapr = opaque;
2018 
2019     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2020 }
2021 
2022 static const VMStateDescription vmstate_spapr_irq_map = {
2023     .name = "spapr_irq_map",
2024     .version_id = 1,
2025     .minimum_version_id = 1,
2026     .needed = spapr_irq_map_needed,
2027     .fields = (VMStateField[]) {
2028         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2029         VMSTATE_END_OF_LIST()
2030     },
2031 };
2032 
2033 static bool spapr_dtb_needed(void *opaque)
2034 {
2035     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2036 
2037     return smc->update_dt_enabled;
2038 }
2039 
2040 static int spapr_dtb_pre_load(void *opaque)
2041 {
2042     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2043 
2044     g_free(spapr->fdt_blob);
2045     spapr->fdt_blob = NULL;
2046     spapr->fdt_size = 0;
2047 
2048     return 0;
2049 }
2050 
2051 static const VMStateDescription vmstate_spapr_dtb = {
2052     .name = "spapr_dtb",
2053     .version_id = 1,
2054     .minimum_version_id = 1,
2055     .needed = spapr_dtb_needed,
2056     .pre_load = spapr_dtb_pre_load,
2057     .fields = (VMStateField[]) {
2058         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2059         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2060         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2061                                      fdt_size),
2062         VMSTATE_END_OF_LIST()
2063     },
2064 };
2065 
2066 static const VMStateDescription vmstate_spapr = {
2067     .name = "spapr",
2068     .version_id = 3,
2069     .minimum_version_id = 1,
2070     .pre_load = spapr_pre_load,
2071     .post_load = spapr_post_load,
2072     .pre_save = spapr_pre_save,
2073     .fields = (VMStateField[]) {
2074         /* used to be @next_irq */
2075         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2076 
2077         /* RTC offset */
2078         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2079 
2080         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2081         VMSTATE_END_OF_LIST()
2082     },
2083     .subsections = (const VMStateDescription*[]) {
2084         &vmstate_spapr_ov5_cas,
2085         &vmstate_spapr_patb_entry,
2086         &vmstate_spapr_pending_events,
2087         &vmstate_spapr_cap_htm,
2088         &vmstate_spapr_cap_vsx,
2089         &vmstate_spapr_cap_dfp,
2090         &vmstate_spapr_cap_cfpc,
2091         &vmstate_spapr_cap_sbbc,
2092         &vmstate_spapr_cap_ibs,
2093         &vmstate_spapr_irq_map,
2094         &vmstate_spapr_cap_nested_kvm_hv,
2095         &vmstate_spapr_dtb,
2096         &vmstate_spapr_cap_large_decr,
2097         &vmstate_spapr_cap_ccf_assist,
2098         NULL
2099     }
2100 };
2101 
2102 static int htab_save_setup(QEMUFile *f, void *opaque)
2103 {
2104     SpaprMachineState *spapr = opaque;
2105 
2106     /* "Iteration" header */
2107     if (!spapr->htab_shift) {
2108         qemu_put_be32(f, -1);
2109     } else {
2110         qemu_put_be32(f, spapr->htab_shift);
2111     }
2112 
2113     if (spapr->htab) {
2114         spapr->htab_save_index = 0;
2115         spapr->htab_first_pass = true;
2116     } else {
2117         if (spapr->htab_shift) {
2118             assert(kvm_enabled());
2119         }
2120     }
2121 
2122 
2123     return 0;
2124 }
2125 
2126 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2127                             int chunkstart, int n_valid, int n_invalid)
2128 {
2129     qemu_put_be32(f, chunkstart);
2130     qemu_put_be16(f, n_valid);
2131     qemu_put_be16(f, n_invalid);
2132     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2133                     HASH_PTE_SIZE_64 * n_valid);
2134 }
2135 
2136 static void htab_save_end_marker(QEMUFile *f)
2137 {
2138     qemu_put_be32(f, 0);
2139     qemu_put_be16(f, 0);
2140     qemu_put_be16(f, 0);
2141 }
2142 
2143 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2144                                  int64_t max_ns)
2145 {
2146     bool has_timeout = max_ns != -1;
2147     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2148     int index = spapr->htab_save_index;
2149     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2150 
2151     assert(spapr->htab_first_pass);
2152 
2153     do {
2154         int chunkstart;
2155 
2156         /* Consume invalid HPTEs */
2157         while ((index < htabslots)
2158                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2159             CLEAN_HPTE(HPTE(spapr->htab, index));
2160             index++;
2161         }
2162 
2163         /* Consume valid HPTEs */
2164         chunkstart = index;
2165         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2166                && HPTE_VALID(HPTE(spapr->htab, index))) {
2167             CLEAN_HPTE(HPTE(spapr->htab, index));
2168             index++;
2169         }
2170 
2171         if (index > chunkstart) {
2172             int n_valid = index - chunkstart;
2173 
2174             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2175 
2176             if (has_timeout &&
2177                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2178                 break;
2179             }
2180         }
2181     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2182 
2183     if (index >= htabslots) {
2184         assert(index == htabslots);
2185         index = 0;
2186         spapr->htab_first_pass = false;
2187     }
2188     spapr->htab_save_index = index;
2189 }
2190 
2191 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2192                                 int64_t max_ns)
2193 {
2194     bool final = max_ns < 0;
2195     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2196     int examined = 0, sent = 0;
2197     int index = spapr->htab_save_index;
2198     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2199 
2200     assert(!spapr->htab_first_pass);
2201 
2202     do {
2203         int chunkstart, invalidstart;
2204 
2205         /* Consume non-dirty HPTEs */
2206         while ((index < htabslots)
2207                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2208             index++;
2209             examined++;
2210         }
2211 
2212         chunkstart = index;
2213         /* Consume valid dirty HPTEs */
2214         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2215                && HPTE_DIRTY(HPTE(spapr->htab, index))
2216                && HPTE_VALID(HPTE(spapr->htab, index))) {
2217             CLEAN_HPTE(HPTE(spapr->htab, index));
2218             index++;
2219             examined++;
2220         }
2221 
2222         invalidstart = index;
2223         /* Consume invalid dirty HPTEs */
2224         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2225                && HPTE_DIRTY(HPTE(spapr->htab, index))
2226                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2227             CLEAN_HPTE(HPTE(spapr->htab, index));
2228             index++;
2229             examined++;
2230         }
2231 
2232         if (index > chunkstart) {
2233             int n_valid = invalidstart - chunkstart;
2234             int n_invalid = index - invalidstart;
2235 
2236             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2237             sent += index - chunkstart;
2238 
2239             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2240                 break;
2241             }
2242         }
2243 
2244         if (examined >= htabslots) {
2245             break;
2246         }
2247 
2248         if (index >= htabslots) {
2249             assert(index == htabslots);
2250             index = 0;
2251         }
2252     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2253 
2254     if (index >= htabslots) {
2255         assert(index == htabslots);
2256         index = 0;
2257     }
2258 
2259     spapr->htab_save_index = index;
2260 
2261     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2262 }
2263 
2264 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2265 #define MAX_KVM_BUF_SIZE    2048
2266 
2267 static int htab_save_iterate(QEMUFile *f, void *opaque)
2268 {
2269     SpaprMachineState *spapr = opaque;
2270     int fd;
2271     int rc = 0;
2272 
2273     /* Iteration header */
2274     if (!spapr->htab_shift) {
2275         qemu_put_be32(f, -1);
2276         return 1;
2277     } else {
2278         qemu_put_be32(f, 0);
2279     }
2280 
2281     if (!spapr->htab) {
2282         assert(kvm_enabled());
2283 
2284         fd = get_htab_fd(spapr);
2285         if (fd < 0) {
2286             return fd;
2287         }
2288 
2289         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2290         if (rc < 0) {
2291             return rc;
2292         }
2293     } else  if (spapr->htab_first_pass) {
2294         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2295     } else {
2296         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2297     }
2298 
2299     htab_save_end_marker(f);
2300 
2301     return rc;
2302 }
2303 
2304 static int htab_save_complete(QEMUFile *f, void *opaque)
2305 {
2306     SpaprMachineState *spapr = opaque;
2307     int fd;
2308 
2309     /* Iteration header */
2310     if (!spapr->htab_shift) {
2311         qemu_put_be32(f, -1);
2312         return 0;
2313     } else {
2314         qemu_put_be32(f, 0);
2315     }
2316 
2317     if (!spapr->htab) {
2318         int rc;
2319 
2320         assert(kvm_enabled());
2321 
2322         fd = get_htab_fd(spapr);
2323         if (fd < 0) {
2324             return fd;
2325         }
2326 
2327         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2328         if (rc < 0) {
2329             return rc;
2330         }
2331     } else {
2332         if (spapr->htab_first_pass) {
2333             htab_save_first_pass(f, spapr, -1);
2334         }
2335         htab_save_later_pass(f, spapr, -1);
2336     }
2337 
2338     /* End marker */
2339     htab_save_end_marker(f);
2340 
2341     return 0;
2342 }
2343 
2344 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2345 {
2346     SpaprMachineState *spapr = opaque;
2347     uint32_t section_hdr;
2348     int fd = -1;
2349     Error *local_err = NULL;
