1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_vio.h" 65 #include "hw/qdev-properties.h" 66 #include "hw/pci-host/spapr.h" 67 #include "hw/pci/msi.h" 68 69 #include "hw/pci/pci.h" 70 #include "hw/scsi/scsi.h" 71 #include "hw/virtio/virtio-scsi.h" 72 #include "hw/virtio/vhost-scsi-common.h" 73 74 #include "exec/ram_addr.h" 75 #include "hw/usb.h" 76 #include "qemu/config-file.h" 77 #include "qemu/error-report.h" 78 #include "trace.h" 79 #include "hw/nmi.h" 80 #include "hw/intc/intc.h" 81 82 #include "hw/ppc/spapr_cpu_core.h" 83 #include "hw/mem/memory-device.h" 84 #include "hw/ppc/spapr_tpm_proxy.h" 85 #include "hw/ppc/spapr_nvdimm.h" 86 #include "hw/ppc/spapr_numa.h" 87 #include "hw/ppc/pef.h" 88 89 #include "monitor/monitor.h" 90 91 #include <libfdt.h> 92 93 /* SLOF memory layout: 94 * 95 * SLOF raw image loaded at 0, copies its romfs right below the flat 96 * device-tree, then position SLOF itself 31M below that 97 * 98 * So we set FW_OVERHEAD to 40MB which should account for all of that 99 * and more 100 * 101 * We load our kernel at 4M, leaving space for SLOF initial image 102 */ 103 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 104 #define FW_MAX_SIZE 0x400000 105 #define FW_FILE_NAME "slof.bin" 106 #define FW_FILE_NAME_VOF "vof.bin" 107 #define FW_OVERHEAD 0x2800000 108 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 109 110 #define MIN_RMA_SLOF (128 * MiB) 111 112 #define PHANDLE_INTC 0x00001111 113 114 /* These two functions implement the VCPU id numbering: one to compute them 115 * all and one to identify thread 0 of a VCORE. Any change to the first one 116 * is likely to have an impact on the second one, so let's keep them close. 117 */ 118 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 119 { 120 MachineState *ms = MACHINE(spapr); 121 unsigned int smp_threads = ms->smp.threads; 122 123 assert(spapr->vsmt); 124 return 125 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 126 } 127 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 128 PowerPCCPU *cpu) 129 { 130 assert(spapr->vsmt); 131 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 132 } 133 134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 135 { 136 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 137 * and newer QEMUs don't even have them. In both cases, we don't want 138 * to send anything on the wire. 139 */ 140 return false; 141 } 142 143 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 144 .name = "icp/server", 145 .version_id = 1, 146 .minimum_version_id = 1, 147 .needed = pre_2_10_vmstate_dummy_icp_needed, 148 .fields = (VMStateField[]) { 149 VMSTATE_UNUSED(4), /* uint32_t xirr */ 150 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 151 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 152 VMSTATE_END_OF_LIST() 153 }, 154 }; 155 156 static void pre_2_10_vmstate_register_dummy_icp(int i) 157 { 158 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 163 { 164 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 165 (void *)(uintptr_t) i); 166 } 167 168 int spapr_max_server_number(SpaprMachineState *spapr) 169 { 170 MachineState *ms = MACHINE(spapr); 171 172 assert(spapr->vsmt); 173 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 174 } 175 176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 177 int smt_threads) 178 { 179 int i, ret = 0; 180 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 181 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 182 int index = spapr_get_vcpu_id(cpu); 183 184 if (cpu->compat_pvr) { 185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 186 if (ret < 0) { 187 return ret; 188 } 189 } 190 191 /* Build interrupt servers and gservers properties */ 192 for (i = 0; i < smt_threads; i++) { 193 servers_prop[i] = cpu_to_be32(index + i); 194 /* Hack, direct the group queues back to cpu 0 */ 195 gservers_prop[i*2] = cpu_to_be32(index + i); 196 gservers_prop[i*2 + 1] = 0; 197 } 198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 199 servers_prop, sizeof(*servers_prop) * smt_threads); 200 if (ret < 0) { 201 return ret; 202 } 203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 204 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 205 206 return ret; 207 } 208 209 static void spapr_dt_pa_features(SpaprMachineState *spapr, 210 PowerPCCPU *cpu, 211 void *fdt, int offset) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static hwaddr spapr_node0_size(MachineState *machine) 288 { 289 if (machine->numa_state->num_nodes) { 290 int i; 291 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 292 if (machine->numa_state->nodes[i].node_mem) { 293 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 294 machine->ram_size); 295 } 296 } 297 } 298 return machine->ram_size; 299 } 300 301 static void add_str(GString *s, const gchar *s1) 302 { 303 g_string_append_len(s, s1, strlen(s1) + 1); 304 } 305 306 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 307 hwaddr start, hwaddr size) 308 { 309 char mem_name[32]; 310 uint64_t mem_reg_property[2]; 311 int off; 312 313 mem_reg_property[0] = cpu_to_be64(start); 314 mem_reg_property[1] = cpu_to_be64(size); 315 316 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 317 off = fdt_add_subnode(fdt, 0, mem_name); 318 _FDT(off); 319 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 320 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 321 sizeof(mem_reg_property)))); 322 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 323 return off; 324 } 325 326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 327 { 328 MemoryDeviceInfoList *info; 329 330 for (info = list; info; info = info->next) { 331 MemoryDeviceInfo *value = info->value; 332 333 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 334 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 335 336 if (addr >= pcdimm_info->addr && 337 addr < (pcdimm_info->addr + pcdimm_info->size)) { 338 return pcdimm_info->node; 339 } 340 } 341 } 342 343 return -1; 344 } 345 346 struct sPAPRDrconfCellV2 { 347 uint32_t seq_lmbs; 348 uint64_t base_addr; 349 uint32_t drc_index; 350 uint32_t aa_index; 351 uint32_t flags; 352 } QEMU_PACKED; 353 354 typedef struct DrconfCellQueue { 355 struct sPAPRDrconfCellV2 cell; 356 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 357 } DrconfCellQueue; 358 359 static DrconfCellQueue * 360 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 361 uint32_t drc_index, uint32_t aa_index, 362 uint32_t flags) 363 { 364 DrconfCellQueue *elem; 365 366 elem = g_malloc0(sizeof(*elem)); 367 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 368 elem->cell.base_addr = cpu_to_be64(base_addr); 369 elem->cell.drc_index = cpu_to_be32(drc_index); 370 elem->cell.aa_index = cpu_to_be32(aa_index); 371 elem->cell.flags = cpu_to_be32(flags); 372 373 return elem; 374 } 375 376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 377 int offset, MemoryDeviceInfoList *dimms) 378 { 379 MachineState *machine = MACHINE(spapr); 380 uint8_t *int_buf, *cur_index; 381 int ret; 382 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 383 uint64_t addr, cur_addr, size; 384 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 385 uint64_t mem_end = machine->device_memory->base + 386 memory_region_size(&machine->device_memory->mr); 387 uint32_t node, buf_len, nr_entries = 0; 388 SpaprDrc *drc; 389 DrconfCellQueue *elem, *next; 390 MemoryDeviceInfoList *info; 391 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 392 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 393 394 /* Entry to cover RAM and the gap area */ 395 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 396 SPAPR_LMB_FLAGS_RESERVED | 397 SPAPR_LMB_FLAGS_DRC_INVALID); 398 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 399 nr_entries++; 400 401 cur_addr = machine->device_memory->base; 402 for (info = dimms; info; info = info->next) { 403 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 404 405 addr = di->addr; 406 size = di->size; 407 node = di->node; 408 409 /* 410 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 411 * area is marked hotpluggable in the next iteration for the bigger 412 * chunk including the NVDIMM occupied area. 413 */ 414 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 415 continue; 416 417 /* Entry for hot-pluggable area */ 418 if (cur_addr < addr) { 419 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 420 g_assert(drc); 421 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 422 cur_addr, spapr_drc_index(drc), -1, 0); 423 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 424 nr_entries++; 425 } 426 427 /* Entry for DIMM */ 428 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 429 g_assert(drc); 430 elem = spapr_get_drconf_cell(size / lmb_size, addr, 431 spapr_drc_index(drc), node, 432 (SPAPR_LMB_FLAGS_ASSIGNED | 433 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 434 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 435 nr_entries++; 436 cur_addr = addr + size; 437 } 438 439 /* Entry for remaining hotpluggable area */ 440 if (cur_addr < mem_end) { 441 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 442 g_assert(drc); 443 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 444 cur_addr, spapr_drc_index(drc), -1, 0); 445 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 446 nr_entries++; 447 } 448 449 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 450 int_buf = cur_index = g_malloc0(buf_len); 451 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 452 cur_index += sizeof(nr_entries); 453 454 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 455 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 456 cur_index += sizeof(elem->cell); 457 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 458 g_free(elem); 459 } 460 461 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 462 g_free(int_buf); 463 if (ret < 0) { 464 return -1; 465 } 466 return 0; 467 } 468 469 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 470 int offset, MemoryDeviceInfoList *dimms) 471 { 472 MachineState *machine = MACHINE(spapr); 473 int i, ret; 474 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 475 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 476 uint32_t nr_lmbs = (machine->device_memory->base + 477 memory_region_size(&machine->device_memory->mr)) / 478 lmb_size; 479 uint32_t *int_buf, *cur_index, buf_len; 480 481 /* 482 * Allocate enough buffer size to fit in ibm,dynamic-memory 483 */ 484 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 485 cur_index = int_buf = g_malloc0(buf_len); 486 int_buf[0] = cpu_to_be32(nr_lmbs); 487 cur_index++; 488 for (i = 0; i < nr_lmbs; i++) { 489 uint64_t addr = i * lmb_size; 490 uint32_t *dynamic_memory = cur_index; 491 492 if (i >= device_lmb_start) { 493 SpaprDrc *drc; 494 495 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 496 g_assert(drc); 497 498 dynamic_memory[0] = cpu_to_be32(addr >> 32); 499 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 500 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 501 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 502 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 503 if (memory_region_present(get_system_memory(), addr)) { 504 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 505 } else { 506 dynamic_memory[5] = cpu_to_be32(0); 507 } 508 } else { 509 /* 510 * LMB information for RMA, boot time RAM and gap b/n RAM and 511 * device memory region -- all these are marked as reserved 512 * and as having no valid DRC. 513 */ 514 dynamic_memory[0] = cpu_to_be32(addr >> 32); 515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 516 dynamic_memory[2] = cpu_to_be32(0); 517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 518 dynamic_memory[4] = cpu_to_be32(-1); 519 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 520 SPAPR_LMB_FLAGS_DRC_INVALID); 521 } 522 523 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 524 } 525 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 526 g_free(int_buf); 527 if (ret < 0) { 528 return -1; 529 } 530 return 0; 531 } 532 533 /* 534 * Adds ibm,dynamic-reconfiguration-memory node. 535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 536 * of this device tree node. 537 */ 538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 539 void *fdt) 540 { 541 MachineState *machine = MACHINE(spapr); 542 int ret, offset; 543 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 544 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 545 cpu_to_be32(lmb_size & 0xffffffff)}; 546 MemoryDeviceInfoList *dimms = NULL; 547 548 /* 549 * Don't create the node if there is no device memory 550 */ 551 if (machine->ram_size == machine->maxram_size) { 552 return 0; 553 } 554 555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 556 557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 558 sizeof(prop_lmb_size)); 559 if (ret < 0) { 560 return ret; 561 } 562 563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 564 if (ret < 0) { 565 return ret; 566 } 567 568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 569 if (ret < 0) { 570 return ret; 571 } 572 573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 574 dimms = qmp_memory_device_list(); 575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 577 } else { 578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 579 } 580 qapi_free_MemoryDeviceInfoList(dimms); 581 582 if (ret < 0) { 583 return ret; 584 } 585 586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 587 588 return ret; 589 } 590 591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 592 { 593 MachineState *machine = MACHINE(spapr); 594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 595 hwaddr mem_start, node_size; 596 int i, nb_nodes = machine->numa_state->num_nodes; 597 NodeInfo *nodes = machine->numa_state->nodes; 598 599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 600 if (!nodes[i].node_mem) { 601 continue; 602 } 603 if (mem_start >= machine->ram_size) { 604 node_size = 0; 605 } else { 606 node_size = nodes[i].node_mem; 607 if (node_size > machine->ram_size - mem_start) { 608 node_size = machine->ram_size - mem_start; 609 } 610 } 611 if (!mem_start) { 612 /* spapr_machine_init() checks for rma_size <= node0_size 613 * already */ 614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 615 mem_start += spapr->rma_size; 616 node_size -= spapr->rma_size; 617 } 618 for ( ; node_size; ) { 619 hwaddr sizetmp = pow2floor(node_size); 620 621 /* mem_start != 0 here */ 622 if (ctzl(mem_start) < ctzl(sizetmp)) { 623 sizetmp = 1ULL << ctzl(mem_start); 624 } 625 626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 627 node_size -= sizetmp; 628 mem_start += sizetmp; 629 } 630 } 631 632 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 634 int ret; 635 636 g_assert(smc->dr_lmb_enabled); 637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 638 if (ret) { 639 return ret; 640 } 641 } 642 643 return 0; 644 } 645 646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 647 SpaprMachineState *spapr) 648 { 649 MachineState *ms = MACHINE(spapr); 650 PowerPCCPU *cpu = POWERPC_CPU(cs); 651 CPUPPCState *env = &cpu->env; 652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 653 int index = spapr_get_vcpu_id(cpu); 654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 655 0xffffffff, 0xffffffff}; 656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 657 : SPAPR_TIMEBASE_FREQ; 658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 659 uint32_t page_sizes_prop[64]; 660 size_t page_sizes_prop_size; 661 unsigned int smp_threads = ms->smp.threads; 662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 665 SpaprDrc *drc; 666 int drc_index; 667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 668 int i; 669 670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 671 if (drc) { 672 drc_index = spapr_drc_index(drc); 673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 674 } 675 676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 678 679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 681 env->dcache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 685 env->icache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 687 env->icache_line_size))); 688 689 if (pcc->l1_dcache_size) { 690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 691 pcc->l1_dcache_size))); 692 } else { 693 warn_report("Unknown L1 dcache size for cpu"); 694 } 695 if (pcc->l1_icache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 697 pcc->l1_icache_size))); 698 } else { 699 warn_report("Unknown L1 icache size for cpu"); 700 } 701 702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 708 709 if (ppc_has_spr(cpu, SPR_PURR)) { 710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 711 } 712 if (ppc_has_spr(cpu, SPR_PURR)) { 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 714 } 715 716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 718 segs, sizeof(segs)))); 719 } 720 721 /* Advertise VSX (vector extensions) if available 722 * 1 == VMX / Altivec available 723 * 2 == VSX available 724 * 725 * Only CPUs for which we create core types in spapr_cpu_core.c 726 * are possible, and all of those have VMX */ 727 if (env->insns_flags & PPC_ALTIVEC) { 728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 730 } else { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 732 } 733 } 734 735 /* Advertise DFP (Decimal Floating Point) if available 736 * 0 / no property == no DFP 737 * 1 == DFP available */ 738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 740 } 741 742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 743 sizeof(page_sizes_prop)); 744 if (page_sizes_prop_size) { 745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 746 page_sizes_prop, page_sizes_prop_size))); 747 } 748 749 spapr_dt_pa_features(spapr, cpu, fdt, offset); 750 751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 752 cs->cpu_index / vcpus_per_socket))); 753 754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 755 pft_size_prop, sizeof(pft_size_prop)))); 756 757 if (ms->numa_state->num_nodes > 1) { 758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 759 } 760 761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 762 763 if (pcc->radix_page_info) { 764 for (i = 0; i < pcc->radix_page_info->count; i++) { 765 radix_AP_encodings[i] = 766 cpu_to_be32(pcc->radix_page_info->entries[i]); 767 } 768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 769 radix_AP_encodings, 770 pcc->radix_page_info->count * 771 sizeof(radix_AP_encodings[0])))); 772 } 773 774 /* 775 * We set this property to let the guest know that it can use the large 776 * decrementer and its width in bits. 777 */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 780 pcc->lrg_decr_bits))); 781 } 782 783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 784 { 785 CPUState **rev; 786 CPUState *cs; 787 int n_cpus; 788 int cpus_offset; 789 int i; 790 791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 792 _FDT(cpus_offset); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 795 796 /* 797 * We walk the CPUs in reverse order to ensure that CPU DT nodes 798 * created by fdt_add_subnode() end up in the right order in FDT 799 * for the guest kernel the enumerate the CPUs correctly. 