xref: /openbmc/qemu/hw/ppc/spapr.c (revision e1ecf8c8)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include "monitor/monitor.h"
85 
86 #include <libfdt.h>
87 
88 /* SLOF memory layout:
89  *
90  * SLOF raw image loaded at 0, copies its romfs right below the flat
91  * device-tree, then position SLOF itself 31M below that
92  *
93  * So we set FW_OVERHEAD to 40MB which should account for all of that
94  * and more
95  *
96  * We load our kernel at 4M, leaving space for SLOF initial image
97  */
98 #define FDT_MAX_SIZE            0x100000
99 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE             0x400000
101 #define FW_FILE_NAME            "slof.bin"
102 #define FW_OVERHEAD             0x2800000
103 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
104 
105 #define MIN_RMA_SLOF            128UL
106 
107 #define PHANDLE_INTC            0x00001111
108 
109 /* These two functions implement the VCPU id numbering: one to compute them
110  * all and one to identify thread 0 of a VCORE. Any change to the first one
111  * is likely to have an impact on the second one, so let's keep them close.
112  */
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 {
115     MachineState *ms = MACHINE(spapr);
116     unsigned int smp_threads = ms->smp.threads;
117 
118     assert(spapr->vsmt);
119     return
120         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 }
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123                                       PowerPCCPU *cpu)
124 {
125     assert(spapr->vsmt);
126     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 }
128 
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132      * and newer QEMUs don't even have them. In both cases, we don't want
133      * to send anything on the wire.
134      */
135     return false;
136 }
137 
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139     .name = "icp/server",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .needed = pre_2_10_vmstate_dummy_icp_needed,
143     .fields = (VMStateField[]) {
144         VMSTATE_UNUSED(4), /* uint32_t xirr */
145         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146         VMSTATE_UNUSED(1), /* uint8_t mfrr */
147         VMSTATE_END_OF_LIST()
148     },
149 };
150 
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154                      (void *)(uintptr_t) i);
155 }
156 
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160                        (void *)(uintptr_t) i);
161 }
162 
163 int spapr_max_server_number(SpaprMachineState *spapr)
164 {
165     MachineState *ms = MACHINE(spapr);
166 
167     assert(spapr->vsmt);
168     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 }
170 
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172                                   int smt_threads)
173 {
174     int i, ret = 0;
175     uint32_t servers_prop[smt_threads];
176     uint32_t gservers_prop[smt_threads * 2];
177     int index = spapr_get_vcpu_id(cpu);
178 
179     if (cpu->compat_pvr) {
180         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181         if (ret < 0) {
182             return ret;
183         }
184     }
185 
186     /* Build interrupt servers and gservers properties */
187     for (i = 0; i < smt_threads; i++) {
188         servers_prop[i] = cpu_to_be32(index + i);
189         /* Hack, direct the group queues back to cpu 0 */
190         gservers_prop[i*2] = cpu_to_be32(index + i);
191         gservers_prop[i*2 + 1] = 0;
192     }
193     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194                       servers_prop, sizeof(servers_prop));
195     if (ret < 0) {
196         return ret;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199                       gservers_prop, sizeof(gservers_prop));
200 
201     return ret;
202 }
203 
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 {
206     int index = spapr_get_vcpu_id(cpu);
207     uint32_t associativity[] = {cpu_to_be32(0x5),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(cpu->node_id),
212                                 cpu_to_be32(index)};
213 
214     /* Advertise NUMA via ibm,associativity */
215     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216                           sizeof(associativity));
217 }
218 
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221                                        PowerPCCPU *cpu,
222                                        void *fdt, int offset)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300     if (machine->numa_state->num_nodes) {
301         int i;
302         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303             if (machine->numa_state->nodes[i].node_mem) {
304                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305                            machine->ram_size);
306             }
307         }
308     }
309     return machine->ram_size;
310 }
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318                                        hwaddr size)
319 {
320     uint32_t associativity[] = {
321         cpu_to_be32(0x4), /* length */
322         cpu_to_be32(0x0), cpu_to_be32(0x0),
323         cpu_to_be32(0x0), cpu_to_be32(nodeid)
324     };
325     char mem_name[32];
326     uint64_t mem_reg_property[2];
327     int off;
328 
329     mem_reg_property[0] = cpu_to_be64(start);
330     mem_reg_property[1] = cpu_to_be64(size);
331 
332     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333     off = fdt_add_subnode(fdt, 0, mem_name);
334     _FDT(off);
335     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337                       sizeof(mem_reg_property))));
338     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339                       sizeof(associativity))));
340     return off;
341 }
342 
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
344 {
345     MachineState *machine = MACHINE(spapr);
346     hwaddr mem_start, node_size;
347     int i, nb_nodes = machine->numa_state->num_nodes;
348     NodeInfo *nodes = machine->numa_state->nodes;
349     NodeInfo ramnode;
350 
351     /* No NUMA nodes, assume there is just one node with whole RAM */
352     if (!nb_nodes) {
353         nb_nodes = 1;
354         ramnode.node_mem = machine->ram_size;
355         nodes = &ramnode;
356     }
357 
358     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
359         if (!nodes[i].node_mem) {
360             continue;
361         }
362         if (mem_start >= machine->ram_size) {
363             node_size = 0;
364         } else {
365             node_size = nodes[i].node_mem;
366             if (node_size > machine->ram_size - mem_start) {
367                 node_size = machine->ram_size - mem_start;
368             }
369         }
370         if (!mem_start) {
371             /* spapr_machine_init() checks for rma_size <= node0_size
372              * already */
373             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
374             mem_start += spapr->rma_size;
375             node_size -= spapr->rma_size;
376         }
377         for ( ; node_size; ) {
378             hwaddr sizetmp = pow2floor(node_size);
379 
380             /* mem_start != 0 here */
381             if (ctzl(mem_start) < ctzl(sizetmp)) {
382                 sizetmp = 1ULL << ctzl(mem_start);
383             }
384 
385             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
386             node_size -= sizetmp;
387             mem_start += sizetmp;
388         }
389     }
390 
391     return 0;
392 }
393 
394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395                                   SpaprMachineState *spapr)
396 {
397     MachineState *ms = MACHINE(spapr);
398     PowerPCCPU *cpu = POWERPC_CPU(cs);
399     CPUPPCState *env = &cpu->env;
400     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
401     int index = spapr_get_vcpu_id(cpu);
402     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
403                        0xffffffff, 0xffffffff};
404     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
405         : SPAPR_TIMEBASE_FREQ;
406     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
407     uint32_t page_sizes_prop[64];
408     size_t page_sizes_prop_size;
409     unsigned int smp_threads = ms->smp.threads;
410     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
411     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
412     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
413     SpaprDrc *drc;
414     int drc_index;
415     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
416     int i;
417 
418     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
419     if (drc) {
420         drc_index = spapr_drc_index(drc);
421         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
422     }
423 
424     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
425     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
426 
427     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
428     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
429                            env->dcache_line_size)));
430     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
431                            env->dcache_line_size)));
432     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
433                            env->icache_line_size)));
434     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
435                            env->icache_line_size)));
436 
437     if (pcc->l1_dcache_size) {
438         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
439                                pcc->l1_dcache_size)));
440     } else {
441         warn_report("Unknown L1 dcache size for cpu");
442     }
443     if (pcc->l1_icache_size) {
444         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
445                                pcc->l1_icache_size)));
446     } else {
447         warn_report("Unknown L1 icache size for cpu");
448     }
449 
450     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
451     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
452     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
453     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
454     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
455     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
456 
457     if (env->spr_cb[SPR_PURR].oea_read) {
458         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
459     }
460     if (env->spr_cb[SPR_SPURR].oea_read) {
461         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
462     }
463 
464     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
465         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
466                           segs, sizeof(segs))));
467     }
468 
469     /* Advertise VSX (vector extensions) if available
470      *   1               == VMX / Altivec available
471      *   2               == VSX available
472      *
473      * Only CPUs for which we create core types in spapr_cpu_core.c
474      * are possible, and all of those have VMX */
475     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
476         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
477     } else {
478         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
479     }
480 
481     /* Advertise DFP (Decimal Floating Point) if available
482      *   0 / no property == no DFP
483      *   1               == DFP available */
484     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
485         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
486     }
487 
488     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
489                                                       sizeof(page_sizes_prop));
490     if (page_sizes_prop_size) {
491         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
492                           page_sizes_prop, page_sizes_prop_size)));
493     }
494 
495     spapr_populate_pa_features(spapr, cpu, fdt, offset);
496 
497     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
498                            cs->cpu_index / vcpus_per_socket)));
499 
500     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
501                       pft_size_prop, sizeof(pft_size_prop))));
502 
503     if (ms->numa_state->num_nodes > 1) {
504         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
505     }
506 
507     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
508 
509     if (pcc->radix_page_info) {
510         for (i = 0; i < pcc->radix_page_info->count; i++) {
511             radix_AP_encodings[i] =
512                 cpu_to_be32(pcc->radix_page_info->entries[i]);
513         }
514         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
515                           radix_AP_encodings,
516                           pcc->radix_page_info->count *
517                           sizeof(radix_AP_encodings[0]))));
518     }
519 
520     /*
521      * We set this property to let the guest know that it can use the large
522      * decrementer and its width in bits.
523      */
524     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
525         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
526                               pcc->lrg_decr_bits)));
527 }
528 
529 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
530 {
531     CPUState **rev;
532     CPUState *cs;
533     int n_cpus;
534     int cpus_offset;
535     char *nodename;
536     int i;
537 
538     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
539     _FDT(cpus_offset);
540     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
541     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
542 
543     /*
544      * We walk the CPUs in reverse order to ensure that CPU DT nodes
545      * created by fdt_add_subnode() end up in the right order in FDT
546      * for the guest kernel the enumerate the CPUs correctly.
547      *
548      * The CPU list cannot be traversed in reverse order, so we need
549      * to do extra work.
550      */
551     n_cpus = 0;
552     rev = NULL;
553     CPU_FOREACH(cs) {
554         rev = g_renew(CPUState *, rev, n_cpus + 1);
555         rev[n_cpus++] = cs;
556     }
557 
558     for (i = n_cpus - 1; i >= 0; i--) {
559         CPUState *cs = rev[i];
560         PowerPCCPU *cpu = POWERPC_CPU(cs);
561         int index = spapr_get_vcpu_id(cpu);
562         DeviceClass *dc = DEVICE_GET_CLASS(cs);
563         int offset;
564 
565         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
566             continue;
567         }
568 
569         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
570         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
571         g_free(nodename);
572         _FDT(offset);
573         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
574     }
575 
576     g_free(rev);
577 }
578 
579 static int spapr_rng_populate_dt(void *fdt)
580 {
581     int node;
582     int ret;
583 
584     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
585     if (node <= 0) {
586         return -1;
587     }
588     ret = fdt_setprop_string(fdt, node, "device_type",
589                              "ibm,platform-facilities");
590     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
591     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
592 
593     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
594     if (node <= 0) {
595         return -1;
596     }
597     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
598 
599     return ret ? -1 : 0;
600 }
601 
602 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
603 {
604     MemoryDeviceInfoList *info;
605 
606     for (info = list; info; info = info->next) {
607         MemoryDeviceInfo *value = info->value;
608 
609         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
610             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
611 
612             if (addr >= pcdimm_info->addr &&
613                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
614                 return pcdimm_info->node;
615             }
616         }
617     }
618 
619     return -1;
620 }
621 
622 struct sPAPRDrconfCellV2 {
623      uint32_t seq_lmbs;
624      uint64_t base_addr;
625      uint32_t drc_index;
626      uint32_t aa_index;
627      uint32_t flags;
628 } QEMU_PACKED;
629 
630 typedef struct DrconfCellQueue {
631     struct sPAPRDrconfCellV2 cell;
632     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
633 } DrconfCellQueue;
634 
635 static DrconfCellQueue *
636 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
637                       uint32_t drc_index, uint32_t aa_index,
638                       uint32_t flags)
639 {
640     DrconfCellQueue *elem;
641 
642     elem = g_malloc0(sizeof(*elem));
643     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
644     elem->cell.base_addr = cpu_to_be64(base_addr);
645     elem->cell.drc_index = cpu_to_be32(drc_index);
646     elem->cell.aa_index = cpu_to_be32(aa_index);
647     elem->cell.flags = cpu_to_be32(flags);
648 
649     return elem;
650 }
651 
652 /* ibm,dynamic-memory-v2 */
653 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
654                                    int offset, MemoryDeviceInfoList *dimms)
655 {
656     MachineState *machine = MACHINE(spapr);
657     uint8_t *int_buf, *cur_index;
658     int ret;
659     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
660     uint64_t addr, cur_addr, size;
661     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
662     uint64_t mem_end = machine->device_memory->base +
663                        memory_region_size(&machine->device_memory->mr);
664     uint32_t node, buf_len, nr_entries = 0;
665     SpaprDrc *drc;
666     DrconfCellQueue *elem, *next;
667     MemoryDeviceInfoList *info;
668     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
669         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
670 
671     /* Entry to cover RAM and the gap area */
672     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
673                                  SPAPR_LMB_FLAGS_RESERVED |
674                                  SPAPR_LMB_FLAGS_DRC_INVALID);
675     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
676     nr_entries++;
677 
678     cur_addr = machine->device_memory->base;
679     for (info = dimms; info; info = info->next) {
680         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
681 
682         addr = di->addr;
683         size = di->size;
684         node = di->node;
685 
686         /* Entry for hot-pluggable area */
687         if (cur_addr < addr) {
688             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
689             g_assert(drc);
690             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
691                                          cur_addr, spapr_drc_index(drc), -1, 0);
692             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
693             nr_entries++;
694         }
695 
696         /* Entry for DIMM */
697         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
698         g_assert(drc);
699         elem = spapr_get_drconf_cell(size / lmb_size, addr,
700                                      spapr_drc_index(drc), node,
701                                      SPAPR_LMB_FLAGS_ASSIGNED);
702         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
703         nr_entries++;
704         cur_addr = addr + size;
705     }
706 
707     /* Entry for remaining hotpluggable area */
708     if (cur_addr < mem_end) {
709         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
710         g_assert(drc);
711         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
712                                      cur_addr, spapr_drc_index(drc), -1, 0);
713         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
714         nr_entries++;
715     }
716 
717     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
718     int_buf = cur_index = g_malloc0(buf_len);
719     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
720     cur_index += sizeof(nr_entries);
721 
722     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
723         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
724         cur_index += sizeof(elem->cell);
725         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
726         g_free(elem);
727     }
728 
729     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
730     g_free(int_buf);
731     if (ret < 0) {
732         return -1;
733     }
734     return 0;
735 }
736 
737 /* ibm,dynamic-memory */
738 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
739                                    int offset, MemoryDeviceInfoList *dimms)
740 {
741     MachineState *machine = MACHINE(spapr);
742     int i, ret;
743     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
744     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
745     uint32_t nr_lmbs = (machine->device_memory->base +
746                        memory_region_size(&machine->device_memory->mr)) /
747                        lmb_size;
748     uint32_t *int_buf, *cur_index, buf_len;
749 
750     /*
751      * Allocate enough buffer size to fit in ibm,dynamic-memory
752      */
753     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
754     cur_index = int_buf = g_malloc0(buf_len);
755     int_buf[0] = cpu_to_be32(nr_lmbs);
756     cur_index++;
757     for (i = 0; i < nr_lmbs; i++) {
758         uint64_t addr = i * lmb_size;
759         uint32_t *dynamic_memory = cur_index;
760 
761         if (i >= device_lmb_start) {
762             SpaprDrc *drc;
763 
764             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
765             g_assert(drc);
766 
767             dynamic_memory[0] = cpu_to_be32(addr >> 32);
768             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
769             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
770             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
771             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
772             if (memory_region_present(get_system_memory(), addr)) {
773                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
774             } else {
775                 dynamic_memory[5] = cpu_to_be32(0);
776             }
777         } else {
778             /*
779              * LMB information for RMA, boot time RAM and gap b/n RAM and
780              * device memory region -- all these are marked as reserved
781              * and as having no valid DRC.
