1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "hw/ppc/spapr_cpu_core.h" 80 #include "hw/mem/memory-device.h" 81 #include "hw/ppc/spapr_tpm_proxy.h" 82 83 #include "monitor/monitor.h" 84 85 #include <libfdt.h> 86 87 /* SLOF memory layout: 88 * 89 * SLOF raw image loaded at 0, copies its romfs right below the flat 90 * device-tree, then position SLOF itself 31M below that 91 * 92 * So we set FW_OVERHEAD to 40MB which should account for all of that 93 * and more 94 * 95 * We load our kernel at 4M, leaving space for SLOF initial image 96 */ 97 #define FDT_MAX_SIZE 0x100000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset) 222 { 223 uint8_t pa_features_206[] = { 6, 0, 224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 225 uint8_t pa_features_207[] = { 24, 0, 226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 230 uint8_t pa_features_300[] = { 66, 0, 231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 234 /* 6: DS207 */ 235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 236 /* 16: Vector */ 237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 246 /* 42: PM, 44: PC RA, 46: SC vec'd */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 248 /* 48: SIMD, 50: QP BFP, 52: String */ 249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 250 /* 54: DecFP, 56: DecI, 58: SHA */ 251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 252 /* 60: NM atomic, 62: RNG */ 253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 254 }; 255 uint8_t *pa_features = NULL; 256 size_t pa_size; 257 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_206; 260 pa_size = sizeof(pa_features_206); 261 } 262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 263 pa_features = pa_features_207; 264 pa_size = sizeof(pa_features_207); 265 } 266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 267 pa_features = pa_features_300; 268 pa_size = sizeof(pa_features_300); 269 } 270 if (!pa_features) { 271 return; 272 } 273 274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 275 /* 276 * Note: we keep CI large pages off by default because a 64K capable 277 * guest provisioned with large pages might otherwise try to map a qemu 278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 279 * even if that qemu runs on a 4k host. 280 * We dd this bit back here if we are confident this is not an issue 281 */ 282 pa_features[3] |= 0x20; 283 } 284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 285 pa_features[24] |= 0x80; /* Transactional memory support */ 286 } 287 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 288 /* Workaround for broken kernels that attempt (guest) radix 289 * mode when they can't handle it, if they see the radix bit set 290 * in pa-features. So hide it from them. */ 291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 292 } 293 294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 295 } 296 297 static hwaddr spapr_node0_size(MachineState *machine) 298 { 299 if (machine->numa_state->num_nodes) { 300 int i; 301 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 302 if (machine->numa_state->nodes[i].node_mem) { 303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 304 machine->ram_size); 305 } 306 } 307 } 308 return machine->ram_size; 309 } 310 311 static void add_str(GString *s, const gchar *s1) 312 { 313 g_string_append_len(s, s1, strlen(s1) + 1); 314 } 315 316 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 317 hwaddr size) 318 { 319 uint32_t associativity[] = { 320 cpu_to_be32(0x4), /* length */ 321 cpu_to_be32(0x0), cpu_to_be32(0x0), 322 cpu_to_be32(0x0), cpu_to_be32(nodeid) 323 }; 324 char mem_name[32]; 325 uint64_t mem_reg_property[2]; 326 int off; 327 328 mem_reg_property[0] = cpu_to_be64(start); 329 mem_reg_property[1] = cpu_to_be64(size); 330 331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 332 off = fdt_add_subnode(fdt, 0, mem_name); 333 _FDT(off); 334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 336 sizeof(mem_reg_property)))); 337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 338 sizeof(associativity)))); 339 return off; 340 } 341 342 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 343 { 344 MachineState *machine = MACHINE(spapr); 345 hwaddr mem_start, node_size; 346 int i, nb_nodes = machine->numa_state->num_nodes; 347 NodeInfo *nodes = machine->numa_state->nodes; 348 349 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 350 if (!nodes[i].node_mem) { 351 continue; 352 } 353 if (mem_start >= machine->ram_size) { 354 node_size = 0; 355 } else { 356 node_size = nodes[i].node_mem; 357 if (node_size > machine->ram_size - mem_start) { 358 node_size = machine->ram_size - mem_start; 359 } 360 } 361 if (!mem_start) { 362 /* spapr_machine_init() checks for rma_size <= node0_size 363 * already */ 364 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 365 mem_start += spapr->rma_size; 366 node_size -= spapr->rma_size; 367 } 368 for ( ; node_size; ) { 369 hwaddr sizetmp = pow2floor(node_size); 370 371 /* mem_start != 0 here */ 372 if (ctzl(mem_start) < ctzl(sizetmp)) { 373 sizetmp = 1ULL << ctzl(mem_start); 374 } 375 376 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 377 node_size -= sizetmp; 378 mem_start += sizetmp; 379 } 380 } 381 382 return 0; 383 } 384 385 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 386 SpaprMachineState *spapr) 387 { 388 MachineState *ms = MACHINE(spapr); 389 PowerPCCPU *cpu = POWERPC_CPU(cs); 390 CPUPPCState *env = &cpu->env; 391 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 392 int index = spapr_get_vcpu_id(cpu); 393 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 394 0xffffffff, 0xffffffff}; 395 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 396 : SPAPR_TIMEBASE_FREQ; 397 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 398 uint32_t page_sizes_prop[64]; 399 size_t page_sizes_prop_size; 400 unsigned int smp_threads = ms->smp.threads; 401 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 402 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 403 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 404 SpaprDrc *drc; 405 int drc_index; 406 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 407 int i; 408 409 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 410 if (drc) { 411 drc_index = spapr_drc_index(drc); 412 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 413 } 414 415 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 416 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 417 418 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 419 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 420 env->dcache_line_size))); 421 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 422 env->dcache_line_size))); 423 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 424 env->icache_line_size))); 425 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 426 env->icache_line_size))); 427 428 if (pcc->l1_dcache_size) { 429 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 430 pcc->l1_dcache_size))); 431 } else { 432 warn_report("Unknown L1 dcache size for cpu"); 433 } 434 if (pcc->l1_icache_size) { 435 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 436 pcc->l1_icache_size))); 437 } else { 438 warn_report("Unknown L1 icache size for cpu"); 439 } 440 441 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 442 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 443 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 444 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 445 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 446 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 447 448 if (env->spr_cb[SPR_PURR].oea_read) { 449 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 450 } 451 if (env->spr_cb[SPR_SPURR].oea_read) { 452 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 453 } 454 455 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 456 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 457 segs, sizeof(segs)))); 458 } 459 460 /* Advertise VSX (vector extensions) if available 461 * 1 == VMX / Altivec available 462 * 2 == VSX available 463 * 464 * Only CPUs for which we create core types in spapr_cpu_core.c 465 * are possible, and all of those have VMX */ 466 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 467 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 468 } else { 469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 470 } 471 472 /* Advertise DFP (Decimal Floating Point) if available 473 * 0 / no property == no DFP 474 * 1 == DFP available */ 475 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 477 } 478 479 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 480 sizeof(page_sizes_prop)); 481 if (page_sizes_prop_size) { 482 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 483 page_sizes_prop, page_sizes_prop_size))); 484 } 485 486 spapr_populate_pa_features(spapr, cpu, fdt, offset); 487 488 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 489 cs->cpu_index / vcpus_per_socket))); 490 491 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 492 pft_size_prop, sizeof(pft_size_prop)))); 493 494 if (ms->numa_state->num_nodes > 1) { 495 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 496 } 497 498 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 499 500 if (pcc->radix_page_info) { 501 for (i = 0; i < pcc->radix_page_info->count; i++) { 502 radix_AP_encodings[i] = 503 cpu_to_be32(pcc->radix_page_info->entries[i]); 504 } 505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 506 radix_AP_encodings, 507 pcc->radix_page_info->count * 508 sizeof(radix_AP_encodings[0])))); 509 } 510 511 /* 512 * We set this property to let the guest know that it can use the large 513 * decrementer and its width in bits. 514 */ 515 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 516 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 517 pcc->lrg_decr_bits))); 518 } 519 520 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 521 { 522 CPUState **rev; 523 CPUState *cs; 524 int n_cpus; 525 int cpus_offset; 526 char *nodename; 527 int i; 528 529 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 530 _FDT(cpus_offset); 531 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 533 534 /* 535 * We walk the CPUs in reverse order to ensure that CPU DT nodes 536 * created by fdt_add_subnode() end up in the right order in FDT 537 * for the guest kernel the enumerate the CPUs correctly. 538 * 539 * The CPU list cannot be traversed in reverse order, so we need 540 * to do extra work. 541 */ 542 n_cpus = 0; 543 rev = NULL; 544 CPU_FOREACH(cs) { 545 rev = g_renew(CPUState *, rev, n_cpus + 1); 546 rev[n_cpus++] = cs; 547 } 548 549 for (i = n_cpus - 1; i >= 0; i--) { 550 CPUState *cs = rev[i]; 551 PowerPCCPU *cpu = POWERPC_CPU(cs); 552 int index = spapr_get_vcpu_id(cpu); 553 DeviceClass *dc = DEVICE_GET_CLASS(cs); 554 int offset; 555 556 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 557 continue; 558 } 559 560 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 561 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 562 g_free(nodename); 563 _FDT(offset); 564 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 565 } 566 567 g_free(rev); 568 } 569 570 static int spapr_rng_populate_dt(void *fdt) 571 { 572 int node; 573 int ret; 574 575 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 576 if (node <= 0) { 577 return -1; 578 } 579 ret = fdt_setprop_string(fdt, node, "device_type", 580 "ibm,platform-facilities"); 581 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 582 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 583 584 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 585 if (node <= 0) { 586 return -1; 587 } 588 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 589 590 return ret ? -1 : 0; 591 } 592 593 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 594 { 595 MemoryDeviceInfoList *info; 596 597 for (info = list; info; info = info->next) { 598 MemoryDeviceInfo *value = info->value; 599 600 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 601 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 602 603 if (addr >= pcdimm_info->addr && 604 addr < (pcdimm_info->addr + pcdimm_info->size)) { 605 return pcdimm_info->node; 606 } 607 } 608 } 609 610 return -1; 611 } 612 613 struct sPAPRDrconfCellV2 { 614 uint32_t seq_lmbs; 615 uint64_t base_addr; 616 uint32_t drc_index; 617 uint32_t aa_index; 618 uint32_t flags; 619 } QEMU_PACKED; 620 621 typedef struct DrconfCellQueue { 622 struct sPAPRDrconfCellV2 cell; 623 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 624 } DrconfCellQueue; 625 626 static DrconfCellQueue * 627 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 628 uint32_t drc_index, uint32_t aa_index, 629 uint32_t flags) 630 { 631 DrconfCellQueue *elem; 632 633 elem = g_malloc0(sizeof(*elem)); 634 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 635 elem->cell.base_addr = cpu_to_be64(base_addr); 636 elem->cell.drc_index = cpu_to_be32(drc_index); 637 elem->cell.aa_index = cpu_to_be32(aa_index); 638 elem->cell.flags = cpu_to_be32(flags); 639 640 return elem; 641 } 642 643 /* ibm,dynamic-memory-v2 */ 644 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 645 int offset, MemoryDeviceInfoList *dimms) 646 { 647 MachineState *machine = MACHINE(spapr); 648 uint8_t *int_buf, *cur_index; 649 int ret; 650 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 651 uint64_t addr, cur_addr, size; 652 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 653 uint64_t mem_end = machine->device_memory->base + 654 memory_region_size(&machine->device_memory->mr); 655 uint32_t node, buf_len, nr_entries = 0; 656 SpaprDrc *drc; 657 DrconfCellQueue *elem, *next; 658 MemoryDeviceInfoList *info; 659 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 660 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 661 662 /* Entry to cover RAM and the gap area */ 663 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 664 SPAPR_LMB_FLAGS_RESERVED | 665 SPAPR_LMB_FLAGS_DRC_INVALID); 666 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 667 nr_entries++; 668 669 cur_addr = machine->device_memory->base; 670 for (info = dimms; info; info = info->next) { 671 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 672 673 addr = di->addr; 674 size = di->size; 675 node = di->node; 676 677 /* Entry for hot-pluggable area */ 678 if (cur_addr < addr) { 679 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 680 g_assert(drc); 681 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 682 cur_addr, spapr_drc_index(drc), -1, 0); 683 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 684 nr_entries++; 685 } 686 687 /* Entry for DIMM */ 688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 689 g_assert(drc); 690 elem = spapr_get_drconf_cell(size / lmb_size, addr, 691 spapr_drc_index(drc), node, 692 SPAPR_LMB_FLAGS_ASSIGNED); 693 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 694 nr_entries++; 695 cur_addr = addr + size; 696 } 697 698 /* Entry for remaining hotpluggable area */ 699 if (cur_addr < mem_end) { 700 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 701 g_assert(drc); 702 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 703 cur_addr, spapr_drc_index(drc), -1, 0); 704 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 705 nr_entries++; 706 } 707 708 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 709 int_buf = cur_index = g_malloc0(buf_len); 710 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 711 cur_index += sizeof(nr_entries); 712 713 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 714 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 715 cur_index += sizeof(elem->cell); 716 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 717 g_free(elem); 718 } 719 720 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 721 g_free(int_buf); 722 if (ret < 0) { 723 return -1; 724 } 725 return 0; 726 } 727 728 /* ibm,dynamic-memory */ 729 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 730 int offset, MemoryDeviceInfoList *dimms) 731 { 732 MachineState *machine = MACHINE(spapr); 733 int i, ret; 734 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 735 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 736 uint32_t nr_lmbs = (machine->device_memory->base + 737 memory_region_size(&machine->device_memory->mr)) / 738 lmb_size; 739 uint32_t *int_buf, *cur_index, buf_len; 740 741 /* 742 * Allocate enough buffer size to fit in ibm,dynamic-memory 743 */ 744 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 745 cur_index = int_buf = g_malloc0(buf_len); 746 int_buf[0] = cpu_to_be32(nr_lmbs); 747 cur_index++; 748 for (i = 0; i < nr_lmbs; i++) { 749 uint64_t addr = i * lmb_size; 750 uint32_t *dynamic_memory = cur_index; 751 752 if (i >= device_lmb_start) { 753 SpaprDrc *drc; 754 755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 756 g_assert(drc); 757 758 dynamic_memory[0] = cpu_to_be32(addr >> 32); 759 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 760 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 761 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 762 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 763 if (memory_region_present(get_system_memory(), addr)) { 764 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 765 } else { 766 dynamic_memory[5] = cpu_to_be32(0); 767 } 768 } else { 769 /* 770 * LMB information for RMA, boot time RAM and gap b/n RAM and 771 * device memory region -- all these are marked as reserved 772 * and as having no valid DRC. 773 */ 774 