xref: /openbmc/qemu/hw/ppc/spapr.c (revision dbdf841b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     .name = "icp/server",
147     .version_id = 1,
148     .minimum_version_id = 1,
149     .needed = pre_2_10_vmstate_dummy_icp_needed,
150     .fields = (VMStateField[]) {
151         VMSTATE_UNUSED(4), /* uint32_t xirr */
152         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153         VMSTATE_UNUSED(1), /* uint8_t mfrr */
154         VMSTATE_END_OF_LIST()
155     },
156 };
157 
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161                      (void *)(uintptr_t) i);
162 }
163 
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167                        (void *)(uintptr_t) i);
168 }
169 
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172     MachineState *ms = MACHINE(spapr);
173 
174     assert(spapr->vsmt);
175     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177 
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179                                   int smt_threads)
180 {
181     int i, ret = 0;
182     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184     int index = spapr_get_vcpu_id(cpu);
185 
186     if (cpu->compat_pvr) {
187         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188         if (ret < 0) {
189             return ret;
190         }
191     }
192 
193     /* Build interrupt servers and gservers properties */
194     for (i = 0; i < smt_threads; i++) {
195         servers_prop[i] = cpu_to_be32(index + i);
196         /* Hack, direct the group queues back to cpu 0 */
197         gservers_prop[i*2] = cpu_to_be32(index + i);
198         gservers_prop[i*2 + 1] = 0;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201                       servers_prop, sizeof(*servers_prop) * smt_threads);
202     if (ret < 0) {
203         return ret;
204     }
205     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207 
208     return ret;
209 }
210 
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212                                  PowerPCCPU *cpu,
213                                  void *fdt, int offset)
214 {
215     uint8_t pa_features_206[] = { 6, 0,
216         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217     uint8_t pa_features_207[] = { 24, 0,
218         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222     uint8_t pa_features_300[] = { 66, 0,
223         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226         /* 6: DS207 */
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228         /* 16: Vector */
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238         /* 42: PM, 44: PC RA, 46: SC vec'd */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240         /* 48: SIMD, 50: QP BFP, 52: String */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242         /* 54: DecFP, 56: DecI, 58: SHA */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244         /* 60: NM atomic, 62: RNG */
245         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246     };
247     uint8_t *pa_features = NULL;
248     size_t pa_size;
249 
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_206;
252         pa_size = sizeof(pa_features_206);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_207;
256         pa_size = sizeof(pa_features_207);
257     }
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_300;
260         pa_size = sizeof(pa_features_300);
261     }
262     if (!pa_features) {
263         return;
264     }
265 
266     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267         /*
268          * Note: we keep CI large pages off by default because a 64K capable
269          * guest provisioned with large pages might otherwise try to map a qemu
270          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271          * even if that qemu runs on a 4k host.
272          * We dd this bit back here if we are confident this is not an issue
273          */
274         pa_features[3] |= 0x20;
275     }
276     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277         pa_features[24] |= 0x80;    /* Transactional memory support */
278     }
279     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280         /* Workaround for broken kernels that attempt (guest) radix
281          * mode when they can't handle it, if they see the radix bit set
282          * in pa-features. So hide it from them. */
283         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284     }
285 
286     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288 
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291     if (machine->numa_state->num_nodes) {
292         int i;
293         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294             if (machine->numa_state->nodes[i].node_mem) {
295                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296                            machine->ram_size);
297             }
298         }
299     }
300     return machine->ram_size;
301 }
302 
303 static void add_str(GString *s, const gchar *s1)
304 {
305     g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307 
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309                                 hwaddr start, hwaddr size)
310 {
311     char mem_name[32];
312     uint64_t mem_reg_property[2];
313     int off;
314 
315     mem_reg_property[0] = cpu_to_be64(start);
316     mem_reg_property[1] = cpu_to_be64(size);
317 
318     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319     off = fdt_add_subnode(fdt, 0, mem_name);
320     _FDT(off);
321     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323                       sizeof(mem_reg_property))));
324     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325     return off;
326 }
327 
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330     MemoryDeviceInfoList *info;
331 
332     for (info = list; info; info = info->next) {
333         MemoryDeviceInfo *value = info->value;
334 
335         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337 
338             if (addr >= pcdimm_info->addr &&
339                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340                 return pcdimm_info->node;
341             }
342         }
343     }
344 
345     return -1;
346 }
347 
348 struct sPAPRDrconfCellV2 {
349      uint32_t seq_lmbs;
350      uint64_t base_addr;
351      uint32_t drc_index;
352      uint32_t aa_index;
353      uint32_t flags;
354 } QEMU_PACKED;
355 
356 typedef struct DrconfCellQueue {
357     struct sPAPRDrconfCellV2 cell;
358     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360 
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363                       uint32_t drc_index, uint32_t aa_index,
364                       uint32_t flags)
365 {
366     DrconfCellQueue *elem;
367 
368     elem = g_malloc0(sizeof(*elem));
369     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370     elem->cell.base_addr = cpu_to_be64(base_addr);
371     elem->cell.drc_index = cpu_to_be32(drc_index);
372     elem->cell.aa_index = cpu_to_be32(aa_index);
373     elem->cell.flags = cpu_to_be32(flags);
374 
375     return elem;
376 }
377 
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379                                       int offset, MemoryDeviceInfoList *dimms)
380 {
381     MachineState *machine = MACHINE(spapr);
382     uint8_t *int_buf, *cur_index;
383     int ret;
384     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385     uint64_t addr, cur_addr, size;
386     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387     uint64_t mem_end = machine->device_memory->base +
388                        memory_region_size(&machine->device_memory->mr);
389     uint32_t node, buf_len, nr_entries = 0;
390     SpaprDrc *drc;
391     DrconfCellQueue *elem, *next;
392     MemoryDeviceInfoList *info;
393     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395 
396     /* Entry to cover RAM and the gap area */
397     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398                                  SPAPR_LMB_FLAGS_RESERVED |
399                                  SPAPR_LMB_FLAGS_DRC_INVALID);
400     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401     nr_entries++;
402 
403     cur_addr = machine->device_memory->base;
404     for (info = dimms; info; info = info->next) {
405         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406 
407         addr = di->addr;
408         size = di->size;
409         node = di->node;
410 
411         /*
412          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413          * area is marked hotpluggable in the next iteration for the bigger
414          * chunk including the NVDIMM occupied area.
415          */
416         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417             continue;
418 
419         /* Entry for hot-pluggable area */
420         if (cur_addr < addr) {
421             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422             g_assert(drc);
423             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424                                          cur_addr, spapr_drc_index(drc), -1, 0);
425             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426             nr_entries++;
427         }
428 
429         /* Entry for DIMM */
430         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431         g_assert(drc);
432         elem = spapr_get_drconf_cell(size / lmb_size, addr,
433                                      spapr_drc_index(drc), node,
434                                      (SPAPR_LMB_FLAGS_ASSIGNED |
435                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
436         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437         nr_entries++;
438         cur_addr = addr + size;
439     }
440 
441     /* Entry for remaining hotpluggable area */
442     if (cur_addr < mem_end) {
443         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444         g_assert(drc);
445         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446                                      cur_addr, spapr_drc_index(drc), -1, 0);
447         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448         nr_entries++;
449     }
450 
451     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452     int_buf = cur_index = g_malloc0(buf_len);
453     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454     cur_index += sizeof(nr_entries);
455 
456     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458         cur_index += sizeof(elem->cell);
459         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460         g_free(elem);
461     }
462 
463     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464     g_free(int_buf);
465     if (ret < 0) {
466         return -1;
467     }
468     return 0;
469 }
470 
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472                                    int offset, MemoryDeviceInfoList *dimms)
473 {
474     MachineState *machine = MACHINE(spapr);
475     int i, ret;
476     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478     uint32_t nr_lmbs = (machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr)) /
480                        lmb_size;
481     uint32_t *int_buf, *cur_index, buf_len;
482 
483     /*
484      * Allocate enough buffer size to fit in ibm,dynamic-memory
485      */
486     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487     cur_index = int_buf = g_malloc0(buf_len);
488     int_buf[0] = cpu_to_be32(nr_lmbs);
489     cur_index++;
490     for (i = 0; i < nr_lmbs; i++) {
491         uint64_t addr = i * lmb_size;
492         uint32_t *dynamic_memory = cur_index;
493 
494         if (i >= device_lmb_start) {
495             SpaprDrc *drc;
496 
497             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498             g_assert(drc);
499 
500             dynamic_memory[0] = cpu_to_be32(addr >> 32);
501             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505             if (memory_region_present(get_system_memory(), addr)) {
506                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507             } else {
508                 dynamic_memory[5] = cpu_to_be32(0);
509             }
510         } else {
511             /*
512              * LMB information for RMA, boot time RAM and gap b/n RAM and
513              * device memory region -- all these are marked as reserved
514              * and as having no valid DRC.
515              */
516             dynamic_memory[0] = cpu_to_be32(addr >> 32);
517             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518             dynamic_memory[2] = cpu_to_be32(0);
519             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520             dynamic_memory[4] = cpu_to_be32(-1);
521             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522                                             SPAPR_LMB_FLAGS_DRC_INVALID);
523         }
524 
525         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526     }
527     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528     g_free(int_buf);
529     if (ret < 0) {
530         return -1;
531     }
532     return 0;
533 }
534 
535 /*
536  * Adds ibm,dynamic-reconfiguration-memory node.
537  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538  * of this device tree node.
539  */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541                                                    void *fdt)
542 {
543     MachineState *machine = MACHINE(spapr);
544     int ret, offset;
545     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547                                 cpu_to_be32(lmb_size & 0xffffffff)};
548     MemoryDeviceInfoList *dimms = NULL;
549 
550     /* Don't create the node if there is no device memory. */
551     if (!machine->device_memory) {
552         return 0;
553     }
554 
555     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 
557     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558                     sizeof(prop_lmb_size));
559     if (ret < 0) {
560         return ret;
561     }
562 
563     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574     dimms = qmp_memory_device_list();
575     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577     } else {
578         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579     }
580     qapi_free_MemoryDeviceInfoList(dimms);
581 
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 
588     return ret;
589 }
590 
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593     MachineState *machine = MACHINE(spapr);
594     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595     hwaddr mem_start, node_size;
596     int i, nb_nodes = machine->numa_state->num_nodes;
597     NodeInfo *nodes = machine->numa_state->nodes;
598 
599     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600         if (!nodes[i].node_mem) {
601             continue;
602         }
603         if (mem_start >= machine->ram_size) {
604             node_size = 0;
605         } else {
606             node_size = nodes[i].node_mem;
607             if (node_size > machine->ram_size - mem_start) {
608                 node_size = machine->ram_size - mem_start;
609             }
610         }
611         if (!mem_start) {
612             /* spapr_machine_init() checks for rma_size <= node0_size
613              * already */
614             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615             mem_start += spapr->rma_size;
616             node_size -= spapr->rma_size;
617         }
618         for ( ; node_size; ) {
619             hwaddr sizetmp = pow2floor(node_size);
620 
621             /* mem_start != 0 here */
622             if (ctzl(mem_start) < ctzl(sizetmp)) {
623                 sizetmp = 1ULL << ctzl(mem_start);
624             }
625 
626             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627             node_size -= sizetmp;
628             mem_start += sizetmp;
629         }
630     }
631 
632     /* Generate ibm,dynamic-reconfiguration-memory node if required */
633     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634         int ret;
635 
636         g_assert(smc->dr_lmb_enabled);
637         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638         if (ret) {
639             return ret;
640         }
641     }
642 
643     return 0;
644 }
645 
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647                          SpaprMachineState *spapr)
648 {
649     MachineState *ms = MACHINE(spapr);
650     PowerPCCPU *cpu = POWERPC_CPU(cs);
651     CPUPPCState *env = &cpu->env;
652     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653     int index = spapr_get_vcpu_id(cpu);
654     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655                        0xffffffff, 0xffffffff};
656     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657         : SPAPR_TIMEBASE_FREQ;
658     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659     uint32_t page_sizes_prop[64];
660     size_t page_sizes_prop_size;
661     unsigned int smp_threads = ms->smp.threads;
662     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665     SpaprDrc *drc;
666     int drc_index;
667     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668     int i;
669 
670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671     if (drc) {
672         drc_index = spapr_drc_index(drc);
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674     }
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 
679     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685                            env->icache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687                            env->icache_line_size)));
688 
689     if (pcc->l1_dcache_size) {
690         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691                                pcc->l1_dcache_size)));
692     } else {
693         warn_report("Unknown L1 dcache size for cpu");
694     }
695     if (pcc->l1_icache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697                                pcc->l1_icache_size)));
698     } else {
699         warn_report("Unknown L1 icache size for cpu");
700     }
701 
702     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 
709     if (ppc_has_spr(cpu, SPR_PURR)) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711     }
712     if (ppc_has_spr(cpu, SPR_PURR)) {
713         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714     }
715 
716     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718                           segs, sizeof(segs))));
719     }
720 
721     /* Advertise VSX (vector extensions) if available
722      *   1               == VMX / Altivec available
723      *   2               == VSX available
724      *
725      * Only CPUs for which we create core types in spapr_cpu_core.c
726      * are possible, and all of those have VMX */
727     if (env->insns_flags & PPC_ALTIVEC) {
728         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730         } else {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732         }
733     }
734 
735     /* Advertise DFP (Decimal Floating Point) if available
736      *   0 / no property == no DFP
737      *   1               == DFP available */
738     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740     }
741 
742     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743                                                       sizeof(page_sizes_prop));
744     if (page_sizes_prop_size) {
745         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746                           page_sizes_prop, page_sizes_prop_size)));
747     }
748 
749     spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 
751     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752                            cs->cpu_index / vcpus_per_socket)));
753 
754     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755                       pft_size_prop, sizeof(pft_size_prop))));
756 
757     if (ms->numa_state->num_nodes > 1) {
758         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759     }
760 
761     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 
763     if (pcc->radix_page_info) {
764         for (i = 0; i < pcc->radix_page_info->count; i++) {
765             radix_AP_encodings[i] =
766                 cpu_to_be32(pcc->radix_page_info->entries[i]);
767         }
768         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769                           radix_AP_encodings,
770                           pcc->radix_page_info->count *
771                           sizeof(radix_AP_encodings[0]))));
772     }
773 
774     /*
775      * We set this property to let the guest know that it can use the large
776      * decrementer and its width in bits.
777      */
778     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780                               pcc->lrg_decr_bits)));
781 }
782 
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785     CPUState **rev;
786     CPUState *cs;
787     int n_cpus;
788     int cpus_offset;
789     int i;
790 
791     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792     _FDT(cpus_offset);
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795 
796     /*
797      * We walk the CPUs in reverse order to ensure that CPU DT nodes
798      * created by fdt_add_subnode() end up in the right order in FDT
799      * for the guest kernel the enumerate the CPUs correctly.
800      *
801      * The CPU list cannot be traversed in reverse order, so we need
802      * to do extra work.
803      */
804     n_cpus = 0;
805     rev = NULL;
806     CPU_FOREACH(cs) {
807         rev = g_renew(CPUState *, rev, n_cpus + 1);
808         rev[n_cpus++] = cs;
809     }
810 
811     for (i = n_cpus - 1; i >= 0; i--) {
812         CPUState *cs = rev[i];
813         PowerPCCPU *cpu = POWERPC_CPU(cs);
814         int index = spapr_get_vcpu_id(cpu);
815         DeviceClass *dc = DEVICE_GET_CLASS(cs);
816         g_autofree char *nodename = NULL;
817         int offset;
818 
819         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820             continue;
821         }
822 
823         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825         _FDT(offset);
826         spapr_dt_cpu(cs, fdt, offset, spapr);
827     }
828 
829     g_free(rev);
830 }
831 
832 static int spapr_dt_rng(void *fdt)
833 {
834     int node;
835     int ret;
836 
837     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838     if (node <= 0) {
839         return -1;
840     }
841     ret = fdt_setprop_string(fdt, node, "device_type",
842                              "ibm,platform-facilities");
843     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845 
846     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847     if (node <= 0) {
848         return -1;
849     }
850     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851 
852     return ret ? -1 : 0;
853 }
854 
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857     MachineState *ms = MACHINE(spapr);
858     int rtas;
859     GString *hypertas = g_string_sized_new(256);
860     GString *qemu_hypertas = g_string_sized_new(256);
861     uint32_t lrdr_capacity[] = {
862         0,
863         0,
864         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
865         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
866         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
867     };
868 
869     /* Do we have device memory? */
870     if (MACHINE(spapr)->device_memory) {
871         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
872             memory_region_size(&MACHINE(spapr)->device_memory->mr);
873 
874         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
875         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
876     }
877 
878     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
879 
880     /* hypertas */
881     add_str(hypertas, "hcall-pft");
882     add_str(hypertas, "hcall-term");
883     add_str(hypertas, "hcall-dabr");
884     add_str(hypertas, "hcall-interrupt");
885     add_str(hypertas, "hcall-tce");
886     add_str(hypertas, "hcall-vio");
887     add_str(hypertas, "hcall-splpar");
888     add_str(hypertas, "hcall-join");
889     add_str(hypertas, "hcall-bulk");
890     add_str(hypertas, "hcall-set-mode");
891     add_str(hypertas, "hcall-sprg0");
892     add_str(hypertas, "hcall-copy");
893     add_str(hypertas, "hcall-debug");
894     add_str(hypertas, "hcall-vphn");
895     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
896         add_str(hypertas, "hcall-rpt-invalidate");
897     }
898 
899     add_str(qemu_hypertas, "hcall-memop1");
900 
901     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
902         add_str(hypertas, "hcall-multi-tce");
903     }
904 
905     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
906         add_str(hypertas, "hcall-hpt-resize");
907     }
908 
909     add_str(hypertas, "hcall-watchdog");
910 
911     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
912                      hypertas->str, hypertas->len));
913     g_string_free(hypertas, TRUE);
914     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
915                      qemu_hypertas->str, qemu_hypertas->len));
916     g_string_free(qemu_hypertas, TRUE);
917 
918     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
919 
920     /*
921      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
922      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
923      *
924      * The system reset requirements are driven by existing Linux and PowerVM
925      * implementation which (contrary to PAPR) saves r3 in the error log
926      * structure like machine check, so Linux expects to find the saved r3
927      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
928      * does not look at the error value).
