1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include "monitor/monitor.h" 85 86 #include <libfdt.h> 87 88 /* SLOF memory layout: 89 * 90 * SLOF raw image loaded at 0, copies its romfs right below the flat 91 * device-tree, then position SLOF itself 31M below that 92 * 93 * So we set FW_OVERHEAD to 40MB which should account for all of that 94 * and more 95 * 96 * We load our kernel at 4M, leaving space for SLOF initial image 97 */ 98 #define FDT_MAX_SIZE 0x100000 99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 100 #define FW_MAX_SIZE 0x400000 101 #define FW_FILE_NAME "slof.bin" 102 #define FW_OVERHEAD 0x2800000 103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 104 105 #define MIN_RMA_SLOF 128UL 106 107 #define PHANDLE_INTC 0x00001111 108 109 /* These two functions implement the VCPU id numbering: one to compute them 110 * all and one to identify thread 0 of a VCORE. Any change to the first one 111 * is likely to have an impact on the second one, so let's keep them close. 112 */ 113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 114 { 115 MachineState *ms = MACHINE(spapr); 116 unsigned int smp_threads = ms->smp.threads; 117 118 assert(spapr->vsmt); 119 return 120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 121 } 122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 123 PowerPCCPU *cpu) 124 { 125 assert(spapr->vsmt); 126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 127 } 128 129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 130 { 131 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 132 * and newer QEMUs don't even have them. In both cases, we don't want 133 * to send anything on the wire. 134 */ 135 return false; 136 } 137 138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 139 .name = "icp/server", 140 .version_id = 1, 141 .minimum_version_id = 1, 142 .needed = pre_2_10_vmstate_dummy_icp_needed, 143 .fields = (VMStateField[]) { 144 VMSTATE_UNUSED(4), /* uint32_t xirr */ 145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 146 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 147 VMSTATE_END_OF_LIST() 148 }, 149 }; 150 151 static void pre_2_10_vmstate_register_dummy_icp(int i) 152 { 153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 154 (void *)(uintptr_t) i); 155 } 156 157 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 158 { 159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 160 (void *)(uintptr_t) i); 161 } 162 163 int spapr_max_server_number(SpaprMachineState *spapr) 164 { 165 MachineState *ms = MACHINE(spapr); 166 167 assert(spapr->vsmt); 168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 169 } 170 171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 172 int smt_threads) 173 { 174 int i, ret = 0; 175 uint32_t servers_prop[smt_threads]; 176 uint32_t gservers_prop[smt_threads * 2]; 177 int index = spapr_get_vcpu_id(cpu); 178 179 if (cpu->compat_pvr) { 180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 181 if (ret < 0) { 182 return ret; 183 } 184 } 185 186 /* Build interrupt servers and gservers properties */ 187 for (i = 0; i < smt_threads; i++) { 188 servers_prop[i] = cpu_to_be32(index + i); 189 /* Hack, direct the group queues back to cpu 0 */ 190 gservers_prop[i*2] = cpu_to_be32(index + i); 191 gservers_prop[i*2 + 1] = 0; 192 } 193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 194 servers_prop, sizeof(servers_prop)); 195 if (ret < 0) { 196 return ret; 197 } 198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 199 gservers_prop, sizeof(gservers_prop)); 200 201 return ret; 202 } 203 204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 205 { 206 int index = spapr_get_vcpu_id(cpu); 207 uint32_t associativity[] = {cpu_to_be32(0x5), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(0x0), 211 cpu_to_be32(cpu->node_id), 212 cpu_to_be32(index)}; 213 214 /* Advertise NUMA via ibm,associativity */ 215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 216 sizeof(associativity)); 217 } 218 219 /* Populate the "ibm,pa-features" property */ 220 static void spapr_populate_pa_features(SpaprMachineState *spapr, 221 PowerPCCPU *cpu, 222 void *fdt, int offset) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static hwaddr spapr_node0_size(MachineState *machine) 299 { 300 if (machine->numa_state->num_nodes) { 301 int i; 302 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 303 if (machine->numa_state->nodes[i].node_mem) { 304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 305 machine->ram_size); 306 } 307 } 308 } 309 return machine->ram_size; 310 } 311 312 static void add_str(GString *s, const gchar *s1) 313 { 314 g_string_append_len(s, s1, strlen(s1) + 1); 315 } 316 317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 318 hwaddr size) 319 { 320 uint32_t associativity[] = { 321 cpu_to_be32(0x4), /* length */ 322 cpu_to_be32(0x0), cpu_to_be32(0x0), 323 cpu_to_be32(0x0), cpu_to_be32(nodeid) 324 }; 325 char mem_name[32]; 326 uint64_t mem_reg_property[2]; 327 int off; 328 329 mem_reg_property[0] = cpu_to_be64(start); 330 mem_reg_property[1] = cpu_to_be64(size); 331 332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 333 off = fdt_add_subnode(fdt, 0, mem_name); 334 _FDT(off); 335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 337 sizeof(mem_reg_property)))); 338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 339 sizeof(associativity)))); 340 return off; 341 } 342 343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 344 { 345 MachineState *machine = MACHINE(spapr); 346 hwaddr mem_start, node_size; 347 int i, nb_nodes = machine->numa_state->num_nodes; 348 NodeInfo *nodes = machine->numa_state->nodes; 349 NodeInfo ramnode; 350 351 /* No NUMA nodes, assume there is just one node with whole RAM */ 352 if (!nb_nodes) { 353 nb_nodes = 1; 354 ramnode.node_mem = machine->ram_size; 355 nodes = &ramnode; 356 } 357 358 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 359 if (!nodes[i].node_mem) { 360 continue; 361 } 362 if (mem_start >= machine->ram_size) { 363 node_size = 0; 364 } else { 365 node_size = nodes[i].node_mem; 366 if (node_size > machine->ram_size - mem_start) { 367 node_size = machine->ram_size - mem_start; 368 } 369 } 370 if (!mem_start) { 371 /* spapr_machine_init() checks for rma_size <= node0_size 372 * already */ 373 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 374 mem_start += spapr->rma_size; 375 node_size -= spapr->rma_size; 376 } 377 for ( ; node_size; ) { 378 hwaddr sizetmp = pow2floor(node_size); 379 380 /* mem_start != 0 here */ 381 if (ctzl(mem_start) < ctzl(sizetmp)) { 382 sizetmp = 1ULL << ctzl(mem_start); 383 } 384 385 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 386 node_size -= sizetmp; 387 mem_start += sizetmp; 388 } 389 } 390 391 return 0; 392 } 393 394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 395 SpaprMachineState *spapr) 396 { 397 MachineState *ms = MACHINE(spapr); 398 PowerPCCPU *cpu = POWERPC_CPU(cs); 399 CPUPPCState *env = &cpu->env; 400 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 401 int index = spapr_get_vcpu_id(cpu); 402 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 403 0xffffffff, 0xffffffff}; 404 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 405 : SPAPR_TIMEBASE_FREQ; 406 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 407 uint32_t page_sizes_prop[64]; 408 size_t page_sizes_prop_size; 409 unsigned int smp_threads = ms->smp.threads; 410 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 411 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 412 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 413 SpaprDrc *drc; 414 int drc_index; 415 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 416 int i; 417 418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 419 if (drc) { 420 drc_index = spapr_drc_index(drc); 421 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 422 } 423 424 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 425 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 426 427 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 428 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 429 env->dcache_line_size))); 430 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 431 env->dcache_line_size))); 432 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 433 env->icache_line_size))); 434 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 435 env->icache_line_size))); 436 437 if (pcc->l1_dcache_size) { 438 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 439 pcc->l1_dcache_size))); 440 } else { 441 warn_report("Unknown L1 dcache size for cpu"); 442 } 443 if (pcc->l1_icache_size) { 444 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 445 pcc->l1_icache_size))); 446 } else { 447 warn_report("Unknown L1 icache size for cpu"); 448 } 449 450 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 451 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 452 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 454 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 455 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 456 457 if (env->spr_cb[SPR_PURR].oea_read) { 458 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 459 } 460 if (env->spr_cb[SPR_SPURR].oea_read) { 461 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 462 } 463 464 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 465 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 466 segs, sizeof(segs)))); 467 } 468 469 /* Advertise VSX (vector extensions) if available 470 * 1 == VMX / Altivec available 471 * 2 == VSX available 472 * 473 * Only CPUs for which we create core types in spapr_cpu_core.c 474 * are possible, and all of those have VMX */ 475 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 477 } else { 478 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 479 } 480 481 /* Advertise DFP (Decimal Floating Point) if available 482 * 0 / no property == no DFP 483 * 1 == DFP available */ 484 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 485 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 486 } 487 488 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 489 sizeof(page_sizes_prop)); 490 if (page_sizes_prop_size) { 491 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 492 page_sizes_prop, page_sizes_prop_size))); 493 } 494 495 spapr_populate_pa_features(spapr, cpu, fdt, offset); 496 497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 498 cs->cpu_index / vcpus_per_socket))); 499 500 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 501 pft_size_prop, sizeof(pft_size_prop)))); 502 503 if (ms->numa_state->num_nodes > 1) { 504 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 505 } 506 507 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 508 509 if (pcc->radix_page_info) { 510 for (i = 0; i < pcc->radix_page_info->count; i++) { 511 radix_AP_encodings[i] = 512 cpu_to_be32(pcc->radix_page_info->entries[i]); 513 } 514 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 515 radix_AP_encodings, 516 pcc->radix_page_info->count * 517 sizeof(radix_AP_encodings[0])))); 518 } 519 520 /* 521 * We set this property to let the guest know that it can use the large 522 * decrementer and its width in bits. 523 */ 524 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 525 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 526 pcc->lrg_decr_bits))); 527 } 528 529 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 530 { 531 CPUState **rev; 532 CPUState *cs; 533 int n_cpus; 534 int cpus_offset; 535 char *nodename; 536 int i; 537 538 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 539 _FDT(cpus_offset); 540 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 541 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 542 543 /* 544 * We walk the CPUs in reverse order to ensure that CPU DT nodes 545 * created by fdt_add_subnode() end up in the right order in FDT 546 * for the guest kernel the enumerate the CPUs correctly. 547 * 548 * The CPU list cannot be traversed in reverse order, so we need 549 * to do extra work. 550 */ 551 n_cpus = 0; 552 rev = NULL; 553 CPU_FOREACH(cs) { 554 rev = g_renew(CPUState *, rev, n_cpus + 1); 555 rev[n_cpus++] = cs; 556 } 557 558 for (i = n_cpus - 1; i >= 0; i--) { 559 CPUState *cs = rev[i]; 560 PowerPCCPU *cpu = POWERPC_CPU(cs); 561 int index = spapr_get_vcpu_id(cpu); 562 DeviceClass *dc = DEVICE_GET_CLASS(cs); 563 int offset; 564 565 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 566 continue; 567 } 568 569 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 570 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 571 g_free(nodename); 572 _FDT(offset); 573 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 574 } 575 576 g_free(rev); 577 } 578 579 static int spapr_rng_populate_dt(void *fdt) 580 { 581 int node; 582 int ret; 583 584 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 585 if (node <= 0) { 586 return -1; 587 } 588 ret = fdt_setprop_string(fdt, node, "device_type", 589 "ibm,platform-facilities"); 590 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 591 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 592 593 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 594 if (node <= 0) { 595 return -1; 596 } 597 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 598 599 return ret ? -1 : 0; 600 } 601 602 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 603 { 604 MemoryDeviceInfoList *info; 605 606 for (info = list; info; info = info->next) { 607 MemoryDeviceInfo *value = info->value; 608 609 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 610 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 611 612 if (addr >= pcdimm_info->addr && 613 addr < (pcdimm_info->addr + pcdimm_info->size)) { 614 return pcdimm_info->node; 615 } 616 } 617 } 618 619 return -1; 620 } 621 622 struct sPAPRDrconfCellV2 { 623 uint32_t seq_lmbs; 624 uint64_t base_addr; 625 uint32_t drc_index; 626 uint32_t aa_index; 627 uint32_t flags; 628 } QEMU_PACKED; 629 630 typedef struct DrconfCellQueue { 631 struct sPAPRDrconfCellV2 cell; 632 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 633 } DrconfCellQueue; 634 635 static DrconfCellQueue * 636 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 637 uint32_t drc_index, uint32_t aa_index, 638 uint32_t flags) 639 { 640 DrconfCellQueue *elem; 641 642 elem = g_malloc0(sizeof(*elem)); 643 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 644 elem->cell.base_addr = cpu_to_be64(base_addr); 645 elem->cell.drc_index = cpu_to_be32(drc_index); 646 elem->cell.aa_index = cpu_to_be32(aa_index); 647 elem->cell.flags = cpu_to_be32(flags); 648 649 return elem; 650 } 651 652 /* ibm,dynamic-memory-v2 */ 653 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 654 int offset, MemoryDeviceInfoList *dimms) 655 { 656 MachineState *machine = MACHINE(spapr); 657 uint8_t *int_buf, *cur_index; 658 int ret; 659 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 660 uint64_t addr, cur_addr, size; 661 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 662 uint64_t mem_end = machine->device_memory->base + 663 memory_region_size(&machine->device_memory->mr); 664 uint32_t node, buf_len, nr_entries = 0; 665 SpaprDrc *drc; 666 DrconfCellQueue *elem, *next; 667 MemoryDeviceInfoList *info; 668 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 669 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 670 671 /* Entry to cover RAM and the gap area */ 672 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 673 SPAPR_LMB_FLAGS_RESERVED | 674 SPAPR_LMB_FLAGS_DRC_INVALID); 675 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 676 nr_entries++; 677 678 cur_addr = machine->device_memory->base; 679 for (info = dimms; info; info = info->next) { 680 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 681 682 addr = di->addr; 683 size = di->size; 684 node = di->node; 685 686 /* Entry for hot-pluggable area */ 687 if (cur_addr < addr) { 688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 689 g_assert(drc); 690 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 691 cur_addr, spapr_drc_index(drc), -1, 0); 692 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 693 nr_entries++; 694 } 695 696 /* Entry for DIMM */ 697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 698 g_assert(drc); 699 elem = spapr_get_drconf_cell(size / lmb_size, addr, 700 spapr_drc_index(drc), node, 701 SPAPR_LMB_FLAGS_ASSIGNED); 702 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 703 nr_entries++; 704 cur_addr = addr + size; 705 } 706 707 /* Entry for remaining hotpluggable area */ 708 if (cur_addr < mem_end) { 709 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 710 g_assert(drc); 711 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 712 cur_addr, spapr_drc_index(drc), -1, 0); 713 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 714 nr_entries++; 715 } 716 717 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 718 int_buf = cur_index = g_malloc0(buf_len); 719 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 720 cur_index += sizeof(nr_entries); 721 722 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 723 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 724 cur_index += sizeof(elem->cell); 725 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 726 g_free(elem); 727 } 728 729 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 730 g_free(int_buf); 731 if (ret < 0) { 732 return -1; 733 } 734 return 0; 735 } 736 737 /* ibm,dynamic-memory */ 738 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 739 int offset, MemoryDeviceInfoList *dimms) 740 { 741 MachineState *machine = MACHINE(spapr); 742 int i, ret; 743 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 744 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 745 uint32_t nr_lmbs = (machine->device_memory->base + 746 memory_region_size(&machine->device_memory->mr)) / 747 lmb_size; 748 uint32_t *int_buf, *cur_index, buf_len; 749 750 /* 751 * Allocate enough buffer size to fit in ibm,dynamic-memory 752 */ 753 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 754 cur_index = int_buf = g_malloc0(buf_len); 755 int_buf[0] = cpu_to_be32(nr_lmbs); 756 cur_index++; 757 for (i = 0; i < nr_lmbs; i++) { 758 uint64_t addr = i * lmb_size; 759 uint32_t *dynamic_memory = cur_index; 760 761 if (i >= device_lmb_start) { 762 SpaprDrc *drc; 763 764 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 765 g_assert(drc); 766 767 dynamic_memory[0] = cpu_to_be32(addr >> 32); 768 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 769 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 770 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 771 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 772 if (memory_region_present(get_system_memory(), addr)) { 773 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 774 } else { 775 dynamic_memory[5] = cpu_to_be32(0); 776 } 777 } else { 778 /* 779 * LMB information for RMA, boot time RAM and gap b/n RAM and 780 * device memory region -- all these are marked as reserved 781 * and as having no valid DRC. 782 */ 783 dynamic_memory[0] = cpu_to_be32(addr >> 32); 784 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 785 dynamic_memory[2] = cpu_to_be32(0); 786 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 787 dynamic_memory[4] = cpu_to_be32(-1); 788 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 789 SPAPR_LMB_FLAGS_DRC_INVALID); 790 } 791 792 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 793 } 794 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 795 g_free(int_buf); 796 if (ret < 0) { 797 return -1; 798 } 799 return 0; 800 } 801 802 /* 803 * Adds ibm,dynamic-reconfiguration-memory node. 804 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 805 * of this device tree node. 806 */ 807 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 808 { 809 MachineState *machine = MACHINE(spapr); 810 int nb_numa_nodes = machine->numa_state->num_nodes; 811 int ret, i, offset; 812 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 813 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 814 uint32_t *int_buf, *cur_index, buf_len; 815 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 816 MemoryDeviceInfoList *dimms = NULL; 817 818 /* 819 * Don't create the node if there is no device memory 820 */ 821 if (machine->ram_size == machine->maxram_size) { 822 return 0; 823 } 824 825 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 826 827 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 828 sizeof(prop_lmb_size)); 829 if (ret < 0) { 830 return ret; 831 } 832 833 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 834 if (ret < 0) { 835 return ret; 836 } 837 838 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 839 if (ret < 0) { 840 return ret; 841 } 842 843 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 844 dimms = qmp_memory_device_list(); 845 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 846 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 847 } else { 848 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 849 } 850 qapi_free_MemoryDeviceInfoList(dimms); 851 852 if (ret < 0) { 853 return ret; 854 } 855 856 /* ibm,associativity-lookup-arrays */ 857 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 858 cur_index = int_buf = g_malloc0(buf_len); 859 int_buf[0] = cpu_to_be32(nr_nodes); 860 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 861 cur_index += 2; 862 for (i = 0; i < nr_nodes; i++) { 863 uint32_t associativity[] = { 864 cpu_to_be32(0x0), 865 cpu_to_be32(0x0), 866 cpu_to_be32(0x0), 867 cpu_to_be32(i) 868 }; 869 memcpy(cur_index, associativity, sizeof(associativity)); 870 cur_index += 4; 871 } 872 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 873 (cur_index - int_buf) * sizeof(uint32_t)); 874 g_free(int_buf); 875 876 return ret; 877 } 878 879 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 880 SpaprOptionVector *ov5_updates) 881 { 882 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 883 int ret = 0, offset; 884 885 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 886 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 887 g_assert(smc->dr_lmb_enabled); 888 ret = spapr_populate_drconf_memory(spapr, fdt); 889 if (ret) { 890 goto out; 891 } 892 } 893 894 offset = fdt_path_offset(fdt, "/chosen"); 895 if (offset < 0) { 896 offset = fdt_add_subnode(fdt, 0, "chosen"); 897 if (offset < 0) { 898 return offset; 899 } 900 } 901 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 902 "ibm,architecture-vec-5"); 903 904 out: 905 return ret; 906 } 907 908 static bool spapr_hotplugged_dev_before_cas(void) 909 { 910 Object *drc_container, *obj; 911 ObjectProperty *prop; 912 ObjectPropertyIterator iter; 913 914 drc_container = container_get(object_get_root(), "/dr-connector"); 915 object_property_iter_init(&iter, drc_container); 916 while ((prop = object_property_iter_next(&iter))) { 917 if (!strstart(prop->type, "link<", NULL)) { 918 continue; 919 } 920 obj = object_property_get_link(drc_container, prop->name, NULL); 921 if (spapr_drc_needed(obj)) { 922 return true; 923 } 924 } 925 return false; 926 } 927 928 static void *spapr_build_fdt(SpaprMachineState *spapr); 929 930 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 931 target_ulong addr, target_ulong size, 932 SpaprOptionVector *ov5_updates) 933 { 934 void *fdt; 935 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 936 937 if (spapr_hotplugged_dev_before_cas()) { 938 return 1; 939 } 940 941 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 942 error_report("SLOF provided an unexpected CAS buffer size " 943 TARGET_FMT_lu " (min: %zu, max: %u)", 944 size, sizeof(hdr), FW_MAX_SIZE); 945 exit(EXIT_FAILURE); 946 } 947 948 size -= sizeof(hdr); 949 950 fdt = spapr_build_fdt(spapr); 951 _FDT((fdt_pack(fdt))); 952 953 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 954 g_free(fdt); 955 trace_spapr_cas_failed(size); 956 return -1; 957 } 958 959 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 960 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 961 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 962 963 g_free(spapr->fdt_blob); 964 spapr->fdt_size = fdt_totalsize(fdt); 965 spapr->fdt_initial_size = spapr->fdt_size; 966 spapr->fdt_blob = fdt; 967 968 return 0; 969 } 970 971 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 972 { 973 MachineState *ms = MACHINE(spapr); 974 int rtas; 975 GString *hypertas = g_string_sized_new(256); 976 GString *qemu_hypertas = g_string_sized_new(256); 977 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 978 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 979 memory_region_size(&MACHINE(spapr)->device_memory->mr); 980 uint32_t lrdr_capacity[] = { 981 cpu_to_be32(max_device_addr >> 32), 982 cpu_to_be32(max_device_addr & 0xffffffff), 983 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 984 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 985 }; 986 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 987 uint32_t maxdomains[] = { 988 cpu_to_be32(4), 989 maxdomain, 990 maxdomain, 991 maxdomain, 992 cpu_to_be32(spapr->gpu_numa_id), 993 }; 994 995 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 996 997 /* hypertas */ 998 add_str(hypertas, "hcall-pft"); 999 add_str(hypertas, "hcall-term"); 1000 add_str(hypertas, "hcall-dabr"); 1001 add_str(hypertas, "hcall-interrupt"); 1002 add_str(hypertas, "hcall-tce"); 1003 add_str(hypertas, "hcall-vio"); 1004 add_str(hypertas, "hcall-splpar"); 1005 add_str(hypertas, "hcall-join"); 1006 add_str(hypertas, "hcall-bulk"); 1007 add_str(hypertas, "hcall-set-mode"); 1008 add_str(hypertas, "hcall-sprg0"); 1009 add_str(hypertas, "hcall-copy"); 1010 add_str(hypertas, "hcall-debug"); 1011 add_str(hypertas, "hcall-vphn"); 1012 add_str(qemu_hypertas, "hcall-memop1"); 1013 1014 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1015 add_str(hypertas, "hcall-multi-tce"); 1016 } 1017 1018 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1019 add_str(hypertas, "hcall-hpt-resize"); 1020 } 1021 1022 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1023 hypertas->str, hypertas->len)); 1024 g_string_free(hypertas, TRUE); 1025 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1026 qemu_hypertas->str, qemu_hypertas->len)); 1027 g_string_free(qemu_hypertas, TRUE); 1028 1029 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1030 refpoints, sizeof(refpoints))); 1031 1032 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1033 maxdomains, sizeof(maxdomains))); 1034 1035 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1036 RTAS_ERROR_LOG_MAX)); 1037 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1038 RTAS_EVENT_SCAN_RATE)); 1039 1040 g_assert(msi_nonbroken); 1041 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1042 1043 /* 1044 * According to PAPR, rtas ibm,os-term does not guarantee a return 1045 * back to the guest cpu. 1046 * 1047 * While an additional ibm,extended-os-term property indicates 1048 * that rtas call return will always occur. Set this property. 1049 */ 1050 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1051 1052 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1053 lrdr_capacity, sizeof(lrdr_capacity))); 1054 1055 spapr_dt_rtas_tokens(fdt, rtas); 1056 } 1057 1058 /* 1059 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1060 * and the XIVE features that the guest may request and thus the valid 1061 * values for bytes 23..26 of option vector 5: 1062 */ 1063 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1064 int chosen) 1065 { 1066 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1067 1068 char val[2 * 4] = { 1069 23, 0x00, /* XICS / XIVE mode */ 1070 24, 0x00, /* Hash/Radix, filled in below. */ 1071 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1072 26, 0x40, /* Radix options: GTSE == yes. */ 1073 }; 1074 1075 if (spapr->irq->xics && spapr->irq->xive) { 1076 val[1] = SPAPR_OV5_XIVE_BOTH; 1077 } else if (spapr->irq->xive) { 1078 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1079 } else { 1080 assert(spapr->irq->xics); 1081 val[1] = SPAPR_OV5_XIVE_LEGACY; 1082 } 1083 1084 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1085 first_ppc_cpu->compat_pvr)) { 1086 /* 1087 * If we're in a pre POWER9 compat mode then the guest should 1088 * do hash and use the legacy interrupt mode 1089 */ 1090 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1091 val[3] = 0x00; /* Hash */ 1092 } else if (kvm_enabled()) { 1093 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1094 val[3] = 0x80; /* OV5_MMU_BOTH */ 1095 } else if (kvmppc_has_cap_mmu_radix()) { 1096 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1097 } else { 1098 val[3] = 0x00; /* Hash */ 1099 } 1100 } else { 1101 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1102 val[3] = 0xC0; 1103 } 1104 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1105 val, sizeof(val))); 1106 } 1107 1108 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1109 { 1110 MachineState *machine = MACHINE(spapr); 1111 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1112 int chosen; 1113 const char *boot_device = machine->boot_order; 1114 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1115 size_t cb = 0; 1116 char *bootlist = get_boot_devices_list(&cb); 1117 1118 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1119 1120 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1121 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1122 machine->kernel_cmdline)); 1123 } 1124 if (spapr->initrd_size) { 1125 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1126 spapr->initrd_base)); 1127 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1128 spapr->initrd_base + spapr->initrd_size)); 1129 } 1130 1131 if (spapr->kernel_size) { 1132 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1133 cpu_to_be64(spapr->kernel_size) }; 1134 1135 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1136 &kprop, sizeof(kprop))); 1137 if (spapr->kernel_le) { 1138 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1139 } 1140 } 1141 if (boot_menu) { 1142 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1143 } 1144 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1145 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1146 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1147 1148 if (cb && bootlist) { 1149 int i; 1150 1151 for (i = 0; i < cb; i++) { 1152 if (bootlist[i] == '\n') { 1153 bootlist[i] = ' '; 1154 } 1155 } 1156 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1157 } 1158 1159 if (boot_device && strlen(boot_device)) { 1160 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1161 } 1162 1163 if (!spapr->has_graphics && stdout_path) { 1164 /* 1165 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1166 * kernel. New platforms should only use the "stdout-path" property. Set 1167 * the new property and continue using older property to remain 1168 * compatible with the existing firmware. 1169 */ 1170 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1171 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1172 } 1173 1174 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1175 if (smc->linux_pci_probe) { 1176 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1177 } 1178 1179 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1180 1181 g_free(stdout_path); 1182 g_free(bootlist); 1183 } 1184 1185 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1186 { 1187 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1188 * KVM to work under pHyp with some guest co-operation */ 1189 int hypervisor; 1190 uint8_t hypercall[16]; 1191 1192 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1193 /* indicate KVM hypercall interface */ 1194 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1195 if (kvmppc_has_cap_fixup_hcalls()) { 1196 /* 1197 * Older KVM versions with older guest kernels were broken 1198 * with the magic page, don't allow the guest to map it. 1199 */ 1200 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1201 sizeof(hypercall))) { 1202 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1203 hypercall, sizeof(hypercall))); 1204 } 1205 } 1206 } 1207 1208 static void *spapr_build_fdt(SpaprMachineState *spapr) 1209 { 1210 MachineState *machine = MACHINE(spapr); 1211 MachineClass *mc = MACHINE_GET_CLASS(machine); 1212 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1213 int ret; 1214 void *fdt; 1215 SpaprPhbState *phb; 1216 char *buf; 1217 1218 fdt = g_malloc0(FDT_MAX_SIZE); 1219 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1220 1221 /* Root node */ 1222 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1223 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1224 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1225 1226 /* Guest UUID & Name*/ 1227 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1228 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1229 if (qemu_uuid_set) { 1230 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1231 } 1232 g_free(buf); 1233 1234 if (qemu_get_vm_name()) { 1235 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1236 qemu_get_vm_name())); 1237 } 1238 1239 /* Host Model & Serial Number */ 1240 if (spapr->host_model) { 1241 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1242 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1243 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1244 g_free(buf); 1245 } 1246 1247 if (spapr->host_serial) { 1248 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1249 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1250 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1251 g_free(buf); 1252 } 1253 1254 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1255 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1256 1257 /* /interrupt controller */ 1258 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1259 PHANDLE_INTC); 1260 1261 ret = spapr_populate_memory(spapr, fdt); 1262 if (ret < 0) { 1263 error_report("couldn't setup memory nodes in fdt"); 1264 exit(1); 1265 } 1266 1267 /* /vdevice */ 1268 spapr_dt_vdevice(spapr->vio_bus, fdt); 1269 1270 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1271 ret = spapr_rng_populate_dt(fdt); 1272 if (ret < 0) { 1273 error_report("could not set up rng device in the fdt"); 1274 exit(1); 1275 } 1276 } 1277 1278 QLIST_FOREACH(phb, &spapr->phbs, list) { 1279 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1280 if (ret < 0) { 1281 error_report("couldn't setup PCI devices in fdt"); 1282 exit(1); 1283 } 1284 } 1285 1286 /* cpus */ 1287 spapr_populate_cpus_dt_node(fdt, spapr); 1288 1289 if (smc->dr_lmb_enabled) { 1290 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1291 } 1292 1293 if (mc->has_hotpluggable_cpus) { 1294 int offset = fdt_path_offset(fdt, "/cpus"); 1295 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1296 if (ret < 0) { 1297 error_report("Couldn't set up CPU DR device tree properties"); 1298 exit(1); 1299 } 1300 } 1301 1302 /* /event-sources */ 1303 spapr_dt_events(spapr, fdt); 1304 1305 /* /rtas */ 1306 spapr_dt_rtas(spapr, fdt); 1307 1308 /* /chosen */ 1309 spapr_dt_chosen(spapr, fdt); 1310 1311 /* /hypervisor */ 1312 if (kvm_enabled()) { 1313 spapr_dt_hypervisor(spapr, fdt); 1314 } 1315 1316 /* Build memory reserve map */ 1317 if (spapr->kernel_size) { 1318 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1319 } 1320 if (spapr->initrd_size) { 1321 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1322 } 1323 1324 /* ibm,client-architecture-support updates */ 1325 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1326 if (ret < 0) { 1327 