dynamic_memory[0] = cpu_to_be32(addr >> 32); 775 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 776 dynamic_memory[2] = cpu_to_be32(0); 777 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 778 dynamic_memory[4] = cpu_to_be32(-1); 779 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 780 SPAPR_LMB_FLAGS_DRC_INVALID); 781 } 782 783 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 784 } 785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 786 g_free(int_buf); 787 if (ret < 0) { 788 return -1; 789 } 790 return 0; 791 } 792 793 /* 794 * Adds ibm,dynamic-reconfiguration-memory node. 795 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 796 * of this device tree node. 797 */ 798 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int nb_numa_nodes = machine->numa_state->num_nodes; 802 int ret, i, offset; 803 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 804 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 805 uint32_t *int_buf, *cur_index, buf_len; 806 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 807 MemoryDeviceInfoList *dimms = NULL; 808 809 /* 810 * Don't create the node if there is no device memory 811 */ 812 if (machine->ram_size == machine->maxram_size) { 813 return 0; 814 } 815 816 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 817 818 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 819 sizeof(prop_lmb_size)); 820 if (ret < 0) { 821 return ret; 822 } 823 824 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 825 if (ret < 0) { 826 return ret; 827 } 828 829 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 830 if (ret < 0) { 831 return ret; 832 } 833 834 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 835 dimms = qmp_memory_device_list(); 836 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 837 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 838 } else { 839 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 840 } 841 qapi_free_MemoryDeviceInfoList(dimms); 842 843 if (ret < 0) { 844 return ret; 845 } 846 847 /* ibm,associativity-lookup-arrays */ 848 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 849 cur_index = int_buf = g_malloc0(buf_len); 850 int_buf[0] = cpu_to_be32(nr_nodes); 851 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 852 cur_index += 2; 853 for (i = 0; i < nr_nodes; i++) { 854 uint32_t associativity[] = { 855 cpu_to_be32(0x0), 856 cpu_to_be32(0x0), 857 cpu_to_be32(0x0), 858 cpu_to_be32(i) 859 }; 860 memcpy(cur_index, associativity, sizeof(associativity)); 861 cur_index += 4; 862 } 863 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 864 (cur_index - int_buf) * sizeof(uint32_t)); 865 g_free(int_buf); 866 867 return ret; 868 } 869 870 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 871 SpaprOptionVector *ov5_updates) 872 { 873 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 874 int ret = 0, offset; 875 876 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 877 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 878 g_assert(smc->dr_lmb_enabled); 879 ret = spapr_populate_drconf_memory(spapr, fdt); 880 if (ret) { 881 goto out; 882 } 883 } 884 885 offset = fdt_path_offset(fdt, "/chosen"); 886 if (offset < 0) { 887 offset = fdt_add_subnode(fdt, 0, "chosen"); 888 if (offset < 0) { 889 return offset; 890 } 891 } 892 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 893 "ibm,architecture-vec-5"); 894 895 out: 896 return ret; 897 } 898 899 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 900 { 901 MachineState *ms = MACHINE(spapr); 902 int rtas; 903 GString *hypertas = g_string_sized_new(256); 904 GString *qemu_hypertas = g_string_sized_new(256); 905 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 906 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 907 memory_region_size(&MACHINE(spapr)->device_memory->mr); 908 uint32_t lrdr_capacity[] = { 909 cpu_to_be32(max_device_addr >> 32), 910 cpu_to_be32(max_device_addr & 0xffffffff), 911 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 912 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 913 }; 914 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 915 uint32_t maxdomains[] = { 916 cpu_to_be32(4), 917 maxdomain, 918 maxdomain, 919 maxdomain, 920 cpu_to_be32(spapr->gpu_numa_id), 921 }; 922 923 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 924 925 /* hypertas */ 926 add_str(hypertas, "hcall-pft"); 927 add_str(hypertas, "hcall-term"); 928 add_str(hypertas, "hcall-dabr"); 929 add_str(hypertas, "hcall-interrupt"); 930 add_str(hypertas, "hcall-tce"); 931 add_str(hypertas, "hcall-vio"); 932 add_str(hypertas, "hcall-splpar"); 933 add_str(hypertas, "hcall-join"); 934 add_str(hypertas, "hcall-bulk"); 935 add_str(hypertas, "hcall-set-mode"); 936 add_str(hypertas, "hcall-sprg0"); 937 add_str(hypertas, "hcall-copy"); 938 add_str(hypertas, "hcall-debug"); 939 add_str(hypertas, "hcall-vphn"); 940 add_str(qemu_hypertas, "hcall-memop1"); 941 942 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 943 add_str(hypertas, "hcall-multi-tce"); 944 } 945 946 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 947 add_str(hypertas, "hcall-hpt-resize"); 948 } 949 950 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 951 hypertas->str, hypertas->len)); 952 g_string_free(hypertas, TRUE); 953 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 954 qemu_hypertas->str, qemu_hypertas->len)); 955 g_string_free(qemu_hypertas, TRUE); 956 957 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 958 refpoints, sizeof(refpoints))); 959 960 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 961 maxdomains, sizeof(maxdomains))); 962 963 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 964 RTAS_ERROR_LOG_MAX)); 965 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 966 RTAS_EVENT_SCAN_RATE)); 967 968 g_assert(msi_nonbroken); 969 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 970 971 /* 972 * According to PAPR, rtas ibm,os-term does not guarantee a return 973 * back to the guest cpu. 974 * 975 * While an additional ibm,extended-os-term property indicates 976 * that rtas call return will always occur. Set this property. 977 */ 978 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 979 980 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 981 lrdr_capacity, sizeof(lrdr_capacity))); 982 983 spapr_dt_rtas_tokens(fdt, rtas); 984 } 985 986 /* 987 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 988 * and the XIVE features that the guest may request and thus the valid 989 * values for bytes 23..26 of option vector 5: 990 */ 991 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 992 int chosen) 993 { 994 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 995 996 char val[2 * 4] = { 997 23, 0x00, /* XICS / XIVE mode */ 998 24, 0x00, /* Hash/Radix, filled in below. */ 999 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1000 26, 0x40, /* Radix options: GTSE == yes. */ 1001 }; 1002 1003 if (spapr->irq->xics && spapr->irq->xive) { 1004 val[1] = SPAPR_OV5_XIVE_BOTH; 1005 } else if (spapr->irq->xive) { 1006 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1007 } else { 1008 assert(spapr->irq->xics); 1009 val[1] = SPAPR_OV5_XIVE_LEGACY; 1010 } 1011 1012 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1013 first_ppc_cpu->compat_pvr)) { 1014 /* 1015 * If we're in a pre POWER9 compat mode then the guest should 1016 * do hash and use the legacy interrupt mode 1017 */ 1018 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1019 val[3] = 0x00; /* Hash */ 1020 } else if (kvm_enabled()) { 1021 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1022 val[3] = 0x80; /* OV5_MMU_BOTH */ 1023 } else if (kvmppc_has_cap_mmu_radix()) { 1024 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1025 } else { 1026 val[3] = 0x00; /* Hash */ 1027 } 1028 } else { 1029 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1030 val[3] = 0xC0; 1031 } 1032 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1033 val, sizeof(val))); 1034 } 1035 1036 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1037 { 1038 MachineState *machine = MACHINE(spapr); 1039 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1040 int chosen; 1041 const char *boot_device = machine->boot_order; 1042 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1043 size_t cb = 0; 1044 char *bootlist = get_boot_devices_list(&cb); 1045 1046 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1047 1048 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1049 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1050 machine->kernel_cmdline)); 1051 } 1052 if (spapr->initrd_size) { 1053 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1054 spapr->initrd_base)); 1055 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1056 spapr->initrd_base + spapr->initrd_size)); 1057 } 1058 1059 if (spapr->kernel_size) { 1060 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1061 cpu_to_be64(spapr->kernel_size) }; 1062 1063 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1064 &kprop, sizeof(kprop))); 1065 if (spapr->kernel_le) { 1066 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1067 } 1068 } 1069 if (boot_menu) { 1070 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1071 } 1072 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1073 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1074 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1075 1076 if (cb && bootlist) { 1077 int i; 1078 1079 for (i = 0; i < cb; i++) { 1080 if (bootlist[i] == '\n') { 1081 bootlist[i] = ' '; 1082 } 1083 } 1084 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1085 } 1086 1087 if (boot_device && strlen(boot_device)) { 1088 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1089 } 1090 1091 if (!spapr->has_graphics && stdout_path) { 1092 /* 1093 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1094 * kernel. New platforms should only use the "stdout-path" property. Set 1095 * the new property and continue using older property to remain 1096 * compatible with the existing firmware. 1097 */ 1098 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1099 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1100 } 1101 1102 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1103 if (smc->linux_pci_probe) { 1104 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1105 } 1106 1107 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1108 1109 g_free(stdout_path); 1110 g_free(bootlist); 1111 } 1112 1113 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1114 { 1115 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1116 * KVM to work under pHyp with some guest co-operation */ 1117 int hypervisor; 1118 uint8_t hypercall[16]; 1119 1120 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1121 /* indicate KVM hypercall interface */ 1122 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1123 if (kvmppc_has_cap_fixup_hcalls()) { 1124 /* 1125 * Older KVM versions with older guest kernels were broken 1126 * with the magic page, don't allow the guest to map it. 1127 */ 1128 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1129 sizeof(hypercall))) { 1130 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1131 hypercall, sizeof(hypercall))); 1132 } 1133 } 1134 } 1135 1136 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1137 { 1138 MachineState *machine = MACHINE(spapr); 1139 MachineClass *mc = MACHINE_GET_CLASS(machine); 1140 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1141 int ret; 1142 void *fdt; 1143 SpaprPhbState *phb; 1144 char *buf; 1145 1146 fdt = g_malloc0(space); 1147 _FDT((fdt_create_empty_tree(fdt, space))); 1148 1149 /* Root node */ 1150 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1151 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1152 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1153 1154 /* Guest UUID & Name*/ 1155 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1156 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1157 if (qemu_uuid_set) { 1158 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1159 } 1160 g_free(buf); 1161 1162 if (qemu_get_vm_name()) { 1163 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1164 qemu_get_vm_name())); 1165 } 1166 1167 /* Host Model & Serial Number */ 1168 if (spapr->host_model) { 1169 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1170 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1171 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1172 g_free(buf); 1173 } 1174 1175 if (spapr->host_serial) { 1176 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1177 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1178 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1179 g_free(buf); 1180 } 1181 1182 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1183 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1184 1185 /* /interrupt controller */ 1186 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1187 1188 ret = spapr_populate_memory(spapr, fdt); 1189 if (ret < 0) { 1190 error_report("couldn't setup memory nodes in fdt"); 1191 exit(1); 1192 } 1193 1194 /* /vdevice */ 1195 spapr_dt_vdevice(spapr->vio_bus, fdt); 1196 1197 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1198 ret = spapr_rng_populate_dt(fdt); 1199 if (ret < 0) { 1200 error_report("could not set up rng device in the fdt"); 1201 exit(1); 1202 } 1203 } 1204 1205 QLIST_FOREACH(phb, &spapr->phbs, list) { 1206 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1207 if (ret < 0) { 1208 error_report("couldn't setup PCI devices in fdt"); 1209 exit(1); 1210 } 1211 } 1212 1213 /* cpus */ 1214 spapr_populate_cpus_dt_node(fdt, spapr); 1215 1216 if (smc->dr_lmb_enabled) { 1217 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1218 } 1219 1220 if (mc->has_hotpluggable_cpus) { 1221 int offset = fdt_path_offset(fdt, "/cpus"); 1222 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1223 if (ret < 0) { 1224 error_report("Couldn't set up CPU DR device tree properties"); 1225 exit(1); 1226 } 1227 } 1228 1229 /* /event-sources */ 1230 spapr_dt_events(spapr, fdt); 1231 1232 /* /rtas */ 1233 spapr_dt_rtas(spapr, fdt); 1234 1235 /* /chosen */ 1236 if (reset) { 1237 spapr_dt_chosen(spapr, fdt); 1238 } 1239 1240 /* /hypervisor */ 1241 if (kvm_enabled()) { 1242 spapr_dt_hypervisor(spapr, fdt); 1243 } 1244 1245 /* Build memory reserve map */ 1246 if (reset) { 1247 if (spapr->kernel_size) { 1248 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1249 } 1250 if (spapr->initrd_size) { 1251 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1252 spapr->initrd_size))); 1253 } 1254 } 1255 1256 /* ibm,client-architecture-support updates */ 1257 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1258 if (ret < 0) { 1259 error_report("couldn't setup CAS properties fdt"); 1260 exit(1); 1261 } 1262 1263 if (smc->dr_phb_enabled) { 1264 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1265 if (ret < 0) { 1266 error_report("Couldn't set up PHB DR device tree properties"); 1267 exit(1); 1268 } 1269 } 1270 1271 return fdt; 1272 } 1273 1274 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1275 { 1276 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1277 } 1278 1279 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1280 PowerPCCPU *cpu) 1281 { 1282 CPUPPCState *env = &cpu->env; 1283 1284 /* The TCG path should also be holding the BQL at this point */ 1285 g_assert(qemu_mutex_iothread_locked()); 1286 1287 if (msr_pr) { 1288 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1289 env->gpr[3] = H_PRIVILEGE; 1290 } else { 1291 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1292 } 1293 } 1294 1295 struct LPCRSyncState { 1296 target_ulong value; 1297 target_ulong mask; 1298 }; 1299 1300 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1301 { 1302 struct LPCRSyncState *s = arg.host_ptr; 1303 PowerPCCPU *cpu = POWERPC_CPU(cs); 1304 CPUPPCState *env = &cpu->env; 1305 target_ulong lpcr; 1306 1307 cpu_synchronize_state(cs); 1308 lpcr = env->spr[SPR_LPCR]; 1309 lpcr &= ~s->mask; 1310 lpcr |= s->value; 1311 ppc_store_lpcr(cpu, lpcr); 1312 } 1313 1314 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1315 { 1316 CPUState *cs; 1317 struct LPCRSyncState s = { 1318 .value = value, 1319 .mask = mask 1320 }; 1321 CPU_FOREACH(cs) { 1322 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1323 } 1324 } 1325 1326 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1327 { 1328 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1329 1330 /* Copy PATE1:GR into PATE0:HR */ 1331 entry->dw0 = spapr->patb_entry & PATE0_HR; 1332 entry->dw1 = spapr->patb_entry; 1333 } 1334 1335 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1336 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1337 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1338 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1339 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1340 1341 /* 1342 * Get the fd to access the kernel htab, re-opening it if necessary 1343 */ 1344 static int get_htab_fd(SpaprMachineState *spapr) 1345 { 1346 Error *local_err = NULL; 1347 1348 if (spapr->htab_fd >= 0) { 1349 return spapr->htab_fd; 1350 } 1351 1352 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1353 if (spapr->htab_fd < 0) { 1354 error_report_err(local_err); 1355 } 1356 1357 return spapr->htab_fd; 1358 } 1359 1360 void close_htab_fd(SpaprMachineState *spapr) 1361 { 1362 if (spapr->htab_fd >= 0) { 1363 close(spapr->htab_fd); 1364 } 1365 spapr->htab_fd = -1; 1366 } 1367 1368 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1369 { 1370 