929      *
930      * System reset interrupts are not subject to interlock like machine
931      * check, so this memory area could be corrupted if the sreset is
932      * interrupted by a machine check (or vice versa) if it was shared. To
933      * prevent this, system reset uses per-CPU areas for the sreset save
934      * area. A system reset that interrupts a system reset handler could
935      * still overwrite this area, but Linux doesn't try to recover in that
936      * case anyway.
937      *
938      * The extra 8 bytes is required because Linux's FWNMI error log check
939      * is off-by-one.
940      *
941      * RTAS_MIN_SIZE is required for the RTAS blob itself.
942      */
943     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
944                           RTAS_ERROR_LOG_MAX +
945                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
946                           sizeof(uint64_t)));
947     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
948                           RTAS_ERROR_LOG_MAX));
949     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
950                           RTAS_EVENT_SCAN_RATE));
951 
952     g_assert(msi_nonbroken);
953     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
954 
955     /*
956      * According to PAPR, rtas ibm,os-term does not guarantee a return
957      * back to the guest cpu.
958      *
959      * While an additional ibm,extended-os-term property indicates
960      * that rtas call return will always occur. Set this property.
961      */
962     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
963 
964     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
965                      lrdr_capacity, sizeof(lrdr_capacity)));
966 
967     spapr_dt_rtas_tokens(fdt, rtas);
968 }
969 
970 /*
971  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
972  * and the XIVE features that the guest may request and thus the valid
973  * values for bytes 23..26 of option vector 5:
974  */
975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
976                                           int chosen)
977 {
978     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979 
980     char val[2 * 4] = {
981         23, 0x00, /* XICS / XIVE mode */
982         24, 0x00, /* Hash/Radix, filled in below. */
983         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
984         26, 0x40, /* Radix options: GTSE == yes. */
985     };
986 
987     if (spapr->irq->xics && spapr->irq->xive) {
988         val[1] = SPAPR_OV5_XIVE_BOTH;
989     } else if (spapr->irq->xive) {
990         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
991     } else {
992         assert(spapr->irq->xics);
993         val[1] = SPAPR_OV5_XIVE_LEGACY;
994     }
995 
996     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
997                           first_ppc_cpu->compat_pvr)) {
998         /*
999          * If we're in a pre POWER9 compat mode then the guest should
1000          * do hash and use the legacy interrupt mode
1001          */
1002         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1003         val[3] = 0x00; /* Hash */
1004         spapr_check_mmu_mode(false);
1005     } else if (kvm_enabled()) {
1006         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1007             val[3] = 0x80; /* OV5_MMU_BOTH */
1008         } else if (kvmppc_has_cap_mmu_radix()) {
1009             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1010         } else {
1011             val[3] = 0x00; /* Hash */
1012         }
1013     } else {
1014         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1015         val[3] = 0xC0;
1016     }
1017     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1018                      val, sizeof(val)));
1019 }
1020 
1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1022 {
1023     MachineState *machine = MACHINE(spapr);
1024     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1025     uint8_t rng_seed[32];
1026     int chosen;
1027 
1028     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1029 
1030     if (reset) {
1031         const char *boot_device = spapr->boot_device;
1032         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1033         size_t cb = 0;
1034         g_autofree char *bootlist = get_boot_devices_list(&cb);
1035 
1036         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1037             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1038                                     machine->kernel_cmdline));
1039         }
1040 
1041         if (spapr->initrd_size) {
1042             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1043                                   spapr->initrd_base));
1044             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1045                                   spapr->initrd_base + spapr->initrd_size));
1046         }
1047 
1048         if (spapr->kernel_size) {
1049             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1050                                   cpu_to_be64(spapr->kernel_size) };
1051 
1052             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1053                          &kprop, sizeof(kprop)));
1054             if (spapr->kernel_le) {
1055                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1056             }
1057         }
1058         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1059             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1060         }
1061         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1062         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1063         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1064 
1065         if (cb && bootlist) {
1066             int i;
1067 
1068             for (i = 0; i < cb; i++) {
1069                 if (bootlist[i] == '\n') {
1070                     bootlist[i] = ' ';
1071                 }
1072             }
1073             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1074         }
1075 
1076         if (boot_device && strlen(boot_device)) {
1077             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1078         }
1079 
1080         if (spapr->want_stdout_path && stdout_path) {
1081             /*
1082              * "linux,stdout-path" and "stdout" properties are
1083              * deprecated by linux kernel. New platforms should only
1084              * use the "stdout-path" property. Set the new property
1085              * and continue using older property to remain compatible
1086              * with the existing firmware.
1087              */
1088             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1089             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1090         }
1091 
1092         /*
1093          * We can deal with BAR reallocation just fine, advertise it
1094          * to the guest
1095          */
1096         if (smc->linux_pci_probe) {
1097             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1098         }
1099 
1100         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1101     }
1102 
1103     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1104     _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1105 
1106     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1107 }
1108 
1109 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1110 {
1111     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1112      * KVM to work under pHyp with some guest co-operation */
1113     int hypervisor;
1114     uint8_t hypercall[16];
1115 
1116     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1117     /* indicate KVM hypercall interface */
1118     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1119     if (kvmppc_has_cap_fixup_hcalls()) {
1120         /*
1121          * Older KVM versions with older guest kernels were broken
1122          * with the magic page, don't allow the guest to map it.
1123          */
1124         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1125                                   sizeof(hypercall))) {
1126             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1127                              hypercall, sizeof(hypercall)));
1128         }
1129     }
1130 }
1131 
1132 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1133 {
1134     MachineState *machine = MACHINE(spapr);
1135     MachineClass *mc = MACHINE_GET_CLASS(machine);
1136     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1137     uint32_t root_drc_type_mask = 0;
1138     int ret;
1139     void *fdt;
1140     SpaprPhbState *phb;
1141     char *buf;
1142 
1143     fdt = g_malloc0(space);
1144     _FDT((fdt_create_empty_tree(fdt, space)));
1145 
1146     /* Root node */
1147     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1150 
1151     /* Guest UUID & Name*/
1152     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154     if (qemu_uuid_set) {
1155         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1156     }
1157     g_free(buf);
1158 
1159     if (qemu_get_vm_name()) {
1160         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161                                 qemu_get_vm_name()));
1162     }
1163 
1164     /* Host Model & Serial Number */
1165     if (spapr->host_model) {
1166         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169         g_free(buf);
1170     }
1171 
1172     if (spapr->host_serial) {
1173         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176         g_free(buf);
1177     }
1178 
1179     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1181 
1182     /* /interrupt controller */
1183     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1184 
1185     ret = spapr_dt_memory(spapr, fdt);
1186     if (ret < 0) {
1187         error_report("couldn't setup memory nodes in fdt");
1188         exit(1);
1189     }
1190 
1191     /* /vdevice */
1192     spapr_dt_vdevice(spapr->vio_bus, fdt);
1193 
1194     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195         ret = spapr_dt_rng(fdt);
1196         if (ret < 0) {
1197             error_report("could not set up rng device in the fdt");
1198             exit(1);
1199         }
1200     }
1201 
1202     QLIST_FOREACH(phb, &spapr->phbs, list) {
1203         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204         if (ret < 0) {
1205             error_report("couldn't setup PCI devices in fdt");
1206             exit(1);
1207         }
1208     }
1209 
1210     spapr_dt_cpus(fdt, spapr);
1211 
1212     /* ibm,drc-indexes and friends */
1213     if (smc->dr_lmb_enabled) {
1214         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1215     }
1216     if (smc->dr_phb_enabled) {
1217         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1218     }
1219     if (mc->nvdimm_supported) {
1220         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1221     }
1222     if (root_drc_type_mask) {
1223         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1224     }
1225 
1226     if (mc->has_hotpluggable_cpus) {
1227         int offset = fdt_path_offset(fdt, "/cpus");
1228         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1229         if (ret < 0) {
1230             error_report("Couldn't set up CPU DR device tree properties");
1231             exit(1);
1232         }
1233     }
1234 
1235     /* /event-sources */
1236     spapr_dt_events(spapr, fdt);
1237 
1238     /* /rtas */
1239     spapr_dt_rtas(spapr, fdt);
1240 
1241     /* /chosen */
1242     spapr_dt_chosen(spapr, fdt, reset);
1243 
1244     /* /hypervisor */
1245     if (kvm_enabled()) {
1246         spapr_dt_hypervisor(spapr, fdt);
1247     }
1248 
1249     /* Build memory reserve map */
1250     if (reset) {
1251         if (spapr->kernel_size) {
1252             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1253                                   spapr->kernel_size)));
1254         }
1255         if (spapr->initrd_size) {
1256             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1257                                   spapr->initrd_size)));
1258         }
1259     }
1260 
1261     /* NVDIMM devices */
1262     if (mc->nvdimm_supported) {
1263         spapr_dt_persistent_memory(spapr, fdt);
1264     }
1265 
1266     return fdt;
1267 }
1268 
1269 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1270 {
1271     SpaprMachineState *spapr = opaque;
1272 
1273     return (addr & 0x0fffffff) + spapr->kernel_addr;
1274 }
1275 
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277                                     PowerPCCPU *cpu)
1278 {
1279     CPUPPCState *env = &cpu->env;
1280 
1281     /* The TCG path should also be holding the BQL at this point */
1282     g_assert(qemu_mutex_iothread_locked());
1283 
1284     g_assert(!vhyp_cpu_in_nested(cpu));
1285 
1286     if (FIELD_EX64(env->msr, MSR, PR)) {
1287         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1288         env->gpr[3] = H_PRIVILEGE;
1289     } else {
1290         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1291     }
1292 }
1293 
1294 struct LPCRSyncState {
1295     target_ulong value;
1296     target_ulong mask;
1297 };
1298 
1299 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1300 {
1301     struct LPCRSyncState *s = arg.host_ptr;
1302     PowerPCCPU *cpu = POWERPC_CPU(cs);
1303     CPUPPCState *env = &cpu->env;
1304     target_ulong lpcr;
1305 
1306     cpu_synchronize_state(cs);
1307     lpcr = env->spr[SPR_LPCR];
1308     lpcr &= ~s->mask;
1309     lpcr |= s->value;
1310     ppc_store_lpcr(cpu, lpcr);
1311 }
1312 
1313 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1314 {
1315     CPUState *cs;
1316     struct LPCRSyncState s = {
1317         .value = value,
1318         .mask = mask
1319     };
1320     CPU_FOREACH(cs) {
1321         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1322     }
1323 }
1324 
1325 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1326                            target_ulong lpid, ppc_v3_pate_t *entry)
1327 {
1328     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1329     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1330 
1331     if (!spapr_cpu->in_nested) {
1332         assert(lpid == 0);
1333 
1334         /* Copy PATE1:GR into PATE0:HR */
1335         entry->dw0 = spapr->patb_entry & PATE0_HR;
1336         entry->dw1 = spapr->patb_entry;
1337 
1338     } else {
1339         uint64_t patb, pats;
1340 
1341         assert(lpid != 0);
1342 
1343         patb = spapr->nested_ptcr & PTCR_PATB;
1344         pats = spapr->nested_ptcr & PTCR_PATS;
1345 
1346         /* Check if partition table is properly aligned */
1347         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1348             return false;
1349         }
1350 
1351         /* Calculate number of entries */
1352         pats = 1ull << (pats + 12 - 4);
1353         if (pats <= lpid) {
1354             return false;
1355         }
1356 
1357         /* Grab entry */
1358         patb += 16 * lpid;
1359         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1360         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1361     }
1362 
1363     return true;
1364 }
1365 
1366 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1367 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1368 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1369 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1370 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1371 
1372 /*
1373  * Get the fd to access the kernel htab, re-opening it if necessary
1374  */
1375 static int get_htab_fd(SpaprMachineState *spapr)
1376 {
1377     Error *local_err = NULL;
1378 
1379     if (spapr->htab_fd >= 0) {
1380         return spapr->htab_fd;
1381     }
1382 
1383     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1384     if (spapr->htab_fd < 0) {
1385         error_report_err(local_err);
1386     }
1387 
1388     return spapr->htab_fd;
1389 }
1390 
1391 void close_htab_fd(SpaprMachineState *spapr)
1392 {
1393     if (spapr->htab_fd >= 0) {
1394         close(spapr->htab_fd);
1395     }
1396     spapr->htab_fd = -1;
1397 }
1398 
1399 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1400 {
1401     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402 
1403     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1404 }
1405 
1406 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1407 {
1408     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1409 
1410     assert(kvm_enabled());
1411 
1412     if (!spapr->htab) {
1413         return 0;
1414     }
1415 
1416     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1417 }
1418 
1419 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1420                                                 hwaddr ptex, int n)
1421 {
1422     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1423     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1424 
1425     if (!spapr->htab) {
1426         /*
1427          * HTAB is controlled by KVM. Fetch into temporary buffer
1428          */
1429         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1430         kvmppc_read_hptes(hptes, ptex, n);
1431         return hptes;
1432     }
1433 
1434     /*
1435      * HTAB is controlled by QEMU. Just point to the internally
1436      * accessible PTEG.