error_report("couldn't setup CAS properties fdt"); 1328 exit(1); 1329 } 1330 1331 if (smc->dr_phb_enabled) { 1332 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1333 if (ret < 0) { 1334 error_report("Couldn't set up PHB DR device tree properties"); 1335 exit(1); 1336 } 1337 } 1338 1339 return fdt; 1340 } 1341 1342 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1343 { 1344 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1345 } 1346 1347 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1348 PowerPCCPU *cpu) 1349 { 1350 CPUPPCState *env = &cpu->env; 1351 1352 /* The TCG path should also be holding the BQL at this point */ 1353 g_assert(qemu_mutex_iothread_locked()); 1354 1355 if (msr_pr) { 1356 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1357 env->gpr[3] = H_PRIVILEGE; 1358 } else { 1359 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1360 } 1361 } 1362 1363 struct LPCRSyncState { 1364 target_ulong value; 1365 target_ulong mask; 1366 }; 1367 1368 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1369 { 1370 struct LPCRSyncState *s = arg.host_ptr; 1371 PowerPCCPU *cpu = POWERPC_CPU(cs); 1372 CPUPPCState *env = &cpu->env; 1373 target_ulong lpcr; 1374 1375 cpu_synchronize_state(cs); 1376 lpcr = env->spr[SPR_LPCR]; 1377 lpcr &= ~s->mask; 1378 lpcr |= s->value; 1379 ppc_store_lpcr(cpu, lpcr); 1380 } 1381 1382 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1383 { 1384 CPUState *cs; 1385 struct LPCRSyncState s = { 1386 .value = value, 1387 .mask = mask 1388 }; 1389 CPU_FOREACH(cs) { 1390 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1391 } 1392 } 1393 1394 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1395 { 1396 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1397 1398 /* Copy PATE1:GR into PATE0:HR */ 1399 entry->dw0 = spapr->patb_entry & PATE0_HR; 1400 entry->dw1 = spapr->patb_entry; 1401 } 1402 1403 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1404 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1405 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1406 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1407 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1408 1409 /* 1410 * Get the fd to access the kernel htab, re-opening it if necessary 1411 */ 1412 static int get_htab_fd(SpaprMachineState *spapr) 1413 { 1414 Error *local_err = NULL; 1415 1416 if (spapr->htab_fd >= 0) { 1417 return spapr->htab_fd; 1418 } 1419 1420 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1421 if (spapr->htab_fd < 0) { 1422 error_report_err(local_err); 1423 } 1424 1425 return spapr->htab_fd; 1426 } 1427 1428 void close_htab_fd(SpaprMachineState *spapr) 1429 { 1430 if (spapr->htab_fd >= 0) { 1431 close(spapr->htab_fd); 1432 } 1433 spapr->htab_fd = -1; 1434 } 1435 1436 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1437 { 1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1439 1440 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1441 } 1442 1443 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1444 { 1445 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1446 1447 assert(kvm_enabled()); 1448 1449 if (!spapr->htab) { 1450 return 0; 1451 } 1452 1453 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1454 } 1455 1456 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1457 hwaddr ptex, int n) 1458 { 1459 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1460 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1461 1462 if (!spapr->htab) { 1463 /* 1464 * HTAB is controlled by KVM. Fetch into temporary buffer 1465 */ 1466 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1467 kvmppc_read_hptes(hptes, ptex, n); 1468 return hptes; 1469 } 1470 1471 /* 1472 * HTAB is controlled by QEMU. Just point to the internally 1473 * accessible PTEG. 1474 */ 1475 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1476 } 1477 1478 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1479 const ppc_hash_pte64_t *hptes, 1480 hwaddr ptex, int n) 1481 { 1482 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1483 1484 if (!spapr->htab) { 1485 g_free((void *)hptes); 1486 } 1487 1488 /* Nothing to do for qemu managed HPT */ 1489 } 1490 1491 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1492 uint64_t pte0, uint64_t pte1) 1493 { 1494 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1495 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1496 1497 if (!spapr->htab) { 1498 kvmppc_write_hpte(ptex, pte0, pte1); 1499 } else { 1500 if (pte0 & HPTE64_V_VALID) { 1501 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1502 /* 1503 * When setting valid, we write PTE1 first. This ensures 1504 * proper synchronization with the reading code in 1505 * ppc_hash64_pteg_search() 1506 */ 1507 smp_wmb(); 1508 stq_p(spapr->htab + offset, pte0); 1509 } else { 1510 stq_p(spapr->htab + offset, pte0); 1511 /* 1512 * When clearing it we set PTE0 first. This ensures proper 1513 * synchronization with the reading code in 1514 * ppc_hash64_pteg_search() 1515 */ 1516 smp_wmb(); 1517 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1518 } 1519 } 1520 } 1521 1522 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1523 uint64_t pte1) 1524 { 1525 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1526 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1527 1528 if (!spapr->htab) { 1529 /* There should always be a hash table when this is called */ 1530 error_report("spapr_hpte_set_c called with no hash table !"); 1531 return; 1532 } 1533 1534 /* The HW performs a non-atomic byte update */ 1535 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1536 } 1537 1538 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1539 uint64_t pte1) 1540 { 1541 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1542 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1543 1544 if (!spapr->htab) { 1545 /* There should always be a hash table when this is called */ 1546 error_report("spapr_hpte_set_r called with no hash table !"); 1547 return; 1548 } 1549 1550 /* The HW performs a non-atomic byte update */ 1551 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1552 } 1553 1554 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1555 { 1556 int shift; 1557 1558 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1559 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1560 * that's much more than is needed for Linux guests */ 1561 shift = ctz64(pow2ceil(ramsize)) - 7; 1562 shift = MAX(shift, 18); /* Minimum architected size */ 1563 shift = MIN(shift, 46); /* Maximum architected size */ 1564 return shift; 1565 } 1566 1567 void spapr_free_hpt(SpaprMachineState *spapr) 1568 { 1569 g_free(spapr->htab); 1570 spapr->htab = NULL; 1571 spapr->htab_shift = 0; 1572 close_htab_fd(spapr); 1573 } 1574 1575 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1576 Error **errp) 1577 { 1578 long rc; 1579 1580 /* Clean up any HPT info from a previous boot */ 1581 spapr_free_hpt(spapr); 1582 1583 rc = kvmppc_reset_htab(shift); 1584 if (rc < 0) { 1585 /* kernel-side HPT needed, but couldn't allocate one */ 1586 error_setg_errno(errp, errno, 1587 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1588 shift); 1589 /* This is almost certainly fatal, but if the caller really 1590 * wants to carry on with shift == 0, it's welcome to try */ 1591 } else if (rc > 0) { 1592 /* kernel-side HPT allocated */ 1593 if (rc != shift) { 1594 error_setg(errp, 1595 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1596 shift, rc); 1597 } 1598 1599 spapr->htab_shift = shift; 1600 spapr->htab = NULL; 1601 } else { 1602 /* kernel-side HPT not needed, allocate in userspace instead */ 1603 size_t size = 1ULL << shift; 1604 int i; 1605 1606 spapr->htab = qemu_memalign(size, size); 1607 if (!spapr->htab) { 1608 error_setg_errno(errp, errno, 1609 "Could not allocate HPT of order %d", shift); 1610 return; 1611 } 1612 1613 memset(spapr->htab, 0, size); 1614 spapr->htab_shift = shift; 1615 1616 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1617 DIRTY_HPTE(HPTE(spapr->htab, i)); 1618 } 1619 } 1620 /* We're setting up a hash table, so that means we're not radix */ 1621 spapr->patb_entry = 0; 1622 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1623 } 1624 1625 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1626 { 1627 int hpt_shift; 1628 1629 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1630 || (spapr->cas_reboot 1631 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1632 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1633 } else { 1634 uint64_t current_ram_size; 1635 1636 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1637 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1638 } 1639 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1640 1641 if (spapr->vrma_adjust) { 1642 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1643 spapr->htab_shift); 1644 } 1645 } 1646 1647 static int spapr_reset_drcs(Object *child, void *opaque) 1648 { 1649 SpaprDrc *drc = 1650 (SpaprDrc *) object_dynamic_cast(child, 1651 TYPE_SPAPR_DR_CONNECTOR); 1652 1653 if (drc) { 1654 spapr_drc_reset(drc); 1655 } 1656 1657 return 0; 1658 } 1659 1660 static void spapr_machine_reset(MachineState *machine) 1661 { 1662 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1663 PowerPCCPU *first_ppc_cpu; 1664 hwaddr fdt_addr; 1665 void *fdt; 1666 int rc; 1667 1668 spapr_caps_apply(spapr); 1669 1670 first_ppc_cpu = POWERPC_CPU(first_cpu); 1671 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1672 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1673 spapr->max_compat_pvr)) { 1674 /* 1675 * If using KVM with radix mode available, VCPUs can be started 1676 * without a HPT because KVM will start them in radix mode. 1677 * Set the GR bit in PATE so that we know there is no HPT. 1678 */ 1679 spapr->patb_entry = PATE1_GR; 1680 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1681 } else { 1682 spapr_setup_hpt_and_vrma(spapr); 1683 } 1684 1685 qemu_devices_reset(); 1686 1687 /* 1688 * If this reset wasn't generated by CAS, we should reset our 1689 * negotiated options and start from scratch 1690 */ 1691 if (!spapr->cas_reboot) { 1692 spapr_ovec_cleanup(spapr->ov5_cas); 1693 spapr->ov5_cas = spapr_ovec_new(); 1694 1695 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1696 } 1697 1698 /* 1699 * This is fixing some of the default configuration of the XIVE 1700 * devices. To be called after the reset of the machine devices. 1701 */ 1702 spapr_irq_reset(spapr, &error_fatal); 1703 1704 /* 1705 * There is no CAS under qtest. Simulate one to please the code that 1706 * depends on spapr->ov5_cas. This is especially needed to test device 1707 * unplug, so we do that before resetting the DRCs. 1708 */ 1709 if (qtest_enabled()) { 1710 spapr_ovec_cleanup(spapr->ov5_cas); 1711 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1712 } 1713 1714 /* DRC reset may cause a device to be unplugged. This will cause troubles 1715 * if this device is used by another device (eg, a running vhost backend 1716 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1717 * situations, we reset DRCs after all devices have been reset. 1718 */ 1719 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1720 1721 spapr_clear_pending_events(spapr); 1722 1723 /* 1724 * We place the device tree and RTAS just below either the top of the RMA, 1725 * or just below 2GB, whichever is lower, so that it can be 1726 * processed with 32-bit real mode code if necessary 1727 */ 1728 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE; 1729 1730 fdt = spapr_build_fdt(spapr); 1731 1732 rc = fdt_pack(fdt); 1733 1734 /* Should only fail if we've built a corrupted tree */ 1735 assert(rc == 0); 1736 1737 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1738 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1739 fdt_totalsize(fdt), FDT_MAX_SIZE); 1740 exit(1); 1741 } 1742 1743 /* Load the fdt */ 1744 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1745 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1746 g_free(spapr->fdt_blob); 1747 spapr->fdt_size = fdt_totalsize(fdt); 1748 spapr->fdt_initial_size = spapr->fdt_size; 1749 spapr->fdt_blob = fdt; 1750 1751 /* Set up the entry state */ 1752 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1753 first_ppc_cpu->env.gpr[5] = 0; 1754 1755 spapr->cas_reboot = false; 1756 } 1757 1758 static void spapr_create_nvram(SpaprMachineState *spapr) 1759 { 1760 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1761 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1762 1763 if (dinfo) { 1764 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1765 &error_fatal); 1766 } 1767 1768 qdev_init_nofail(dev); 1769 1770 spapr->nvram = (struct SpaprNvram *)dev; 1771 } 1772 1773 static void spapr_rtc_create(SpaprMachineState *spapr) 1774 { 1775 object_initialize_child(OBJECT(spapr), "rtc", 1776 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1777 &error_fatal, NULL); 1778 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1779 &error_fatal); 1780 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1781 "date", &error_fatal); 1782 } 1783 1784 /* Returns whether we want to use VGA or not */ 1785 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1786 { 1787 switch (vga_interface_type) { 1788 case VGA_NONE: 1789 return false; 1790 case VGA_DEVICE: 1791 return true; 1792 case VGA_STD: 1793 case VGA_VIRTIO: 1794 case VGA_CIRRUS: 1795 return pci_vga_init(pci_bus) != NULL; 1796 default: 1797 error_setg(errp, 1798 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1799 return false; 1800 } 1801 } 1802 1803 static int spapr_pre_load(void *opaque) 1804 { 1805 int rc; 1806 1807 rc = spapr_caps_pre_load(opaque); 1808 if (rc) { 1809 return rc; 1810 } 1811 1812 return 0; 1813 } 1814 1815 static int spapr_post_load(void *opaque, int version_id) 1816 { 1817 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1818 int err = 0; 1819 1820 err = spapr_caps_post_migration(spapr); 1821 if (err) { 1822 return err; 1823 } 1824 1825 /* 1826 * In earlier versions, there was no separate qdev for the PAPR 1827 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1828 * So when migrating from those versions, poke the incoming offset 1829 * value into the RTC device 1830 */ 1831 if (version_id < 3) { 1832 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1833 if (err) { 1834 return err; 1835 } 1836 } 1837 1838 if (kvm_enabled() && spapr->patb_entry) { 1839 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1840 bool radix = !!(spapr->patb_entry & PATE1_GR); 1841 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1842 1843 /* 1844 * Update LPCR:HR and UPRT as they may not be set properly in 1845 * the stream 1846 */ 1847 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1848 LPCR_HR | LPCR_UPRT); 1849 1850 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1851 if (err) { 1852 error_report("Process table config unsupported by the host"); 1853 return -EINVAL; 1854 } 1855 } 1856 1857 err = spapr_irq_post_load(spapr, version_id); 1858 if (err) { 1859 return err; 1860 } 1861 1862 return err; 1863 } 1864 1865 static int spapr_pre_save(void *opaque) 1866 { 1867 int rc; 1868 1869 rc = spapr_caps_pre_save(opaque); 1870 if (rc) { 1871 return rc; 1872 } 1873 1874 return 0; 1875 } 1876 1877 static bool version_before_3(void *opaque, int version_id) 1878 { 1879 return version_id < 3; 1880 } 1881 1882 static bool spapr_pending_events_needed(void *opaque) 1883 { 1884 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1885 return !QTAILQ_EMPTY(&spapr->pending_events); 1886 } 1887 1888 static const VMStateDescription vmstate_spapr_event_entry = { 1889 .name = "spapr_event_log_entry", 1890 .version_id = 1, 1891 .minimum_version_id = 1, 1892 .fields = (VMStateField[]) { 1893 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1894 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1895 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1896 NULL, extended_length), 1897 VMSTATE_END_OF_LIST() 1898 }, 1899 }; 1900 1901 static const VMStateDescription vmstate_spapr_pending_events = { 1902 .name = "spapr_pending_events", 1903 .version_id = 1, 1904 .minimum_version_id = 1, 1905 .needed = spapr_pending_events_needed, 1906 .fields = (VMStateField[]) { 1907 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1908 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1909 VMSTATE_END_OF_LIST() 1910 }, 1911 }; 1912 1913 static bool spapr_ov5_cas_needed(void *opaque) 1914 { 1915 SpaprMachineState *spapr = opaque; 1916 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1917 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1918 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1919 bool cas_needed; 1920 1921 /* Prior to the introduction of SpaprOptionVector, we had two option 1922 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1923 * Both of these options encode machine topology into the device-tree 1924 * in such a way that the now-booted OS should still be able to interact 1925 * appropriately with QEMU regardless of what options were actually 1926 * negotiatied on the source side. 1927 * 1928 * As such, we can avoid migrating the CAS-negotiated options if these 1929 * are the only options available on the current machine/platform. 1930 * Since these are the only options available for pseries-2.7 and 1931 * earlier, this allows us to maintain old->new/new->old migration 1932 * compatibility. 1933 * 1934 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1935 * via default pseries-2.8 machines and explicit command-line parameters. 