800 * 801 * The CPU list cannot be traversed in reverse order, so we need 802 * to do extra work. 803 */ 804 n_cpus = 0; 805 rev = NULL; 806 CPU_FOREACH(cs) { 807 rev = g_renew(CPUState *, rev, n_cpus + 1); 808 rev[n_cpus++] = cs; 809 } 810 811 for (i = n_cpus - 1; i >= 0; i--) { 812 CPUState *cs = rev[i]; 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 continue; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 g_free(rev); 830 } 831 832 static int spapr_dt_rng(void *fdt) 833 { 834 int node; 835 int ret; 836 837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 838 if (node <= 0) { 839 return -1; 840 } 841 ret = fdt_setprop_string(fdt, node, "device_type", 842 "ibm,platform-facilities"); 843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 845 846 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 847 if (node <= 0) { 848 return -1; 849 } 850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 851 852 return ret ? -1 : 0; 853 } 854 855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 856 { 857 MachineState *ms = MACHINE(spapr); 858 int rtas; 859 GString *hypertas = g_string_sized_new(256); 860 GString *qemu_hypertas = g_string_sized_new(256); 861 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 862 memory_region_size(&MACHINE(spapr)->device_memory->mr); 863 uint32_t lrdr_capacity[] = { 864 cpu_to_be32(max_device_addr >> 32), 865 cpu_to_be32(max_device_addr & 0xffffffff), 866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 868 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 869 }; 870 871 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 872 873 /* hypertas */ 874 add_str(hypertas, "hcall-pft"); 875 add_str(hypertas, "hcall-term"); 876 add_str(hypertas, "hcall-dabr"); 877 add_str(hypertas, "hcall-interrupt"); 878 add_str(hypertas, "hcall-tce"); 879 add_str(hypertas, "hcall-vio"); 880 add_str(hypertas, "hcall-splpar"); 881 add_str(hypertas, "hcall-join"); 882 add_str(hypertas, "hcall-bulk"); 883 add_str(hypertas, "hcall-set-mode"); 884 add_str(hypertas, "hcall-sprg0"); 885 add_str(hypertas, "hcall-copy"); 886 add_str(hypertas, "hcall-debug"); 887 add_str(hypertas, "hcall-vphn"); 888 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 889 add_str(hypertas, "hcall-rpt-invalidate"); 890 } 891 892 add_str(qemu_hypertas, "hcall-memop1"); 893 894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 895 add_str(hypertas, "hcall-multi-tce"); 896 } 897 898 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 899 add_str(hypertas, "hcall-hpt-resize"); 900 } 901 902 add_str(hypertas, "hcall-watchdog"); 903 904 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 905 hypertas->str, hypertas->len)); 906 g_string_free(hypertas, TRUE); 907 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 908 qemu_hypertas->str, qemu_hypertas->len)); 909 g_string_free(qemu_hypertas, TRUE); 910 911 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 912 913 /* 914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 916 * 917 * The system reset requirements are driven by existing Linux and PowerVM 918 * implementation which (contrary to PAPR) saves r3 in the error log 919 * structure like machine check, so Linux expects to find the saved r3 920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 921 * does not look at the error value). 922 * 923 * System reset interrupts are not subject to interlock like machine 924 * check, so this memory area could be corrupted if the sreset is 925 * interrupted by a machine check (or vice versa) if it was shared. To 926 * prevent this, system reset uses per-CPU areas for the sreset save 927 * area. A system reset that interrupts a system reset handler could 928 * still overwrite this area, but Linux doesn't try to recover in that 929 * case anyway. 930 * 931 * The extra 8 bytes is required because Linux's FWNMI error log check 932 * is off-by-one. 933 * 934 * RTAS_MIN_SIZE is required for the RTAS blob itself. 935 */ 936 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 937 RTAS_ERROR_LOG_MAX + 938 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 939 sizeof(uint64_t))); 940 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 941 RTAS_ERROR_LOG_MAX)); 942 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 943 RTAS_EVENT_SCAN_RATE)); 944 945 g_assert(msi_nonbroken); 946 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 947 948 /* 949 * According to PAPR, rtas ibm,os-term does not guarantee a return 950 * back to the guest cpu. 951 * 952 * While an additional ibm,extended-os-term property indicates 953 * that rtas call return will always occur. Set this property. 954 */ 955 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 956 957 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 958 lrdr_capacity, sizeof(lrdr_capacity))); 959 960 spapr_dt_rtas_tokens(fdt, rtas); 961 } 962 963 /* 964 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 965 * and the XIVE features that the guest may request and thus the valid 966 * values for bytes 23..26 of option vector 5: 967 */ 968 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 969 int chosen) 970 { 971 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 972 973 char val[2 * 4] = { 974 23, 0x00, /* XICS / XIVE mode */ 975 24, 0x00, /* Hash/Radix, filled in below. */ 976 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 977 26, 0x40, /* Radix options: GTSE == yes. */ 978 }; 979 980 if (spapr->irq->xics && spapr->irq->xive) { 981 val[1] = SPAPR_OV5_XIVE_BOTH; 982 } else if (spapr->irq->xive) { 983 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 984 } else { 985 assert(spapr->irq->xics); 986 val[1] = SPAPR_OV5_XIVE_LEGACY; 987 } 988 989 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 990 first_ppc_cpu->compat_pvr)) { 991 /* 992 * If we're in a pre POWER9 compat mode then the guest should 993 * do hash and use the legacy interrupt mode 994 */ 995 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 996 val[3] = 0x00; /* Hash */ 997 spapr_check_mmu_mode(false); 998 } else if (kvm_enabled()) { 999 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1000 val[3] = 0x80; /* OV5_MMU_BOTH */ 1001 } else if (kvmppc_has_cap_mmu_radix()) { 1002 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1003 } else { 1004 val[3] = 0x00; /* Hash */ 1005 } 1006 } else { 1007 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1008 val[3] = 0xC0; 1009 } 1010 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1011 val, sizeof(val))); 1012 } 1013 1014 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1015 { 1016 MachineState *machine = MACHINE(spapr); 1017 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1018 uint8_t rng_seed[32]; 1019 int chosen; 1020 1021 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1022 1023 if (reset) { 1024 const char *boot_device = spapr->boot_device; 1025 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1026 size_t cb = 0; 1027 g_autofree char *bootlist = get_boot_devices_list(&cb); 1028 1029 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1030 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1031 machine->kernel_cmdline)); 1032 } 1033 1034 if (spapr->initrd_size) { 1035 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1036 spapr->initrd_base)); 1037 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1038 spapr->initrd_base + spapr->initrd_size)); 1039 } 1040 1041 if (spapr->kernel_size) { 1042 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1043 cpu_to_be64(spapr->kernel_size) }; 1044 1045 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1046 &kprop, sizeof(kprop))); 1047 if (spapr->kernel_le) { 1048 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1049 } 1050 } 1051 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1052 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1053 } 1054 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1055 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1056 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1057 1058 if (cb && bootlist) { 1059 int i; 1060 1061 for (i = 0; i < cb; i++) { 1062 if (bootlist[i] == '\n') { 1063 bootlist[i] = ' '; 1064 } 1065 } 1066 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1067 } 1068 1069 if (boot_device && strlen(boot_device)) { 1070 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1071 } 1072 1073 if (spapr->want_stdout_path && stdout_path) { 1074 /* 1075 * "linux,stdout-path" and "stdout" properties are 1076 * deprecated by linux kernel. New platforms should only 1077 * use the "stdout-path" property. Set the new property 1078 * and continue using older property to remain compatible 1079 * with the existing firmware. 1080 */ 1081 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1082 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1083 } 1084 1085 /* 1086 * We can deal with BAR reallocation just fine, advertise it 1087 * to the guest 1088 */ 1089 if (smc->linux_pci_probe) { 1090 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1091 } 1092 1093 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1094 } 1095 1096 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 1097 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed))); 1098 1099 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1100 } 1101 1102 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1103 { 1104 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1105 * KVM to work under pHyp with some guest co-operation */ 1106 int hypervisor; 1107 uint8_t hypercall[16]; 1108 1109 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1110 /* indicate KVM hypercall interface */ 1111 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1112 if (kvmppc_has_cap_fixup_hcalls()) { 1113 /* 1114 * Older KVM versions with older guest kernels were broken 1115 * with the magic page, don't allow the guest to map it. 1116 */ 1117 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1118 sizeof(hypercall))) { 1119 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1120 hypercall, sizeof(hypercall))); 1121 } 1122 } 1123 } 1124 1125 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1126 { 1127 MachineState *machine = MACHINE(spapr); 1128 MachineClass *mc = MACHINE_GET_CLASS(machine); 1129 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1130 uint32_t root_drc_type_mask = 0; 1131 int ret; 1132 void *fdt; 1133 SpaprPhbState *phb; 1134 char *buf; 1135 1136 fdt = g_malloc0(space); 1137 _FDT((fdt_create_empty_tree(fdt, space))); 1138 1139 /* Root node */ 1140 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1141 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1142 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1143 1144 /* Guest UUID & Name*/ 1145 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1146 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1147 if (qemu_uuid_set) { 1148 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1149 } 1150 g_free(buf); 1151 1152 if (qemu_get_vm_name()) { 1153 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1154 qemu_get_vm_name())); 1155 } 1156 1157 /* Host Model & Serial Number */ 1158 if (spapr->host_model) { 1159 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1160 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1161 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1162 g_free(buf); 1163 } 1164 1165 if (spapr->host_serial) { 1166 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1168 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1169 g_free(buf); 1170 } 1171 1172 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1173 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1174 1175 /* /interrupt controller */ 1176 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1177 1178 ret = spapr_dt_memory(spapr, fdt); 1179 if (ret < 0) { 1180 error_report("couldn't setup memory nodes in fdt"); 1181 exit(1); 1182 } 1183 1184 /* /vdevice */ 1185 spapr_dt_vdevice(spapr->vio_bus, fdt); 1186 1187 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1188 ret = spapr_dt_rng(fdt); 1189 if (ret < 0) { 1190 error_report("could not set up rng device in the fdt"); 1191 exit(1); 1192 } 1193 } 1194 1195 QLIST_FOREACH(phb, &spapr->phbs, list) { 1196 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1197 if (ret < 0) { 1198 error_report("couldn't setup PCI devices in fdt"); 1199 exit(1); 1200 } 1201 } 1202 1203 spapr_dt_cpus(fdt, spapr); 1204 1205 /* ibm,drc-indexes and friends */ 1206 if (smc->dr_lmb_enabled) { 1207 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1208 } 1209 if (smc->dr_phb_enabled) { 1210 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1211 } 1212 if (mc->nvdimm_supported) { 1213 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1214 } 1215 if (root_drc_type_mask) { 1216 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1217 } 1218 1219 if (mc->has_hotpluggable_cpus) { 1220 int offset = fdt_path_offset(fdt, "/cpus"); 1221 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1222 if (ret < 0) { 1223 error_report("Couldn't set up CPU DR device tree properties"); 1224 exit(1); 1225 } 1226 } 1227 1228 /* /event-sources */ 1229 spapr_dt_events(spapr, fdt); 1230 1231 /* /rtas */ 1232 spapr_dt_rtas(spapr, fdt); 1233 1234 /* /chosen */ 1235 spapr_dt_chosen(spapr, fdt, reset); 1236 1237 /* /hypervisor */ 1238 if (kvm_enabled()) { 1239 spapr_dt_hypervisor(spapr, fdt); 1240 } 1241 1242 /* Build memory reserve map */ 1243 if (reset) { 1244 if (spapr->kernel_size) { 1245 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1246 spapr->kernel_size))); 1247 } 1248 if (spapr->initrd_size) { 1249 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1250 spapr->initrd_size))); 1251 } 1252 } 1253 1254 /* NVDIMM devices */ 1255 if (mc->nvdimm_supported) { 1256 spapr_dt_persistent_memory(spapr, fdt); 1257 } 1258 1259 return fdt; 1260 } 1261 1262 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1263 { 1264 SpaprMachineState *spapr = opaque; 1265 1266 return (addr & 0x0fffffff) + spapr->kernel_addr; 1267 } 1268 1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1270 PowerPCCPU *cpu) 1271 { 1272 CPUPPCState *env = &cpu->env; 1273 1274 /* The TCG path should also be holding the BQL at this point */ 1275 g_assert(qemu_mutex_iothread_locked()); 1276 1277 g_assert(!vhyp_cpu_in_nested(cpu)); 1278 1279 if (FIELD_EX64(env->msr, MSR, PR)) { 1280 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1281 env->gpr[3] = H_PRIVILEGE; 1282 } else { 1283 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1284 } 1285 } 1286 1287 struct LPCRSyncState { 1288 target_ulong value; 1289 target_ulong mask; 1290 }; 1291 1292 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1293 { 1294 struct LPCRSyncState *s = arg.host_ptr; 1295 PowerPCCPU *cpu = POWERPC_CPU(cs); 1296 CPUPPCState *env = &cpu->env; 1297 target_ulong lpcr; 1298 1299 cpu_synchronize_state(cs); 1300 lpcr = env->spr[SPR_LPCR]; 1301 lpcr &= ~s->mask; 1302 lpcr |= s->value; 1303 ppc_store_lpcr(cpu, lpcr); 1304 } 1305 1306 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1307 { 1308 CPUState *cs; 1309 struct LPCRSyncState s = { 1310 .value = value, 1311 .mask = mask 1312 }; 1313 CPU_FOREACH(cs) { 1314 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1315 } 1316 } 1317 1318 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1319 target_ulong lpid, ppc_v3_pate_t *entry) 1320 { 1321 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1322 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1323 1324 if (!spapr_cpu->in_nested) { 1325 assert(lpid == 0); 1326 1327 /* Copy PATE1:GR into PATE0:HR */ 1328 entry->dw0 = spapr->patb_entry & PATE0_HR; 1329 entry->dw1 = spapr->patb_entry; 1330 1331 } else { 1332 uint64_t patb, pats; 1333 1334 assert(lpid != 0); 1335 1336 patb = spapr->nested_ptcr & PTCR_PATB; 1337 pats = spapr->nested_ptcr & PTCR_PATS; 1338 1339 /* Check if partition table is properly aligned */ 1340 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1341 return false; 1342 } 1343 1344 /* Calculate number of entries */ 1345 pats = 1ull << (pats + 12 - 4); 1346 if (pats <= lpid) { 1347 return false; 1348 } 1349 1350 /* Grab entry */ 1351 patb += 16 * lpid; 1352 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1353 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1354 } 1355 1356 return true; 1357 } 1358 1359 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1360 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1361 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1362 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1363 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1364 1365 /* 1366 * Get the fd to access the kernel htab, re-opening it if necessary 1367 */ 1368 static int get_htab_fd(SpaprMachineState *spapr) 1369 { 1370 Error *local_err = NULL; 1371 1372 if (spapr->htab_fd >= 0) { 1373 return spapr->htab_fd; 1374 } 1375 1376 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1377 if (spapr->htab_fd < 0) { 1378 error_report_err(local_err); 1379 } 1380 1381 return spapr->htab_fd; 1382 } 1383 1384 void close_htab_fd(SpaprMachineState *spapr) 1385 { 1386 if (spapr->htab_fd >= 0) { 1387 close(spapr->htab_fd); 1388 } 1389 spapr->htab_fd = -1; 1390 } 1391 1392 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1393 { 1394 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1395 1396 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1397 } 1398 1399 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1400 { 1401 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1402 1403 assert(kvm_enabled()); 1404 1405 if (!spapr->htab) { 1406 return 0; 1407 } 1408 1409 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1410 } 1411 1412 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1413 hwaddr ptex, int n) 1414 { 1415 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1416 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1417 1418 if (!spapr->htab) { 1419 /* 1420 * HTAB is controlled by KVM. Fetch into temporary buffer 1421 */ 1422 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1423 kvmppc_read_hptes(hptes, ptex, n); 1424 return hptes; 1425 } 1426 1427 /* 1428 * HTAB is controlled by QEMU. Just point to the internally 1429 * accessible PTEG. 1430 */ 1431 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1432 } 1433 1434 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1435 const ppc_hash_pte64_t *hptes, 1436 hwaddr ptex, int n) 1437 { 1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1439 1440 if (!spapr->htab) { 1441 g_free((void *)hptes); 1442 } 1443 1444 /* Nothing to do for qemu managed HPT */ 1445 } 1446 1447 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1448 uint64_t pte0, uint64_t pte1) 1449 { 1450 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1451 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1452 1453 if (!spapr->htab) { 1454 kvmppc_write_hpte(ptex, pte0, pte1); 1455 } else { 1456 if (pte0 & HPTE64_V_VALID) { 1457 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1458 /* 1459 * When setting valid, we write PTE1 first. This ensures 1460 * proper synchronization with the reading code in 1461 * ppc_hash64_pteg_search() 1462 */ 1463 smp_wmb(); 1464 stq_p(spapr->htab + offset, pte0); 1465 } else { 1466 stq_p(spapr->htab + offset, pte0); 1467 /* 1468 * When clearing it we set PTE0 first. This ensures proper 1469 * synchronization with the reading code in 1470 * ppc_hash64_pteg_search() 1471 */ 1472 smp_wmb(); 1473 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1474 } 1475 } 1476 } 1477 1478 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1479 uint64_t pte1) 1480 { 1481 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1482 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1483 1484 if (!spapr->htab) { 1485 /* There should always be a hash table when this is called */ 1486 error_report("spapr_hpte_set_c called with no hash table !"); 1487 return; 1488 } 1489 1490 /* The HW performs a non-atomic byte update */ 1491 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1492 } 1493 1494 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1495 uint64_t pte1) 1496 { 1497 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1498 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1499 1500 if (!spapr->htab) { 1501 /* There should always be a hash table when this is called */ 1502 error_report("spapr_hpte_set_r called with no hash table !"); 1503 return; 1504 } 1505 1506 /* The HW performs a non-atomic byte update */ 1507 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1508 } 1509 1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1511 { 1512 int shift; 1513 1514 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1515 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1516 * that's much more than is needed for Linux guests */ 1517 shift = ctz64(pow2ceil(ramsize)) - 7; 1518 shift = MAX(shift, 18); /* Minimum architected size */ 1519 shift = MIN(shift, 46); /* Maximum architected size */ 1520 return shift; 1521 } 1522 1523 void spapr_free_hpt(SpaprMachineState *spapr) 1524 { 1525 qemu_vfree(spapr->htab); 1526 spapr->htab = NULL; 1527 spapr->htab_shift = 0; 1528 close_htab_fd(spapr); 1529 } 1530 1531 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1532 { 1533 ERRP_GUARD(); 1534 long rc; 1535 1536 /* Clean up any HPT info from a previous boot */ 1537 spapr_free_hpt(spapr); 1538 1539 rc = kvmppc_reset_htab(shift); 1540 1541 if (rc == -EOPNOTSUPP) { 1542 error_setg(errp, "HPT not supported in nested guests"); 1543 return -EOPNOTSUPP; 1544 } 1545 1546 if (rc < 0) { 1547 /* kernel-side HPT needed, but couldn't allocate one */ 1548 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1549 shift); 1550 error_append_hint(errp, "Try smaller maxmem?