xref: /openbmc/qemu/hw/ppc/spapr.c (revision d7830a9b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56 
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59 
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66 
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71 
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 #include "hw/ppc/pef.h"
86 
87 #include "monitor/monitor.h"
88 
89 #include <libfdt.h>
90 
91 /* SLOF memory layout:
92  *
93  * SLOF raw image loaded at 0, copies its romfs right below the flat
94  * device-tree, then position SLOF itself 31M below that
95  *
96  * So we set FW_OVERHEAD to 40MB which should account for all of that
97  * and more
98  *
99  * We load our kernel at 4M, leaving space for SLOF initial image
100  */
101 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
102 #define FW_MAX_SIZE             0x400000
103 #define FW_FILE_NAME            "slof.bin"
104 #define FW_FILE_NAME_VOF        "vof.bin"
105 #define FW_OVERHEAD             0x2800000
106 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
107 
108 #define MIN_RMA_SLOF            (128 * MiB)
109 
110 #define PHANDLE_INTC            0x00001111
111 
112 /* These two functions implement the VCPU id numbering: one to compute them
113  * all and one to identify thread 0 of a VCORE. Any change to the first one
114  * is likely to have an impact on the second one, so let's keep them close.
115  */
116 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117 {
118     MachineState *ms = MACHINE(spapr);
119     unsigned int smp_threads = ms->smp.threads;
120 
121     assert(spapr->vsmt);
122     return
123         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124 }
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
126                                       PowerPCCPU *cpu)
127 {
128     assert(spapr->vsmt);
129     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 }
131 
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133 {
134     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135      * and newer QEMUs don't even have them. In both cases, we don't want
136      * to send anything on the wire.
137      */
138     return false;
139 }
140 
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
142     .name = "icp/server",
143     .version_id = 1,
144     .minimum_version_id = 1,
145     .needed = pre_2_10_vmstate_dummy_icp_needed,
146     .fields = (VMStateField[]) {
147         VMSTATE_UNUSED(4), /* uint32_t xirr */
148         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149         VMSTATE_UNUSED(1), /* uint8_t mfrr */
150         VMSTATE_END_OF_LIST()
151     },
152 };
153 
154 static void pre_2_10_vmstate_register_dummy_icp(int i)
155 {
156     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
157                      (void *)(uintptr_t) i);
158 }
159 
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161 {
162     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
163                        (void *)(uintptr_t) i);
164 }
165 
166 int spapr_max_server_number(SpaprMachineState *spapr)
167 {
168     MachineState *ms = MACHINE(spapr);
169 
170     assert(spapr->vsmt);
171     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 }
173 
174 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
175                                   int smt_threads)
176 {
177     int i, ret = 0;
178     uint32_t servers_prop[smt_threads];
179     uint32_t gservers_prop[smt_threads * 2];
180     int index = spapr_get_vcpu_id(cpu);
181 
182     if (cpu->compat_pvr) {
183         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184         if (ret < 0) {
185             return ret;
186         }
187     }
188 
189     /* Build interrupt servers and gservers properties */
190     for (i = 0; i < smt_threads; i++) {
191         servers_prop[i] = cpu_to_be32(index + i);
192         /* Hack, direct the group queues back to cpu 0 */
193         gservers_prop[i*2] = cpu_to_be32(index + i);
194         gservers_prop[i*2 + 1] = 0;
195     }
196     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
197                       servers_prop, sizeof(servers_prop));
198     if (ret < 0) {
199         return ret;
200     }
201     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
202                       gservers_prop, sizeof(gservers_prop));
203 
204     return ret;
205 }
206 
207 static void spapr_dt_pa_features(SpaprMachineState *spapr,
208                                  PowerPCCPU *cpu,
209                                  void *fdt, int offset)
210 {
211     uint8_t pa_features_206[] = { 6, 0,
212         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213     uint8_t pa_features_207[] = { 24, 0,
214         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218     uint8_t pa_features_300[] = { 66, 0,
219         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222         /* 6: DS207 */
223         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224         /* 16: Vector */
225         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234         /* 42: PM, 44: PC RA, 46: SC vec'd */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236         /* 48: SIMD, 50: QP BFP, 52: String */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238         /* 54: DecFP, 56: DecI, 58: SHA */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240         /* 60: NM atomic, 62: RNG */
241         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242     };
243     uint8_t *pa_features = NULL;
244     size_t pa_size;
245 
246     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
247         pa_features = pa_features_206;
248         pa_size = sizeof(pa_features_206);
249     }
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_207;
252         pa_size = sizeof(pa_features_207);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_300;
256         pa_size = sizeof(pa_features_300);
257     }
258     if (!pa_features) {
259         return;
260     }
261 
262     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263         /*
264          * Note: we keep CI large pages off by default because a 64K capable
265          * guest provisioned with large pages might otherwise try to map a qemu
266          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267          * even if that qemu runs on a 4k host.