1437      */
1438     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1439 }
1440 
1441 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1442                               const ppc_hash_pte64_t *hptes,
1443                               hwaddr ptex, int n)
1444 {
1445     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 
1447     if (!spapr->htab) {
1448         g_free((void *)hptes);
1449     }
1450 
1451     /* Nothing to do for qemu managed HPT */
1452 }
1453 
1454 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1455                       uint64_t pte0, uint64_t pte1)
1456 {
1457     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1458     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1459 
1460     if (!spapr->htab) {
1461         kvmppc_write_hpte(ptex, pte0, pte1);
1462     } else {
1463         if (pte0 & HPTE64_V_VALID) {
1464             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1465             /*
1466              * When setting valid, we write PTE1 first. This ensures
1467              * proper synchronization with the reading code in
1468              * ppc_hash64_pteg_search()
1469              */
1470             smp_wmb();
1471             stq_p(spapr->htab + offset, pte0);
1472         } else {
1473             stq_p(spapr->htab + offset, pte0);
1474             /*
1475              * When clearing it we set PTE0 first. This ensures proper
1476              * synchronization with the reading code in
1477              * ppc_hash64_pteg_search()
1478              */
1479             smp_wmb();
1480             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1481         }
1482     }
1483 }
1484 
1485 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1486                              uint64_t pte1)
1487 {
1488     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1489     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1490 
1491     if (!spapr->htab) {
1492         /* There should always be a hash table when this is called */
1493         error_report("spapr_hpte_set_c called with no hash table !");
1494         return;
1495     }
1496 
1497     /* The HW performs a non-atomic byte update */
1498     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1499 }
1500 
1501 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1502                              uint64_t pte1)
1503 {
1504     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1505     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1506 
1507     if (!spapr->htab) {
1508         /* There should always be a hash table when this is called */
1509         error_report("spapr_hpte_set_r called with no hash table !");
1510         return;
1511     }
1512 
1513     /* The HW performs a non-atomic byte update */
1514     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1515 }
1516 
1517 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1518 {
1519     int shift;
1520 
1521     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1522      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1523      * that's much more than is needed for Linux guests */
1524     shift = ctz64(pow2ceil(ramsize)) - 7;
1525     shift = MAX(shift, 18); /* Minimum architected size */
1526     shift = MIN(shift, 46); /* Maximum architected size */
1527     return shift;
1528 }
1529 
1530 void spapr_free_hpt(SpaprMachineState *spapr)
1531 {
1532     qemu_vfree(spapr->htab);
1533     spapr->htab = NULL;
1534     spapr->htab_shift = 0;
1535     close_htab_fd(spapr);
1536 }
1537 
1538 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1539 {
1540     ERRP_GUARD();
1541     long rc;
1542 
1543     /* Clean up any HPT info from a previous boot */
1544     spapr_free_hpt(spapr);
1545 
1546     rc = kvmppc_reset_htab(shift);
1547 
1548     if (rc == -EOPNOTSUPP) {
1549         error_setg(errp, "HPT not supported in nested guests");
1550         return -EOPNOTSUPP;
1551     }
1552 
1553     if (rc < 0) {
1554         /* kernel-side HPT needed, but couldn't allocate one */
1555         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1556                          shift);
1557         error_append_hint(errp, "Try smaller maxmem?\n");
1558         return -errno;
1559     } else if (rc > 0) {
1560         /* kernel-side HPT allocated */
1561         if (rc != shift) {
1562             error_setg(errp,
1563                        "Requested order %d HPT, but kernel allocated order %ld",
1564                        shift, rc);
1565             error_append_hint(errp, "Try smaller maxmem?\n");
1566             return -ENOSPC;
1567         }
1568 
1569         spapr->htab_shift = shift;
1570         spapr->htab = NULL;
1571     } else {
1572         /* kernel-side HPT not needed, allocate in userspace instead */
1573         size_t size = 1ULL << shift;
1574         int i;
1575 
1576         spapr->htab = qemu_memalign(size, size);
1577         memset(spapr->htab, 0, size);
1578         spapr->htab_shift = shift;
1579 
1580         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1581             DIRTY_HPTE(HPTE(spapr->htab, i));
1582         }
1583     }
1584     /* We're setting up a hash table, so that means we're not radix */
1585     spapr->patb_entry = 0;
1586     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1587     return 0;
1588 }
1589 
1590 void spapr_setup_hpt(SpaprMachineState *spapr)
1591 {
1592     int hpt_shift;
1593 
1594     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1595         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1596     } else {
1597         uint64_t current_ram_size;
1598 
1599         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1600         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1601     }
1602     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1603 
1604     if (kvm_enabled()) {
1605         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1606 
1607         /* Check our RMA fits in the possible VRMA */
1608         if (vrma_limit < spapr->rma_size) {
1609             error_report("Unable to create %" HWADDR_PRIu
1610                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1611                          spapr->rma_size / MiB, vrma_limit / MiB);
1612             exit(EXIT_FAILURE);
1613         }
1614     }
1615 }
1616 
1617 void spapr_check_mmu_mode(bool guest_radix)
1618 {
1619     if (guest_radix) {
1620         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1621             error_report("Guest requested unavailable MMU mode (radix).");
1622             exit(EXIT_FAILURE);
1623         }
1624     } else {
1625         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1626             && !kvmppc_has_cap_mmu_hash_v3()) {
1627             error_report("Guest requested unavailable MMU mode (hash).");
1628             exit(EXIT_FAILURE);
1629         }
1630     }
1631 }
1632 
1633 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1634 {
1635     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1636     PowerPCCPU *first_ppc_cpu;
1637     hwaddr fdt_addr;
1638     void *fdt;
1639     int rc;
1640 
1641     pef_kvm_reset(machine->cgs, &error_fatal);
1642     spapr_caps_apply(spapr);
1643 
1644     first_ppc_cpu = POWERPC_CPU(first_cpu);
1645     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1646         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1647                               spapr->max_compat_pvr)) {
1648         /*
1649          * If using KVM with radix mode available, VCPUs can be started
1650          * without a HPT because KVM will start them in radix mode.
1651          * Set the GR bit in PATE so that we know there is no HPT.
1652          */
1653         spapr->patb_entry = PATE1_GR;
1654         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1655     } else {
1656         spapr_setup_hpt(spapr);
1657     }
1658 
1659     qemu_devices_reset(reason);
1660 
1661     spapr_ovec_cleanup(spapr->ov5_cas);
1662     spapr->ov5_cas = spapr_ovec_new();
1663 
1664     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1665 
1666     /*
1667      * This is fixing some of the default configuration of the XIVE
1668      * devices. To be called after the reset of the machine devices.
1669      */
1670     spapr_irq_reset(spapr, &error_fatal);
1671 
1672     /*
1673      * There is no CAS under qtest. Simulate one to please the code that
1674      * depends on spapr->ov5_cas. This is especially needed to test device
1675      * unplug, so we do that before resetting the DRCs.
1676      */
1677     if (qtest_enabled()) {
1678         spapr_ovec_cleanup(spapr->ov5_cas);
1679         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1680     }
1681 
1682     spapr_nvdimm_finish_flushes();
1683 
1684     /* DRC reset may cause a device to be unplugged. This will cause troubles
1685      * if this device is used by another device (eg, a running vhost backend
1686      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1687      * situations, we reset DRCs after all devices have been reset.
1688      */
1689     spapr_drc_reset_all(spapr);
1690 
1691     spapr_clear_pending_events(spapr);
1692 
1693     /*
1694      * We place the device tree just below either the top of the RMA,
1695      * or just below 2GB, whichever is lower, so that it can be
1696      * processed with 32-bit real mode code if necessary
1697      */
1698     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1699 
1700     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1701     if (spapr->vof) {
1702         spapr_vof_reset(spapr, fdt, &error_fatal);
1703         /*
1704          * Do not pack the FDT as the client may change properties.
1705          * VOF client does not expect the FDT so we do not load it to the VM.
1706          */
1707     } else {
1708         rc = fdt_pack(fdt);
1709         /* Should only fail if we've built a corrupted tree */
1710         assert(rc == 0);
1711 
1712         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1713                                   0, fdt_addr, 0);
1714         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1715     }
1716     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1717 
1718     g_free(spapr->fdt_blob);
1719     spapr->fdt_size = fdt_totalsize(fdt);
1720     spapr->fdt_initial_size = spapr->fdt_size;
1721     spapr->fdt_blob = fdt;
1722 
1723     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1724     machine->fdt = fdt;
1725 
1726     /* Set up the entry state */
1727     first_ppc_cpu->env.gpr[5] = 0;
1728 
1729     spapr->fwnmi_system_reset_addr = -1;
1730     spapr->fwnmi_machine_check_addr = -1;
1731     spapr->fwnmi_machine_check_interlock = -1;
1732 
1733     /* Signal all vCPUs waiting on this condition */
1734     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1735 
1736     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1737 }
1738 
1739 static void spapr_create_nvram(SpaprMachineState *spapr)
1740 {
1741     DeviceState *dev = qdev_new("spapr-nvram");
1742     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1743 
1744     if (dinfo) {
1745         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1746                                 &error_fatal);
1747     }
1748 
1749     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1750 
1751     spapr->nvram = (struct SpaprNvram *)dev;
1752 }
1753 
1754 static void spapr_rtc_create(SpaprMachineState *spapr)
1755 {
1756     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1757                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1758                                        &error_fatal, NULL);
1759     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1760     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1761                               "date");
1762 }
1763 
1764 /* Returns whether we want to use VGA or not */
1765 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1766 {
1767     vga_interface_created = true;
1768     switch (vga_interface_type) {
1769     case VGA_NONE:
1770         return false;
1771     case VGA_DEVICE:
1772         return true;
1773     case VGA_STD:
1774     case VGA_VIRTIO:
1775     case VGA_CIRRUS:
1776         return pci_vga_init(pci_bus) != NULL;
1777     default:
1778         error_setg(errp,
1779                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1780         return false;
1781     }
1782 }
1783 
1784 static int spapr_pre_load(void *opaque)
1785 {
1786     int rc;
1787 
1788     rc = spapr_caps_pre_load(opaque);
1789     if (rc) {
1790         return rc;
1791     }
1792 
1793     return 0;
1794 }
1795 
1796 static int spapr_post_load(void *opaque, int version_id)
1797 {
1798     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1799     int err = 0;
1800 
1801     err = spapr_caps_post_migration(spapr);
1802     if (err) {
1803         return err;
1804     }
1805 
1806     /*
1807      * In earlier versions, there was no separate qdev for the PAPR
1808      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1809      * So when migrating from those versions, poke the incoming offset
1810      * value into the RTC device
1811      */
1812     if (version_id < 3) {
1813         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1814         if (err) {
1815             return err;
1816         }
1817     }
1818 
1819     if (kvm_enabled() && spapr->patb_entry) {
1820         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1821         bool radix = !!(spapr->patb_entry & PATE1_GR);
1822         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1823 
1824         /*
1825          * Update LPCR:HR and UPRT as they may not be set properly in
1826          * the stream
1827          */
1828         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1829                             LPCR_HR | LPCR_UPRT);
1830 
1831         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1832         if (err) {
1833             error_report("Process table config unsupported by the host");
1834             return -EINVAL;
1835         }
1836     }
1837 
1838     err = spapr_irq_post_load(spapr, version_id);
1839     if (err) {
1840         return err;
1841     }
1842 
1843     return err;
1844 }
1845 
1846 static int spapr_pre_save(void *opaque)
1847 {
1848     int rc;
1849 
1850     rc = spapr_caps_pre_save(opaque);
1851     if (rc) {
1852         return rc;
1853     }
1854 
1855     return 0;
1856 }
1857 
1858 static bool version_before_3(void *opaque, int version_id)
1859 {
1860     return version_id < 3;
1861 }
1862 
1863 static bool spapr_pending_events_needed(void *opaque)
1864 {
1865     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1866     return !QTAILQ_EMPTY(&spapr->pending_events);
1867 }
1868 
1869 static const VMStateDescription vmstate_spapr_event_entry = {
1870     .name = "spapr_event_log_entry",
1871     .version_id = 1,
1872     .minimum_version_id = 1,
1873     .fields = (VMStateField[]) {
1874         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1875         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1876         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1877                                      NULL, extended_length),
1878         VMSTATE_END_OF_LIST()
1879     },
1880 };
1881 
1882 static const VMStateDescription vmstate_spapr_pending_events = {
1883     .name = "spapr_pending_events",
1884     .version_id = 1,
1885     .minimum_version_id = 1,
1886     .needed = spapr_pending_events_needed,
1887     .fields = (VMStateField[]) {
1888         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1889                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1890         VMSTATE_END_OF_LIST()
1891     },
1892 };
1893 
1894 static bool spapr_ov5_cas_needed(void *opaque)
1895 {
1896     SpaprMachineState *spapr = opaque;
1897     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1898     bool cas_needed;
1899 
1900     /* Prior to the introduction of SpaprOptionVector, we had two option
1901      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1902      * Both of these options encode machine topology into the device-tree
1903      * in such a way that the now-booted OS should still be able to interact
1904      * appropriately with QEMU regardless of what options were actually
1905      * negotiatied on the source side.
1906      *
1907      * As such, we can avoid migrating the CAS-negotiated options if these
1908      * are the only options available on the current machine/platform.
1909      * Since these are the only options available for pseries-2.7 and
1910      * earlier, this allows us to maintain old->new/new->old migration
1911      * compatibility.
1912      *
1913      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1914      * via default pseries-2.8 machines and explicit command-line parameters.
1915      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1916      * of the actual CAS-negotiated values to continue working properly. For
1917      * example, availability of memory unplug depends on knowing whether
1918      * OV5_HP_EVT was negotiated via CAS.
1919      *
1920      * Thus, for any cases where the set of available CAS-negotiatable
1921      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1922      * include the CAS-negotiated options in the migration stream, unless
1923      * if they affect boot time behaviour only.
1924      */
1925     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1926     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1927     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1928 
1929     /* We need extra information if we have any bits outside the mask
1930      * defined above */
1931     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1932 
1933     spapr_ovec_cleanup(ov5_mask);
1934 
1935     return cas_needed;
1936 }
1937 
1938 static const VMStateDescription vmstate_spapr_ov5_cas = {
1939     .name = "spapr_option_vector_ov5_cas",
1940     .version_id = 1,
1941     .minimum_version_id = 1,
1942     .needed = spapr_ov5_cas_needed,
1943     .fields = (VMStateField[]) {
1944         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1945                                  vmstate_spapr_ovec, SpaprOptionVector),
1946         VMSTATE_END_OF_LIST()
1947     },
1948 };
1949 
1950 static bool spapr_patb_entry_needed(void *opaque)
1951 {
1952     SpaprMachineState *spapr = opaque;
1953 
1954     return !!spapr->patb_entry;
1955 }
1956 
1957 static const VMStateDescription vmstate_spapr_patb_entry = {
1958     .name = "spapr_patb_entry",
1959     .version_id = 1,
1960     .minimum_version_id = 1,
1961     .needed = spapr_patb_entry_needed,
1962     .fields = (VMStateField[]) {
1963         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1964         VMSTATE_END_OF_LIST()
1965     },
1966 };
1967 
1968 static bool spapr_irq_map_needed(void *opaque)
1969 {
1970     SpaprMachineState *spapr = opaque;
1971 
1972     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1973 }
1974 
1975 static const VMStateDescription vmstate_spapr_irq_map = {
1976     .name = "spapr_irq_map",
1977     .version_id = 1,
1978     .minimum_version_id = 1,
1979     .needed = spapr_irq_map_needed,
1980     .fields = (VMStateField[]) {
1981         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1982         VMSTATE_END_OF_LIST()
1983     },
1984 };
1985 
1986 static bool spapr_dtb_needed(void *opaque)
1987 {
1988     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1989 
1990     return smc->update_dt_enabled;
1991 }
1992 
1993 static int spapr_dtb_pre_load(void *opaque)
1994 {
1995     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1996 
1997     g_free(spapr->fdt_blob);
1998     spapr->fdt_blob = NULL;
1999     spapr->fdt_size = 0;
2000 
2001     return 0;
2002 }
2003 
2004 static const VMStateDescription vmstate_spapr_dtb = {
2005     .name = "spapr_dtb",
2006     .version_id = 1,
2007     .minimum_version_id = 1,
2008     .needed = spapr_dtb_needed,
2009     .pre_load = spapr_dtb_pre_load,
2010     .fields = (VMStateField[]) {
2011         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2012         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2013         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2014                                      fdt_size),
2015         VMSTATE_END_OF_LIST()
2016     },
2017 };
2018 
2019 static bool spapr_fwnmi_needed(void *opaque)
2020 {
2021     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2022 
2023     return spapr->fwnmi_machine_check_addr != -1;
2024 }
2025 
2026 static int spapr_fwnmi_pre_save(void *opaque)
2027 {
2028     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2029 
2030     /*
2031      * Check if machine check handling is in progress and print a
2032      * warning message.