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1371 1372 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1373 } 1374 1375 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1376 { 1377 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1378 1379 assert(kvm_enabled()); 1380 1381 if (!spapr->htab) { 1382 return 0; 1383 } 1384 1385 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1386 } 1387 1388 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1389 hwaddr ptex, int n) 1390 { 1391 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1392 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1393 1394 if (!spapr->htab) { 1395 /* 1396 * HTAB is controlled by KVM. Fetch into temporary buffer 1397 */ 1398 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1399 kvmppc_read_hptes(hptes, ptex, n); 1400 return hptes; 1401 } 1402 1403 /* 1404 * HTAB is controlled by QEMU. Just point to the internally 1405 * accessible PTEG. 1406 */ 1407 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1408 } 1409 1410 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1411 const ppc_hash_pte64_t *hptes, 1412 hwaddr ptex, int n) 1413 { 1414 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1415 1416 if (!spapr->htab) { 1417 g_free((void *)hptes); 1418 } 1419 1420 /* Nothing to do for qemu managed HPT */ 1421 } 1422 1423 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1424 uint64_t pte0, uint64_t pte1) 1425 { 1426 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1427 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1428 1429 if (!spapr->htab) { 1430 kvmppc_write_hpte(ptex, pte0, pte1); 1431 } else { 1432 if (pte0 & HPTE64_V_VALID) { 1433 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1434 /* 1435 * When setting valid, we write PTE1 first. This ensures 1436 * proper synchronization with the reading code in 1437 * ppc_hash64_pteg_search() 1438 */ 1439 smp_wmb(); 1440 stq_p(spapr->htab + offset, pte0); 1441 } else { 1442 stq_p(spapr->htab + offset, pte0); 1443 /* 1444 * When clearing it we set PTE0 first. This ensures proper 1445 * synchronization with the reading code in 1446 * ppc_hash64_pteg_search() 1447 */ 1448 smp_wmb(); 1449 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1450 } 1451 } 1452 } 1453 1454 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1455 uint64_t pte1) 1456 { 1457 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1458 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1459 1460 if (!spapr->htab) { 1461 /* There should always be a hash table when this is called */ 1462 error_report("spapr_hpte_set_c called with no hash table !"); 1463 return; 1464 } 1465 1466 /* The HW performs a non-atomic byte update */ 1467 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1468 } 1469 1470 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1471 uint64_t pte1) 1472 { 1473 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1474 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1475 1476 if (!spapr->htab) { 1477 /* There should always be a hash table when this is called */ 1478 error_report("spapr_hpte_set_r called with no hash table !"); 1479 return; 1480 } 1481 1482 /* The HW performs a non-atomic byte update */ 1483 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1484 } 1485 1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1487 { 1488 int shift; 1489 1490 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1491 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1492 * that's much more than is needed for Linux guests */ 1493 shift = ctz64(pow2ceil(ramsize)) - 7; 1494 shift = MAX(shift, 18); /* Minimum architected size */ 1495 shift = MIN(shift, 46); /* Maximum architected size */ 1496 return shift; 1497 } 1498 1499 void spapr_free_hpt(SpaprMachineState *spapr) 1500 { 1501 g_free(spapr->htab); 1502 spapr->htab = NULL; 1503 spapr->htab_shift = 0; 1504 close_htab_fd(spapr); 1505 } 1506 1507 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1508 Error **errp) 1509 { 1510 long rc; 1511 1512 /* Clean up any HPT info from a previous boot */ 1513 spapr_free_hpt(spapr); 1514 1515 rc = kvmppc_reset_htab(shift); 1516 if (rc < 0) { 1517 /* kernel-side HPT needed, but couldn't allocate one */ 1518 error_setg_errno(errp, errno, 1519 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1520 shift); 1521 /* This is almost certainly fatal, but if the caller really 1522 * wants to carry on with shift == 0, it's welcome to try */ 1523 } else if (rc > 0) { 1524 /* kernel-side HPT allocated */ 1525 if (rc != shift) { 1526 error_setg(errp, 1527 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1528 shift, rc); 1529 } 1530 1531 spapr->htab_shift = shift; 1532 spapr->htab = NULL; 1533 } else { 1534 /* kernel-side HPT not needed, allocate in userspace instead */ 1535 size_t size = 1ULL << shift; 1536 int i; 1537 1538 spapr->htab = qemu_memalign(size, size); 1539 if (!spapr->htab) { 1540 error_setg_errno(errp, errno, 1541 "Could not allocate HPT of order %d", shift); 1542 return; 1543 } 1544 1545 memset(spapr->htab, 0, size); 1546 spapr->htab_shift = shift; 1547 1548 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1549 DIRTY_HPTE(HPTE(spapr->htab, i)); 1550 } 1551 } 1552 /* We're setting up a hash table, so that means we're not radix */ 1553 spapr->patb_entry = 0; 1554 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1555 } 1556 1557 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1558 { 1559 int hpt_shift; 1560 1561 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1562 || (spapr->cas_reboot 1563 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1564 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1565 } else { 1566 uint64_t current_ram_size; 1567 1568 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1569 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1570 } 1571 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1572 1573 if (spapr->vrma_adjust) { 1574 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1575 spapr->htab_shift); 1576 } 1577 } 1578 1579 static int spapr_reset_drcs(Object *child, void *opaque) 1580 { 1581 SpaprDrc *drc = 1582 (SpaprDrc *) object_dynamic_cast(child, 1583 TYPE_SPAPR_DR_CONNECTOR); 1584 1585 if (drc) { 1586 spapr_drc_reset(drc); 1587 } 1588 1589 return 0; 1590 } 1591 1592 static void spapr_machine_reset(MachineState *machine) 1593 { 1594 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1595 PowerPCCPU *first_ppc_cpu; 1596 hwaddr fdt_addr; 1597 void *fdt; 1598 int rc; 1599 1600 spapr_caps_apply(spapr); 1601 1602 first_ppc_cpu = POWERPC_CPU(first_cpu); 1603 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1604 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1605 spapr->max_compat_pvr)) { 1606 /* 1607 * If using KVM with radix mode available, VCPUs can be started 1608 * without a HPT because KVM will start them in radix mode. 1609 * Set the GR bit in PATE so that we know there is no HPT. 1610 */ 1611 spapr->patb_entry = PATE1_GR; 1612 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1613 } else { 1614 spapr_setup_hpt_and_vrma(spapr); 1615 } 1616 1617 qemu_devices_reset(); 1618 1619 /* 1620 * If this reset wasn't generated by CAS, we should reset our 1621 * negotiated options and start from scratch 1622 */ 1623 if (!spapr->cas_reboot) { 1624 spapr_ovec_cleanup(spapr->ov5_cas); 1625 spapr->ov5_cas = spapr_ovec_new(); 1626 1627 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1628 } 1629 1630 /* 1631 * This is fixing some of the default configuration of the XIVE 1632 * devices. To be called after the reset of the machine devices. 1633 */ 1634 spapr_irq_reset(spapr, &error_fatal); 1635 1636 /* 1637 * There is no CAS under qtest. Simulate one to please the code that 1638 * depends on spapr->ov5_cas. This is especially needed to test device 1639 * unplug, so we do that before resetting the DRCs. 1640 */ 1641 if (qtest_enabled()) { 1642 spapr_ovec_cleanup(spapr->ov5_cas); 1643 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1644 } 1645 1646 /* DRC reset may cause a device to be unplugged. This will cause troubles 1647 * if this device is used by another device (eg, a running vhost backend 1648 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1649 * situations, we reset DRCs after all devices have been reset. 1650 */ 1651 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1652 1653 spapr_clear_pending_events(spapr); 1654 1655 /* 1656 * We place the device tree and RTAS just below either the top of the RMA, 1657 * or just below 2GB, whichever is lower, so that it can be 1658 * processed with 32-bit real mode code if necessary 1659 */ 1660 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE; 1661 1662 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1663 1664 rc = fdt_pack(fdt); 1665 1666 /* Should only fail if we've built a corrupted tree */ 1667 assert(rc == 0); 1668 1669 /* Load the fdt */ 1670 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1671 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1672 g_free(spapr->fdt_blob); 1673 spapr->fdt_size = fdt_totalsize(fdt); 1674 spapr->fdt_initial_size = spapr->fdt_size; 1675 spapr->fdt_blob = fdt; 1676 1677 /* Set up the entry state */ 1678 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1679 first_ppc_cpu->env.gpr[5] = 0; 1680 1681 spapr->cas_reboot = false; 1682 } 1683 1684 static void spapr_create_nvram(SpaprMachineState *spapr) 1685 { 1686 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1687 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1688 1689 if (dinfo) { 1690 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1691 &error_fatal); 1692 } 1693 1694 qdev_init_nofail(dev); 1695 1696 spapr->nvram = (struct SpaprNvram *)dev; 1697 } 1698 1699 static void spapr_rtc_create(SpaprMachineState *spapr) 1700 { 1701 object_initialize_child(OBJECT(spapr), "rtc", 1702 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1703 &error_fatal, NULL); 1704 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1705 &error_fatal); 1706 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1707 "date", &error_fatal); 1708 } 1709 1710 /* Returns whether we want to use VGA or not */ 1711 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1712 { 1713 switch (vga_interface_type) { 1714 case VGA_NONE: 1715 return false; 1716 case VGA_DEVICE: 1717 return true; 1718 case VGA_STD: 1719 case VGA_VIRTIO: 1720 case VGA_CIRRUS: 1721 return pci_vga_init(pci_bus) != NULL; 1722 default: 1723 error_setg(errp, 1724 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1725 return false; 1726 } 1727 } 1728 1729 static int spapr_pre_load(void *opaque) 1730 { 1731 int rc; 1732 1733 rc = spapr_caps_pre_load(opaque); 1734 if (rc) { 1735 return rc; 1736 } 1737 1738 return 0; 1739 } 1740 1741 static int spapr_post_load(void *opaque, int version_id) 1742 { 1743 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1744 int err = 0; 1745 1746 err = spapr_caps_post_migration(spapr); 1747 if (err) { 1748 return err; 1749 } 1750 1751 /* 1752 * In earlier versions, there was no separate qdev for the PAPR 1753 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1754 * So when migrating from those versions, poke the incoming offset 1755 * value into the RTC device 1756 */ 1757 if (version_id < 3) { 1758 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1759 if (err) { 1760 return err; 1761 } 1762 } 1763 1764 if (kvm_enabled() && spapr->patb_entry) { 1765 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1766 bool radix = !!(spapr->patb_entry & PATE1_GR); 1767 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1768 1769 /* 1770 * Update LPCR:HR and UPRT as they may not be set properly in 1771 * the stream 1772 */ 1773 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1774 LPCR_HR | LPCR_UPRT); 1775 1776 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1777 if (err) { 1778 error_report("Process table config unsupported by the host"); 1779 return -EINVAL; 1780 } 1781 } 1782 1783 err = spapr_irq_post_load(spapr, version_id); 1784 if (err) { 1785 return err; 1786 } 1787 1788 return err; 1789 } 1790 1791 static int spapr_pre_save(void *opaque) 1792 { 1793 int rc; 1794 1795 rc = spapr_caps_pre_save(opaque); 1796 if (rc) { 1797 return rc; 1798 } 1799 1800 return 0; 1801 } 1802 1803 static bool version_before_3(void *opaque, int version_id) 1804 { 1805 return version_id < 3; 1806 } 1807 1808 static bool spapr_pending_events_needed(void *opaque) 1809 { 1810 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1811 return !QTAILQ_EMPTY(&spapr->pending_events); 1812 } 1813 1814 static const VMStateDescription vmstate_spapr_event_entry = { 1815 .name = "spapr_event_log_entry", 1816 .version_id = 1, 1817 .minimum_version_id = 1, 1818 .fields = (VMStateField[]) { 1819 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1820 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1821 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1822 NULL, extended_length), 1823 VMSTATE_END_OF_LIST() 1824 }, 1825 }; 1826 1827 static const VMStateDescription vmstate_spapr_pending_events = { 1828 .name = "spapr_pending_events", 1829 .version_id = 1, 1830 .minimum_version_id = 1, 1831 .needed = spapr_pending_events_needed, 1832 .fields = (VMStateField[]) { 1833 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1834 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1835 VMSTATE_END_OF_LIST() 1836 }, 1837 }; 1838 1839 static bool spapr_ov5_cas_needed(void *opaque) 1840 { 1841 SpaprMachineState *spapr = opaque; 1842 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1843 bool cas_needed; 1844 1845 /* Prior to the introduction of SpaprOptionVector, we had two option 1846 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1847 * Both of these options encode machine topology into the device-tree 1848 * in such a way that the now-booted OS should still be able to interact 1849 * appropriately with QEMU regardless of what options were actually 1850 * negotiatied on the source side. 1851 * 1852 * As such, we can avoid migrating the CAS-negotiated options if these 1853 * are the only options available on the current machine/platform. 1854 * Since these are the only options available for pseries-2.7 and 1855 * earlier, this allows us to maintain old->new/new->old migration 1856 * compatibility. 1857 * 1858 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1859 * via default pseries-2.8 machines and explicit command-line parameters. 1860 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1861 * of the actual CAS-negotiated values to continue working properly. For 1862 * example, availability of memory unplug depends on knowing whether 1863 * OV5_HP_EVT was negotiated via CAS. 1864 * 1865 * Thus, for any cases where the set of available CAS-negotiatable 1866 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1867 * include the CAS-negotiated options in the migration stream, unless 1868 * if they affect boot time behaviour only. 1869 */ 1870 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1871 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1872 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1873 1874 /* We need extra information if we have any bits outside the mask 1875 * defined above */ 1876 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1877 1878 spapr_ovec_cleanup(ov5_mask); 1879 1880 return cas_needed; 1881 } 1882 1883 static const VMStateDescription vmstate_spapr_ov5_cas = { 1884 .name = "spapr_option_vector_ov5_cas", 1885 .version_id = 1, 1886 .minimum_version_id = 1, 1887 .needed = spapr_ov5_cas_needed, 1888 .fields = (VMStateField[]) { 1889 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1890 vmstate_spapr_ovec, SpaprOptionVector), 1891 VMSTATE_END_OF_LIST() 1892 }, 1893 }; 1894 1895 static bool spapr_patb_entry_needed(void *opaque) 1896 { 1897 SpaprMachineState *spapr = opaque; 1898 1899 return !!spapr->patb_entry; 1900 } 1901 1902 static const VMStateDescription vmstate_spapr_patb_entry = { 1903 .name = "spapr_patb_entry", 1904 .version_id = 1, 1905 .minimum_version_id = 1, 1906 .needed = spapr_patb_entry_needed, 1907 .fields = (VMStateField[]) { 1908 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1909 VMSTATE_END_OF_LIST() 1910 }, 1911 }; 1912 1913 static bool spapr_irq_map_needed(void *opaque) 1914 { 1915 SpaprMachineState *spapr = opaque; 1916 1917 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1918 } 1919 1920 static const VMStateDescription vmstate_spapr_irq_map = { 1921 .name = "spapr_irq_map", 1922 .version_id = 1, 1923 .minimum_version_id = 1, 1924 .needed = spapr_irq_map_needed, 1925 .fields = (VMStateField[]) { 1926 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1927 VMSTATE_END_OF_LIST() 1928 }, 1929 }; 1930 1931 static bool spapr_dtb_needed(void *opaque) 1932 { 1933 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1934 1935 return smc->update_dt_enabled; 1936 } 1937 1938 static int spapr_dtb_pre_load(void *opaque) 1939 { 1940 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1941 1942 g_free(spapr->fdt_blob); 1943 spapr->fdt_blob = NULL; 1944 spapr->fdt_size = 0; 1945 1946 return 0; 1947 } 1948 1949 static const VMStateDescription vmstate_spapr_dtb = { 1950 .name = "spapr_dtb", 1951 .version_id = 1, 1952 .minimum_version_id = 1, 1953 .needed = spapr_dtb_needed, 1954 .pre_load = spapr_dtb_pre_load, 1955 .fields = (VMStateField[]) { 1956 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 1957 VMSTATE_UINT32(fdt_size, SpaprMachineState), 1958 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 1959 fdt_size), 