\n"); 1551 return -errno; 1552 } else if (rc > 0) { 1553 /* kernel-side HPT allocated */ 1554 if (rc != shift) { 1555 error_setg(errp, 1556 "Requested order %d HPT, but kernel allocated order %ld", 1557 shift, rc); 1558 error_append_hint(errp, "Try smaller maxmem?\n"); 1559 return -ENOSPC; 1560 } 1561 1562 spapr->htab_shift = shift; 1563 spapr->htab = NULL; 1564 } else { 1565 /* kernel-side HPT not needed, allocate in userspace instead */ 1566 size_t size = 1ULL << shift; 1567 int i; 1568 1569 spapr->htab = qemu_memalign(size, size); 1570 memset(spapr->htab, 0, size); 1571 spapr->htab_shift = shift; 1572 1573 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1574 DIRTY_HPTE(HPTE(spapr->htab, i)); 1575 } 1576 } 1577 /* We're setting up a hash table, so that means we're not radix */ 1578 spapr->patb_entry = 0; 1579 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1580 return 0; 1581 } 1582 1583 void spapr_setup_hpt(SpaprMachineState *spapr) 1584 { 1585 int hpt_shift; 1586 1587 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1588 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1589 } else { 1590 uint64_t current_ram_size; 1591 1592 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1593 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1594 } 1595 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1596 1597 if (kvm_enabled()) { 1598 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1599 1600 /* Check our RMA fits in the possible VRMA */ 1601 if (vrma_limit < spapr->rma_size) { 1602 error_report("Unable to create %" HWADDR_PRIu 1603 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1604 spapr->rma_size / MiB, vrma_limit / MiB); 1605 exit(EXIT_FAILURE); 1606 } 1607 } 1608 } 1609 1610 void spapr_check_mmu_mode(bool guest_radix) 1611 { 1612 if (guest_radix) { 1613 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1614 error_report("Guest requested unavailable MMU mode (radix)."); 1615 exit(EXIT_FAILURE); 1616 } 1617 } else { 1618 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1619 && !kvmppc_has_cap_mmu_hash_v3()) { 1620 error_report("Guest requested unavailable MMU mode (hash)."); 1621 exit(EXIT_FAILURE); 1622 } 1623 } 1624 } 1625 1626 static void spapr_machine_reset(MachineState *machine) 1627 { 1628 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1629 PowerPCCPU *first_ppc_cpu; 1630 hwaddr fdt_addr; 1631 void *fdt; 1632 int rc; 1633 1634 pef_kvm_reset(machine->cgs, &error_fatal); 1635 spapr_caps_apply(spapr); 1636 1637 first_ppc_cpu = POWERPC_CPU(first_cpu); 1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1639 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1640 spapr->max_compat_pvr)) { 1641 /* 1642 * If using KVM with radix mode available, VCPUs can be started 1643 * without a HPT because KVM will start them in radix mode. 1644 * Set the GR bit in PATE so that we know there is no HPT. 1645 */ 1646 spapr->patb_entry = PATE1_GR; 1647 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1648 } else { 1649 spapr_setup_hpt(spapr); 1650 } 1651 1652 qemu_devices_reset(); 1653 1654 spapr_ovec_cleanup(spapr->ov5_cas); 1655 spapr->ov5_cas = spapr_ovec_new(); 1656 1657 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1658 1659 /* 1660 * This is fixing some of the default configuration of the XIVE 1661 * devices. To be called after the reset of the machine devices. 1662 */ 1663 spapr_irq_reset(spapr, &error_fatal); 1664 1665 /* 1666 * There is no CAS under qtest. Simulate one to please the code that 1667 * depends on spapr->ov5_cas. This is especially needed to test device 1668 * unplug, so we do that before resetting the DRCs. 1669 */ 1670 if (qtest_enabled()) { 1671 spapr_ovec_cleanup(spapr->ov5_cas); 1672 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1673 } 1674 1675 spapr_nvdimm_finish_flushes(); 1676 1677 /* DRC reset may cause a device to be unplugged. This will cause troubles 1678 * if this device is used by another device (eg, a running vhost backend 1679 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1680 * situations, we reset DRCs after all devices have been reset. 1681 */ 1682 spapr_drc_reset_all(spapr); 1683 1684 spapr_clear_pending_events(spapr); 1685 1686 /* 1687 * We place the device tree just below either the top of the RMA, 1688 * or just below 2GB, whichever is lower, so that it can be 1689 * processed with 32-bit real mode code if necessary 1690 */ 1691 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1692 1693 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1694 if (spapr->vof) { 1695 spapr_vof_reset(spapr, fdt, &error_fatal); 1696 /* 1697 * Do not pack the FDT as the client may change properties. 1698 * VOF client does not expect the FDT so we do not load it to the VM. 1699 */ 1700 } else { 1701 rc = fdt_pack(fdt); 1702 /* Should only fail if we've built a corrupted tree */ 1703 assert(rc == 0); 1704 1705 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1706 0, fdt_addr, 0); 1707 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1708 } 1709 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1710 1711 g_free(spapr->fdt_blob); 1712 spapr->fdt_size = fdt_totalsize(fdt); 1713 spapr->fdt_initial_size = spapr->fdt_size; 1714 spapr->fdt_blob = fdt; 1715 1716 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1717 machine->fdt = fdt; 1718 1719 /* Set up the entry state */ 1720 first_ppc_cpu->env.gpr[5] = 0; 1721 1722 spapr->fwnmi_system_reset_addr = -1; 1723 spapr->fwnmi_machine_check_addr = -1; 1724 spapr->fwnmi_machine_check_interlock = -1; 1725 1726 /* Signal all vCPUs waiting on this condition */ 1727 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1728 1729 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1730 } 1731 1732 static void spapr_create_nvram(SpaprMachineState *spapr) 1733 { 1734 DeviceState *dev = qdev_new("spapr-nvram"); 1735 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1736 1737 if (dinfo) { 1738 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1739 &error_fatal); 1740 } 1741 1742 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1743 1744 spapr->nvram = (struct SpaprNvram *)dev; 1745 } 1746 1747 static void spapr_rtc_create(SpaprMachineState *spapr) 1748 { 1749 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1750 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1751 &error_fatal, NULL); 1752 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1753 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1754 "date"); 1755 } 1756 1757 /* Returns whether we want to use VGA or not */ 1758 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1759 { 1760 vga_interface_created = true; 1761 switch (vga_interface_type) { 1762 case VGA_NONE: 1763 return false; 1764 case VGA_DEVICE: 1765 return true; 1766 case VGA_STD: 1767 case VGA_VIRTIO: 1768 case VGA_CIRRUS: 1769 return pci_vga_init(pci_bus) != NULL; 1770 default: 1771 error_setg(errp, 1772 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1773 return false; 1774 } 1775 } 1776 1777 static int spapr_pre_load(void *opaque) 1778 { 1779 int rc; 1780 1781 rc = spapr_caps_pre_load(opaque); 1782 if (rc) { 1783 return rc; 1784 } 1785 1786 return 0; 1787 } 1788 1789 static int spapr_post_load(void *opaque, int version_id) 1790 { 1791 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1792 int err = 0; 1793 1794 err = spapr_caps_post_migration(spapr); 1795 if (err) { 1796 return err; 1797 } 1798 1799 /* 1800 * In earlier versions, there was no separate qdev for the PAPR 1801 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1802 * So when migrating from those versions, poke the incoming offset 1803 * value into the RTC device 1804 */ 1805 if (version_id < 3) { 1806 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1807 if (err) { 1808 return err; 1809 } 1810 } 1811 1812 if (kvm_enabled() && spapr->patb_entry) { 1813 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1814 bool radix = !!(spapr->patb_entry & PATE1_GR); 1815 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1816 1817 /* 1818 * Update LPCR:HR and UPRT as they may not be set properly in 1819 * the stream 1820 */ 1821 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1822 LPCR_HR | LPCR_UPRT); 1823 1824 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1825 if (err) { 1826 error_report("Process table config unsupported by the host"); 1827 return -EINVAL; 1828 } 1829 } 1830 1831 err = spapr_irq_post_load(spapr, version_id); 1832 if (err) { 1833 return err; 1834 } 1835 1836 return err; 1837 } 1838 1839 static int spapr_pre_save(void *opaque) 1840 { 1841 int rc; 1842 1843 rc = spapr_caps_pre_save(opaque); 1844 if (rc) { 1845 return rc; 1846 } 1847 1848 return 0; 1849 } 1850 1851 static bool version_before_3(void *opaque, int version_id) 1852 { 1853 return version_id < 3; 1854 } 1855 1856 static bool spapr_pending_events_needed(void *opaque) 1857 { 1858 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1859 return !QTAILQ_EMPTY(&spapr->pending_events); 1860 } 1861 1862 static const VMStateDescription vmstate_spapr_event_entry = { 1863 .name = "spapr_event_log_entry", 1864 .version_id = 1, 1865 .minimum_version_id = 1, 1866 .fields = (VMStateField[]) { 1867 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1868 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1869 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1870 NULL, extended_length), 1871 VMSTATE_END_OF_LIST() 1872 }, 1873 }; 1874 1875 static const VMStateDescription vmstate_spapr_pending_events = { 1876 .name = "spapr_pending_events", 1877 .version_id = 1, 1878 .minimum_version_id = 1, 1879 .needed = spapr_pending_events_needed, 1880 .fields = (VMStateField[]) { 1881 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1882 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1883 VMSTATE_END_OF_LIST() 1884 }, 1885 }; 1886 1887 static bool spapr_ov5_cas_needed(void *opaque) 1888 { 1889 SpaprMachineState *spapr = opaque; 1890 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1891 bool cas_needed; 1892 1893 /* Prior to the introduction of SpaprOptionVector, we had two option 1894 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1895 * Both of these options encode machine topology into the device-tree 1896 * in such a way that the now-booted OS should still be able to interact 1897 * appropriately with QEMU regardless of what options were actually 1898 * negotiatied on the source side. 1899 * 1900 * As such, we can avoid migrating the CAS-negotiated options if these 1901 * are the only options available on the current machine/platform. 1902 * Since these are the only options available for pseries-2.7 and 1903 * earlier, this allows us to maintain old->new/new->old migration 1904 * compatibility. 1905 * 1906 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1907 * via default pseries-2.8 machines and explicit command-line parameters. 1908 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1909 * of the actual CAS-negotiated values to continue working properly. For 1910 * example, availability of memory unplug depends on knowing whether 1911 * OV5_HP_EVT was negotiated via CAS. 1912 * 1913 * Thus, for any cases where the set of available CAS-negotiatable 1914 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1915 * include the CAS-negotiated options in the migration stream, unless 1916 * if they affect boot time behaviour only. 1917 */ 1918 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1919 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1920 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1921 1922 /* We need extra information if we have any bits outside the mask 1923 * defined above */ 1924 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1925 1926 spapr_ovec_cleanup(ov5_mask); 1927 1928 return cas_needed; 1929 } 1930 1931 static const VMStateDescription vmstate_spapr_ov5_cas = { 1932 .name = "spapr_option_vector_ov5_cas", 1933 .version_id = 1, 1934 .minimum_version_id = 1, 1935 .needed = spapr_ov5_cas_needed, 1936 .fields = (VMStateField[]) { 1937 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1938 vmstate_spapr_ovec, SpaprOptionVector), 1939 VMSTATE_END_OF_LIST() 1940 }, 1941 }; 1942 1943 static bool spapr_patb_entry_needed(void *opaque) 1944 { 1945 SpaprMachineState *spapr = opaque; 1946 1947 return !!spapr->patb_entry; 1948 } 1949 1950 static const VMStateDescription vmstate_spapr_patb_entry = { 1951 .name = "spapr_patb_entry", 1952 .version_id = 1, 1953 .minimum_version_id = 1, 1954 .needed = spapr_patb_entry_needed, 1955 .fields = (VMStateField[]) { 1956 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1957 VMSTATE_END_OF_LIST() 1958 }, 1959 }; 1960 1961 static bool spapr_irq_map_needed(void *opaque) 1962 { 1963 SpaprMachineState *spapr = opaque; 1964 1965 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1966 } 1967 1968 static const VMStateDescription vmstate_spapr_irq_map = { 1969 .name = "spapr_irq_map", 1970 .version_id = 1, 1971 .minimum_version_id = 1, 1972 .needed = spapr_irq_map_needed, 1973 .fields = (VMStateField[]) { 1974 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1975 VMSTATE_END_OF_LIST() 1976 }, 1977 }; 1978 1979 static bool spapr_dtb_needed(void *opaque) 1980 { 1981 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1982 1983 return smc->update_dt_enabled; 1984 } 1985 1986 static int spapr_dtb_pre_load(void *opaque) 1987 { 1988 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1989 1990 g_free(spapr->fdt_blob); 1991 spapr->fdt_blob = NULL; 1992 spapr->fdt_size = 0; 1993 1994 return 0; 1995 } 1996 1997 static const VMStateDescription vmstate_spapr_dtb = { 1998 .name = "spapr_dtb", 1999 .version_id = 1, 2000 .minimum_version_id = 1, 2001 .needed = spapr_dtb_needed, 2002 .pre_load = spapr_dtb_pre_load, 2003 .fields = (VMStateField[]) { 2004 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2005 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2006 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2007 fdt_size), 2008 VMSTATE_END_OF_LIST() 2009 }, 2010 }; 2011 2012 static bool spapr_fwnmi_needed(void *opaque) 2013 { 2014 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2015 2016 return spapr->fwnmi_machine_check_addr != -1; 2017 } 2018 2019 static int spapr_fwnmi_pre_save(void *opaque) 2020 { 2021 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2022 2023 /* 2024 * Check if machine check handling is in progress and print a 2025 * warning message. 