2033      */
2034     if (spapr->fwnmi_machine_check_interlock != -1) {
2035         warn_report("A machine check is being handled during migration. The"
2036                 "handler may run and log hardware error on the destination");
2037     }
2038 
2039     return 0;
2040 }
2041 
2042 static const VMStateDescription vmstate_spapr_fwnmi = {
2043     .name = "spapr_fwnmi",
2044     .version_id = 1,
2045     .minimum_version_id = 1,
2046     .needed = spapr_fwnmi_needed,
2047     .pre_save = spapr_fwnmi_pre_save,
2048     .fields = (VMStateField[]) {
2049         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2050         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2051         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2052         VMSTATE_END_OF_LIST()
2053     },
2054 };
2055 
2056 static const VMStateDescription vmstate_spapr = {
2057     .name = "spapr",
2058     .version_id = 3,
2059     .minimum_version_id = 1,
2060     .pre_load = spapr_pre_load,
2061     .post_load = spapr_post_load,
2062     .pre_save = spapr_pre_save,
2063     .fields = (VMStateField[]) {
2064         /* used to be @next_irq */
2065         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2066 
2067         /* RTC offset */
2068         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2069 
2070         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2071         VMSTATE_END_OF_LIST()
2072     },
2073     .subsections = (const VMStateDescription*[]) {
2074         &vmstate_spapr_ov5_cas,
2075         &vmstate_spapr_patb_entry,
2076         &vmstate_spapr_pending_events,
2077         &vmstate_spapr_cap_htm,
2078         &vmstate_spapr_cap_vsx,
2079         &vmstate_spapr_cap_dfp,
2080         &vmstate_spapr_cap_cfpc,
2081         &vmstate_spapr_cap_sbbc,
2082         &vmstate_spapr_cap_ibs,
2083         &vmstate_spapr_cap_hpt_maxpagesize,
2084         &vmstate_spapr_irq_map,
2085         &vmstate_spapr_cap_nested_kvm_hv,
2086         &vmstate_spapr_dtb,
2087         &vmstate_spapr_cap_large_decr,
2088         &vmstate_spapr_cap_ccf_assist,
2089         &vmstate_spapr_cap_fwnmi,
2090         &vmstate_spapr_fwnmi,
2091         &vmstate_spapr_cap_rpt_invalidate,
2092         NULL
2093     }
2094 };
2095 
2096 static int htab_save_setup(QEMUFile *f, void *opaque)
2097 {
2098     SpaprMachineState *spapr = opaque;
2099 
2100     /* "Iteration" header */
2101     if (!spapr->htab_shift) {
2102         qemu_put_be32(f, -1);
2103     } else {
2104         qemu_put_be32(f, spapr->htab_shift);
2105     }
2106 
2107     if (spapr->htab) {
2108         spapr->htab_save_index = 0;
2109         spapr->htab_first_pass = true;
2110     } else {
2111         if (spapr->htab_shift) {
2112             assert(kvm_enabled());
2113         }
2114     }
2115 
2116 
2117     return 0;
2118 }
2119 
2120 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2121                             int chunkstart, int n_valid, int n_invalid)
2122 {
2123     qemu_put_be32(f, chunkstart);
2124     qemu_put_be16(f, n_valid);
2125     qemu_put_be16(f, n_invalid);
2126     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2127                     HASH_PTE_SIZE_64 * n_valid);
2128 }
2129 
2130 static void htab_save_end_marker(QEMUFile *f)
2131 {
2132     qemu_put_be32(f, 0);
2133     qemu_put_be16(f, 0);
2134     qemu_put_be16(f, 0);
2135 }
2136 
2137 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2138                                  int64_t max_ns)
2139 {
2140     bool has_timeout = max_ns != -1;
2141     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2142     int index = spapr->htab_save_index;
2143     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2144 
2145     assert(spapr->htab_first_pass);
2146 
2147     do {
2148         int chunkstart;
2149 
2150         /* Consume invalid HPTEs */
2151         while ((index < htabslots)
2152                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2153             CLEAN_HPTE(HPTE(spapr->htab, index));
2154             index++;
2155         }
2156 
2157         /* Consume valid HPTEs */
2158         chunkstart = index;
2159         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2160                && HPTE_VALID(HPTE(spapr->htab, index))) {
2161             CLEAN_HPTE(HPTE(spapr->htab, index));
2162             index++;
2163         }
2164 
2165         if (index > chunkstart) {
2166             int n_valid = index - chunkstart;
2167 
2168             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2169 
2170             if (has_timeout &&
2171                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2172                 break;
2173             }
2174         }
2175     } while ((index < htabslots) && !migration_rate_exceeded(f));
2176 
2177     if (index >= htabslots) {
2178         assert(index == htabslots);
2179         index = 0;
2180         spapr->htab_first_pass = false;
2181     }
2182     spapr->htab_save_index = index;
2183 }
2184 
2185 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2186                                 int64_t max_ns)
2187 {
2188     bool final = max_ns < 0;
2189     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2190     int examined = 0, sent = 0;
2191     int index = spapr->htab_save_index;
2192     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193 
2194     assert(!spapr->htab_first_pass);
2195 
2196     do {
2197         int chunkstart, invalidstart;
2198 
2199         /* Consume non-dirty HPTEs */
2200         while ((index < htabslots)
2201                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2202             index++;
2203             examined++;
2204         }
2205 
2206         chunkstart = index;
2207         /* Consume valid dirty HPTEs */
2208         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209                && HPTE_DIRTY(HPTE(spapr->htab, index))
2210                && HPTE_VALID(HPTE(spapr->htab, index))) {
2211             CLEAN_HPTE(HPTE(spapr->htab, index));
2212             index++;
2213             examined++;
2214         }
2215 
2216         invalidstart = index;
2217         /* Consume invalid dirty HPTEs */
2218         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2219                && HPTE_DIRTY(HPTE(spapr->htab, index))
2220                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2221             CLEAN_HPTE(HPTE(spapr->htab, index));
2222             index++;
2223             examined++;
2224         }
2225 
2226         if (index > chunkstart) {
2227             int n_valid = invalidstart - chunkstart;
2228             int n_invalid = index - invalidstart;
2229 
2230             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2231             sent += index - chunkstart;
2232 
2233             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2234                 break;
2235             }
2236         }
2237 
2238         if (examined >= htabslots) {
2239             break;
2240         }
2241 
2242         if (index >= htabslots) {
2243             assert(index == htabslots);
2244             index = 0;
2245         }
2246     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2247 
2248     if (index >= htabslots) {
2249         assert(index == htabslots);
2250         index = 0;
2251     }
2252 
2253     spapr->htab_save_index = index;
2254 
2255     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2256 }
2257 
2258 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2259 #define MAX_KVM_BUF_SIZE    2048
2260 
2261 static int htab_save_iterate(QEMUFile *f, void *opaque)
2262 {
2263     SpaprMachineState *spapr = opaque;
2264     int fd;
2265     int rc = 0;
2266 
2267     /* Iteration header */
2268     if (!spapr->htab_shift) {
2269         qemu_put_be32(f, -1);
2270         return 1;
2271     } else {
2272         qemu_put_be32(f, 0);
2273     }
2274 
2275     if (!spapr->htab) {
2276         assert(kvm_enabled());
2277 
2278         fd = get_htab_fd(spapr);
2279         if (fd < 0) {
2280             return fd;
2281         }
2282 
2283         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2284         if (rc < 0) {
2285             return rc;
2286         }
2287     } else  if (spapr->htab_first_pass) {
2288         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2289     } else {
2290         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2291     }
2292 
2293     htab_save_end_marker(f);
2294 
2295     return rc;
2296 }
2297 
2298 static int htab_save_complete(QEMUFile *f, void *opaque)
2299 {
2300     SpaprMachineState *spapr = opaque;
2301     int fd;
2302 
2303     /* Iteration header */
2304     if (!spapr->htab_shift) {
2305         qemu_put_be32(f, -1);
2306         return 0;
2307     } else {
2308         qemu_put_be32(f, 0);
2309     }
2310 
2311     if (!spapr->htab) {
2312         int rc;
2313 
2314         assert(kvm_enabled());
2315 
2316         fd = get_htab_fd(spapr);
2317         if (fd < 0) {
2318             return fd;
2319         }
2320 
2321         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2322         if (rc < 0) {
2323             return rc;
2324         }
2325     } else {
2326         if (spapr->htab_first_pass) {
2327             htab_save_first_pass(f, spapr, -1);
2328         }
2329         htab_save_later_pass(f, spapr, -1);
2330     }
2331 
2332     /* End marker */
2333     htab_save_end_marker(f);
2334 
2335     return 0;
2336 }
2337 
2338 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2339 {
2340     SpaprMachineState *spapr = opaque;
2341     uint32_t section_hdr;
2342     int fd = -1;
2343     Error *local_err = NULL;
2344 
2345     if (version_id < 1 || version_id > 1) {
2346         error_report("htab_load() bad version");
2347         return -EINVAL;
2348     }
2349 
2350     section_hdr = qemu_get_be32(f);
2351 
2352     if (section_hdr == -1) {
2353         spapr_free_hpt(spapr);
2354         return 0;
2355     }
2356 
2357     if (section_hdr) {
2358         int ret;
2359 
2360         /* First section gives the htab size */
2361         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2362         if (ret < 0) {
2363             error_report_err(local_err);
2364             return ret;
2365         }
2366         return 0;
2367     }
2368 
2369     if (!spapr->htab) {
2370         assert(kvm_enabled());
2371 
2372         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2373         if (fd < 0) {
2374             error_report_err(local_err);
2375             return fd;
2376         }
2377     }
2378 
2379     while (true) {
2380         uint32_t index;
2381         uint16_t n_valid, n_invalid;
2382 
2383         index = qemu_get_be32(f);
2384         n_valid = qemu_get_be16(f);
2385         n_invalid = qemu_get_be16(f);
2386 
2387         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2388             /* End of Stream */
2389             break;
2390         }
2391 
2392         if ((index + n_valid + n_invalid) >
2393             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2394             /* Bad index in stream */
2395             error_report(
2396                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2397                 index, n_valid, n_invalid, spapr->htab_shift);
2398             return -EINVAL;
2399         }
2400 
2401         if (spapr->htab) {
2402             if (n_valid) {
2403                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2404                                 HASH_PTE_SIZE_64 * n_valid);
2405             }
2406             if (n_invalid) {
2407                 memset(HPTE(spapr->htab, index + n_valid), 0,
2408                        HASH_PTE_SIZE_64 * n_invalid);
2409             }
2410         } else {
2411             int rc;
2412 
2413             assert(fd >= 0);
2414 
2415             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2416                                         &local_err);
2417             if (rc < 0) {
2418                 error_report_err(local_err);
2419                 return rc;
2420             }
2421         }
2422     }
2423 
2424     if (!spapr->htab) {
2425         assert(fd >= 0);
2426         close(fd);
2427     }
2428 
2429     return 0;
2430 }
2431 
2432 static void htab_save_cleanup(void *opaque)
2433 {
2434     SpaprMachineState *spapr = opaque;
2435 
2436     close_htab_fd(spapr);
2437 }
2438 
2439 static SaveVMHandlers savevm_htab_handlers = {
2440     .save_setup = htab_save_setup,
2441     .save_live_iterate = htab_save_iterate,
2442     .save_live_complete_precopy = htab_save_complete,
2443     .save_cleanup = htab_save_cleanup,
2444     .load_state = htab_load,
2445 };
2446 
2447 static void spapr_boot_set(void *opaque, const char *boot_device,
2448                            Error **errp)
2449 {
2450     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2451 
2452     g_free(spapr->boot_device);
2453     spapr->boot_device = g_strdup(boot_device);
2454 }
2455 
2456 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2457 {
2458     MachineState *machine = MACHINE(spapr);
2459     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2460     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2461     int i;
2462 
2463     g_assert(!nr_lmbs || machine->device_memory);
2464     for (i = 0; i < nr_lmbs; i++) {
2465         uint64_t addr;
2466 
2467         addr = i * lmb_size + machine->device_memory->base;
2468         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2469                                addr / lmb_size);
2470     }
2471 }
2472 
2473 /*
2474  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2475  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2476  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2477  */
2478 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2479 {
2480     int i;
2481 
2482     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2483         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2484                    " is not aligned to %" PRIu64 " MiB",
2485                    machine->ram_size,
2486                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2487         return;
2488     }
2489 
2490     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2491         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2492                    " is not aligned to %" PRIu64 " MiB",
2493                    machine->ram_size,
2494                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2495         return;
2496     }
2497 
2498     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2499         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2500             error_setg(errp,
2501                        "Node %d memory size 0x%" PRIx64
2502                        " is not aligned to %" PRIu64 " MiB",
2503                        i, machine->numa_state->nodes[i].node_mem,
2504                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2505             return;
2506         }
2507     }
2508 }
2509 
2510 /* find cpu slot in machine->possible_cpus by core_id */
2511 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2512 {
2513     int index = id / ms->smp.threads;
2514 
2515     if (index >= ms->possible_cpus->len) {
2516         return NULL;
2517     }
2518     if (idx) {
2519         *idx = index;
2520     }
2521     return &ms->possible_cpus->cpus[index];
2522 }
2523 
2524 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2525 {
2526     MachineState *ms = MACHINE(spapr);
2527     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2528     Error *local_err = NULL;
2529     bool vsmt_user = !!spapr->vsmt;
2530     int kvm_smt = kvmppc_smt_threads();
2531     int ret;
2532     unsigned int smp_threads = ms->smp.threads;
2533 
2534     if (tcg_enabled()) {
2535         if (smp_threads > 1 &&
2536             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2537                                    spapr->max_compat_pvr)) {
2538             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2539             return;
2540         }
2541 
2542         if (smp_threads > 8) {
2543             error_setg(errp, "TCG cannot support more than 8 threads/core "
2544                        "on a pseries machine");
2545             return;
2546         }
2547     }
2548     if (!is_power_of_2(smp_threads)) {
2549         error_setg(errp, "Cannot support %d threads/core on a pseries "
2550                    "machine because it must be a power of 2", smp_threads);
2551         return;
2552     }
2553 
2554     /* Detemine the VSMT mode to use: */
2555     if (vsmt_user) {
2556         if (spapr->vsmt < smp_threads) {
2557             error_setg(errp, "Cannot support VSMT mode %d"
2558                        " because it must be >= threads/core (%d)",
2559                        spapr->vsmt, smp_threads);
2560             return;
2561         }
2562         /* In this case, spapr->vsmt has been set by the command line */
2563     } else if (!smc->smp_threads_vsmt) {
2564         /*
2565          * Default VSMT value is tricky, because we need it to be as
2566          * consistent as possible (for migration), but this requires
2567          * changing it for at least some existing cases.  We pick 8 as
2568          * the value that we'd get with KVM on POWER8, the
2569          * overwhelmingly common case in production systems.
2570          */
2571         spapr->vsmt = MAX(8, smp_threads);
2572     } else {
2573         spapr->vsmt = smp_threads;
2574     }
2575 
2576     /* KVM: If necessary, set the SMT mode: */
2577     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2578         ret = kvmppc_set_smt_threads(spapr->vsmt);
2579         if (ret) {
2580             /* Looks like KVM isn't able to change VSMT mode */
2581             error_setg(&local_err,
2582                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2583                        spapr->vsmt, ret);
2584             /* We can live with that if the default one is big enough
2585              * for the number of threads, and a submultiple of the one
2586              * we want.  In this case we'll waste some vcpu ids, but
2587              * behaviour will be correct */
2588             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2589                 warn_report_err(local_err);
2590             } else {
2591                 if (!vsmt_user) {
2592                     error_append_hint(&local_err,
2593                                       "On PPC, a VM with %d threads/core"
2594                                       " on a host with %d threads/core"
2595                                       " requires the use of VSMT mode %d.\n",
2596                                       smp_threads, kvm_smt, spapr->vsmt);
2597                 }
2598                 kvmppc_error_append_smt_possible_hint(&local_err);
2599                 error_propagate(errp, local_err);
2600             }
2601         }
2602     }
2603     /* else TCG: nothing to do currently */
2604 }
2605 
2606 static void spapr_init_cpus(SpaprMachineState *spapr)
2607 {
2608     MachineState *machine = MACHINE(spapr);
2609     MachineClass *mc = MACHINE_GET_CLASS(machine);
2610     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2611     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2612     const CPUArchIdList *possible_cpus;
2613     unsigned int smp_cpus = machine->smp.cpus;
2614     unsigned int smp_threads = machine->smp.threads;
2615     unsigned int max_cpus = machine->smp.max_cpus;
2616     int boot_cores_nr = smp_cpus / smp_threads;
2617     int i;
2618 
2619     possible_cpus = mc->possible_cpu_arch_ids(machine);
2620     if (mc->has_hotpluggable_cpus) {
2621         if (smp_cpus % smp_threads) {
2622             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2623                          smp_cpus, smp_threads);
2624             exit(1);
2625         }
2626         if (max_cpus % smp_threads) {
2627             error_report("max_cpus (%u) must be multiple of threads (%u)",
2628                          max_cpus, smp_threads);
2629             exit(1);
2630         }
2631     } else {
2632         if (max_cpus != smp_cpus) {
2633             error_report("This machine version does not support CPU hotplug");
2634             exit(1);
2635         }
2636         boot_cores_nr = possible_cpus->len;
2637     }
2638 
2639     if (smc->pre_2_10_has_unused_icps) {
2640         int i;
2641 
2642         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2643             /* Dummy entries get deregistered when real ICPState objects
2644              * are registered during CPU core hotplug.
2645              */
2646             pre_2_10_vmstate_register_dummy_icp(i);
2647         }
2648     }
2649 
2650     for (i = 0; i < possible_cpus->len; i++) {
2651         int core_id = i * smp_threads;
2652 
2653         if (mc->has_hotpluggable_cpus) {
2654             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2655                                    spapr_vcpu_id(spapr, core_id));
2656         }
2657 
2658         if (i < boot_cores_nr) {
2659             Object *core  = object_new(type);
2660             int nr_threads = smp_threads;
2661 
2662             /* Handle the partially filled core for older machine types */
2663             if ((i + 1) * smp_threads >= smp_cpus) {
2664                 nr_threads = smp_cpus - i * smp_threads;
2665             }
2666 
2667             object_property_set_int(core, "nr-threads", nr_threads,
2668                                     &error_fatal);
2669             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2670                                     &error_fatal);
2671             qdev_realize(DEVICE(core), NULL, &error_fatal);
2672 
2673             object_unref(core);
2674         }
2675     }
2676 }
2677 
2678 static PCIHostState *spapr_create_default_phb(void)
2679 {
2680     DeviceState *dev;
2681 
2682     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2683     qdev_prop_set_uint32(dev, "index", 0);
2684     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2685 
2686     return PCI_HOST_BRIDGE(dev);
2687 }
2688 
2689 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2690 {
2691     MachineState *machine = MACHINE(spapr);
2692     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2693     hwaddr rma_size = machine->ram_size;
2694     hwaddr node0_size = spapr_node0_size(machine);
2695 
2696     /* RMA has to fit in the first NUMA node */
2697     rma_size = MIN(rma_size, node0_size);
2698 
2699     /*
2700      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2701      * never exceed that
2702      */
2703     rma_size = MIN(rma_size, 1 * TiB);
2704 
2705     /*
2706      * Clamp the RMA size based on machine type.  This is for
2707      * migration compatibility with older qemu versions, which limited
2708      * the RMA size for complicated and mostly bad reasons.