268          * We dd this bit back here if we are confident this is not an issue
269          */
270         pa_features[3] |= 0x20;
271     }
272     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
273         pa_features[24] |= 0x80;    /* Transactional memory support */
274     }
275     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
276         /* Workaround for broken kernels that attempt (guest) radix
277          * mode when they can't handle it, if they see the radix bit set
278          * in pa-features. So hide it from them. */
279         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280     }
281 
282     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 }
284 
285 static hwaddr spapr_node0_size(MachineState *machine)
286 {
287     if (machine->numa_state->num_nodes) {
288         int i;
289         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
290             if (machine->numa_state->nodes[i].node_mem) {
291                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
292                            machine->ram_size);
293             }
294         }
295     }
296     return machine->ram_size;
297 }
298 
299 static void add_str(GString *s, const gchar *s1)
300 {
301     g_string_append_len(s, s1, strlen(s1) + 1);
302 }
303 
304 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
305                                 hwaddr start, hwaddr size)
306 {
307     char mem_name[32];
308     uint64_t mem_reg_property[2];
309     int off;
310 
311     mem_reg_property[0] = cpu_to_be64(start);
312     mem_reg_property[1] = cpu_to_be64(size);
313 
314     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
315     off = fdt_add_subnode(fdt, 0, mem_name);
316     _FDT(off);
317     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
318     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
319                       sizeof(mem_reg_property))));
320     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
321     return off;
322 }
323 
324 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
325 {
326     MemoryDeviceInfoList *info;
327 
328     for (info = list; info; info = info->next) {
329         MemoryDeviceInfo *value = info->value;
330 
331         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
332             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
333 
334             if (addr >= pcdimm_info->addr &&
335                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
336                 return pcdimm_info->node;
337             }
338         }
339     }
340 
341     return -1;
342 }
343 
344 struct sPAPRDrconfCellV2 {
345      uint32_t seq_lmbs;
346      uint64_t base_addr;
347      uint32_t drc_index;
348      uint32_t aa_index;
349      uint32_t flags;
350 } QEMU_PACKED;
351 
352 typedef struct DrconfCellQueue {
353     struct sPAPRDrconfCellV2 cell;
354     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
355 } DrconfCellQueue;
356 
357 static DrconfCellQueue *
358 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
359                       uint32_t drc_index, uint32_t aa_index,
360                       uint32_t flags)
361 {
362     DrconfCellQueue *elem;
363 
364     elem = g_malloc0(sizeof(*elem));
365     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
366     elem->cell.base_addr = cpu_to_be64(base_addr);
367     elem->cell.drc_index = cpu_to_be32(drc_index);
368     elem->cell.aa_index = cpu_to_be32(aa_index);
369     elem->cell.flags = cpu_to_be32(flags);
370 
371     return elem;
372 }
373 
374 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
375                                       int offset, MemoryDeviceInfoList *dimms)
376 {
377     MachineState *machine = MACHINE(spapr);
378     uint8_t *int_buf, *cur_index;
379     int ret;
380     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
381     uint64_t addr, cur_addr, size;
382     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
383     uint64_t mem_end = machine->device_memory->base +
384                        memory_region_size(&machine->device_memory->mr);
385     uint32_t node, buf_len, nr_entries = 0;
386     SpaprDrc *drc;
387     DrconfCellQueue *elem, *next;
388     MemoryDeviceInfoList *info;
389     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
390         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
391 
392     /* Entry to cover RAM and the gap area */
393     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
394                                  SPAPR_LMB_FLAGS_RESERVED |
395                                  SPAPR_LMB_FLAGS_DRC_INVALID);
396     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
397     nr_entries++;
398 
399     cur_addr = machine->device_memory->base;
400     for (info = dimms; info; info = info->next) {
401         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
402 
403         addr = di->addr;
404         size = di->size;
405         node = di->node;
406 
407         /*
408          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
409          * area is marked hotpluggable in the next iteration for the bigger
410          * chunk including the NVDIMM occupied area.