2026 */ 2027 if (spapr->fwnmi_machine_check_interlock != -1) { 2028 warn_report("A machine check is being handled during migration. The" 2029 "handler may run and log hardware error on the destination"); 2030 } 2031 2032 return 0; 2033 } 2034 2035 static const VMStateDescription vmstate_spapr_fwnmi = { 2036 .name = "spapr_fwnmi", 2037 .version_id = 1, 2038 .minimum_version_id = 1, 2039 .needed = spapr_fwnmi_needed, 2040 .pre_save = spapr_fwnmi_pre_save, 2041 .fields = (VMStateField[]) { 2042 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2043 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2044 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2045 VMSTATE_END_OF_LIST() 2046 }, 2047 }; 2048 2049 static const VMStateDescription vmstate_spapr = { 2050 .name = "spapr", 2051 .version_id = 3, 2052 .minimum_version_id = 1, 2053 .pre_load = spapr_pre_load, 2054 .post_load = spapr_post_load, 2055 .pre_save = spapr_pre_save, 2056 .fields = (VMStateField[]) { 2057 /* used to be @next_irq */ 2058 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2059 2060 /* RTC offset */ 2061 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2062 2063 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2064 VMSTATE_END_OF_LIST() 2065 }, 2066 .subsections = (const VMStateDescription*[]) { 2067 &vmstate_spapr_ov5_cas, 2068 &vmstate_spapr_patb_entry, 2069 &vmstate_spapr_pending_events, 2070 &vmstate_spapr_cap_htm, 2071 &vmstate_spapr_cap_vsx, 2072 &vmstate_spapr_cap_dfp, 2073 &vmstate_spapr_cap_cfpc, 2074 &vmstate_spapr_cap_sbbc, 2075 &vmstate_spapr_cap_ibs, 2076 &vmstate_spapr_cap_hpt_maxpagesize, 2077 &vmstate_spapr_irq_map, 2078 &vmstate_spapr_cap_nested_kvm_hv, 2079 &vmstate_spapr_dtb, 2080 &vmstate_spapr_cap_large_decr, 2081 &vmstate_spapr_cap_ccf_assist, 2082 &vmstate_spapr_cap_fwnmi, 2083 &vmstate_spapr_fwnmi, 2084 &vmstate_spapr_cap_rpt_invalidate, 2085 NULL 2086 } 2087 }; 2088 2089 static int htab_save_setup(QEMUFile *f, void *opaque) 2090 { 2091 SpaprMachineState *spapr = opaque; 2092 2093 /* "Iteration" header */ 2094 if (!spapr->htab_shift) { 2095 qemu_put_be32(f, -1); 2096 } else { 2097 qemu_put_be32(f, spapr->htab_shift); 2098 } 2099 2100 if (spapr->htab) { 2101 spapr->htab_save_index = 0; 2102 spapr->htab_first_pass = true; 2103 } else { 2104 if (spapr->htab_shift) { 2105 assert(kvm_enabled()); 2106 } 2107 } 2108 2109 2110 return 0; 2111 } 2112 2113 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2114 int chunkstart, int n_valid, int n_invalid) 2115 { 2116 qemu_put_be32(f, chunkstart); 2117 qemu_put_be16(f, n_valid); 2118 qemu_put_be16(f, n_invalid); 2119 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2120 HASH_PTE_SIZE_64 * n_valid); 2121 } 2122 2123 static void htab_save_end_marker(QEMUFile *f) 2124 { 2125 qemu_put_be32(f, 0); 2126 qemu_put_be16(f, 0); 2127 qemu_put_be16(f, 0); 2128 } 2129 2130 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2131 int64_t max_ns) 2132 { 2133 bool has_timeout = max_ns != -1; 2134 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2135 int index = spapr->htab_save_index; 2136 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2137 2138 assert(spapr->htab_first_pass); 2139 2140 do { 2141 int chunkstart; 2142 2143 /* Consume invalid HPTEs */ 2144 while ((index < htabslots) 2145 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2146 CLEAN_HPTE(HPTE(spapr->htab, index)); 2147 index++; 2148 } 2149 2150 /* Consume valid HPTEs */ 2151 chunkstart = index; 2152 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2153 && HPTE_VALID(HPTE(spapr->htab, index))) { 2154 CLEAN_HPTE(HPTE(spapr->htab, index)); 2155 index++; 2156 } 2157 2158 if (index > chunkstart) { 2159 int n_valid = index - chunkstart; 2160 2161 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2162 2163 if (has_timeout && 2164 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2165 break; 2166 } 2167 } 2168 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2169 2170 if (index >= htabslots) { 2171 assert(index == htabslots); 2172 index = 0; 2173 spapr->htab_first_pass = false; 2174 } 2175 spapr->htab_save_index = index; 2176 } 2177 2178 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2179 int64_t max_ns) 2180 { 2181 bool final = max_ns < 0; 2182 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2183 int examined = 0, sent = 0; 2184 int index = spapr->htab_save_index; 2185 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2186 2187 assert(!spapr->htab_first_pass); 2188 2189 do { 2190 int chunkstart, invalidstart; 2191 2192 /* Consume non-dirty HPTEs */ 2193 while ((index < htabslots) 2194 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2195 index++; 2196 examined++; 2197 } 2198 2199 chunkstart = index; 2200 /* Consume valid dirty HPTEs */ 2201 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2202 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2203 && HPTE_VALID(HPTE(spapr->htab, index))) { 2204 CLEAN_HPTE(HPTE(spapr->htab, index)); 2205 index++; 2206 examined++; 2207 } 2208 2209 invalidstart = index; 2210 /* Consume invalid dirty HPTEs */ 2211 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2212 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2213 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2214 CLEAN_HPTE(HPTE(spapr->htab, index)); 2215 index++; 2216 examined++; 2217 } 2218 2219 if (index > chunkstart) { 2220 int n_valid = invalidstart - chunkstart; 2221 int n_invalid = index - invalidstart; 2222 2223 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2224 sent += index - chunkstart; 2225 2226 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2227 break; 2228 } 2229 } 2230 2231 if (examined >= htabslots) { 2232 break; 2233 } 2234 2235 if (index >= htabslots) { 2236 assert(index == htabslots); 2237 index = 0; 2238 } 2239 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2240 2241 if (index >= htabslots) { 2242 assert(index == htabslots); 2243 index = 0; 2244 } 2245 2246 spapr->htab_save_index = index; 2247 2248 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2249 } 2250 2251 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2252 #define MAX_KVM_BUF_SIZE 2048 2253 2254 static int htab_save_iterate(QEMUFile *f, void *opaque) 2255 { 2256 SpaprMachineState *spapr = opaque; 2257 int fd; 2258 int rc = 0; 2259 2260 /* Iteration header */ 2261 if (!spapr->htab_shift) { 2262 qemu_put_be32(f, -1); 2263 return 1; 2264 } else { 2265 qemu_put_be32(f, 0); 2266 } 2267 2268 if (!spapr->htab) { 2269 assert(kvm_enabled()); 2270 2271 fd = get_htab_fd(spapr); 2272 if (fd < 0) { 2273 return fd; 2274 } 2275 2276 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2277 if (rc < 0) { 2278 return rc; 2279 } 2280 } else if (spapr->htab_first_pass) { 2281 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2282 } else { 2283 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2284 } 2285 2286 htab_save_end_marker(f); 2287 2288 return rc; 2289 } 2290 2291 static int htab_save_complete(QEMUFile *f, void *opaque) 2292 { 2293 SpaprMachineState *spapr = opaque; 2294 int fd; 2295 2296 /* Iteration header */ 2297 if (!spapr->htab_shift) { 2298 qemu_put_be32(f, -1); 2299 return 0; 2300 } else { 2301 qemu_put_be32(f, 0); 2302 } 2303 2304 if (!spapr->htab) { 2305 int rc; 2306 2307 assert(kvm_enabled()); 2308 2309 fd = get_htab_fd(spapr); 2310 if (fd < 0) { 2311 return fd; 2312 } 2313 2314 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2315 if (rc < 0) { 2316 return rc; 2317 } 2318 } else { 2319 if (spapr->htab_first_pass) { 2320 htab_save_first_pass(f, spapr, -1); 2321 } 2322 htab_save_later_pass(f, spapr, -1); 2323 } 2324 2325 /* End marker */ 2326 htab_save_end_marker(f); 2327 2328 return 0; 2329 } 2330 2331 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2332 { 2333 SpaprMachineState *spapr = opaque; 2334 uint32_t section_hdr; 2335 int fd = -1; 2336 Error *local_err = NULL; 2337 2338 if (version_id < 1 || version_id > 1) { 2339 error_report("htab_load() bad version"); 2340 return -EINVAL; 2341 } 2342 2343 section_hdr = qemu_get_be32(f); 2344 2345 if (section_hdr == -1) { 2346 spapr_free_hpt(spapr); 2347 return 0; 2348 } 2349 2350 if (section_hdr) { 2351 int ret; 2352 2353 /* First section gives the htab size */ 2354 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2355 if (ret < 0) { 2356 error_report_err(local_err); 2357 return ret; 2358 } 2359 return 0; 2360 } 2361 2362 if (!spapr->htab) { 2363 assert(kvm_enabled()); 2364 2365 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2366 if (fd < 0) { 2367 error_report_err(local_err); 2368 return fd; 2369 } 2370 } 2371 2372 while (true) { 2373 uint32_t index; 2374 uint16_t n_valid, n_invalid; 2375 2376 index = qemu_get_be32(f); 2377 n_valid = qemu_get_be16(f); 2378 n_invalid = qemu_get_be16(f); 2379 2380 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2381 /* End of Stream */ 2382 break; 2383 } 2384 2385 if ((index + n_valid + n_invalid) > 2386 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2387 /* Bad index in stream */ 2388 error_report( 2389 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2390 index, n_valid, n_invalid, spapr->htab_shift); 2391 return -EINVAL; 2392 } 2393 2394 if (spapr->htab) { 2395 if (n_valid) { 2396 qemu_get_buffer(f, HPTE(spapr->htab, index), 2397 HASH_PTE_SIZE_64 * n_valid); 2398 } 2399 if (n_invalid) { 2400 memset(HPTE(spapr->htab, index + n_valid), 0, 2401 HASH_PTE_SIZE_64 * n_invalid); 2402 } 2403 } else { 2404 int rc; 2405 2406 assert(fd >= 0); 2407 2408 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2409 &local_err); 2410 if (rc < 0) { 2411 error_report_err(local_err); 2412 return rc; 2413 } 2414 } 2415 } 2416 2417 if (!spapr->htab) { 2418 assert(fd >= 0); 2419 close(fd); 2420 } 2421 2422 return 0; 2423 } 2424 2425 static void htab_save_cleanup(void *opaque) 2426 { 2427 SpaprMachineState *spapr = opaque; 2428 2429 close_htab_fd(spapr); 2430 } 2431 2432 static SaveVMHandlers savevm_htab_handlers = { 2433 .save_setup = htab_save_setup, 2434 .save_live_iterate = htab_save_iterate, 2435 .save_live_complete_precopy = htab_save_complete, 2436 .save_cleanup = htab_save_cleanup, 2437 .load_state = htab_load, 2438 }; 2439 2440 static void spapr_boot_set(void *opaque, const char *boot_device, 2441 Error **errp) 2442 { 2443 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2444 2445 g_free(spapr->boot_device); 2446 spapr->boot_device = g_strdup(boot_device); 2447 } 2448 2449 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2450 { 2451 MachineState *machine = MACHINE(spapr); 2452 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2453 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2454 int i; 2455 2456 for (i = 0; i < nr_lmbs; i++) { 2457 uint64_t addr; 2458 2459 addr = i * lmb_size + machine->device_memory->base; 2460 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2461 addr / lmb_size); 2462 } 2463 } 2464 2465 /* 2466 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2467 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2468 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2469 */ 2470 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2471 { 2472 int i; 2473 2474 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2475 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2476 " is not aligned to %" PRIu64 " MiB", 2477 machine->ram_size, 2478 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2479 return; 2480 } 2481 2482 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2483 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2484 " is not aligned to %" PRIu64 " MiB", 2485 machine->ram_size, 2486 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2487 return; 2488 } 2489 2490 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2491 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2492 error_setg(errp, 2493 "Node %d memory size 0x%" PRIx64 2494 " is not aligned to %" PRIu64 " MiB", 2495 i, machine->numa_state->nodes[i].node_mem, 2496 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2497 return; 2498 } 2499 } 2500 } 2501 2502 /* find cpu slot in machine->possible_cpus by core_id */ 2503 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2504 { 2505 int index = id / ms->smp.threads; 2506 2507 if (index >= ms->possible_cpus->len) { 2508 return NULL; 2509 } 2510 if (idx) { 2511 *idx = index; 2512 } 2513 return &ms->possible_cpus->cpus[index]; 2514 } 2515 2516 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2517 { 2518 MachineState *ms = MACHINE(spapr); 2519 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2520 Error *local_err = NULL; 2521 bool vsmt_user = !!spapr->vsmt; 2522 int kvm_smt = kvmppc_smt_threads(); 2523 int ret; 2524 unsigned int smp_threads = ms->smp.threads; 2525 2526 if (!kvm_enabled() && (smp_threads > 1)) { 2527 error_setg(errp, "TCG cannot support more than 1 thread/core " 2528 "on a pseries machine"); 2529 return; 2530 } 2531 if (!is_power_of_2(smp_threads)) { 2532 error_setg(errp, "Cannot support %d threads/core on a pseries " 2533 "machine because it must be a power of 2", smp_threads); 2534 return; 2535 } 2536 2537 /* Detemine the VSMT mode to use: */ 2538 if (vsmt_user) { 2539 if (spapr->vsmt < smp_threads) { 2540 error_setg(errp, "Cannot support VSMT mode %d" 2541 " because it must be >= threads/core (%d)", 2542 spapr->vsmt, smp_threads); 2543 return; 2544 } 2545 /* In this case, spapr->vsmt has been set by the command line */ 2546 } else if (!smc->smp_threads_vsmt) { 2547 /* 2548 * Default VSMT value is tricky, because we need it to be as 2549 * consistent as possible (for migration), but this requires 2550 * changing it for at least some existing cases. We pick 8 as 2551 * the value that we'd get with KVM on POWER8, the 2552 * overwhelmingly common case in production systems. 2553 */ 2554 spapr->vsmt = MAX(8, smp_threads); 2555 } else { 2556 spapr->vsmt = smp_threads; 2557 } 2558 2559 /* KVM: If necessary, set the SMT mode: */ 2560 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2561 ret = kvmppc_set_smt_threads(spapr->vsmt); 2562 if (ret) { 2563 /* Looks like KVM isn't able to change VSMT mode */ 2564 error_setg(&local_err, 2565 "Failed to set KVM's VSMT mode to %d (errno %d)", 2566 spapr->vsmt, ret); 2567 /* We can live with that if the default one is big enough 2568 * for the number of threads, and a submultiple of the one 2569 * we want. In this case we'll waste some vcpu ids, but 2570 * behaviour will be correct */ 2571 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2572 warn_report_err(local_err); 2573 } else { 2574 if (!vsmt_user) { 2575 error_append_hint(&local_err, 2576 "On PPC, a VM with %d threads/core" 2577 " on a host with %d threads/core" 2578 " requires the use of VSMT mode %d.\n", 2579 smp_threads, kvm_smt, spapr->vsmt); 2580 } 2581 kvmppc_error_append_smt_possible_hint(&local_err); 2582 error_propagate(errp, local_err); 2583 } 2584 } 2585 } 2586 /* else TCG: nothing to do currently */ 2587 } 2588 2589 static void spapr_init_cpus(SpaprMachineState *spapr) 2590 { 2591 MachineState *machine = MACHINE(spapr); 2592 MachineClass *mc = MACHINE_GET_CLASS(machine); 2593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2594 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2595 const CPUArchIdList *possible_cpus; 2596 unsigned int smp_cpus = machine->smp.cpus; 2597 unsigned int smp_threads = machine->smp.threads; 2598 unsigned int max_cpus = machine->smp.max_cpus; 2599 int boot_cores_nr = smp_cpus / smp_threads; 2600 int i; 2601 2602 possible_cpus = mc->possible_cpu_arch_ids(machine); 2603 if (mc->has_hotpluggable_cpus) { 2604 if (smp_cpus % smp_threads) { 2605 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2606 smp_cpus, smp_threads); 2607 exit(1); 2608 } 2609 if (max_cpus % smp_threads) { 2610 error_report("max_cpus (%u) must be multiple of threads (%u)", 2611 max_cpus, smp_threads); 2612 exit(1); 2613 } 2614 } else { 2615 if (max_cpus != smp_cpus) { 2616 error_report("This machine version does not support CPU hotplug"); 2617 exit(1); 2618 } 2619 boot_cores_nr = possible_cpus->len; 2620 } 2621 2622 if (smc->pre_2_10_has_unused_icps) { 2623 int i; 2624 2625 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2626 /* Dummy entries get deregistered when real ICPState objects 2627 * are registered during CPU core hotplug. 2628 */ 2629 pre_2_10_vmstate_register_dummy_icp(i); 2630 } 2631 } 2632 2633 for (i = 0; i < possible_cpus->len; i++) { 2634 int core_id = i * smp_threads; 2635 2636 if (mc->has_hotpluggable_cpus) { 2637 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2638 spapr_vcpu_id(spapr, core_id)); 2639 } 2640 2641 if (i < boot_cores_nr) { 2642 Object *core = object_new(type); 2643 int nr_threads = smp_threads; 2644 2645 /* Handle the partially filled core for older machine types */ 2646 if ((i + 1) * smp_threads >= smp_cpus) { 2647 nr_threads = smp_cpus - i * smp_threads; 2648 } 2649 2650 object_property_set_int(core, "nr-threads", nr_threads, 2651 &error_fatal); 2652 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2653 &error_fatal); 2654 qdev_realize(DEVICE(core), NULL, &error_fatal); 2655 2656 object_unref(core); 2657 } 2658 } 2659 } 2660 2661 static PCIHostState *spapr_create_default_phb(void) 2662 { 2663 DeviceState *dev; 2664 2665 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2666 qdev_prop_set_uint32(dev, "index", 0); 2667 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2668 2669 return PCI_HOST_BRIDGE(dev); 2670 } 2671 2672 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2673 { 2674 MachineState *machine = MACHINE(spapr); 2675 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2676 hwaddr rma_size = machine->ram_size; 2677 hwaddr node0_size = spapr_node0_size(machine); 2678 2679 /* RMA has to fit in the first NUMA node */ 2680 rma_size = MIN(rma_size, node0_size); 2681 2682 /* 2683 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2684 * never exceed that 2685 */ 2686 rma_size = MIN(rma_size, 1 * TiB); 2687 2688 /* 2689 * Clamp the RMA size based on machine type. This is for 2690 * migration compatibility with older qemu versions, which limited 2691 * the RMA size for complicated and mostly bad reasons. 2692 */ 2693 if (smc->rma_limit) { 2694 rma_size = MIN(rma_size, smc->rma_limit); 2695 } 2696 2697 if (rma_size < MIN_RMA_SLOF) { 2698 error_setg(errp, 2699 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2700 "ldMiB guest RMA (Real Mode Area memory)", 2701 MIN_RMA_SLOF / MiB); 2702 return 0; 2703 } 2704 2705 return rma_size; 2706 } 2707 2708 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2709 { 2710 MachineState *machine = MACHINE(spapr); 2711 int i; 2712 2713 for (i = 0; i < machine->ram_slots; i++) { 2714 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2715 } 2716 } 2717 2718 /* pSeries LPAR / sPAPR hardware init */ 2719 static void spapr_machine_init(MachineState *machine) 2720 { 2721 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2722 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2723 MachineClass *mc = MACHINE_GET_CLASS(machine); 2724 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2725 const char *bios_name = machine->firmware ?: bios_default; 2726 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2727 const char *kernel_filename = machine->kernel_filename; 2728 const char *initrd_filename = machine->initrd_filename; 2729 PCIHostState *phb; 2730 bool has_vga; 2731 int i; 2732 MemoryRegion *sysmem = get_system_memory(); 2733 long load_limit, fw_size; 2734 Error *resize_hpt_err = NULL; 2735 2736 if (!filename) { 2737 error_report("Could not find LPAR firmware '%s'", bios_name); 2738 exit(1); 2739 } 2740 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2741 if (fw_size <= 0) { 2742 error_report("Could not load LPAR firmware '%s'", filename); 2743 exit(1); 2744 } 2745 2746 /* 2747 * if Secure VM (PEF) support is configured, then initialize it 2748 */ 2749 pef_kvm_init(machine->cgs, &error_fatal); 2750 2751 msi_nonbroken = true; 2752 2753 QLIST_INIT(&spapr->phbs); 2754 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2755 2756 /* Determine capabilities to run with */ 2757 spapr_caps_init(spapr); 2758 2759 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2760 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2761 /* 2762 * If the user explicitly requested a mode we should either 2763 * supply it, or fail completely (which we do below). But if 2764 * it's not set explicitly, we reset our mode to something 2765 * that works 2766 */ 2767 if (resize_hpt_err) { 2768 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2769 error_free(resize_hpt_err); 2770 resize_hpt_err = NULL; 2771 } else { 2772 spapr->resize_hpt = smc->resize_hpt_default; 2773 } 2774 } 2775 2776 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2777 2778 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2779 /* 2780 * User requested HPT resize, but this host can't supply it. Bail out 2781 */ 2782 error_report_err(resize_hpt_err); 2783 exit(1); 2784 } 2785 error_free(resize_hpt_err); 2786 2787 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2788 2789 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2790 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2791 2792 /* 2793 * VSMT must be set in order to be able to compute VCPU ids, ie to 2794 * call spapr_max_server_number() or spapr_vcpu_id(). 