2350 
2351     if (version_id < 1 || version_id > 1) {
2352         error_report("htab_load() bad version");
2353         return -EINVAL;
2354     }
2355 
2356     section_hdr = qemu_get_be32(f);
2357 
2358     if (section_hdr == -1) {
2359         spapr_free_hpt(spapr);
2360         return 0;
2361     }
2362 
2363     if (section_hdr) {
2364         /* First section gives the htab size */
2365         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2366         if (local_err) {
2367             error_report_err(local_err);
2368             return -EINVAL;
2369         }
2370         return 0;
2371     }
2372 
2373     if (!spapr->htab) {
2374         assert(kvm_enabled());
2375 
2376         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2377         if (fd < 0) {
2378             error_report_err(local_err);
2379             return fd;
2380         }
2381     }
2382 
2383     while (true) {
2384         uint32_t index;
2385         uint16_t n_valid, n_invalid;
2386 
2387         index = qemu_get_be32(f);
2388         n_valid = qemu_get_be16(f);
2389         n_invalid = qemu_get_be16(f);
2390 
2391         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2392             /* End of Stream */
2393             break;
2394         }
2395 
2396         if ((index + n_valid + n_invalid) >
2397             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2398             /* Bad index in stream */
2399             error_report(
2400                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2401                 index, n_valid, n_invalid, spapr->htab_shift);
2402             return -EINVAL;
2403         }
2404 
2405         if (spapr->htab) {
2406             if (n_valid) {
2407                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2408                                 HASH_PTE_SIZE_64 * n_valid);
2409             }
2410             if (n_invalid) {
2411                 memset(HPTE(spapr->htab, index + n_valid), 0,
2412                        HASH_PTE_SIZE_64 * n_invalid);
2413             }
2414         } else {
2415             int rc;
2416 
2417             assert(fd >= 0);
2418 
2419             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2420             if (rc < 0) {
2421                 return rc;
2422             }
2423         }
2424     }
2425 
2426     if (!spapr->htab) {
2427         assert(fd >= 0);
2428         close(fd);
2429     }
2430 
2431     return 0;
2432 }
2433 
2434 static void htab_save_cleanup(void *opaque)
2435 {
2436     SpaprMachineState *spapr = opaque;
2437 
2438     close_htab_fd(spapr);
2439 }
2440 
2441 static SaveVMHandlers savevm_htab_handlers = {
2442     .save_setup = htab_save_setup,
2443     .save_live_iterate = htab_save_iterate,
2444     .save_live_complete_precopy = htab_save_complete,
2445     .save_cleanup = htab_save_cleanup,
2446     .load_state = htab_load,
2447 };
2448 
2449 static void spapr_boot_set(void *opaque, const char *boot_device,
2450                            Error **errp)
2451 {
2452     MachineState *machine = MACHINE(opaque);
2453     machine->boot_order = g_strdup(boot_device);
2454 }
2455 
2456 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2457 {
2458     MachineState *machine = MACHINE(spapr);
2459     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2460     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2461     int i;
2462 
2463     for (i = 0; i < nr_lmbs; i++) {
2464         uint64_t addr;
2465 
2466         addr = i * lmb_size + machine->device_memory->base;
2467         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2468                                addr / lmb_size);
2469     }
2470 }
2471 
2472 /*
2473  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2474  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2475  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2476  */
2477 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2478 {
2479     int i;
2480 
2481     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2482         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2483                    " is not aligned to %" PRIu64 " MiB",
2484                    machine->ram_size,
2485                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2486         return;
2487     }
2488 
2489     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2490         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2491                    " is not aligned to %" PRIu64 " MiB",
2492                    machine->ram_size,
2493                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2494         return;
2495     }
2496 
2497     for (i = 0; i < nb_numa_nodes; i++) {
2498         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2499             error_setg(errp,
2500                        "Node %d memory size 0x%" PRIx64
2501                        " is not aligned to %" PRIu64 " MiB",
2502                        i, numa_info[i].node_mem,
2503                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2504             return;
2505         }
2506     }
2507 }
2508 
2509 /* find cpu slot in machine->possible_cpus by core_id */
2510 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2511 {
2512     int index = id / smp_threads;
2513 
2514     if (index >= ms->possible_cpus->len) {
2515         return NULL;
2516     }
2517     if (idx) {
2518         *idx = index;
2519     }
2520     return &ms->possible_cpus->cpus[index];
2521 }
2522 
2523 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2524 {
2525     Error *local_err = NULL;
2526     bool vsmt_user = !!spapr->vsmt;
2527     int kvm_smt = kvmppc_smt_threads();
2528     int ret;
2529 
2530     if (!kvm_enabled() && (smp_threads > 1)) {
2531         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2532                      "on a pseries machine");
2533         goto out;
2534     }
2535     if (!is_power_of_2(smp_threads)) {
2536         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2537                      "machine because it must be a power of 2", smp_threads);
2538         goto out;
2539     }
2540 
2541     /* Detemine the VSMT mode to use: */
2542     if (vsmt_user) {
2543         if (spapr->vsmt < smp_threads) {
2544             error_setg(&local_err, "Cannot support VSMT mode %d"
2545                          " because it must be >= threads/core (%d)",
2546                          spapr->vsmt, smp_threads);
2547             goto out;
2548         }
2549         /* In this case, spapr->vsmt has been set by the command line */
2550     } else {
2551         /*
2552          * Default VSMT value is tricky, because we need it to be as
2553          * consistent as possible (for migration), but this requires
2554          * changing it for at least some existing cases.  We pick 8 as
2555          * the value that we'd get with KVM on POWER8, the
2556          * overwhelmingly common case in production systems.
2557          */
2558         spapr->vsmt = MAX(8, smp_threads);
2559     }
2560 
2561     /* KVM: If necessary, set the SMT mode: */
2562     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2563         ret = kvmppc_set_smt_threads(spapr->vsmt);
2564         if (ret) {
2565             /* Looks like KVM isn't able to change VSMT mode */
2566             error_setg(&local_err,
2567                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2568                        spapr->vsmt, ret);
2569             /* We can live with that if the default one is big enough
2570              * for the number of threads, and a submultiple of the one
2571              * we want.  In this case we'll waste some vcpu ids, but
2572              * behaviour will be correct */
2573             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2574                 warn_report_err(local_err);
2575                 local_err = NULL;
2576                 goto out;
2577             } else {
2578                 if (!vsmt_user) {
2579                     error_append_hint(&local_err,
2580                                       "On PPC, a VM with %d threads/core"
2581                                       " on a host with %d threads/core"
2582                                       " requires the use of VSMT mode %d.\n",
2583                                       smp_threads, kvm_smt, spapr->vsmt);
2584                 }
2585                 kvmppc_hint_smt_possible(&local_err);
2586                 goto out;
2587             }
2588         }
2589     }
2590     /* else TCG: nothing to do currently */
2591 out:
2592     error_propagate(errp, local_err);
2593 }
2594 
2595 static void spapr_init_cpus(SpaprMachineState *spapr)
2596 {
2597     MachineState *machine = MACHINE(spapr);
2598     MachineClass *mc = MACHINE_GET_CLASS(machine);
2599     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2600     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2601     const CPUArchIdList *possible_cpus;
2602     int boot_cores_nr = smp_cpus / smp_threads;
2603     int i;
2604 
2605     possible_cpus = mc->possible_cpu_arch_ids(machine);
2606     if (mc->has_hotpluggable_cpus) {
2607         if (smp_cpus % smp_threads) {
2608             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2609                          smp_cpus, smp_threads);
2610             exit(1);
2611         }
2612         if (max_cpus % smp_threads) {
2613             error_report("max_cpus (%u) must be multiple of threads (%u)",
2614                          max_cpus, smp_threads);
2615             exit(1);
2616         }
2617     } else {
2618         if (max_cpus != smp_cpus) {
2619             error_report("This machine version does not support CPU hotplug");
2620             exit(1);
2621         }
2622         boot_cores_nr = possible_cpus->len;
2623     }
2624 
2625     if (smc->pre_2_10_has_unused_icps) {
2626         int i;
2627 
2628         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2629             /* Dummy entries get deregistered when real ICPState objects
2630              * are registered during CPU core hotplug.