782              */
783             dynamic_memory[0] = cpu_to_be32(addr >> 32);
784             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
785             dynamic_memory[2] = cpu_to_be32(0);
786             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
787             dynamic_memory[4] = cpu_to_be32(-1);
788             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
789                                             SPAPR_LMB_FLAGS_DRC_INVALID);
790         }
791 
792         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
793     }
794     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
795     g_free(int_buf);
796     if (ret < 0) {
797         return -1;
798     }
799     return 0;
800 }
801 
802 /*
803  * Adds ibm,dynamic-reconfiguration-memory node.
804  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
805  * of this device tree node.
806  */
807 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
808 {
809     MachineState *machine = MACHINE(spapr);
810     int nb_numa_nodes = machine->numa_state->num_nodes;
811     int ret, i, offset;
812     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
813     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
814     uint32_t *int_buf, *cur_index, buf_len;
815     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
816     MemoryDeviceInfoList *dimms = NULL;
817 
818     /*
819      * Don't create the node if there is no device memory
820      */
821     if (machine->ram_size == machine->maxram_size) {
822         return 0;
823     }
824 
825     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
826 
827     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
828                     sizeof(prop_lmb_size));
829     if (ret < 0) {
830         return ret;
831     }
832 
833     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
834     if (ret < 0) {
835         return ret;
836     }
837 
838     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
839     if (ret < 0) {
840         return ret;
841     }
842 
843     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
844     dimms = qmp_memory_device_list();
845     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
846         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
847     } else {
848         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
849     }
850     qapi_free_MemoryDeviceInfoList(dimms);
851 
852     if (ret < 0) {
853         return ret;
854     }
855 
856     /* ibm,associativity-lookup-arrays */
857     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
858     cur_index = int_buf = g_malloc0(buf_len);
859     int_buf[0] = cpu_to_be32(nr_nodes);
860     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
861     cur_index += 2;
862     for (i = 0; i < nr_nodes; i++) {
863         uint32_t associativity[] = {
864             cpu_to_be32(0x0),
865             cpu_to_be32(0x0),
866             cpu_to_be32(0x0),
867             cpu_to_be32(i)
868         };
869         memcpy(cur_index, associativity, sizeof(associativity));
870         cur_index += 4;
871     }
872     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
873             (cur_index - int_buf) * sizeof(uint32_t));
874     g_free(int_buf);
875 
876     return ret;
877 }
878 
879 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
880                                 SpaprOptionVector *ov5_updates)
881 {
882     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
883     int ret = 0, offset;
884 
885     /* Generate ibm,dynamic-reconfiguration-memory node if required */
886     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
887         g_assert(smc->dr_lmb_enabled);
888         ret = spapr_populate_drconf_memory(spapr, fdt);
889         if (ret) {
890             goto out;
891         }
892     }
893 
894     offset = fdt_path_offset(fdt, "/chosen");
895     if (offset < 0) {
896         offset = fdt_add_subnode(fdt, 0, "chosen");
897         if (offset < 0) {
898             return offset;
899         }
900     }
901     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
902                                  "ibm,architecture-vec-5");
903 
904 out:
905     return ret;
906 }
907 
908 static bool spapr_hotplugged_dev_before_cas(void)
909 {
910     Object *drc_container, *obj;
911     ObjectProperty *prop;
912     ObjectPropertyIterator iter;
913 
914     drc_container = container_get(object_get_root(), "/dr-connector");
915     object_property_iter_init(&iter, drc_container);
916     while ((prop = object_property_iter_next(&iter))) {
917         if (!strstart(prop->type, "link<", NULL)) {
918             continue;
919         }
920         obj = object_property_get_link(drc_container, prop->name, NULL);
921         if (spapr_drc_needed(obj)) {
922             return true;
923         }
924     }
925     return false;
926 }
927 
928 static void *spapr_build_fdt(SpaprMachineState *spapr);
929 
930 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
931                                  target_ulong addr, target_ulong size,
932                                  SpaprOptionVector *ov5_updates)
933 {
934     void *fdt;
935     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
936 
937     if (spapr_hotplugged_dev_before_cas()) {
938         return 1;
939     }
940 
941     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
942         error_report("SLOF provided an unexpected CAS buffer size "
943                      TARGET_FMT_lu " (min: %zu, max: %u)",
944                      size, sizeof(hdr), FW_MAX_SIZE);
945         exit(EXIT_FAILURE);
946     }
947 
948     size -= sizeof(hdr);
949 
950     fdt = spapr_build_fdt(spapr);
951     _FDT((fdt_pack(fdt)));
952 
953     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
954         g_free(fdt);
955         trace_spapr_cas_failed(size);
956         return -1;
957     }
958 
959     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
960     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
961     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
962 
963     g_free(spapr->fdt_blob);
964     spapr->fdt_size = fdt_totalsize(fdt);
965     spapr->fdt_initial_size = spapr->fdt_size;
966     spapr->fdt_blob = fdt;
967 
968     return 0;
969 }
970 
971 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
972 {
973     MachineState *ms = MACHINE(spapr);
974     int rtas;
975     GString *hypertas = g_string_sized_new(256);
976     GString *qemu_hypertas = g_string_sized_new(256);
977     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
978     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
979         memory_region_size(&MACHINE(spapr)->device_memory->mr);
980     uint32_t lrdr_capacity[] = {
981         cpu_to_be32(max_device_addr >> 32),
982         cpu_to_be32(max_device_addr & 0xffffffff),
983         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
984         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
985     };
986     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
987     uint32_t maxdomains[] = {
988         cpu_to_be32(4),
989         maxdomain,
990         maxdomain,
991         maxdomain,
992         cpu_to_be32(spapr->gpu_numa_id),
993     };
994 
995     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
996 
997     /* hypertas */
998     add_str(hypertas, "hcall-pft");
999     add_str(hypertas, "hcall-term");
1000     add_str(hypertas, "hcall-dabr");
1001     add_str(hypertas, "hcall-interrupt");
1002     add_str(hypertas, "hcall-tce");
1003     add_str(hypertas, "hcall-vio");
1004     add_str(hypertas, "hcall-splpar");
1005     add_str(hypertas, "hcall-join");
1006     add_str(hypertas, "hcall-bulk");
1007     add_str(hypertas, "hcall-set-mode");
1008     add_str(hypertas, "hcall-sprg0");
1009     add_str(hypertas, "hcall-copy");
1010     add_str(hypertas, "hcall-debug");
1011     add_str(hypertas, "hcall-vphn");
1012     add_str(qemu_hypertas, "hcall-memop1");
1013 
1014     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1015         add_str(hypertas, "hcall-multi-tce");
1016     }
1017 
1018     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1019         add_str(hypertas, "hcall-hpt-resize");
1020     }
1021 
1022     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1023                      hypertas->str, hypertas->len));
1024     g_string_free(hypertas, TRUE);
1025     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1026                      qemu_hypertas->str, qemu_hypertas->len));
1027     g_string_free(qemu_hypertas, TRUE);
1028 
1029     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1030                      refpoints, sizeof(refpoints)));
1031 
1032     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1033                      maxdomains, sizeof(maxdomains)));
1034 
1035     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1036                           RTAS_ERROR_LOG_MAX));
1037     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1038                           RTAS_EVENT_SCAN_RATE));
1039 
1040     g_assert(msi_nonbroken);
1041     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1042 
1043     /*
1044      * According to PAPR, rtas ibm,os-term does not guarantee a return
1045      * back to the guest cpu.
1046      *
1047      * While an additional ibm,extended-os-term property indicates
1048      * that rtas call return will always occur. Set this property.
1049      */
1050     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1051 
1052     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1053                      lrdr_capacity, sizeof(lrdr_capacity)));
1054 
1055     spapr_dt_rtas_tokens(fdt, rtas);
1056 }
1057 
1058 /*
1059  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1060  * and the XIVE features that the guest may request and thus the valid
1061  * values for bytes 23..26 of option vector 5:
1062  */
1063 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1064                                           int chosen)
1065 {
1066     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1067 
1068     char val[2 * 4] = {
1069         23, 0x00, /* XICS / XIVE mode */
1070         24, 0x00, /* Hash/Radix, filled in below. */
1071         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1072         26, 0x40, /* Radix options: GTSE == yes. */
1073     };
1074 
1075     if (spapr->irq->xics && spapr->irq->xive) {
1076         val[1] = SPAPR_OV5_XIVE_BOTH;
1077     } else if (spapr->irq->xive) {
1078         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1079     } else {
1080         assert(spapr->irq->xics);
1081         val[1] = SPAPR_OV5_XIVE_LEGACY;
1082     }
1083 
1084     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1085                           first_ppc_cpu->compat_pvr)) {
1086         /*
1087          * If we're in a pre POWER9 compat mode then the guest should
1088          * do hash and use the legacy interrupt mode
1089          */
1090         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1091         val[3] = 0x00; /* Hash */
1092     } else if (kvm_enabled()) {
1093         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1094             val[3] = 0x80; /* OV5_MMU_BOTH */
1095         } else if (kvmppc_has_cap_mmu_radix()) {
1096             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1097         } else {
1098             val[3] = 0x00; /* Hash */
1099         }
1100     } else {
1101         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1102         val[3] = 0xC0;
1103     }
1104     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1105                      val, sizeof(val)));
1106 }
1107 
1108 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1109 {
1110     MachineState *machine = MACHINE(spapr);
1111     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1112     int chosen;
1113     const char *boot_device = machine->boot_order;
1114     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1115     size_t cb = 0;
1116     char *bootlist = get_boot_devices_list(&cb);
1117 
1118     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1119 
1120     if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1121         _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1122                                 machine->kernel_cmdline));
1123     }
1124     if (spapr->initrd_size) {
1125         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1126                               spapr->initrd_base));
1127         _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1128                               spapr->initrd_base + spapr->initrd_size));
1129     }
1130 
1131     if (spapr->kernel_size) {
1132         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1133                               cpu_to_be64(spapr->kernel_size) };
1134 
1135         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1136                          &kprop, sizeof(kprop)));
1137         if (spapr->kernel_le) {
1138             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1139         }
1140     }
1141     if (boot_menu) {
1142         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1143     }
1144     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1145     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1146     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1147 
1148     if (cb && bootlist) {
1149         int i;
1150 
1151         for (i = 0; i < cb; i++) {
1152             if (bootlist[i] == '\n') {
1153                 bootlist[i] = ' ';
1154             }
1155         }
1156         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1157     }
1158 
1159     if (boot_device && strlen(boot_device)) {
1160         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1161     }
1162 
1163     if (!spapr->has_graphics && stdout_path) {
1164         /*
1165          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1166          * kernel. New platforms should only use the "stdout-path" property. Set
1167          * the new property and continue using older property to remain
1168          * compatible with the existing firmware.
1169          */
1170         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1171         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1172     }
1173 
1174     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1175     if (smc->linux_pci_probe) {
1176         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1177     }
1178 
1179     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1180 
1181     g_free(stdout_path);
1182     g_free(bootlist);
1183 }
1184 
1185 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1186 {
1187     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1188      * KVM to work under pHyp with some guest co-operation */
1189     int hypervisor;
1190     uint8_t hypercall[16];
1191 
1192     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1193     /* indicate KVM hypercall interface */
1194     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1195     if (kvmppc_has_cap_fixup_hcalls()) {
1196         /*
1197          * Older KVM versions with older guest kernels were broken
1198          * with the magic page, don't allow the guest to map it.
1199          */
1200         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1201                                   sizeof(hypercall))) {
1202             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1203                              hypercall, sizeof(hypercall)));
1204         }
1205     }
1206 }
1207 
1208 static void *spapr_build_fdt(SpaprMachineState *spapr)
1209 {
1210     MachineState *machine = MACHINE(spapr);
1211     MachineClass *mc = MACHINE_GET_CLASS(machine);
1212     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1213     int ret;
1214     void *fdt;
1215     SpaprPhbState *phb;
1216     char *buf;
1217 
1218     fdt = g_malloc0(FDT_MAX_SIZE);
1219     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1220 
1221     /* Root node */
1222     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1223     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1224     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1225 
1226     /* Guest UUID & Name*/
1227     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1228     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1229     if (qemu_uuid_set) {
1230         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1231     }
1232     g_free(buf);
1233 
1234     if (qemu_get_vm_name()) {
1235         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1236                                 qemu_get_vm_name()));
1237     }
1238 
1239     /* Host Model & Serial Number */
1240     if (spapr->host_model) {
1241         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1242     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1243         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1244         g_free(buf);
1245     }
1246 
1247     if (spapr->host_serial) {
1248         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1249     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1250         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1251         g_free(buf);
1252     }
1253 
1254     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1255     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1256 
1257     /* /interrupt controller */
1258     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1259                           PHANDLE_INTC);
1260 
1261     ret = spapr_populate_memory(spapr, fdt);
1262     if (ret < 0) {
1263         error_report("couldn't setup memory nodes in fdt");
1264         exit(1);
1265     }
1266 
1267     /* /vdevice */
1268     spapr_dt_vdevice(spapr->vio_bus, fdt);
1269 
1270     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1271         ret = spapr_rng_populate_dt(fdt);
1272         if (ret < 0) {
1273             error_report("could not set up rng device in the fdt");
1274             exit(1);
1275         }
1276     }
1277 
1278     QLIST_FOREACH(phb, &spapr->phbs, list) {
1279         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1280         if (ret < 0) {
1281             error_report("couldn't setup PCI devices in fdt");
1282             exit(1);
1283         }
1284     }
1285 
1286     /* cpus */
1287     spapr_populate_cpus_dt_node(fdt, spapr);
1288 
1289     if (smc->dr_lmb_enabled) {
1290         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1291     }
1292 
1293     if (mc->has_hotpluggable_cpus) {
1294         int offset = fdt_path_offset(fdt, "/cpus");
1295         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1296         if (ret < 0) {
1297             error_report("Couldn't set up CPU DR device tree properties");
1298             exit(1);
1299         }
1300     }
1301 
1302     /* /event-sources */
1303     spapr_dt_events(spapr, fdt);
1304 
1305     /* /rtas */
1306     spapr_dt_rtas(spapr, fdt);
1307 
1308     /* /chosen */
1309     spapr_dt_chosen(spapr, fdt);
1310 
1311     /* /hypervisor */
1312     if (kvm_enabled()) {
1313         spapr_dt_hypervisor(spapr, fdt);
1314     }
1315 
1316     /* Build memory reserve map */
1317     if (spapr->kernel_size) {
1318         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1319     }
1320     if (spapr->initrd_size) {
1321         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1322     }
1323 
1324     /* ibm,client-architecture-support updates */
1325     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1326     if (ret < 0) {
1327         error_report("couldn't setup CAS properties fdt");
1328         exit(1);
1329     }
1330 
1331     if (smc->dr_phb_enabled) {
1332         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1333         if (ret < 0) {
1334             error_report("Couldn't set up PHB DR device tree properties");
1335             exit(1);
1336         }
1337     }
1338 
1339     return fdt;
1340 }
1341 
1342 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1343 {
1344     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1345 }
1346 
1347 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1348                                     PowerPCCPU *cpu)
1349 {
1350     CPUPPCState *env = &cpu->env;
1351 
1352     /* The TCG path should also be holding the BQL at this point */
1353     g_assert(qemu_mutex_iothread_locked());
1354 
1355     if (msr_pr) {
1356         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1357         env->gpr[3] = H_PRIVILEGE;
1358     } else {
1359         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1360     }
1361 }
1362 
1363 struct LPCRSyncState {
1364     target_ulong value;
1365     target_ulong mask;
1366 };
1367 
1368 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1369 {
1370     struct LPCRSyncState *s = arg.host_ptr;
1371     PowerPCCPU *cpu = POWERPC_CPU(cs);
1372     CPUPPCState *env = &cpu->env;
1373     target_ulong lpcr;
1374 
1375     cpu_synchronize_state(cs);
1376     lpcr = env->spr[SPR_LPCR];
1377     lpcr &= ~s->mask;
1378     lpcr |= s->value;
1379     ppc_store_lpcr(cpu, lpcr);
1380 }
1381 
1382 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1383 {
1384     CPUState *cs;
1385     struct LPCRSyncState s = {
1386         .value = value,
1387         .mask = mask
1388     };
1389     CPU_FOREACH(cs) {
1390         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1391     }
1392 }
1393 
1394 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1395 {
1396     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1397 
1398     /* Copy PATE1:GR into PATE0:HR */
1399     entry->dw0 = spapr->patb_entry & PATE0_HR;
1400     entry->dw1 = spapr->patb_entry;
1401 }
1402 
1403 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1404 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1405 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1406 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1407 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1408 
1409 /*
1410  * Get the fd to access the kernel htab, re-opening it if necessary
1411  */
1412 static int get_htab_fd(SpaprMachineState *spapr)
1413 {
1414     Error *local_err = NULL;
1415 
1416     if (spapr->htab_fd >= 0) {
1417         return spapr->htab_fd;
1418     }
1419 
1420     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1421     if (spapr->htab_fd < 0) {
1422         error_report_err(local_err);
1423     }
1424 
1425     return spapr->htab_fd;
1426 }
1427 
1428 void close_htab_fd(SpaprMachineState *spapr)
1429 {
1430     if (spapr->htab_fd >= 0) {
1431         close(spapr->htab_fd);
1432     }
1433     spapr->htab_fd = -1;
1434 }
1435 
1436 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1437 {
1438     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 
1440     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1441 }
1442 
1443 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1444 {
1445     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 
1447     assert(kvm_enabled());
1448 
1449     if (!spapr->htab) {
1450         return 0;
1451     }
1452 
1453     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1454 }
1455 
1456 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1457                                                 hwaddr ptex, int n)
1458 {
1459     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1460     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1461 
1462     if (!spapr->htab) {
1463         /*
1464          * HTAB is controlled by KVM. Fetch into temporary buffer
1465          */
1466         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1467         kvmppc_read_hptes(hptes, ptex, n);
1468         return hptes;
1469     }
1470 
1471     /*
1472      * HTAB is controlled by QEMU. Just point to the internally
1473      * accessible PTEG.