2795 */ 2796 spapr_set_vsmt_mode(spapr, &error_fatal); 2797 2798 /* Set up Interrupt Controller before we create the VCPUs */ 2799 spapr_irq_init(spapr, &error_fatal); 2800 2801 /* Set up containers for ibm,client-architecture-support negotiated options 2802 */ 2803 spapr->ov5 = spapr_ovec_new(); 2804 spapr->ov5_cas = spapr_ovec_new(); 2805 2806 if (smc->dr_lmb_enabled) { 2807 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2808 spapr_validate_node_memory(machine, &error_fatal); 2809 } 2810 2811 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2812 2813 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2814 if (!smc->pre_6_2_numa_affinity) { 2815 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2816 } 2817 2818 /* advertise support for dedicated HP event source to guests */ 2819 if (spapr->use_hotplug_event_source) { 2820 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2821 } 2822 2823 /* advertise support for HPT resizing */ 2824 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2825 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2826 } 2827 2828 /* advertise support for ibm,dyamic-memory-v2 */ 2829 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2830 2831 /* advertise XIVE on POWER9 machines */ 2832 if (spapr->irq->xive) { 2833 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2834 } 2835 2836 /* init CPUs */ 2837 spapr_init_cpus(spapr); 2838 2839 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2840 2841 /* Init numa_assoc_array */ 2842 spapr_numa_associativity_init(spapr, machine); 2843 2844 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2845 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2846 spapr->max_compat_pvr)) { 2847 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2848 /* KVM and TCG always allow GTSE with radix... */ 2849 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2850 } 2851 /* ... but not with hash (currently). */ 2852 2853 if (kvm_enabled()) { 2854 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2855 kvmppc_enable_logical_ci_hcalls(); 2856 kvmppc_enable_set_mode_hcall(); 2857 2858 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2859 kvmppc_enable_clear_ref_mod_hcalls(); 2860 2861 /* Enable H_PAGE_INIT */ 2862 kvmppc_enable_h_page_init(); 2863 } 2864 2865 /* map RAM */ 2866 memory_region_add_subregion(sysmem, 0, machine->ram); 2867 2868 /* always allocate the device memory information */ 2869 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2870 2871 /* initialize hotplug memory address space */ 2872 if (machine->ram_size < machine->maxram_size) { 2873 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2874 /* 2875 * Limit the number of hotpluggable memory slots to half the number 2876 * slots that KVM supports, leaving the other half for PCI and other 2877 * devices. However ensure that number of slots doesn't drop below 32. 2878 */ 2879 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2880 SPAPR_MAX_RAM_SLOTS; 2881 2882 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2883 max_memslots = SPAPR_MAX_RAM_SLOTS; 2884 } 2885 if (machine->ram_slots > max_memslots) { 2886 error_report("Specified number of memory slots %" 2887 PRIu64" exceeds max supported %d", 2888 machine->ram_slots, max_memslots); 2889 exit(1); 2890 } 2891 2892 machine->device_memory->base = ROUND_UP(machine->ram_size, 2893 SPAPR_DEVICE_MEM_ALIGN); 2894 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2895 "device-memory", device_mem_size); 2896 memory_region_add_subregion(sysmem, machine->device_memory->base, 2897 &machine->device_memory->mr); 2898 } 2899 2900 if (smc->dr_lmb_enabled) { 2901 spapr_create_lmb_dr_connectors(spapr); 2902 } 2903 2904 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2905 /* Create the error string for live migration blocker */ 2906 error_setg(&spapr->fwnmi_migration_blocker, 2907 "A machine check is being handled during migration. The handler" 2908 "may run and log hardware error on the destination"); 2909 } 2910 2911 if (mc->nvdimm_supported) { 2912 spapr_create_nvdimm_dr_connectors(spapr); 2913 } 2914 2915 /* Set up RTAS event infrastructure */ 2916 spapr_events_init(spapr); 2917 2918 /* Set up the RTC RTAS interfaces */ 2919 spapr_rtc_create(spapr); 2920 2921 /* Set up VIO bus */ 2922 spapr->vio_bus = spapr_vio_bus_init(); 2923 2924 for (i = 0; serial_hd(i); i++) { 2925 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2926 } 2927 2928 /* We always have at least the nvram device on VIO */ 2929 spapr_create_nvram(spapr); 2930 2931 /* 2932 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2933 * connectors (described in root DT node's "ibm,drc-types" property) 2934 * are pre-initialized here. additional child connectors (such as 2935 * connectors for a PHBs PCI slots) are added as needed during their 2936 * parent's realization. 2937 */ 2938 if (smc->dr_phb_enabled) { 2939 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2940 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2941 } 2942 } 2943 2944 /* Set up PCI */ 2945 spapr_pci_rtas_init(); 2946 2947 phb = spapr_create_default_phb(); 2948 2949 for (i = 0; i < nb_nics; i++) { 2950 NICInfo *nd = &nd_table[i]; 2951 2952 if (!nd->model) { 2953 nd->model = g_strdup("spapr-vlan"); 2954 } 2955 2956 if (g_str_equal(nd->model, "spapr-vlan") || 2957 g_str_equal(nd->model, "ibmveth")) { 2958 spapr_vlan_create(spapr->vio_bus, nd); 2959 } else { 2960 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2961 } 2962 } 2963 2964 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2965 spapr_vscsi_create(spapr->vio_bus); 2966 } 2967 2968 /* Graphics */ 2969 has_vga = spapr_vga_init(phb->bus, &error_fatal); 2970 if (has_vga) { 2971 spapr->want_stdout_path = !machine->enable_graphics; 2972 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2973 } else { 2974 spapr->want_stdout_path = true; 2975 } 2976 2977 if (machine->usb) { 2978 if (smc->use_ohci_by_default) { 2979 pci_create_simple(phb->bus, -1, "pci-ohci"); 2980 } else { 2981 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2982 } 2983 2984 if (has_vga) { 2985 USBBus *usb_bus = usb_bus_find(-1); 2986 2987 usb_create_simple(usb_bus, "usb-kbd"); 2988 usb_create_simple(usb_bus, "usb-mouse"); 2989 } 2990 } 2991 2992 if (kernel_filename) { 2993 uint64_t loaded_addr = 0; 2994 2995 spapr->kernel_size = load_elf(kernel_filename, NULL, 2996 translate_kernel_address, spapr, 2997 NULL, &loaded_addr, NULL, NULL, 1, 2998 PPC_ELF_MACHINE, 0, 0); 2999 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3000 spapr->kernel_size = load_elf(kernel_filename, NULL, 3001 translate_kernel_address, spapr, 3002 NULL, &loaded_addr, NULL, NULL, 0, 3003 PPC_ELF_MACHINE, 0, 0); 3004 spapr->kernel_le = spapr->kernel_size > 0; 3005 } 3006 if (spapr->kernel_size < 0) { 3007 error_report("error loading %s: %s", kernel_filename, 3008 load_elf_strerror(spapr->kernel_size)); 3009 exit(1); 3010 } 3011 3012 if (spapr->kernel_addr != loaded_addr) { 3013 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3014 " to 0x%"PRIx64, 3015 spapr->kernel_addr, loaded_addr); 3016 spapr->kernel_addr = loaded_addr; 3017 } 3018 3019 /* load initrd */ 3020 if (initrd_filename) { 3021 /* Try to locate the initrd in the gap between the kernel 3022 * and the firmware. Add a bit of space just in case 3023 */ 3024 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3025 + 0x1ffff) & ~0xffff; 3026 spapr->initrd_size = load_image_targphys(initrd_filename, 3027 spapr->initrd_base, 3028 load_limit 3029 - spapr->initrd_base); 3030 if (spapr->initrd_size < 0) { 3031 error_report("could not load initial ram disk '%s'", 3032 initrd_filename); 3033 exit(1); 3034 } 3035 } 3036 } 3037 3038 /* FIXME: Should register things through the MachineState's qdev 3039 * interface, this is a legacy from the sPAPREnvironment structure 3040 * which predated MachineState but had a similar function */ 3041 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3042 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3043 &savevm_htab_handlers, spapr); 3044 3045 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3046 3047 qemu_register_boot_set(spapr_boot_set, spapr); 3048 3049 /* 3050 * Nothing needs to be done to resume a suspended guest because 3051 * suspending does not change the machine state, so no need for 3052 * a ->wakeup method. 3053 */ 3054 qemu_register_wakeup_support(); 3055 3056 if (kvm_enabled()) { 3057 /* to stop and start vmclock */ 3058 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3059 &spapr->tb); 3060 3061 kvmppc_spapr_enable_inkernel_multitce(); 3062 } 3063 3064 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3065 if (spapr->vof) { 3066 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3067 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3068 } 3069 3070 spapr_watchdog_init(spapr); 3071 } 3072 3073 #define DEFAULT_KVM_TYPE "auto" 3074 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3075 { 3076 /* 3077 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3078 * accomodate the 'HV' and 'PV' formats that exists in the 3079 * wild. The 'auto' mode is being introduced already as 3080 * lower-case, thus we don't need to bother checking for 3081 * "AUTO". 3082 */ 3083 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3084 return 0; 3085 } 3086 3087 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3088 return 1; 3089 } 3090 3091 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3092 return 2; 3093 } 3094 3095 error_report("Unknown kvm-type specified '%s'", vm_type); 3096 exit(1); 3097 } 3098 3099 /* 3100 * Implementation of an interface to adjust firmware path 3101 * for the bootindex property handling. 3102 */ 3103 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3104 DeviceState *dev) 3105 { 3106 #define CAST(type, obj, name) \ 3107 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3108 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3109 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3110 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3111 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3112 3113 if (d && bus) { 3114 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3115 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3116 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3117 3118 if (spapr) { 3119 /* 3120 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3121 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3122 * 0x8000 | (target << 8) | (bus << 5) | lun 3123 * (see the "Logical unit addressing format" table in SAM5) 3124 */ 3125 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3126 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3127 (uint64_t)id << 48); 3128 } else if (virtio) { 3129 /* 3130 * We use SRP luns of the form 01000000 | (target << 8) | lun 3131 * in the top 32 bits of the 64-bit LUN 3132 * Note: the quote above is from SLOF and it is wrong, 3133 * the actual binding is: 3134 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3135 */ 3136 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3137 if (d->lun >= 256) { 3138 /* Use the LUN "flat space addressing method" */ 3139 id |= 0x4000; 3140 } 3141 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3142 (uint64_t)id << 32); 3143 } else if (usb) { 3144 /* 3145 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3146 * in the top 32 bits of the 64-bit LUN 3147 */ 3148 unsigned usb_port = atoi(usb->port->path); 3149 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3150 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3151 (uint64_t)id << 32); 3152 } 3153 } 3154 3155 /* 3156 * SLOF probes the USB devices, and if it recognizes that the device is a 3157 * storage device, it changes its name to "storage" instead of "usb-host", 3158 * and additionally adds a child node for the SCSI LUN, so the correct 3159 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3160 */ 3161 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3162 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3163 if (usb_device_is_scsi_storage(usbdev)) { 3164 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3165 } 3166 } 3167 3168 if (phb) { 3169 /* Replace "pci" with "pci@800000020000000" */ 3170 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3171 } 3172 3173 if (vsc) { 3174 /* Same logic as virtio above */ 3175 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3176 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3177 } 3178 3179 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3180 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3181 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3182 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3183 } 3184 3185 if (pcidev) { 3186 return spapr_pci_fw_dev_name(pcidev); 3187 } 3188 3189 return NULL; 3190 } 3191 3192 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3193 { 3194 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3195 3196 return g_strdup(spapr->kvm_type); 3197 } 3198 3199 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3200 { 3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3202 3203 g_free(spapr->kvm_type); 3204 spapr->kvm_type = g_strdup(value); 3205 } 3206 3207 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3208 { 3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3210 3211 return spapr->use_hotplug_event_source; 3212 } 3213 3214 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3215 Error **errp) 3216 { 3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3218 3219 spapr->use_hotplug_event_source = value; 3220 } 3221 3222 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3223 { 3224 return true; 3225 } 3226 3227 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3228 { 3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3230 3231 switch (spapr->resize_hpt) { 3232 case SPAPR_RESIZE_HPT_DEFAULT: 3233 return g_strdup("default"); 3234 case SPAPR_RESIZE_HPT_DISABLED: 3235 return g_strdup("disabled"); 3236 case SPAPR_RESIZE_HPT_ENABLED: 3237 return g_strdup("enabled"); 3238 case SPAPR_RESIZE_HPT_REQUIRED: 3239 return g_strdup("required"); 3240 } 3241 g_assert_not_reached(); 3242 } 3243 3244 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3245 { 3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3247 3248 if (strcmp(value, "default") == 0) { 3249 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3250 } else if (strcmp(value, "disabled") == 0) { 3251 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3252 } else if (strcmp(value, "enabled") == 0) { 3253 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3254 } else if (strcmp(value, "required") == 0) { 3255 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3256 } else { 3257 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3258 } 3259 } 3260 3261 static bool spapr_get_vof(Object *obj, Error **errp) 3262 { 3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3264 3265 return spapr->vof != NULL; 3266 } 3267 3268 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3269 { 3270 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3271 3272 if (spapr->vof) { 3273 vof_cleanup(spapr->vof); 3274 g_free(spapr->vof); 3275 spapr->vof = NULL; 3276 } 3277 if (!value) { 3278 return; 3279 } 3280 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3281 } 3282 3283 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3284 { 3285 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3286 3287 if (spapr->irq == &spapr_irq_xics_legacy) { 3288 return g_strdup("legacy"); 3289 } else if (spapr->irq == &spapr_irq_xics) { 3290 return g_strdup("xics"); 3291 } else if (spapr->irq == &spapr_irq_xive) { 3292 return g_strdup("xive"); 3293 } else if (spapr->irq == &spapr_irq_dual) { 3294 return g_strdup("dual"); 3295 } 3296 g_assert_not_reached(); 3297 } 3298 3299 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3300 { 3301 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3302 3303 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3304 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3305 return; 3306 } 3307 3308 /* The legacy IRQ backend can not be set */ 3309 if (strcmp(value, "xics") == 0) { 3310 spapr->irq = &spapr_irq_xics; 3311 } else if (strcmp(value, "xive") == 0) { 3312 spapr->irq = &spapr_irq_xive; 3313 } else if (strcmp(value, "dual") == 0) { 3314 spapr->irq = &spapr_irq_dual; 3315 } else { 3316 error_setg(errp, "Bad value for \"ic-mode\" property"); 3317 } 3318 } 3319 3320 static char *spapr_get_host_model(Object *obj, Error **errp) 3321 { 3322 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3323 3324 return g_strdup(spapr->host_model); 3325 } 3326 3327 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3328 { 3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3330 3331 g_free(spapr->host_model); 3332 spapr->host_model = g_strdup(value); 3333 } 3334 3335 static char *spapr_get_host_serial(Object *obj, Error **errp) 3336 { 3337 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3338 3339 return g_strdup(spapr->host_serial); 3340 } 3341 3342 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3343 { 3344 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3345 3346 g_free(spapr->host_serial); 3347 spapr->host_serial = g_strdup(value); 3348 } 3349 3350 static void spapr_instance_init(Object *obj) 3351 { 3352 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3353 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3354 MachineState *ms = MACHINE(spapr); 3355 MachineClass *mc = MACHINE_GET_CLASS(ms); 3356 3357 /* 3358 * NVDIMM support went live in 5.1 without considering that, in 3359 * other archs, the user needs to enable NVDIMM support with the 3360 * 'nvdimm' machine option and the default behavior is NVDIMM 3361 * support disabled. It is too late to roll back to the standard 3362 * behavior without breaking 5.1 guests. 