411          */
412         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
413             continue;
414 
415         /* Entry for hot-pluggable area */
416         if (cur_addr < addr) {
417             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
418             g_assert(drc);
419             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
420                                          cur_addr, spapr_drc_index(drc), -1, 0);
421             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
422             nr_entries++;
423         }
424 
425         /* Entry for DIMM */
426         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
427         g_assert(drc);
428         elem = spapr_get_drconf_cell(size / lmb_size, addr,
429                                      spapr_drc_index(drc), node,
430                                      (SPAPR_LMB_FLAGS_ASSIGNED |
431                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
432         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
433         nr_entries++;
434         cur_addr = addr + size;
435     }
436 
437     /* Entry for remaining hotpluggable area */
438     if (cur_addr < mem_end) {
439         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
440         g_assert(drc);
441         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
442                                      cur_addr, spapr_drc_index(drc), -1, 0);
443         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
444         nr_entries++;
445     }
446 
447     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
448     int_buf = cur_index = g_malloc0(buf_len);
449     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
450     cur_index += sizeof(nr_entries);
451 
452     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
453         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
454         cur_index += sizeof(elem->cell);
455         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
456         g_free(elem);
457     }
458 
459     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
460     g_free(int_buf);
461     if (ret < 0) {
462         return -1;
463     }
464     return 0;
465 }
466 
467 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
468                                    int offset, MemoryDeviceInfoList *dimms)
469 {
470     MachineState *machine = MACHINE(spapr);
471     int i, ret;
472     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
473     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
474     uint32_t nr_lmbs = (machine->device_memory->base +
475                        memory_region_size(&machine->device_memory->mr)) /
476                        lmb_size;
477     uint32_t *int_buf, *cur_index, buf_len;
478 
479     /*
480      * Allocate enough buffer size to fit in ibm,dynamic-memory
481      */
482     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
483     cur_index = int_buf = g_malloc0(buf_len);
484     int_buf[0] = cpu_to_be32(nr_lmbs);
485     cur_index++;
486     for (i = 0; i < nr_lmbs; i++) {
487         uint64_t addr = i * lmb_size;
488         uint32_t *dynamic_memory = cur_index;
489 
490         if (i >= device_lmb_start) {
491             SpaprDrc *drc;
492 
493             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
494             g_assert(drc);
495 
496             dynamic_memory[0] = cpu_to_be32(addr >> 32);
497             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
498             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
499             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
500             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
501             if (memory_region_present(get_system_memory(), addr)) {
502                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
503             } else {
504                 dynamic_memory[5] = cpu_to_be32(0);
505             }
506         } else {
507             /*
508              * LMB information for RMA, boot time RAM and gap b/n RAM and
509              * device memory region -- all these are marked as reserved
510              * and as having no valid DRC.
511              */
512             dynamic_memory[0] = cpu_to_be32(addr >> 32);
513             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
514             dynamic_memory[2] = cpu_to_be32(0);
515             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
516             dynamic_memory[4] = cpu_to_be32(-1);
517             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
518                                             SPAPR_LMB_FLAGS_DRC_INVALID);
519         }
520 
521         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
522     }
523     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
524     g_free(int_buf);
525     if (ret < 0) {
526         return -1;
527     }
528     return 0;
529 }
530 
531 /*
532  * Adds ibm,dynamic-reconfiguration-memory node.
533  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
534  * of this device tree node.