1474      */
1475     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1476 }
1477 
1478 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1479                               const ppc_hash_pte64_t *hptes,
1480                               hwaddr ptex, int n)
1481 {
1482     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1483 
1484     if (!spapr->htab) {
1485         g_free((void *)hptes);
1486     }
1487 
1488     /* Nothing to do for qemu managed HPT */
1489 }
1490 
1491 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1492                       uint64_t pte0, uint64_t pte1)
1493 {
1494     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1495     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1496 
1497     if (!spapr->htab) {
1498         kvmppc_write_hpte(ptex, pte0, pte1);
1499     } else {
1500         if (pte0 & HPTE64_V_VALID) {
1501             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1502             /*
1503              * When setting valid, we write PTE1 first. This ensures
1504              * proper synchronization with the reading code in
1505              * ppc_hash64_pteg_search()
1506              */
1507             smp_wmb();
1508             stq_p(spapr->htab + offset, pte0);
1509         } else {
1510             stq_p(spapr->htab + offset, pte0);
1511             /*
1512              * When clearing it we set PTE0 first. This ensures proper
1513              * synchronization with the reading code in
1514              * ppc_hash64_pteg_search()
1515              */
1516             smp_wmb();
1517             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1518         }
1519     }
1520 }
1521 
1522 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1523                              uint64_t pte1)
1524 {
1525     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1526     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1527 
1528     if (!spapr->htab) {
1529         /* There should always be a hash table when this is called */
1530         error_report("spapr_hpte_set_c called with no hash table !");
1531         return;
1532     }
1533 
1534     /* The HW performs a non-atomic byte update */
1535     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1536 }
1537 
1538 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1539                              uint64_t pte1)
1540 {
1541     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1542     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1543 
1544     if (!spapr->htab) {
1545         /* There should always be a hash table when this is called */
1546         error_report("spapr_hpte_set_r called with no hash table !");
1547         return;
1548     }
1549 
1550     /* The HW performs a non-atomic byte update */
1551     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1552 }
1553 
1554 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1555 {
1556     int shift;
1557 
1558     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1559      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1560      * that's much more than is needed for Linux guests */
1561     shift = ctz64(pow2ceil(ramsize)) - 7;
1562     shift = MAX(shift, 18); /* Minimum architected size */
1563     shift = MIN(shift, 46); /* Maximum architected size */
1564     return shift;
1565 }
1566 
1567 void spapr_free_hpt(SpaprMachineState *spapr)
1568 {
1569     g_free(spapr->htab);
1570     spapr->htab = NULL;
1571     spapr->htab_shift = 0;
1572     close_htab_fd(spapr);
1573 }
1574 
1575 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1576                           Error **errp)
1577 {
1578     long rc;
1579 
1580     /* Clean up any HPT info from a previous boot */
1581     spapr_free_hpt(spapr);
1582 
1583     rc = kvmppc_reset_htab(shift);
1584     if (rc < 0) {
1585         /* kernel-side HPT needed, but couldn't allocate one */
1586         error_setg_errno(errp, errno,
1587                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1588                          shift);
1589         /* This is almost certainly fatal, but if the caller really
1590          * wants to carry on with shift == 0, it's welcome to try */
1591     } else if (rc > 0) {
1592         /* kernel-side HPT allocated */
1593         if (rc != shift) {
1594             error_setg(errp,
1595                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1596                        shift, rc);
1597         }
1598 
1599         spapr->htab_shift = shift;
1600         spapr->htab = NULL;
1601     } else {
1602         /* kernel-side HPT not needed, allocate in userspace instead */
1603         size_t size = 1ULL << shift;
1604         int i;
1605 
1606         spapr->htab = qemu_memalign(size, size);
1607         if (!spapr->htab) {
1608             error_setg_errno(errp, errno,
1609                              "Could not allocate HPT of order %d", shift);
1610             return;
1611         }
1612 
1613         memset(spapr->htab, 0, size);
1614         spapr->htab_shift = shift;
1615 
1616         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1617             DIRTY_HPTE(HPTE(spapr->htab, i));
1618         }
1619     }
1620     /* We're setting up a hash table, so that means we're not radix */
1621     spapr->patb_entry = 0;
1622     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1623 }
1624 
1625 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1626 {
1627     int hpt_shift;
1628 
1629     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1630         || (spapr->cas_reboot
1631             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1632         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1633     } else {
1634         uint64_t current_ram_size;
1635 
1636         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1637         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1638     }
1639     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1640 
1641     if (spapr->vrma_adjust) {
1642         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1643                                           spapr->htab_shift);
1644     }
1645 }
1646 
1647 static int spapr_reset_drcs(Object *child, void *opaque)
1648 {
1649     SpaprDrc *drc =
1650         (SpaprDrc *) object_dynamic_cast(child,
1651                                                  TYPE_SPAPR_DR_CONNECTOR);
1652 
1653     if (drc) {
1654         spapr_drc_reset(drc);
1655     }
1656 
1657     return 0;
1658 }
1659 
1660 static void spapr_machine_reset(MachineState *machine)
1661 {
1662     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1663     PowerPCCPU *first_ppc_cpu;
1664     hwaddr fdt_addr;
1665     void *fdt;
1666     int rc;
1667 
1668     spapr_caps_apply(spapr);
1669 
1670     first_ppc_cpu = POWERPC_CPU(first_cpu);
1671     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1672         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1673                               spapr->max_compat_pvr)) {
1674         /*
1675          * If using KVM with radix mode available, VCPUs can be started
1676          * without a HPT because KVM will start them in radix mode.
1677          * Set the GR bit in PATE so that we know there is no HPT.
1678          */
1679         spapr->patb_entry = PATE1_GR;
1680         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1681     } else {
1682         spapr_setup_hpt_and_vrma(spapr);
1683     }
1684 
1685     qemu_devices_reset();
1686 
1687     /*
1688      * If this reset wasn't generated by CAS, we should reset our
1689      * negotiated options and start from scratch
1690      */
1691     if (!spapr->cas_reboot) {
1692         spapr_ovec_cleanup(spapr->ov5_cas);
1693         spapr->ov5_cas = spapr_ovec_new();
1694 
1695         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1696     }
1697 
1698     /*
1699      * This is fixing some of the default configuration of the XIVE
1700      * devices. To be called after the reset of the machine devices.
1701      */
1702     spapr_irq_reset(spapr, &error_fatal);
1703 
1704     /*
1705      * There is no CAS under qtest. Simulate one to please the code that
1706      * depends on spapr->ov5_cas. This is especially needed to test device
1707      * unplug, so we do that before resetting the DRCs.
1708      */
1709     if (qtest_enabled()) {
1710         spapr_ovec_cleanup(spapr->ov5_cas);
1711         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1712     }
1713 
1714     /* DRC reset may cause a device to be unplugged. This will cause troubles
1715      * if this device is used by another device (eg, a running vhost backend
1716      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1717      * situations, we reset DRCs after all devices have been reset.
1718      */
1719     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1720 
1721     spapr_clear_pending_events(spapr);
1722 
1723     /*
1724      * We place the device tree and RTAS just below either the top of the RMA,
1725      * or just below 2GB, whichever is lower, so that it can be
1726      * processed with 32-bit real mode code if necessary
1727      */
1728     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1729 
1730     fdt = spapr_build_fdt(spapr);
1731 
1732     rc = fdt_pack(fdt);
1733 
1734     /* Should only fail if we've built a corrupted tree */
1735     assert(rc == 0);
1736 
1737     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1738         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1739                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1740         exit(1);
1741     }
1742 
1743     /* Load the fdt */
1744     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1745     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1746     g_free(spapr->fdt_blob);
1747     spapr->fdt_size = fdt_totalsize(fdt);
1748     spapr->fdt_initial_size = spapr->fdt_size;
1749     spapr->fdt_blob = fdt;
1750 
1751     /* Set up the entry state */
1752     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1753     first_ppc_cpu->env.gpr[5] = 0;
1754 
1755     spapr->cas_reboot = false;
1756 }
1757 
1758 static void spapr_create_nvram(SpaprMachineState *spapr)
1759 {
1760     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1761     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1762 
1763     if (dinfo) {
1764         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1765                             &error_fatal);
1766     }
1767 
1768     qdev_init_nofail(dev);
1769 
1770     spapr->nvram = (struct SpaprNvram *)dev;
1771 }
1772 
1773 static void spapr_rtc_create(SpaprMachineState *spapr)
1774 {
1775     object_initialize_child(OBJECT(spapr), "rtc",
1776                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1777                             &error_fatal, NULL);
1778     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1779                               &error_fatal);
1780     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1781                               "date", &error_fatal);
1782 }
1783 
1784 /* Returns whether we want to use VGA or not */
1785 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1786 {
1787     switch (vga_interface_type) {
1788     case VGA_NONE:
1789         return false;
1790     case VGA_DEVICE:
1791         return true;
1792     case VGA_STD:
1793     case VGA_VIRTIO:
1794     case VGA_CIRRUS:
1795         return pci_vga_init(pci_bus) != NULL;
1796     default:
1797         error_setg(errp,
1798                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1799         return false;
1800     }
1801 }
1802 
1803 static int spapr_pre_load(void *opaque)
1804 {
1805     int rc;
1806 
1807     rc = spapr_caps_pre_load(opaque);
1808     if (rc) {
1809         return rc;
1810     }
1811 
1812     return 0;
1813 }
1814 
1815 static int spapr_post_load(void *opaque, int version_id)
1816 {
1817     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1818     int err = 0;
1819 
1820     err = spapr_caps_post_migration(spapr);
1821     if (err) {
1822         return err;
1823     }
1824 
1825     /*
1826      * In earlier versions, there was no separate qdev for the PAPR
1827      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1828      * So when migrating from those versions, poke the incoming offset
1829      * value into the RTC device
1830      */
1831     if (version_id < 3) {
1832         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1833         if (err) {
1834             return err;
1835         }
1836     }
1837 
1838     if (kvm_enabled() && spapr->patb_entry) {
1839         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1840         bool radix = !!(spapr->patb_entry & PATE1_GR);
1841         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1842 
1843         /*
1844          * Update LPCR:HR and UPRT as they may not be set properly in
1845          * the stream
1846          */
1847         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1848                             LPCR_HR | LPCR_UPRT);
1849 
1850         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1851         if (err) {
1852             error_report("Process table config unsupported by the host");
1853             return -EINVAL;
1854         }
1855     }
1856 
1857     err = spapr_irq_post_load(spapr, version_id);
1858     if (err) {
1859         return err;
1860     }
1861 
1862     return err;
1863 }
1864 
1865 static int spapr_pre_save(void *opaque)
1866 {
1867     int rc;
1868 
1869     rc = spapr_caps_pre_save(opaque);
1870     if (rc) {
1871         return rc;
1872     }
1873 
1874     return 0;
1875 }
1876 
1877 static bool version_before_3(void *opaque, int version_id)
1878 {
1879     return version_id < 3;
1880 }
1881 
1882 static bool spapr_pending_events_needed(void *opaque)
1883 {
1884     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1885     return !QTAILQ_EMPTY(&spapr->pending_events);
1886 }
1887 
1888 static const VMStateDescription vmstate_spapr_event_entry = {
1889     .name = "spapr_event_log_entry",
1890     .version_id = 1,
1891     .minimum_version_id = 1,
1892     .fields = (VMStateField[]) {
1893         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1894         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1895         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1896                                      NULL, extended_length),
1897         VMSTATE_END_OF_LIST()
1898     },
1899 };
1900 
1901 static const VMStateDescription vmstate_spapr_pending_events = {
1902     .name = "spapr_pending_events",
1903     .version_id = 1,
1904     .minimum_version_id = 1,
1905     .needed = spapr_pending_events_needed,
1906     .fields = (VMStateField[]) {
1907         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1908                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1909         VMSTATE_END_OF_LIST()
1910     },
1911 };
1912 
1913 static bool spapr_ov5_cas_needed(void *opaque)
1914 {
1915     SpaprMachineState *spapr = opaque;
1916     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1917     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1918     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1919     bool cas_needed;
1920 
1921     /* Prior to the introduction of SpaprOptionVector, we had two option
1922      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1923      * Both of these options encode machine topology into the device-tree
1924      * in such a way that the now-booted OS should still be able to interact
1925      * appropriately with QEMU regardless of what options were actually
1926      * negotiatied on the source side.
1927      *
1928      * As such, we can avoid migrating the CAS-negotiated options if these
1929      * are the only options available on the current machine/platform.
1930      * Since these are the only options available for pseries-2.7 and
1931      * earlier, this allows us to maintain old->new/new->old migration
1932      * compatibility.
1933      *
1934      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1935      * via default pseries-2.8 machines and explicit command-line parameters.
1936      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1937      * of the actual CAS-negotiated values to continue working properly. For
1938      * example, availability of memory unplug depends on knowing whether
1939      * OV5_HP_EVT was negotiated via CAS.
1940      *
1941      * Thus, for any cases where the set of available CAS-negotiatable
1942      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1943      * include the CAS-negotiated options in the migration stream, unless
1944      * if they affect boot time behaviour only.
1945      */
1946     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1947     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1948     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1949 
1950     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1951      * the mask itself since in the future it's possible "legacy" bits may be
1952      * removed via machine options, which could generate a false positive
1953      * that breaks migration.