1936 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1937 * of the actual CAS-negotiated values to continue working properly. For 1938 * example, availability of memory unplug depends on knowing whether 1939 * OV5_HP_EVT was negotiated via CAS. 1940 * 1941 * Thus, for any cases where the set of available CAS-negotiatable 1942 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1943 * include the CAS-negotiated options in the migration stream, unless 1944 * if they affect boot time behaviour only. 1945 */ 1946 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1947 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1948 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1949 1950 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1951 * the mask itself since in the future it's possible "legacy" bits may be 1952 * removed via machine options, which could generate a false positive 1953 * that breaks migration. 1954 */ 1955 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1956 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1957 1958 spapr_ovec_cleanup(ov5_mask); 1959 spapr_ovec_cleanup(ov5_legacy); 1960 spapr_ovec_cleanup(ov5_removed); 1961 1962 return cas_needed; 1963 } 1964 1965 static const VMStateDescription vmstate_spapr_ov5_cas = { 1966 .name = "spapr_option_vector_ov5_cas", 1967 .version_id = 1, 1968 .minimum_version_id = 1, 1969 .needed = spapr_ov5_cas_needed, 1970 .fields = (VMStateField[]) { 1971 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1972 vmstate_spapr_ovec, SpaprOptionVector), 1973 VMSTATE_END_OF_LIST() 1974 }, 1975 }; 1976 1977 static bool spapr_patb_entry_needed(void *opaque) 1978 { 1979 SpaprMachineState *spapr = opaque; 1980 1981 return !!spapr->patb_entry; 1982 } 1983 1984 static const VMStateDescription vmstate_spapr_patb_entry = { 1985 .name = "spapr_patb_entry", 1986 .version_id = 1, 1987 .minimum_version_id = 1, 1988 .needed = spapr_patb_entry_needed, 1989 .fields = (VMStateField[]) { 1990 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1991 VMSTATE_END_OF_LIST() 1992 }, 1993 }; 1994 1995 static bool spapr_irq_map_needed(void *opaque) 1996 { 1997 SpaprMachineState *spapr = opaque; 1998 1999 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2000 } 2001 2002 static const VMStateDescription vmstate_spapr_irq_map = { 2003 .name = "spapr_irq_map", 2004 .version_id = 1, 2005 .minimum_version_id = 1, 2006 .needed = spapr_irq_map_needed, 2007 .fields = (VMStateField[]) { 2008 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2009 VMSTATE_END_OF_LIST() 2010 }, 2011 }; 2012 2013 static bool spapr_dtb_needed(void *opaque) 2014 { 2015 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2016 2017 return smc->update_dt_enabled; 2018 } 2019 2020 static int spapr_dtb_pre_load(void *opaque) 2021 { 2022 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2023 2024 g_free(spapr->fdt_blob); 2025 spapr->fdt_blob = NULL; 2026 spapr->fdt_size = 0; 2027 2028 return 0; 2029 } 2030 2031 static const VMStateDescription vmstate_spapr_dtb = { 2032 .name = "spapr_dtb", 2033 .version_id = 1, 2034 .minimum_version_id = 1, 2035 .needed = spapr_dtb_needed, 2036 .pre_load = spapr_dtb_pre_load, 2037 .fields = (VMStateField[]) { 2038 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2039 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2040 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2041 fdt_size), 2042 VMSTATE_END_OF_LIST() 2043 }, 2044 }; 2045 2046 static const VMStateDescription vmstate_spapr = { 2047 .name = "spapr", 2048 .version_id = 3, 2049 .minimum_version_id = 1, 2050 .pre_load = spapr_pre_load, 2051 .post_load = spapr_post_load, 2052 .pre_save = spapr_pre_save, 2053 .fields = (VMStateField[]) { 2054 /* used to be @next_irq */ 2055 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2056 2057 /* RTC offset */ 2058 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2059 2060 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2061 VMSTATE_END_OF_LIST() 2062 }, 2063 .subsections = (const VMStateDescription*[]) { 2064 &vmstate_spapr_ov5_cas, 2065 &vmstate_spapr_patb_entry, 2066 &vmstate_spapr_pending_events, 2067 &vmstate_spapr_cap_htm, 2068 &vmstate_spapr_cap_vsx, 2069 &vmstate_spapr_cap_dfp, 2070 &vmstate_spapr_cap_cfpc, 2071 &vmstate_spapr_cap_sbbc, 2072 &vmstate_spapr_cap_ibs, 2073 &vmstate_spapr_cap_hpt_maxpagesize, 2074 &vmstate_spapr_irq_map, 2075 &vmstate_spapr_cap_nested_kvm_hv, 2076 &vmstate_spapr_dtb, 2077 &vmstate_spapr_cap_large_decr, 2078 &vmstate_spapr_cap_ccf_assist, 2079 NULL 2080 } 2081 }; 2082 2083 static int htab_save_setup(QEMUFile *f, void *opaque) 2084 { 2085 SpaprMachineState *spapr = opaque; 2086 2087 /* "Iteration" header */ 2088 if (!spapr->htab_shift) { 2089 qemu_put_be32(f, -1); 2090 } else { 2091 qemu_put_be32(f, spapr->htab_shift); 2092 } 2093 2094 if (spapr->htab) { 2095 spapr->htab_save_index = 0; 2096 spapr->htab_first_pass = true; 2097 } else { 2098 if (spapr->htab_shift) { 2099 assert(kvm_enabled()); 2100 } 2101 } 2102 2103 2104 return 0; 2105 } 2106 2107 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2108 int chunkstart, int n_valid, int n_invalid) 2109 { 2110 qemu_put_be32(f, chunkstart); 2111 qemu_put_be16(f, n_valid); 2112 qemu_put_be16(f, n_invalid); 2113 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2114 HASH_PTE_SIZE_64 * n_valid); 2115 } 2116 2117 static void htab_save_end_marker(QEMUFile *f) 2118 { 2119 qemu_put_be32(f, 0); 2120 qemu_put_be16(f, 0); 2121 qemu_put_be16(f, 0); 2122 } 2123 2124 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2125 int64_t max_ns) 2126 { 2127 bool has_timeout = max_ns != -1; 2128 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2129 int index = spapr->htab_save_index; 2130 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2131 2132 assert(spapr->htab_first_pass); 2133 2134 do { 2135 int chunkstart; 2136 2137 /* Consume invalid HPTEs */ 2138 while ((index < htabslots) 2139 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2140 CLEAN_HPTE(HPTE(spapr->htab, index)); 2141 index++; 2142 } 2143 2144 /* Consume valid HPTEs */ 2145 chunkstart = index; 2146 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2147 && HPTE_VALID(HPTE(spapr->htab, index))) { 2148 CLEAN_HPTE(HPTE(spapr->htab, index)); 2149 index++; 2150 } 2151 2152 if (index > chunkstart) { 2153 int n_valid = index - chunkstart; 2154 2155 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2156 2157 if (has_timeout && 2158 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2159 break; 2160 } 2161 } 2162 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2163 2164 if (index >= htabslots) { 2165 assert(index == htabslots); 2166 index = 0; 2167 spapr->htab_first_pass = false; 2168 } 2169 spapr->htab_save_index = index; 2170 } 2171 2172 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2173 int64_t max_ns) 2174 { 2175 bool final = max_ns < 0; 2176 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2177 int examined = 0, sent = 0; 2178 int index = spapr->htab_save_index; 2179 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2180 2181 assert(!spapr->htab_first_pass); 2182 2183 do { 2184 int chunkstart, invalidstart; 2185 2186 /* Consume non-dirty HPTEs */ 2187 while ((index < htabslots) 2188 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2189 index++; 2190 examined++; 2191 } 2192 2193 chunkstart = index; 2194 /* Consume valid dirty HPTEs */ 2195 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2196 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2197 && HPTE_VALID(HPTE(spapr->htab, index))) { 2198 CLEAN_HPTE(HPTE(spapr->htab, index)); 2199 index++; 2200 examined++; 2201 } 2202 2203 invalidstart = index; 2204 /* Consume invalid dirty HPTEs */ 2205 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2206 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2207 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2208 CLEAN_HPTE(HPTE(spapr->htab, index)); 2209 index++; 2210 examined++; 2211 } 2212 2213 if (index > chunkstart) { 2214 int n_valid = invalidstart - chunkstart; 2215 int n_invalid = index - invalidstart; 2216 2217 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2218 sent += index - chunkstart; 2219 2220 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2221 break; 2222 } 2223 } 2224 2225 if (examined >= htabslots) { 2226 break; 2227 } 2228 2229 if (index >= htabslots) { 2230 assert(index == htabslots); 2231 index = 0; 2232 } 2233 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2234 2235 if (index >= htabslots) { 2236 assert(index == htabslots); 2237 index = 0; 2238 } 2239 2240 spapr->htab_save_index = index; 2241 2242 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2243 } 2244 2245 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2246 #define MAX_KVM_BUF_SIZE 2048 2247 2248 static int htab_save_iterate(QEMUFile *f, void *opaque) 2249 { 2250 SpaprMachineState *spapr = opaque; 2251 int fd; 2252 int rc = 0; 2253 2254 /* Iteration header */ 2255 if (!spapr->htab_shift) { 2256 qemu_put_be32(f, -1); 2257 return 1; 2258 } else { 2259 qemu_put_be32(f, 0); 2260 } 2261 2262 if (!spapr->htab) { 2263 assert(kvm_enabled()); 2264 2265 fd = get_htab_fd(spapr); 2266 if (fd < 0) { 2267 return fd; 2268 } 2269 2270 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2271 if (rc < 0) { 2272 return rc; 2273 } 2274 } else if (spapr->htab_first_pass) { 2275 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2276 } else { 2277 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2278 } 2279 2280 htab_save_end_marker(f); 2281 2282 return rc; 2283 } 2284 2285 static int htab_save_complete(QEMUFile *f, void *opaque) 2286 { 2287 SpaprMachineState *spapr = opaque; 2288 int fd; 2289 2290 /* Iteration header */ 2291 if (!spapr->htab_shift) { 2292 qemu_put_be32(f, -1); 2293 return 0; 2294 } else { 2295 qemu_put_be32(f, 0); 2296 } 2297 2298 if (!spapr->htab) { 2299 int rc; 2300 2301 assert(kvm_enabled()); 2302 2303 fd = get_htab_fd(spapr); 2304 if (fd < 0) { 2305 return fd; 2306 } 2307 2308 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2309 if (rc < 0) { 2310 return rc; 2311 } 2312 } else { 2313 if (spapr->htab_first_pass) { 2314 htab_save_first_pass(f, spapr, -1); 2315 } 2316 htab_save_later_pass(f, spapr, -1); 2317 } 2318 2319 /* End marker */ 2320 htab_save_end_marker(f); 2321 2322 return 0; 2323 } 2324 2325 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2326 { 2327 SpaprMachineState *spapr = opaque; 2328 uint32_t section_hdr; 2329 int fd = -1; 2330 Error *local_err = NULL; 2331 2332 if (version_id < 1 || version_id > 1) { 2333 error_report("htab_load() bad version"); 2334 return -EINVAL; 2335 } 2336 2337 section_hdr = qemu_get_be32(f); 2338 2339 if (section_hdr == -1) { 2340 spapr_free_hpt(spapr); 2341 return 0; 2342 } 2343 2344 if (section_hdr) { 2345 /* First section gives the htab size */ 2346 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2347 if (local_err) { 2348 error_report_err(local_err); 2349 return -EINVAL; 2350 } 2351 return 0; 2352 } 2353 2354 if (!spapr->htab) { 2355 assert(kvm_enabled()); 2356 2357 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2358 if (fd < 0) { 2359 error_report_err(local_err); 2360 return fd; 2361 } 2362 } 2363 2364 while (true) { 2365 uint32_t index; 2366 uint16_t n_valid, n_invalid; 2367 2368 index = qemu_get_be32(f); 2369 n_valid = qemu_get_be16(f); 2370 n_invalid = qemu_get_be16(f); 2371 2372 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2373 /* End of Stream */ 2374 break; 2375 } 2376 2377 if ((index + n_valid + n_invalid) > 2378 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2379 /* Bad index in stream */ 2380 error_report( 2381 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2382 index, n_valid, n_invalid, spapr->htab_shift); 2383 return -EINVAL; 2384 } 2385 2386 if (spapr->htab) { 2387 if (n_valid) { 2388 qemu_get_buffer(f, HPTE(spapr->htab, index), 2389 HASH_PTE_SIZE_64 * n_valid); 2390 } 2391 if (n_invalid) { 2392 memset(HPTE(spapr->htab, index + n_valid), 0, 2393 HASH_PTE_SIZE_64 * n_invalid); 2394 } 2395 } else { 2396 int rc; 2397 2398 assert(fd >= 0); 2399 2400 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2401 if (rc < 0) { 2402 return rc; 2403 } 2404 } 2405 } 2406 2407 if (!spapr->htab) { 2408 assert(fd >= 0); 2409 close(fd); 2410 } 2411 2412 return 0; 2413 } 2414 2415 static void htab_save_cleanup(void *opaque) 2416 { 2417 SpaprMachineState *spapr = opaque; 2418 2419 close_htab_fd(spapr); 2420 } 2421 2422 static SaveVMHandlers savevm_htab_handlers = { 2423 .save_setup = htab_save_setup, 2424 .save_live_iterate = htab_save_iterate, 2425 .save_live_complete_precopy = htab_save_complete, 2426 .save_cleanup = htab_save_cleanup, 2427 .load_state = htab_load, 2428 }; 2429 2430 static void spapr_boot_set(void *opaque, const char *boot_device, 2431 Error **errp) 2432 { 2433 MachineState *machine = MACHINE(opaque); 2434 machine->boot_order = g_strdup(boot_device); 2435 } 2436 2437 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2438 { 2439 MachineState *machine = MACHINE(spapr); 2440 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2441 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2442 int i; 2443 2444 for (i = 0; i < nr_lmbs; i++) { 2445 uint64_t addr; 2446 2447 addr = i * lmb_size + machine->device_memory->base; 2448 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2449 addr / lmb_size); 2450 } 2451 } 2452 2453 /* 2454 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2455 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2456 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2457 */ 2458 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2459 { 2460 int i; 2461 2462 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2463 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2464 " is not aligned to %" PRIu64 " MiB", 2465 machine->ram_size, 2466 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2467 return; 2468 } 2469 2470 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2471 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2472 " is not aligned to %" PRIu64 " MiB", 2473 machine->ram_size, 2474 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2475 return; 2476 } 2477 2478 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2479 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2480 error_setg(errp, 2481 "Node %d memory size 0x%" PRIx64 2482 " is not aligned to %" PRIu64 " MiB", 2483 i, machine->numa_state->nodes[i].node_mem, 2484 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2485 return; 2486 } 2487 } 2488 } 2489 2490 /* find cpu slot in machine->possible_cpus by core_id */ 2491 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2492 { 2493 int index = id / ms->smp.threads; 2494 2495 if (index >= ms->possible_cpus->len) { 2496 return NULL; 2497 } 2498 if (idx) { 2499 *idx = index; 2500 } 2501 return &ms->possible_cpus->cpus[index]; 2502 } 2503 2504 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2505 { 2506 MachineState *ms = MACHINE(spapr); 2507 Error *local_err = NULL; 2508 bool vsmt_user = !!spapr->vsmt; 2509 int kvm_smt = kvmppc_smt_threads(); 2510 int ret; 2511 unsigned int smp_threads = ms->smp.threads; 2512 2513 if (!kvm_enabled() && (smp_threads > 1)) { 2514 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2515 "on a pseries machine"); 2516 goto out; 2517 } 2518 if (!is_power_of_2(smp_threads)) { 2519 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2520 "machine because it must be a power of 2", smp_threads); 2521 goto out; 2522 } 2523 2524 /* Detemine the VSMT mode to use: */ 2525 if (vsmt_user) { 2526 if (spapr->vsmt < smp_threads) { 2527 error_setg(&local_err, "Cannot support VSMT mode %d" 2528 " because it must be >= threads/core (%d)", 2529 spapr->vsmt, smp_threads); 2530 goto out; 2531 } 2532 /* In this case, spapr->vsmt has been set by the command line */ 2533 } else { 2534 /* 2535 * Default VSMT value is tricky, because we need it to be as 2536 * consistent as possible (for migration), but this requires 2537 * changing it for at least some existing cases. We pick 8 as 2538 * the value that we'd get with KVM on POWER8, the 2539 * overwhelmingly common case in production systems. 2540 */ 2541 spapr->vsmt = MAX(8, smp_threads); 2542 } 2543 2544 /* KVM: If necessary, set the SMT mode: */ 2545 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2546 ret = kvmppc_set_smt_threads(spapr->vsmt); 2547 if (ret) { 2548 /* Looks like KVM isn't able to change VSMT mode */ 2549 error_setg(&local_err, 2550 "Failed to set KVM's VSMT mode to %d (errno %d)", 2551 spapr->vsmt, ret); 2552 /* We can live with that if the default one is big enough 2553 * for the number of threads, and a submultiple of the one 2554 * we want. In this case we'll waste some vcpu ids, but 2555 * behaviour will be correct */ 2556 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2557 warn_report_err(local_err); 2558 local_err = NULL; 2559 goto out; 2560 } else { 2561 if (!vsmt_user) { 2562 error_append_hint(&local_err, 2563 "On PPC, a VM with %d threads/core" 2564 " on a host with %d threads/core" 2565 " requires the use of VSMT mode %d.\n", 2566 smp_threads, kvm_smt, spapr->vsmt); 2567 } 2568 kvmppc_hint_smt_possible(&local_err); 2569 goto out; 2570 } 2571 } 2572 } 2573 /* else TCG: nothing to do currently */ 2574 out: 2575 error_propagate(errp, local_err); 2576 } 2577 2578 static void spapr_init_cpus(SpaprMachineState *spapr) 2579 { 2580 MachineState *machine = MACHINE(spapr); 2581 MachineClass *mc = MACHINE_GET_CLASS(machine); 2582 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2583 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2584 const CPUArchIdList *possible_cpus; 2585 unsigned int smp_cpus = machine->smp.cpus; 2586 unsigned int smp_threads = machine->smp.threads; 2587 unsigned int max_cpus = machine->smp.max_cpus; 2588 int boot_cores_nr = smp_cpus / smp_threads; 2589 int i; 2590 2591 possible_cpus = mc->possible_cpu_arch_ids(machine); 2592 if (mc->has_hotpluggable_cpus) { 2593 if (smp_cpus % smp_threads) { 2594 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2595 smp_cpus, smp_threads); 2596 exit(1); 2597 } 2598 if (max_cpus % smp_threads) { 2599 error_report("max_cpus (%u) must be multiple of threads (%u)", 2600 max_cpus, smp_threads); 2601 exit(1); 2602 } 2603 } else { 2604 if (max_cpus != smp_cpus) { 2605 error_report("This machine version does not support CPU hotplug"); 2606 exit(1); 2607 } 2608 boot_cores_nr = possible_cpus->len; 2609 } 2610 2611 if (smc->pre_2_10_has_unused_icps) { 2612 int i; 2613 2614 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2615 /* Dummy entries get deregistered when real ICPState objects 2616 * are registered during CPU core hotplug. 