1960 VMSTATE_END_OF_LIST() 1961 }, 1962 }; 1963 1964 static const VMStateDescription vmstate_spapr = { 1965 .name = "spapr", 1966 .version_id = 3, 1967 .minimum_version_id = 1, 1968 .pre_load = spapr_pre_load, 1969 .post_load = spapr_post_load, 1970 .pre_save = spapr_pre_save, 1971 .fields = (VMStateField[]) { 1972 /* used to be @next_irq */ 1973 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1974 1975 /* RTC offset */ 1976 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 1977 1978 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 1979 VMSTATE_END_OF_LIST() 1980 }, 1981 .subsections = (const VMStateDescription*[]) { 1982 &vmstate_spapr_ov5_cas, 1983 &vmstate_spapr_patb_entry, 1984 &vmstate_spapr_pending_events, 1985 &vmstate_spapr_cap_htm, 1986 &vmstate_spapr_cap_vsx, 1987 &vmstate_spapr_cap_dfp, 1988 &vmstate_spapr_cap_cfpc, 1989 &vmstate_spapr_cap_sbbc, 1990 &vmstate_spapr_cap_ibs, 1991 &vmstate_spapr_cap_hpt_maxpagesize, 1992 &vmstate_spapr_irq_map, 1993 &vmstate_spapr_cap_nested_kvm_hv, 1994 &vmstate_spapr_dtb, 1995 &vmstate_spapr_cap_large_decr, 1996 &vmstate_spapr_cap_ccf_assist, 1997 NULL 1998 } 1999 }; 2000 2001 static int htab_save_setup(QEMUFile *f, void *opaque) 2002 { 2003 SpaprMachineState *spapr = opaque; 2004 2005 /* "Iteration" header */ 2006 if (!spapr->htab_shift) { 2007 qemu_put_be32(f, -1); 2008 } else { 2009 qemu_put_be32(f, spapr->htab_shift); 2010 } 2011 2012 if (spapr->htab) { 2013 spapr->htab_save_index = 0; 2014 spapr->htab_first_pass = true; 2015 } else { 2016 if (spapr->htab_shift) { 2017 assert(kvm_enabled()); 2018 } 2019 } 2020 2021 2022 return 0; 2023 } 2024 2025 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2026 int chunkstart, int n_valid, int n_invalid) 2027 { 2028 qemu_put_be32(f, chunkstart); 2029 qemu_put_be16(f, n_valid); 2030 qemu_put_be16(f, n_invalid); 2031 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2032 HASH_PTE_SIZE_64 * n_valid); 2033 } 2034 2035 static void htab_save_end_marker(QEMUFile *f) 2036 { 2037 qemu_put_be32(f, 0); 2038 qemu_put_be16(f, 0); 2039 qemu_put_be16(f, 0); 2040 } 2041 2042 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2043 int64_t max_ns) 2044 { 2045 bool has_timeout = max_ns != -1; 2046 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2047 int index = spapr->htab_save_index; 2048 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2049 2050 assert(spapr->htab_first_pass); 2051 2052 do { 2053 int chunkstart; 2054 2055 /* Consume invalid HPTEs */ 2056 while ((index < htabslots) 2057 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2058 CLEAN_HPTE(HPTE(spapr->htab, index)); 2059 index++; 2060 } 2061 2062 /* Consume valid HPTEs */ 2063 chunkstart = index; 2064 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2065 && HPTE_VALID(HPTE(spapr->htab, index))) { 2066 CLEAN_HPTE(HPTE(spapr->htab, index)); 2067 index++; 2068 } 2069 2070 if (index > chunkstart) { 2071 int n_valid = index - chunkstart; 2072 2073 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2074 2075 if (has_timeout && 2076 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2077 break; 2078 } 2079 } 2080 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2081 2082 if (index >= htabslots) { 2083 assert(index == htabslots); 2084 index = 0; 2085 spapr->htab_first_pass = false; 2086 } 2087 spapr->htab_save_index = index; 2088 } 2089 2090 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2091 int64_t max_ns) 2092 { 2093 bool final = max_ns < 0; 2094 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2095 int examined = 0, sent = 0; 2096 int index = spapr->htab_save_index; 2097 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2098 2099 assert(!spapr->htab_first_pass); 2100 2101 do { 2102 int chunkstart, invalidstart; 2103 2104 /* Consume non-dirty HPTEs */ 2105 while ((index < htabslots) 2106 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2107 index++; 2108 examined++; 2109 } 2110 2111 chunkstart = index; 2112 /* Consume valid dirty HPTEs */ 2113 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2114 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2115 && HPTE_VALID(HPTE(spapr->htab, index))) { 2116 CLEAN_HPTE(HPTE(spapr->htab, index)); 2117 index++; 2118 examined++; 2119 } 2120 2121 invalidstart = index; 2122 /* Consume invalid dirty HPTEs */ 2123 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2124 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2125 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2126 CLEAN_HPTE(HPTE(spapr->htab, index)); 2127 index++; 2128 examined++; 2129 } 2130 2131 if (index > chunkstart) { 2132 int n_valid = invalidstart - chunkstart; 2133 int n_invalid = index - invalidstart; 2134 2135 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2136 sent += index - chunkstart; 2137 2138 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2139 break; 2140 } 2141 } 2142 2143 if (examined >= htabslots) { 2144 break; 2145 } 2146 2147 if (index >= htabslots) { 2148 assert(index == htabslots); 2149 index = 0; 2150 } 2151 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2152 2153 if (index >= htabslots) { 2154 assert(index == htabslots); 2155 index = 0; 2156 } 2157 2158 spapr->htab_save_index = index; 2159 2160 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2161 } 2162 2163 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2164 #define MAX_KVM_BUF_SIZE 2048 2165 2166 static int htab_save_iterate(QEMUFile *f, void *opaque) 2167 { 2168 SpaprMachineState *spapr = opaque; 2169 int fd; 2170 int rc = 0; 2171 2172 /* Iteration header */ 2173 if (!spapr->htab_shift) { 2174 qemu_put_be32(f, -1); 2175 return 1; 2176 } else { 2177 qemu_put_be32(f, 0); 2178 } 2179 2180 if (!spapr->htab) { 2181 assert(kvm_enabled()); 2182 2183 fd = get_htab_fd(spapr); 2184 if (fd < 0) { 2185 return fd; 2186 } 2187 2188 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2189 if (rc < 0) { 2190 return rc; 2191 } 2192 } else if (spapr->htab_first_pass) { 2193 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2194 } else { 2195 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2196 } 2197 2198 htab_save_end_marker(f); 2199 2200 return rc; 2201 } 2202 2203 static int htab_save_complete(QEMUFile *f, void *opaque) 2204 { 2205 SpaprMachineState *spapr = opaque; 2206 int fd; 2207 2208 /* Iteration header */ 2209 if (!spapr->htab_shift) { 2210 qemu_put_be32(f, -1); 2211 return 0; 2212 } else { 2213 qemu_put_be32(f, 0); 2214 } 2215 2216 if (!spapr->htab) { 2217 int rc; 2218 2219 assert(kvm_enabled()); 2220 2221 fd = get_htab_fd(spapr); 2222 if (fd < 0) { 2223 return fd; 2224 } 2225 2226 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2227 if (rc < 0) { 2228 return rc; 2229 } 2230 } else { 2231 if (spapr->htab_first_pass) { 2232 htab_save_first_pass(f, spapr, -1); 2233 } 2234 htab_save_later_pass(f, spapr, -1); 2235 } 2236 2237 /* End marker */ 2238 htab_save_end_marker(f); 2239 2240 return 0; 2241 } 2242 2243 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2244 { 2245 SpaprMachineState *spapr = opaque; 2246 uint32_t section_hdr; 2247 int fd = -1; 2248 Error *local_err = NULL; 2249 2250 if (version_id < 1 || version_id > 1) { 2251 error_report("htab_load() bad version"); 2252 return -EINVAL; 2253 } 2254 2255 section_hdr = qemu_get_be32(f); 2256 2257 if (section_hdr == -1) { 2258 spapr_free_hpt(spapr); 2259 return 0; 2260 } 2261 2262 if (section_hdr) { 2263 /* First section gives the htab size */ 2264 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2265 if (local_err) { 2266 error_report_err(local_err); 2267 return -EINVAL; 2268 } 2269 return 0; 2270 } 2271 2272 if (!spapr->htab) { 2273 assert(kvm_enabled()); 2274 2275 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2276 if (fd < 0) { 2277 error_report_err(local_err); 2278 return fd; 2279 } 2280 } 2281 2282 while (true) { 2283 uint32_t index; 2284 uint16_t n_valid, n_invalid; 2285 2286 index = qemu_get_be32(f); 2287 n_valid = qemu_get_be16(f); 2288 n_invalid = qemu_get_be16(f); 2289 2290 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2291 /* End of Stream */ 2292 break; 2293 } 2294 2295 if ((index + n_valid + n_invalid) > 2296 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2297 /* Bad index in stream */ 2298 error_report( 2299 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2300 index, n_valid, n_invalid, spapr->htab_shift); 2301 return -EINVAL; 2302 } 2303 2304 if (spapr->htab) { 2305 if (n_valid) { 2306 qemu_get_buffer(f, HPTE(spapr->htab, index), 2307 HASH_PTE_SIZE_64 * n_valid); 2308 } 2309 if (n_invalid) { 2310 memset(HPTE(spapr->htab, index + n_valid), 0, 2311 HASH_PTE_SIZE_64 * n_invalid); 2312 } 2313 } else { 2314 int rc; 2315 2316 assert(fd >= 0); 2317 2318 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2319 if (rc < 0) { 2320 return rc; 2321 } 2322 } 2323 } 2324 2325 if (!spapr->htab) { 2326 assert(fd >= 0); 2327 close(fd); 2328 } 2329 2330 return 0; 2331 } 2332 2333 static void htab_save_cleanup(void *opaque) 2334 { 2335 SpaprMachineState *spapr = opaque; 2336 2337 close_htab_fd(spapr); 2338 } 2339 2340 static SaveVMHandlers savevm_htab_handlers = { 2341 .save_setup = htab_save_setup, 2342 .save_live_iterate = htab_save_iterate, 2343 .save_live_complete_precopy = htab_save_complete, 2344 .save_cleanup = htab_save_cleanup, 2345 .load_state = htab_load, 2346 }; 2347 2348 static void spapr_boot_set(void *opaque, const char *boot_device, 2349 Error **errp) 2350 { 2351 MachineState *machine = MACHINE(opaque); 2352 machine->boot_order = g_strdup(boot_device); 2353 } 2354 2355 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2356 { 2357 MachineState *machine = MACHINE(spapr); 2358 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2359 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2360 int i; 2361 2362 for (i = 0; i < nr_lmbs; i++) { 2363 uint64_t addr; 2364 2365 addr = i * lmb_size + machine->device_memory->base; 2366 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2367 addr / lmb_size); 2368 } 2369 } 2370 2371 /* 2372 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2373 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2374 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2375 */ 2376 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2377 { 2378 int i; 2379 2380 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2381 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2382 " is not aligned to %" PRIu64 " MiB", 2383 machine->ram_size, 2384 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2385 return; 2386 } 2387 2388 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2389 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2390 " is not aligned to %" PRIu64 " MiB", 2391 machine->ram_size, 2392 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2393 return; 2394 } 2395 2396 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2397 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2398 error_setg(errp, 2399 "Node %d memory size 0x%" PRIx64 2400 " is not aligned to %" PRIu64 " MiB", 2401 i, machine->numa_state->nodes[i].node_mem, 2402 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2403 return; 2404 } 2405 } 2406 } 2407 2408 /* find cpu slot in machine->possible_cpus by core_id */ 2409 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2410 { 2411 int index = id / ms->smp.threads; 2412 2413 if (index >= ms->possible_cpus->len) { 2414 return NULL; 2415 } 2416 if (idx) { 2417 *idx = index; 2418 } 2419 return &ms->possible_cpus->cpus[index]; 2420 } 2421 2422 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2423 { 2424 MachineState *ms = MACHINE(spapr); 2425 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2426 Error *local_err = NULL; 2427 bool vsmt_user = !!spapr->vsmt; 2428 int kvm_smt = kvmppc_smt_threads(); 2429 int ret; 2430 unsigned int smp_threads = ms->smp.threads; 2431 2432 if (!kvm_enabled() && (smp_threads > 1)) { 2433 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2434 "on a pseries machine"); 2435 goto out; 2436 } 2437 if (!is_power_of_2(smp_threads)) { 2438 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2439 "machine because it must be a power of 2", smp_threads); 2440 goto out; 2441 } 2442 2443 /* Detemine the VSMT mode to use: */ 2444 if (vsmt_user) { 2445 if (spapr->vsmt < smp_threads) { 2446 error_setg(&local_err, "Cannot support VSMT mode %d" 2447 " because it must be >= threads/core (%d)", 2448 spapr->vsmt, smp_threads); 2449 goto out; 2450 } 2451 /* In this case, spapr->vsmt has been set by the command line */ 2452 } else if (!smc->smp_threads_vsmt) { 2453 /* 2454 * Default VSMT value is tricky, because we need it to be as 2455 * consistent as possible (for migration), but this requires 2456 * changing it for at least some existing cases. We pick 8 as 2457 * the value that we'd get with KVM on POWER8, the 2458 * overwhelmingly common case in production systems. 2459 */ 2460 spapr->vsmt = MAX(8, smp_threads); 2461 } else { 2462 spapr->vsmt = smp_threads; 2463 } 2464 2465 /* KVM: If necessary, set the SMT mode: */ 2466 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2467 ret = kvmppc_set_smt_threads(spapr->vsmt); 2468 if (ret) { 2469 /* Looks like KVM isn't able to change VSMT mode */ 2470 error_setg(&local_err, 2471 "Failed to set KVM's VSMT mode to %d (errno %d)", 2472 spapr->vsmt, ret); 2473 /* We can live with that if the default one is big enough 2474 * for the number of threads, and a submultiple of the one 2475 * we want. In this case we'll waste some vcpu ids, but 2476 * behaviour will be correct */ 2477 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2478 warn_report_err(local_err); 2479 local_err = NULL; 2480 goto out; 2481 } else { 2482 if (!vsmt_user) { 2483 error_append_hint(&local_err, 2484 "On PPC, a VM with %d threads/core" 2485 " on a host with %d threads/core" 2486 " requires the use of VSMT mode %d.\n", 2487 smp_threads, kvm_smt, spapr->vsmt); 2488 } 2489 kvmppc_error_append_smt_possible_hint(&local_err); 2490 goto out; 2491 } 2492 } 2493 } 2494 /* else TCG: nothing to do currently */ 2495 out: 2496 error_propagate(errp, local_err); 2497 } 2498 2499 static void spapr_init_cpus(SpaprMachineState *spapr) 2500 { 2501 MachineState *machine = MACHINE(spapr); 2502 MachineClass *mc = MACHINE_GET_CLASS(machine); 2503 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2504 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2505 const CPUArchIdList *possible_cpus; 2506 unsigned int smp_cpus = machine->smp.cpus; 2507 unsigned int smp_threads = machine->smp.threads; 2508 unsigned int max_cpus = machine->smp.max_cpus; 2509 int boot_cores_nr = smp_cpus / smp_threads; 2510 int i; 2511 2512 possible_cpus = mc->possible_cpu_arch_ids(machine); 2513 if (mc->has_hotpluggable_cpus) { 2514 if (smp_cpus % smp_threads) { 2515 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2516 smp_cpus, smp_threads); 2517 exit(1); 2518 } 2519 if (max_cpus % smp_threads) { 2520 error_report("max_cpus (%u) must be multiple of threads (%u)", 2521 max_cpus, smp_threads); 2522 exit(1); 2523 } 2524 } else { 2525 if (max_cpus != smp_cpus) { 2526 error_report("This machine version does not support CPU hotplug"); 2527 exit(1); 2528 } 2529 boot_cores_nr = possible_cpus->len; 2530 } 2531 2532 if (smc->pre_2_10_has_unused_icps) { 2533 int i; 2534 2535 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2536 /* Dummy entries get deregistered when real ICPState objects 2537 * are registered during CPU core hotplug. 2538 */ 2539 pre_2_10_vmstate_register_dummy_icp(i); 2540 } 2541 } 2542 2543 for (i = 0; i < possible_cpus->len; i++) { 2544 int core_id = i * smp_threads; 2545 2546 if (mc->has_hotpluggable_cpus) { 2547 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2548 spapr_vcpu_id(spapr, core_id)); 2549 } 2550 2551 if (i < boot_cores_nr) { 2552 Object *core = object_new(type); 2553 int nr_threads = smp_threads; 2554 2555 /* Handle the partially filled core for older machine types */ 2556 if ((i + 1) * smp_threads >= smp_cpus) { 2557 nr_threads = smp_cpus - i * smp_threads; 2558 } 2559 2560 object_property_set_int(core, nr_threads, "nr-threads", 2561 &error_fatal); 2562 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2563 &error_fatal); 2564 object_property_set_bool(core, true, "realized", &error_fatal); 2565 2566 object_unref(core); 2567 } 2568 } 2569 } 2570 2571 static PCIHostState *spapr_create_default_phb(void) 2572 { 2573 DeviceState *dev; 2574 2575 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2576 qdev_prop_set_uint32(dev, "index", 0); 2577 qdev_init_nofail(dev); 2578 2579 return PCI_HOST_BRIDGE(dev); 2580 } 2581 2582 /* pSeries LPAR / sPAPR hardware init */ 2583 static void spapr_machine_init(MachineState *machine) 2584 { 2585 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2586 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2587 const char *kernel_filename = machine->kernel_filename; 2588 const char *initrd_filename = machine->initrd_filename; 2589 PCIHostState *phb; 2590 int i; 2591 MemoryRegion *sysmem = get_system_memory(); 2592 MemoryRegion *ram = g_new(MemoryRegion, 1); 2593 hwaddr node0_size = spapr_node0_size(machine); 2594 long load_limit, fw_size; 2595 char *filename; 2596 Error *resize_hpt_err = NULL; 2597 2598 msi_nonbroken = true; 2599 2600 QLIST_INIT(&spapr->phbs); 2601 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2602 2603 /* Determine capabilities to run with */ 2604 spapr_caps_init(spapr); 2605 2606 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2607 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2608 /* 2609 * If the user explicitly requested a mode we should either 2610 * supply it, or fail completely (which we do below). But if 2611 * it's not set explicitly, we reset our mode to something 2612 * that works 2613 */ 2614 if (resize_hpt_err) { 2615 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2616 error_free(resize_hpt_err); 2617 resize_hpt_err = NULL; 2618 } else { 2619 spapr->resize_hpt = smc->resize_hpt_default; 2620 } 2621 } 2622 2623 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2624 2625 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2626 /* 2627 * User requested HPT resize, but this host can't supply it. Bail out 2628 */ 2629 error_report_err(resize_hpt_err); 2630 exit(1); 2631 } 2632 2633 spapr->rma_size = node0_size; 2634 2635 /* With KVM, we don't actually know whether KVM supports an 2636 * unbounded RMA (PR KVM) or is limited by the hash table size 2637 * (HV KVM using VRMA), so we always assume the latter 2638 * 2639 * In that case, we also limit the initial allocations for RTAS 2640 * etc... to 256M since we have no way to know what the VRMA size 2641 * is going to be as it depends on the size of the hash table 2642 * which isn't determined yet. 2643 */ 2644 if (kvm_enabled()) { 2645 spapr->vrma_adjust = 1; 2646 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2647 } 2648 2649 /* Actually we don't support unbounded RMA anymore since we added 2650 * proper emulation of HV mode. The max we can get is 16G which 2651 * also happens to be what we configure for PAPR mode so make sure 2652 * we don't do anything bigger than that 2653 */ 2654 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2655 2656 if (spapr->rma_size > node0_size) { 2657 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2658 spapr->rma_size); 2659 exit(1); 2660 } 2661 2662 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2663 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2664 2665 /* 2666 * VSMT must be set in order to be able to compute VCPU ids, ie to 2667 * call spapr_max_server_number() or spapr_vcpu_id(). 