2709      */
2710     if (smc->rma_limit) {
2711         rma_size = MIN(rma_size, smc->rma_limit);
2712     }
2713 
2714     if (rma_size < MIN_RMA_SLOF) {
2715         error_setg(errp,
2716                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2717                    "ldMiB guest RMA (Real Mode Area memory)",
2718                    MIN_RMA_SLOF / MiB);
2719         return 0;
2720     }
2721 
2722     return rma_size;
2723 }
2724 
2725 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2726 {
2727     MachineState *machine = MACHINE(spapr);
2728     int i;
2729 
2730     for (i = 0; i < machine->ram_slots; i++) {
2731         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2732     }
2733 }
2734 
2735 /* pSeries LPAR / sPAPR hardware init */
2736 static void spapr_machine_init(MachineState *machine)
2737 {
2738     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2739     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2740     MachineClass *mc = MACHINE_GET_CLASS(machine);
2741     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2742     const char *bios_name = machine->firmware ?: bios_default;
2743     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2744     const char *kernel_filename = machine->kernel_filename;
2745     const char *initrd_filename = machine->initrd_filename;
2746     PCIHostState *phb;
2747     bool has_vga;
2748     int i;
2749     MemoryRegion *sysmem = get_system_memory();
2750     long load_limit, fw_size;
2751     Error *resize_hpt_err = NULL;
2752 
2753     if (!filename) {
2754         error_report("Could not find LPAR firmware '%s'", bios_name);
2755         exit(1);
2756     }
2757     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2758     if (fw_size <= 0) {
2759         error_report("Could not load LPAR firmware '%s'", filename);
2760         exit(1);
2761     }
2762 
2763     /*
2764      * if Secure VM (PEF) support is configured, then initialize it
2765      */
2766     pef_kvm_init(machine->cgs, &error_fatal);
2767 
2768     msi_nonbroken = true;
2769 
2770     QLIST_INIT(&spapr->phbs);
2771     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2772 
2773     /* Determine capabilities to run with */
2774     spapr_caps_init(spapr);
2775 
2776     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2777     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2778         /*
2779          * If the user explicitly requested a mode we should either
2780          * supply it, or fail completely (which we do below).  But if
2781          * it's not set explicitly, we reset our mode to something
2782          * that works
2783          */
2784         if (resize_hpt_err) {
2785             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2786             error_free(resize_hpt_err);
2787             resize_hpt_err = NULL;
2788         } else {
2789             spapr->resize_hpt = smc->resize_hpt_default;
2790         }
2791     }
2792 
2793     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2794 
2795     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2796         /*
2797          * User requested HPT resize, but this host can't supply it.  Bail out
2798          */
2799         error_report_err(resize_hpt_err);
2800         exit(1);
2801     }
2802     error_free(resize_hpt_err);
2803 
2804     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2805 
2806     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2807     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2808 
2809     /*
2810      * VSMT must be set in order to be able to compute VCPU ids, ie to
2811      * call spapr_max_server_number() or spapr_vcpu_id().
2812      */
2813     spapr_set_vsmt_mode(spapr, &error_fatal);
2814 
2815     /* Set up Interrupt Controller before we create the VCPUs */
2816     spapr_irq_init(spapr, &error_fatal);
2817 
2818     /* Set up containers for ibm,client-architecture-support negotiated options
2819      */
2820     spapr->ov5 = spapr_ovec_new();
2821     spapr->ov5_cas = spapr_ovec_new();
2822 
2823     if (smc->dr_lmb_enabled) {
2824         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2825         spapr_validate_node_memory(machine, &error_fatal);
2826     }
2827 
2828     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2829 
2830     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2831     if (!smc->pre_6_2_numa_affinity) {
2832         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2833     }
2834 
2835     /* advertise support for dedicated HP event source to guests */
2836     if (spapr->use_hotplug_event_source) {
2837         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2838     }
2839 
2840     /* advertise support for HPT resizing */
2841     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2842         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2843     }
2844 
2845     /* advertise support for ibm,dyamic-memory-v2 */
2846     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2847 
2848     /* advertise XIVE on POWER9 machines */
2849     if (spapr->irq->xive) {
2850         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2851     }
2852 
2853     /* init CPUs */
2854     spapr_init_cpus(spapr);
2855 
2856     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2857 
2858     /* Init numa_assoc_array */
2859     spapr_numa_associativity_init(spapr, machine);
2860 
2861     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2862         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2863                               spapr->max_compat_pvr)) {
2864         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2865         /* KVM and TCG always allow GTSE with radix... */
2866         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2867     }
2868     /* ... but not with hash (currently). */
2869 
2870     if (kvm_enabled()) {
2871         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2872         kvmppc_enable_logical_ci_hcalls();
2873         kvmppc_enable_set_mode_hcall();
2874 
2875         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2876         kvmppc_enable_clear_ref_mod_hcalls();
2877 
2878         /* Enable H_PAGE_INIT */
2879         kvmppc_enable_h_page_init();
2880     }
2881 
2882     /* map RAM */
2883     memory_region_add_subregion(sysmem, 0, machine->ram);
2884 
2885     /* initialize hotplug memory address space */
2886     if (machine->ram_size < machine->maxram_size) {
2887         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2888         hwaddr device_mem_base;
2889 
2890         /*
2891          * Limit the number of hotpluggable memory slots to half the number
2892          * slots that KVM supports, leaving the other half for PCI and other
2893          * devices. However ensure that number of slots doesn't drop below 32.
2894          */
2895         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2896                            SPAPR_MAX_RAM_SLOTS;
2897 
2898         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2899             max_memslots = SPAPR_MAX_RAM_SLOTS;
2900         }
2901         if (machine->ram_slots > max_memslots) {
2902             error_report("Specified number of memory slots %"
2903                          PRIu64" exceeds max supported %d",
2904                          machine->ram_slots, max_memslots);
2905             exit(1);
2906         }
2907 
2908         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2909         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2910     }
2911 
2912     if (smc->dr_lmb_enabled) {
2913         spapr_create_lmb_dr_connectors(spapr);
2914     }
2915 
2916     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2917         /* Create the error string for live migration blocker */
2918         error_setg(&spapr->fwnmi_migration_blocker,
2919             "A machine check is being handled during migration. The handler"
2920             "may run and log hardware error on the destination");
2921     }
2922 
2923     if (mc->nvdimm_supported) {
2924         spapr_create_nvdimm_dr_connectors(spapr);
2925     }
2926 
2927     /* Set up RTAS event infrastructure */
2928     spapr_events_init(spapr);
2929 
2930     /* Set up the RTC RTAS interfaces */
2931     spapr_rtc_create(spapr);
2932 
2933     /* Set up VIO bus */
2934     spapr->vio_bus = spapr_vio_bus_init();
2935 
2936     for (i = 0; serial_hd(i); i++) {
2937         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2938     }
2939 
2940     /* We always have at least the nvram device on VIO */
2941     spapr_create_nvram(spapr);
2942 
2943     /*
2944      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2945      * connectors (described in root DT node's "ibm,drc-types" property)
2946      * are pre-initialized here. additional child connectors (such as
2947      * connectors for a PHBs PCI slots) are added as needed during their
2948      * parent's realization.
2949      */
2950     if (smc->dr_phb_enabled) {
2951         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2952             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2953         }
2954     }
2955 
2956     /* Set up PCI */
2957     spapr_pci_rtas_init();
2958 
2959     phb = spapr_create_default_phb();
2960 
2961     for (i = 0; i < nb_nics; i++) {
2962         NICInfo *nd = &nd_table[i];
2963 
2964         if (!nd->model) {
2965             nd->model = g_strdup("spapr-vlan");
2966         }
2967 
2968         if (g_str_equal(nd->model, "spapr-vlan") ||
2969             g_str_equal(nd->model, "ibmveth")) {
2970             spapr_vlan_create(spapr->vio_bus, nd);
2971         } else {
2972             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2973         }
2974     }
2975 
2976     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2977         spapr_vscsi_create(spapr->vio_bus);
2978     }
2979 
2980     /* Graphics */
2981     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2982     if (has_vga) {
2983         spapr->want_stdout_path = !machine->enable_graphics;
2984         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2985     } else {
2986         spapr->want_stdout_path = true;
2987     }
2988 
2989     if (machine->usb) {
2990         if (smc->use_ohci_by_default) {
2991             pci_create_simple(phb->bus, -1, "pci-ohci");
2992         } else {
2993             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2994         }
2995 
2996         if (has_vga) {
2997             USBBus *usb_bus = usb_bus_find(-1);
2998 
2999             usb_create_simple(usb_bus, "usb-kbd");
3000             usb_create_simple(usb_bus, "usb-mouse");
3001         }
3002     }
3003 
3004     if (kernel_filename) {
3005         uint64_t loaded_addr = 0;
3006 
3007         spapr->kernel_size = load_elf(kernel_filename, NULL,
3008                                       translate_kernel_address, spapr,
3009                                       NULL, &loaded_addr, NULL, NULL, 1,
3010                                       PPC_ELF_MACHINE, 0, 0);
3011         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3012             spapr->kernel_size = load_elf(kernel_filename, NULL,
3013                                           translate_kernel_address, spapr,
3014                                           NULL, &loaded_addr, NULL, NULL, 0,
3015                                           PPC_ELF_MACHINE, 0, 0);
3016             spapr->kernel_le = spapr->kernel_size > 0;
3017         }
3018         if (spapr->kernel_size < 0) {
3019             error_report("error loading %s: %s", kernel_filename,
3020                          load_elf_strerror(spapr->kernel_size));
3021             exit(1);
3022         }
3023 
3024         if (spapr->kernel_addr != loaded_addr) {
3025             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3026                         " to 0x%"PRIx64,
3027                         spapr->kernel_addr, loaded_addr);
3028             spapr->kernel_addr = loaded_addr;
3029         }
3030 
3031         /* load initrd */
3032         if (initrd_filename) {
3033             /* Try to locate the initrd in the gap between the kernel
3034              * and the firmware. Add a bit of space just in case
3035              */
3036             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3037                                   + 0x1ffff) & ~0xffff;
3038             spapr->initrd_size = load_image_targphys(initrd_filename,
3039                                                      spapr->initrd_base,
3040                                                      load_limit
3041                                                      - spapr->initrd_base);
3042             if (spapr->initrd_size < 0) {
3043                 error_report("could not load initial ram disk '%s'",
3044                              initrd_filename);
3045                 exit(1);
3046             }
3047         }
3048     }
3049 
3050     /* FIXME: Should register things through the MachineState's qdev
3051      * interface, this is a legacy from the sPAPREnvironment structure
3052      * which predated MachineState but had a similar function */
3053     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3054     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3055                          &savevm_htab_handlers, spapr);
3056 
3057     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3058 
3059     qemu_register_boot_set(spapr_boot_set, spapr);
3060 
3061     /*
3062      * Nothing needs to be done to resume a suspended guest because
3063      * suspending does not change the machine state, so no need for
3064      * a ->wakeup method.
3065      */
3066     qemu_register_wakeup_support();
3067 
3068     if (kvm_enabled()) {
3069         /* to stop and start vmclock */
3070         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3071                                          &spapr->tb);
3072 
3073         kvmppc_spapr_enable_inkernel_multitce();
3074     }
3075 
3076     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3077     if (spapr->vof) {
3078         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3079         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3080     }
3081 
3082     spapr_watchdog_init(spapr);
3083 }
3084 
3085 #define DEFAULT_KVM_TYPE "auto"
3086 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3087 {
3088     /*
3089      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3090      * accomodate the 'HV' and 'PV' formats that exists in the
3091      * wild. The 'auto' mode is being introduced already as
3092      * lower-case, thus we don't need to bother checking for
3093      * "AUTO".
3094      */
3095     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3096         return 0;
3097     }
3098 
3099     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3100         return 1;
3101     }
3102 
3103     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3104         return 2;
3105     }
3106 
3107     error_report("Unknown kvm-type specified '%s'", vm_type);
3108     exit(1);
3109 }
3110 
3111 /*
3112  * Implementation of an interface to adjust firmware path
3113  * for the bootindex property handling.
3114  */
3115 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3116                                    DeviceState *dev)
3117 {
3118 #define CAST(type, obj, name) \
3119     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3120     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3121     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3122     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3123     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3124 
3125     if (d && bus) {
3126         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3127         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3128         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3129 
3130         if (spapr) {
3131             /*
3132              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3133              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3134              * 0x8000 | (target << 8) | (bus << 5) | lun
3135              * (see the "Logical unit addressing format" table in SAM5)
3136              */
3137             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3138             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3139                                    (uint64_t)id << 48);
3140         } else if (virtio) {
3141             /*
3142              * We use SRP luns of the form 01000000 | (target << 8) | lun
3143              * in the top 32 bits of the 64-bit LUN
3144              * Note: the quote above is from SLOF and it is wrong,
3145              * the actual binding is:
3146              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3147              */
3148             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3149             if (d->lun >= 256) {
3150                 /* Use the LUN "flat space addressing method" */
3151                 id |= 0x4000;
3152             }
3153             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3154                                    (uint64_t)id << 32);
3155         } else if (usb) {
3156             /*
3157              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3158              * in the top 32 bits of the 64-bit LUN
3159              */
3160             unsigned usb_port = atoi(usb->port->path);
3161             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3162             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3163                                    (uint64_t)id << 32);
3164         }
3165     }
3166 
3167     /*
3168      * SLOF probes the USB devices, and if it recognizes that the device is a
3169      * storage device, it changes its name to "storage" instead of "usb-host",
3170      * and additionally adds a child node for the SCSI LUN, so the correct
3171      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3172      */
3173     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3174         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3175         if (usb_device_is_scsi_storage(usbdev)) {
3176             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3177         }
3178     }
3179 
3180     if (phb) {
3181         /* Replace "pci" with "pci@800000020000000" */
3182         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3183     }
3184 
3185     if (vsc) {
3186         /* Same logic as virtio above */
3187         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3188         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3189     }
3190 
3191     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3192         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3193         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3194         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3195     }
3196 
3197     if (pcidev) {
3198         return spapr_pci_fw_dev_name(pcidev);
3199     }
3200 
3201     return NULL;
3202 }
3203 
3204 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     return g_strdup(spapr->kvm_type);
3209 }
3210 
3211 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3212 {
3213     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3214 
3215     g_free(spapr->kvm_type);
3216     spapr->kvm_type = g_strdup(value);
3217 }
3218 
3219 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3220 {
3221     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3222 
3223     return spapr->use_hotplug_event_source;
3224 }
3225 
3226 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3227                                             Error **errp)
3228 {
3229     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230 
3231     spapr->use_hotplug_event_source = value;
3232 }
3233 
3234 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3235 {
3236     return true;
3237 }
3238 
3239 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3240 {
3241     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3242 
3243     switch (spapr->resize_hpt) {
3244     case SPAPR_RESIZE_HPT_DEFAULT:
3245         return g_strdup("default");
3246     case SPAPR_RESIZE_HPT_DISABLED:
3247         return g_strdup("disabled");
3248     case SPAPR_RESIZE_HPT_ENABLED:
3249         return g_strdup("enabled");
3250     case SPAPR_RESIZE_HPT_REQUIRED:
3251         return g_strdup("required");
3252     }
3253     g_assert_not_reached();
3254 }
3255 
3256 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3257 {
3258     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 
3260     if (strcmp(value, "default") == 0) {
3261         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3262     } else if (strcmp(value, "disabled") == 0) {
3263         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3264     } else if (strcmp(value, "enabled") == 0) {
3265         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3266     } else if (strcmp(value, "required") == 0) {
3267         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3268     } else {
3269         error_setg(errp, "Bad value for \"resize-hpt\" property");
3270     }
3271 }
3272 
3273 static bool spapr_get_vof(Object *obj, Error **errp)
3274 {
3275     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276 
3277     return spapr->vof != NULL;
3278 }
3279 
3280 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3281 {
3282     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283 
3284     if (spapr->vof) {
3285         vof_cleanup(spapr->vof);
3286         g_free(spapr->vof);
3287         spapr->vof = NULL;
3288     }
3289     if (!value) {
3290         return;
3291     }
3292     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3293 }
3294 
3295 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3296 {
3297     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298 
3299     if (spapr->irq == &spapr_irq_xics_legacy) {
3300         return g_strdup("legacy");
3301     } else if (spapr->irq == &spapr_irq_xics) {
3302         return g_strdup("xics");
3303     } else if (spapr->irq == &spapr_irq_xive) {
3304         return g_strdup("xive");
3305     } else if (spapr->irq == &spapr_irq_dual) {
3306         return g_strdup("dual");
3307     }
3308     g_assert_not_reached();
3309 }
3310 
3311 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3312 {
3313     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314 
3315     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3316         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3317         return;
3318     }
3319 
3320     /* The legacy IRQ backend can not be set */
3321     if (strcmp(value, "xics") == 0) {
3322         spapr->irq = &spapr_irq_xics;
3323     } else if (strcmp(value, "xive") == 0) {
3324         spapr->irq = &spapr_irq_xive;
3325     } else if (strcmp(value, "dual") == 0) {
3326         spapr->irq = &spapr_irq_dual;
3327     } else {
3328         error_setg(errp, "Bad value for \"ic-mode\" property");
3329     }
3330 }
3331 
3332 static char *spapr_get_host_model(Object *obj, Error **errp)
3333 {
3334     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335 
3336     return g_strdup(spapr->host_model);
3337 }
3338 
3339 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3340 {
3341     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3342 
3343     g_free(spapr->host_model);
3344     spapr->host_model = g_strdup(value);
3345 }
3346 
3347 static char *spapr_get_host_serial(Object *obj, Error **errp)
3348 {
3349     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350 
3351     return g_strdup(spapr->host_serial);
3352 }
3353 
3354 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3355 {
3356     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3357 
3358     g_free(spapr->host_serial);
3359     spapr->host_serial = g_strdup(value);
3360 }
3361 
3362 static void spapr_instance_init(Object *obj)
3363 {
3364     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3365     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3366     MachineState *ms = MACHINE(spapr);
3367     MachineClass *mc = MACHINE_GET_CLASS(ms);
3368 
3369     /*
3370      * NVDIMM support went live in 5.1 without considering that, in
3371      * other archs, the user needs to enable NVDIMM support with the
3372      * 'nvdimm' machine option and the default behavior is NVDIMM
3373      * support disabled. It is too late to roll back to the standard
3374      * behavior without breaking 5.1 guests.