3363 */ 3364 if (mc->nvdimm_supported) { 3365 ms->nvdimms_state->is_enabled = true; 3366 } 3367 3368 spapr->htab_fd = -1; 3369 spapr->use_hotplug_event_source = true; 3370 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3371 object_property_add_str(obj, "kvm-type", 3372 spapr_get_kvm_type, spapr_set_kvm_type); 3373 object_property_set_description(obj, "kvm-type", 3374 "Specifies the KVM virtualization mode (auto," 3375 " hv, pr). Defaults to 'auto'. This mode will use" 3376 " any available KVM module loaded in the host," 3377 " where kvm_hv takes precedence if both kvm_hv and" 3378 " kvm_pr are loaded."); 3379 object_property_add_bool(obj, "modern-hotplug-events", 3380 spapr_get_modern_hotplug_events, 3381 spapr_set_modern_hotplug_events); 3382 object_property_set_description(obj, "modern-hotplug-events", 3383 "Use dedicated hotplug event mechanism in" 3384 " place of standard EPOW events when possible" 3385 " (required for memory hot-unplug support)"); 3386 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3387 "Maximum permitted CPU compatibility mode"); 3388 3389 object_property_add_str(obj, "resize-hpt", 3390 spapr_get_resize_hpt, spapr_set_resize_hpt); 3391 object_property_set_description(obj, "resize-hpt", 3392 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3393 object_property_add_uint32_ptr(obj, "vsmt", 3394 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3395 object_property_set_description(obj, "vsmt", 3396 "Virtual SMT: KVM behaves as if this were" 3397 " the host's SMT mode"); 3398 3399 object_property_add_bool(obj, "vfio-no-msix-emulation", 3400 spapr_get_msix_emulation, NULL); 3401 3402 object_property_add_uint64_ptr(obj, "kernel-addr", 3403 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3404 object_property_set_description(obj, "kernel-addr", 3405 stringify(KERNEL_LOAD_ADDR) 3406 " for -kernel is the default"); 3407 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3408 3409 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3410 object_property_set_description(obj, "x-vof", 3411 "Enable Virtual Open Firmware (experimental)"); 3412 3413 /* The machine class defines the default interrupt controller mode */ 3414 spapr->irq = smc->irq; 3415 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3416 spapr_set_ic_mode); 3417 object_property_set_description(obj, "ic-mode", 3418 "Specifies the interrupt controller mode (xics, xive, dual)"); 3419 3420 object_property_add_str(obj, "host-model", 3421 spapr_get_host_model, spapr_set_host_model); 3422 object_property_set_description(obj, "host-model", 3423 "Host model to advertise in guest device tree"); 3424 object_property_add_str(obj, "host-serial", 3425 spapr_get_host_serial, spapr_set_host_serial); 3426 object_property_set_description(obj, "host-serial", 3427 "Host serial number to advertise in guest device tree"); 3428 } 3429 3430 static void spapr_machine_finalizefn(Object *obj) 3431 { 3432 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3433 3434 g_free(spapr->kvm_type); 3435 } 3436 3437 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3438 { 3439 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3440 PowerPCCPU *cpu = POWERPC_CPU(cs); 3441 CPUPPCState *env = &cpu->env; 3442 3443 cpu_synchronize_state(cs); 3444 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3445 if (spapr->fwnmi_system_reset_addr != -1) { 3446 uint64_t rtas_addr, addr; 3447 3448 /* get rtas addr from fdt */ 3449 rtas_addr = spapr_get_rtas_addr(); 3450 if (!rtas_addr) { 3451 qemu_system_guest_panicked(NULL); 3452 return; 3453 } 3454 3455 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3456 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3457 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3458 env->gpr[3] = addr; 3459 } 3460 ppc_cpu_do_system_reset(cs); 3461 if (spapr->fwnmi_system_reset_addr != -1) { 3462 env->nip = spapr->fwnmi_system_reset_addr; 3463 } 3464 } 3465 3466 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3467 { 3468 CPUState *cs; 3469 3470 CPU_FOREACH(cs) { 3471 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3472 } 3473 } 3474 3475 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3476 void *fdt, int *fdt_start_offset, Error **errp) 3477 { 3478 uint64_t addr; 3479 uint32_t node; 3480 3481 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3482 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3483 &error_abort); 3484 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3485 SPAPR_MEMORY_BLOCK_SIZE); 3486 return 0; 3487 } 3488 3489 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3490 bool dedicated_hp_event_source) 3491 { 3492 SpaprDrc *drc; 3493 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3494 int i; 3495 uint64_t addr = addr_start; 3496 bool hotplugged = spapr_drc_hotplugged(dev); 3497 3498 for (i = 0; i < nr_lmbs; i++) { 3499 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3500 addr / SPAPR_MEMORY_BLOCK_SIZE); 3501 g_assert(drc); 3502 3503 /* 3504 * memory_device_get_free_addr() provided a range of free addresses 3505 * that doesn't overlap with any existing mapping at pre-plug. The 3506 * corresponding LMB DRCs are thus assumed to be all attachable. 3507 */ 3508 spapr_drc_attach(drc, dev); 3509 if (!hotplugged) { 3510 spapr_drc_reset(drc); 3511 } 3512 addr += SPAPR_MEMORY_BLOCK_SIZE; 3513 } 3514 /* send hotplug notification to the 3515 * guest only in case of hotplugged memory 3516 */ 3517 if (hotplugged) { 3518 if (dedicated_hp_event_source) { 3519 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3520 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3521 g_assert(drc); 3522 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3523 nr_lmbs, 3524 spapr_drc_index(drc)); 3525 } else { 3526 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3527 nr_lmbs); 3528 } 3529 } 3530 } 3531 3532 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3533 { 3534 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3535 PCDIMMDevice *dimm = PC_DIMM(dev); 3536 uint64_t size, addr; 3537 int64_t slot; 3538 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3539 3540 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3541 3542 pc_dimm_plug(dimm, MACHINE(ms)); 3543 3544 if (!is_nvdimm) { 3545 addr = object_property_get_uint(OBJECT(dimm), 3546 PC_DIMM_ADDR_PROP, &error_abort); 3547 spapr_add_lmbs(dev, addr, size, 3548 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3549 } else { 3550 slot = object_property_get_int(OBJECT(dimm), 3551 PC_DIMM_SLOT_PROP, &error_abort); 3552 /* We should have valid slot number at this point */ 3553 g_assert(slot >= 0); 3554 spapr_add_nvdimm(dev, slot); 3555 } 3556 } 3557 3558 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3559 Error **errp) 3560 { 3561 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3562 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3563 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3564 PCDIMMDevice *dimm = PC_DIMM(dev); 3565 Error *local_err = NULL; 3566 uint64_t size; 3567 Object *memdev; 3568 hwaddr pagesize; 3569 3570 if (!smc->dr_lmb_enabled) { 3571 error_setg(errp, "Memory hotplug not supported for this machine"); 3572 return; 3573 } 3574 3575 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3576 if (local_err) { 3577 error_propagate(errp, local_err); 3578 return; 3579 } 3580 3581 if (is_nvdimm) { 3582 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3583 return; 3584 } 3585 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3586 error_setg(errp, "Hotplugged memory size must be a multiple of " 3587 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3588 return; 3589 } 3590 3591 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3592 &error_abort); 3593 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3594 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3595 return; 3596 } 3597 3598 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3599 } 3600 3601 struct SpaprDimmState { 3602 PCDIMMDevice *dimm; 3603 uint32_t nr_lmbs; 3604 QTAILQ_ENTRY(SpaprDimmState) next; 3605 }; 3606 3607 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3608 PCDIMMDevice *dimm) 3609 { 3610 SpaprDimmState *dimm_state = NULL; 3611 3612 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3613 if (dimm_state->dimm == dimm) { 3614 break; 3615 } 3616 } 3617 return dimm_state; 3618 } 3619 3620 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3621 uint32_t nr_lmbs, 3622 PCDIMMDevice *dimm) 3623 { 3624 SpaprDimmState *ds = NULL; 3625 3626 /* 3627 * If this request is for a DIMM whose removal had failed earlier 3628 * (due to guest's refusal to remove the LMBs), we would have this 3629 * dimm already in the pending_dimm_unplugs list. In that 3630 * case don't add again. 3631 */ 3632 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3633 if (!ds) { 3634 ds = g_new0(SpaprDimmState, 1); 3635 ds->nr_lmbs = nr_lmbs; 3636 ds->dimm = dimm; 3637 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3638 } 3639 return ds; 3640 } 3641 3642 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3643 SpaprDimmState *dimm_state) 3644 { 3645 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3646 g_free(dimm_state); 3647 } 3648 3649 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3650 PCDIMMDevice *dimm) 3651 { 3652 SpaprDrc *drc; 3653 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3654 &error_abort); 3655 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3656 uint32_t avail_lmbs = 0; 3657 uint64_t addr_start, addr; 3658 int i; 3659 3660 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3661 &error_abort); 3662 3663 addr = addr_start; 3664 for (i = 0; i < nr_lmbs; i++) { 3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3666 addr / SPAPR_MEMORY_BLOCK_SIZE); 3667 g_assert(drc); 3668 if (drc->dev) { 3669 avail_lmbs++; 3670 } 3671 addr += SPAPR_MEMORY_BLOCK_SIZE; 3672 } 3673 3674 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3675 } 3676 3677 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3678 { 3679 SpaprDimmState *ds; 3680 PCDIMMDevice *dimm; 3681 SpaprDrc *drc; 3682 uint32_t nr_lmbs; 3683 uint64_t size, addr_start, addr; 3684 g_autofree char *qapi_error = NULL; 3685 int i; 3686 3687 if (!dev) { 3688 return; 3689 } 3690 3691 dimm = PC_DIMM(dev); 3692 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3693 3694 /* 3695 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3696 * unplug state, but one of its DRC is marked as unplug_requested. 3697 * This is bad and weird enough to g_assert() out. 3698 */ 3699 g_assert(ds); 3700 3701 spapr_pending_dimm_unplugs_remove(spapr, ds); 3702 3703 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3704 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3705 3706 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3707 &error_abort); 3708 3709 addr = addr_start; 3710 for (i = 0; i < nr_lmbs; i++) { 3711 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3712 addr / SPAPR_MEMORY_BLOCK_SIZE); 3713 g_assert(drc); 3714 3715 drc->unplug_requested = false; 3716 addr += SPAPR_MEMORY_BLOCK_SIZE; 3717 } 3718 3719 /* 3720 * Tell QAPI that something happened and the memory 3721 * hotunplug wasn't successful. Keep sending 3722 * MEM_UNPLUG_ERROR even while sending 3723 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3724 * MEM_UNPLUG_ERROR is due. 3725 */ 3726 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3727 "for device %s", dev->id); 3728 3729 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3730 3731 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id, 3732 dev->canonical_path); 3733 } 3734 3735 /* Callback to be called during DRC release. */ 3736 void spapr_lmb_release(DeviceState *dev) 3737 { 3738 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3739 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3740 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3741 3742 /* This information will get lost if a migration occurs 3743 * during the unplug process. In this case recover it. */ 3744 if (ds == NULL) { 3745 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3746 g_assert(ds); 3747 /* The DRC being examined by the caller at least must be counted */ 3748 g_assert(ds->nr_lmbs); 3749 } 3750 3751 if (--ds->nr_lmbs) { 3752 return; 3753 } 3754 3755 /* 3756 * Now that all the LMBs have been removed by the guest, call the 3757 * unplug handler chain. This can never fail. 3758 */ 3759 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3760 object_unparent(OBJECT(dev)); 3761 } 3762 3763 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3764 { 3765 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3766 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3767 3768 /* We really shouldn't get this far without anything to unplug */ 3769 g_assert(ds); 3770 3771 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3772 qdev_unrealize(dev); 3773 spapr_pending_dimm_unplugs_remove(spapr, ds); 3774 } 3775 3776 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3777 DeviceState *dev, Error **errp) 3778 { 3779 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3780 PCDIMMDevice *dimm = PC_DIMM(dev); 3781 uint32_t nr_lmbs; 3782 uint64_t size, addr_start, addr; 3783 int i; 3784 SpaprDrc *drc; 3785 3786 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3787 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3788 return; 3789 } 3790 3791 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3792 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3793 3794 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3795 &error_abort); 3796 3797 /* 3798 * An existing pending dimm state for this DIMM means that there is an 3799 * unplug operation in progress, waiting for the spapr_lmb_release 3800 * callback to complete the job (BQL can't cover that far). In this case, 3801 * bail out to avoid detaching DRCs that were already released. 3802 */ 3803 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3804 error_setg(errp, "Memory unplug already in progress for device %s", 3805 dev->id); 3806 return; 3807 } 3808 3809 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3810 3811 addr = addr_start; 3812 for (i = 0; i < nr_lmbs; i++) { 3813 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3814 addr / SPAPR_MEMORY_BLOCK_SIZE); 3815 g_assert(drc); 3816 3817 spapr_drc_unplug_request(drc); 3818 addr += SPAPR_MEMORY_BLOCK_SIZE; 3819 } 3820 3821 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3822 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3823 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3824 nr_lmbs, spapr_drc_index(drc)); 3825 } 3826 3827 /* Callback to be called during DRC release. */ 3828 void spapr_core_release(DeviceState *dev) 3829 { 3830 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3831 3832 /* Call the unplug handler chain. This can never fail. */ 3833 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3834 object_unparent(OBJECT(dev)); 3835 } 3836 3837 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3838 { 3839 MachineState *ms = MACHINE(hotplug_dev); 3840 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3841 CPUCore *cc = CPU_CORE(dev); 3842 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3843 3844 if (smc->pre_2_10_has_unused_icps) { 3845 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3846 int i; 3847 3848 for (i = 0; i < cc->nr_threads; i++) { 3849 CPUState *cs = CPU(sc->threads[i]); 3850 3851 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3852 } 3853 } 3854 3855 assert(core_slot); 3856 core_slot->cpu = NULL; 3857 qdev_unrealize(dev); 3858 } 3859 3860 static 3861 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3862 Error **errp) 3863 { 3864 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3865 int index; 3866 SpaprDrc *drc; 3867 CPUCore *cc = CPU_CORE(dev); 3868 3869 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3870 error_setg(errp, "Unable to find CPU core with core-id: %d", 3871 cc->core_id); 3872 return; 3873 } 3874 if (index == 0) { 3875 error_setg(errp, "Boot CPU core may not be unplugged"); 3876 return; 3877 } 3878 3879 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3880 spapr_vcpu_id(spapr, cc->core_id)); 3881 g_assert(drc); 3882 3883 if (!spapr_drc_unplug_requested(drc)) { 3884 spapr_drc_unplug_request(drc); 3885 } 3886 3887 /* 3888 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3889 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3890 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3891 * attempt (e.g. the kernel will refuse to remove the last online 3892 * CPU), we will never attempt it again because unplug_requested 3893 * will still be 'true' in that case. 3894 */ 3895 spapr_hotplug_req_remove_by_index(drc); 3896 } 3897 3898 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3899 void *fdt, int *fdt_start_offset, Error **errp) 3900 { 3901 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3902 CPUState *cs = CPU(core->threads[0]); 3903 PowerPCCPU *cpu = POWERPC_CPU(cs); 3904 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3905 int id = spapr_get_vcpu_id(cpu); 3906 g_autofree char *nodename = NULL; 3907 int offset; 3908 3909 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3910 offset = fdt_add_subnode(fdt, 0, nodename); 3911 3912 spapr_dt_cpu(cs, fdt, offset, spapr); 3913 3914 /* 3915 * spapr_dt_cpu() does not fill the 'name' property in the 3916 * CPU node. The function is called during boot process, before 3917 * and after CAS, and overwriting the 'name' property written 3918 * by SLOF is not allowed. 3919 * 3920 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3921 * CPUs more compatible with the coldplugged ones, which have 3922 * the 'name' property. Linux Kernel also relies on this 3923 * property to identify CPU nodes. 3924 */ 3925 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3926 3927 *fdt_start_offset = offset; 3928 return 0; 3929 } 3930 3931 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3932 { 3933 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3934 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3935 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3936 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3937 CPUCore *cc = CPU_CORE(dev); 3938 CPUState *cs; 3939 SpaprDrc *drc; 3940 CPUArchId *core_slot; 3941 int index; 3942 bool hotplugged = spapr_drc_hotplugged(dev); 3943 int i; 3944 3945 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3946 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3947 3948 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3949 spapr_vcpu_id(spapr, cc->core_id)); 3950 3951 g_assert(drc || !mc->has_hotpluggable_cpus); 3952 3953 if (drc) { 3954 /* 3955 * spapr_core_pre_plug() already buys us this is a brand new 3956 * core being plugged into a free slot. Nothing should already 3957 * be attached to the corresponding DRC. 3958 */ 3959 spapr_drc_attach(drc, dev); 3960 3961 if (hotplugged) { 3962 /* 3963 * Send hotplug notification interrupt to the guest only 3964 * in case of hotplugged CPUs. 3965 */ 3966 spapr_hotplug_req_add_by_index(drc); 3967 } else { 3968 spapr_drc_reset(drc); 3969 } 3970 } 3971 3972 core_slot->cpu = OBJECT(dev); 3973 3974 /* 3975 * Set compatibility mode to match the boot CPU, which was either set 3976 * by the machine reset code or by CAS. This really shouldn't fail at 3977 * this point. 