1954      */
1955     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1956     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1957 
1958     spapr_ovec_cleanup(ov5_mask);
1959     spapr_ovec_cleanup(ov5_legacy);
1960     spapr_ovec_cleanup(ov5_removed);
1961 
1962     return cas_needed;
1963 }
1964 
1965 static const VMStateDescription vmstate_spapr_ov5_cas = {
1966     .name = "spapr_option_vector_ov5_cas",
1967     .version_id = 1,
1968     .minimum_version_id = 1,
1969     .needed = spapr_ov5_cas_needed,
1970     .fields = (VMStateField[]) {
1971         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1972                                  vmstate_spapr_ovec, SpaprOptionVector),
1973         VMSTATE_END_OF_LIST()
1974     },
1975 };
1976 
1977 static bool spapr_patb_entry_needed(void *opaque)
1978 {
1979     SpaprMachineState *spapr = opaque;
1980 
1981     return !!spapr->patb_entry;
1982 }
1983 
1984 static const VMStateDescription vmstate_spapr_patb_entry = {
1985     .name = "spapr_patb_entry",
1986     .version_id = 1,
1987     .minimum_version_id = 1,
1988     .needed = spapr_patb_entry_needed,
1989     .fields = (VMStateField[]) {
1990         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1991         VMSTATE_END_OF_LIST()
1992     },
1993 };
1994 
1995 static bool spapr_irq_map_needed(void *opaque)
1996 {
1997     SpaprMachineState *spapr = opaque;
1998 
1999     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2000 }
2001 
2002 static const VMStateDescription vmstate_spapr_irq_map = {
2003     .name = "spapr_irq_map",
2004     .version_id = 1,
2005     .minimum_version_id = 1,
2006     .needed = spapr_irq_map_needed,
2007     .fields = (VMStateField[]) {
2008         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2009         VMSTATE_END_OF_LIST()
2010     },
2011 };
2012 
2013 static bool spapr_dtb_needed(void *opaque)
2014 {
2015     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2016 
2017     return smc->update_dt_enabled;
2018 }
2019 
2020 static int spapr_dtb_pre_load(void *opaque)
2021 {
2022     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2023 
2024     g_free(spapr->fdt_blob);
2025     spapr->fdt_blob = NULL;
2026     spapr->fdt_size = 0;
2027 
2028     return 0;
2029 }
2030 
2031 static const VMStateDescription vmstate_spapr_dtb = {
2032     .name = "spapr_dtb",
2033     .version_id = 1,
2034     .minimum_version_id = 1,
2035     .needed = spapr_dtb_needed,
2036     .pre_load = spapr_dtb_pre_load,
2037     .fields = (VMStateField[]) {
2038         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2039         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2040         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2041                                      fdt_size),
2042         VMSTATE_END_OF_LIST()
2043     },
2044 };
2045 
2046 static const VMStateDescription vmstate_spapr = {
2047     .name = "spapr",
2048     .version_id = 3,
2049     .minimum_version_id = 1,
2050     .pre_load = spapr_pre_load,
2051     .post_load = spapr_post_load,
2052     .pre_save = spapr_pre_save,
2053     .fields = (VMStateField[]) {
2054         /* used to be @next_irq */
2055         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2056 
2057         /* RTC offset */
2058         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2059 
2060         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2061         VMSTATE_END_OF_LIST()
2062     },
2063     .subsections = (const VMStateDescription*[]) {
2064         &vmstate_spapr_ov5_cas,
2065         &vmstate_spapr_patb_entry,
2066         &vmstate_spapr_pending_events,
2067         &vmstate_spapr_cap_htm,
2068         &vmstate_spapr_cap_vsx,
2069         &vmstate_spapr_cap_dfp,
2070         &vmstate_spapr_cap_cfpc,
2071         &vmstate_spapr_cap_sbbc,
2072         &vmstate_spapr_cap_ibs,
2073         &vmstate_spapr_cap_hpt_maxpagesize,
2074         &vmstate_spapr_irq_map,
2075         &vmstate_spapr_cap_nested_kvm_hv,
2076         &vmstate_spapr_dtb,
2077         &vmstate_spapr_cap_large_decr,
2078         &vmstate_spapr_cap_ccf_assist,
2079         NULL
2080     }
2081 };
2082 
2083 static int htab_save_setup(QEMUFile *f, void *opaque)
2084 {
2085     SpaprMachineState *spapr = opaque;
2086 
2087     /* "Iteration" header */
2088     if (!spapr->htab_shift) {
2089         qemu_put_be32(f, -1);
2090     } else {
2091         qemu_put_be32(f, spapr->htab_shift);
2092     }
2093 
2094     if (spapr->htab) {
2095         spapr->htab_save_index = 0;
2096         spapr->htab_first_pass = true;
2097     } else {
2098         if (spapr->htab_shift) {
2099             assert(kvm_enabled());
2100         }
2101     }
2102 
2103 
2104     return 0;
2105 }
2106 
2107 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2108                             int chunkstart, int n_valid, int n_invalid)
2109 {
2110     qemu_put_be32(f, chunkstart);
2111     qemu_put_be16(f, n_valid);
2112     qemu_put_be16(f, n_invalid);
2113     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2114                     HASH_PTE_SIZE_64 * n_valid);
2115 }
2116 
2117 static void htab_save_end_marker(QEMUFile *f)
2118 {
2119     qemu_put_be32(f, 0);
2120     qemu_put_be16(f, 0);
2121     qemu_put_be16(f, 0);
2122 }
2123 
2124 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2125                                  int64_t max_ns)
2126 {
2127     bool has_timeout = max_ns != -1;
2128     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2129     int index = spapr->htab_save_index;
2130     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2131 
2132     assert(spapr->htab_first_pass);
2133 
2134     do {
2135         int chunkstart;
2136 
2137         /* Consume invalid HPTEs */
2138         while ((index < htabslots)
2139                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2140             CLEAN_HPTE(HPTE(spapr->htab, index));
2141             index++;
2142         }
2143 
2144         /* Consume valid HPTEs */
2145         chunkstart = index;
2146         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2147                && HPTE_VALID(HPTE(spapr->htab, index))) {
2148             CLEAN_HPTE(HPTE(spapr->htab, index));
2149             index++;
2150         }
2151 
2152         if (index > chunkstart) {
2153             int n_valid = index - chunkstart;
2154 
2155             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2156 
2157             if (has_timeout &&
2158                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2159                 break;
2160             }
2161         }
2162     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2163 
2164     if (index >= htabslots) {
2165         assert(index == htabslots);
2166         index = 0;
2167         spapr->htab_first_pass = false;
2168     }
2169     spapr->htab_save_index = index;
2170 }
2171 
2172 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2173                                 int64_t max_ns)
2174 {
2175     bool final = max_ns < 0;
2176     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2177     int examined = 0, sent = 0;
2178     int index = spapr->htab_save_index;
2179     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2180 
2181     assert(!spapr->htab_first_pass);
2182 
2183     do {
2184         int chunkstart, invalidstart;
2185 
2186         /* Consume non-dirty HPTEs */
2187         while ((index < htabslots)
2188                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2189             index++;
2190             examined++;
2191         }
2192 
2193         chunkstart = index;
2194         /* Consume valid dirty HPTEs */
2195         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2196                && HPTE_DIRTY(HPTE(spapr->htab, index))
2197                && HPTE_VALID(HPTE(spapr->htab, index))) {
2198             CLEAN_HPTE(HPTE(spapr->htab, index));
2199             index++;
2200             examined++;
2201         }
2202 
2203         invalidstart = index;
2204         /* Consume invalid dirty HPTEs */
2205         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2206                && HPTE_DIRTY(HPTE(spapr->htab, index))
2207                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2208             CLEAN_HPTE(HPTE(spapr->htab, index));
2209             index++;
2210             examined++;
2211         }
2212 
2213         if (index > chunkstart) {
2214             int n_valid = invalidstart - chunkstart;
2215             int n_invalid = index - invalidstart;
2216 
2217             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2218             sent += index - chunkstart;
2219 
2220             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221                 break;
2222             }
2223         }
2224 
2225         if (examined >= htabslots) {
2226             break;
2227         }
2228 
2229         if (index >= htabslots) {
2230             assert(index == htabslots);
2231             index = 0;
2232         }
2233     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2234 
2235     if (index >= htabslots) {
2236         assert(index == htabslots);
2237         index = 0;
2238     }
2239 
2240     spapr->htab_save_index = index;
2241 
2242     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2243 }
2244 
2245 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2246 #define MAX_KVM_BUF_SIZE    2048
2247 
2248 static int htab_save_iterate(QEMUFile *f, void *opaque)
2249 {
2250     SpaprMachineState *spapr = opaque;
2251     int fd;
2252     int rc = 0;
2253 
2254     /* Iteration header */
2255     if (!spapr->htab_shift) {
2256         qemu_put_be32(f, -1);
2257         return 1;
2258     } else {
2259         qemu_put_be32(f, 0);
2260     }
2261 
2262     if (!spapr->htab) {
2263         assert(kvm_enabled());
2264 
2265         fd = get_htab_fd(spapr);
2266         if (fd < 0) {
2267             return fd;
2268         }
2269 
2270         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2271         if (rc < 0) {
2272             return rc;
2273         }
2274     } else  if (spapr->htab_first_pass) {
2275         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2276     } else {
2277         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2278     }
2279 
2280     htab_save_end_marker(f);
2281 
2282     return rc;
2283 }
2284 
2285 static int htab_save_complete(QEMUFile *f, void *opaque)
2286 {
2287     SpaprMachineState *spapr = opaque;
2288     int fd;
2289 
2290     /* Iteration header */
2291     if (!spapr->htab_shift) {
2292         qemu_put_be32(f, -1);
2293         return 0;
2294     } else {
2295         qemu_put_be32(f, 0);
2296     }
2297 
2298     if (!spapr->htab) {
2299         int rc;
2300 
2301         assert(kvm_enabled());
2302 
2303         fd = get_htab_fd(spapr);
2304         if (fd < 0) {
2305             return fd;
2306         }
2307 
2308         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2309         if (rc < 0) {
2310             return rc;
2311         }
2312     } else {
2313         if (spapr->htab_first_pass) {
2314             htab_save_first_pass(f, spapr, -1);
2315         }
2316         htab_save_later_pass(f, spapr, -1);
2317     }
2318 
2319     /* End marker */
2320     htab_save_end_marker(f);
2321 
2322     return 0;
2323 }
2324 
2325 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2326 {
2327     SpaprMachineState *spapr = opaque;
2328     uint32_t section_hdr;
2329     int fd = -1;
2330     Error *local_err = NULL;
2331 
2332     if (version_id < 1 || version_id > 1) {
2333         error_report("htab_load() bad version");
2334         return -EINVAL;
2335     }
2336 
2337     section_hdr = qemu_get_be32(f);
2338 
2339     if (section_hdr == -1) {
2340         spapr_free_hpt(spapr);
2341         return 0;
2342     }
2343 
2344     if (section_hdr) {
2345         /* First section gives the htab size */
2346         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2347         if (local_err) {
2348             error_report_err(local_err);
2349             return -EINVAL;
2350         }
2351         return 0;
2352     }
2353 
2354     if (!spapr->htab) {
2355         assert(kvm_enabled());
2356 
2357         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2358         if (fd < 0) {
2359             error_report_err(local_err);
2360             return fd;
2361         }
2362     }
2363 
2364     while (true) {
2365         uint32_t index;
2366         uint16_t n_valid, n_invalid;
2367 
2368         index = qemu_get_be32(f);
2369         n_valid = qemu_get_be16(f);
2370         n_invalid = qemu_get_be16(f);
2371 
2372         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2373             /* End of Stream */
2374             break;
2375         }
2376 
2377         if ((index + n_valid + n_invalid) >
2378             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2379             /* Bad index in stream */
2380             error_report(
2381                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2382                 index, n_valid, n_invalid, spapr->htab_shift);
2383             return -EINVAL;
2384         }
2385 
2386         if (spapr->htab) {
2387             if (n_valid) {
2388                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2389                                 HASH_PTE_SIZE_64 * n_valid);
2390             }
2391             if (n_invalid) {
2392                 memset(HPTE(spapr->htab, index + n_valid), 0,
2393                        HASH_PTE_SIZE_64 * n_invalid);
2394             }
2395         } else {
2396             int rc;
2397 
2398             assert(fd >= 0);
2399 
2400             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2401             if (rc < 0) {
2402                 return rc;
2403             }
2404         }
2405     }
2406 
2407     if (!spapr->htab) {
2408         assert(fd >= 0);
2409         close(fd);
2410     }
2411 
2412     return 0;
2413 }
2414 
2415 static void htab_save_cleanup(void *opaque)
2416 {
2417     SpaprMachineState *spapr = opaque;
2418 
2419     close_htab_fd(spapr);
2420 }
2421 
2422 static SaveVMHandlers savevm_htab_handlers = {
2423     .save_setup = htab_save_setup,
2424     .save_live_iterate = htab_save_iterate,
2425     .save_live_complete_precopy = htab_save_complete,
2426     .save_cleanup = htab_save_cleanup,
2427     .load_state = htab_load,
2428 };
2429 
2430 static void spapr_boot_set(void *opaque, const char *boot_device,
2431                            Error **errp)
2432 {
2433     MachineState *machine = MACHINE(opaque);
2434     machine->boot_order = g_strdup(boot_device);
2435 }
2436 
2437 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2438 {
2439     MachineState *machine = MACHINE(spapr);
2440     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2441     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2442     int i;
2443 
2444     for (i = 0; i < nr_lmbs; i++) {
2445         uint64_t addr;
2446 
2447         addr = i * lmb_size + machine->device_memory->base;
2448         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2449                                addr / lmb_size);
2450     }
2451 }
2452 
2453 /*
2454  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2455  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2456  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2457  */
2458 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2459 {
2460     int i;
2461 
2462     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2463         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2464                    " is not aligned to %" PRIu64 " MiB",
2465                    machine->ram_size,
2466                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2467         return;
2468     }
2469 
2470     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2471         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2472                    " is not aligned to %" PRIu64 " MiB",
2473                    machine->ram_size,
2474                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2475         return;
2476     }
2477 
2478     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2479         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2480             error_setg(errp,
2481                        "Node %d memory size 0x%" PRIx64
2482                        " is not aligned to %" PRIu64 " MiB",
2483                        i, machine->numa_state->nodes[i].node_mem,
2484                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2485             return;
2486         }
2487     }
2488 }
2489 
2490 /* find cpu slot in machine->possible_cpus by core_id */
2491 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2492 {
2493     int index = id / ms->smp.threads;
2494 
2495     if (index >= ms->possible_cpus->len) {
2496         return NULL;
2497     }
2498     if (idx) {
2499         *idx = index;
2500     }
2501     return &ms->possible_cpus->cpus[index];
2502 }
2503 
2504 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2505 {
2506     MachineState *ms = MACHINE(spapr);
2507     Error *local_err = NULL;
2508     bool vsmt_user = !!spapr->vsmt;
2509     int kvm_smt = kvmppc_smt_threads();
2510     int ret;
2511     unsigned int smp_threads = ms->smp.threads;
2512 
2513     if (!kvm_enabled() && (smp_threads > 1)) {
2514         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2515                      "on a pseries machine");
2516         goto out;
2517     }
2518     if (!is_power_of_2(smp_threads)) {
2519         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2520                      "machine because it must be a power of 2", smp_threads);
2521         goto out;
2522     }
2523 
2524     /* Detemine the VSMT mode to use: */
2525     if (vsmt_user) {
2526         if (spapr->vsmt < smp_threads) {
2527             error_setg(&local_err, "Cannot support VSMT mode %d"
2528                          " because it must be >= threads/core (%d)",
2529                          spapr->vsmt, smp_threads);
2530             goto out;
2531         }
2532         /* In this case, spapr->vsmt has been set by the command line */
2533     } else {
2534         /*
2535          * Default VSMT value is tricky, because we need it to be as
2536          * consistent as possible (for migration), but this requires
2537          * changing it for at least some existing cases.  We pick 8 as
2538          * the value that we'd get with KVM on POWER8, the
2539          * overwhelmingly common case in production systems.