3375      */
3376     if (mc->nvdimm_supported) {
3377         ms->nvdimms_state->is_enabled = true;
3378     }
3379 
3380     spapr->htab_fd = -1;
3381     spapr->use_hotplug_event_source = true;
3382     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3383     object_property_add_str(obj, "kvm-type",
3384                             spapr_get_kvm_type, spapr_set_kvm_type);
3385     object_property_set_description(obj, "kvm-type",
3386                                     "Specifies the KVM virtualization mode (auto,"
3387                                     " hv, pr). Defaults to 'auto'. This mode will use"
3388                                     " any available KVM module loaded in the host,"
3389                                     " where kvm_hv takes precedence if both kvm_hv and"
3390                                     " kvm_pr are loaded.");
3391     object_property_add_bool(obj, "modern-hotplug-events",
3392                             spapr_get_modern_hotplug_events,
3393                             spapr_set_modern_hotplug_events);
3394     object_property_set_description(obj, "modern-hotplug-events",
3395                                     "Use dedicated hotplug event mechanism in"
3396                                     " place of standard EPOW events when possible"
3397                                     " (required for memory hot-unplug support)");
3398     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3399                             "Maximum permitted CPU compatibility mode");
3400 
3401     object_property_add_str(obj, "resize-hpt",
3402                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3403     object_property_set_description(obj, "resize-hpt",
3404                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3405     object_property_add_uint32_ptr(obj, "vsmt",
3406                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3407     object_property_set_description(obj, "vsmt",
3408                                     "Virtual SMT: KVM behaves as if this were"
3409                                     " the host's SMT mode");
3410 
3411     object_property_add_bool(obj, "vfio-no-msix-emulation",
3412                              spapr_get_msix_emulation, NULL);
3413 
3414     object_property_add_uint64_ptr(obj, "kernel-addr",
3415                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3416     object_property_set_description(obj, "kernel-addr",
3417                                     stringify(KERNEL_LOAD_ADDR)
3418                                     " for -kernel is the default");
3419     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3420 
3421     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3422     object_property_set_description(obj, "x-vof",
3423                                     "Enable Virtual Open Firmware (experimental)");
3424 
3425     /* The machine class defines the default interrupt controller mode */
3426     spapr->irq = smc->irq;
3427     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3428                             spapr_set_ic_mode);
3429     object_property_set_description(obj, "ic-mode",
3430                  "Specifies the interrupt controller mode (xics, xive, dual)");
3431 
3432     object_property_add_str(obj, "host-model",
3433         spapr_get_host_model, spapr_set_host_model);
3434     object_property_set_description(obj, "host-model",
3435         "Host model to advertise in guest device tree");
3436     object_property_add_str(obj, "host-serial",
3437         spapr_get_host_serial, spapr_set_host_serial);
3438     object_property_set_description(obj, "host-serial",
3439         "Host serial number to advertise in guest device tree");
3440 }
3441 
3442 static void spapr_machine_finalizefn(Object *obj)
3443 {
3444     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3445 
3446     g_free(spapr->kvm_type);
3447 }
3448 
3449 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3450 {
3451     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3452     PowerPCCPU *cpu = POWERPC_CPU(cs);
3453     CPUPPCState *env = &cpu->env;
3454 
3455     cpu_synchronize_state(cs);
3456     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3457     if (spapr->fwnmi_system_reset_addr != -1) {
3458         uint64_t rtas_addr, addr;
3459 
3460         /* get rtas addr from fdt */
3461         rtas_addr = spapr_get_rtas_addr();
3462         if (!rtas_addr) {
3463             qemu_system_guest_panicked(NULL);
3464             return;
3465         }
3466 
3467         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3468         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3469         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3470         env->gpr[3] = addr;
3471     }
3472     ppc_cpu_do_system_reset(cs);
3473     if (spapr->fwnmi_system_reset_addr != -1) {
3474         env->nip = spapr->fwnmi_system_reset_addr;
3475     }
3476 }
3477 
3478 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3479 {
3480     CPUState *cs;
3481 
3482     CPU_FOREACH(cs) {
3483         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3484     }
3485 }
3486 
3487 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3488                           void *fdt, int *fdt_start_offset, Error **errp)
3489 {
3490     uint64_t addr;
3491     uint32_t node;
3492 
3493     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3494     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3495                                     &error_abort);
3496     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3497                                              SPAPR_MEMORY_BLOCK_SIZE);
3498     return 0;
3499 }
3500 
3501 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3502                            bool dedicated_hp_event_source)
3503 {
3504     SpaprDrc *drc;
3505     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3506     int i;
3507     uint64_t addr = addr_start;
3508     bool hotplugged = spapr_drc_hotplugged(dev);
3509 
3510     for (i = 0; i < nr_lmbs; i++) {
3511         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3512                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3513         g_assert(drc);
3514 
3515         /*
3516          * memory_device_get_free_addr() provided a range of free addresses
3517          * that doesn't overlap with any existing mapping at pre-plug. The
3518          * corresponding LMB DRCs are thus assumed to be all attachable.
3519          */
3520         spapr_drc_attach(drc, dev);
3521         if (!hotplugged) {
3522             spapr_drc_reset(drc);
3523         }
3524         addr += SPAPR_MEMORY_BLOCK_SIZE;
3525     }
3526     /* send hotplug notification to the
3527      * guest only in case of hotplugged memory
3528      */
3529     if (hotplugged) {
3530         if (dedicated_hp_event_source) {
3531             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3532                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3533             g_assert(drc);
3534             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3535                                                    nr_lmbs,
3536                                                    spapr_drc_index(drc));
3537         } else {
3538             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3539                                            nr_lmbs);
3540         }
3541     }
3542 }
3543 
3544 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3545 {
3546     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3547     PCDIMMDevice *dimm = PC_DIMM(dev);
3548     uint64_t size, addr;
3549     int64_t slot;
3550     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3551 
3552     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3553 
3554     pc_dimm_plug(dimm, MACHINE(ms));
3555 
3556     if (!is_nvdimm) {
3557         addr = object_property_get_uint(OBJECT(dimm),
3558                                         PC_DIMM_ADDR_PROP, &error_abort);
3559         spapr_add_lmbs(dev, addr, size,
3560                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3561     } else {
3562         slot = object_property_get_int(OBJECT(dimm),
3563                                        PC_DIMM_SLOT_PROP, &error_abort);
3564         /* We should have valid slot number at this point */
3565         g_assert(slot >= 0);
3566         spapr_add_nvdimm(dev, slot);
3567     }
3568 }
3569 
3570 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3571                                   Error **errp)
3572 {
3573     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3574     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3575     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3576     PCDIMMDevice *dimm = PC_DIMM(dev);
3577     Error *local_err = NULL;
3578     uint64_t size;
3579     Object *memdev;
3580     hwaddr pagesize;
3581 
3582     if (!smc->dr_lmb_enabled) {
3583         error_setg(errp, "Memory hotplug not supported for this machine");
3584         return;
3585     }
3586 
3587     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3588     if (local_err) {
3589         error_propagate(errp, local_err);
3590         return;
3591     }
3592 
3593     if (is_nvdimm) {
3594         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3595             return;
3596         }
3597     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3598         error_setg(errp, "Hotplugged memory size must be a multiple of "
3599                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3600         return;
3601     }
3602 
3603     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3604                                       &error_abort);
3605     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3606     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3607         return;
3608     }
3609 
3610     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3611 }
3612 
3613 struct SpaprDimmState {
3614     PCDIMMDevice *dimm;
3615     uint32_t nr_lmbs;
3616     QTAILQ_ENTRY(SpaprDimmState) next;
3617 };
3618 
3619 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3620                                                        PCDIMMDevice *dimm)
3621 {
3622     SpaprDimmState *dimm_state = NULL;
3623 
3624     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3625         if (dimm_state->dimm == dimm) {
3626             break;
3627         }
3628     }
3629     return dimm_state;
3630 }
3631 
3632 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3633                                                       uint32_t nr_lmbs,
3634                                                       PCDIMMDevice *dimm)
3635 {
3636     SpaprDimmState *ds = NULL;
3637 
3638     /*
3639      * If this request is for a DIMM whose removal had failed earlier
3640      * (due to guest's refusal to remove the LMBs), we would have this
3641      * dimm already in the pending_dimm_unplugs list. In that
3642      * case don't add again.
3643      */
3644     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3645     if (!ds) {
3646         ds = g_new0(SpaprDimmState, 1);
3647         ds->nr_lmbs = nr_lmbs;
3648         ds->dimm = dimm;
3649         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3650     }
3651     return ds;
3652 }
3653 
3654 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3655                                               SpaprDimmState *dimm_state)
3656 {
3657     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3658     g_free(dimm_state);
3659 }
3660 
3661 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3662                                                         PCDIMMDevice *dimm)
3663 {
3664     SpaprDrc *drc;
3665     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3666                                                   &error_abort);
3667     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3668     uint32_t avail_lmbs = 0;
3669     uint64_t addr_start, addr;
3670     int i;
3671 
3672     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3673                                           &error_abort);
3674 
3675     addr = addr_start;
3676     for (i = 0; i < nr_lmbs; i++) {
3677         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3678                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3679         g_assert(drc);
3680         if (drc->dev) {
3681             avail_lmbs++;
3682         }
3683         addr += SPAPR_MEMORY_BLOCK_SIZE;
3684     }
3685 
3686     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3687 }
3688 
3689 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3690 {
3691     SpaprDimmState *ds;
3692     PCDIMMDevice *dimm;
3693     SpaprDrc *drc;
3694     uint32_t nr_lmbs;
3695     uint64_t size, addr_start, addr;
3696     g_autofree char *qapi_error = NULL;
3697     int i;
3698 
3699     if (!dev) {
3700         return;
3701     }
3702 
3703     dimm = PC_DIMM(dev);
3704     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3705 
3706     /*
3707      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3708      * unplug state, but one of its DRC is marked as unplug_requested.
3709      * This is bad and weird enough to g_assert() out.
3710      */
3711     g_assert(ds);
3712 
3713     spapr_pending_dimm_unplugs_remove(spapr, ds);
3714 
3715     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3716     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3717 
3718     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3719                                           &error_abort);
3720 
3721     addr = addr_start;
3722     for (i = 0; i < nr_lmbs; i++) {
3723         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3724                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3725         g_assert(drc);
3726 
3727         drc->unplug_requested = false;
3728         addr += SPAPR_MEMORY_BLOCK_SIZE;
3729     }
3730 
3731     /*
3732      * Tell QAPI that something happened and the memory
3733      * hotunplug wasn't successful. Keep sending
3734      * MEM_UNPLUG_ERROR even while sending
3735      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3736      * MEM_UNPLUG_ERROR is due.
3737      */
3738     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3739                                  "for device %s", dev->id);
3740 
3741     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3742 
3743     qapi_event_send_device_unplug_guest_error(dev->id,
3744                                               dev->canonical_path);
3745 }
3746 
3747 /* Callback to be called during DRC release. */
3748 void spapr_lmb_release(DeviceState *dev)
3749 {
3750     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3751     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3752     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3753 
3754     /* This information will get lost if a migration occurs
3755      * during the unplug process. In this case recover it. */
3756     if (ds == NULL) {
3757         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3758         g_assert(ds);
3759         /* The DRC being examined by the caller at least must be counted */
3760         g_assert(ds->nr_lmbs);
3761     }
3762 
3763     if (--ds->nr_lmbs) {
3764         return;
3765     }
3766 
3767     /*
3768      * Now that all the LMBs have been removed by the guest, call the
3769      * unplug handler chain. This can never fail.
3770      */
3771     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3772     object_unparent(OBJECT(dev));
3773 }
3774 
3775 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3776 {
3777     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3778     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3779 
3780     /* We really shouldn't get this far without anything to unplug */
3781     g_assert(ds);
3782 
3783     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3784     qdev_unrealize(dev);
3785     spapr_pending_dimm_unplugs_remove(spapr, ds);
3786 }
3787 
3788 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3789                                         DeviceState *dev, Error **errp)
3790 {
3791     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3792     PCDIMMDevice *dimm = PC_DIMM(dev);
3793     uint32_t nr_lmbs;
3794     uint64_t size, addr_start, addr;
3795     int i;
3796     SpaprDrc *drc;
3797 
3798     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3799         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3800         return;
3801     }
3802 
3803     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3804     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3805 
3806     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3807                                           &error_abort);
3808 
3809     /*
3810      * An existing pending dimm state for this DIMM means that there is an
3811      * unplug operation in progress, waiting for the spapr_lmb_release
3812      * callback to complete the job (BQL can't cover that far). In this case,
3813      * bail out to avoid detaching DRCs that were already released.
3814      */
3815     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3816         error_setg(errp, "Memory unplug already in progress for device %s",
3817                    dev->id);
3818         return;
3819     }
3820 
3821     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3822 
3823     addr = addr_start;
3824     for (i = 0; i < nr_lmbs; i++) {
3825         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3826                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3827         g_assert(drc);
3828 
3829         spapr_drc_unplug_request(drc);
3830         addr += SPAPR_MEMORY_BLOCK_SIZE;
3831     }
3832 
3833     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3834                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3835     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3836                                               nr_lmbs, spapr_drc_index(drc));
3837 }
3838 
3839 /* Callback to be called during DRC release. */
3840 void spapr_core_release(DeviceState *dev)
3841 {
3842     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3843 
3844     /* Call the unplug handler chain. This can never fail. */
3845     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3846     object_unparent(OBJECT(dev));
3847 }
3848 
3849 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3850 {
3851     MachineState *ms = MACHINE(hotplug_dev);
3852     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3853     CPUCore *cc = CPU_CORE(dev);
3854     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3855 
3856     if (smc->pre_2_10_has_unused_icps) {
3857         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3858         int i;
3859 
3860         for (i = 0; i < cc->nr_threads; i++) {
3861             CPUState *cs = CPU(sc->threads[i]);
3862 
3863             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3864         }
3865     }
3866 
3867     assert(core_slot);
3868     core_slot->cpu = NULL;
3869     qdev_unrealize(dev);
3870 }
3871 
3872 static
3873 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3874                                Error **errp)
3875 {
3876     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3877     int index;
3878     SpaprDrc *drc;
3879     CPUCore *cc = CPU_CORE(dev);
3880 
3881     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3882         error_setg(errp, "Unable to find CPU core with core-id: %d",
3883                    cc->core_id);
3884         return;
3885     }
3886     if (index == 0) {
3887         error_setg(errp, "Boot CPU core may not be unplugged");
3888         return;
3889     }
3890 
3891     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3892                           spapr_vcpu_id(spapr, cc->core_id));
3893     g_assert(drc);
3894 
3895     if (!spapr_drc_unplug_requested(drc)) {
3896         spapr_drc_unplug_request(drc);
3897     }
3898 
3899     /*
3900      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3901      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3902      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3903      * attempt (e.g. the kernel will refuse to remove the last online
3904      * CPU), we will never attempt it again because unplug_requested
3905      * will still be 'true' in that case.
3906      */
3907     spapr_hotplug_req_remove_by_index(drc);
3908 }
3909 
3910 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3911                            void *fdt, int *fdt_start_offset, Error **errp)
3912 {
3913     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3914     CPUState *cs = CPU(core->threads[0]);
3915     PowerPCCPU *cpu = POWERPC_CPU(cs);
3916     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3917     int id = spapr_get_vcpu_id(cpu);
3918     g_autofree char *nodename = NULL;
3919     int offset;
3920 
3921     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3922     offset = fdt_add_subnode(fdt, 0, nodename);
3923 
3924     spapr_dt_cpu(cs, fdt, offset, spapr);
3925 
3926     /*
3927      * spapr_dt_cpu() does not fill the 'name' property in the
3928      * CPU node. The function is called during boot process, before
3929      * and after CAS, and overwriting the 'name' property written
3930      * by SLOF is not allowed.
3931      *
3932      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3933      * CPUs more compatible with the coldplugged ones, which have
3934      * the 'name' property. Linux Kernel also relies on this
3935      * property to identify CPU nodes.