3978 */ 3979 if (hotplugged) { 3980 for (i = 0; i < cc->nr_threads; i++) { 3981 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3982 &error_abort); 3983 } 3984 } 3985 3986 if (smc->pre_2_10_has_unused_icps) { 3987 for (i = 0; i < cc->nr_threads; i++) { 3988 cs = CPU(core->threads[i]); 3989 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3990 } 3991 } 3992 } 3993 3994 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3995 Error **errp) 3996 { 3997 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3998 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3999 CPUCore *cc = CPU_CORE(dev); 4000 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4001 const char *type = object_get_typename(OBJECT(dev)); 4002 CPUArchId *core_slot; 4003 int index; 4004 unsigned int smp_threads = machine->smp.threads; 4005 4006 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4007 error_setg(errp, "CPU hotplug not supported for this machine"); 4008 return; 4009 } 4010 4011 if (strcmp(base_core_type, type)) { 4012 error_setg(errp, "CPU core type should be %s", base_core_type); 4013 return; 4014 } 4015 4016 if (cc->core_id % smp_threads) { 4017 error_setg(errp, "invalid core id %d", cc->core_id); 4018 return; 4019 } 4020 4021 /* 4022 * In general we should have homogeneous threads-per-core, but old 4023 * (pre hotplug support) machine types allow the last core to have 4024 * reduced threads as a compatibility hack for when we allowed 4025 * total vcpus not a multiple of threads-per-core. 4026 */ 4027 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4028 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4029 smp_threads); 4030 return; 4031 } 4032 4033 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4034 if (!core_slot) { 4035 error_setg(errp, "core id %d out of range", cc->core_id); 4036 return; 4037 } 4038 4039 if (core_slot->cpu) { 4040 error_setg(errp, "core %d already populated", cc->core_id); 4041 return; 4042 } 4043 4044 numa_cpu_pre_plug(core_slot, dev, errp); 4045 } 4046 4047 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4048 void *fdt, int *fdt_start_offset, Error **errp) 4049 { 4050 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4051 int intc_phandle; 4052 4053 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4054 if (intc_phandle <= 0) { 4055 return -1; 4056 } 4057 4058 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4059 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4060 return -1; 4061 } 4062 4063 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4064 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4065 4066 return 0; 4067 } 4068 4069 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4070 Error **errp) 4071 { 4072 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4073 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4074 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4075 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4076 SpaprDrc *drc; 4077 4078 if (dev->hotplugged && !smc->dr_phb_enabled) { 4079 error_setg(errp, "PHB hotplug not supported for this machine"); 4080 return false; 4081 } 4082 4083 if (sphb->index == (uint32_t)-1) { 4084 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4085 return false; 4086 } 4087 4088 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4089 if (drc && drc->dev) { 4090 error_setg(errp, "PHB %d already attached", sphb->index); 4091 return false; 4092 } 4093 4094 /* 4095 * This will check that sphb->index doesn't exceed the maximum number of 4096 * PHBs for the current machine type. 4097 */ 4098 return 4099 smc->phb_placement(spapr, sphb->index, 4100 &sphb->buid, &sphb->io_win_addr, 4101 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4102 windows_supported, sphb->dma_liobn, 4103 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4104 errp); 4105 } 4106 4107 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4108 { 4109 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4110 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4111 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4112 SpaprDrc *drc; 4113 bool hotplugged = spapr_drc_hotplugged(dev); 4114 4115 if (!smc->dr_phb_enabled) { 4116 return; 4117 } 4118 4119 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4120 /* hotplug hooks should check it's enabled before getting this far */ 4121 assert(drc); 4122 4123 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4124 spapr_drc_attach(drc, dev); 4125 4126 if (hotplugged) { 4127 spapr_hotplug_req_add_by_index(drc); 4128 } else { 4129 spapr_drc_reset(drc); 4130 } 4131 } 4132 4133 void spapr_phb_release(DeviceState *dev) 4134 { 4135 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4136 4137 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4138 object_unparent(OBJECT(dev)); 4139 } 4140 4141 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4142 { 4143 qdev_unrealize(dev); 4144 } 4145 4146 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4147 DeviceState *dev, Error **errp) 4148 { 4149 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4150 SpaprDrc *drc; 4151 4152 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4153 assert(drc); 4154 4155 if (!spapr_drc_unplug_requested(drc)) { 4156 spapr_drc_unplug_request(drc); 4157 spapr_hotplug_req_remove_by_index(drc); 4158 } else { 4159 error_setg(errp, 4160 "PCI Host Bridge unplug already in progress for device %s", 4161 dev->id); 4162 } 4163 } 4164 4165 static 4166 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4167 Error **errp) 4168 { 4169 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4170 4171 if (spapr->tpm_proxy != NULL) { 4172 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4173 return false; 4174 } 4175 4176 return true; 4177 } 4178 4179 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4180 { 4181 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4182 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4183 4184 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4185 g_assert(spapr->tpm_proxy == NULL); 4186 4187 spapr->tpm_proxy = tpm_proxy; 4188 } 4189 4190 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4191 { 4192 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4193 4194 qdev_unrealize(dev); 4195 object_unparent(OBJECT(dev)); 4196 spapr->tpm_proxy = NULL; 4197 } 4198 4199 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4200 DeviceState *dev, Error **errp) 4201 { 4202 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4203 spapr_memory_plug(hotplug_dev, dev); 4204 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4205 spapr_core_plug(hotplug_dev, dev); 4206 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4207 spapr_phb_plug(hotplug_dev, dev); 4208 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4209 spapr_tpm_proxy_plug(hotplug_dev, dev); 4210 } 4211 } 4212 4213 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4214 DeviceState *dev, Error **errp) 4215 { 4216 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4217 spapr_memory_unplug(hotplug_dev, dev); 4218 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4219 spapr_core_unplug(hotplug_dev, dev); 4220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4221 spapr_phb_unplug(hotplug_dev, dev); 4222 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4223 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4224 } 4225 } 4226 4227 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4228 { 4229 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4230 /* 4231 * CAS will process all pending unplug requests. 4232 * 4233 * HACK: a guest could theoretically have cleared all bits in OV5, 4234 * but none of the guests we care for do. 4235 */ 4236 spapr_ovec_empty(spapr->ov5_cas); 4237 } 4238 4239 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4240 DeviceState *dev, Error **errp) 4241 { 4242 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4243 MachineClass *mc = MACHINE_GET_CLASS(sms); 4244 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4245 4246 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4247 if (spapr_memory_hot_unplug_supported(sms)) { 4248 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4249 } else { 4250 error_setg(errp, "Memory hot unplug not supported for this guest"); 4251 } 4252 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4253 if (!mc->has_hotpluggable_cpus) { 4254 error_setg(errp, "CPU hot unplug not supported on this machine"); 4255 return; 4256 } 4257 spapr_core_unplug_request(hotplug_dev, dev, errp); 4258 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4259 if (!smc->dr_phb_enabled) { 4260 error_setg(errp, "PHB hot unplug not supported on this machine"); 4261 return; 4262 } 4263 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4264 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4265 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4266 } 4267 } 4268 4269 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4270 DeviceState *dev, Error **errp) 4271 { 4272 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4273 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4274 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4275 spapr_core_pre_plug(hotplug_dev, dev, errp); 4276 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4277 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4278 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4279 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4280 } 4281 } 4282 4283 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4284 DeviceState *dev) 4285 { 4286 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4287 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4288 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4289 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4290 return HOTPLUG_HANDLER(machine); 4291 } 4292 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4293 PCIDevice *pcidev = PCI_DEVICE(dev); 4294 PCIBus *root = pci_device_root_bus(pcidev); 4295 SpaprPhbState *phb = 4296 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4297 TYPE_SPAPR_PCI_HOST_BRIDGE); 4298 4299 if (phb) { 4300 return HOTPLUG_HANDLER(phb); 4301 } 4302 } 4303 return NULL; 4304 } 4305 4306 static CpuInstanceProperties 4307 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4308 { 4309 CPUArchId *core_slot; 4310 MachineClass *mc = MACHINE_GET_CLASS(machine); 4311 4312 /* make sure possible_cpu are intialized */ 4313 mc->possible_cpu_arch_ids(machine); 4314 /* get CPU core slot containing thread that matches cpu_index */ 4315 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4316 assert(core_slot); 4317 return core_slot->props; 4318 } 4319 4320 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4321 { 4322 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4323 } 4324 4325 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4326 { 4327 int i; 4328 unsigned int smp_threads = machine->smp.threads; 4329 unsigned int smp_cpus = machine->smp.cpus; 4330 const char *core_type; 4331 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4332 MachineClass *mc = MACHINE_GET_CLASS(machine); 4333 4334 if (!mc->has_hotpluggable_cpus) { 4335 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4336 } 4337 if (machine->possible_cpus) { 4338 assert(machine->possible_cpus->len == spapr_max_cores); 4339 return machine->possible_cpus; 4340 } 4341 4342 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4343 if (!core_type) { 4344 error_report("Unable to find sPAPR CPU Core definition"); 4345 exit(1); 4346 } 4347 4348 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4349 sizeof(CPUArchId) * spapr_max_cores); 4350 machine->possible_cpus->len = spapr_max_cores; 4351 for (i = 0; i < machine->possible_cpus->len; i++) { 4352 int core_id = i * smp_threads; 4353 4354 machine->possible_cpus->cpus[i].type = core_type; 4355 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4356 machine->possible_cpus->cpus[i].arch_id = core_id; 4357 machine->possible_cpus->cpus[i].props.has_core_id = true; 4358 machine->possible_cpus->cpus[i].props.core_id = core_id; 4359 } 4360 return machine->possible_cpus; 4361 } 4362 4363 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4364 uint64_t *buid, hwaddr *pio, 4365 hwaddr *mmio32, hwaddr *mmio64, 4366 unsigned n_dma, uint32_t *liobns, 4367 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4368 { 4369 /* 4370 * New-style PHB window placement. 4371 * 4372 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4373 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4374 * windows. 4375 * 4376 * Some guest kernels can't work with MMIO windows above 1<<46 4377 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4378 * 4379 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4380 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4381 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4382 * 1TiB 64-bit MMIO windows for each PHB. 4383 */ 4384 const uint64_t base_buid = 0x800000020000000ULL; 4385 int i; 4386 4387 /* Sanity check natural alignments */ 4388 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4389 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4390 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4391 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4392 /* Sanity check bounds */ 4393 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4394 SPAPR_PCI_MEM32_WIN_SIZE); 4395 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4396 SPAPR_PCI_MEM64_WIN_SIZE); 4397 4398 if (index >= SPAPR_MAX_PHBS) { 4399 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4400 SPAPR_MAX_PHBS - 1); 4401 return false; 4402 } 4403 4404 *buid = base_buid + index; 4405 for (i = 0; i < n_dma; ++i) { 4406 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4407 } 4408 4409 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4410 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4411 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4412 4413 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4414 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4415 return true; 4416 } 4417 4418 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4419 { 4420 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4421 4422 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4423 } 4424 4425 static void spapr_ics_resend(XICSFabric *dev) 4426 { 4427 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4428 4429 ics_resend(spapr->ics); 4430 } 4431 4432 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4433 { 4434 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4435 4436 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4437 } 4438 4439 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4440 Monitor *mon) 4441 { 4442 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4443 4444 spapr_irq_print_info(spapr, mon); 4445 monitor_printf(mon, "irqchip: %s\n", 4446 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4447 } 4448 4449 /* 4450 * This is a XIVE only operation 4451 */ 4452 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4453 uint8_t nvt_blk, uint32_t nvt_idx, 4454 bool cam_ignore, uint8_t priority, 4455 uint32_t logic_serv, XiveTCTXMatch *match) 4456 { 4457 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4458 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4459 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4460 int count; 4461 4462 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4463 priority, logic_serv, match); 4464 if (count < 0) { 4465 return count; 4466 } 4467 4468 /* 4469 * When we implement the save and restore of the thread interrupt 4470 * contexts in the enter/exit CPU handlers of the machine and the 4471 * escalations in QEMU, we should be able to handle non dispatched 4472 * vCPUs. 4473 * 4474 * Until this is done, the sPAPR machine should find at least one 4475 * matching context always. 4476 */ 4477 if (count == 0) { 4478 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4479 nvt_blk, nvt_idx); 4480 } 4481 4482 return count; 4483 } 4484 4485 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4486 { 4487 return cpu->vcpu_id; 4488 } 4489 4490 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4491 { 4492 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4493 MachineState *ms = MACHINE(spapr); 4494 int vcpu_id; 4495 4496 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4497 4498 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4499 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4500 error_append_hint(errp, "Adjust the number of cpus to %d " 4501 "or try to raise the number of threads per core\n", 4502 vcpu_id * ms->smp.threads / spapr->vsmt); 4503 return false; 4504 } 4505 4506 cpu->vcpu_id = vcpu_id; 4507 return true; 4508 } 4509 4510 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4511 { 4512 CPUState *cs; 4513 4514 CPU_FOREACH(cs) { 4515 PowerPCCPU *cpu = POWERPC_CPU(cs); 4516 4517 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4518 return cpu; 4519 } 4520 } 4521 4522 return NULL; 4523 } 4524 4525 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4526 { 4527 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4528 4529 return spapr_cpu->in_nested; 4530 } 4531 4532 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4533 { 4534 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4535 4536 /* These are only called by TCG, KVM maintains dispatch state */ 4537 4538 spapr_cpu->prod = false; 4539 if (spapr_cpu->vpa_addr) { 4540 CPUState *cs = CPU(cpu); 4541 uint32_t dispatch; 4542 4543 dispatch = ldl_be_phys(cs->as, 4544 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4545 dispatch++; 4546 if ((dispatch & 1) != 0) { 4547 qemu_log_mask(LOG_GUEST_ERROR, 4548 "VPA: incorrect dispatch counter value for " 4549 "dispatched partition %u, correcting.\n", dispatch); 4550 dispatch++; 4551 } 4552 stl_be_phys(cs->as, 4553 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4554 } 4555 } 4556 4557 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4558 { 4559 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4560 4561 if (spapr_cpu->vpa_addr) { 4562 CPUState *cs = CPU(cpu); 4563 uint32_t dispatch; 4564 4565 dispatch = ldl_be_phys(cs->as, 4566 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4567 dispatch++; 4568 if ((dispatch & 1) != 1) { 4569 qemu_log_mask(LOG_GUEST_ERROR, 4570 "VPA: incorrect dispatch counter value for " 4571 "preempted partition %u, correcting.\n", dispatch); 4572 dispatch++; 4573 } 4574 stl_be_phys(cs->as, 4575 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4576 } 4577 } 4578 4579 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4580 { 4581 MachineClass *mc = MACHINE_CLASS(oc); 4582 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4583 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4584 NMIClass *nc = NMI_CLASS(oc); 4585 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4586 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4587 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4588 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4589 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4590 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4591 4592 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4593 mc->ignore_boot_device_suffixes = true; 4594 4595 /* 4596 * We set up the default / latest behaviour here. The class_init 4597 * functions for the specific versioned machine types can override 4598 * these details for backwards compatibility 4599 */ 4600 mc->init = spapr_machine_init; 4601 mc->reset = spapr_machine_reset; 4602 mc->block_default_type = IF_SCSI; 4603 4604 /* 4605 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4606 * should be limited by the host capability instead of hardcoded. 4607 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4608 * guests are welcome to have as many CPUs as the host are capable 4609 * of emulate. 