2540          */
2541         spapr->vsmt = MAX(8, smp_threads);
2542     }
2543 
2544     /* KVM: If necessary, set the SMT mode: */
2545     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2546         ret = kvmppc_set_smt_threads(spapr->vsmt);
2547         if (ret) {
2548             /* Looks like KVM isn't able to change VSMT mode */
2549             error_setg(&local_err,
2550                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2551                        spapr->vsmt, ret);
2552             /* We can live with that if the default one is big enough
2553              * for the number of threads, and a submultiple of the one
2554              * we want.  In this case we'll waste some vcpu ids, but
2555              * behaviour will be correct */
2556             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2557                 warn_report_err(local_err);
2558                 local_err = NULL;
2559                 goto out;
2560             } else {
2561                 if (!vsmt_user) {
2562                     error_append_hint(&local_err,
2563                                       "On PPC, a VM with %d threads/core"
2564                                       " on a host with %d threads/core"
2565                                       " requires the use of VSMT mode %d.\n",
2566                                       smp_threads, kvm_smt, spapr->vsmt);
2567                 }
2568                 kvmppc_hint_smt_possible(&local_err);
2569                 goto out;
2570             }
2571         }
2572     }
2573     /* else TCG: nothing to do currently */
2574 out:
2575     error_propagate(errp, local_err);
2576 }
2577 
2578 static void spapr_init_cpus(SpaprMachineState *spapr)
2579 {
2580     MachineState *machine = MACHINE(spapr);
2581     MachineClass *mc = MACHINE_GET_CLASS(machine);
2582     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2583     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2584     const CPUArchIdList *possible_cpus;
2585     unsigned int smp_cpus = machine->smp.cpus;
2586     unsigned int smp_threads = machine->smp.threads;
2587     unsigned int max_cpus = machine->smp.max_cpus;
2588     int boot_cores_nr = smp_cpus / smp_threads;
2589     int i;
2590 
2591     possible_cpus = mc->possible_cpu_arch_ids(machine);
2592     if (mc->has_hotpluggable_cpus) {
2593         if (smp_cpus % smp_threads) {
2594             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2595                          smp_cpus, smp_threads);
2596             exit(1);
2597         }
2598         if (max_cpus % smp_threads) {
2599             error_report("max_cpus (%u) must be multiple of threads (%u)",
2600                          max_cpus, smp_threads);
2601             exit(1);
2602         }
2603     } else {
2604         if (max_cpus != smp_cpus) {
2605             error_report("This machine version does not support CPU hotplug");
2606             exit(1);
2607         }
2608         boot_cores_nr = possible_cpus->len;
2609     }
2610 
2611     if (smc->pre_2_10_has_unused_icps) {
2612         int i;
2613 
2614         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2615             /* Dummy entries get deregistered when real ICPState objects
2616              * are registered during CPU core hotplug.
2617              */
2618             pre_2_10_vmstate_register_dummy_icp(i);
2619         }
2620     }
2621 
2622     for (i = 0; i < possible_cpus->len; i++) {
2623         int core_id = i * smp_threads;
2624 
2625         if (mc->has_hotpluggable_cpus) {
2626             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2627                                    spapr_vcpu_id(spapr, core_id));
2628         }
2629 
2630         if (i < boot_cores_nr) {
2631             Object *core  = object_new(type);
2632             int nr_threads = smp_threads;
2633 
2634             /* Handle the partially filled core for older machine types */
2635             if ((i + 1) * smp_threads >= smp_cpus) {
2636                 nr_threads = smp_cpus - i * smp_threads;
2637             }
2638 
2639             object_property_set_int(core, nr_threads, "nr-threads",
2640                                     &error_fatal);
2641             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2642                                     &error_fatal);
2643             object_property_set_bool(core, true, "realized", &error_fatal);
2644 
2645             object_unref(core);
2646         }
2647     }
2648 }
2649 
2650 static PCIHostState *spapr_create_default_phb(void)
2651 {
2652     DeviceState *dev;
2653 
2654     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2655     qdev_prop_set_uint32(dev, "index", 0);
2656     qdev_init_nofail(dev);
2657 
2658     return PCI_HOST_BRIDGE(dev);
2659 }
2660 
2661 /* pSeries LPAR / sPAPR hardware init */
2662 static void spapr_machine_init(MachineState *machine)
2663 {
2664     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2665     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2666     const char *kernel_filename = machine->kernel_filename;
2667     const char *initrd_filename = machine->initrd_filename;
2668     PCIHostState *phb;
2669     int i;
2670     MemoryRegion *sysmem = get_system_memory();
2671     MemoryRegion *ram = g_new(MemoryRegion, 1);
2672     hwaddr node0_size = spapr_node0_size(machine);
2673     long load_limit, fw_size;
2674     char *filename;
2675     Error *resize_hpt_err = NULL;
2676 
2677     msi_nonbroken = true;
2678 
2679     QLIST_INIT(&spapr->phbs);
2680     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2681 
2682     /* Determine capabilities to run with */
2683     spapr_caps_init(spapr);
2684 
2685     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2686     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2687         /*
2688          * If the user explicitly requested a mode we should either
2689          * supply it, or fail completely (which we do below).  But if
2690          * it's not set explicitly, we reset our mode to something
2691          * that works
2692          */
2693         if (resize_hpt_err) {
2694             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2695             error_free(resize_hpt_err);
2696             resize_hpt_err = NULL;
2697         } else {
2698             spapr->resize_hpt = smc->resize_hpt_default;
2699         }
2700     }
2701 
2702     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2703 
2704     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2705         /*
2706          * User requested HPT resize, but this host can't supply it.  Bail out
2707          */
2708         error_report_err(resize_hpt_err);
2709         exit(1);
2710     }
2711 
2712     spapr->rma_size = node0_size;
2713 
2714     /* With KVM, we don't actually know whether KVM supports an
2715      * unbounded RMA (PR KVM) or is limited by the hash table size
2716      * (HV KVM using VRMA), so we always assume the latter
2717      *
2718      * In that case, we also limit the initial allocations for RTAS
2719      * etc... to 256M since we have no way to know what the VRMA size
2720      * is going to be as it depends on the size of the hash table
2721      * which isn't determined yet.
2722      */
2723     if (kvm_enabled()) {
2724         spapr->vrma_adjust = 1;
2725         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2726     }
2727 
2728     /* Actually we don't support unbounded RMA anymore since we added
2729      * proper emulation of HV mode. The max we can get is 16G which
2730      * also happens to be what we configure for PAPR mode so make sure
2731      * we don't do anything bigger than that
2732      */
2733     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2734 
2735     if (spapr->rma_size > node0_size) {
2736         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2737                      spapr->rma_size);
2738         exit(1);
2739     }
2740 
2741     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2742     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2743 
2744     /*
2745      * VSMT must be set in order to be able to compute VCPU ids, ie to
2746      * call spapr_max_server_number() or spapr_vcpu_id().
2747      */
2748     spapr_set_vsmt_mode(spapr, &error_fatal);
2749 
2750     /* Set up Interrupt Controller before we create the VCPUs */
2751     spapr_irq_init(spapr, &error_fatal);
2752 
2753     /* Set up containers for ibm,client-architecture-support negotiated options
2754      */
2755     spapr->ov5 = spapr_ovec_new();
2756     spapr->ov5_cas = spapr_ovec_new();
2757 
2758     if (smc->dr_lmb_enabled) {
2759         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2760         spapr_validate_node_memory(machine, &error_fatal);
2761     }
2762 
2763     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2764 
2765     /* advertise support for dedicated HP event source to guests */
2766     if (spapr->use_hotplug_event_source) {
2767         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2768     }
2769 
2770     /* advertise support for HPT resizing */
2771     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2772         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2773     }
2774 
2775     /* advertise support for ibm,dyamic-memory-v2 */
2776     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2777 
2778     /* advertise XIVE on POWER9 machines */
2779     if (spapr->irq->xive) {
2780         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2781     }
2782 
2783     /* init CPUs */
2784     spapr_init_cpus(spapr);
2785 
2786     /*
2787      * check we don't have a memory-less/cpu-less NUMA node
2788      * Firmware relies on the existing memory/cpu topology to provide the
2789      * NUMA topology to the kernel.
2790      * And the linux kernel needs to know the NUMA topology at start
2791      * to be able to hotplug CPUs later.
2792      */
2793     if (machine->numa_state->num_nodes) {
2794         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2795             /* check for memory-less node */
2796             if (machine->numa_state->nodes[i].node_mem == 0) {
2797                 CPUState *cs;
2798                 int found = 0;
2799                 /* check for cpu-less node */
2800                 CPU_FOREACH(cs) {
2801                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2802                     if (cpu->node_id == i) {
2803                         found = 1;
2804                         break;
2805                     }
2806                 }
2807                 /* memory-less and cpu-less node */
2808                 if (!found) {
2809                     error_report(
2810                        "Memory-less/cpu-less nodes are not supported (node %d)",
2811                                  i);
2812                     exit(1);
2813                 }
2814             }
2815         }
2816 
2817     }
2818 
2819     /*
2820      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2821      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2822      * called from vPHB reset handler so we initialize the counter here.
2823      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2824      * must be equally distant from any other node.
2825      * The final value of spapr->gpu_numa_id is going to be written to
2826      * max-associativity-domains in spapr_build_fdt().
2827      */
2828     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2829 
2830     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2831         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2832                               spapr->max_compat_pvr)) {
2833         /* KVM and TCG always allow GTSE with radix... */
2834         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2835     }
2836     /* ... but not with hash (currently). */
2837 
2838     if (kvm_enabled()) {
2839         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2840         kvmppc_enable_logical_ci_hcalls();
2841         kvmppc_enable_set_mode_hcall();
2842 
2843         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2844         kvmppc_enable_clear_ref_mod_hcalls();
2845 
2846         /* Enable H_PAGE_INIT */
2847         kvmppc_enable_h_page_init();
2848     }
2849 
2850     /* allocate RAM */
2851     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2852                                          machine->ram_size);
2853     memory_region_add_subregion(sysmem, 0, ram);
2854 
2855     /* always allocate the device memory information */
2856     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2857 
2858     /* initialize hotplug memory address space */
2859     if (machine->ram_size < machine->maxram_size) {
2860         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2861         /*
2862          * Limit the number of hotpluggable memory slots to half the number
2863          * slots that KVM supports, leaving the other half for PCI and other
2864          * devices. However ensure that number of slots doesn't drop below 32.
2865          */
2866         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2867                            SPAPR_MAX_RAM_SLOTS;
2868 
2869         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2870             max_memslots = SPAPR_MAX_RAM_SLOTS;
2871         }
2872         if (machine->ram_slots > max_memslots) {
2873             error_report("Specified number of memory slots %"
2874                          PRIu64" exceeds max supported %d",
2875                          machine->ram_slots, max_memslots);
2876             exit(1);
2877         }
2878 
2879         machine->device_memory->base = ROUND_UP(machine->ram_size,
2880                                                 SPAPR_DEVICE_MEM_ALIGN);
2881         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2882                            "device-memory", device_mem_size);
2883         memory_region_add_subregion(sysmem, machine->device_memory->base,
2884                                     &machine->device_memory->mr);
2885     }
2886 
2887     if (smc->dr_lmb_enabled) {
2888         spapr_create_lmb_dr_connectors(spapr);
2889     }
2890 
2891     /* Set up RTAS event infrastructure */
2892     spapr_events_init(spapr);
2893 
2894     /* Set up the RTC RTAS interfaces */
2895     spapr_rtc_create(spapr);
2896 
2897     /* Set up VIO bus */
2898     spapr->vio_bus = spapr_vio_bus_init();
2899 
2900     for (i = 0; i < serial_max_hds(); i++) {
2901         if (serial_hd(i)) {
2902             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2903         }
2904     }
2905 
2906     /* We always have at least the nvram device on VIO */
2907     spapr_create_nvram(spapr);
2908 
2909     /*
2910      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2911      * connectors (described in root DT node's "ibm,drc-types" property)
2912      * are pre-initialized here. additional child connectors (such as
2913      * connectors for a PHBs PCI slots) are added as needed during their
2914      * parent's realization.
2915      */
2916     if (smc->dr_phb_enabled) {
2917         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2918             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2919         }
2920     }
2921 
2922     /* Set up PCI */
2923     spapr_pci_rtas_init();
2924 
2925     phb = spapr_create_default_phb();
2926 
2927     for (i = 0; i < nb_nics; i++) {
2928         NICInfo *nd = &nd_table[i];
2929 
2930         if (!nd->model) {
2931             nd->model = g_strdup("spapr-vlan");
2932         }
2933 
2934         if (g_str_equal(nd->model, "spapr-vlan") ||
2935             g_str_equal(nd->model, "ibmveth")) {
2936             spapr_vlan_create(spapr->vio_bus, nd);
2937         } else {
2938             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2939         }
2940     }
2941 
2942     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2943         spapr_vscsi_create(spapr->vio_bus);
2944     }
2945 
2946     /* Graphics */
2947     if (spapr_vga_init(phb->bus, &error_fatal)) {
2948         spapr->has_graphics = true;
2949         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2950     }
2951 
2952     if (machine->usb) {
2953         if (smc->use_ohci_by_default) {
2954             pci_create_simple(phb->bus, -1, "pci-ohci");
2955         } else {
2956             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2957         }
2958 
2959         if (spapr->has_graphics) {
2960             USBBus *usb_bus = usb_bus_find(-1);
2961 
2962             usb_create_simple(usb_bus, "usb-kbd");
2963             usb_create_simple(usb_bus, "usb-mouse");
2964         }
2965     }
2966 
2967     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2968         error_report(
2969             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2970             MIN_RMA_SLOF);
2971         exit(1);
2972     }
2973 
2974     if (kernel_filename) {
2975         uint64_t lowaddr = 0;
2976 
2977         spapr->kernel_size = load_elf(kernel_filename, NULL,
2978                                       translate_kernel_address, NULL,
2979                                       NULL, &lowaddr, NULL, 1,
2980                                       PPC_ELF_MACHINE, 0, 0);
2981         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2982             spapr->kernel_size = load_elf(kernel_filename, NULL,
2983                                           translate_kernel_address, NULL, NULL,
2984                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2985                                           0, 0);
2986             spapr->kernel_le = spapr->kernel_size > 0;
2987         }
2988         if (spapr->kernel_size < 0) {
2989             error_report("error loading %s: %s", kernel_filename,
2990                          load_elf_strerror(spapr->kernel_size));
2991             exit(1);
2992         }
2993 
2994         /* load initrd */
2995         if (initrd_filename) {
2996             /* Try to locate the initrd in the gap between the kernel
2997              * and the firmware. Add a bit of space just in case
2998              */
2999             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3000                                   + 0x1ffff) & ~0xffff;
3001             spapr->initrd_size = load_image_targphys(initrd_filename,
3002                                                      spapr->initrd_base,
3003                                                      load_limit
3004                                                      - spapr->initrd_base);
3005             if (spapr->initrd_size < 0) {
3006                 error_report("could not load initial ram disk '%s'",
3007                              initrd_filename);
3008                 exit(1);
3009             }
3010         }
3011     }
3012 
3013     if (bios_name == NULL) {
3014         bios_name = FW_FILE_NAME;
3015     }
3016     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3017     if (!filename) {
3018         error_report("Could not find LPAR firmware '%s'", bios_name);
3019         exit(1);
3020     }
3021     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3022     if (fw_size <= 0) {
3023         error_report("Could not load LPAR firmware '%s'", filename);
3024         exit(1);
3025     }
3026     g_free(filename);
3027 
3028     /* FIXME: Should register things through the MachineState's qdev
3029      * interface, this is a legacy from the sPAPREnvironment structure
3030      * which predated MachineState but had a similar function */
3031     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3032     register_savevm_live("spapr/htab", -1, 1,
3033                          &savevm_htab_handlers, spapr);
3034 
3035     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3036                              &error_fatal);
3037 
3038     qemu_register_boot_set(spapr_boot_set, spapr);
3039 
3040     /*
3041      * Nothing needs to be done to resume a suspended guest because
3042      * suspending does not change the machine state, so no need for
3043      * a ->wakeup method.