2631              */
2632             pre_2_10_vmstate_register_dummy_icp(i);
2633         }
2634     }
2635 
2636     for (i = 0; i < possible_cpus->len; i++) {
2637         int core_id = i * smp_threads;
2638 
2639         if (mc->has_hotpluggable_cpus) {
2640             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2641                                    spapr_vcpu_id(spapr, core_id));
2642         }
2643 
2644         if (i < boot_cores_nr) {
2645             Object *core  = object_new(type);
2646             int nr_threads = smp_threads;
2647 
2648             /* Handle the partially filled core for older machine types */
2649             if ((i + 1) * smp_threads >= smp_cpus) {
2650                 nr_threads = smp_cpus - i * smp_threads;
2651             }
2652 
2653             object_property_set_int(core, nr_threads, "nr-threads",
2654                                     &error_fatal);
2655             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2656                                     &error_fatal);
2657             object_property_set_bool(core, true, "realized", &error_fatal);
2658 
2659             object_unref(core);
2660         }
2661     }
2662 }
2663 
2664 static PCIHostState *spapr_create_default_phb(void)
2665 {
2666     DeviceState *dev;
2667 
2668     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2669     qdev_prop_set_uint32(dev, "index", 0);
2670     qdev_init_nofail(dev);
2671 
2672     return PCI_HOST_BRIDGE(dev);
2673 }
2674 
2675 /* pSeries LPAR / sPAPR hardware init */
2676 static void spapr_machine_init(MachineState *machine)
2677 {
2678     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2679     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2680     const char *kernel_filename = machine->kernel_filename;
2681     const char *initrd_filename = machine->initrd_filename;
2682     PCIHostState *phb;
2683     int i;
2684     MemoryRegion *sysmem = get_system_memory();
2685     MemoryRegion *ram = g_new(MemoryRegion, 1);
2686     hwaddr node0_size = spapr_node0_size(machine);
2687     long load_limit, fw_size;
2688     char *filename;
2689     Error *resize_hpt_err = NULL;
2690 
2691     msi_nonbroken = true;
2692 
2693     QLIST_INIT(&spapr->phbs);
2694     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2695 
2696     /* Determine capabilities to run with */
2697     spapr_caps_init(spapr);
2698 
2699     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2700     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2701         /*
2702          * If the user explicitly requested a mode we should either
2703          * supply it, or fail completely (which we do below).  But if
2704          * it's not set explicitly, we reset our mode to something
2705          * that works
2706          */
2707         if (resize_hpt_err) {
2708             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2709             error_free(resize_hpt_err);
2710             resize_hpt_err = NULL;
2711         } else {
2712             spapr->resize_hpt = smc->resize_hpt_default;
2713         }
2714     }
2715 
2716     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2717 
2718     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2719         /*
2720          * User requested HPT resize, but this host can't supply it.  Bail out
2721          */
2722         error_report_err(resize_hpt_err);
2723         exit(1);
2724     }
2725 
2726     spapr->rma_size = node0_size;
2727 
2728     /* With KVM, we don't actually know whether KVM supports an
2729      * unbounded RMA (PR KVM) or is limited by the hash table size
2730      * (HV KVM using VRMA), so we always assume the latter
2731      *
2732      * In that case, we also limit the initial allocations for RTAS
2733      * etc... to 256M since we have no way to know what the VRMA size
2734      * is going to be as it depends on the size of the hash table
2735      * which isn't determined yet.
2736      */
2737     if (kvm_enabled()) {
2738         spapr->vrma_adjust = 1;
2739         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2740     }
2741 
2742     /* Actually we don't support unbounded RMA anymore since we added
2743      * proper emulation of HV mode. The max we can get is 16G which
2744      * also happens to be what we configure for PAPR mode so make sure
2745      * we don't do anything bigger than that
2746      */
2747     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2748 
2749     if (spapr->rma_size > node0_size) {
2750         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2751                      spapr->rma_size);
2752         exit(1);
2753     }
2754 
2755     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2756     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2757 
2758     /*
2759      * VSMT must be set in order to be able to compute VCPU ids, ie to
2760      * call spapr_max_server_number() or spapr_vcpu_id().
2761      */
2762     spapr_set_vsmt_mode(spapr, &error_fatal);
2763 
2764     /* Set up Interrupt Controller before we create the VCPUs */
2765     spapr_irq_init(spapr, &error_fatal);
2766 
2767     /* Set up containers for ibm,client-architecture-support negotiated options
2768      */
2769     spapr->ov5 = spapr_ovec_new();
2770     spapr->ov5_cas = spapr_ovec_new();
2771 
2772     if (smc->dr_lmb_enabled) {
2773         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2774         spapr_validate_node_memory(machine, &error_fatal);
2775     }
2776 
2777     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2778 
2779     /* advertise support for dedicated HP event source to guests */
2780     if (spapr->use_hotplug_event_source) {
2781         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2782     }
2783 
2784     /* advertise support for HPT resizing */
2785     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2786         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2787     }
2788 
2789     /* advertise support for ibm,dyamic-memory-v2 */
2790     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2791 
2792     /* advertise XIVE on POWER9 machines */
2793     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2794         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2795     }
2796 
2797     /* init CPUs */
2798     spapr_init_cpus(spapr);
2799 
2800     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2801         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2802                               spapr->max_compat_pvr)) {
2803         /* KVM and TCG always allow GTSE with radix... */
2804         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2805     }
2806     /* ... but not with hash (currently). */
2807 
2808     if (kvm_enabled()) {
2809         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2810         kvmppc_enable_logical_ci_hcalls();
2811         kvmppc_enable_set_mode_hcall();
2812 
2813         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2814         kvmppc_enable_clear_ref_mod_hcalls();
2815 
2816         /* Enable H_PAGE_INIT */
2817         kvmppc_enable_h_page_init();
2818     }
2819 
2820     /* allocate RAM */
2821     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2822                                          machine->ram_size);
2823     memory_region_add_subregion(sysmem, 0, ram);
2824 
2825     /* always allocate the device memory information */
2826     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2827 
2828     /* initialize hotplug memory address space */
2829     if (machine->ram_size < machine->maxram_size) {
2830         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2831         /*
2832          * Limit the number of hotpluggable memory slots to half the number
2833          * slots that KVM supports, leaving the other half for PCI and other
2834          * devices. However ensure that number of slots doesn't drop below 32.
2835          */
2836         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2837                            SPAPR_MAX_RAM_SLOTS;
2838 
2839         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2840             max_memslots = SPAPR_MAX_RAM_SLOTS;
2841         }
2842         if (machine->ram_slots > max_memslots) {
2843             error_report("Specified number of memory slots %"
2844                          PRIu64" exceeds max supported %d",
2845                          machine->ram_slots, max_memslots);
2846             exit(1);
2847         }
2848 
2849         machine->device_memory->base = ROUND_UP(machine->ram_size,
2850                                                 SPAPR_DEVICE_MEM_ALIGN);
2851         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2852                            "device-memory", device_mem_size);
2853         memory_region_add_subregion(sysmem, machine->device_memory->base,
2854                                     &machine->device_memory->mr);
2855     }
2856 
2857     if (smc->dr_lmb_enabled) {
2858         spapr_create_lmb_dr_connectors(spapr);
2859     }
2860 
2861     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2862     if (!filename) {
2863         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2864         exit(1);
2865     }
2866     spapr->rtas_size = get_image_size(filename);
2867     if (spapr->rtas_size < 0) {
2868         error_report("Could not get size of LPAR rtas '%s'", filename);
2869         exit(1);
2870     }
2871     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2872     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2873         error_report("Could not load LPAR rtas '%s'", filename);
2874         exit(1);
2875     }
2876     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2877         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2878                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2879         exit(1);
2880     }
2881     g_free(filename);
2882 
2883     /* Set up RTAS event infrastructure */
2884     spapr_events_init(spapr);
2885 
2886     /* Set up the RTC RTAS interfaces */
2887     spapr_rtc_create(spapr);
2888 
2889     /* Set up VIO bus */
2890     spapr->vio_bus = spapr_vio_bus_init();
2891 
2892     for (i = 0; i < serial_max_hds(); i++) {
2893         if (serial_hd(i)) {
2894             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2895         }
2896     }
2897 
2898     /* We always have at least the nvram device on VIO */
2899     spapr_create_nvram(spapr);
2900 
2901     /*
2902      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2903      * connectors (described in root DT node's "ibm,drc-types" property)
2904      * are pre-initialized here. additional child connectors (such as
2905      * connectors for a PHBs PCI slots) are added as needed during their
2906      * parent's realization.