2668 */ 2669 spapr_set_vsmt_mode(spapr, &error_fatal); 2670 2671 /* Set up Interrupt Controller before we create the VCPUs */ 2672 spapr_irq_init(spapr, &error_fatal); 2673 2674 /* Set up containers for ibm,client-architecture-support negotiated options 2675 */ 2676 spapr->ov5 = spapr_ovec_new(); 2677 spapr->ov5_cas = spapr_ovec_new(); 2678 2679 if (smc->dr_lmb_enabled) { 2680 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2681 spapr_validate_node_memory(machine, &error_fatal); 2682 } 2683 2684 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2685 2686 /* advertise support for dedicated HP event source to guests */ 2687 if (spapr->use_hotplug_event_source) { 2688 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2689 } 2690 2691 /* advertise support for HPT resizing */ 2692 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2693 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2694 } 2695 2696 /* advertise support for ibm,dyamic-memory-v2 */ 2697 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2698 2699 /* advertise XIVE on POWER9 machines */ 2700 if (spapr->irq->xive) { 2701 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2702 } 2703 2704 /* init CPUs */ 2705 spapr_init_cpus(spapr); 2706 2707 /* 2708 * check we don't have a memory-less/cpu-less NUMA node 2709 * Firmware relies on the existing memory/cpu topology to provide the 2710 * NUMA topology to the kernel. 2711 * And the linux kernel needs to know the NUMA topology at start 2712 * to be able to hotplug CPUs later. 2713 */ 2714 if (machine->numa_state->num_nodes) { 2715 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2716 /* check for memory-less node */ 2717 if (machine->numa_state->nodes[i].node_mem == 0) { 2718 CPUState *cs; 2719 int found = 0; 2720 /* check for cpu-less node */ 2721 CPU_FOREACH(cs) { 2722 PowerPCCPU *cpu = POWERPC_CPU(cs); 2723 if (cpu->node_id == i) { 2724 found = 1; 2725 break; 2726 } 2727 } 2728 /* memory-less and cpu-less node */ 2729 if (!found) { 2730 error_report( 2731 "Memory-less/cpu-less nodes are not supported (node %d)", 2732 i); 2733 exit(1); 2734 } 2735 } 2736 } 2737 2738 } 2739 2740 /* 2741 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2742 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2743 * called from vPHB reset handler so we initialize the counter here. 2744 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2745 * must be equally distant from any other node. 2746 * The final value of spapr->gpu_numa_id is going to be written to 2747 * max-associativity-domains in spapr_build_fdt(). 2748 */ 2749 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2750 2751 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2752 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2753 spapr->max_compat_pvr)) { 2754 /* KVM and TCG always allow GTSE with radix... */ 2755 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2756 } 2757 /* ... but not with hash (currently). */ 2758 2759 if (kvm_enabled()) { 2760 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2761 kvmppc_enable_logical_ci_hcalls(); 2762 kvmppc_enable_set_mode_hcall(); 2763 2764 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2765 kvmppc_enable_clear_ref_mod_hcalls(); 2766 2767 /* Enable H_PAGE_INIT */ 2768 kvmppc_enable_h_page_init(); 2769 } 2770 2771 /* allocate RAM */ 2772 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2773 machine->ram_size); 2774 memory_region_add_subregion(sysmem, 0, ram); 2775 2776 /* always allocate the device memory information */ 2777 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2778 2779 /* initialize hotplug memory address space */ 2780 if (machine->ram_size < machine->maxram_size) { 2781 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2782 /* 2783 * Limit the number of hotpluggable memory slots to half the number 2784 * slots that KVM supports, leaving the other half for PCI and other 2785 * devices. However ensure that number of slots doesn't drop below 32. 2786 */ 2787 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2788 SPAPR_MAX_RAM_SLOTS; 2789 2790 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2791 max_memslots = SPAPR_MAX_RAM_SLOTS; 2792 } 2793 if (machine->ram_slots > max_memslots) { 2794 error_report("Specified number of memory slots %" 2795 PRIu64" exceeds max supported %d", 2796 machine->ram_slots, max_memslots); 2797 exit(1); 2798 } 2799 2800 machine->device_memory->base = ROUND_UP(machine->ram_size, 2801 SPAPR_DEVICE_MEM_ALIGN); 2802 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2803 "device-memory", device_mem_size); 2804 memory_region_add_subregion(sysmem, machine->device_memory->base, 2805 &machine->device_memory->mr); 2806 } 2807 2808 if (smc->dr_lmb_enabled) { 2809 spapr_create_lmb_dr_connectors(spapr); 2810 } 2811 2812 /* Set up RTAS event infrastructure */ 2813 spapr_events_init(spapr); 2814 2815 /* Set up the RTC RTAS interfaces */ 2816 spapr_rtc_create(spapr); 2817 2818 /* Set up VIO bus */ 2819 spapr->vio_bus = spapr_vio_bus_init(); 2820 2821 for (i = 0; i < serial_max_hds(); i++) { 2822 if (serial_hd(i)) { 2823 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2824 } 2825 } 2826 2827 /* We always have at least the nvram device on VIO */ 2828 spapr_create_nvram(spapr); 2829 2830 /* 2831 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2832 * connectors (described in root DT node's "ibm,drc-types" property) 2833 * are pre-initialized here. additional child connectors (such as 2834 * connectors for a PHBs PCI slots) are added as needed during their 2835 * parent's realization. 2836 */ 2837 if (smc->dr_phb_enabled) { 2838 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2839 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2840 } 2841 } 2842 2843 /* Set up PCI */ 2844 spapr_pci_rtas_init(); 2845 2846 phb = spapr_create_default_phb(); 2847 2848 for (i = 0; i < nb_nics; i++) { 2849 NICInfo *nd = &nd_table[i]; 2850 2851 if (!nd->model) { 2852 nd->model = g_strdup("spapr-vlan"); 2853 } 2854 2855 if (g_str_equal(nd->model, "spapr-vlan") || 2856 g_str_equal(nd->model, "ibmveth")) { 2857 spapr_vlan_create(spapr->vio_bus, nd); 2858 } else { 2859 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2860 } 2861 } 2862 2863 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2864 spapr_vscsi_create(spapr->vio_bus); 2865 } 2866 2867 /* Graphics */ 2868 if (spapr_vga_init(phb->bus, &error_fatal)) { 2869 spapr->has_graphics = true; 2870 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2871 } 2872 2873 if (machine->usb) { 2874 if (smc->use_ohci_by_default) { 2875 pci_create_simple(phb->bus, -1, "pci-ohci"); 2876 } else { 2877 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2878 } 2879 2880 if (spapr->has_graphics) { 2881 USBBus *usb_bus = usb_bus_find(-1); 2882 2883 usb_create_simple(usb_bus, "usb-kbd"); 2884 usb_create_simple(usb_bus, "usb-mouse"); 2885 } 2886 } 2887 2888 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2889 error_report( 2890 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2891 MIN_RMA_SLOF); 2892 exit(1); 2893 } 2894 2895 if (kernel_filename) { 2896 uint64_t lowaddr = 0; 2897 2898 spapr->kernel_size = load_elf(kernel_filename, NULL, 2899 translate_kernel_address, NULL, 2900 NULL, &lowaddr, NULL, 1, 2901 PPC_ELF_MACHINE, 0, 0); 2902 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2903 spapr->kernel_size = load_elf(kernel_filename, NULL, 2904 translate_kernel_address, NULL, NULL, 2905 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2906 0, 0); 2907 spapr->kernel_le = spapr->kernel_size > 0; 2908 } 2909 if (spapr->kernel_size < 0) { 2910 error_report("error loading %s: %s", kernel_filename, 2911 load_elf_strerror(spapr->kernel_size)); 2912 exit(1); 2913 } 2914 2915 /* load initrd */ 2916 if (initrd_filename) { 2917 /* Try to locate the initrd in the gap between the kernel 2918 * and the firmware. Add a bit of space just in case 2919 */ 2920 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2921 + 0x1ffff) & ~0xffff; 2922 spapr->initrd_size = load_image_targphys(initrd_filename, 2923 spapr->initrd_base, 2924 load_limit 2925 - spapr->initrd_base); 2926 if (spapr->initrd_size < 0) { 2927 error_report("could not load initial ram disk '%s'", 2928 initrd_filename); 2929 exit(1); 2930 } 2931 } 2932 } 2933 2934 if (bios_name == NULL) { 2935 bios_name = FW_FILE_NAME; 2936 } 2937 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2938 if (!filename) { 2939 error_report("Could not find LPAR firmware '%s'", bios_name); 2940 exit(1); 2941 } 2942 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2943 if (fw_size <= 0) { 2944 error_report("Could not load LPAR firmware '%s'", filename); 2945 exit(1); 2946 } 2947 g_free(filename); 2948 2949 /* FIXME: Should register things through the MachineState's qdev 2950 * interface, this is a legacy from the sPAPREnvironment structure 2951 * which predated MachineState but had a similar function */ 2952 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2953 register_savevm_live("spapr/htab", -1, 1, 2954 &savevm_htab_handlers, spapr); 2955 2956 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 2957 &error_fatal); 2958 2959 qemu_register_boot_set(spapr_boot_set, spapr); 2960 2961 /* 2962 * Nothing needs to be done to resume a suspended guest because 2963 * suspending does not change the machine state, so no need for 2964 * a ->wakeup method. 2965 */ 2966 qemu_register_wakeup_support(); 2967 2968 if (kvm_enabled()) { 2969 /* to stop and start vmclock */ 2970 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2971 &spapr->tb); 2972 2973 kvmppc_spapr_enable_inkernel_multitce(); 2974 } 2975 } 2976 2977 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 2978 { 2979 if (!vm_type) { 2980 return 0; 2981 } 2982 2983 if (!strcmp(vm_type, "HV")) { 2984 return 1; 2985 } 2986 2987 if (!strcmp(vm_type, "PR")) { 2988 return 2; 2989 } 2990 2991 error_report("Unknown kvm-type specified '%s'", vm_type); 2992 exit(1); 2993 } 2994 2995 /* 2996 * Implementation of an interface to adjust firmware path 2997 * for the bootindex property handling. 2998 */ 2999 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3000 DeviceState *dev) 3001 { 3002 #define CAST(type, obj, name) \ 3003 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3004 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3005 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3006 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3007 3008 if (d) { 3009 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3010 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3011 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3012 3013 if (spapr) { 3014 /* 3015 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3016 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3017 * 0x8000 | (target << 8) | (bus << 5) | lun 3018 * (see the "Logical unit addressing format" table in SAM5) 3019 */ 3020 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3021 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3022 (uint64_t)id << 48); 3023 } else if (virtio) { 3024 /* 3025 * We use SRP luns of the form 01000000 | (target << 8) | lun 3026 * in the top 32 bits of the 64-bit LUN 3027 * Note: the quote above is from SLOF and it is wrong, 3028 * the actual binding is: 3029 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3030 */ 3031 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3032 if (d->lun >= 256) { 3033 /* Use the LUN "flat space addressing method" */ 3034 id |= 0x4000; 3035 } 3036 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3037 (uint64_t)id << 32); 3038 } else if (usb) { 3039 /* 3040 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3041 * in the top 32 bits of the 64-bit LUN 3042 */ 3043 unsigned usb_port = atoi(usb->port->path); 3044 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3045 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3046 (uint64_t)id << 32); 3047 } 3048 } 3049 3050 /* 3051 * SLOF probes the USB devices, and if it recognizes that the device is a 3052 * storage device, it changes its name to "storage" instead of "usb-host", 3053 * and additionally adds a child node for the SCSI LUN, so the correct 3054 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3055 */ 3056 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3057 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3058 if (usb_host_dev_is_scsi_storage(usbdev)) { 3059 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3060 } 3061 } 3062 3063 if (phb) { 3064 /* Replace "pci" with "pci@800000020000000" */ 3065 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3066 } 3067 3068 if (vsc) { 3069 /* Same logic as virtio above */ 3070 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3071 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3072 } 3073 3074 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3075 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3076 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3077 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3078 } 3079 3080 return NULL; 3081 } 3082 3083 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3084 { 3085 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3086 3087 return g_strdup(spapr->kvm_type); 3088 } 3089 3090 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3091 { 3092 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3093 3094 g_free(spapr->kvm_type); 3095 spapr->kvm_type = g_strdup(value); 3096 } 3097 3098 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3099 { 3100 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3101 3102 return spapr->use_hotplug_event_source; 3103 } 3104 3105 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3106 Error **errp) 3107 { 3108 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3109 3110 spapr->use_hotplug_event_source = value; 3111 } 3112 3113 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3114 { 3115 return true; 3116 } 3117 3118 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3119 { 3120 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3121 3122 switch (spapr->resize_hpt) { 3123 case SPAPR_RESIZE_HPT_DEFAULT: 3124 return g_strdup("default"); 3125 case SPAPR_RESIZE_HPT_DISABLED: 3126 return g_strdup("disabled"); 3127 case SPAPR_RESIZE_HPT_ENABLED: 3128 return g_strdup("enabled"); 3129 case SPAPR_RESIZE_HPT_REQUIRED: 3130 return g_strdup("required"); 3131 } 3132 g_assert_not_reached(); 3133 } 3134 3135 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3136 { 3137 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3138 3139 if (strcmp(value, "default") == 0) { 3140 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3141 } else if (strcmp(value, "disabled") == 0) { 3142 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3143 } else if (strcmp(value, "enabled") == 0) { 3144 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3145 } else if (strcmp(value, "required") == 0) { 3146 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3147 } else { 3148 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3149 } 3150 } 3151 3152 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3153 void *opaque, Error **errp) 3154 { 3155 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3156 } 3157 3158 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3159 void *opaque, Error **errp) 3160 { 3161 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3162 } 3163 3164 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3165 { 3166 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3167 3168 if (spapr->irq == &spapr_irq_xics_legacy) { 3169 return g_strdup("legacy"); 3170 } else if (spapr->irq == &spapr_irq_xics) { 3171 return g_strdup("xics"); 3172 } else if (spapr->irq == &spapr_irq_xive) { 3173 return g_strdup("xive"); 3174 } else if (spapr->irq == &spapr_irq_dual) { 3175 return g_strdup("dual"); 3176 } 3177 g_assert_not_reached(); 3178 } 3179 3180 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3181 { 3182 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3183 3184 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3185 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3186 return; 3187 } 3188 3189 /* The legacy IRQ backend can not be set */ 3190 if (strcmp(value, "xics") == 0) { 3191 spapr->irq = &spapr_irq_xics; 3192 } else if (strcmp(value, "xive") == 0) { 3193 spapr->irq = &spapr_irq_xive; 3194 } else if (strcmp(value, "dual") == 0) { 3195 spapr->irq = &spapr_irq_dual; 3196 } else { 3197 error_setg(errp, "Bad value for \"ic-mode\" property"); 3198 } 3199 } 3200 3201 static char *spapr_get_host_model(Object *obj, Error **errp) 3202 { 3203 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3204 3205 return g_strdup(spapr->host_model); 3206 } 3207 3208 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3209 { 3210 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3211 3212 g_free(spapr->host_model); 3213 spapr->host_model = g_strdup(value); 3214 } 3215 3216 static char *spapr_get_host_serial(Object *obj, Error **errp) 3217 { 3218 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3219 3220 return g_strdup(spapr->host_serial); 3221 } 3222 3223 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3224 { 3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3226 3227 g_free(spapr->host_serial); 3228 spapr->host_serial = g_strdup(value); 3229 } 3230 3231 static void spapr_instance_init(Object *obj) 3232 { 3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3234 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3235 3236 spapr->htab_fd = -1; 3237 spapr->use_hotplug_event_source = true; 3238 object_property_add_str(obj, "kvm-type", 3239 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3240 object_property_set_description(obj, "kvm-type", 3241 "Specifies the KVM virtualization mode (HV, PR)", 3242 NULL); 3243 object_property_add_bool(obj, "modern-hotplug-events", 3244 spapr_get_modern_hotplug_events, 3245 spapr_set_modern_hotplug_events, 3246 NULL); 3247 object_property_set_description(obj, "modern-hotplug-events", 3248 "Use dedicated hotplug event mechanism in" 3249 " place of standard EPOW events when possible" 3250 " (required for memory hot-unplug support)", 3251 NULL); 3252 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3253 "Maximum permitted CPU compatibility mode", 3254 &error_fatal); 3255 3256 object_property_add_str(obj, "resize-hpt", 3257 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3258 object_property_set_description(obj, "resize-hpt", 3259 "Resizing of the Hash Page Table (enabled, disabled, required)", 3260 NULL); 3261 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3262 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3263 object_property_set_description(obj, "vsmt", 3264 "Virtual SMT: KVM behaves as if this were" 3265 " the host's SMT mode", &error_abort); 3266 object_property_add_bool(obj, "vfio-no-msix-emulation", 3267 spapr_get_msix_emulation, NULL, NULL); 3268 3269 /* The machine class defines the default interrupt controller mode */ 3270 spapr->irq = smc->irq; 3271 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3272 spapr_set_ic_mode, NULL); 3273 object_property_set_description(obj, "ic-mode", 3274 "Specifies the interrupt controller mode (xics, xive, dual)", 3275 NULL); 3276 3277 object_property_add_str(obj, "host-model", 3278 spapr_get_host_model, spapr_set_host_model, 3279 &error_abort); 3280 object_property_set_description(obj, "host-model", 3281 "Host model to advertise in guest device tree", &error_abort); 3282 object_property_add_str(obj, "host-serial", 3283 spapr_get_host_serial, spapr_set_host_serial, 3284 &error_abort); 3285 object_property_set_description(obj, "host-serial", 3286 "Host serial number to advertise in guest device tree", &error_abort); 3287 } 3288 3289 static void spapr_machine_finalizefn(Object *obj) 3290 { 3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3292 3293 g_free(spapr->kvm_type); 3294 } 3295 3296 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3297 { 3298 cpu_synchronize_state(cs); 3299 ppc_cpu_do_system_reset(cs); 3300 } 3301 3302 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3303 { 3304 CPUState *cs; 3305 3306 CPU_FOREACH(cs) { 3307 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3308 } 3309 } 3310 3311 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3312 void *fdt, int *fdt_start_offset, Error **errp) 3313 { 3314 uint64_t addr; 3315 uint32_t node; 3316 3317 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3318 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3319 &error_abort); 3320 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3321 SPAPR_MEMORY_BLOCK_SIZE); 3322 return 0; 3323 } 3324 3325 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3326 bool dedicated_hp_event_source, Error **errp) 3327 { 3328 SpaprDrc *drc; 3329 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3330 int i; 3331 uint64_t addr = addr_start; 3332 bool hotplugged = spapr_drc_hotplugged(dev); 3333 Error *local_err = NULL; 3334 3335 for (i = 0; i < nr_lmbs; i++) { 3336 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3337 addr / SPAPR_MEMORY_BLOCK_SIZE); 3338 g_assert(drc); 3339 3340 spapr_drc_attach(drc, dev, &local_err); 3341 if (local_err) { 3342 while (addr > addr_start) { 3343 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3344 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3345 addr / SPAPR_MEMORY_BLOCK_SIZE); 3346 spapr_drc_detach(drc); 3347 } 3348 error_propagate(errp, local_err); 3349 return; 3350 } 3351 if (!hotplugged) { 3352 spapr_drc_reset(drc); 3353 } 3354 addr += SPAPR_MEMORY_BLOCK_SIZE; 3355 } 3356 /* send hotplug notification to the 3357 * guest only in case of hotplugged memory 3358 */ 3359 if (hotplugged) { 3360 if (dedicated_hp_event_source) { 3361 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3362 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3363 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3364 nr_lmbs, 3365 spapr_drc_index(drc)); 3366 } else { 3367 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3368 nr_lmbs); 3369 } 3370 } 3371 } 3372 3373 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3374 Error **errp) 3375 { 3376 Error *local_err = NULL; 3377 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3378 PCDIMMDevice *dimm = PC_DIMM(dev); 3379 uint64_t size, addr; 3380 3381 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3382 3383 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3384 if (local_err) { 3385 goto out; 3386 } 3387 3388 addr = object_property_get_uint(OBJECT(dimm), 3389 PC_DIMM_ADDR_PROP, &local_err); 3390 if (local_err) { 3391 goto out_unplug; 3392 } 3393 3394 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3395 &local_err); 3396 if (local_err) { 3397 goto out_unplug; 3398 } 3399 3400 return; 3401 3402 out_unplug: 3403 pc_dimm_unplug(dimm, MACHINE(ms)); 3404 out: 3405 error_propagate(errp, local_err); 3406 } 3407 3408 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3409 Error **errp) 3410 { 3411 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3412 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3413 PCDIMMDevice *dimm = PC_DIMM(dev); 3414 Error *local_err = NULL; 3415 uint64_t size; 3416 Object *memdev; 3417 hwaddr pagesize; 3418 3419 if (!smc->dr_lmb_enabled) { 3420 error_setg(errp, "Memory hotplug not supported for this machine"); 3421 return; 3422 } 3423 3424 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3425 if (local_err) { 3426 error_propagate(errp, local_err); 3427 return; 3428 } 3429 3430 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3431 error_setg(errp, "Hotplugged memory size must be a multiple of " 3432 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3433 return; 3434 } 3435 3436 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3437 &error_abort); 3438 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3439 spapr_check_pagesize(spapr, pagesize, &local_err); 3440 if (local_err) { 3441 error_propagate(errp, local_err); 3442 return; 3443 } 3444 3445 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3446 } 3447 3448 struct SpaprDimmState { 3449 PCDIMMDevice *dimm; 3450 uint32_t nr_lmbs; 3451 QTAILQ_ENTRY(SpaprDimmState) next; 3452 }; 3453 3454 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3455 PCDIMMDevice *dimm) 3456 { 3457 SpaprDimmState *dimm_state = NULL; 3458 3459 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3460 if (dimm_state->dimm == dimm) { 3461 break; 3462 } 3463 } 3464 return dimm_state; 3465 } 3466 3467 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3468 uint32_t nr_lmbs, 3469 PCDIMMDevice *dimm) 3470 { 3471 SpaprDimmState *ds = NULL; 3472 3473 /* 3474 * If this request is for a DIMM whose removal had failed earlier 3475 * (due to guest's refusal to remove the LMBs), we would have this 3476 * dimm already in the pending_dimm_unplugs list. In that 3477 * case don't add again. 3478 */ 3479 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3480 if (!ds) { 3481 ds = g_malloc0(sizeof(SpaprDimmState)); 3482 ds->nr_lmbs = nr_lmbs; 3483 ds->dimm = dimm; 3484 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3485 } 3486 return ds; 3487 } 3488 3489 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3490 SpaprDimmState *dimm_state) 3491 { 3492 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3493 g_free(dimm_state); 3494 } 3495 3496 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3497 PCDIMMDevice *dimm) 3498 { 3499 SpaprDrc *drc; 3500 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3501 &error_abort); 3502 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3503 uint32_t avail_lmbs = 0; 3504 uint64_t addr_start, addr; 3505 int i; 3506 3507 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3508 &error_abort); 3509 3510 addr = addr_start; 3511 for (i = 0; i < nr_lmbs; i++) { 3512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3513 addr / SPAPR_MEMORY_BLOCK_SIZE); 3514 g_assert(drc); 3515 if (drc->dev) { 3516 avail_lmbs++; 3517 } 3518 addr += SPAPR_MEMORY_BLOCK_SIZE; 3519 } 3520 3521 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3522 } 3523 3524 /* Callback to be called during DRC release. */ 3525 void spapr_lmb_release(DeviceState *dev) 3526 { 3527 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3528 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3529 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3530 3531 /* This information will get lost if a migration occurs 3532 * during the unplug process. In this case recover it. */ 3533 if (ds == NULL) { 3534 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3535 g_assert(ds); 3536 /* The DRC being examined by the caller at least must be counted */ 3537 g_assert(ds->nr_lmbs); 3538 } 3539 3540 if (--ds->nr_lmbs) { 3541 return; 3542 } 3543 3544 /* 3545 * Now that all the LMBs have been removed by the guest, call the 3546 * unplug handler chain. This can never fail. 3547 */ 3548 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3549 object_unparent(OBJECT(dev)); 3550 } 3551 3552 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3553 { 3554 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3555 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3556 3557 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3558 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3559 spapr_pending_dimm_unplugs_remove(spapr, ds); 3560 } 3561 3562 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3563 DeviceState *dev, Error **errp) 3564 { 3565 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3566 Error *local_err = NULL; 3567 PCDIMMDevice *dimm = PC_DIMM(dev); 3568 uint32_t nr_lmbs; 3569 uint64_t size, addr_start, addr; 3570 int i; 3571 SpaprDrc *drc; 3572 3573 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3574 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3575 3576 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3577 &local_err); 3578 if (local_err) { 3579 goto out; 3580 } 3581 3582 /* 3583 * An existing pending dimm state for this DIMM means that there is an 3584 * unplug operation in progress, waiting for the spapr_lmb_release 3585 * callback to complete the job (BQL can't cover that far). In this case, 3586 * bail out to avoid detaching DRCs that were already released. 3587 */ 3588 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3589 error_setg(&local_err, 3590 "Memory unplug already in progress for device %s", 3591 dev->id); 3592 goto out; 3593 } 3594 3595 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3596 3597 addr = addr_start; 3598 for (i = 0; i < nr_lmbs; i++) { 3599 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3600 addr / SPAPR_MEMORY_BLOCK_SIZE); 3601 g_assert(drc); 3602 3603 spapr_drc_detach(drc); 3604 addr += SPAPR_MEMORY_BLOCK_SIZE; 3605 } 3606 3607 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3608 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3609 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3610 nr_lmbs, spapr_drc_index(drc)); 3611 out: 3612 error_propagate(errp, local_err); 3613 } 3614 3615 /* Callback to be called during DRC release. */ 3616 void spapr_core_release(DeviceState *dev) 3617 { 3618 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3619 3620 /* Call the unplug handler chain. This can never fail. */ 3621 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3622 object_unparent(OBJECT(dev)); 3623 } 3624 3625 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3626 { 3627 MachineState *ms = MACHINE(hotplug_dev); 3628 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3629 CPUCore *cc = CPU_CORE(dev); 3630 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3631 3632 if (smc->pre_2_10_has_unused_icps) { 3633 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3634 int i; 3635 3636 for (i = 0; i < cc->nr_threads; i++) { 3637 CPUState *cs = CPU(sc->threads[i]); 3638 3639 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3640 } 3641 } 3642 3643 assert(core_slot); 3644 core_slot->cpu = NULL; 3645 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3646 } 3647 3648 static 3649 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3650 Error **errp) 3651 { 3652 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3653 int index; 3654 SpaprDrc *drc; 3655 CPUCore *cc = CPU_CORE(dev); 3656 3657 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3658 error_setg(errp, "Unable to find CPU core with core-id: %d", 3659 cc->core_id); 3660 return; 3661 } 3662 if (index == 0) { 3663 error_setg(errp, "Boot CPU core may not be unplugged"); 3664 return; 3665 } 3666 3667 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3668 spapr_vcpu_id(spapr, cc->core_id)); 3669 g_assert(drc); 3670 3671 if (!spapr_drc_unplug_requested(drc)) { 3672 spapr_drc_detach(drc); 3673 spapr_hotplug_req_remove_by_index(drc); 3674 } 3675 } 3676 3677 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3678 void *fdt, int *fdt_start_offset, Error **errp) 3679 { 3680 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3681 CPUState *cs = CPU(core->threads[0]); 3682 PowerPCCPU *cpu = POWERPC_CPU(cs); 3683 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3684 int id = spapr_get_vcpu_id(cpu); 3685 char *nodename; 3686 int offset; 3687 3688 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3689 offset = fdt_add_subnode(fdt, 0, nodename); 3690 g_free(nodename); 3691 3692 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3693 3694 *fdt_start_offset = offset; 3695 return 0; 3696 } 3697 3698 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3699 Error **errp) 3700 { 3701 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3702 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3703 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3704 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3705 CPUCore *cc = CPU_CORE(dev); 3706 CPUState *cs; 3707 SpaprDrc *drc; 3708 Error *local_err = NULL; 3709 CPUArchId *core_slot; 3710 int index; 3711 bool hotplugged = spapr_drc_hotplugged(dev); 3712 int i; 3713 3714 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3715 if (!core_slot) { 3716 error_setg(errp, "Unable to find CPU core with core-id: %d", 3717 cc->core_id); 3718 return; 3719 } 3720 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3721 spapr_vcpu_id(spapr, cc->core_id)); 3722 3723 g_assert(drc || !mc->has_hotpluggable_cpus); 3724 3725 if (drc) { 3726 spapr_drc_attach(drc, dev, &local_err); 3727 if (local_err) { 3728 error_propagate(errp, local_err); 3729 return; 3730 } 3731 3732 if (hotplugged) { 3733 /* 3734 * Send hotplug notification interrupt to the guest only 3735 * in case of hotplugged CPUs. 3736 */ 3737 spapr_hotplug_req_add_by_index(drc); 3738 } else { 3739 spapr_drc_reset(drc); 3740 } 3741 } 3742 3743 core_slot->cpu = OBJECT(dev); 3744 3745 if (smc->pre_2_10_has_unused_icps) { 3746 for (i = 0; i < cc->nr_threads; i++) { 3747 cs = CPU(core->threads[i]); 3748 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3749 } 3750 } 3751 3752 /* 3753 * Set compatibility