4610 */ 4611 mc->max_cpus = INT32_MAX; 4612 4613 mc->no_parallel = 1; 4614 mc->default_boot_order = ""; 4615 mc->default_ram_size = 512 * MiB; 4616 mc->default_ram_id = "ppc_spapr.ram"; 4617 mc->default_display = "std"; 4618 mc->kvm_type = spapr_kvm_type; 4619 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4620 mc->pci_allow_0_address = true; 4621 assert(!mc->get_hotplug_handler); 4622 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4623 hc->pre_plug = spapr_machine_device_pre_plug; 4624 hc->plug = spapr_machine_device_plug; 4625 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4626 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4627 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4628 hc->unplug_request = spapr_machine_device_unplug_request; 4629 hc->unplug = spapr_machine_device_unplug; 4630 4631 smc->dr_lmb_enabled = true; 4632 smc->update_dt_enabled = true; 4633 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4634 mc->has_hotpluggable_cpus = true; 4635 mc->nvdimm_supported = true; 4636 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4637 fwc->get_dev_path = spapr_get_fw_dev_path; 4638 nc->nmi_monitor_handler = spapr_nmi; 4639 smc->phb_placement = spapr_phb_placement; 4640 vhc->cpu_in_nested = spapr_cpu_in_nested; 4641 vhc->deliver_hv_excp = spapr_exit_nested; 4642 vhc->hypercall = emulate_spapr_hypercall; 4643 vhc->hpt_mask = spapr_hpt_mask; 4644 vhc->map_hptes = spapr_map_hptes; 4645 vhc->unmap_hptes = spapr_unmap_hptes; 4646 vhc->hpte_set_c = spapr_hpte_set_c; 4647 vhc->hpte_set_r = spapr_hpte_set_r; 4648 vhc->get_pate = spapr_get_pate; 4649 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4650 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4651 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4652 xic->ics_get = spapr_ics_get; 4653 xic->ics_resend = spapr_ics_resend; 4654 xic->icp_get = spapr_icp_get; 4655 ispc->print_info = spapr_pic_print_info; 4656 /* Force NUMA node memory size to be a multiple of 4657 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4658 * in which LMBs are represented and hot-added 4659 */ 4660 mc->numa_mem_align_shift = 28; 4661 mc->auto_enable_numa = true; 4662 4663 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4664 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4665 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4666 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4667 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4668 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4669 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4670 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4671 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4672 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4673 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4674 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4675 spapr_caps_add_properties(smc); 4676 smc->irq = &spapr_irq_dual; 4677 smc->dr_phb_enabled = true; 4678 smc->linux_pci_probe = true; 4679 smc->smp_threads_vsmt = true; 4680 smc->nr_xirqs = SPAPR_NR_XIRQS; 4681 xfc->match_nvt = spapr_match_nvt; 4682 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4683 vmc->quiesce = spapr_vof_quiesce; 4684 vmc->setprop = spapr_vof_setprop; 4685 } 4686 4687 static const TypeInfo spapr_machine_info = { 4688 .name = TYPE_SPAPR_MACHINE, 4689 .parent = TYPE_MACHINE, 4690 .abstract = true, 4691 .instance_size = sizeof(SpaprMachineState), 4692 .instance_init = spapr_instance_init, 4693 .instance_finalize = spapr_machine_finalizefn, 4694 .class_size = sizeof(SpaprMachineClass), 4695 .class_init = spapr_machine_class_init, 4696 .interfaces = (InterfaceInfo[]) { 4697 { TYPE_FW_PATH_PROVIDER }, 4698 { TYPE_NMI }, 4699 { TYPE_HOTPLUG_HANDLER }, 4700 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4701 { TYPE_XICS_FABRIC }, 4702 { TYPE_INTERRUPT_STATS_PROVIDER }, 4703 { TYPE_XIVE_FABRIC }, 4704 { TYPE_VOF_MACHINE_IF }, 4705 { } 4706 }, 4707 }; 4708 4709 static void spapr_machine_latest_class_options(MachineClass *mc) 4710 { 4711 mc->alias = "pseries"; 4712 mc->is_default = true; 4713 } 4714 4715 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4716 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4717 void *data) \ 4718 { \ 4719 MachineClass *mc = MACHINE_CLASS(oc); \ 4720 spapr_machine_##suffix##_class_options(mc); \ 4721 if (latest) { \ 4722 spapr_machine_latest_class_options(mc); \ 4723 } \ 4724 } \ 4725 static const TypeInfo spapr_machine_##suffix##_info = { \ 4726 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4727 .parent = TYPE_SPAPR_MACHINE, \ 4728 .class_init = spapr_machine_##suffix##_class_init, \ 4729 }; \ 4730 static void spapr_machine_register_##suffix(void) \ 4731 { \ 4732 type_register(&spapr_machine_##suffix##_info); \ 4733 } \ 4734 type_init(spapr_machine_register_##suffix) 4735 4736 /* 4737 * pseries-7.2 4738 */ 4739 static void spapr_machine_7_2_class_options(MachineClass *mc) 4740 { 4741 /* Defaults for the latest behaviour inherited from the base class */ 4742 } 4743 4744 DEFINE_SPAPR_MACHINE(7_2, "7.2", true); 4745 4746 /* 4747 * pseries-7.1 4748 */ 4749 static void spapr_machine_7_1_class_options(MachineClass *mc) 4750 { 4751 spapr_machine_7_2_class_options(mc); 4752 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4753 } 4754 4755 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4756 4757 /* 4758 * pseries-7.0 4759 */ 4760 static void spapr_machine_7_0_class_options(MachineClass *mc) 4761 { 4762 spapr_machine_7_1_class_options(mc); 4763 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4764 } 4765 4766 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4767 4768 /* 4769 * pseries-6.2 4770 */ 4771 static void spapr_machine_6_2_class_options(MachineClass *mc) 4772 { 4773 spapr_machine_7_0_class_options(mc); 4774 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4775 } 4776 4777 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4778 4779 /* 4780 * pseries-6.1 4781 */ 4782 static void spapr_machine_6_1_class_options(MachineClass *mc) 4783 { 4784 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4785 4786 spapr_machine_6_2_class_options(mc); 4787 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4788 smc->pre_6_2_numa_affinity = true; 4789 mc->smp_props.prefer_sockets = true; 4790 } 4791 4792 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4793 4794 /* 4795 * pseries-6.0 4796 */ 4797 static void spapr_machine_6_0_class_options(MachineClass *mc) 4798 { 4799 spapr_machine_6_1_class_options(mc); 4800 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4801 } 4802 4803 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4804 4805 /* 4806 * pseries-5.2 4807 */ 4808 static void spapr_machine_5_2_class_options(MachineClass *mc) 4809 { 4810 spapr_machine_6_0_class_options(mc); 4811 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4812 } 4813 4814 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4815 4816 /* 4817 * pseries-5.1 4818 */ 4819 static void spapr_machine_5_1_class_options(MachineClass *mc) 4820 { 4821 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4822 4823 spapr_machine_5_2_class_options(mc); 4824 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4825 smc->pre_5_2_numa_associativity = true; 4826 } 4827 4828 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4829 4830 /* 4831 * pseries-5.0 4832 */ 4833 static void spapr_machine_5_0_class_options(MachineClass *mc) 4834 { 4835 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4836 static GlobalProperty compat[] = { 4837 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4838 }; 4839 4840 spapr_machine_5_1_class_options(mc); 4841 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4842 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4843 mc->numa_mem_supported = true; 4844 smc->pre_5_1_assoc_refpoints = true; 4845 } 4846 4847 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4848 4849 /* 4850 * pseries-4.2 4851 */ 4852 static void spapr_machine_4_2_class_options(MachineClass *mc) 4853 { 4854 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4855 4856 spapr_machine_5_0_class_options(mc); 4857 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4858 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4859 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4860 smc->rma_limit = 16 * GiB; 4861 mc->nvdimm_supported = false; 4862 } 4863 4864 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4865 4866 /* 4867 * pseries-4.1 4868 */ 4869 static void spapr_machine_4_1_class_options(MachineClass *mc) 4870 { 4871 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4872 static GlobalProperty compat[] = { 4873 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4874 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4875 }; 4876 4877 spapr_machine_4_2_class_options(mc); 4878 smc->linux_pci_probe = false; 4879 smc->smp_threads_vsmt = false; 4880 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4881 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4882 } 4883 4884 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4885 4886 /* 4887 * pseries-4.0 4888 */ 4889 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4890 uint64_t *buid, hwaddr *pio, 4891 hwaddr *mmio32, hwaddr *mmio64, 4892 unsigned n_dma, uint32_t *liobns, 4893 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4894 { 4895 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4896 liobns, nv2gpa, nv2atsd, errp)) { 4897 return false; 4898 } 4899 4900 *nv2gpa = 0; 4901 *nv2atsd = 0; 4902 return true; 4903 } 4904 static void spapr_machine_4_0_class_options(MachineClass *mc) 4905 { 4906 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4907 4908 spapr_machine_4_1_class_options(mc); 4909 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4910 smc->phb_placement = phb_placement_4_0; 4911 smc->irq = &spapr_irq_xics; 4912 smc->pre_4_1_migration = true; 4913 } 4914 4915 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4916 4917 /* 4918 * pseries-3.1 4919 */ 4920 static void spapr_machine_3_1_class_options(MachineClass *mc) 4921 { 4922 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4923 4924 spapr_machine_4_0_class_options(mc); 4925 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4926 4927 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4928 smc->update_dt_enabled = false; 4929 smc->dr_phb_enabled = false; 4930 smc->broken_host_serial_model = true; 4931 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4932 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4933 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4934 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4935 } 4936 4937 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4938 4939 /* 4940 * pseries-3.0 4941 */ 4942 4943 static void spapr_machine_3_0_class_options(MachineClass *mc) 4944 { 4945 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4946 4947 spapr_machine_3_1_class_options(mc); 4948 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4949 4950 smc->legacy_irq_allocation = true; 4951 smc->nr_xirqs = 0x400; 4952 smc->irq = &spapr_irq_xics_legacy; 4953 } 4954 4955 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4956 4957 /* 4958 * pseries-2.12 4959 */ 4960 static void spapr_machine_2_12_class_options(MachineClass *mc) 4961 { 4962 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4963 static GlobalProperty compat[] = { 4964 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4965 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4966 }; 4967 4968 spapr_machine_3_0_class_options(mc); 4969 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4970 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4971 4972 /* We depend on kvm_enabled() to choose a default value for the 4973 * hpt-max-page-size capability. Of course we can't do it here 4974 * because this is too early and the HW accelerator isn't initialzed 4975 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4976 */ 4977 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4978 } 4979 4980 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4981 4982 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4983 { 4984 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4985 4986 spapr_machine_2_12_class_options(mc); 4987 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4988 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4989 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4990 } 4991 4992 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4993 4994 /* 4995 * pseries-2.11 4996 */ 4997 4998 static void spapr_machine_2_11_class_options(MachineClass *mc) 4999 { 5000 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5001 5002 spapr_machine_2_12_class_options(mc); 5003 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5004 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5005 } 5006 5007 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5008 5009 /* 5010 * pseries-2.10 5011 */ 5012 5013 static void spapr_machine_2_10_class_options(MachineClass *mc) 5014 { 5015 spapr_machine_2_11_class_options(mc); 5016 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5017 } 5018 5019 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5020 5021 /* 5022 * pseries-2.9 5023 */ 5024 5025 static void spapr_machine_2_9_class_options(MachineClass *mc) 5026 { 5027 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5028 static GlobalProperty compat[] = { 5029 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5030 }; 5031 5032 spapr_machine_2_10_class_options(mc); 5033 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5034 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5035 smc->pre_2_10_has_unused_icps = true; 5036 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5037 } 5038 5039 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5040 5041 /* 5042 * pseries-2.8 5043 */ 5044 5045 static void spapr_machine_2_8_class_options(MachineClass *mc) 5046 { 5047 static GlobalProperty compat[] = { 5048 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5049 }; 5050 5051 spapr_machine_2_9_class_options(mc); 5052 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5053 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5054 mc->numa_mem_align_shift = 23; 5055 } 5056 5057 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5058 5059 /* 5060 * pseries-2.7 5061 */ 5062 5063 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5064 uint64_t *buid, hwaddr *pio, 5065 hwaddr *mmio32, hwaddr *mmio64, 5066 unsigned n_dma, uint32_t *liobns, 5067 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5068 { 5069 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5070 const uint64_t base_buid = 0x800000020000000ULL; 5071 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5072 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5073 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5074 const uint32_t max_index = 255; 5075 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5076 5077 uint64_t ram_top = MACHINE(spapr)->ram_size; 5078 hwaddr phb0_base, phb_base; 5079 int i; 5080 5081 /* Do we have device memory? */ 5082 if (MACHINE(spapr)->maxram_size > ram_top) { 5083 /* Can't just use maxram_size, because there may be an 5084 * alignment gap between normal and device memory regions 5085 */ 5086 ram_top = MACHINE(spapr)->device_memory->base + 5087 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5088 } 5089 5090 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5091 5092 if (index > max_index) { 5093 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5094 max_index); 5095 return false; 5096 } 5097 5098 *buid = base_buid + index; 5099 for (i = 0; i < n_dma; ++i) { 5100 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5101 } 5102 5103 phb_base = phb0_base + index * phb_spacing; 5104 *pio = phb_base + pio_offset; 5105 *mmio32 = phb_base + mmio_offset; 5106 /* 5107 * We don't set the 64-bit MMIO window, relying on the PHB's 5108 * fallback behaviour of automatically splitting a large "32-bit" 5109 * window into contiguous 32-bit and 64-bit windows 5110 */ 5111 5112 *nv2gpa = 0; 5113 *nv2atsd = 0; 5114 return true; 5115 } 5116 5117 static void spapr_machine_2_7_class_options(MachineClass *mc) 5118 { 5119 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5120 static GlobalProperty compat[] = { 5121 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5122 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5123 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5124 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5125 }; 5126 5127 spapr_machine_2_8_class_options(mc); 5128 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5129 mc->default_machine_opts = "modern-hotplug-events=off"; 5130 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5131 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5132 smc->phb_placement = phb_placement_2_7; 5133 } 5134 5135 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5136 5137 /* 5138 * pseries-2.6 5139 */ 5140 5141 static void spapr_machine_2_6_class_options(MachineClass *mc) 5142 { 5143 static GlobalProperty compat[] = { 5144 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5145 }; 5146 5147 spapr_machine_2_7_class_options(mc); 5148 mc->has_hotpluggable_cpus = false; 5149 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5150 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5151 } 5152 5153 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5154 5155 /* 5156 * pseries-2.5 5157 */ 5158 5159 static void spapr_machine_2_5_class_options(MachineClass *mc) 5160 { 5161 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5162 static GlobalProperty compat[] = { 5163 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5164 }; 5165 5166 spapr_machine_2_6_class_options(mc); 5167 smc->use_ohci_by_default = true; 5168 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5169 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5170 } 5171 5172 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5173 5174 /* 5175 * pseries-2.4 5176 */ 5177 5178 static void spapr_machine_2_4_class_options(MachineClass *mc) 5179 { 5180 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5181 5182 spapr_machine_2_5_class_options(mc); 5183 smc->dr_lmb_enabled = false; 5184 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5185 } 5186 5187 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5188 5189 /* 5190 * pseries-2.3 5191 */ 5192 5193 static void spapr_machine_2_3_class_options(MachineClass *mc) 5194 { 5195 static GlobalProperty compat[] = { 5196 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5197 }; 5198 spapr_machine_2_4_class_options(mc); 5199 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5200 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5201 } 5202 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5203 5204 /* 5205 * pseries-2.2 5206 */ 5207 5208 static void spapr_machine_2_2_class_options(MachineClass *mc) 5209 { 5210 static GlobalProperty compat[] = { 5211 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5212 }; 5213 5214 spapr_machine_2_3_class_options(mc); 5215 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5216 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5217 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5218 } 5219 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5220 5221 /* 5222 * pseries-2.1 5223 */ 5224 5225 static void spapr_machine_2_1_class_options(MachineClass *mc) 5226 { 5227 spapr_machine_2_2_class_options(mc); 5228 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5229 } 5230 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5231 5232 static void spapr_machine_register_types(void) 5233 { 5234 type_register_static(&spapr_machine_info); 5235 } 5236 5237 type_init(spapr_machine_register_types) 5238