3936      */
3937     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3938 
3939     *fdt_start_offset = offset;
3940     return 0;
3941 }
3942 
3943 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3944 {
3945     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3946     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3947     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3948     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3949     CPUCore *cc = CPU_CORE(dev);
3950     CPUState *cs;
3951     SpaprDrc *drc;
3952     CPUArchId *core_slot;
3953     int index;
3954     bool hotplugged = spapr_drc_hotplugged(dev);
3955     int i;
3956 
3957     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3958     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3959 
3960     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3961                           spapr_vcpu_id(spapr, cc->core_id));
3962 
3963     g_assert(drc || !mc->has_hotpluggable_cpus);
3964 
3965     if (drc) {
3966         /*
3967          * spapr_core_pre_plug() already buys us this is a brand new
3968          * core being plugged into a free slot. Nothing should already
3969          * be attached to the corresponding DRC.
3970          */
3971         spapr_drc_attach(drc, dev);
3972 
3973         if (hotplugged) {
3974             /*
3975              * Send hotplug notification interrupt to the guest only
3976              * in case of hotplugged CPUs.
3977              */
3978             spapr_hotplug_req_add_by_index(drc);
3979         } else {
3980             spapr_drc_reset(drc);
3981         }
3982     }
3983 
3984     core_slot->cpu = OBJECT(dev);
3985 
3986     /*
3987      * Set compatibility mode to match the boot CPU, which was either set
3988      * by the machine reset code or by CAS. This really shouldn't fail at
3989      * this point.
3990      */
3991     if (hotplugged) {
3992         for (i = 0; i < cc->nr_threads; i++) {
3993             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3994                            &error_abort);
3995         }
3996     }
3997 
3998     if (smc->pre_2_10_has_unused_icps) {
3999         for (i = 0; i < cc->nr_threads; i++) {
4000             cs = CPU(core->threads[i]);
4001             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4002         }
4003     }
4004 }
4005 
4006 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4007                                 Error **errp)
4008 {
4009     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4010     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4011     CPUCore *cc = CPU_CORE(dev);
4012     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4013     const char *type = object_get_typename(OBJECT(dev));
4014     CPUArchId *core_slot;
4015     int index;
4016     unsigned int smp_threads = machine->smp.threads;
4017 
4018     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4019         error_setg(errp, "CPU hotplug not supported for this machine");
4020         return;
4021     }
4022 
4023     if (strcmp(base_core_type, type)) {
4024         error_setg(errp, "CPU core type should be %s", base_core_type);
4025         return;
4026     }
4027 
4028     if (cc->core_id % smp_threads) {
4029         error_setg(errp, "invalid core id %d", cc->core_id);
4030         return;
4031     }
4032 
4033     /*
4034      * In general we should have homogeneous threads-per-core, but old
4035      * (pre hotplug support) machine types allow the last core to have
4036      * reduced threads as a compatibility hack for when we allowed
4037      * total vcpus not a multiple of threads-per-core.
4038      */
4039     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4040         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4041                    smp_threads);
4042         return;
4043     }
4044 
4045     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4046     if (!core_slot) {
4047         error_setg(errp, "core id %d out of range", cc->core_id);
4048         return;
4049     }
4050 
4051     if (core_slot->cpu) {
4052         error_setg(errp, "core %d already populated", cc->core_id);
4053         return;
4054     }
4055 
4056     numa_cpu_pre_plug(core_slot, dev, errp);
4057 }
4058 
4059 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4060                           void *fdt, int *fdt_start_offset, Error **errp)
4061 {
4062     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4063     int intc_phandle;
4064 
4065     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4066     if (intc_phandle <= 0) {
4067         return -1;
4068     }
4069 
4070     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4071         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4072         return -1;
4073     }
4074 
4075     /* generally SLOF creates these, for hotplug it's up to QEMU */
4076     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4077 
4078     return 0;
4079 }
4080 
4081 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4082                                Error **errp)
4083 {
4084     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4085     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4086     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4087     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4088     SpaprDrc *drc;
4089 
4090     if (dev->hotplugged && !smc->dr_phb_enabled) {
4091         error_setg(errp, "PHB hotplug not supported for this machine");
4092         return false;
4093     }
4094 
4095     if (sphb->index == (uint32_t)-1) {
4096         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4097         return false;
4098     }
4099 
4100     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4101     if (drc && drc->dev) {
4102         error_setg(errp, "PHB %d already attached", sphb->index);
4103         return false;
4104     }
4105 
4106     /*
4107      * This will check that sphb->index doesn't exceed the maximum number of
4108      * PHBs for the current machine type.
4109      */
4110     return
4111         smc->phb_placement(spapr, sphb->index,
4112                            &sphb->buid, &sphb->io_win_addr,
4113                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4114                            windows_supported, sphb->dma_liobn,
4115                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4116                            errp);
4117 }
4118 
4119 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4120 {
4121     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4122     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4123     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4124     SpaprDrc *drc;
4125     bool hotplugged = spapr_drc_hotplugged(dev);
4126 
4127     if (!smc->dr_phb_enabled) {
4128         return;
4129     }
4130 
4131     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4132     /* hotplug hooks should check it's enabled before getting this far */
4133     assert(drc);
4134 
4135     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4136     spapr_drc_attach(drc, dev);
4137 
4138     if (hotplugged) {
4139         spapr_hotplug_req_add_by_index(drc);
4140     } else {
4141         spapr_drc_reset(drc);
4142     }
4143 }
4144 
4145 void spapr_phb_release(DeviceState *dev)
4146 {
4147     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4148 
4149     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4150     object_unparent(OBJECT(dev));
4151 }
4152 
4153 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4154 {
4155     qdev_unrealize(dev);
4156 }
4157 
4158 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4159                                      DeviceState *dev, Error **errp)
4160 {
4161     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4162     SpaprDrc *drc;
4163 
4164     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4165     assert(drc);
4166 
4167     if (!spapr_drc_unplug_requested(drc)) {
4168         spapr_drc_unplug_request(drc);
4169         spapr_hotplug_req_remove_by_index(drc);
4170     } else {
4171         error_setg(errp,
4172                    "PCI Host Bridge unplug already in progress for device %s",
4173                    dev->id);
4174     }
4175 }
4176 
4177 static
4178 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4179                               Error **errp)
4180 {
4181     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4182 
4183     if (spapr->tpm_proxy != NULL) {
4184         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4185         return false;
4186     }
4187 
4188     return true;
4189 }
4190 
4191 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4192 {
4193     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4194     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4195 
4196     /* Already checked in spapr_tpm_proxy_pre_plug() */
4197     g_assert(spapr->tpm_proxy == NULL);
4198 
4199     spapr->tpm_proxy = tpm_proxy;
4200 }
4201 
4202 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4203 {
4204     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4205 
4206     qdev_unrealize(dev);
4207     object_unparent(OBJECT(dev));
4208     spapr->tpm_proxy = NULL;
4209 }
4210 
4211 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4212                                       DeviceState *dev, Error **errp)
4213 {
4214     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4215         spapr_memory_plug(hotplug_dev, dev);
4216     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4217         spapr_core_plug(hotplug_dev, dev);
4218     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4219         spapr_phb_plug(hotplug_dev, dev);
4220     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4221         spapr_tpm_proxy_plug(hotplug_dev, dev);
4222     }
4223 }
4224 
4225 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4226                                         DeviceState *dev, Error **errp)
4227 {
4228     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4229         spapr_memory_unplug(hotplug_dev, dev);
4230     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4231         spapr_core_unplug(hotplug_dev, dev);
4232     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4233         spapr_phb_unplug(hotplug_dev, dev);
4234     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4235         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4236     }
4237 }
4238 
4239 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4240 {
4241     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4242         /*
4243          * CAS will process all pending unplug requests.
4244          *
4245          * HACK: a guest could theoretically have cleared all bits in OV5,
4246          * but none of the guests we care for do.
4247          */
4248         spapr_ovec_empty(spapr->ov5_cas);
4249 }
4250 
4251 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4252                                                 DeviceState *dev, Error **errp)
4253 {
4254     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4255     MachineClass *mc = MACHINE_GET_CLASS(sms);
4256     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4257 
4258     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4259         if (spapr_memory_hot_unplug_supported(sms)) {
4260             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4261         } else {
4262             error_setg(errp, "Memory hot unplug not supported for this guest");
4263         }
4264     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4265         if (!mc->has_hotpluggable_cpus) {
4266             error_setg(errp, "CPU hot unplug not supported on this machine");
4267             return;
4268         }
4269         spapr_core_unplug_request(hotplug_dev, dev, errp);
4270     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4271         if (!smc->dr_phb_enabled) {
4272             error_setg(errp, "PHB hot unplug not supported on this machine");
4273             return;
4274         }
4275         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4276     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4277         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4278     }
4279 }
4280 
4281 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4282                                           DeviceState *dev, Error **errp)
4283 {
4284     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4285         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4286     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4287         spapr_core_pre_plug(hotplug_dev, dev, errp);
4288     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4289         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4290     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4291         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4292     }
4293 }
4294 
4295 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4296                                                  DeviceState *dev)
4297 {
4298     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4299         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4300         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4301         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4302         return HOTPLUG_HANDLER(machine);
4303     }
4304     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4305         PCIDevice *pcidev = PCI_DEVICE(dev);
4306         PCIBus *root = pci_device_root_bus(pcidev);
4307         SpaprPhbState *phb =
4308             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4309                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4310 
4311         if (phb) {
4312             return HOTPLUG_HANDLER(phb);
4313         }
4314     }
4315     return NULL;
4316 }
4317 
4318 static CpuInstanceProperties
4319 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4320 {
4321     CPUArchId *core_slot;
4322     MachineClass *mc = MACHINE_GET_CLASS(machine);
4323 
4324     /* make sure possible_cpu are intialized */
4325     mc->possible_cpu_arch_ids(machine);
4326     /* get CPU core slot containing thread that matches cpu_index */
4327     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4328     assert(core_slot);
4329     return core_slot->props;
4330 }
4331 
4332 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4333 {
4334     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4335 }
4336 
4337 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4338 {
4339     int i;
4340     unsigned int smp_threads = machine->smp.threads;
4341     unsigned int smp_cpus = machine->smp.cpus;
4342     const char *core_type;
4343     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4344     MachineClass *mc = MACHINE_GET_CLASS(machine);
4345 
4346     if (!mc->has_hotpluggable_cpus) {
4347         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4348     }
4349     if (machine->possible_cpus) {
4350         assert(machine->possible_cpus->len == spapr_max_cores);
4351         return machine->possible_cpus;
4352     }
4353 
4354     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4355     if (!core_type) {
4356         error_report("Unable to find sPAPR CPU Core definition");
4357         exit(1);
4358     }
4359 
4360     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4361                              sizeof(CPUArchId) * spapr_max_cores);
4362     machine->possible_cpus->len = spapr_max_cores;
4363     for (i = 0; i < machine->possible_cpus->len; i++) {
4364         int core_id = i * smp_threads;
4365 
4366         machine->possible_cpus->cpus[i].type = core_type;
4367         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4368         machine->possible_cpus->cpus[i].arch_id = core_id;
4369         machine->possible_cpus->cpus[i].props.has_core_id = true;
4370         machine->possible_cpus->cpus[i].props.core_id = core_id;
4371     }
4372     return machine->possible_cpus;
4373 }
4374 
4375 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4376                                 uint64_t *buid, hwaddr *pio,
4377                                 hwaddr *mmio32, hwaddr *mmio64,
4378                                 unsigned n_dma, uint32_t *liobns,
4379                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4380 {
4381     /*
4382      * New-style PHB window placement.
4383      *
4384      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4385      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4386      * windows.
4387      *
4388      * Some guest kernels can't work with MMIO windows above 1<<46
4389      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4390      *
4391      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4392      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4393      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4394      * 1TiB 64-bit MMIO windows for each PHB.
4395      */
4396     const uint64_t base_buid = 0x800000020000000ULL;
4397     int i;
4398 
4399     /* Sanity check natural alignments */
4400     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4401     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4402     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4403     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4404     /* Sanity check bounds */
4405     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4406                       SPAPR_PCI_MEM32_WIN_SIZE);
4407     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4408                       SPAPR_PCI_MEM64_WIN_SIZE);
4409 
4410     if (index >= SPAPR_MAX_PHBS) {
4411         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4412                    SPAPR_MAX_PHBS - 1);
4413         return false;
4414     }
4415 
4416     *buid = base_buid + index;
4417     for (i = 0; i < n_dma; ++i) {
4418         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4419     }
4420 
4421     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4422     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4423     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4424 
4425     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4426     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4427     return true;
4428 }
4429 
4430 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4431 {
4432     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4433 
4434     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4435 }
4436 
4437 static void spapr_ics_resend(XICSFabric *dev)
4438 {
4439     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4440 
4441     ics_resend(spapr->ics);
4442 }
4443 
4444 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4445 {
4446     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4447 
4448     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4449 }
4450 
4451 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4452                                  Monitor *mon)
4453 {
4454     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4455 
4456     spapr_irq_print_info(spapr, mon);
4457     monitor_printf(mon, "irqchip: %s\n",
4458                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4459 }
4460 
4461 /*
4462  * This is a XIVE only operation
4463  */
4464 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4465                            uint8_t nvt_blk, uint32_t nvt_idx,
4466                            bool cam_ignore, uint8_t priority,
4467                            uint32_t logic_serv, XiveTCTXMatch *match)
4468 {
4469     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4470     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4471     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4472     int count;
4473 
4474     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4475                            priority, logic_serv, match);
4476     if (count < 0) {
4477         return count;
4478     }
4479 
4480     /*
4481      * When we implement the save and restore of the thread interrupt
4482      * contexts in the enter/exit CPU handlers of the machine and the
4483      * escalations in QEMU, we should be able to handle non dispatched
4484      * vCPUs.
4485      *
4486      * Until this is done, the sPAPR machine should find at least one
4487      * matching context always.
4488      */
4489     if (count == 0) {
4490         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4491                       nvt_blk, nvt_idx);
4492     }
4493 
4494     return count;
4495 }
4496 
4497 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4498 {
4499     return cpu->vcpu_id;
4500 }
4501 
4502 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4503 {
4504     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4505     MachineState *ms = MACHINE(spapr);
4506     int vcpu_id;
4507 
4508     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4509 
4510     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4511         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4512         error_append_hint(errp, "Adjust the number of cpus to %d "
4513                           "or try to raise the number of threads per core\n",
4514                           vcpu_id * ms->smp.threads / spapr->vsmt);
4515         return false;
4516     }
4517 
4518     cpu->vcpu_id = vcpu_id;
4519     return true;
4520 }
4521 
4522 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4523 {
4524     CPUState *cs;
4525 
4526     CPU_FOREACH(cs) {
4527         PowerPCCPU *cpu = POWERPC_CPU(cs);
4528 
4529         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4530             return cpu;
4531         }
4532     }
4533 
4534     return NULL;
4535 }
4536 
4537 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4538 {
4539     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4540 
4541     return spapr_cpu->in_nested;
4542 }
4543 
4544 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4545 {
4546     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4547 
4548     /* These are only called by TCG, KVM maintains dispatch state */
4549 
4550     spapr_cpu->prod = false;
4551     if (spapr_cpu->vpa_addr) {
4552         CPUState *cs = CPU(cpu);
4553         uint32_t dispatch;
4554 
4555         dispatch = ldl_be_phys(cs->as,
4556                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4557         dispatch++;
4558         if ((dispatch & 1) != 0) {
4559             qemu_log_mask(LOG_GUEST_ERROR,
4560                           "VPA: incorrect dispatch counter value for "
4561                           "dispatched partition %u, correcting.\n", dispatch);
4562             dispatch++;
4563         }
4564         stl_be_phys(cs->as,
4565                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4566     }
4567 }
4568 
4569 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4570 {
4571     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4572 
4573     if (spapr_cpu->vpa_addr) {
4574         CPUState *cs = CPU(cpu);
4575         uint32_t dispatch;
4576 
4577         dispatch = ldl_be_phys(cs->as,
4578                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4579         dispatch++;
4580         if ((dispatch & 1) != 1) {
4581             qemu_log_mask(LOG_GUEST_ERROR,
4582                           "VPA: incorrect dispatch counter value for "
4583                           "preempted partition %u, correcting.\n", dispatch);
4584             dispatch++;
4585         }
4586         stl_be_phys(cs->as,
4587                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4588     }
4589 }
4590 
4591 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4592 {
4593     MachineClass *mc = MACHINE_CLASS(oc);
4594     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4595     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4596     NMIClass *nc = NMI_CLASS(oc);
4597     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4598     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4599     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4600     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4601     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4602     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4603 
4604     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4605     mc->ignore_boot_device_suffixes = true;
4606 
4607     /*
4608      * We set up the default / latest behaviour here.  The class_init
4609      * functions for the specific versioned machine types can override
4610      * these details for backwards compatibility
4611      */
4612     mc->init = spapr_machine_init;
4613     mc->reset = spapr_machine_reset;
4614     mc->block_default_type = IF_SCSI;
4615 
4616     /*
4617      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4618      * should be limited by the host capability instead of hardcoded.
4619      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4620      * guests are welcome to have as many CPUs as the host are capable
4621      * of emulate.