2617 */ 2618 pre_2_10_vmstate_register_dummy_icp(i); 2619 } 2620 } 2621 2622 for (i = 0; i < possible_cpus->len; i++) { 2623 int core_id = i * smp_threads; 2624 2625 if (mc->has_hotpluggable_cpus) { 2626 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2627 spapr_vcpu_id(spapr, core_id)); 2628 } 2629 2630 if (i < boot_cores_nr) { 2631 Object *core = object_new(type); 2632 int nr_threads = smp_threads; 2633 2634 /* Handle the partially filled core for older machine types */ 2635 if ((i + 1) * smp_threads >= smp_cpus) { 2636 nr_threads = smp_cpus - i * smp_threads; 2637 } 2638 2639 object_property_set_int(core, nr_threads, "nr-threads", 2640 &error_fatal); 2641 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2642 &error_fatal); 2643 object_property_set_bool(core, true, "realized", &error_fatal); 2644 2645 object_unref(core); 2646 } 2647 } 2648 } 2649 2650 static PCIHostState *spapr_create_default_phb(void) 2651 { 2652 DeviceState *dev; 2653 2654 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2655 qdev_prop_set_uint32(dev, "index", 0); 2656 qdev_init_nofail(dev); 2657 2658 return PCI_HOST_BRIDGE(dev); 2659 } 2660 2661 /* pSeries LPAR / sPAPR hardware init */ 2662 static void spapr_machine_init(MachineState *machine) 2663 { 2664 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2665 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2666 const char *kernel_filename = machine->kernel_filename; 2667 const char *initrd_filename = machine->initrd_filename; 2668 PCIHostState *phb; 2669 int i; 2670 MemoryRegion *sysmem = get_system_memory(); 2671 MemoryRegion *ram = g_new(MemoryRegion, 1); 2672 hwaddr node0_size = spapr_node0_size(machine); 2673 long load_limit, fw_size; 2674 char *filename; 2675 Error *resize_hpt_err = NULL; 2676 2677 msi_nonbroken = true; 2678 2679 QLIST_INIT(&spapr->phbs); 2680 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2681 2682 /* Determine capabilities to run with */ 2683 spapr_caps_init(spapr); 2684 2685 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2686 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2687 /* 2688 * If the user explicitly requested a mode we should either 2689 * supply it, or fail completely (which we do below). But if 2690 * it's not set explicitly, we reset our mode to something 2691 * that works 2692 */ 2693 if (resize_hpt_err) { 2694 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2695 error_free(resize_hpt_err); 2696 resize_hpt_err = NULL; 2697 } else { 2698 spapr->resize_hpt = smc->resize_hpt_default; 2699 } 2700 } 2701 2702 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2703 2704 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2705 /* 2706 * User requested HPT resize, but this host can't supply it. Bail out 2707 */ 2708 error_report_err(resize_hpt_err); 2709 exit(1); 2710 } 2711 2712 spapr->rma_size = node0_size; 2713 2714 /* With KVM, we don't actually know whether KVM supports an 2715 * unbounded RMA (PR KVM) or is limited by the hash table size 2716 * (HV KVM using VRMA), so we always assume the latter 2717 * 2718 * In that case, we also limit the initial allocations for RTAS 2719 * etc... to 256M since we have no way to know what the VRMA size 2720 * is going to be as it depends on the size of the hash table 2721 * which isn't determined yet. 2722 */ 2723 if (kvm_enabled()) { 2724 spapr->vrma_adjust = 1; 2725 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2726 } 2727 2728 /* Actually we don't support unbounded RMA anymore since we added 2729 * proper emulation of HV mode. The max we can get is 16G which 2730 * also happens to be what we configure for PAPR mode so make sure 2731 * we don't do anything bigger than that 2732 */ 2733 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2734 2735 if (spapr->rma_size > node0_size) { 2736 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2737 spapr->rma_size); 2738 exit(1); 2739 } 2740 2741 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2742 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2743 2744 /* 2745 * VSMT must be set in order to be able to compute VCPU ids, ie to 2746 * call spapr_max_server_number() or spapr_vcpu_id(). 2747 */ 2748 spapr_set_vsmt_mode(spapr, &error_fatal); 2749 2750 /* Set up Interrupt Controller before we create the VCPUs */ 2751 spapr_irq_init(spapr, &error_fatal); 2752 2753 /* Set up containers for ibm,client-architecture-support negotiated options 2754 */ 2755 spapr->ov5 = spapr_ovec_new(); 2756 spapr->ov5_cas = spapr_ovec_new(); 2757 2758 if (smc->dr_lmb_enabled) { 2759 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2760 spapr_validate_node_memory(machine, &error_fatal); 2761 } 2762 2763 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2764 2765 /* advertise support for dedicated HP event source to guests */ 2766 if (spapr->use_hotplug_event_source) { 2767 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2768 } 2769 2770 /* advertise support for HPT resizing */ 2771 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2772 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2773 } 2774 2775 /* advertise support for ibm,dyamic-memory-v2 */ 2776 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2777 2778 /* advertise XIVE on POWER9 machines */ 2779 if (spapr->irq->xive) { 2780 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2781 } 2782 2783 /* init CPUs */ 2784 spapr_init_cpus(spapr); 2785 2786 /* 2787 * check we don't have a memory-less/cpu-less NUMA node 2788 * Firmware relies on the existing memory/cpu topology to provide the 2789 * NUMA topology to the kernel. 2790 * And the linux kernel needs to know the NUMA topology at start 2791 * to be able to hotplug CPUs later. 2792 */ 2793 if (machine->numa_state->num_nodes) { 2794 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2795 /* check for memory-less node */ 2796 if (machine->numa_state->nodes[i].node_mem == 0) { 2797 CPUState *cs; 2798 int found = 0; 2799 /* check for cpu-less node */ 2800 CPU_FOREACH(cs) { 2801 PowerPCCPU *cpu = POWERPC_CPU(cs); 2802 if (cpu->node_id == i) { 2803 found = 1; 2804 break; 2805 } 2806 } 2807 /* memory-less and cpu-less node */ 2808 if (!found) { 2809 error_report( 2810 "Memory-less/cpu-less nodes are not supported (node %d)", 2811 i); 2812 exit(1); 2813 } 2814 } 2815 } 2816 2817 } 2818 2819 /* 2820 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2821 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2822 * called from vPHB reset handler so we initialize the counter here. 2823 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2824 * must be equally distant from any other node. 2825 * The final value of spapr->gpu_numa_id is going to be written to 2826 * max-associativity-domains in spapr_build_fdt(). 2827 */ 2828 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2829 2830 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2831 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2832 spapr->max_compat_pvr)) { 2833 /* KVM and TCG always allow GTSE with radix... */ 2834 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2835 } 2836 /* ... but not with hash (currently). */ 2837 2838 if (kvm_enabled()) { 2839 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2840 kvmppc_enable_logical_ci_hcalls(); 2841 kvmppc_enable_set_mode_hcall(); 2842 2843 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2844 kvmppc_enable_clear_ref_mod_hcalls(); 2845 2846 /* Enable H_PAGE_INIT */ 2847 kvmppc_enable_h_page_init(); 2848 } 2849 2850 /* allocate RAM */ 2851 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2852 machine->ram_size); 2853 memory_region_add_subregion(sysmem, 0, ram); 2854 2855 /* always allocate the device memory information */ 2856 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2857 2858 /* initialize hotplug memory address space */ 2859 if (machine->ram_size < machine->maxram_size) { 2860 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2861 /* 2862 * Limit the number of hotpluggable memory slots to half the number 2863 * slots that KVM supports, leaving the other half for PCI and other 2864 * devices. However ensure that number of slots doesn't drop below 32. 2865 */ 2866 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2867 SPAPR_MAX_RAM_SLOTS; 2868 2869 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2870 max_memslots = SPAPR_MAX_RAM_SLOTS; 2871 } 2872 if (machine->ram_slots > max_memslots) { 2873 error_report("Specified number of memory slots %" 2874 PRIu64" exceeds max supported %d", 2875 machine->ram_slots, max_memslots); 2876 exit(1); 2877 } 2878 2879 machine->device_memory->base = ROUND_UP(machine->ram_size, 2880 SPAPR_DEVICE_MEM_ALIGN); 2881 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2882 "device-memory", device_mem_size); 2883 memory_region_add_subregion(sysmem, machine->device_memory->base, 2884 &machine->device_memory->mr); 2885 } 2886 2887 if (smc->dr_lmb_enabled) { 2888 spapr_create_lmb_dr_connectors(spapr); 2889 } 2890 2891 /* Set up RTAS event infrastructure */ 2892 spapr_events_init(spapr); 2893 2894 /* Set up the RTC RTAS interfaces */ 2895 spapr_rtc_create(spapr); 2896 2897 /* Set up VIO bus */ 2898 spapr->vio_bus = spapr_vio_bus_init(); 2899 2900 for (i = 0; i < serial_max_hds(); i++) { 2901 if (serial_hd(i)) { 2902 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2903 } 2904 } 2905 2906 /* We always have at least the nvram device on VIO */ 2907 spapr_create_nvram(spapr); 2908 2909 /* 2910 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2911 * connectors (described in root DT node's "ibm,drc-types" property) 2912 * are pre-initialized here. additional child connectors (such as 2913 * connectors for a PHBs PCI slots) are added as needed during their 2914 * parent's realization. 2915 */ 2916 if (smc->dr_phb_enabled) { 2917 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2918 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2919 } 2920 } 2921 2922 /* Set up PCI */ 2923 spapr_pci_rtas_init(); 2924 2925 phb = spapr_create_default_phb(); 2926 2927 for (i = 0; i < nb_nics; i++) { 2928 NICInfo *nd = &nd_table[i]; 2929 2930 if (!nd->model) { 2931 nd->model = g_strdup("spapr-vlan"); 2932 } 2933 2934 if (g_str_equal(nd->model, "spapr-vlan") || 2935 g_str_equal(nd->model, "ibmveth")) { 2936 spapr_vlan_create(spapr->vio_bus, nd); 2937 } else { 2938 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2939 } 2940 } 2941 2942 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2943 spapr_vscsi_create(spapr->vio_bus); 2944 } 2945 2946 /* Graphics */ 2947 if (spapr_vga_init(phb->bus, &error_fatal)) { 2948 spapr->has_graphics = true; 2949 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2950 } 2951 2952 if (machine->usb) { 2953 if (smc->use_ohci_by_default) { 2954 pci_create_simple(phb->bus, -1, "pci-ohci"); 2955 } else { 2956 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2957 } 2958 2959 if (spapr->has_graphics) { 2960 USBBus *usb_bus = usb_bus_find(-1); 2961 2962 usb_create_simple(usb_bus, "usb-kbd"); 2963 usb_create_simple(usb_bus, "usb-mouse"); 2964 } 2965 } 2966 2967 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2968 error_report( 2969 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2970 MIN_RMA_SLOF); 2971 exit(1); 2972 } 2973 2974 if (kernel_filename) { 2975 uint64_t lowaddr = 0; 2976 2977 spapr->kernel_size = load_elf(kernel_filename, NULL, 2978 translate_kernel_address, NULL, 2979 NULL, &lowaddr, NULL, 1, 2980 PPC_ELF_MACHINE, 0, 0); 2981 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2982 spapr->kernel_size = load_elf(kernel_filename, NULL, 2983 translate_kernel_address, NULL, NULL, 2984 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2985 0, 0); 2986 spapr->kernel_le = spapr->kernel_size > 0; 2987 } 2988 if (spapr->kernel_size < 0) { 2989 error_report("error loading %s: %s", kernel_filename, 2990 load_elf_strerror(spapr->kernel_size)); 2991 exit(1); 2992 } 2993 2994 /* load initrd */ 2995 if (initrd_filename) { 2996 /* Try to locate the initrd in the gap between the kernel 2997 * and the firmware. Add a bit of space just in case 2998 */ 2999 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3000 + 0x1ffff) & ~0xffff; 3001 spapr->initrd_size = load_image_targphys(initrd_filename, 3002 spapr->initrd_base, 3003 load_limit 3004 - spapr->initrd_base); 3005 if (spapr->initrd_size < 0) { 3006 error_report("could not load initial ram disk '%s'", 3007 initrd_filename); 3008 exit(1); 3009 } 3010 } 3011 } 3012 3013 if (bios_name == NULL) { 3014 bios_name = FW_FILE_NAME; 3015 } 3016 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3017 if (!filename) { 3018 error_report("Could not find LPAR firmware '%s'", bios_name); 3019 exit(1); 3020 } 3021 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3022 if (fw_size <= 0) { 3023 error_report("Could not load LPAR firmware '%s'", filename); 3024 exit(1); 3025 } 3026 g_free(filename); 3027 3028 /* FIXME: Should register things through the MachineState's qdev 3029 * interface, this is a legacy from the sPAPREnvironment structure 3030 * which predated MachineState but had a similar function */ 3031 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3032 register_savevm_live("spapr/htab", -1, 1, 3033 &savevm_htab_handlers, spapr); 3034 3035 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3036 &error_fatal); 3037 3038 qemu_register_boot_set(spapr_boot_set, spapr); 3039 3040 /* 3041 * Nothing needs to be done to resume a suspended guest because 3042 * suspending does not change the machine state, so no need for 3043 * a ->wakeup method. 3044 */ 3045 qemu_register_wakeup_support(); 3046 3047 if (kvm_enabled()) { 3048 /* to stop and start vmclock */ 3049 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3050 &spapr->tb); 3051 3052 kvmppc_spapr_enable_inkernel_multitce(); 3053 } 3054 } 3055 3056 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3057 { 3058 if (!vm_type) { 3059 return 0; 3060 } 3061 3062 if (!strcmp(vm_type, "HV")) { 3063 return 1; 3064 } 3065 3066 if (!strcmp(vm_type, "PR")) { 3067 return 2; 3068 } 3069 3070 error_report("Unknown kvm-type specified '%s'", vm_type); 3071 exit(1); 3072 } 3073 3074 /* 3075 * Implementation of an interface to adjust firmware path 3076 * for the bootindex property handling. 3077 */ 3078 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3079 DeviceState *dev) 3080 { 3081 #define CAST(type, obj, name) \ 3082 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3083 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3084 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3085 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3086 3087 if (d) { 3088 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3089 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3090 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3091 3092 if (spapr) { 3093 /* 3094 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3095 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3096 * 0x8000 | (target << 8) | (bus << 5) | lun 3097 * (see the "Logical unit addressing format" table in SAM5) 3098 */ 3099 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3100 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3101 (uint64_t)id << 48); 3102 } else if (virtio) { 3103 /* 3104 * We use SRP luns of the form 01000000 | (target << 8) | lun 3105 * in the top 32 bits of the 64-bit LUN 3106 * Note: the quote above is from SLOF and it is wrong, 3107 * the actual binding is: 3108 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3109 */ 3110 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3111 if (d->lun >= 256) { 3112 /* Use the LUN "flat space addressing method" */ 3113 id |= 0x4000; 3114 } 3115 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3116 (uint64_t)id << 32); 3117 } else if (usb) { 3118 /* 3119 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3120 * in the top 32 bits of the 64-bit LUN 3121 */ 3122 unsigned usb_port = atoi(usb->port->path); 3123 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3124 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3125 (uint64_t)id << 32); 3126 } 3127 } 3128 3129 /* 3130 * SLOF probes the USB devices, and if it recognizes that the device is a 3131 * storage device, it changes its name to "storage" instead of "usb-host", 3132 * and additionally adds a child node for the SCSI LUN, so the correct 3133 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3134 */ 3135 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3136 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3137 if (usb_host_dev_is_scsi_storage(usbdev)) { 3138 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3139 } 3140 } 3141 3142 if (phb) { 3143 /* Replace "pci" with "pci@800000020000000" */ 3144 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3145 } 3146 3147 if (vsc) { 3148 /* Same logic as virtio above */ 3149 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3150 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3151 } 3152 3153 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3154 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3155 