mode to match the boot CPU, which was either set 3754 * by the machine reset code or by CAS. 3755 */ 3756 if (hotplugged) { 3757 for (i = 0; i < cc->nr_threads; i++) { 3758 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3759 &local_err); 3760 if (local_err) { 3761 error_propagate(errp, local_err); 3762 return; 3763 } 3764 } 3765 } 3766 } 3767 3768 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3769 Error **errp) 3770 { 3771 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3772 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3773 Error *local_err = NULL; 3774 CPUCore *cc = CPU_CORE(dev); 3775 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3776 const char *type = object_get_typename(OBJECT(dev)); 3777 CPUArchId *core_slot; 3778 int index; 3779 unsigned int smp_threads = machine->smp.threads; 3780 3781 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3782 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3783 goto out; 3784 } 3785 3786 if (strcmp(base_core_type, type)) { 3787 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3788 goto out; 3789 } 3790 3791 if (cc->core_id % smp_threads) { 3792 error_setg(&local_err, "invalid core id %d", cc->core_id); 3793 goto out; 3794 } 3795 3796 /* 3797 * In general we should have homogeneous threads-per-core, but old 3798 * (pre hotplug support) machine types allow the last core to have 3799 * reduced threads as a compatibility hack for when we allowed 3800 * total vcpus not a multiple of threads-per-core. 3801 */ 3802 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3803 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3804 cc->nr_threads, smp_threads); 3805 goto out; 3806 } 3807 3808 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3809 if (!core_slot) { 3810 error_setg(&local_err, "core id %d out of range", cc->core_id); 3811 goto out; 3812 } 3813 3814 if (core_slot->cpu) { 3815 error_setg(&local_err, "core %d already populated", cc->core_id); 3816 goto out; 3817 } 3818 3819 numa_cpu_pre_plug(core_slot, dev, &local_err); 3820 3821 out: 3822 error_propagate(errp, local_err); 3823 } 3824 3825 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3826 void *fdt, int *fdt_start_offset, Error **errp) 3827 { 3828 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3829 int intc_phandle; 3830 3831 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3832 if (intc_phandle <= 0) { 3833 return -1; 3834 } 3835 3836 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 3837 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3838 return -1; 3839 } 3840 3841 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3842 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3843 3844 return 0; 3845 } 3846 3847 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3848 Error **errp) 3849 { 3850 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3851 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3852 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3853 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3854 3855 if (dev->hotplugged && !smc->dr_phb_enabled) { 3856 error_setg(errp, "PHB hotplug not supported for this machine"); 3857 return; 3858 } 3859 3860 if (sphb->index == (uint32_t)-1) { 3861 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3862 return; 3863 } 3864 3865 /* 3866 * This will check that sphb->index doesn't exceed the maximum number of 3867 * PHBs for the current machine type. 3868 */ 3869 smc->phb_placement(spapr, sphb->index, 3870 &sphb->buid, &sphb->io_win_addr, 3871 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3872 windows_supported, sphb->dma_liobn, 3873 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3874 errp); 3875 } 3876 3877 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3878 Error **errp) 3879 { 3880 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3881 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3882 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3883 SpaprDrc *drc; 3884 bool hotplugged = spapr_drc_hotplugged(dev); 3885 Error *local_err = NULL; 3886 3887 if (!smc->dr_phb_enabled) { 3888 return; 3889 } 3890 3891 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3892 /* hotplug hooks should check it's enabled before getting this far */ 3893 assert(drc); 3894 3895 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3896 if (local_err) { 3897 error_propagate(errp, local_err); 3898 return; 3899 } 3900 3901 if (hotplugged) { 3902 spapr_hotplug_req_add_by_index(drc); 3903 } else { 3904 spapr_drc_reset(drc); 3905 } 3906 } 3907 3908 void spapr_phb_release(DeviceState *dev) 3909 { 3910 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3911 3912 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3913 object_unparent(OBJECT(dev)); 3914 } 3915 3916 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3917 { 3918 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3919 } 3920 3921 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 3922 DeviceState *dev, Error **errp) 3923 { 3924 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3925 SpaprDrc *drc; 3926 3927 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3928 assert(drc); 3929 3930 if (!spapr_drc_unplug_requested(drc)) { 3931 spapr_drc_detach(drc); 3932 spapr_hotplug_req_remove_by_index(drc); 3933 } 3934 } 3935 3936 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3937 Error **errp) 3938 { 3939 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3940 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 3941 3942 if (spapr->tpm_proxy != NULL) { 3943 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 3944 return; 3945 } 3946 3947 spapr->tpm_proxy = tpm_proxy; 3948 } 3949 3950 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3951 { 3952 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3953 3954 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3955 object_unparent(OBJECT(dev)); 3956 spapr->tpm_proxy = NULL; 3957 } 3958 3959 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3960 DeviceState *dev, Error **errp) 3961 { 3962 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3963 spapr_memory_plug(hotplug_dev, dev, errp); 3964 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3965 spapr_core_plug(hotplug_dev, dev, errp); 3966 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 3967 spapr_phb_plug(hotplug_dev, dev, errp); 3968 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 3969 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 3970 } 3971 } 3972 3973 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3974 DeviceState *dev, Error **errp) 3975 { 3976 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3977 spapr_memory_unplug(hotplug_dev, dev); 3978 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3979 spapr_core_unplug(hotplug_dev, dev); 3980 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 3981 spapr_phb_unplug(hotplug_dev, dev); 3982 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 3983 spapr_tpm_proxy_unplug(hotplug_dev, dev); 3984 } 3985 } 3986 3987 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3988 DeviceState *dev, Error **errp) 3989 { 3990 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3991 MachineClass *mc = MACHINE_GET_CLASS(sms); 3992 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3993 3994 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3995 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3996 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3997 } else { 3998 /* NOTE: this means there is a window after guest reset, prior to 3999 * CAS negotiation, where unplug requests will fail due to the 4000 * capability not being detected yet. This is a bit different than 4001 * the case with PCI unplug, where the events will be queued and 4002 * eventually handled by the guest after boot 4003 */ 4004 error_setg(errp, "Memory hot unplug not supported for this guest"); 4005 } 4006 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4007 if (!mc->has_hotpluggable_cpus) { 4008 error_setg(errp, "CPU hot unplug not supported on this machine"); 4009 return; 4010 } 4011 spapr_core_unplug_request(hotplug_dev, dev, errp); 4012 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4013 if (!smc->dr_phb_enabled) { 4014 error_setg(errp, "PHB hot unplug not supported on this machine"); 4015 return; 4016 } 4017 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4018 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4019 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4020 } 4021 } 4022 4023 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4024 DeviceState *dev, Error **errp) 4025 { 4026 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4027 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4028 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4029 spapr_core_pre_plug(hotplug_dev, dev, errp); 4030 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4031 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4032 } 4033 } 4034 4035 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4036 DeviceState *dev) 4037 { 4038 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4039 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4040 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4041 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4042 return HOTPLUG_HANDLER(machine); 4043 } 4044 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4045 PCIDevice *pcidev = PCI_DEVICE(dev); 4046 PCIBus *root = pci_device_root_bus(pcidev); 4047 SpaprPhbState *phb = 4048 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4049 TYPE_SPAPR_PCI_HOST_BRIDGE); 4050 4051 if (phb) { 4052 return HOTPLUG_HANDLER(phb); 4053 } 4054 } 4055 return NULL; 4056 } 4057 4058 static CpuInstanceProperties 4059 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4060 { 4061 CPUArchId *core_slot; 4062 MachineClass *mc = MACHINE_GET_CLASS(machine); 4063 4064 /* make sure possible_cpu are intialized */ 4065 mc->possible_cpu_arch_ids(machine); 4066 /* get CPU core slot containing thread that matches cpu_index */ 4067 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4068 assert(core_slot); 4069 return core_slot->props; 4070 } 4071 4072 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4073 { 4074 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4075 } 4076 4077 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4078 { 4079 int i; 4080 unsigned int smp_threads = machine->smp.threads; 4081 unsigned int smp_cpus = machine->smp.cpus; 4082 const char *core_type; 4083 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4084 MachineClass *mc = MACHINE_GET_CLASS(machine); 4085 4086 if (!mc->has_hotpluggable_cpus) { 4087 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4088 } 4089 if (machine->possible_cpus) { 4090 assert(machine->possible_cpus->len == spapr_max_cores); 4091 return machine->possible_cpus; 4092 } 4093 4094 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4095 if (!core_type) { 4096 error_report("Unable to find sPAPR CPU Core definition"); 4097 exit(1); 4098 } 4099 4100 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4101 sizeof(CPUArchId) * spapr_max_cores); 4102 machine->possible_cpus->len = spapr_max_cores; 4103 for (i = 0; i < machine->possible_cpus->len; i++) { 4104 int core_id = i * smp_threads; 4105 4106 machine->possible_cpus->cpus[i].type = core_type; 4107 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4108 machine->possible_cpus->cpus[i].arch_id = core_id; 4109 machine->possible_cpus->cpus[i].props.has_core_id = true; 4110 machine->possible_cpus->cpus[i].props.core_id = core_id; 4111 } 4112 return machine->possible_cpus; 4113 } 4114 4115 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4116 uint64_t *buid, hwaddr *pio, 4117 hwaddr *mmio32, hwaddr *mmio64, 4118 unsigned n_dma, uint32_t *liobns, 4119 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4120 { 4121 /* 4122 * New-style PHB window placement. 4123 * 4124 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4125 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4126 * windows. 4127 * 4128 * Some guest kernels can't work with MMIO windows above 1<<46 4129 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4130 * 4131 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4132 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4133 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4134 * 1TiB 64-bit MMIO windows for each PHB. 4135 */ 4136 const uint64_t base_buid = 0x800000020000000ULL; 4137 int i; 4138 4139 /* Sanity check natural alignments */ 4140 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4141 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4142 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4143 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4144 /* Sanity check bounds */ 4145 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4146 SPAPR_PCI_MEM32_WIN_SIZE); 4147 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4148 SPAPR_PCI_MEM64_WIN_SIZE); 4149 4150 if (index >= SPAPR_MAX_PHBS) { 4151 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4152 SPAPR_MAX_PHBS - 1); 4153 return; 4154 } 4155 4156 *buid = base_buid + index; 4157 for (i = 0; i < n_dma; ++i) { 4158 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4159 } 4160 4161 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4162 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4163 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4164 4165 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4166 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4167 } 4168 4169 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4170 { 4171 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4172 4173 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4174 } 4175 4176 static void spapr_ics_resend(XICSFabric *dev) 4177 { 4178 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4179 4180 ics_resend(spapr->ics); 4181 } 4182 4183 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4184 { 4185 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4186 4187 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4188 } 4189 4190 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4191 Monitor *mon) 4192 { 4193 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4194 4195 spapr_irq_print_info(spapr, mon); 4196 monitor_printf(mon, "irqchip: %s\n", 4197 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4198 } 4199 4200 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4201 uint8_t nvt_blk, uint32_t nvt_idx, 4202 bool cam_ignore, uint8_t priority, 4203 uint32_t logic_serv, XiveTCTXMatch *match) 4204 { 4205 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4206 XivePresenter *xptr = XIVE_PRESENTER(spapr->xive); 4207 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4208 int count; 4209 4210 /* This is a XIVE only operation */ 4211 assert(spapr->active_intc == SPAPR_INTC(spapr->xive)); 4212 4213 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4214 priority, logic_serv, match); 4215 if (count < 0) { 4216 return count; 4217 } 4218 4219 /* 4220 * When we implement the save and restore of the thread interrupt 4221 * contexts in the enter/exit CPU handlers of the machine and the 4222 * escalations in QEMU, we should be able to handle non dispatched 4223 * vCPUs. 4224 * 4225 * Until this is done, the sPAPR machine should find at least one 4226 * matching context always. 4227 */ 4228 if (count == 0) { 4229 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4230 nvt_blk, nvt_idx); 4231 } 4232 4233 return count; 4234 } 4235 4236 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4237 { 4238 return cpu->vcpu_id; 4239 } 4240 4241 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4242 { 4243 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4244 MachineState *ms = MACHINE(spapr); 4245 int vcpu_id; 4246 4247 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4248 4249 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4250 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4251 error_append_hint(errp, "Adjust the number of cpus to %d " 4252 "or try to raise the number of threads per core\n", 4253 vcpu_id * ms->smp.threads / spapr->vsmt); 4254 return; 4255 } 4256 4257 cpu->vcpu_id = vcpu_id; 4258 } 4259 4260 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4261 { 4262 CPUState *cs; 4263 4264 CPU_FOREACH(cs) { 4265 PowerPCCPU *cpu = POWERPC_CPU(cs); 4266 4267 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4268 return cpu; 4269 } 4270 } 4271 4272 return NULL; 4273 } 4274 4275 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4276 { 4277 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4278 4279 /* These are only called by TCG, KVM maintains dispatch state */ 4280 4281 spapr_cpu->prod = false; 4282 if (spapr_cpu->vpa_addr) { 4283 CPUState *cs = CPU(cpu); 4284 uint32_t dispatch; 4285 4286 dispatch = ldl_be_phys(cs->as, 4287 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4288 dispatch++; 4289 if ((dispatch & 1) != 0) { 4290 qemu_log_mask(LOG_GUEST_ERROR, 4291 "VPA: incorrect dispatch counter value for " 4292 "dispatched partition %u, correcting.\n", dispatch); 4293 dispatch++; 4294 } 4295 stl_be_phys(cs->as, 4296 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4297 } 4298 } 4299 4300 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4301 { 4302 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4303 4304 if (spapr_cpu->vpa_addr) { 4305 CPUState *cs = CPU(cpu); 4306 uint32_t dispatch; 4307 4308 dispatch = ldl_be_phys(cs->as, 4309 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4310 dispatch++; 4311 if ((dispatch & 1) != 1) { 4312 qemu_log_mask(LOG_GUEST_ERROR, 4313 "VPA: incorrect dispatch counter value for " 4314 "preempted partition %u, correcting.