4622      */
4623     mc->max_cpus = INT32_MAX;
4624 
4625     mc->no_parallel = 1;
4626     mc->default_boot_order = "";
4627     mc->default_ram_size = 512 * MiB;
4628     mc->default_ram_id = "ppc_spapr.ram";
4629     mc->default_display = "std";
4630     mc->kvm_type = spapr_kvm_type;
4631     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4632     mc->pci_allow_0_address = true;
4633     assert(!mc->get_hotplug_handler);
4634     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4635     hc->pre_plug = spapr_machine_device_pre_plug;
4636     hc->plug = spapr_machine_device_plug;
4637     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4638     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4639     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4640     hc->unplug_request = spapr_machine_device_unplug_request;
4641     hc->unplug = spapr_machine_device_unplug;
4642 
4643     smc->dr_lmb_enabled = true;
4644     smc->update_dt_enabled = true;
4645     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4646     mc->has_hotpluggable_cpus = true;
4647     mc->nvdimm_supported = true;
4648     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4649     fwc->get_dev_path = spapr_get_fw_dev_path;
4650     nc->nmi_monitor_handler = spapr_nmi;
4651     smc->phb_placement = spapr_phb_placement;
4652     vhc->cpu_in_nested = spapr_cpu_in_nested;
4653     vhc->deliver_hv_excp = spapr_exit_nested;
4654     vhc->hypercall = emulate_spapr_hypercall;
4655     vhc->hpt_mask = spapr_hpt_mask;
4656     vhc->map_hptes = spapr_map_hptes;
4657     vhc->unmap_hptes = spapr_unmap_hptes;
4658     vhc->hpte_set_c = spapr_hpte_set_c;
4659     vhc->hpte_set_r = spapr_hpte_set_r;
4660     vhc->get_pate = spapr_get_pate;
4661     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4662     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4663     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4664     xic->ics_get = spapr_ics_get;
4665     xic->ics_resend = spapr_ics_resend;
4666     xic->icp_get = spapr_icp_get;
4667     ispc->print_info = spapr_pic_print_info;
4668     /* Force NUMA node memory size to be a multiple of
4669      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4670      * in which LMBs are represented and hot-added
4671      */
4672     mc->numa_mem_align_shift = 28;
4673     mc->auto_enable_numa = true;
4674 
4675     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4676     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4677     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4678     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4679     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4680     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4681     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4682     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4683     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4684     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4685     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4686     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4687 
4688     /*
4689      * This cap specifies whether the AIL 3 mode for
4690      * H_SET_RESOURCE is supported. The default is modified
4691      * by default_caps_with_cpu().
4692      */
4693     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4694     spapr_caps_add_properties(smc);
4695     smc->irq = &spapr_irq_dual;
4696     smc->dr_phb_enabled = true;
4697     smc->linux_pci_probe = true;
4698     smc->smp_threads_vsmt = true;
4699     smc->nr_xirqs = SPAPR_NR_XIRQS;
4700     xfc->match_nvt = spapr_match_nvt;
4701     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4702     vmc->quiesce = spapr_vof_quiesce;
4703     vmc->setprop = spapr_vof_setprop;
4704 }
4705 
4706 static const TypeInfo spapr_machine_info = {
4707     .name          = TYPE_SPAPR_MACHINE,
4708     .parent        = TYPE_MACHINE,
4709     .abstract      = true,
4710     .instance_size = sizeof(SpaprMachineState),
4711     .instance_init = spapr_instance_init,
4712     .instance_finalize = spapr_machine_finalizefn,
4713     .class_size    = sizeof(SpaprMachineClass),
4714     .class_init    = spapr_machine_class_init,
4715     .interfaces = (InterfaceInfo[]) {
4716         { TYPE_FW_PATH_PROVIDER },
4717         { TYPE_NMI },
4718         { TYPE_HOTPLUG_HANDLER },
4719         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4720         { TYPE_XICS_FABRIC },
4721         { TYPE_INTERRUPT_STATS_PROVIDER },
4722         { TYPE_XIVE_FABRIC },
4723         { TYPE_VOF_MACHINE_IF },
4724         { }
4725     },
4726 };
4727 
4728 static void spapr_machine_latest_class_options(MachineClass *mc)
4729 {
4730     mc->alias = "pseries";
4731     mc->is_default = true;
4732 }
4733 
4734 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4735     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4736                                                     void *data)      \
4737     {                                                                \
4738         MachineClass *mc = MACHINE_CLASS(oc);                        \
4739         spapr_machine_##suffix##_class_options(mc);                  \
4740         if (latest) {                                                \
4741             spapr_machine_latest_class_options(mc);                  \
4742         }                                                            \
4743     }                                                                \
4744     static const TypeInfo spapr_machine_##suffix##_info = {          \
4745         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4746         .parent = TYPE_SPAPR_MACHINE,                                \
4747         .class_init = spapr_machine_##suffix##_class_init,           \
4748     };                                                               \
4749     static void spapr_machine_register_##suffix(void)                \
4750     {                                                                \
4751         type_register(&spapr_machine_##suffix##_info);               \
4752     }                                                                \
4753     type_init(spapr_machine_register_##suffix)
4754 
4755 /*
4756  * pseries-8.1
4757  */
4758 static void spapr_machine_8_1_class_options(MachineClass *mc)
4759 {
4760     /* Defaults for the latest behaviour inherited from the base class */
4761 }
4762 
4763 DEFINE_SPAPR_MACHINE(8_1, "8.1", true);
4764 
4765 /*
4766  * pseries-8.0
4767  */
4768 static void spapr_machine_8_0_class_options(MachineClass *mc)
4769 {
4770     spapr_machine_8_1_class_options(mc);
4771     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4772 }
4773 
4774 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4775 
4776 /*
4777  * pseries-7.2
4778  */
4779 static void spapr_machine_7_2_class_options(MachineClass *mc)
4780 {
4781     spapr_machine_8_0_class_options(mc);
4782     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4783 }
4784 
4785 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4786 
4787 /*
4788  * pseries-7.1
4789  */
4790 static void spapr_machine_7_1_class_options(MachineClass *mc)
4791 {
4792     spapr_machine_7_2_class_options(mc);
4793     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4794 }
4795 
4796 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4797 
4798 /*
4799  * pseries-7.0
4800  */
4801 static void spapr_machine_7_0_class_options(MachineClass *mc)
4802 {
4803     spapr_machine_7_1_class_options(mc);
4804     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4805 }
4806 
4807 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4808 
4809 /*
4810  * pseries-6.2
4811  */
4812 static void spapr_machine_6_2_class_options(MachineClass *mc)
4813 {
4814     spapr_machine_7_0_class_options(mc);
4815     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4816 }
4817 
4818 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4819 
4820 /*
4821  * pseries-6.1
4822  */
4823 static void spapr_machine_6_1_class_options(MachineClass *mc)
4824 {
4825     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4826 
4827     spapr_machine_6_2_class_options(mc);
4828     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4829     smc->pre_6_2_numa_affinity = true;
4830     mc->smp_props.prefer_sockets = true;
4831 }
4832 
4833 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4834 
4835 /*
4836  * pseries-6.0
4837  */
4838 static void spapr_machine_6_0_class_options(MachineClass *mc)
4839 {
4840     spapr_machine_6_1_class_options(mc);
4841     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4842 }
4843 
4844 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4845 
4846 /*
4847  * pseries-5.2
4848  */
4849 static void spapr_machine_5_2_class_options(MachineClass *mc)
4850 {
4851     spapr_machine_6_0_class_options(mc);
4852     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4853 }
4854 
4855 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4856 
4857 /*
4858  * pseries-5.1
4859  */
4860 static void spapr_machine_5_1_class_options(MachineClass *mc)
4861 {
4862     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4863 
4864     spapr_machine_5_2_class_options(mc);
4865     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4866     smc->pre_5_2_numa_associativity = true;
4867 }
4868 
4869 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4870 
4871 /*
4872  * pseries-5.0
4873  */
4874 static void spapr_machine_5_0_class_options(MachineClass *mc)
4875 {
4876     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4877     static GlobalProperty compat[] = {
4878         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4879     };
4880 
4881     spapr_machine_5_1_class_options(mc);
4882     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4883     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4884     mc->numa_mem_supported = true;
4885     smc->pre_5_1_assoc_refpoints = true;
4886 }
4887 
4888 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4889 
4890 /*
4891  * pseries-4.2
4892  */
4893 static void spapr_machine_4_2_class_options(MachineClass *mc)
4894 {
4895     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4896 
4897     spapr_machine_5_0_class_options(mc);
4898     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4899     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4900     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4901     smc->rma_limit = 16 * GiB;
4902     mc->nvdimm_supported = false;
4903 }
4904 
4905 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4906 
4907 /*
4908  * pseries-4.1
4909  */
4910 static void spapr_machine_4_1_class_options(MachineClass *mc)
4911 {
4912     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4913     static GlobalProperty compat[] = {
4914         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4915         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4916     };
4917 
4918     spapr_machine_4_2_class_options(mc);
4919     smc->linux_pci_probe = false;
4920     smc->smp_threads_vsmt = false;
4921     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4922     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4923 }
4924 
4925 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4926 
4927 /*
4928  * pseries-4.0
4929  */
4930 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4931                               uint64_t *buid, hwaddr *pio,
4932                               hwaddr *mmio32, hwaddr *mmio64,
4933                               unsigned n_dma, uint32_t *liobns,
4934                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4935 {
4936     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4937                              liobns, nv2gpa, nv2atsd, errp)) {
4938         return false;
4939     }
4940 
4941     *nv2gpa = 0;
4942     *nv2atsd = 0;
4943     return true;
4944 }
4945 static void spapr_machine_4_0_class_options(MachineClass *mc)
4946 {
4947     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4948 
4949     spapr_machine_4_1_class_options(mc);
4950     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4951     smc->phb_placement = phb_placement_4_0;
4952     smc->irq = &spapr_irq_xics;
4953     smc->pre_4_1_migration = true;
4954 }
4955 
4956 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4957 
4958 /*
4959  * pseries-3.1
4960  */
4961 static void spapr_machine_3_1_class_options(MachineClass *mc)
4962 {
4963     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4964 
4965     spapr_machine_4_0_class_options(mc);
4966     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4967 
4968     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4969     smc->update_dt_enabled = false;
4970     smc->dr_phb_enabled = false;
4971     smc->broken_host_serial_model = true;
4972     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4973     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4974     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4975     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4976 }
4977 
4978 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4979 
4980 /*
4981  * pseries-3.0
4982  */
4983 
4984 static void spapr_machine_3_0_class_options(MachineClass *mc)
4985 {
4986     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4987 
4988     spapr_machine_3_1_class_options(mc);
4989     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4990 
4991     smc->legacy_irq_allocation = true;
4992     smc->nr_xirqs = 0x400;
4993     smc->irq = &spapr_irq_xics_legacy;
4994 }
4995 
4996 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4997 
4998 /*
4999  * pseries-2.12
5000  */
5001 static void spapr_machine_2_12_class_options(MachineClass *mc)
5002 {
5003     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5004     static GlobalProperty compat[] = {
5005         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5006         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5007     };
5008 
5009     spapr_machine_3_0_class_options(mc);
5010     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5011     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5012 
5013     /* We depend on kvm_enabled() to choose a default value for the
5014      * hpt-max-page-size capability. Of course we can't do it here
5015      * because this is too early and the HW accelerator isn't initialzed
5016      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5017      */
5018     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5019 }
5020 
5021 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5022 
5023 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5024 {
5025     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5026 
5027     spapr_machine_2_12_class_options(mc);
5028     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5029     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5030     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5031 }
5032 
5033 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5034 
5035 /*
5036  * pseries-2.11
5037  */
5038 
5039 static void spapr_machine_2_11_class_options(MachineClass *mc)
5040 {
5041     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5042 
5043     spapr_machine_2_12_class_options(mc);
5044     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5045     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5046 }
5047 
5048 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5049 
5050 /*
5051  * pseries-2.10
5052  */
5053 
5054 static void spapr_machine_2_10_class_options(MachineClass *mc)
5055 {
5056     spapr_machine_2_11_class_options(mc);
5057     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5058 }
5059 
5060 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5061 
5062 /*
5063  * pseries-2.9
5064  */
5065 
5066 static void spapr_machine_2_9_class_options(MachineClass *mc)
5067 {
5068     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5069     static GlobalProperty compat[] = {
5070         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5071     };
5072 
5073     spapr_machine_2_10_class_options(mc);
5074     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5075     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5076     smc->pre_2_10_has_unused_icps = true;
5077     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5078 }
5079 
5080 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5081 
5082 /*
5083  * pseries-2.8
5084  */
5085 
5086 static void spapr_machine_2_8_class_options(MachineClass *mc)
5087 {
5088     static GlobalProperty compat[] = {
5089         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5090     };
5091 
5092     spapr_machine_2_9_class_options(mc);
5093     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5094     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5095     mc->numa_mem_align_shift = 23;
5096 }
5097 
5098 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5099 
5100 /*
5101  * pseries-2.7
5102  */
5103 
5104 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5105                               uint64_t *buid, hwaddr *pio,
5106                               hwaddr *mmio32, hwaddr *mmio64,
5107                               unsigned n_dma, uint32_t *liobns,
5108                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5109 {
5110     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5111     const uint64_t base_buid = 0x800000020000000ULL;
5112     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5113     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5114     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5115     const uint32_t max_index = 255;
5116     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5117 
5118     uint64_t ram_top = MACHINE(spapr)->ram_size;
5119     hwaddr phb0_base, phb_base;
5120     int i;
5121 
5122     /* Do we have device memory? */
5123     if (MACHINE(spapr)->device_memory) {
5124         /* Can't just use maxram_size, because there may be an
5125          * alignment gap between normal and device memory regions
5126          */
5127         ram_top = MACHINE(spapr)->device_memory->base +
5128             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5129     }
5130 
5131     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5132 
5133     if (index > max_index) {
5134         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5135                    max_index);
5136         return false;
5137     }
5138 
5139     *buid = base_buid + index;
5140     for (i = 0; i < n_dma; ++i) {
5141         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5142     }
5143 
5144     phb_base = phb0_base + index * phb_spacing;
5145     *pio = phb_base + pio_offset;
5146     *mmio32 = phb_base + mmio_offset;
5147     /*
5148      * We don't set the 64-bit MMIO window, relying on the PHB's
5149      * fallback behaviour of automatically splitting a large "32-bit"
5150      * window into contiguous 32-bit and 64-bit windows
5151      */
5152 
5153     *nv2gpa = 0;
5154     *nv2atsd = 0;
5155     return true;
5156 }
5157 
5158 static void spapr_machine_2_7_class_options(MachineClass *mc)
5159 {
5160     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5161     static GlobalProperty compat[] = {
5162         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5163         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5164         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5165         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5166     };
5167 
5168     spapr_machine_2_8_class_options(mc);
5169     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5170     mc->default_machine_opts = "modern-hotplug-events=off";
5171     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5172     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5173     smc->phb_placement = phb_placement_2_7;
5174 }
5175 
5176 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5177 
5178 /*
5179  * pseries-2.6
5180  */
5181 
5182 static void spapr_machine_2_6_class_options(MachineClass *mc)
5183 {
5184     static GlobalProperty compat[] = {
5185         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5186     };
5187 
5188     spapr_machine_2_7_class_options(mc);
5189     mc->has_hotpluggable_cpus = false;
5190     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5191     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5192 }
5193 
5194 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5195 
5196 /*
5197  * pseries-2.5
5198  */
5199 
5200 static void spapr_machine_2_5_class_options(MachineClass *mc)
5201 {
5202     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5203     static GlobalProperty compat[] = {
5204         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5205     };
5206 
5207     spapr_machine_2_6_class_options(mc);
5208     smc->use_ohci_by_default = true;
5209     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5210     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5211 }
5212 
5213 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5214 
5215 /*
5216  * pseries-2.4
5217  */
5218 
5219 static void spapr_machine_2_4_class_options(MachineClass *mc)
5220 {
5221     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5222 
5223     spapr_machine_2_5_class_options(mc);
5224     smc->dr_lmb_enabled = false;
5225     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5226 }
5227 
5228 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5229 
5230 /*
5231  * pseries-2.3
5232  */
5233 
5234 static void spapr_machine_2_3_class_options(MachineClass *mc)
5235 {
5236     static GlobalProperty compat[] = {
5237         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5238     };
5239     spapr_machine_2_4_class_options(mc);
5240     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5241     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5242 }
5243 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5244 
5245 /*
5246  * pseries-2.2
5247  */
5248 
5249 static void spapr_machine_2_2_class_options(MachineClass *mc)
5250 {
5251     static GlobalProperty compat[] = {
5252         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5253     };
5254 
5255     spapr_machine_2_3_class_options(mc);
5256     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5257     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5258     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5259 }
5260 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5261 
5262 /*
5263  * pseries-2.1
5264  */
5265 
5266 static void spapr_machine_2_1_class_options(MachineClass *mc)
5267 {
5268     spapr_machine_2_2_class_options(mc);
5269     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5270 }
5271 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5272 
5273 static void spapr_machine_register_types(void)
5274 {
5275     type_register_static(&spapr_machine_info);
5276 }
5277 
5278 type_init(spapr_machine_register_types)
5279