2907      */
2908     if (smc->dr_phb_enabled) {
2909         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2910             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2911         }
2912     }
2913 
2914     /* Set up PCI */
2915     spapr_pci_rtas_init();
2916 
2917     phb = spapr_create_default_phb();
2918 
2919     for (i = 0; i < nb_nics; i++) {
2920         NICInfo *nd = &nd_table[i];
2921 
2922         if (!nd->model) {
2923             nd->model = g_strdup("spapr-vlan");
2924         }
2925 
2926         if (g_str_equal(nd->model, "spapr-vlan") ||
2927             g_str_equal(nd->model, "ibmveth")) {
2928             spapr_vlan_create(spapr->vio_bus, nd);
2929         } else {
2930             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2931         }
2932     }
2933 
2934     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2935         spapr_vscsi_create(spapr->vio_bus);
2936     }
2937 
2938     /* Graphics */
2939     if (spapr_vga_init(phb->bus, &error_fatal)) {
2940         spapr->has_graphics = true;
2941         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2942     }
2943 
2944     if (machine->usb) {
2945         if (smc->use_ohci_by_default) {
2946             pci_create_simple(phb->bus, -1, "pci-ohci");
2947         } else {
2948             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2949         }
2950 
2951         if (spapr->has_graphics) {
2952             USBBus *usb_bus = usb_bus_find(-1);
2953 
2954             usb_create_simple(usb_bus, "usb-kbd");
2955             usb_create_simple(usb_bus, "usb-mouse");
2956         }
2957     }
2958 
2959     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2960         error_report(
2961             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2962             MIN_RMA_SLOF);
2963         exit(1);
2964     }
2965 
2966     if (kernel_filename) {
2967         uint64_t lowaddr = 0;
2968 
2969         spapr->kernel_size = load_elf(kernel_filename, NULL,
2970                                       translate_kernel_address, NULL,
2971                                       NULL, &lowaddr, NULL, 1,
2972                                       PPC_ELF_MACHINE, 0, 0);
2973         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2974             spapr->kernel_size = load_elf(kernel_filename, NULL,
2975                                           translate_kernel_address, NULL, NULL,
2976                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2977                                           0, 0);
2978             spapr->kernel_le = spapr->kernel_size > 0;
2979         }
2980         if (spapr->kernel_size < 0) {
2981             error_report("error loading %s: %s", kernel_filename,
2982                          load_elf_strerror(spapr->kernel_size));
2983             exit(1);
2984         }
2985 
2986         /* load initrd */
2987         if (initrd_filename) {
2988             /* Try to locate the initrd in the gap between the kernel
2989              * and the firmware. Add a bit of space just in case
2990              */
2991             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2992                                   + 0x1ffff) & ~0xffff;
2993             spapr->initrd_size = load_image_targphys(initrd_filename,
2994                                                      spapr->initrd_base,
2995                                                      load_limit
2996                                                      - spapr->initrd_base);
2997             if (spapr->initrd_size < 0) {
2998                 error_report("could not load initial ram disk '%s'",
2999                              initrd_filename);
3000                 exit(1);
3001             }
3002         }
3003     }
3004 
3005     if (bios_name == NULL) {
3006         bios_name = FW_FILE_NAME;
3007     }
3008     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3009     if (!filename) {
3010         error_report("Could not find LPAR firmware '%s'", bios_name);
3011         exit(1);
3012     }
3013     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3014     if (fw_size <= 0) {
3015         error_report("Could not load LPAR firmware '%s'", filename);
3016         exit(1);
3017     }
3018     g_free(filename);
3019 
3020     /* FIXME: Should register things through the MachineState's qdev
3021      * interface, this is a legacy from the sPAPREnvironment structure
3022      * which predated MachineState but had a similar function */
3023     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3024     register_savevm_live(NULL, "spapr/htab", -1, 1,
3025                          &savevm_htab_handlers, spapr);
3026 
3027     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3028                              &error_fatal);
3029 
3030     qemu_register_boot_set(spapr_boot_set, spapr);
3031 
3032     if (kvm_enabled()) {
3033         /* to stop and start vmclock */
3034         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3035                                          &spapr->tb);
3036 
3037         kvmppc_spapr_enable_inkernel_multitce();
3038     }
3039 }
3040 
3041 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3042 {
3043     if (!vm_type) {
3044         return 0;
3045     }
3046 
3047     if (!strcmp(vm_type, "HV")) {
3048         return 1;
3049     }
3050 
3051     if (!strcmp(vm_type, "PR")) {
3052         return 2;
3053     }
3054 
3055     error_report("Unknown kvm-type specified '%s'", vm_type);
3056     exit(1);
3057 }
3058 
3059 /*
3060  * Implementation of an interface to adjust firmware path
3061  * for the bootindex property handling.
3062  */
3063 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3064                                    DeviceState *dev)
3065 {
3066 #define CAST(type, obj, name) \
3067     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3068     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3069     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3070     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3071 
3072     if (d) {
3073         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3074         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3075         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3076 
3077         if (spapr) {
3078             /*
3079              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3080              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3081              * 0x8000 | (target << 8) | (bus << 5) | lun
3082              * (see the "Logical unit addressing format" table in SAM5)
3083              */
3084             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3085             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3086                                    (uint64_t)id << 48);
3087         } else if (virtio) {
3088             /*
3089              * We use SRP luns of the form 01000000 | (target << 8) | lun
3090              * in the top 32 bits of the 64-bit LUN
3091              * Note: the quote above is from SLOF and it is wrong,
3092              * the actual binding is:
3093              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3094              */
3095             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3096             if (d->lun >= 256) {
3097                 /* Use the LUN "flat space addressing method" */
3098                 id |= 0x4000;
3099             }
3100             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3101                                    (uint64_t)id << 32);
3102         } else if (usb) {
3103             /*
3104              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3105              * in the top 32 bits of the 64-bit LUN
3106              */
3107             unsigned usb_port = atoi(usb->port->path);
3108             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3109             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3110                                    (uint64_t)id << 32);
3111         }
3112     }
3113 
3114     /*
3115      * SLOF probes the USB devices, and if it recognizes that the device is a
3116      * storage device, it changes its name to "storage" instead of "usb-host",
3117      * and additionally adds a child node for the SCSI LUN, so the correct
3118      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3119      */
3120     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3121         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3122         if (usb_host_dev_is_scsi_storage(usbdev)) {
3123             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3124         }
3125     }
3126 
3127     if (phb) {
3128         /* Replace "pci" with "pci@800000020000000" */
3129         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3130     }
3131 
3132     if (vsc) {
3133         /* Same logic as virtio above */
3134         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3135         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3136     }
3137 
3138     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3139         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3140         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3141         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3142     }
3143 
3144     return NULL;
3145 }
3146 
3147 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3148 {
3149     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3150 
3151     return g_strdup(spapr->kvm_type);
3152 }
3153 
3154 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3155 {
3156     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3157 
3158     g_free(spapr->kvm_type);
3159     spapr->kvm_type = g_strdup(value);
3160 }
3161 
3162 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3163 {
3164     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165 
3166     return spapr->use_hotplug_event_source;
3167 }
3168 
3169 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3170                                             Error **errp)
3171 {
3172     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 
3174     spapr->use_hotplug_event_source = value;
3175 }
3176 
3177 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3178 {
3179     return true;
3180 }
3181 
3182 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3183 {
3184     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3185 
3186     switch (spapr->resize_hpt) {
3187     case SPAPR_RESIZE_HPT_DEFAULT:
3188         return g_strdup("default");
3189     case SPAPR_RESIZE_HPT_DISABLED:
3190         return g_strdup("disabled");
3191     case SPAPR_RESIZE_HPT_ENABLED:
3192         return g_strdup("enabled");
3193     case SPAPR_RESIZE_HPT_REQUIRED:
3194         return g_strdup("required");
3195     }
3196     g_assert_not_reached();
3197 }
3198 
3199 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3200 {
3201     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 
3203     if (strcmp(value, "default") == 0) {
3204         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3205     } else if (strcmp(value, "disabled") == 0) {
3206         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3207     } else if (strcmp(value, "enabled") == 0) {
3208         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3209     } else if (strcmp(value, "required") == 0) {
3210         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3211     } else {
3212         error_setg(errp, "Bad value for \"resize-hpt\" property");
3213     }
3214 }
3215 
3216 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3217                                    void *opaque, Error **errp)
3218 {
3219     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3220 }
3221 
3222 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3223                                    void *opaque, Error **errp)
3224 {
3225     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3226 }
3227 
3228 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3229 {
3230     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231 
3232     if (spapr->irq == &spapr_irq_xics_legacy) {
3233         return g_strdup("legacy");
3234     } else if (spapr->irq == &spapr_irq_xics) {
3235         return g_strdup("xics");
3236     } else if (spapr->irq == &spapr_irq_xive) {
3237         return g_strdup("xive");
3238     } else if (spapr->irq == &spapr_irq_dual) {
3239         return g_strdup("dual");
3240     }
3241     g_assert_not_reached();
3242 }
3243 
3244 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3245 {
3246     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 
3248     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3249         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3250         return;
3251     }
3252 
3253     /* The legacy IRQ backend can not be set */
3254     if (strcmp(value, "xics") == 0) {
3255         spapr->irq = &spapr_irq_xics;
3256     } else if (strcmp(value, "xive") == 0) {
3257         spapr->irq = &spapr_irq_xive;
3258     } else if (strcmp(value, "dual") == 0) {
3259         spapr->irq = &spapr_irq_dual;
3260     } else {
3261         error_setg(errp, "Bad value for \"ic-mode\" property");
3262     }
3263 }
3264 
3265 static char *spapr_get_host_model(Object *obj, Error **errp)
3266 {
3267     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268 
3269     return g_strdup(spapr->host_model);
3270 }
3271 
3272 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3273 {
3274     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3275 
3276     g_free(spapr->host_model);
3277     spapr->host_model = g_strdup(value);
3278 }
3279 
3280 static char *spapr_get_host_serial(Object *obj, Error **errp)
3281 {
3282     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283 
3284     return g_strdup(spapr->host_serial);