3044      */
3045     qemu_register_wakeup_support();
3046 
3047     if (kvm_enabled()) {
3048         /* to stop and start vmclock */
3049         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3050                                          &spapr->tb);
3051 
3052         kvmppc_spapr_enable_inkernel_multitce();
3053     }
3054 }
3055 
3056 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3057 {
3058     if (!vm_type) {
3059         return 0;
3060     }
3061 
3062     if (!strcmp(vm_type, "HV")) {
3063         return 1;
3064     }
3065 
3066     if (!strcmp(vm_type, "PR")) {
3067         return 2;
3068     }
3069 
3070     error_report("Unknown kvm-type specified '%s'", vm_type);
3071     exit(1);
3072 }
3073 
3074 /*
3075  * Implementation of an interface to adjust firmware path
3076  * for the bootindex property handling.
3077  */
3078 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3079                                    DeviceState *dev)
3080 {
3081 #define CAST(type, obj, name) \
3082     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3083     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3084     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3085     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3086 
3087     if (d) {
3088         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3089         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3090         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3091 
3092         if (spapr) {
3093             /*
3094              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3095              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3096              * 0x8000 | (target << 8) | (bus << 5) | lun
3097              * (see the "Logical unit addressing format" table in SAM5)
3098              */
3099             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3100             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3101                                    (uint64_t)id << 48);
3102         } else if (virtio) {
3103             /*
3104              * We use SRP luns of the form 01000000 | (target << 8) | lun
3105              * in the top 32 bits of the 64-bit LUN
3106              * Note: the quote above is from SLOF and it is wrong,
3107              * the actual binding is:
3108              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3109              */
3110             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3111             if (d->lun >= 256) {
3112                 /* Use the LUN "flat space addressing method" */
3113                 id |= 0x4000;
3114             }
3115             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3116                                    (uint64_t)id << 32);
3117         } else if (usb) {
3118             /*
3119              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3120              * in the top 32 bits of the 64-bit LUN
3121              */
3122             unsigned usb_port = atoi(usb->port->path);
3123             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3124             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3125                                    (uint64_t)id << 32);
3126         }
3127     }
3128 
3129     /*
3130      * SLOF probes the USB devices, and if it recognizes that the device is a
3131      * storage device, it changes its name to "storage" instead of "usb-host",
3132      * and additionally adds a child node for the SCSI LUN, so the correct
3133      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3134      */
3135     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3136         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3137         if (usb_host_dev_is_scsi_storage(usbdev)) {
3138             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3139         }
3140     }
3141 
3142     if (phb) {
3143         /* Replace "pci" with "pci@800000020000000" */
3144         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3145     }
3146 
3147     if (vsc) {
3148         /* Same logic as virtio above */
3149         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3150         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3151     }
3152 
3153     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3154         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3155         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3156         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3157     }
3158 
3159     return NULL;
3160 }
3161 
3162 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3163 {
3164     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165 
3166     return g_strdup(spapr->kvm_type);
3167 }
3168 
3169 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3170 {
3171     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3172 
3173     g_free(spapr->kvm_type);
3174     spapr->kvm_type = g_strdup(value);
3175 }
3176 
3177 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3178 {
3179     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3180 
3181     return spapr->use_hotplug_event_source;
3182 }
3183 
3184 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3185                                             Error **errp)
3186 {
3187     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3188 
3189     spapr->use_hotplug_event_source = value;
3190 }
3191 
3192 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3193 {
3194     return true;
3195 }
3196 
3197 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3198 {
3199     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3200 
3201     switch (spapr->resize_hpt) {
3202     case SPAPR_RESIZE_HPT_DEFAULT:
3203         return g_strdup("default");
3204     case SPAPR_RESIZE_HPT_DISABLED:
3205         return g_strdup("disabled");
3206     case SPAPR_RESIZE_HPT_ENABLED:
3207         return g_strdup("enabled");
3208     case SPAPR_RESIZE_HPT_REQUIRED:
3209         return g_strdup("required");
3210     }
3211     g_assert_not_reached();
3212 }
3213 
3214 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3215 {
3216     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3217 
3218     if (strcmp(value, "default") == 0) {
3219         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3220     } else if (strcmp(value, "disabled") == 0) {
3221         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3222     } else if (strcmp(value, "enabled") == 0) {
3223         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3224     } else if (strcmp(value, "required") == 0) {
3225         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3226     } else {
3227         error_setg(errp, "Bad value for \"resize-hpt\" property");
3228     }
3229 }
3230 
3231 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3232                                    void *opaque, Error **errp)
3233 {
3234     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3235 }
3236 
3237 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3238                                    void *opaque, Error **errp)
3239 {
3240     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3241 }
3242 
3243 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3244 {
3245     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3246 
3247     if (spapr->irq == &spapr_irq_xics_legacy) {
3248         return g_strdup("legacy");
3249     } else if (spapr->irq == &spapr_irq_xics) {
3250         return g_strdup("xics");
3251     } else if (spapr->irq == &spapr_irq_xive) {
3252         return g_strdup("xive");
3253     } else if (spapr->irq == &spapr_irq_dual) {
3254         return g_strdup("dual");
3255     }
3256     g_assert_not_reached();
3257 }
3258 
3259 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3260 {
3261     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262 
3263     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3264         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3265         return;
3266     }
3267 
3268     /* The legacy IRQ backend can not be set */
3269     if (strcmp(value, "xics") == 0) {
3270         spapr->irq = &spapr_irq_xics;
3271     } else if (strcmp(value, "xive") == 0) {
3272         spapr->irq = &spapr_irq_xive;
3273     } else if (strcmp(value, "dual") == 0) {
3274         spapr->irq = &spapr_irq_dual;
3275     } else {
3276         error_setg(errp, "Bad value for \"ic-mode\" property");
3277     }
3278 }
3279 
3280 static char *spapr_get_host_model(Object *obj, Error **errp)
3281 {
3282     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283 
3284     return g_strdup(spapr->host_model);
3285 }
3286 
3287 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3288 {
3289     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290 
3291     g_free(spapr->host_model);
3292     spapr->host_model = g_strdup(value);
3293 }
3294 
3295 static char *spapr_get_host_serial(Object *obj, Error **errp)
3296 {
3297     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298 
3299     return g_strdup(spapr->host_serial);
3300 }
3301 
3302 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3303 {
3304     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305 
3306     g_free(spapr->host_serial);
3307     spapr->host_serial = g_strdup(value);
3308 }
3309 
3310 static void spapr_instance_init(Object *obj)
3311 {
3312     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3314 
3315     spapr->htab_fd = -1;
3316     spapr->use_hotplug_event_source = true;
3317     object_property_add_str(obj, "kvm-type",
3318                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3319     object_property_set_description(obj, "kvm-type",
3320                                     "Specifies the KVM virtualization mode (HV, PR)",
3321                                     NULL);
3322     object_property_add_bool(obj, "modern-hotplug-events",
3323                             spapr_get_modern_hotplug_events,
3324                             spapr_set_modern_hotplug_events,
3325                             NULL);
3326     object_property_set_description(obj, "modern-hotplug-events",
3327                                     "Use dedicated hotplug event mechanism in"
3328                                     " place of standard EPOW events when possible"
3329                                     " (required for memory hot-unplug support)",
3330                                     NULL);
3331     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3332                             "Maximum permitted CPU compatibility mode",
3333                             &error_fatal);
3334 
3335     object_property_add_str(obj, "resize-hpt",
3336                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3337     object_property_set_description(obj, "resize-hpt",
3338                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3339                                     NULL);
3340     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3341                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3342     object_property_set_description(obj, "vsmt",
3343                                     "Virtual SMT: KVM behaves as if this were"
3344                                     " the host's SMT mode", &error_abort);
3345     object_property_add_bool(obj, "vfio-no-msix-emulation",
3346                              spapr_get_msix_emulation, NULL, NULL);
3347 
3348     /* The machine class defines the default interrupt controller mode */
3349     spapr->irq = smc->irq;
3350     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3351                             spapr_set_ic_mode, NULL);
3352     object_property_set_description(obj, "ic-mode",
3353                  "Specifies the interrupt controller mode (xics, xive, dual)",
3354                  NULL);
3355 
3356     object_property_add_str(obj, "host-model",
3357         spapr_get_host_model, spapr_set_host_model,
3358         &error_abort);
3359     object_property_set_description(obj, "host-model",
3360         "Host model to advertise in guest device tree", &error_abort);
3361     object_property_add_str(obj, "host-serial",
3362         spapr_get_host_serial, spapr_set_host_serial,
3363         &error_abort);
3364     object_property_set_description(obj, "host-serial",
3365         "Host serial number to advertise in guest device tree", &error_abort);
3366 }
3367 
3368 static void spapr_machine_finalizefn(Object *obj)
3369 {
3370     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3371 
3372     g_free(spapr->kvm_type);
3373 }
3374 
3375 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3376 {
3377     cpu_synchronize_state(cs);
3378     ppc_cpu_do_system_reset(cs);
3379 }
3380 
3381 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3382 {
3383     CPUState *cs;
3384 
3385     CPU_FOREACH(cs) {
3386         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3387     }
3388 }
3389 
3390 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3391                           void *fdt, int *fdt_start_offset, Error **errp)
3392 {
3393     uint64_t addr;
3394     uint32_t node;
3395 
3396     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3397     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3398                                     &error_abort);
3399     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3400                                                    SPAPR_MEMORY_BLOCK_SIZE);
3401     return 0;
3402 }
3403 
3404 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3405                            bool dedicated_hp_event_source, Error **errp)
3406 {
3407     SpaprDrc *drc;
3408     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3409     int i;
3410     uint64_t addr = addr_start;
3411     bool hotplugged = spapr_drc_hotplugged(dev);
3412     Error *local_err = NULL;
3413 
3414     for (i = 0; i < nr_lmbs; i++) {
3415         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3416                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3417         g_assert(drc);
3418 
3419         spapr_drc_attach(drc, dev, &local_err);
3420         if (local_err) {
3421             while (addr > addr_start) {
3422                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3423                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3424                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3425                 spapr_drc_detach(drc);
3426             }
3427             error_propagate(errp, local_err);
3428             return;
3429         }
3430         if (!hotplugged) {
3431             spapr_drc_reset(drc);
3432         }
3433         addr += SPAPR_MEMORY_BLOCK_SIZE;
3434     }
3435     /* send hotplug notification to the
3436      * guest only in case of hotplugged memory
3437      */
3438     if (hotplugged) {
3439         if (dedicated_hp_event_source) {
3440             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3441                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3442             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3443                                                    nr_lmbs,
3444                                                    spapr_drc_index(drc));
3445         } else {
3446             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3447                                            nr_lmbs);
3448         }
3449     }
3450 }
3451 
3452 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3453                               Error **errp)
3454 {
3455     Error *local_err = NULL;
3456     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3457     PCDIMMDevice *dimm = PC_DIMM(dev);
3458     uint64_t size, addr;
3459 
3460     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3461 
3462     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3463     if (local_err) {
3464         goto out;
3465     }
3466 
3467     addr = object_property_get_uint(OBJECT(dimm),
3468                                     PC_DIMM_ADDR_PROP, &local_err);
3469     if (local_err) {
3470         goto out_unplug;
3471     }
3472 
3473     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3474                    &local_err);
3475     if (local_err) {
3476         goto out_unplug;
3477     }
3478 
3479     return;
3480 
3481 out_unplug:
3482     pc_dimm_unplug(dimm, MACHINE(ms));
3483 out:
3484     error_propagate(errp, local_err);
3485 }
3486 
3487 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3488                                   Error **errp)
3489 {
3490     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3491     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3492     PCDIMMDevice *dimm = PC_DIMM(dev);
3493     Error *local_err = NULL;
3494     uint64_t size;
3495     Object *memdev;
3496     hwaddr pagesize;
3497 
3498     if (!smc->dr_lmb_enabled) {
3499         error_setg(errp, "Memory hotplug not supported for this machine");
3500         return;
3501     }
3502 
3503     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3504     if (local_err) {
3505         error_propagate(errp, local_err);
3506         return;
3507     }
3508 
3509     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3510         error_setg(errp, "Hotplugged memory size must be a multiple of "
3511                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3512         return;
3513     }
3514 
3515     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3516                                       &error_abort);
3517     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3518     spapr_check_pagesize(spapr, pagesize, &local_err);
3519     if (local_err) {
3520         error_propagate(errp, local_err);
3521         return;
3522     }
3523 
3524     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3525 }
3526 
3527 struct SpaprDimmState {
3528     PCDIMMDevice *dimm;
3529     uint32_t nr_lmbs;
3530     QTAILQ_ENTRY(SpaprDimmState) next;
3531 };
3532 
3533 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3534                                                        PCDIMMDevice *dimm)
3535 {
3536     SpaprDimmState *dimm_state = NULL;
3537 
3538     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3539         if (dimm_state->dimm == dimm) {
3540             break;
3541         }
3542     }
3543     return dimm_state;
3544 }
3545 
3546 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3547                                                       uint32_t nr_lmbs,
3548                                                       PCDIMMDevice *dimm)
3549 {
3550     SpaprDimmState *ds = NULL;
3551 
3552     /*
3553      * If this request is for a DIMM whose removal had failed earlier
3554      * (due to guest's refusal to remove the LMBs), we would have this
3555      * dimm already in the pending_dimm_unplugs list. In that
3556      * case don't add again.
3557      */
3558     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3559     if (!ds) {
3560         ds = g_malloc0(sizeof(SpaprDimmState));
3561         ds->nr_lmbs = nr_lmbs;
3562         ds->dimm = dimm;
3563         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3564     }
3565     return ds;
3566 }
3567 
3568 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3569                                               SpaprDimmState *dimm_state)
3570 {
3571     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3572     g_free(dimm_state);
3573 }
3574 
3575 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3576                                                         PCDIMMDevice *dimm)
3577 {
3578     SpaprDrc *drc;
3579     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3580                                                   &error_abort);
3581     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3582     uint32_t avail_lmbs = 0;
3583     uint64_t addr_start, addr;
3584     int i;
3585 
3586     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3587                                          &error_abort);
3588 
3589     addr = addr_start;
3590     for (i = 0; i < nr_lmbs; i++) {
3591         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3592                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3593         g_assert(drc);
3594         if (drc->dev) {
3595             avail_lmbs++;
3596         }
3597         addr += SPAPR_MEMORY_BLOCK_SIZE;
3598     }
3599 
3600     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3601 }
3602 
3603 /* Callback to be called during DRC release. */
3604 void spapr_lmb_release(DeviceState *dev)
3605 {
3606     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3607     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3608     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3609 
3610     /* This information will get lost if a migration occurs
3611      * during the unplug process. In this case recover it. */
3612     if (ds == NULL) {
3613         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3614         g_assert(ds);
3615         /* The DRC being examined by the caller at least must be counted */
3616         g_assert(ds->nr_lmbs);
3617     }
3618 
3619     if (--ds->nr_lmbs) {
3620         return;
3621     }
3622 
3623     /*
3624      * Now that all the LMBs have been removed by the guest, call the
3625      * unplug handler chain. This can never fail.