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3156 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3157 } 3158 3159 return NULL; 3160 } 3161 3162 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3163 { 3164 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3165 3166 return g_strdup(spapr->kvm_type); 3167 } 3168 3169 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3170 { 3171 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3172 3173 g_free(spapr->kvm_type); 3174 spapr->kvm_type = g_strdup(value); 3175 } 3176 3177 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3178 { 3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3180 3181 return spapr->use_hotplug_event_source; 3182 } 3183 3184 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3185 Error **errp) 3186 { 3187 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3188 3189 spapr->use_hotplug_event_source = value; 3190 } 3191 3192 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3193 { 3194 return true; 3195 } 3196 3197 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3198 { 3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3200 3201 switch (spapr->resize_hpt) { 3202 case SPAPR_RESIZE_HPT_DEFAULT: 3203 return g_strdup("default"); 3204 case SPAPR_RESIZE_HPT_DISABLED: 3205 return g_strdup("disabled"); 3206 case SPAPR_RESIZE_HPT_ENABLED: 3207 return g_strdup("enabled"); 3208 case SPAPR_RESIZE_HPT_REQUIRED: 3209 return g_strdup("required"); 3210 } 3211 g_assert_not_reached(); 3212 } 3213 3214 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3215 { 3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3217 3218 if (strcmp(value, "default") == 0) { 3219 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3220 } else if (strcmp(value, "disabled") == 0) { 3221 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3222 } else if (strcmp(value, "enabled") == 0) { 3223 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3224 } else if (strcmp(value, "required") == 0) { 3225 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3226 } else { 3227 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3228 } 3229 } 3230 3231 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3232 void *opaque, Error **errp) 3233 { 3234 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3235 } 3236 3237 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3238 void *opaque, Error **errp) 3239 { 3240 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3241 } 3242 3243 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3244 { 3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3246 3247 if (spapr->irq == &spapr_irq_xics_legacy) { 3248 return g_strdup("legacy"); 3249 } else if (spapr->irq == &spapr_irq_xics) { 3250 return g_strdup("xics"); 3251 } else if (spapr->irq == &spapr_irq_xive) { 3252 return g_strdup("xive"); 3253 } else if (spapr->irq == &spapr_irq_dual) { 3254 return g_strdup("dual"); 3255 } 3256 g_assert_not_reached(); 3257 } 3258 3259 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3260 { 3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3262 3263 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3264 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3265 return; 3266 } 3267 3268 /* The legacy IRQ backend can not be set */ 3269 if (strcmp(value, "xics") == 0) { 3270 spapr->irq = &spapr_irq_xics; 3271 } else if (strcmp(value, "xive") == 0) { 3272 spapr->irq = &spapr_irq_xive; 3273 } else if (strcmp(value, "dual") == 0) { 3274 spapr->irq = &spapr_irq_dual; 3275 } else { 3276 error_setg(errp, "Bad value for \"ic-mode\" property"); 3277 } 3278 } 3279 3280 static char *spapr_get_host_model(Object *obj, Error **errp) 3281 { 3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3283 3284 return g_strdup(spapr->host_model); 3285 } 3286 3287 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3288 { 3289 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3290 3291 g_free(spapr->host_model); 3292 spapr->host_model = g_strdup(value); 3293 } 3294 3295 static char *spapr_get_host_serial(Object *obj, Error **errp) 3296 { 3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3298 3299 return g_strdup(spapr->host_serial); 3300 } 3301 3302 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3303 { 3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3305 3306 g_free(spapr->host_serial); 3307 spapr->host_serial = g_strdup(value); 3308 } 3309 3310 static void spapr_instance_init(Object *obj) 3311 { 3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3313 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3314 3315 spapr->htab_fd = -1; 3316 spapr->use_hotplug_event_source = true; 3317 object_property_add_str(obj, "kvm-type", 3318 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3319 object_property_set_description(obj, "kvm-type", 3320 "Specifies the KVM virtualization mode (HV, PR)", 3321 NULL); 3322 object_property_add_bool(obj, "modern-hotplug-events", 3323 spapr_get_modern_hotplug_events, 3324 spapr_set_modern_hotplug_events, 3325 NULL); 3326 object_property_set_description(obj, "modern-hotplug-events", 3327 "Use dedicated hotplug event mechanism in" 3328 " place of standard EPOW events when possible" 3329 " (required for memory hot-unplug support)", 3330 NULL); 3331 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3332 "Maximum permitted CPU compatibility mode", 3333 &error_fatal); 3334 3335 object_property_add_str(obj, "resize-hpt", 3336 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3337 object_property_set_description(obj, "resize-hpt", 3338 "Resizing of the Hash Page Table (enabled, disabled, required)", 3339 NULL); 3340 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3341 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3342 object_property_set_description(obj, "vsmt", 3343 "Virtual SMT: KVM behaves as if this were" 3344 " the host's SMT mode", &error_abort); 3345 object_property_add_bool(obj, "vfio-no-msix-emulation", 3346 spapr_get_msix_emulation, NULL, NULL); 3347 3348 /* The machine class defines the default interrupt controller mode */ 3349 spapr->irq = smc->irq; 3350 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3351 spapr_set_ic_mode, NULL); 3352 object_property_set_description(obj, "ic-mode", 3353 "Specifies the interrupt controller mode (xics, xive, dual)", 3354 NULL); 3355 3356 object_property_add_str(obj, "host-model", 3357 spapr_get_host_model, spapr_set_host_model, 3358 &error_abort); 3359 object_property_set_description(obj, "host-model", 3360 "Host model to advertise in guest device tree", &error_abort); 3361 object_property_add_str(obj, "host-serial", 3362 spapr_get_host_serial, spapr_set_host_serial, 3363 &error_abort); 3364 object_property_set_description(obj, "host-serial", 3365 "Host serial number to advertise in guest device tree", &error_abort); 3366 } 3367 3368 static void spapr_machine_finalizefn(Object *obj) 3369 { 3370 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3371 3372 g_free(spapr->kvm_type); 3373 } 3374 3375 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3376 { 3377 cpu_synchronize_state(cs); 3378 ppc_cpu_do_system_reset(cs); 3379 } 3380 3381 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3382 { 3383 CPUState *cs; 3384 3385 CPU_FOREACH(cs) { 3386 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3387 } 3388 } 3389 3390 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3391 void *fdt, int *fdt_start_offset, Error **errp) 3392 { 3393 uint64_t addr; 3394 uint32_t node; 3395 3396 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3397 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3398 &error_abort); 3399 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3400 SPAPR_MEMORY_BLOCK_SIZE); 3401 return 0; 3402 } 3403 3404 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3405 bool dedicated_hp_event_source, Error **errp) 3406 { 3407 SpaprDrc *drc; 3408 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3409 int i; 3410 uint64_t addr = addr_start; 3411 bool hotplugged = spapr_drc_hotplugged(dev); 3412 Error *local_err = NULL; 3413 3414 for (i = 0; i < nr_lmbs; i++) { 3415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3416 addr / SPAPR_MEMORY_BLOCK_SIZE); 3417 g_assert(drc); 3418 3419 spapr_drc_attach(drc, dev, &local_err); 3420 if (local_err) { 3421 while (addr > addr_start) { 3422 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3423 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3424 addr / SPAPR_MEMORY_BLOCK_SIZE); 3425 spapr_drc_detach(drc); 3426 } 3427 error_propagate(errp, local_err); 3428 return; 3429 } 3430 if (!hotplugged) { 3431 spapr_drc_reset(drc); 3432 } 3433 addr += SPAPR_MEMORY_BLOCK_SIZE; 3434 } 3435 /* send hotplug notification to the 3436 * guest only in case of hotplugged memory 3437 */ 3438 if (hotplugged) { 3439 if (dedicated_hp_event_source) { 3440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3441 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3442 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3443 nr_lmbs, 3444 spapr_drc_index(drc)); 3445 } else { 3446 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3447 nr_lmbs); 3448 } 3449 } 3450 } 3451 3452 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3453 Error **errp) 3454 { 3455 Error *local_err = NULL; 3456 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3457 PCDIMMDevice *dimm = PC_DIMM(dev); 3458 uint64_t size, addr; 3459 3460 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3461 3462 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3463 if (local_err) { 3464 goto out; 3465 } 3466 3467 addr = object_property_get_uint(OBJECT(dimm), 3468 PC_DIMM_ADDR_PROP, &local_err); 3469 if (local_err) { 3470 goto out_unplug; 3471 } 3472 3473 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3474 &local_err); 3475 if (local_err) { 3476 goto out_unplug; 3477 } 3478 3479 return; 3480 3481 out_unplug: 3482 pc_dimm_unplug(dimm, MACHINE(ms)); 3483 out: 3484 error_propagate(errp, local_err); 3485 } 3486 3487 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3488 Error **errp) 3489 { 3490 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3491 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3492 PCDIMMDevice *dimm = PC_DIMM(dev); 3493 Error *local_err = NULL; 3494 uint64_t size; 3495 Object *memdev; 3496 hwaddr pagesize; 3497 3498 if (!smc->dr_lmb_enabled) { 3499 error_setg(errp, "Memory hotplug not supported for this machine"); 3500 return; 3501 } 3502 3503 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3504 if (local_err) { 3505 error_propagate(errp, local_err); 3506 return; 3507 } 3508 3509 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3510 error_setg(errp, "Hotplugged memory size must be a multiple of " 3511 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3512 return; 3513 } 3514 3515 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3516 &error_abort); 3517 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3518 spapr_check_pagesize(spapr, pagesize, &local_err); 3519 if (local_err) { 3520 error_propagate(errp, local_err); 3521 return; 3522 } 3523 3524 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3525 } 3526 3527 struct SpaprDimmState { 3528 PCDIMMDevice *dimm; 3529 uint32_t nr_lmbs; 3530 QTAILQ_ENTRY(SpaprDimmState) next; 3531 }; 3532 3533 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3534 PCDIMMDevice *dimm) 3535 { 3536 SpaprDimmState *dimm_state = NULL; 3537 3538 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3539 if (dimm_state->dimm == dimm) { 3540 break; 3541 } 3542 } 3543 return dimm_state; 3544 } 3545 3546 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3547 uint32_t nr_lmbs, 3548 PCDIMMDevice *dimm) 3549 { 3550 SpaprDimmState *ds = NULL; 3551 3552 /* 3553 * If this request is for a DIMM whose removal had failed earlier 3554 * (due to guest's refusal to remove the LMBs), we would have this 3555 * dimm already in the pending_dimm_unplugs list. In that 3556 * case don't add again. 3557 */ 3558 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3559 if (!ds) { 3560 ds = g_malloc0(sizeof(SpaprDimmState)); 3561 ds->nr_lmbs = nr_lmbs; 3562 ds->dimm = dimm; 3563 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3564 } 3565 return ds; 3566 } 3567 3568 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3569 SpaprDimmState *dimm_state) 3570 { 3571 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3572 g_free(dimm_state); 3573 } 3574 3575 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3576 PCDIMMDevice *dimm) 3577 { 3578 SpaprDrc *drc; 3579 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3580 &error_abort); 3581 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3582 uint32_t avail_lmbs = 0; 3583 uint64_t addr_start, addr; 3584 int i; 3585 3586 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3587 &error_abort); 3588 3589 addr = addr_start; 3590 for (i = 0; i < nr_lmbs; i++) { 3591 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3592 addr / SPAPR_MEMORY_BLOCK_SIZE); 3593 g_assert(drc); 3594 if (drc->dev) { 3595 avail_lmbs++; 3596 } 3597 addr += SPAPR_MEMORY_BLOCK_SIZE; 3598 } 3599 3600 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3601 } 3602 3603 /* Callback to be called during DRC release. */ 3604 void spapr_lmb_release(DeviceState *dev) 3605 { 3606 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3607 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3608 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3609 3610 /* This information will get lost if a migration occurs 3611 * during the unplug process. In this case recover it. */ 3612 if (ds == NULL) { 3613 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3614 g_assert(ds); 3615 /* The DRC being examined by the caller at least must be counted */ 3616 g_assert(ds->nr_lmbs); 3617 } 3618 3619 if (--ds->nr_lmbs) { 3620 return; 3621 } 3622 3623 /* 3624 * Now that all the LMBs have been removed by the guest, call the 3625 * unplug handler chain. This can never fail. 3626 */ 3627 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3628 object_unparent(OBJECT(dev)); 3629 } 3630 3631 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3632 { 3633 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3634 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3635 3636 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3637 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3638 spapr_pending_dimm_unplugs_remove(spapr, ds); 3639 } 3640 3641 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3642 DeviceState *dev, Error **errp) 3643 { 3644 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3645 Error *local_err = NULL; 3646 PCDIMMDevice *dimm = PC_DIMM(dev); 3647 uint32_t nr_lmbs; 3648 uint64_t size, addr_start, addr; 3649 int i; 3650 SpaprDrc *drc; 3651 3652 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3653 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3654 3655 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3656 &local_err); 3657 if (local_err) { 3658 goto out; 3659 } 3660 3661 /* 3662 * An existing pending dimm state for this DIMM means that there is an 3663 * unplug operation in progress, waiting for the spapr_lmb_release 3664 * callback to complete the job (BQL can't cover that far). In this case, 3665 * bail out to avoid detaching DRCs that were already released. 