3285 }
3286 
3287 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3288 {
3289     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290 
3291     g_free(spapr->host_serial);
3292     spapr->host_serial = g_strdup(value);
3293 }
3294 
3295 static void spapr_instance_init(Object *obj)
3296 {
3297     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3299 
3300     spapr->htab_fd = -1;
3301     spapr->use_hotplug_event_source = true;
3302     object_property_add_str(obj, "kvm-type",
3303                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3304     object_property_set_description(obj, "kvm-type",
3305                                     "Specifies the KVM virtualization mode (HV, PR)",
3306                                     NULL);
3307     object_property_add_bool(obj, "modern-hotplug-events",
3308                             spapr_get_modern_hotplug_events,
3309                             spapr_set_modern_hotplug_events,
3310                             NULL);
3311     object_property_set_description(obj, "modern-hotplug-events",
3312                                     "Use dedicated hotplug event mechanism in"
3313                                     " place of standard EPOW events when possible"
3314                                     " (required for memory hot-unplug support)",
3315                                     NULL);
3316     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3317                             "Maximum permitted CPU compatibility mode",
3318                             &error_fatal);
3319 
3320     object_property_add_str(obj, "resize-hpt",
3321                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3322     object_property_set_description(obj, "resize-hpt",
3323                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3324                                     NULL);
3325     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3326                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3327     object_property_set_description(obj, "vsmt",
3328                                     "Virtual SMT: KVM behaves as if this were"
3329                                     " the host's SMT mode", &error_abort);
3330     object_property_add_bool(obj, "vfio-no-msix-emulation",
3331                              spapr_get_msix_emulation, NULL, NULL);
3332 
3333     /* The machine class defines the default interrupt controller mode */
3334     spapr->irq = smc->irq;
3335     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3336                             spapr_set_ic_mode, NULL);
3337     object_property_set_description(obj, "ic-mode",
3338                  "Specifies the interrupt controller mode (xics, xive, dual)",
3339                  NULL);
3340 
3341     object_property_add_str(obj, "host-model",
3342         spapr_get_host_model, spapr_set_host_model,
3343         &error_abort);
3344     object_property_set_description(obj, "host-model",
3345         "Host model to advertise in guest device tree", &error_abort);
3346     object_property_add_str(obj, "host-serial",
3347         spapr_get_host_serial, spapr_set_host_serial,
3348         &error_abort);
3349     object_property_set_description(obj, "host-serial",
3350         "Host serial number to advertise in guest device tree", &error_abort);
3351 }
3352 
3353 static void spapr_machine_finalizefn(Object *obj)
3354 {
3355     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3356 
3357     g_free(spapr->kvm_type);
3358 }
3359 
3360 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3361 {
3362     cpu_synchronize_state(cs);
3363     ppc_cpu_do_system_reset(cs);
3364 }
3365 
3366 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3367 {
3368     CPUState *cs;
3369 
3370     CPU_FOREACH(cs) {
3371         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3372     }
3373 }
3374 
3375 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3376                           void *fdt, int *fdt_start_offset, Error **errp)
3377 {
3378     uint64_t addr;
3379     uint32_t node;
3380 
3381     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3382     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3383                                     &error_abort);
3384     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3385                                                    SPAPR_MEMORY_BLOCK_SIZE);
3386     return 0;
3387 }
3388 
3389 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3390                            bool dedicated_hp_event_source, Error **errp)
3391 {
3392     SpaprDrc *drc;
3393     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3394     int i;
3395     uint64_t addr = addr_start;
3396     bool hotplugged = spapr_drc_hotplugged(dev);
3397     Error *local_err = NULL;
3398 
3399     for (i = 0; i < nr_lmbs; i++) {
3400         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3401                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3402         g_assert(drc);
3403 
3404         spapr_drc_attach(drc, dev, &local_err);
3405         if (local_err) {
3406             while (addr > addr_start) {
3407                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3408                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3409                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3410                 spapr_drc_detach(drc);
3411             }
3412             error_propagate(errp, local_err);
3413             return;
3414         }
3415         if (!hotplugged) {
3416             spapr_drc_reset(drc);
3417         }
3418         addr += SPAPR_MEMORY_BLOCK_SIZE;
3419     }
3420     /* send hotplug notification to the
3421      * guest only in case of hotplugged memory
3422      */
3423     if (hotplugged) {
3424         if (dedicated_hp_event_source) {
3425             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3426                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3427             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3428                                                    nr_lmbs,
3429                                                    spapr_drc_index(drc));
3430         } else {
3431             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3432                                            nr_lmbs);
3433         }
3434     }
3435 }
3436 
3437 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3438                               Error **errp)
3439 {
3440     Error *local_err = NULL;
3441     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3442     PCDIMMDevice *dimm = PC_DIMM(dev);
3443     uint64_t size, addr;
3444 
3445     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3446 
3447     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3448     if (local_err) {
3449         goto out;
3450     }
3451 
3452     addr = object_property_get_uint(OBJECT(dimm),
3453                                     PC_DIMM_ADDR_PROP, &local_err);
3454     if (local_err) {
3455         goto out_unplug;
3456     }
3457 
3458     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3459                    &local_err);
3460     if (local_err) {
3461         goto out_unplug;
3462     }
3463 
3464     return;
3465 
3466 out_unplug:
3467     pc_dimm_unplug(dimm, MACHINE(ms));
3468 out:
3469     error_propagate(errp, local_err);
3470 }
3471 
3472 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3473                                   Error **errp)
3474 {
3475     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3476     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3477     PCDIMMDevice *dimm = PC_DIMM(dev);
3478     Error *local_err = NULL;
3479     uint64_t size;
3480     Object *memdev;
3481     hwaddr pagesize;
3482 
3483     if (!smc->dr_lmb_enabled) {
3484         error_setg(errp, "Memory hotplug not supported for this machine");
3485         return;
3486     }
3487 
3488     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3489     if (local_err) {
3490         error_propagate(errp, local_err);
3491         return;
3492     }
3493 
3494     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3495         error_setg(errp, "Hotplugged memory size must be a multiple of "
3496                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3497         return;
3498     }
3499 
3500     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3501                                       &error_abort);
3502     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3503     spapr_check_pagesize(spapr, pagesize, &local_err);
3504     if (local_err) {
3505         error_propagate(errp, local_err);
3506         return;
3507     }
3508 
3509     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3510 }
3511 
3512 struct SpaprDimmState {
3513     PCDIMMDevice *dimm;
3514     uint32_t nr_lmbs;
3515     QTAILQ_ENTRY(SpaprDimmState) next;
3516 };
3517 
3518 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3519                                                        PCDIMMDevice *dimm)
3520 {
3521     SpaprDimmState *dimm_state = NULL;
3522 
3523     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3524         if (dimm_state->dimm == dimm) {
3525             break;
3526         }
3527     }
3528     return dimm_state;
3529 }
3530 
3531 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3532                                                       uint32_t nr_lmbs,
3533                                                       PCDIMMDevice *dimm)
3534 {
3535     SpaprDimmState *ds = NULL;
3536 
3537     /*
3538      * If this request is for a DIMM whose removal had failed earlier
3539      * (due to guest's refusal to remove the LMBs), we would have this
3540      * dimm already in the pending_dimm_unplugs list. In that
3541      * case don't add again.
3542      */
3543     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3544     if (!ds) {
3545         ds = g_malloc0(sizeof(SpaprDimmState));
3546         ds->nr_lmbs = nr_lmbs;
3547         ds->dimm = dimm;
3548         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3549     }
3550     return ds;
3551 }
3552 
3553 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3554                                               SpaprDimmState *dimm_state)
3555 {
3556     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3557     g_free(dimm_state);
3558 }
3559 
3560 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3561                                                         PCDIMMDevice *dimm)
3562 {
3563     SpaprDrc *drc;
3564     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3565                                                   &error_abort);
3566     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3567     uint32_t avail_lmbs = 0;
3568     uint64_t addr_start, addr;
3569     int i;
3570 
3571     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3572                                          &error_abort);
3573 
3574     addr = addr_start;
3575     for (i = 0; i < nr_lmbs; i++) {
3576         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3577                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3578         g_assert(drc);
3579         if (drc->dev) {
3580             avail_lmbs++;
3581         }
3582         addr += SPAPR_MEMORY_BLOCK_SIZE;
3583     }
3584 
3585     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3586 }
3587 
3588 /* Callback to be called during DRC release. */
3589 void spapr_lmb_release(DeviceState *dev)
3590 {
3591     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3592     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3593     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3594 
3595     /* This information will get lost if a migration occurs
3596      * during the unplug process. In this case recover it. */
3597     if (ds == NULL) {
3598         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3599         g_assert(ds);
3600         /* The DRC being examined by the caller at least must be counted */
3601         g_assert(ds->nr_lmbs);
3602     }
3603 
3604     if (--ds->nr_lmbs) {
3605         return;
3606     }
3607 
3608     /*
3609      * Now that all the LMBs have been removed by the guest, call the
3610      * unplug handler chain. This can never fail.
3611      */
3612     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3613     object_unparent(OBJECT(dev));
3614 }
3615 
3616 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3617 {
3618     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3619     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3620 
3621     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3622     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3623     spapr_pending_dimm_unplugs_remove(spapr, ds);
3624 }
3625 
3626 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3627                                         DeviceState *dev, Error **errp)
3628 {
3629     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3630     Error *local_err = NULL;
3631     PCDIMMDevice *dimm = PC_DIMM(dev);
3632     uint32_t nr_lmbs;
3633     uint64_t size, addr_start, addr;
3634     int i;
3635     SpaprDrc *drc;
3636 
3637     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3638     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3639 
3640     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3641                                          &local_err);
3642     if (local_err) {
3643         goto out;
3644     }
3645 
3646     /*
3647      * An existing pending dimm state for this DIMM means that there is an
3648      * unplug operation in progress, waiting for the spapr_lmb_release
3649      * callback to complete the job (BQL can't cover that far). In this case,
3650      * bail out to avoid detaching DRCs that were already released.