3626      */
3627     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3628     object_unparent(OBJECT(dev));
3629 }
3630 
3631 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3632 {
3633     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3634     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3635 
3636     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3637     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3638     spapr_pending_dimm_unplugs_remove(spapr, ds);
3639 }
3640 
3641 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3642                                         DeviceState *dev, Error **errp)
3643 {
3644     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3645     Error *local_err = NULL;
3646     PCDIMMDevice *dimm = PC_DIMM(dev);
3647     uint32_t nr_lmbs;
3648     uint64_t size, addr_start, addr;
3649     int i;
3650     SpaprDrc *drc;
3651 
3652     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3653     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3654 
3655     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3656                                          &local_err);
3657     if (local_err) {
3658         goto out;
3659     }
3660 
3661     /*
3662      * An existing pending dimm state for this DIMM means that there is an
3663      * unplug operation in progress, waiting for the spapr_lmb_release
3664      * callback to complete the job (BQL can't cover that far). In this case,
3665      * bail out to avoid detaching DRCs that were already released.
3666      */
3667     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3668         error_setg(&local_err,
3669                    "Memory unplug already in progress for device %s",
3670                    dev->id);
3671         goto out;
3672     }
3673 
3674     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3675 
3676     addr = addr_start;
3677     for (i = 0; i < nr_lmbs; i++) {
3678         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3679                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3680         g_assert(drc);
3681 
3682         spapr_drc_detach(drc);
3683         addr += SPAPR_MEMORY_BLOCK_SIZE;
3684     }
3685 
3686     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3687                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3688     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3689                                               nr_lmbs, spapr_drc_index(drc));
3690 out:
3691     error_propagate(errp, local_err);
3692 }
3693 
3694 /* Callback to be called during DRC release. */
3695 void spapr_core_release(DeviceState *dev)
3696 {
3697     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3698 
3699     /* Call the unplug handler chain. This can never fail. */
3700     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3701     object_unparent(OBJECT(dev));
3702 }
3703 
3704 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3705 {
3706     MachineState *ms = MACHINE(hotplug_dev);
3707     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3708     CPUCore *cc = CPU_CORE(dev);
3709     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3710 
3711     if (smc->pre_2_10_has_unused_icps) {
3712         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3713         int i;
3714 
3715         for (i = 0; i < cc->nr_threads; i++) {
3716             CPUState *cs = CPU(sc->threads[i]);
3717 
3718             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3719         }
3720     }
3721 
3722     assert(core_slot);
3723     core_slot->cpu = NULL;
3724     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3725 }
3726 
3727 static
3728 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3729                                Error **errp)
3730 {
3731     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3732     int index;
3733     SpaprDrc *drc;
3734     CPUCore *cc = CPU_CORE(dev);
3735 
3736     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3737         error_setg(errp, "Unable to find CPU core with core-id: %d",
3738                    cc->core_id);
3739         return;
3740     }
3741     if (index == 0) {
3742         error_setg(errp, "Boot CPU core may not be unplugged");
3743         return;
3744     }
3745 
3746     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3747                           spapr_vcpu_id(spapr, cc->core_id));
3748     g_assert(drc);
3749 
3750     spapr_drc_detach(drc);
3751 
3752     spapr_hotplug_req_remove_by_index(drc);
3753 }
3754 
3755 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3756                            void *fdt, int *fdt_start_offset, Error **errp)
3757 {
3758     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3759     CPUState *cs = CPU(core->threads[0]);
3760     PowerPCCPU *cpu = POWERPC_CPU(cs);
3761     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3762     int id = spapr_get_vcpu_id(cpu);
3763     char *nodename;
3764     int offset;
3765 
3766     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3767     offset = fdt_add_subnode(fdt, 0, nodename);
3768     g_free(nodename);
3769 
3770     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3771 
3772     *fdt_start_offset = offset;
3773     return 0;
3774 }
3775 
3776 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3777                             Error **errp)
3778 {
3779     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3780     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3781     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3782     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3783     CPUCore *cc = CPU_CORE(dev);
3784     CPUState *cs;
3785     SpaprDrc *drc;
3786     Error *local_err = NULL;
3787     CPUArchId *core_slot;
3788     int index;
3789     bool hotplugged = spapr_drc_hotplugged(dev);
3790     int i;
3791 
3792     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3793     if (!core_slot) {
3794         error_setg(errp, "Unable to find CPU core with core-id: %d",
3795                    cc->core_id);
3796         return;
3797     }
3798     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3799                           spapr_vcpu_id(spapr, cc->core_id));
3800 
3801     g_assert(drc || !mc->has_hotpluggable_cpus);
3802 
3803     if (drc) {
3804         spapr_drc_attach(drc, dev, &local_err);
3805         if (local_err) {
3806             error_propagate(errp, local_err);
3807             return;
3808         }
3809 
3810         if (hotplugged) {
3811             /*
3812              * Send hotplug notification interrupt to the guest only
3813              * in case of hotplugged CPUs.
3814              */
3815             spapr_hotplug_req_add_by_index(drc);
3816         } else {
3817             spapr_drc_reset(drc);
3818         }
3819     }
3820 
3821     core_slot->cpu = OBJECT(dev);
3822 
3823     if (smc->pre_2_10_has_unused_icps) {
3824         for (i = 0; i < cc->nr_threads; i++) {
3825             cs = CPU(core->threads[i]);
3826             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3827         }
3828     }
3829 
3830     /*
3831      * Set compatibility mode to match the boot CPU, which was either set
3832      * by the machine reset code or by CAS.
3833      */
3834     if (hotplugged) {
3835         for (i = 0; i < cc->nr_threads; i++) {
3836             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3837                            &local_err);
3838             if (local_err) {
3839                 error_propagate(errp, local_err);
3840                 return;
3841             }
3842         }
3843     }
3844 }
3845 
3846 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3847                                 Error **errp)
3848 {
3849     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3850     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3851     Error *local_err = NULL;
3852     CPUCore *cc = CPU_CORE(dev);
3853     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3854     const char *type = object_get_typename(OBJECT(dev));
3855     CPUArchId *core_slot;
3856     int index;
3857     unsigned int smp_threads = machine->smp.threads;
3858 
3859     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3860         error_setg(&local_err, "CPU hotplug not supported for this machine");
3861         goto out;
3862     }
3863 
3864     if (strcmp(base_core_type, type)) {
3865         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3866         goto out;
3867     }
3868 
3869     if (cc->core_id % smp_threads) {
3870         error_setg(&local_err, "invalid core id %d", cc->core_id);
3871         goto out;
3872     }
3873 
3874     /*
3875      * In general we should have homogeneous threads-per-core, but old
3876      * (pre hotplug support) machine types allow the last core to have
3877      * reduced threads as a compatibility hack for when we allowed
3878      * total vcpus not a multiple of threads-per-core.
3879      */
3880     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3881         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3882                    cc->nr_threads, smp_threads);
3883         goto out;
3884     }
3885 
3886     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3887     if (!core_slot) {
3888         error_setg(&local_err, "core id %d out of range", cc->core_id);
3889         goto out;
3890     }
3891 
3892     if (core_slot->cpu) {
3893         error_setg(&local_err, "core %d already populated", cc->core_id);
3894         goto out;
3895     }
3896 
3897     numa_cpu_pre_plug(core_slot, dev, &local_err);
3898 
3899 out:
3900     error_propagate(errp, local_err);
3901 }
3902 
3903 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3904                           void *fdt, int *fdt_start_offset, Error **errp)
3905 {
3906     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3907     int intc_phandle;
3908 
3909     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3910     if (intc_phandle <= 0) {
3911         return -1;
3912     }
3913 
3914     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3915                      fdt_start_offset)) {
3916         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3917         return -1;
3918     }
3919 
3920     /* generally SLOF creates these, for hotplug it's up to QEMU */
3921     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3922 
3923     return 0;
3924 }
3925 
3926 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3927                                Error **errp)
3928 {
3929     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3930     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3931     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3932     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3933 
3934     if (dev->hotplugged && !smc->dr_phb_enabled) {
3935         error_setg(errp, "PHB hotplug not supported for this machine");
3936         return;
3937     }
3938 
3939     if (sphb->index == (uint32_t)-1) {
3940         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3941         return;
3942     }
3943 
3944     /*
3945      * This will check that sphb->index doesn't exceed the maximum number of
3946      * PHBs for the current machine type.
3947      */
3948     smc->phb_placement(spapr, sphb->index,
3949                        &sphb->buid, &sphb->io_win_addr,
3950                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3951                        windows_supported, sphb->dma_liobn,
3952                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3953                        errp);
3954 }
3955 
3956 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3957                            Error **errp)
3958 {
3959     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3960     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3961     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3962     SpaprDrc *drc;
3963     bool hotplugged = spapr_drc_hotplugged(dev);
3964     Error *local_err = NULL;
3965 
3966     if (!smc->dr_phb_enabled) {
3967         return;
3968     }
3969 
3970     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3971     /* hotplug hooks should check it's enabled before getting this far */
3972     assert(drc);
3973 
3974     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3975     if (local_err) {
3976         error_propagate(errp, local_err);
3977         return;
3978     }
3979 
3980     if (hotplugged) {
3981         spapr_hotplug_req_add_by_index(drc);
3982     } else {
3983         spapr_drc_reset(drc);
3984     }
3985 }
3986 
3987 void spapr_phb_release(DeviceState *dev)
3988 {
3989     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3990 
3991     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3992     object_unparent(OBJECT(dev));
3993 }
3994 
3995 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3996 {
3997     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3998 }
3999 
4000 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4001                                      DeviceState *dev, Error **errp)
4002 {
4003     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4004     SpaprDrc *drc;
4005 
4006     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4007     assert(drc);
4008 
4009     if (!spapr_drc_unplug_requested(drc)) {
4010         spapr_drc_detach(drc);
4011         spapr_hotplug_req_remove_by_index(drc);
4012     }
4013 }
4014 
4015 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4016                                  Error **errp)
4017 {
4018     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4019     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4020 
4021     if (spapr->tpm_proxy != NULL) {
4022         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4023         return;
4024     }
4025 
4026     spapr->tpm_proxy = tpm_proxy;
4027 }
4028 
4029 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4030 {
4031     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4032 
4033     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4034     object_unparent(OBJECT(dev));
4035     spapr->tpm_proxy = NULL;
4036 }
4037 
4038 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4039                                       DeviceState *dev, Error **errp)
4040 {
4041     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4042         spapr_memory_plug(hotplug_dev, dev, errp);
4043     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4044         spapr_core_plug(hotplug_dev, dev, errp);
4045     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4046         spapr_phb_plug(hotplug_dev, dev, errp);
4047     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4048         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4049     }
4050 }
4051 
4052 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4053                                         DeviceState *dev, Error **errp)
4054 {
4055     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4056         spapr_memory_unplug(hotplug_dev, dev);
4057     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4058         spapr_core_unplug(hotplug_dev, dev);
4059     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4060         spapr_phb_unplug(hotplug_dev, dev);
4061     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4062         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4063     }
4064 }
4065 
4066 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4067                                                 DeviceState *dev, Error **errp)
4068 {
4069     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4070     MachineClass *mc = MACHINE_GET_CLASS(sms);
4071     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4072 
4073     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4074         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4075             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4076         } else {
4077             /* NOTE: this means there is a window after guest reset, prior to
4078              * CAS negotiation, where unplug requests will fail due to the
4079              * capability not being detected yet. This is a bit different than
4080              * the case with PCI unplug, where the events will be queued and
4081              * eventually handled by the guest after boot
4082              */
4083             error_setg(errp, "Memory hot unplug not supported for this guest");
4084         }
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4086         if (!mc->has_hotpluggable_cpus) {
4087             error_setg(errp, "CPU hot unplug not supported on this machine");
4088             return;
4089         }
4090         spapr_core_unplug_request(hotplug_dev, dev, errp);
4091     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4092         if (!smc->dr_phb_enabled) {
4093             error_setg(errp, "PHB hot unplug not supported on this machine");
4094             return;
4095         }
4096         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4097     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4098         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4099     }
4100 }
4101 
4102 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4103                                           DeviceState *dev, Error **errp)
4104 {
4105     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4106         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4107     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4108         spapr_core_pre_plug(hotplug_dev, dev, errp);
4109     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4110         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4111     }
4112 }
4113 
4114 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4115                                                  DeviceState *dev)
4116 {
4117     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4118         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4119         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4120         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4121         return HOTPLUG_HANDLER(machine);
4122     }
4123     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4124         PCIDevice *pcidev = PCI_DEVICE(dev);
4125         PCIBus *root = pci_device_root_bus(pcidev);
4126         SpaprPhbState *phb =
4127             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4128                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4129 
4130         if (phb) {
4131             return HOTPLUG_HANDLER(phb);
4132         }
4133     }
4134     return NULL;
4135 }
4136 
4137 static CpuInstanceProperties
4138 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4139 {
4140     CPUArchId *core_slot;
4141     MachineClass *mc = MACHINE_GET_CLASS(machine);
4142 
4143     /* make sure possible_cpu are intialized */
4144     mc->possible_cpu_arch_ids(machine);
4145     /* get CPU core slot containing thread that matches cpu_index */
4146     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4147     assert(core_slot);
4148     return core_slot->props;
4149 }
4150 
4151 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4152 {
4153     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4154 }
4155 
4156 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4157 {
4158     int i;
4159     unsigned int smp_threads = machine->smp.threads;
4160     unsigned int smp_cpus = machine->smp.cpus;
4161     const char *core_type;
4162     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4163     MachineClass *mc = MACHINE_GET_CLASS(machine);
4164 
4165     if (!mc->has_hotpluggable_cpus) {
4166         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4167     }
4168     if (machine->possible_cpus) {
4169         assert(machine->possible_cpus->len == spapr_max_cores);
4170         return machine->possible_cpus;
4171     }
4172 
4173     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4174     if (!core_type) {
4175         error_report("Unable to find sPAPR CPU Core definition");
4176         exit(1);
4177     }
4178 
4179     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4180                              sizeof(CPUArchId) * spapr_max_cores);
4181     machine->possible_cpus->len = spapr_max_cores;
4182     for (i = 0; i < machine->possible_cpus->len; i++) {
4183         int core_id = i * smp_threads;
4184 
4185         machine->possible_cpus->cpus[i].type = core_type;
4186         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4187         machine->possible_cpus->cpus[i].arch_id = core_id;
4188         machine->possible_cpus->cpus[i].props.has_core_id = true;
4189         machine->possible_cpus->cpus[i].props.core_id = core_id;
4190     }
4191     return machine->possible_cpus;
4192 }
4193 
4194 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4195                                 uint64_t *buid, hwaddr *pio,
4196                                 hwaddr *mmio32, hwaddr *mmio64,
4197                                 unsigned n_dma, uint32_t *liobns,
4198                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4199 {
4200     /*
4201      * New-style PHB window placement.
4202      *
4203      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4204      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4205      * windows.
4206      *
4207      * Some guest kernels can't work with MMIO windows above 1<<46
4208      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4209      *
4210      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4211      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4212      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4213      * 1TiB 64-bit MMIO windows for each PHB.