3666 */ 3667 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3668 error_setg(&local_err, 3669 "Memory unplug already in progress for device %s", 3670 dev->id); 3671 goto out; 3672 } 3673 3674 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3675 3676 addr = addr_start; 3677 for (i = 0; i < nr_lmbs; i++) { 3678 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3679 addr / SPAPR_MEMORY_BLOCK_SIZE); 3680 g_assert(drc); 3681 3682 spapr_drc_detach(drc); 3683 addr += SPAPR_MEMORY_BLOCK_SIZE; 3684 } 3685 3686 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3687 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3688 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3689 nr_lmbs, spapr_drc_index(drc)); 3690 out: 3691 error_propagate(errp, local_err); 3692 } 3693 3694 /* Callback to be called during DRC release. */ 3695 void spapr_core_release(DeviceState *dev) 3696 { 3697 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3698 3699 /* Call the unplug handler chain. This can never fail. */ 3700 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3701 object_unparent(OBJECT(dev)); 3702 } 3703 3704 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3705 { 3706 MachineState *ms = MACHINE(hotplug_dev); 3707 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3708 CPUCore *cc = CPU_CORE(dev); 3709 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3710 3711 if (smc->pre_2_10_has_unused_icps) { 3712 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3713 int i; 3714 3715 for (i = 0; i < cc->nr_threads; i++) { 3716 CPUState *cs = CPU(sc->threads[i]); 3717 3718 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3719 } 3720 } 3721 3722 assert(core_slot); 3723 core_slot->cpu = NULL; 3724 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3725 } 3726 3727 static 3728 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3729 Error **errp) 3730 { 3731 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3732 int index; 3733 SpaprDrc *drc; 3734 CPUCore *cc = CPU_CORE(dev); 3735 3736 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3737 error_setg(errp, "Unable to find CPU core with core-id: %d", 3738 cc->core_id); 3739 return; 3740 } 3741 if (index == 0) { 3742 error_setg(errp, "Boot CPU core may not be unplugged"); 3743 return; 3744 } 3745 3746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3747 spapr_vcpu_id(spapr, cc->core_id)); 3748 g_assert(drc); 3749 3750 spapr_drc_detach(drc); 3751 3752 spapr_hotplug_req_remove_by_index(drc); 3753 } 3754 3755 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3756 void *fdt, int *fdt_start_offset, Error **errp) 3757 { 3758 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3759 CPUState *cs = CPU(core->threads[0]); 3760 PowerPCCPU *cpu = POWERPC_CPU(cs); 3761 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3762 int id = spapr_get_vcpu_id(cpu); 3763 char *nodename; 3764 int offset; 3765 3766 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3767 offset = fdt_add_subnode(fdt, 0, nodename); 3768 g_free(nodename); 3769 3770 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3771 3772 *fdt_start_offset = offset; 3773 return 0; 3774 } 3775 3776 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3777 Error **errp) 3778 { 3779 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3780 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3782 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3783 CPUCore *cc = CPU_CORE(dev); 3784 CPUState *cs; 3785 SpaprDrc *drc; 3786 Error *local_err = NULL; 3787 CPUArchId *core_slot; 3788 int index; 3789 bool hotplugged = spapr_drc_hotplugged(dev); 3790 int i; 3791 3792 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3793 if (!core_slot) { 3794 error_setg(errp, "Unable to find CPU core with core-id: %d", 3795 cc->core_id); 3796 return; 3797 } 3798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3799 spapr_vcpu_id(spapr, cc->core_id)); 3800 3801 g_assert(drc || !mc->has_hotpluggable_cpus); 3802 3803 if (drc) { 3804 spapr_drc_attach(drc, dev, &local_err); 3805 if (local_err) { 3806 error_propagate(errp, local_err); 3807 return; 3808 } 3809 3810 if (hotplugged) { 3811 /* 3812 * Send hotplug notification interrupt to the guest only 3813 * in case of hotplugged CPUs. 3814 */ 3815 spapr_hotplug_req_add_by_index(drc); 3816 } else { 3817 spapr_drc_reset(drc); 3818 } 3819 } 3820 3821 core_slot->cpu = OBJECT(dev); 3822 3823 if (smc->pre_2_10_has_unused_icps) { 3824 for (i = 0; i < cc->nr_threads; i++) { 3825 cs = CPU(core->threads[i]); 3826 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3827 } 3828 } 3829 3830 /* 3831 * Set compatibility mode to match the boot CPU, which was either set 3832 * by the machine reset code or by CAS. 3833 */ 3834 if (hotplugged) { 3835 for (i = 0; i < cc->nr_threads; i++) { 3836 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3837 &local_err); 3838 if (local_err) { 3839 error_propagate(errp, local_err); 3840 return; 3841 } 3842 } 3843 } 3844 } 3845 3846 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3847 Error **errp) 3848 { 3849 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3850 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3851 Error *local_err = NULL; 3852 CPUCore *cc = CPU_CORE(dev); 3853 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3854 const char *type = object_get_typename(OBJECT(dev)); 3855 CPUArchId *core_slot; 3856 int index; 3857 unsigned int smp_threads = machine->smp.threads; 3858 3859 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3860 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3861 goto out; 3862 } 3863 3864 if (strcmp(base_core_type, type)) { 3865 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3866 goto out; 3867 } 3868 3869 if (cc->core_id % smp_threads) { 3870 error_setg(&local_err, "invalid core id %d", cc->core_id); 3871 goto out; 3872 } 3873 3874 /* 3875 * In general we should have homogeneous threads-per-core, but old 3876 * (pre hotplug support) machine types allow the last core to have 3877 * reduced threads as a compatibility hack for when we allowed 3878 * total vcpus not a multiple of threads-per-core. 3879 */ 3880 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3881 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3882 cc->nr_threads, smp_threads); 3883 goto out; 3884 } 3885 3886 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3887 if (!core_slot) { 3888 error_setg(&local_err, "core id %d out of range", cc->core_id); 3889 goto out; 3890 } 3891 3892 if (core_slot->cpu) { 3893 error_setg(&local_err, "core %d already populated", cc->core_id); 3894 goto out; 3895 } 3896 3897 numa_cpu_pre_plug(core_slot, dev, &local_err); 3898 3899 out: 3900 error_propagate(errp, local_err); 3901 } 3902 3903 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3904 void *fdt, int *fdt_start_offset, Error **errp) 3905 { 3906 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3907 int intc_phandle; 3908 3909 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3910 if (intc_phandle <= 0) { 3911 return -1; 3912 } 3913 3914 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3915 fdt_start_offset)) { 3916 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3917 return -1; 3918 } 3919 3920 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3921 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3922 3923 return 0; 3924 } 3925 3926 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3927 Error **errp) 3928 { 3929 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3930 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3931 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3932 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3933 3934 if (dev->hotplugged && !smc->dr_phb_enabled) { 3935 error_setg(errp, "PHB hotplug not supported for this machine"); 3936 return; 3937 } 3938 3939 if (sphb->index == (uint32_t)-1) { 3940 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3941 return; 3942 } 3943 3944 /* 3945 * This will check that sphb->index doesn't exceed the maximum number of 3946 * PHBs for the current machine type. 3947 */ 3948 smc->phb_placement(spapr, sphb->index, 3949 &sphb->buid, &sphb->io_win_addr, 3950 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3951 windows_supported, sphb->dma_liobn, 3952 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3953 errp); 3954 } 3955 3956 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3957 Error **errp) 3958 { 3959 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3960 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3961 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3962 SpaprDrc *drc; 3963 bool hotplugged = spapr_drc_hotplugged(dev); 3964 Error *local_err = NULL; 3965 3966 if (!smc->dr_phb_enabled) { 3967 return; 3968 } 3969 3970 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3971 /* hotplug hooks should check it's enabled before getting this far */ 3972 assert(drc); 3973 3974 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3975 if (local_err) { 3976 error_propagate(errp, local_err); 3977 return; 3978 } 3979 3980 if (hotplugged) { 3981 spapr_hotplug_req_add_by_index(drc); 3982 } else { 3983 spapr_drc_reset(drc); 3984 } 3985 } 3986 3987 void spapr_phb_release(DeviceState *dev) 3988 { 3989 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3990 3991 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3992 object_unparent(OBJECT(dev)); 3993 } 3994 3995 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3996 { 3997 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3998 } 3999 4000 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4001 DeviceState *dev, Error **errp) 4002 { 4003 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4004 SpaprDrc *drc; 4005 4006 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4007 assert(drc); 4008 4009 if (!spapr_drc_unplug_requested(drc)) { 4010 spapr_drc_detach(drc); 4011 spapr_hotplug_req_remove_by_index(drc); 4012 } 4013 } 4014 4015 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4016 Error **errp) 4017 { 4018 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4019 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4020 4021 if (spapr->tpm_proxy != NULL) { 4022 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4023 return; 4024 } 4025 4026 spapr->tpm_proxy = tpm_proxy; 4027 } 4028 4029 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4030 { 4031 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4032 4033 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4034 object_unparent(OBJECT(dev)); 4035 spapr->tpm_proxy = NULL; 4036 } 4037 4038 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4039 DeviceState *dev, Error **errp) 4040 { 4041 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4042 spapr_memory_plug(hotplug_dev, dev, errp); 4043 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4044 spapr_core_plug(hotplug_dev, dev, errp); 4045 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4046 spapr_phb_plug(hotplug_dev, dev, errp); 4047 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4048 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4049 } 4050 } 4051 4052 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4053 DeviceState *dev, Error **errp) 4054 { 4055 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4056 spapr_memory_unplug(hotplug_dev, dev); 4057 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4058 spapr_core_unplug(hotplug_dev, dev); 4059 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4060 spapr_phb_unplug(hotplug_dev, dev); 4061 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4062 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4063 } 4064 } 4065 4066 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4067 DeviceState *dev, Error **errp) 4068 { 4069 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4070 MachineClass *mc = MACHINE_GET_CLASS(sms); 4071 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4072 4073 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4074 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4075 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4076 } else { 4077 /* NOTE: this means there is a window after guest reset, prior to 4078 * CAS negotiation, where unplug requests will fail due to the 4079 * capability not being detected yet. This is a bit different than 4080 * the case with PCI unplug, where the events will be queued and 4081 * eventually handled by the guest after boot 4082 */ 4083 error_setg(errp, "Memory hot unplug not supported for this guest"); 4084 } 4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4086 if (!mc->has_hotpluggable_cpus) { 4087 error_setg(errp, "CPU hot unplug not supported on this machine"); 4088 return; 4089 } 4090 spapr_core_unplug_request(hotplug_dev, dev, errp); 4091 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4092 if (!smc->dr_phb_enabled) { 4093 error_setg(errp, "PHB hot unplug not supported on this machine"); 4094 return; 4095 } 4096 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4098 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4099 } 4100 } 4101 4102 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4103 DeviceState *dev, Error **errp) 4104 { 4105 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4106 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4107 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4108 spapr_core_pre_plug(hotplug_dev, dev, errp); 4109 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4110 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4111 } 4112 } 4113 4114 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4115 DeviceState *dev) 4116 { 4117 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4118 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4119 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4120 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4121 return HOTPLUG_HANDLER(machine); 4122 } 4123 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4124 PCIDevice *pcidev = PCI_DEVICE(dev); 4125 PCIBus *root = pci_device_root_bus(pcidev); 4126 SpaprPhbState *phb = 4127 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4128 TYPE_SPAPR_PCI_HOST_BRIDGE); 4129 4130 if (phb) { 4131 return HOTPLUG_HANDLER(phb); 4132 } 4133 } 4134 return NULL; 4135 } 4136 4137 static CpuInstanceProperties 4138 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4139 { 4140 CPUArchId *core_slot; 4141 MachineClass *mc = MACHINE_GET_CLASS(machine); 4142 4143 /* make sure possible_cpu are intialized */ 4144 mc->possible_cpu_arch_ids(machine); 4145 /* get CPU core slot containing thread that matches cpu_index */ 4146 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4147 assert(core_slot); 4148 return core_slot->props; 4149 } 4150 4151 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4152 { 4153 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4154 } 4155 4156 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4157 { 4158 int i; 4159 unsigned int smp_threads = machine->smp.threads; 4160 unsigned int smp_cpus = machine->smp.cpus; 4161 const char *core_type; 4162 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4163 MachineClass *mc = MACHINE_GET_CLASS(machine); 4164 4165 if (!mc->has_hotpluggable_cpus) { 4166 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4167 } 4168 if (machine->possible_cpus) { 4169 assert(machine->possible_cpus->len == spapr_max_cores); 4170 return machine->possible_cpus; 4171 } 4172 4173 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4174 if (!core_type) { 4175 error_report("Unable to find sPAPR CPU Core definition"); 4176 exit(1); 4177 } 4178 4179 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4180 sizeof(CPUArchId) * spapr_max_cores); 4181 machine->possible_cpus->len = spapr_max_cores; 4182 for (i = 0; i < machine->possible_cpus->len; i++) { 4183 int core_id = i * smp_threads; 4184 4185 machine->possible_cpus->cpus[i].type = core_type; 4186 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4187 machine->possible_cpus->cpus[i].arch_id = core_id; 4188 machine->possible_cpus->cpus[i].props.has_core_id = true; 4189 machine->possible_cpus->cpus[i].props.core_id = core_id; 4190 } 4191 return machine->possible_cpus; 4192 } 4193 4194 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4195 uint64_t *buid, hwaddr *pio, 4196 hwaddr *mmio32, hwaddr *mmio64, 4197 unsigned n_dma, uint32_t *liobns, 4198 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4199 { 4200 /* 4201 * New-style PHB window placement. 4202 * 4203 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4204 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4205 * windows. 4206 * 4207 * Some guest kernels can't work with MMIO windows above 1<<46 4208 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4209 * 4210 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4211 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4212 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4213 * 1TiB 64-bit MMIO windows for each PHB. 4214 */ 4215 const uint64_t base_buid = 0x800000020000000ULL; 4216 int i; 4217 4218 /* Sanity check natural alignments */ 4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4220 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4221 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4222 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4223 /* Sanity check bounds */ 4224 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4225 SPAPR_PCI_MEM32_WIN_SIZE); 4226 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4227 SPAPR_PCI_MEM64_WIN_SIZE); 4228 4229 if (index >= SPAPR_MAX_PHBS) { 4230 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4231 SPAPR_MAX_PHBS - 1); 4232 return; 4233 } 4234 4235 *buid = base_buid + index; 4236 for (i = 0; i < n_dma; ++i) { 4237 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4238 } 4239 4240 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4241 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4242 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4243 4244 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4245 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4246 } 4247 4248 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4249 { 4250 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4251 4252 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4253 } 4254 4255 static void spapr_ics_resend(XICSFabric *dev) 4256 { 4257 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4258 4259 ics_resend(spapr->ics); 4260 } 4261 4262 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4263 { 4264 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4265 4266 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4267 } 4268 4269 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4270 Monitor *mon) 4271 { 4272 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4273 4274 spapr->irq->print_info(spapr, mon); 4275 monitor_printf(mon, "irqchip: %s\n", 4276 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4277 } 4278 4279 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4280 { 4281 return cpu->vcpu_id; 4282 } 4283 4284 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4285 { 4286 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4287 MachineState *ms = MACHINE(spapr); 4288 int vcpu_id; 4289 4290 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4291 4292 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4293 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4294 error_append_hint(errp, "Adjust the number of cpus to %d " 4295 "or try to raise the number of threads per core\n", 4296 vcpu_id * ms->smp.threads / spapr->vsmt); 4297 return; 4298 } 4299 4300 cpu->vcpu_id = vcpu_id; 4301 } 4302 4303 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4304 { 4305 CPUState *cs; 4306 4307 CPU_FOREACH(cs) { 4308 PowerPCCPU *cpu = POWERPC_CPU(cs); 4309 4310 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4311 return cpu; 4312 } 4313 } 4314 4315 return NULL; 4316 } 4317 4318 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4319 { 4320 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4321 4322 /* These are only called by TCG, KVM maintains dispatch state */ 4323 4324 spapr_cpu->prod = false; 4325 if (spapr_cpu->vpa_addr) { 4326 CPUState *cs = CPU(cpu); 4327 uint32_t dispatch; 4328 4329 dispatch = ldl_be_phys(cs->as, 4330 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4331 dispatch++; 4332 if ((dispatch & 1) != 0) { 4333 qemu_log_mask(LOG_GUEST_ERROR, 4334 "VPA: incorrect dispatch counter value for " 4335 "dispatched partition %u, correcting.