3651      */
3652     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3653         error_setg(&local_err,
3654                    "Memory unplug already in progress for device %s",
3655                    dev->id);
3656         goto out;
3657     }
3658 
3659     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3660 
3661     addr = addr_start;
3662     for (i = 0; i < nr_lmbs; i++) {
3663         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3664                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3665         g_assert(drc);
3666 
3667         spapr_drc_detach(drc);
3668         addr += SPAPR_MEMORY_BLOCK_SIZE;
3669     }
3670 
3671     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3672                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3673     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3674                                               nr_lmbs, spapr_drc_index(drc));
3675 out:
3676     error_propagate(errp, local_err);
3677 }
3678 
3679 /* Callback to be called during DRC release. */
3680 void spapr_core_release(DeviceState *dev)
3681 {
3682     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3683 
3684     /* Call the unplug handler chain. This can never fail. */
3685     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3686     object_unparent(OBJECT(dev));
3687 }
3688 
3689 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3690 {
3691     MachineState *ms = MACHINE(hotplug_dev);
3692     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3693     CPUCore *cc = CPU_CORE(dev);
3694     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3695 
3696     if (smc->pre_2_10_has_unused_icps) {
3697         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3698         int i;
3699 
3700         for (i = 0; i < cc->nr_threads; i++) {
3701             CPUState *cs = CPU(sc->threads[i]);
3702 
3703             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3704         }
3705     }
3706 
3707     assert(core_slot);
3708     core_slot->cpu = NULL;
3709     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3710 }
3711 
3712 static
3713 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3714                                Error **errp)
3715 {
3716     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3717     int index;
3718     SpaprDrc *drc;
3719     CPUCore *cc = CPU_CORE(dev);
3720 
3721     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3722         error_setg(errp, "Unable to find CPU core with core-id: %d",
3723                    cc->core_id);
3724         return;
3725     }
3726     if (index == 0) {
3727         error_setg(errp, "Boot CPU core may not be unplugged");
3728         return;
3729     }
3730 
3731     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3732                           spapr_vcpu_id(spapr, cc->core_id));
3733     g_assert(drc);
3734 
3735     spapr_drc_detach(drc);
3736 
3737     spapr_hotplug_req_remove_by_index(drc);
3738 }
3739 
3740 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3741                            void *fdt, int *fdt_start_offset, Error **errp)
3742 {
3743     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3744     CPUState *cs = CPU(core->threads[0]);
3745     PowerPCCPU *cpu = POWERPC_CPU(cs);
3746     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3747     int id = spapr_get_vcpu_id(cpu);
3748     char *nodename;
3749     int offset;
3750 
3751     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3752     offset = fdt_add_subnode(fdt, 0, nodename);
3753     g_free(nodename);
3754 
3755     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3756 
3757     *fdt_start_offset = offset;
3758     return 0;
3759 }
3760 
3761 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3762                             Error **errp)
3763 {
3764     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3765     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3766     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3767     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3768     CPUCore *cc = CPU_CORE(dev);
3769     CPUState *cs;
3770     SpaprDrc *drc;
3771     Error *local_err = NULL;
3772     CPUArchId *core_slot;
3773     int index;
3774     bool hotplugged = spapr_drc_hotplugged(dev);
3775 
3776     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3777     if (!core_slot) {
3778         error_setg(errp, "Unable to find CPU core with core-id: %d",
3779                    cc->core_id);
3780         return;
3781     }
3782     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3783                           spapr_vcpu_id(spapr, cc->core_id));
3784 
3785     g_assert(drc || !mc->has_hotpluggable_cpus);
3786 
3787     if (drc) {
3788         spapr_drc_attach(drc, dev, &local_err);
3789         if (local_err) {
3790             error_propagate(errp, local_err);
3791             return;
3792         }
3793 
3794         if (hotplugged) {
3795             /*
3796              * Send hotplug notification interrupt to the guest only
3797              * in case of hotplugged CPUs.
3798              */
3799             spapr_hotplug_req_add_by_index(drc);
3800         } else {
3801             spapr_drc_reset(drc);
3802         }
3803     }
3804 
3805     core_slot->cpu = OBJECT(dev);
3806 
3807     if (smc->pre_2_10_has_unused_icps) {
3808         int i;
3809 
3810         for (i = 0; i < cc->nr_threads; i++) {
3811             cs = CPU(core->threads[i]);
3812             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3813         }
3814     }
3815 }
3816 
3817 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3818                                 Error **errp)
3819 {
3820     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3821     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3822     Error *local_err = NULL;
3823     CPUCore *cc = CPU_CORE(dev);
3824     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3825     const char *type = object_get_typename(OBJECT(dev));
3826     CPUArchId *core_slot;
3827     int index;
3828 
3829     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3830         error_setg(&local_err, "CPU hotplug not supported for this machine");
3831         goto out;
3832     }
3833 
3834     if (strcmp(base_core_type, type)) {
3835         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3836         goto out;
3837     }
3838 
3839     if (cc->core_id % smp_threads) {
3840         error_setg(&local_err, "invalid core id %d", cc->core_id);
3841         goto out;
3842     }
3843 
3844     /*
3845      * In general we should have homogeneous threads-per-core, but old
3846      * (pre hotplug support) machine types allow the last core to have
3847      * reduced threads as a compatibility hack for when we allowed
3848      * total vcpus not a multiple of threads-per-core.
3849      */
3850     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3851         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3852                    cc->nr_threads, smp_threads);
3853         goto out;
3854     }
3855 
3856     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3857     if (!core_slot) {
3858         error_setg(&local_err, "core id %d out of range", cc->core_id);
3859         goto out;
3860     }
3861 
3862     if (core_slot->cpu) {
3863         error_setg(&local_err, "core %d already populated", cc->core_id);
3864         goto out;
3865     }
3866 
3867     numa_cpu_pre_plug(core_slot, dev, &local_err);
3868 
3869 out:
3870     error_propagate(errp, local_err);
3871 }
3872 
3873 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3874                           void *fdt, int *fdt_start_offset, Error **errp)
3875 {
3876     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3877     int intc_phandle;
3878 
3879     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3880     if (intc_phandle <= 0) {
3881         return -1;
3882     }
3883 
3884     if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3885                               fdt_start_offset)) {
3886         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3887         return -1;
3888     }
3889 
3890     /* generally SLOF creates these, for hotplug it's up to QEMU */
3891     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3892 
3893     return 0;
3894 }
3895 
3896 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3897                                Error **errp)
3898 {
3899     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3900     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3901     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3902     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3903 
3904     if (dev->hotplugged && !smc->dr_phb_enabled) {
3905         error_setg(errp, "PHB hotplug not supported for this machine");
3906         return;
3907     }
3908 
3909     if (sphb->index == (uint32_t)-1) {
3910         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3911         return;
3912     }
3913 
3914     /*
3915      * This will check that sphb->index doesn't exceed the maximum number of
3916      * PHBs for the current machine type.