4214      */
4215     const uint64_t base_buid = 0x800000020000000ULL;
4216     int i;
4217 
4218     /* Sanity check natural alignments */
4219     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4220     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4221     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4222     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4223     /* Sanity check bounds */
4224     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4225                       SPAPR_PCI_MEM32_WIN_SIZE);
4226     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4227                       SPAPR_PCI_MEM64_WIN_SIZE);
4228 
4229     if (index >= SPAPR_MAX_PHBS) {
4230         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4231                    SPAPR_MAX_PHBS - 1);
4232         return;
4233     }
4234 
4235     *buid = base_buid + index;
4236     for (i = 0; i < n_dma; ++i) {
4237         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4238     }
4239 
4240     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4241     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4242     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4243 
4244     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4245     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4246 }
4247 
4248 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4249 {
4250     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4251 
4252     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4253 }
4254 
4255 static void spapr_ics_resend(XICSFabric *dev)
4256 {
4257     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4258 
4259     ics_resend(spapr->ics);
4260 }
4261 
4262 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4263 {
4264     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4265 
4266     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4267 }
4268 
4269 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4270                                  Monitor *mon)
4271 {
4272     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4273 
4274     spapr->irq->print_info(spapr, mon);
4275     monitor_printf(mon, "irqchip: %s\n",
4276                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4277 }
4278 
4279 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4280 {
4281     return cpu->vcpu_id;
4282 }
4283 
4284 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4285 {
4286     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4287     MachineState *ms = MACHINE(spapr);
4288     int vcpu_id;
4289 
4290     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4291 
4292     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4293         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4294         error_append_hint(errp, "Adjust the number of cpus to %d "
4295                           "or try to raise the number of threads per core\n",
4296                           vcpu_id * ms->smp.threads / spapr->vsmt);
4297         return;
4298     }
4299 
4300     cpu->vcpu_id = vcpu_id;
4301 }
4302 
4303 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4304 {
4305     CPUState *cs;
4306 
4307     CPU_FOREACH(cs) {
4308         PowerPCCPU *cpu = POWERPC_CPU(cs);
4309 
4310         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4311             return cpu;
4312         }
4313     }
4314 
4315     return NULL;
4316 }
4317 
4318 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4319 {
4320     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4321 
4322     /* These are only called by TCG, KVM maintains dispatch state */
4323 
4324     spapr_cpu->prod = false;
4325     if (spapr_cpu->vpa_addr) {
4326         CPUState *cs = CPU(cpu);
4327         uint32_t dispatch;
4328 
4329         dispatch = ldl_be_phys(cs->as,
4330                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4331         dispatch++;
4332         if ((dispatch & 1) != 0) {
4333             qemu_log_mask(LOG_GUEST_ERROR,
4334                           "VPA: incorrect dispatch counter value for "
4335                           "dispatched partition %u, correcting.\n", dispatch);
4336             dispatch++;
4337         }
4338         stl_be_phys(cs->as,
4339                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4340     }
4341 }
4342 
4343 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4344 {
4345     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4346 
4347     if (spapr_cpu->vpa_addr) {
4348         CPUState *cs = CPU(cpu);
4349         uint32_t dispatch;
4350 
4351         dispatch = ldl_be_phys(cs->as,
4352                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4353         dispatch++;
4354         if ((dispatch & 1) != 1) {
4355             qemu_log_mask(LOG_GUEST_ERROR,
4356                           "VPA: incorrect dispatch counter value for "
4357                           "preempted partition %u, correcting.\n", dispatch);
4358             dispatch++;
4359         }
4360         stl_be_phys(cs->as,
4361                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4362     }
4363 }
4364 
4365 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4366 {
4367     MachineClass *mc = MACHINE_CLASS(oc);
4368     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4369     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4370     NMIClass *nc = NMI_CLASS(oc);
4371     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4372     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4373     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4374     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4375 
4376     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4377     mc->ignore_boot_device_suffixes = true;
4378 
4379     /*
4380      * We set up the default / latest behaviour here.  The class_init
4381      * functions for the specific versioned machine types can override
4382      * these details for backwards compatibility
4383      */
4384     mc->init = spapr_machine_init;
4385     mc->reset = spapr_machine_reset;
4386     mc->block_default_type = IF_SCSI;
4387     mc->max_cpus = 1024;
4388     mc->no_parallel = 1;
4389     mc->default_boot_order = "";
4390     mc->default_ram_size = 512 * MiB;
4391     mc->default_display = "std";
4392     mc->kvm_type = spapr_kvm_type;
4393     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4394     mc->pci_allow_0_address = true;
4395     assert(!mc->get_hotplug_handler);
4396     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4397     hc->pre_plug = spapr_machine_device_pre_plug;
4398     hc->plug = spapr_machine_device_plug;
4399     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4400     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4401     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4402     hc->unplug_request = spapr_machine_device_unplug_request;
4403     hc->unplug = spapr_machine_device_unplug;
4404 
4405     smc->dr_lmb_enabled = true;
4406     smc->update_dt_enabled = true;
4407     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4408     mc->has_hotpluggable_cpus = true;
4409     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4410     fwc->get_dev_path = spapr_get_fw_dev_path;
4411     nc->nmi_monitor_handler = spapr_nmi;
4412     smc->phb_placement = spapr_phb_placement;
4413     vhc->hypercall = emulate_spapr_hypercall;
4414     vhc->hpt_mask = spapr_hpt_mask;
4415     vhc->map_hptes = spapr_map_hptes;
4416     vhc->unmap_hptes = spapr_unmap_hptes;
4417     vhc->hpte_set_c = spapr_hpte_set_c;
4418     vhc->hpte_set_r = spapr_hpte_set_r;
4419     vhc->get_pate = spapr_get_pate;
4420     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4421     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4422     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4423     xic->ics_get = spapr_ics_get;
4424     xic->ics_resend = spapr_ics_resend;
4425     xic->icp_get = spapr_icp_get;
4426     ispc->print_info = spapr_pic_print_info;
4427     /* Force NUMA node memory size to be a multiple of
4428      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4429      * in which LMBs are represented and hot-added
4430      */
4431     mc->numa_mem_align_shift = 28;
4432     mc->numa_mem_supported = true;
4433 
4434     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4435     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4436     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4437     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4438     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4439     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4440     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4441     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4442     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4443     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4444     spapr_caps_add_properties(smc, &error_abort);
4445     smc->irq = &spapr_irq_dual;
4446     smc->dr_phb_enabled = true;
4447     smc->linux_pci_probe = true;
4448 }
4449 
4450 static const TypeInfo spapr_machine_info = {
4451     .name          = TYPE_SPAPR_MACHINE,
4452     .parent        = TYPE_MACHINE,
4453     .abstract      = true,
4454     .instance_size = sizeof(SpaprMachineState),
4455     .instance_init = spapr_instance_init,
4456     .instance_finalize = spapr_machine_finalizefn,
4457     .class_size    = sizeof(SpaprMachineClass),
4458     .class_init    = spapr_machine_class_init,
4459     .interfaces = (InterfaceInfo[]) {
4460         { TYPE_FW_PATH_PROVIDER },
4461         { TYPE_NMI },
4462         { TYPE_HOTPLUG_HANDLER },
4463         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4464         { TYPE_XICS_FABRIC },
4465         { TYPE_INTERRUPT_STATS_PROVIDER },
4466         { }
4467     },
4468 };
4469 
4470 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4471     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4472                                                     void *data)      \
4473     {                                                                \
4474         MachineClass *mc = MACHINE_CLASS(oc);                        \
4475         spapr_machine_##suffix##_class_options(mc);                  \
4476         if (latest) {                                                \
4477             mc->alias = "pseries";                                   \
4478             mc->is_default = 1;                                      \
4479         }                                                            \
4480     }                                                                \
4481     static const TypeInfo spapr_machine_##suffix##_info = {          \
4482         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4483         .parent = TYPE_SPAPR_MACHINE,                                \
4484         .class_init = spapr_machine_##suffix##_class_init,           \
4485     };                                                               \
4486     static void spapr_machine_register_##suffix(void)                \
4487     {                                                                \
4488         type_register(&spapr_machine_##suffix##_info);               \
4489     }                                                                \
4490     type_init(spapr_machine_register_##suffix)
4491 
4492 /*
4493  * pseries-4.2
4494  */
4495 static void spapr_machine_4_2_class_options(MachineClass *mc)
4496 {
4497     /* Defaults for the latest behaviour inherited from the base class */
4498 }
4499 
4500 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4501 
4502 /*
4503  * pseries-4.1
4504  */
4505 static void spapr_machine_4_1_class_options(MachineClass *mc)
4506 {
4507     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4508     static GlobalProperty compat[] = {
4509         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4510         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4511     };
4512 
4513     spapr_machine_4_2_class_options(mc);
4514     smc->linux_pci_probe = false;
4515     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4516     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4517 }
4518 
4519 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4520 
4521 /*
4522  * pseries-4.0
4523  */
4524 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4525                               uint64_t *buid, hwaddr *pio,
4526                               hwaddr *mmio32, hwaddr *mmio64,
4527                               unsigned n_dma, uint32_t *liobns,
4528                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4529 {
4530     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4531                         nv2gpa, nv2atsd, errp);
4532     *nv2gpa = 0;
4533     *nv2atsd = 0;
4534 }
4535 
4536 static void spapr_machine_4_0_class_options(MachineClass *mc)
4537 {
4538     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4539 
4540     spapr_machine_4_1_class_options(mc);
4541     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4542     smc->phb_placement = phb_placement_4_0;
4543     smc->irq = &spapr_irq_xics;
4544     smc->pre_4_1_migration = true;
4545 }
4546 
4547 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4548 
4549 /*
4550  * pseries-3.1
4551  */
4552 static void spapr_machine_3_1_class_options(MachineClass *mc)
4553 {
4554     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4555 
4556     spapr_machine_4_0_class_options(mc);
4557     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4558 
4559     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4560     smc->update_dt_enabled = false;
4561     smc->dr_phb_enabled = false;
4562     smc->broken_host_serial_model = true;
4563     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4564     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4565     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4566     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4567 }
4568 
4569 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4570 
4571 /*
4572  * pseries-3.0
4573  */
4574 
4575 static void spapr_machine_3_0_class_options(MachineClass *mc)
4576 {
4577     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4578 
4579     spapr_machine_3_1_class_options(mc);
4580     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4581 
4582     smc->legacy_irq_allocation = true;
4583     smc->irq = &spapr_irq_xics_legacy;
4584 }
4585 
4586 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4587 
4588 /*
4589  * pseries-2.12
4590  */
4591 static void spapr_machine_2_12_class_options(MachineClass *mc)
4592 {
4593     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4594     static GlobalProperty compat[] = {
4595         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4596         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4597     };
4598 
4599     spapr_machine_3_0_class_options(mc);
4600     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4601     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4602 
4603     /* We depend on kvm_enabled() to choose a default value for the
4604      * hpt-max-page-size capability. Of course we can't do it here
4605      * because this is too early and the HW accelerator isn't initialzed
4606      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4607      */
4608     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4609 }
4610 
4611 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4612 
4613 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4614 {
4615     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4616 
4617     spapr_machine_2_12_class_options(mc);
4618     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4619     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4620     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4621 }
4622 
4623 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4624 
4625 /*
4626  * pseries-2.11
4627  */
4628 
4629 static void spapr_machine_2_11_class_options(MachineClass *mc)
4630 {
4631     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4632 
4633     spapr_machine_2_12_class_options(mc);
4634     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4635     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4636 }
4637 
4638 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4639 
4640 /*
4641  * pseries-2.10
4642  */
4643 
4644 static void spapr_machine_2_10_class_options(MachineClass *mc)
4645 {
4646     spapr_machine_2_11_class_options(mc);
4647     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4648 }
4649 
4650 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4651 
4652 /*
4653  * pseries-2.9
4654  */
4655 
4656 static void spapr_machine_2_9_class_options(MachineClass *mc)
4657 {
4658     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4659     static GlobalProperty compat[] = {
4660         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4661     };
4662 
4663     spapr_machine_2_10_class_options(mc);
4664     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4665     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4666     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4667     smc->pre_2_10_has_unused_icps = true;
4668     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4669 }
4670 
4671 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4672 
4673 /*
4674  * pseries-2.8
4675  */
4676 
4677 static void spapr_machine_2_8_class_options(MachineClass *mc)
4678 {
4679     static GlobalProperty compat[] = {
4680         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4681     };
4682 
4683     spapr_machine_2_9_class_options(mc);
4684     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4685     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4686     mc->numa_mem_align_shift = 23;
4687 }
4688 
4689 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4690 
4691 /*
4692  * pseries-2.7
4693  */
4694 
4695 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4696                               uint64_t *buid, hwaddr *pio,
4697                               hwaddr *mmio32, hwaddr *mmio64,
4698                               unsigned n_dma, uint32_t *liobns,
4699                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4700 {
4701     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4702     const uint64_t base_buid = 0x800000020000000ULL;
4703     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4704     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4705     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4706     const uint32_t max_index = 255;
4707     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4708 
4709     uint64_t ram_top = MACHINE(spapr)->ram_size;
4710     hwaddr phb0_base, phb_base;
4711     int i;
4712 
4713     /* Do we have device memory? */
4714     if (MACHINE(spapr)->maxram_size > ram_top) {
4715         /* Can't just use maxram_size, because there may be an
4716          * alignment gap between normal and device memory regions
4717          */
4718         ram_top = MACHINE(spapr)->device_memory->base +
4719             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4720     }
4721 
4722     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4723 
4724     if (index > max_index) {
4725         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4726                    max_index);
4727         return;
4728     }
4729 
4730     *buid = base_buid + index;
4731     for (i = 0; i < n_dma; ++i) {
4732         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4733     }
4734 
4735     phb_base = phb0_base + index * phb_spacing;
4736     *pio = phb_base + pio_offset;
4737     *mmio32 = phb_base + mmio_offset;
4738     /*
4739      * We don't set the 64-bit MMIO window, relying on the PHB's
4740      * fallback behaviour of automatically splitting a large "32-bit"
4741      * window into contiguous 32-bit and 64-bit windows
4742      */
4743 
4744     *nv2gpa = 0;
4745     *nv2atsd = 0;
4746 }
4747 
4748 static void spapr_machine_2_7_class_options(MachineClass *mc)
4749 {
4750     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4751     static GlobalProperty compat[] = {
4752         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4753         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4754         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4755         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4756     };
4757 
4758     spapr_machine_2_8_class_options(mc);
4759     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4760     mc->default_machine_opts = "modern-hotplug-events=off";
4761     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4762     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4763     smc->phb_placement = phb_placement_2_7;
4764 }
4765 
4766 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4767 
4768 /*
4769  * pseries-2.6
4770  */
4771 
4772 static void spapr_machine_2_6_class_options(MachineClass *mc)
4773 {
4774     static GlobalProperty compat[] = {
4775         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4776     };
4777 
4778     spapr_machine_2_7_class_options(mc);
4779     mc->has_hotpluggable_cpus = false;
4780     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4781     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4782 }
4783 
4784 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4785 
4786 /*
4787  * pseries-2.5
4788  */
4789 
4790 static void spapr_machine_2_5_class_options(MachineClass *mc)
4791 {
4792     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4793     static GlobalProperty compat[] = {
4794         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4795     };
4796 
4797     spapr_machine_2_6_class_options(mc);
4798     smc->use_ohci_by_default = true;
4799     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4800     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4801 }
4802 
4803 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4804 
4805 /*
4806  * pseries-2.4
4807  */
4808 
4809 static void spapr_machine_2_4_class_options(MachineClass *mc)
4810 {
4811     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4812 
4813     spapr_machine_2_5_class_options(mc);
4814     smc->dr_lmb_enabled = false;
4815     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4816 }
4817 
4818 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4819 
4820 /*
4821  * pseries-2.3
4822  */
4823 
4824 static void spapr_machine_2_3_class_options(MachineClass *mc)
4825 {
4826     static GlobalProperty compat[] = {
4827         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4828     };
4829     spapr_machine_2_4_class_options(mc);
4830     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4831     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4832 }
4833 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4834 
4835 /*
4836  * pseries-2.2
4837  */
4838 
4839 static void spapr_machine_2_2_class_options(MachineClass *mc)
4840 {
4841     static GlobalProperty compat[] = {
4842         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4843     };
4844 
4845     spapr_machine_2_3_class_options(mc);
4846     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4847     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4848     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4849 }
4850 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4851 
4852 /*
4853  * pseries-2.1
4854  */
4855 
4856 static void spapr_machine_2_1_class_options(MachineClass *mc)
4857 {
4858     spapr_machine_2_2_class_options(mc);
4859     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4860 }
4861 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4862 
4863 static void spapr_machine_register_types(void)
4864 {
4865     type_register_static(&spapr_machine_info);
4866 }
4867 
4868 type_init(spapr_machine_register_types)
4869