\n", dispatch); 4315 dispatch++; 4316 } 4317 stl_be_phys(cs->as, 4318 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4319 } 4320 } 4321 4322 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4323 { 4324 MachineClass *mc = MACHINE_CLASS(oc); 4325 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4326 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4327 NMIClass *nc = NMI_CLASS(oc); 4328 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4329 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4330 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4331 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4332 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4333 4334 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4335 mc->ignore_boot_device_suffixes = true; 4336 4337 /* 4338 * We set up the default / latest behaviour here. The class_init 4339 * functions for the specific versioned machine types can override 4340 * these details for backwards compatibility 4341 */ 4342 mc->init = spapr_machine_init; 4343 mc->reset = spapr_machine_reset; 4344 mc->block_default_type = IF_SCSI; 4345 mc->max_cpus = 1024; 4346 mc->no_parallel = 1; 4347 mc->default_boot_order = ""; 4348 mc->default_ram_size = 512 * MiB; 4349 mc->default_display = "std"; 4350 mc->kvm_type = spapr_kvm_type; 4351 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4352 mc->pci_allow_0_address = true; 4353 assert(!mc->get_hotplug_handler); 4354 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4355 hc->pre_plug = spapr_machine_device_pre_plug; 4356 hc->plug = spapr_machine_device_plug; 4357 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4358 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4359 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4360 hc->unplug_request = spapr_machine_device_unplug_request; 4361 hc->unplug = spapr_machine_device_unplug; 4362 4363 smc->dr_lmb_enabled = true; 4364 smc->update_dt_enabled = true; 4365 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4366 mc->has_hotpluggable_cpus = true; 4367 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4368 fwc->get_dev_path = spapr_get_fw_dev_path; 4369 nc->nmi_monitor_handler = spapr_nmi; 4370 smc->phb_placement = spapr_phb_placement; 4371 vhc->hypercall = emulate_spapr_hypercall; 4372 vhc->hpt_mask = spapr_hpt_mask; 4373 vhc->map_hptes = spapr_map_hptes; 4374 vhc->unmap_hptes = spapr_unmap_hptes; 4375 vhc->hpte_set_c = spapr_hpte_set_c; 4376 vhc->hpte_set_r = spapr_hpte_set_r; 4377 vhc->get_pate = spapr_get_pate; 4378 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4379 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4380 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4381 xic->ics_get = spapr_ics_get; 4382 xic->ics_resend = spapr_ics_resend; 4383 xic->icp_get = spapr_icp_get; 4384 ispc->print_info = spapr_pic_print_info; 4385 /* Force NUMA node memory size to be a multiple of 4386 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4387 * in which LMBs are represented and hot-added 4388 */ 4389 mc->numa_mem_align_shift = 28; 4390 mc->numa_mem_supported = true; 4391 mc->auto_enable_numa = true; 4392 4393 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4394 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4395 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4396 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4397 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4398 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4399 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4400 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4401 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4402 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4403 spapr_caps_add_properties(smc, &error_abort); 4404 smc->irq = &spapr_irq_dual; 4405 smc->dr_phb_enabled = true; 4406 smc->linux_pci_probe = true; 4407 smc->smp_threads_vsmt = true; 4408 smc->nr_xirqs = SPAPR_NR_XIRQS; 4409 xfc->match_nvt = spapr_match_nvt; 4410 } 4411 4412 static const TypeInfo spapr_machine_info = { 4413 .name = TYPE_SPAPR_MACHINE, 4414 .parent = TYPE_MACHINE, 4415 .abstract = true, 4416 .instance_size = sizeof(SpaprMachineState), 4417 .instance_init = spapr_instance_init, 4418 .instance_finalize = spapr_machine_finalizefn, 4419 .class_size = sizeof(SpaprMachineClass), 4420 .class_init = spapr_machine_class_init, 4421 .interfaces = (InterfaceInfo[]) { 4422 { TYPE_FW_PATH_PROVIDER }, 4423 { TYPE_NMI }, 4424 { TYPE_HOTPLUG_HANDLER }, 4425 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4426 { TYPE_XICS_FABRIC }, 4427 { TYPE_INTERRUPT_STATS_PROVIDER }, 4428 { TYPE_XIVE_FABRIC }, 4429 { } 4430 }, 4431 }; 4432 4433 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4434 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4435 void *data) \ 4436 { \ 4437 MachineClass *mc = MACHINE_CLASS(oc); \ 4438 spapr_machine_##suffix##_class_options(mc); \ 4439 if (latest) { \ 4440 mc->alias = "pseries"; \ 4441 mc->is_default = 1; \ 4442 } \ 4443 } \ 4444 static const TypeInfo spapr_machine_##suffix##_info = { \ 4445 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4446 .parent = TYPE_SPAPR_MACHINE, \ 4447 .class_init = spapr_machine_##suffix##_class_init, \ 4448 }; \ 4449 static void spapr_machine_register_##suffix(void) \ 4450 { \ 4451 type_register(&spapr_machine_##suffix##_info); \ 4452 } \ 4453 type_init(spapr_machine_register_##suffix) 4454 4455 /* 4456 * pseries-5.0 4457 */ 4458 static void spapr_machine_5_0_class_options(MachineClass *mc) 4459 { 4460 /* Defaults for the latest behaviour inherited from the base class */ 4461 } 4462 4463 DEFINE_SPAPR_MACHINE(5_0, "5.0", true); 4464 4465 /* 4466 * pseries-4.2 4467 */ 4468 static void spapr_machine_4_2_class_options(MachineClass *mc) 4469 { 4470 spapr_machine_5_0_class_options(mc); 4471 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4472 } 4473 4474 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4475 4476 /* 4477 * pseries-4.1 4478 */ 4479 static void spapr_machine_4_1_class_options(MachineClass *mc) 4480 { 4481 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4482 static GlobalProperty compat[] = { 4483 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4484 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4485 }; 4486 4487 spapr_machine_4_2_class_options(mc); 4488 smc->linux_pci_probe = false; 4489 smc->smp_threads_vsmt = false; 4490 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4491 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4492 } 4493 4494 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4495 4496 /* 4497 * pseries-4.0 4498 */ 4499 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4500 uint64_t *buid, hwaddr *pio, 4501 hwaddr *mmio32, hwaddr *mmio64, 4502 unsigned n_dma, uint32_t *liobns, 4503 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4504 { 4505 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4506 nv2gpa, nv2atsd, errp); 4507 *nv2gpa = 0; 4508 *nv2atsd = 0; 4509 } 4510 4511 static void spapr_machine_4_0_class_options(MachineClass *mc) 4512 { 4513 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4514 4515 spapr_machine_4_1_class_options(mc); 4516 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4517 smc->phb_placement = phb_placement_4_0; 4518 smc->irq = &spapr_irq_xics; 4519 smc->pre_4_1_migration = true; 4520 } 4521 4522 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4523 4524 /* 4525 * pseries-3.1 4526 */ 4527 static void spapr_machine_3_1_class_options(MachineClass *mc) 4528 { 4529 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4530 4531 spapr_machine_4_0_class_options(mc); 4532 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4533 4534 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4535 smc->update_dt_enabled = false; 4536 smc->dr_phb_enabled = false; 4537 smc->broken_host_serial_model = true; 4538 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4539 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4540 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4541 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4542 } 4543 4544 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4545 4546 /* 4547 * pseries-3.0 4548 */ 4549 4550 static void spapr_machine_3_0_class_options(MachineClass *mc) 4551 { 4552 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4553 4554 spapr_machine_3_1_class_options(mc); 4555 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4556 4557 smc->legacy_irq_allocation = true; 4558 smc->nr_xirqs = 0x400; 4559 smc->irq = &spapr_irq_xics_legacy; 4560 } 4561 4562 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4563 4564 /* 4565 * pseries-2.12 4566 */ 4567 static void spapr_machine_2_12_class_options(MachineClass *mc) 4568 { 4569 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4570 static GlobalProperty compat[] = { 4571 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4572 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4573 }; 4574 4575 spapr_machine_3_0_class_options(mc); 4576 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4577 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4578 4579 /* We depend on kvm_enabled() to choose a default value for the 4580 * hpt-max-page-size capability. Of course we can't do it here 4581 * because this is too early and the HW accelerator isn't initialzed 4582 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4583 */ 4584 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4585 } 4586 4587 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4588 4589 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4590 { 4591 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4592 4593 spapr_machine_2_12_class_options(mc); 4594 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4595 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4596 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4597 } 4598 4599 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4600 4601 /* 4602 * pseries-2.11 4603 */ 4604 4605 static void spapr_machine_2_11_class_options(MachineClass *mc) 4606 { 4607 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4608 4609 spapr_machine_2_12_class_options(mc); 4610 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4611 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4612 } 4613 4614 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4615 4616 /* 4617 * pseries-2.10 4618 */ 4619 4620 static void spapr_machine_2_10_class_options(MachineClass *mc) 4621 { 4622 spapr_machine_2_11_class_options(mc); 4623 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4624 } 4625 4626 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4627 4628 /* 4629 * pseries-2.9 4630 */ 4631 4632 static void spapr_machine_2_9_class_options(MachineClass *mc) 4633 { 4634 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4635 static GlobalProperty compat[] = { 4636 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4637 }; 4638 4639 spapr_machine_2_10_class_options(mc); 4640 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4641 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4642 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4643 smc->pre_2_10_has_unused_icps = true; 4644 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4645 } 4646 4647 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4648 4649 /* 4650 * pseries-2.8 4651 */ 4652 4653 static void spapr_machine_2_8_class_options(MachineClass *mc) 4654 { 4655 static GlobalProperty compat[] = { 4656 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4657 }; 4658 4659 spapr_machine_2_9_class_options(mc); 4660 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4661 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4662 mc->numa_mem_align_shift = 23; 4663 } 4664 4665 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4666 4667 /* 4668 * pseries-2.7 4669 */ 4670 4671 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4672 uint64_t *buid, hwaddr *pio, 4673 hwaddr *mmio32, hwaddr *mmio64, 4674 unsigned n_dma, uint32_t *liobns, 4675 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4676 { 4677 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4678 const uint64_t base_buid = 0x800000020000000ULL; 4679 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4680 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4681 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4682 const uint32_t max_index = 255; 4683 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4684 4685 uint64_t ram_top = MACHINE(spapr)->ram_size; 4686 hwaddr phb0_base, phb_base; 4687 int i; 4688 4689 /* Do we have device memory? */ 4690 if (MACHINE(spapr)->maxram_size > ram_top) { 4691 /* Can't just use maxram_size, because there may be an 4692 * alignment gap between normal and device memory regions 4693 */ 4694 ram_top = MACHINE(spapr)->device_memory->base + 4695 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4696 } 4697 4698 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4699 4700 if (index > max_index) { 4701 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4702 max_index); 4703 return; 4704 } 4705 4706 *buid = base_buid + index; 4707 for (i = 0; i < n_dma; ++i) { 4708 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4709 } 4710 4711 phb_base = phb0_base + index * phb_spacing; 4712 *pio = phb_base + pio_offset; 4713 *mmio32 = phb_base + mmio_offset; 4714 /* 4715 * We don't set the 64-bit MMIO window, relying on the PHB's 4716 * fallback behaviour of automatically splitting a large "32-bit" 4717 * window into contiguous 32-bit and 64-bit windows 4718 */ 4719 4720 *nv2gpa = 0; 4721 *nv2atsd = 0; 4722 } 4723 4724 static void spapr_machine_2_7_class_options(MachineClass *mc) 4725 { 4726 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4727 static GlobalProperty compat[] = { 4728 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4729 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4730 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4731 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4732 }; 4733 4734 spapr_machine_2_8_class_options(mc); 4735 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4736 mc->default_machine_opts = "modern-hotplug-events=off"; 4737 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4738 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4739 smc->phb_placement = phb_placement_2_7; 4740 } 4741 4742 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4743 4744 /* 4745 * pseries-2.6 4746 */ 4747 4748 static void spapr_machine_2_6_class_options(MachineClass *mc) 4749 { 4750 static GlobalProperty compat[] = { 4751 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4752 }; 4753 4754 spapr_machine_2_7_class_options(mc); 4755 mc->has_hotpluggable_cpus = false; 4756 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4757 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4758 } 4759 4760 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4761 4762 /* 4763 * pseries-2.5 4764 */ 4765 4766 static void spapr_machine_2_5_class_options(MachineClass *mc) 4767 { 4768 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4769 static GlobalProperty compat[] = { 4770 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4771 }; 4772 4773 spapr_machine_2_6_class_options(mc); 4774 smc->use_ohci_by_default = true; 4775 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4776 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4777 } 4778 4779 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4780 4781 /* 4782 * pseries-2.4 4783 */ 4784 4785 static void spapr_machine_2_4_class_options(MachineClass *mc) 4786 { 4787 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4788 4789 spapr_machine_2_5_class_options(mc); 4790 smc->dr_lmb_enabled = false; 4791 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4792 } 4793 4794 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4795 4796 /* 4797 * pseries-2.3 4798 */ 4799 4800 static void spapr_machine_2_3_class_options(MachineClass *mc) 4801 { 4802 static GlobalProperty compat[] = { 4803 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4804 }; 4805 spapr_machine_2_4_class_options(mc); 4806 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4807 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4808 } 4809 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4810 4811 /* 4812 * pseries-2.2 4813 */ 4814 4815 static void spapr_machine_2_2_class_options(MachineClass *mc) 4816 { 4817 static GlobalProperty compat[] = { 4818 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4819 }; 4820 4821 spapr_machine_2_3_class_options(mc); 4822 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4823 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4824 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4825 } 4826 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4827 4828 /* 4829 * pseries-2.1 4830 */ 4831 4832 static void spapr_machine_2_1_class_options(MachineClass *mc) 4833 { 4834 spapr_machine_2_2_class_options(mc); 4835 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4836 } 4837 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4838 4839 static void spapr_machine_register_types(void) 4840 { 4841 type_register_static(&spapr_machine_info); 4842 } 4843 4844 type_init(spapr_machine_register_types) 4845