3917      */
3918     smc->phb_placement(spapr, sphb->index,
3919                        &sphb->buid, &sphb->io_win_addr,
3920                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3921                        windows_supported, sphb->dma_liobn,
3922                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3923                        errp);
3924 }
3925 
3926 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3927                            Error **errp)
3928 {
3929     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3930     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3931     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3932     SpaprDrc *drc;
3933     bool hotplugged = spapr_drc_hotplugged(dev);
3934     Error *local_err = NULL;
3935 
3936     if (!smc->dr_phb_enabled) {
3937         return;
3938     }
3939 
3940     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3941     /* hotplug hooks should check it's enabled before getting this far */
3942     assert(drc);
3943 
3944     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3945     if (local_err) {
3946         error_propagate(errp, local_err);
3947         return;
3948     }
3949 
3950     if (hotplugged) {
3951         spapr_hotplug_req_add_by_index(drc);
3952     } else {
3953         spapr_drc_reset(drc);
3954     }
3955 }
3956 
3957 void spapr_phb_release(DeviceState *dev)
3958 {
3959     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3960 
3961     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3962     object_unparent(OBJECT(dev));
3963 }
3964 
3965 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3966 {
3967     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3968 }
3969 
3970 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3971                                      DeviceState *dev, Error **errp)
3972 {
3973     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3974     SpaprDrc *drc;
3975 
3976     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3977     assert(drc);
3978 
3979     if (!spapr_drc_unplug_requested(drc)) {
3980         spapr_drc_detach(drc);
3981         spapr_hotplug_req_remove_by_index(drc);
3982     }
3983 }
3984 
3985 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3986                                       DeviceState *dev, Error **errp)
3987 {
3988     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3989         spapr_memory_plug(hotplug_dev, dev, errp);
3990     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3991         spapr_core_plug(hotplug_dev, dev, errp);
3992     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3993         spapr_phb_plug(hotplug_dev, dev, errp);
3994     }
3995 }
3996 
3997 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3998                                         DeviceState *dev, Error **errp)
3999 {
4000     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4001         spapr_memory_unplug(hotplug_dev, dev);
4002     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4003         spapr_core_unplug(hotplug_dev, dev);
4004     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4005         spapr_phb_unplug(hotplug_dev, dev);
4006     }
4007 }
4008 
4009 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4010                                                 DeviceState *dev, Error **errp)
4011 {
4012     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4013     MachineClass *mc = MACHINE_GET_CLASS(sms);
4014     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4015 
4016     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4017         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4018             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4019         } else {
4020             /* NOTE: this means there is a window after guest reset, prior to
4021              * CAS negotiation, where unplug requests will fail due to the
4022              * capability not being detected yet. This is a bit different than
4023              * the case with PCI unplug, where the events will be queued and
4024              * eventually handled by the guest after boot
4025              */
4026             error_setg(errp, "Memory hot unplug not supported for this guest");
4027         }
4028     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4029         if (!mc->has_hotpluggable_cpus) {
4030             error_setg(errp, "CPU hot unplug not supported on this machine");
4031             return;
4032         }
4033         spapr_core_unplug_request(hotplug_dev, dev, errp);
4034     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4035         if (!smc->dr_phb_enabled) {
4036             error_setg(errp, "PHB hot unplug not supported on this machine");
4037             return;
4038         }
4039         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4040     }
4041 }
4042 
4043 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4044                                           DeviceState *dev, Error **errp)
4045 {
4046     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4047         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4048     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4049         spapr_core_pre_plug(hotplug_dev, dev, errp);
4050     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4051         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4052     }
4053 }
4054 
4055 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4056                                                  DeviceState *dev)
4057 {
4058     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4059         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4060         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4061         return HOTPLUG_HANDLER(machine);
4062     }
4063     return NULL;
4064 }
4065 
4066 static CpuInstanceProperties
4067 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4068 {
4069     CPUArchId *core_slot;
4070     MachineClass *mc = MACHINE_GET_CLASS(machine);
4071 
4072     /* make sure possible_cpu are intialized */
4073     mc->possible_cpu_arch_ids(machine);
4074     /* get CPU core slot containing thread that matches cpu_index */
4075     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4076     assert(core_slot);
4077     return core_slot->props;
4078 }
4079 
4080 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4081 {
4082     return idx / smp_cores % nb_numa_nodes;
4083 }
4084 
4085 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4086 {
4087     int i;
4088     const char *core_type;
4089     int spapr_max_cores = max_cpus / smp_threads;
4090     MachineClass *mc = MACHINE_GET_CLASS(machine);
4091 
4092     if (!mc->has_hotpluggable_cpus) {
4093         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4094     }
4095     if (machine->possible_cpus) {
4096         assert(machine->possible_cpus->len == spapr_max_cores);
4097         return machine->possible_cpus;
4098     }
4099 
4100     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4101     if (!core_type) {
4102         error_report("Unable to find sPAPR CPU Core definition");
4103         exit(1);
4104     }
4105 
4106     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4107                              sizeof(CPUArchId) * spapr_max_cores);
4108     machine->possible_cpus->len = spapr_max_cores;
4109     for (i = 0; i < machine->possible_cpus->len; i++) {
4110         int core_id = i * smp_threads;
4111 
4112         machine->possible_cpus->cpus[i].type = core_type;
4113         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4114         machine->possible_cpus->cpus[i].arch_id = core_id;
4115         machine->possible_cpus->cpus[i].props.has_core_id = true;
4116         machine->possible_cpus->cpus[i].props.core_id = core_id;
4117     }
4118     return machine->possible_cpus;
4119 }
4120 
4121 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4122                                 uint64_t *buid, hwaddr *pio,
4123                                 hwaddr *mmio32, hwaddr *mmio64,
4124                                 unsigned n_dma, uint32_t *liobns,
4125                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4126 {
4127     /*
4128      * New-style PHB window placement.
4129      *
4130      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4131      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4132      * windows.
4133      *
4134      * Some guest kernels can't work with MMIO windows above 1<<46
4135      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4136      *
4137      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4138      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4139      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4140      * 1TiB 64-bit MMIO windows for each PHB.
4141      */
4142     const uint64_t base_buid = 0x800000020000000ULL;
4143     int i;
4144 
4145     /* Sanity check natural alignments */
4146     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4147     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4148     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4149     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4150     /* Sanity check bounds */
4151     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4152                       SPAPR_PCI_MEM32_WIN_SIZE);
4153     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4154                       SPAPR_PCI_MEM64_WIN_SIZE);
4155 
4156     if (index >= SPAPR_MAX_PHBS) {
4157         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4158                    SPAPR_MAX_PHBS - 1);
4159         return;
4160     }
4161 
4162     *buid = base_buid + index;
4163     for (i = 0; i < n_dma; ++i) {
4164         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4165     }
4166 
4167     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4168     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4169     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4170 
4171     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4172     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4173 }
4174 
4175 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4176 {
4177     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4178 
4179     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4180 }
4181 
4182 static void spapr_ics_resend(XICSFabric *dev)
4183 {
4184     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4185 
4186     ics_resend(spapr->ics);
4187 }
4188 
4189 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4190 {
4191     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4192 
4193     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4194 }
4195 
4196 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4197                                  Monitor *mon)
4198 {
4199     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4200 
4201     spapr->irq->print_info(spapr, mon);
4202 }
4203 
4204 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4205 {
4206     return cpu->vcpu_id;
4207 }
4208 
4209 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4210 {
4211     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4212     int vcpu_id;
4213 
4214     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4215 
4216     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4217         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4218         error_append_hint(errp, "Adjust the number of cpus to %d "
4219                           "or try to raise the number of threads per core\n",
4220                           vcpu_id * smp_threads / spapr->vsmt);
4221         return;
4222     }
4223 
4224     cpu->vcpu_id = vcpu_id;
4225 }
4226 
4227 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4228 {
4229     CPUState *cs;
4230 
4231     CPU_FOREACH(cs) {
4232         PowerPCCPU *cpu = POWERPC_CPU(cs);
4233 
4234         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4235             return cpu;
4236         }
4237     }
4238 
4239     return NULL;
4240 }
4241 
4242 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4243 {
4244     MachineClass *mc = MACHINE_CLASS(oc);
4245     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4246     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4247     NMIClass *nc = NMI_CLASS(oc);
4248     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4249     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4250     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4251     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4252 
4253     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4254     mc->ignore_boot_device_suffixes = true;
4255 
4256     /*
4257      * We set up the default / latest behaviour here.  The class_init
4258      * functions for the specific versioned machine types can override
4259      * these details for backwards compatibility
4260      */
4261     mc->init = spapr_machine_init;
4262     mc->reset = spapr_machine_reset;
4263     mc->block_default_type = IF_SCSI;
4264     mc->max_cpus = 1024;
4265     mc->no_parallel = 1;
4266     mc->default_boot_order = "";
4267     mc->default_ram_size = 512 * MiB;
4268     mc->default_display = "std";
4269     mc->kvm_type = spapr_kvm_type;
4270     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4271     mc->pci_allow_0_address = true;
4272     assert(!mc->get_hotplug_handler);
4273     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4274     hc->pre_plug = spapr_machine_device_pre_plug;
4275     hc->plug = spapr_machine_device_plug;
4276     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4277     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4278     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4279     hc->unplug_request = spapr_machine_device_unplug_request;
4280     hc->unplug = spapr_machine_device_unplug;
4281 
4282     smc->dr_lmb_enabled = true;
4283     smc->update_dt_enabled = true;
4284     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4285     mc->has_hotpluggable_cpus = true;
4286     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4287     fwc->get_dev_path = spapr_get_fw_dev_path;
4288     nc->nmi_monitor_handler = spapr_nmi;
4289     smc->phb_placement = spapr_phb_placement;
4290     vhc->hypercall = emulate_spapr_hypercall;
4291     vhc->hpt_mask = spapr_hpt_mask;
4292     vhc->map_hptes = spapr_map_hptes;
4293     vhc->unmap_hptes = spapr_unmap_hptes;
4294     vhc->store_hpte = spapr_store_hpte;
4295     vhc->get_pate = spapr_get_pate;
4296     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4297     xic->ics_get = spapr_ics_get;
4298     xic->ics_resend = spapr_ics_resend;
4299     xic->icp_get = spapr_icp_get;
4300     ispc->print_info = spapr_pic_print_info;