\n", dispatch); 4336 dispatch++; 4337 } 4338 stl_be_phys(cs->as, 4339 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4340 } 4341 } 4342 4343 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4344 { 4345 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4346 4347 if (spapr_cpu->vpa_addr) { 4348 CPUState *cs = CPU(cpu); 4349 uint32_t dispatch; 4350 4351 dispatch = ldl_be_phys(cs->as, 4352 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4353 dispatch++; 4354 if ((dispatch & 1) != 1) { 4355 qemu_log_mask(LOG_GUEST_ERROR, 4356 "VPA: incorrect dispatch counter value for " 4357 "preempted partition %u, correcting.\n", dispatch); 4358 dispatch++; 4359 } 4360 stl_be_phys(cs->as, 4361 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4362 } 4363 } 4364 4365 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4366 { 4367 MachineClass *mc = MACHINE_CLASS(oc); 4368 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4369 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4370 NMIClass *nc = NMI_CLASS(oc); 4371 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4372 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4373 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4374 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4375 4376 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4377 mc->ignore_boot_device_suffixes = true; 4378 4379 /* 4380 * We set up the default / latest behaviour here. The class_init 4381 * functions for the specific versioned machine types can override 4382 * these details for backwards compatibility 4383 */ 4384 mc->init = spapr_machine_init; 4385 mc->reset = spapr_machine_reset; 4386 mc->block_default_type = IF_SCSI; 4387 mc->max_cpus = 1024; 4388 mc->no_parallel = 1; 4389 mc->default_boot_order = ""; 4390 mc->default_ram_size = 512 * MiB; 4391 mc->default_display = "std"; 4392 mc->kvm_type = spapr_kvm_type; 4393 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4394 mc->pci_allow_0_address = true; 4395 assert(!mc->get_hotplug_handler); 4396 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4397 hc->pre_plug = spapr_machine_device_pre_plug; 4398 hc->plug = spapr_machine_device_plug; 4399 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4400 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4401 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4402 hc->unplug_request = spapr_machine_device_unplug_request; 4403 hc->unplug = spapr_machine_device_unplug; 4404 4405 smc->dr_lmb_enabled = true; 4406 smc->update_dt_enabled = true; 4407 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4408 mc->has_hotpluggable_cpus = true; 4409 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4410 fwc->get_dev_path = spapr_get_fw_dev_path; 4411 nc->nmi_monitor_handler = spapr_nmi; 4412 smc->phb_placement = spapr_phb_placement; 4413 vhc->hypercall = emulate_spapr_hypercall; 4414 vhc->hpt_mask = spapr_hpt_mask; 4415 vhc->map_hptes = spapr_map_hptes; 4416 vhc->unmap_hptes = spapr_unmap_hptes; 4417 vhc->hpte_set_c = spapr_hpte_set_c; 4418 vhc->hpte_set_r = spapr_hpte_set_r; 4419 vhc->get_pate = spapr_get_pate; 4420 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4421 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4422 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4423 xic->ics_get = spapr_ics_get; 4424 xic->ics_resend = spapr_ics_resend; 4425 xic->icp_get = spapr_icp_get; 4426 ispc->print_info = spapr_pic_print_info; 4427 /* Force NUMA node memory size to be a multiple of 4428 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4429 * in which LMBs are represented and hot-added 4430 */ 4431 mc->numa_mem_align_shift = 28; 4432 mc->numa_mem_supported = true; 4433 4434 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4435 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4436 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4437 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4438 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4439 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4440 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4441 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4442 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4443 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4444 spapr_caps_add_properties(smc, &error_abort); 4445 smc->irq = &spapr_irq_dual; 4446 smc->dr_phb_enabled = true; 4447 smc->linux_pci_probe = true; 4448 } 4449 4450 static const TypeInfo spapr_machine_info = { 4451 .name = TYPE_SPAPR_MACHINE, 4452 .parent = TYPE_MACHINE, 4453 .abstract = true, 4454 .instance_size = sizeof(SpaprMachineState), 4455 .instance_init = spapr_instance_init, 4456 .instance_finalize = spapr_machine_finalizefn, 4457 .class_size = sizeof(SpaprMachineClass), 4458 .class_init = spapr_machine_class_init, 4459 .interfaces = (InterfaceInfo[]) { 4460 { TYPE_FW_PATH_PROVIDER }, 4461 { TYPE_NMI }, 4462 { TYPE_HOTPLUG_HANDLER }, 4463 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4464 { TYPE_XICS_FABRIC }, 4465 { TYPE_INTERRUPT_STATS_PROVIDER }, 4466 { } 4467 }, 4468 }; 4469 4470 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4471 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4472 void *data) \ 4473 { \ 4474 MachineClass *mc = MACHINE_CLASS(oc); \ 4475 spapr_machine_##suffix##_class_options(mc); \ 4476 if (latest) { \ 4477 mc->alias = "pseries"; \ 4478 mc->is_default = 1; \ 4479 } \ 4480 } \ 4481 static const TypeInfo spapr_machine_##suffix##_info = { \ 4482 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4483 .parent = TYPE_SPAPR_MACHINE, \ 4484 .class_init = spapr_machine_##suffix##_class_init, \ 4485 }; \ 4486 static void spapr_machine_register_##suffix(void) \ 4487 { \ 4488 type_register(&spapr_machine_##suffix##_info); \ 4489 } \ 4490 type_init(spapr_machine_register_##suffix) 4491 4492 /* 4493 * pseries-4.2 4494 */ 4495 static void spapr_machine_4_2_class_options(MachineClass *mc) 4496 { 4497 /* Defaults for the latest behaviour inherited from the base class */ 4498 } 4499 4500 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4501 4502 /* 4503 * pseries-4.1 4504 */ 4505 static void spapr_machine_4_1_class_options(MachineClass *mc) 4506 { 4507 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4508 static GlobalProperty compat[] = { 4509 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4510 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4511 }; 4512 4513 spapr_machine_4_2_class_options(mc); 4514 smc->linux_pci_probe = false; 4515 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4516 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4517 } 4518 4519 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4520 4521 /* 4522 * pseries-4.0 4523 */ 4524 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4525 uint64_t *buid, hwaddr *pio, 4526 hwaddr *mmio32, hwaddr *mmio64, 4527 unsigned n_dma, uint32_t *liobns, 4528 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4529 { 4530 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4531 nv2gpa, nv2atsd, errp); 4532 *nv2gpa = 0; 4533 *nv2atsd = 0; 4534 } 4535 4536 static void spapr_machine_4_0_class_options(MachineClass *mc) 4537 { 4538 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4539 4540 spapr_machine_4_1_class_options(mc); 4541 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4542 smc->phb_placement = phb_placement_4_0; 4543 smc->irq = &spapr_irq_xics; 4544 smc->pre_4_1_migration = true; 4545 } 4546 4547 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4548 4549 /* 4550 * pseries-3.1 4551 */ 4552 static void spapr_machine_3_1_class_options(MachineClass *mc) 4553 { 4554 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4555 4556 spapr_machine_4_0_class_options(mc); 4557 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4558 4559 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4560 smc->update_dt_enabled = false; 4561 smc->dr_phb_enabled = false; 4562 smc->broken_host_serial_model = true; 4563 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4564 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4565 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4566 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4567 } 4568 4569 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4570 4571 /* 4572 * pseries-3.0 4573 */ 4574 4575 static void spapr_machine_3_0_class_options(MachineClass *mc) 4576 { 4577 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4578 4579 spapr_machine_3_1_class_options(mc); 4580 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4581 4582 smc->legacy_irq_allocation = true; 4583 smc->irq = &spapr_irq_xics_legacy; 4584 } 4585 4586 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4587 4588 /* 4589 * pseries-2.12 4590 */ 4591 static void spapr_machine_2_12_class_options(MachineClass *mc) 4592 { 4593 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4594 static GlobalProperty compat[] = { 4595 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4596 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4597 }; 4598 4599 spapr_machine_3_0_class_options(mc); 4600 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4601 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4602 4603 /* We depend on kvm_enabled() to choose a default value for the 4604 * hpt-max-page-size capability. Of course we can't do it here 4605 * because this is too early and the HW accelerator isn't initialzed 4606 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4607 */ 4608 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4609 } 4610 4611 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4612 4613 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4614 { 4615 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4616 4617 spapr_machine_2_12_class_options(mc); 4618 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4619 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4620 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4621 } 4622 4623 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4624 4625 /* 4626 * pseries-2.11 4627 */ 4628 4629 static void spapr_machine_2_11_class_options(MachineClass *mc) 4630 { 4631 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4632 4633 spapr_machine_2_12_class_options(mc); 4634 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4635 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4636 } 4637 4638 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4639 4640 /* 4641 * pseries-2.10 4642 */ 4643 4644 static void spapr_machine_2_10_class_options(MachineClass *mc) 4645 { 4646 spapr_machine_2_11_class_options(mc); 4647 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4648 } 4649 4650 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4651 4652 /* 4653 * pseries-2.9 4654 */ 4655 4656 static void spapr_machine_2_9_class_options(MachineClass *mc) 4657 { 4658 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4659 static GlobalProperty compat[] = { 4660 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4661 }; 4662 4663 spapr_machine_2_10_class_options(mc); 4664 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4665 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4666 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4667 smc->pre_2_10_has_unused_icps = true; 4668 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4669 } 4670 4671 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4672 4673 /* 4674 * pseries-2.8 4675 */ 4676 4677 static void spapr_machine_2_8_class_options(MachineClass *mc) 4678 { 4679 static GlobalProperty compat[] = { 4680 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4681 }; 4682 4683 spapr_machine_2_9_class_options(mc); 4684 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4685 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4686 mc->numa_mem_align_shift = 23; 4687 } 4688 4689 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4690 4691 /* 4692 * pseries-2.7 4693 */ 4694 4695 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4696 uint64_t *buid, hwaddr *pio, 4697 hwaddr *mmio32, hwaddr *mmio64, 4698 unsigned n_dma, uint32_t *liobns, 4699 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4700 { 4701 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4702 const uint64_t base_buid = 0x800000020000000ULL; 4703 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4704 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4705 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4706 const uint32_t max_index = 255; 4707 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4708 4709 uint64_t ram_top = MACHINE(spapr)->ram_size; 4710 hwaddr phb0_base, phb_base; 4711 int i; 4712 4713 /* Do we have device memory? */ 4714 if (MACHINE(spapr)->maxram_size > ram_top) { 4715 /* Can't just use maxram_size, because there may be an 4716 * alignment gap between normal and device memory regions 4717 */ 4718 ram_top = MACHINE(spapr)->device_memory->base + 4719 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4720 } 4721 4722 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4723 4724 if (index > max_index) { 4725 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4726 max_index); 4727 return; 4728 } 4729 4730 *buid = base_buid + index; 4731 for (i = 0; i < n_dma; ++i) { 4732 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4733 } 4734 4735 phb_base = phb0_base + index * phb_spacing; 4736 *pio = phb_base + pio_offset; 4737 *mmio32 = phb_base + mmio_offset; 4738 /* 4739 * We don't set the 64-bit MMIO window, relying on the PHB's 4740 * fallback behaviour of automatically splitting a large "32-bit" 4741 * window into contiguous 32-bit and 64-bit windows 4742 */ 4743 4744 *nv2gpa = 0; 4745 *nv2atsd = 0; 4746 } 4747 4748 static void spapr_machine_2_7_class_options(MachineClass *mc) 4749 { 4750 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4751 static GlobalProperty compat[] = { 4752 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4753 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4754 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4755 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4756 }; 4757 4758 spapr_machine_2_8_class_options(mc); 4759 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4760 mc->default_machine_opts = "modern-hotplug-events=off"; 4761 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4762 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4763 smc->phb_placement = phb_placement_2_7; 4764 } 4765 4766 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4767 4768 /* 4769 * pseries-2.6 4770 */ 4771 4772 static void spapr_machine_2_6_class_options(MachineClass *mc) 4773 { 4774 static GlobalProperty compat[] = { 4775 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4776 }; 4777 4778 spapr_machine_2_7_class_options(mc); 4779 mc->has_hotpluggable_cpus = false; 4780 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4781 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4782 } 4783 4784 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4785 4786 /* 4787 * pseries-2.5 4788 */ 4789 4790 static void spapr_machine_2_5_class_options(MachineClass *mc) 4791 { 4792 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4793 static GlobalProperty compat[] = { 4794 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4795 }; 4796 4797 spapr_machine_2_6_class_options(mc); 4798 smc->use_ohci_by_default = true; 4799 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4800 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4801 } 4802 4803 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4804 4805 /* 4806 * pseries-2.4 4807 */ 4808 4809 static void spapr_machine_2_4_class_options(MachineClass *mc) 4810 { 4811 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4812 4813 spapr_machine_2_5_class_options(mc); 4814 smc->dr_lmb_enabled = false; 4815 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4816 } 4817 4818 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4819 4820 /* 4821 * pseries-2.3 4822 */ 4823 4824 static void spapr_machine_2_3_class_options(MachineClass *mc) 4825 { 4826 static GlobalProperty compat[] = { 4827 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4828 }; 4829 spapr_machine_2_4_class_options(mc); 4830 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4831 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4832 } 4833 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4834 4835 /* 4836 * pseries-2.2 4837 */ 4838 4839 static void spapr_machine_2_2_class_options(MachineClass *mc) 4840 { 4841 static GlobalProperty compat[] = { 4842 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4843 }; 4844 4845 spapr_machine_2_3_class_options(mc); 4846 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4847 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4848 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4849 } 4850 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4851 4852 /* 4853 * pseries-2.1 4854 */ 4855 4856 static void spapr_machine_2_1_class_options(MachineClass *mc) 4857 { 4858 spapr_machine_2_2_class_options(mc); 4859 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4860 } 4861 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4862 4863 static void spapr_machine_register_types(void) 4864 { 4865 type_register_static(&spapr_machine_info); 4866 } 4867 4868 type_init(spapr_machine_register_types) 4869