4301     /* Force NUMA node memory size to be a multiple of
4302      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4303      * in which LMBs are represented and hot-added
4304      */
4305     mc->numa_mem_align_shift = 28;
4306 
4307     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4308     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4309     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4310     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4311     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4312     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4313     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4314     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4315     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4316     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4317     spapr_caps_add_properties(smc, &error_abort);
4318     smc->irq = &spapr_irq_xics;
4319     smc->dr_phb_enabled = true;
4320 }
4321 
4322 static const TypeInfo spapr_machine_info = {
4323     .name          = TYPE_SPAPR_MACHINE,
4324     .parent        = TYPE_MACHINE,
4325     .abstract      = true,
4326     .instance_size = sizeof(SpaprMachineState),
4327     .instance_init = spapr_instance_init,
4328     .instance_finalize = spapr_machine_finalizefn,
4329     .class_size    = sizeof(SpaprMachineClass),
4330     .class_init    = spapr_machine_class_init,
4331     .interfaces = (InterfaceInfo[]) {
4332         { TYPE_FW_PATH_PROVIDER },
4333         { TYPE_NMI },
4334         { TYPE_HOTPLUG_HANDLER },
4335         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4336         { TYPE_XICS_FABRIC },
4337         { TYPE_INTERRUPT_STATS_PROVIDER },
4338         { }
4339     },
4340 };
4341 
4342 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4343     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4344                                                     void *data)      \
4345     {                                                                \
4346         MachineClass *mc = MACHINE_CLASS(oc);                        \
4347         spapr_machine_##suffix##_class_options(mc);                  \
4348         if (latest) {                                                \
4349             mc->alias = "pseries";                                   \
4350             mc->is_default = 1;                                      \
4351         }                                                            \
4352     }                                                                \
4353     static const TypeInfo spapr_machine_##suffix##_info = {          \
4354         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4355         .parent = TYPE_SPAPR_MACHINE,                                \
4356         .class_init = spapr_machine_##suffix##_class_init,           \
4357     };                                                               \
4358     static void spapr_machine_register_##suffix(void)                \
4359     {                                                                \
4360         type_register(&spapr_machine_##suffix##_info);               \
4361     }                                                                \
4362     type_init(spapr_machine_register_##suffix)
4363 
4364 /*
4365  * pseries-4.0
4366  */
4367 static void spapr_machine_4_0_class_options(MachineClass *mc)
4368 {
4369     /* Defaults for the latest behaviour inherited from the base class */
4370 }
4371 
4372 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4373 
4374 /*
4375  * pseries-3.1
4376  */
4377 static void phb_placement_3_1(SpaprMachineState *spapr, uint32_t index,
4378                               uint64_t *buid, hwaddr *pio,
4379                               hwaddr *mmio32, hwaddr *mmio64,
4380                               unsigned n_dma, uint32_t *liobns,
4381                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4382 {
4383     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4384                         nv2gpa, nv2atsd, errp);
4385     *nv2gpa = 0;
4386     *nv2atsd = 0;
4387 }
4388 
4389 static void spapr_machine_3_1_class_options(MachineClass *mc)
4390 {
4391     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4392 
4393     spapr_machine_4_0_class_options(mc);
4394     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4395 
4396     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4397     smc->update_dt_enabled = false;
4398     smc->dr_phb_enabled = false;
4399     smc->broken_host_serial_model = true;
4400     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4401     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4402     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4403     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4404     smc->phb_placement = phb_placement_3_1;
4405 }
4406 
4407 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4408 
4409 /*
4410  * pseries-3.0
4411  */
4412 
4413 static void spapr_machine_3_0_class_options(MachineClass *mc)
4414 {
4415     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4416 
4417     spapr_machine_3_1_class_options(mc);
4418     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4419 
4420     smc->legacy_irq_allocation = true;
4421     smc->irq = &spapr_irq_xics_legacy;
4422 }
4423 
4424 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4425 
4426 /*
4427  * pseries-2.12
4428  */
4429 static void spapr_machine_2_12_class_options(MachineClass *mc)
4430 {
4431     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4432     static GlobalProperty compat[] = {
4433         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4434         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4435     };
4436 
4437     spapr_machine_3_0_class_options(mc);
4438     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4439     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4440 
4441     /* We depend on kvm_enabled() to choose a default value for the
4442      * hpt-max-page-size capability. Of course we can't do it here
4443      * because this is too early and the HW accelerator isn't initialzed
4444      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4445      */
4446     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4447 }
4448 
4449 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4450 
4451 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4452 {
4453     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4454 
4455     spapr_machine_2_12_class_options(mc);
4456     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4457     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4458     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4459 }
4460 
4461 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4462 
4463 /*
4464  * pseries-2.11
4465  */
4466 
4467 static void spapr_machine_2_11_class_options(MachineClass *mc)
4468 {
4469     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4470 
4471     spapr_machine_2_12_class_options(mc);
4472     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4473     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4474 }
4475 
4476 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4477 
4478 /*
4479  * pseries-2.10
4480  */
4481 
4482 static void spapr_machine_2_10_class_options(MachineClass *mc)
4483 {
4484     spapr_machine_2_11_class_options(mc);
4485     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4486 }
4487 
4488 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4489 
4490 /*
4491  * pseries-2.9
4492  */
4493 
4494 static void spapr_machine_2_9_class_options(MachineClass *mc)
4495 {
4496     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4497     static GlobalProperty compat[] = {
4498         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4499     };
4500 
4501     spapr_machine_2_10_class_options(mc);
4502     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4503     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4504     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4505     smc->pre_2_10_has_unused_icps = true;
4506     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4507 }
4508 
4509 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4510 
4511 /*
4512  * pseries-2.8
4513  */
4514 
4515 static void spapr_machine_2_8_class_options(MachineClass *mc)
4516 {
4517     static GlobalProperty compat[] = {
4518         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4519     };
4520 
4521     spapr_machine_2_9_class_options(mc);
4522     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4523     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4524     mc->numa_mem_align_shift = 23;
4525 }
4526 
4527 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4528 
4529 /*
4530  * pseries-2.7
4531  */
4532 
4533 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4534                               uint64_t *buid, hwaddr *pio,
4535                               hwaddr *mmio32, hwaddr *mmio64,
4536                               unsigned n_dma, uint32_t *liobns,
4537                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4538 {
4539     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4540     const uint64_t base_buid = 0x800000020000000ULL;
4541     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4542     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4543     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4544     const uint32_t max_index = 255;
4545     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4546 
4547     uint64_t ram_top = MACHINE(spapr)->ram_size;
4548     hwaddr phb0_base, phb_base;
4549     int i;
4550 
4551     /* Do we have device memory? */
4552     if (MACHINE(spapr)->maxram_size > ram_top) {
4553         /* Can't just use maxram_size, because there may be an
4554          * alignment gap between normal and device memory regions
4555          */
4556         ram_top = MACHINE(spapr)->device_memory->base +
4557             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4558     }
4559 
4560     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4561 
4562     if (index > max_index) {
4563         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4564                    max_index);
4565         return;
4566     }
4567 
4568     *buid = base_buid + index;
4569     for (i = 0; i < n_dma; ++i) {
4570         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4571     }
4572 
4573     phb_base = phb0_base + index * phb_spacing;
4574     *pio = phb_base + pio_offset;
4575     *mmio32 = phb_base + mmio_offset;
4576     /*
4577      * We don't set the 64-bit MMIO window, relying on the PHB's
4578      * fallback behaviour of automatically splitting a large "32-bit"
4579      * window into contiguous 32-bit and 64-bit windows
4580      */
4581 
4582     *nv2gpa = 0;
4583     *nv2atsd = 0;
4584 }
4585 
4586 static void spapr_machine_2_7_class_options(MachineClass *mc)
4587 {
4588     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4589     static GlobalProperty compat[] = {
4590         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4591         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4592         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4593         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4594     };
4595 
4596     spapr_machine_2_8_class_options(mc);
4597     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4598     mc->default_machine_opts = "modern-hotplug-events=off";
4599     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4600     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4601     smc->phb_placement = phb_placement_2_7;
4602 }
4603 
4604 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4605 
4606 /*
4607  * pseries-2.6
4608  */
4609 
4610 static void spapr_machine_2_6_class_options(MachineClass *mc)
4611 {
4612     static GlobalProperty compat[] = {
4613         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4614     };
4615 
4616     spapr_machine_2_7_class_options(mc);
4617     mc->has_hotpluggable_cpus = false;
4618     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4619     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4620 }
4621 
4622 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4623 
4624 /*
4625  * pseries-2.5
4626  */
4627 
4628 static void spapr_machine_2_5_class_options(MachineClass *mc)
4629 {
4630     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4631     static GlobalProperty compat[] = {
4632         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4633     };
4634 
4635     spapr_machine_2_6_class_options(mc);
4636     smc->use_ohci_by_default = true;
4637     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4638     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4639 }
4640 
4641 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4642 
4643 /*
4644  * pseries-2.4
4645  */
4646 
4647 static void spapr_machine_2_4_class_options(MachineClass *mc)
4648 {
4649     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4650 
4651     spapr_machine_2_5_class_options(mc);
4652     smc->dr_lmb_enabled = false;
4653     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4654 }
4655 
4656 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4657 
4658 /*
4659  * pseries-2.3
4660  */
4661 
4662 static void spapr_machine_2_3_class_options(MachineClass *mc)
4663 {
4664     static GlobalProperty compat[] = {
4665         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4666     };
4667     spapr_machine_2_4_class_options(mc);
4668     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4669     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4670 }
4671 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4672 
4673 /*
4674  * pseries-2.2
4675  */
4676 
4677 static void spapr_machine_2_2_class_options(MachineClass *mc)
4678 {
4679     static GlobalProperty compat[] = {
4680         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4681     };
4682 
4683     spapr_machine_2_3_class_options(mc);
4684     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4685     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4686     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4687 }
4688 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4689 
4690 /*
4691  * pseries-2.1
4692  */
4693 
4694 static void spapr_machine_2_1_class_options(MachineClass *mc)
4695 {
4696     spapr_machine_2_2_class_options(mc);
4697     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4698 }
4699 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4700 
4701 static void spapr_machine_register_types(void)
4702 {
4703     type_register_static(&spapr_machine_info);
4704 }
4705 
4706 type_init(spapr_machine_register_types)
4707