535  */
536 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
537                                                    void *fdt)
538 {
539     MachineState *machine = MACHINE(spapr);
540     int ret, offset;
541     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
542     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
543                                 cpu_to_be32(lmb_size & 0xffffffff)};
544     MemoryDeviceInfoList *dimms = NULL;
545 
546     /*
547      * Don't create the node if there is no device memory
548      */
549     if (machine->ram_size == machine->maxram_size) {
550         return 0;
551     }
552 
553     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
554 
555     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
556                     sizeof(prop_lmb_size));
557     if (ret < 0) {
558         return ret;
559     }
560 
561     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
562     if (ret < 0) {
563         return ret;
564     }
565 
566     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
567     if (ret < 0) {
568         return ret;
569     }
570 
571     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
572     dimms = qmp_memory_device_list();
573     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
574         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
575     } else {
576         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
577     }
578     qapi_free_MemoryDeviceInfoList(dimms);
579 
580     if (ret < 0) {
581         return ret;
582     }
583 
584     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
585 
586     return ret;
587 }
588 
589 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
590 {
591     MachineState *machine = MACHINE(spapr);
592     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
593     hwaddr mem_start, node_size;
594     int i, nb_nodes = machine->numa_state->num_nodes;
595     NodeInfo *nodes = machine->numa_state->nodes;
596 
597     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
598         if (!nodes[i].node_mem) {
599             continue;
600         }
601         if (mem_start >= machine->ram_size) {
602             node_size = 0;
603         } else {
604             node_size = nodes[i].node_mem;
605             if (node_size > machine->ram_size - mem_start) {
606                 node_size = machine->ram_size - mem_start;
607             }
608         }
609         if (!mem_start) {
610             /* spapr_machine_init() checks for rma_size <= node0_size
611              * already */
612             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
613             mem_start += spapr->rma_size;
614             node_size -= spapr->rma_size;
615         }
616         for ( ; node_size; ) {
617             hwaddr sizetmp = pow2floor(node_size);
618 
619             /* mem_start != 0 here */
620             if (ctzl(mem_start) < ctzl(sizetmp)) {
621                 sizetmp = 1ULL << ctzl(mem_start);
622             }
623 
624             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
625             node_size -= sizetmp;
626             mem_start += sizetmp;
627         }
628     }
629 
630     /* Generate ibm,dynamic-reconfiguration-memory node if required */
631     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
632         int ret;
633 
634         g_assert(smc->dr_lmb_enabled);
635         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
636         if (ret) {
637             return ret;
638         }
639     }
640 
641     return 0;
642 }
643 
644 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
645                          SpaprMachineState *spapr)
646 {
647     MachineState *ms = MACHINE(spapr);
648     PowerPCCPU *cpu = POWERPC_CPU(cs);
649     CPUPPCState *env = &cpu->env;
650     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
651     int index = spapr_get_vcpu_id(cpu);
652     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
653                        0xffffffff, 0xffffffff};
654     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
655         : SPAPR_TIMEBASE_FREQ;
656     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
657     uint32_t page_sizes_prop[64];
658     size_t page_sizes_prop_size;
659     unsigned int smp_threads = ms->smp.threads;
660     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
661     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
662     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
663     SpaprDrc *drc;
664     int drc_index;
665     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
666     int i;
667 
668     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
669     if (drc) {
670         drc_index = spapr_drc_index(drc);
671         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672     }
673 
674     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
675     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
676 
677     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
678     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
679                            env->dcache_line_size)));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
683                            env->icache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
685                            env->icache_line_size)));
686 
687     if (pcc->l1_dcache_size) {
688         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
689                                pcc->l1_dcache_size)));
690     } else {
691         warn_report("Unknown L1 dcache size for cpu");
692     }
693     if (pcc->l1_icache_size) {
694         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
695                                pcc->l1_icache_size)));
696     } else {
697         warn_report("Unknown L1 icache size for cpu");
698     }
699 
700     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
701     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
702     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
703     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
704     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
705     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
706 
707     if (ppc_has_spr(cpu, SPR_PURR)) {
708         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
709     }
710     if (ppc_has_spr(cpu, SPR_PURR)) {
711         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712     }
713 
714     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
715         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
716                           segs, sizeof(segs))));
717     }
718 
719     /* Advertise VSX (vector extensions) if available
720      *   1               == VMX / Altivec available
721      *   2               == VSX available
722      *
723      * Only CPUs for which we create core types in spapr_cpu_core.c
724      * are possible, and all of those have VMX */
725     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
726         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
727     } else {
728         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729     }
730 
731     /* Advertise DFP (Decimal Floating Point) if available
732      *   0 / no property == no DFP
733      *   1               == DFP available */
734     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
735         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736     }
737 
738     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
739                                                       sizeof(page_sizes_prop));
740     if (page_sizes_prop_size) {
741         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
742                           page_sizes_prop, page_sizes_prop_size)));
743     }
744 
745     spapr_dt_pa_features(spapr, cpu, fdt, offset);
746 
747     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
748                            cs->cpu_index / vcpus_per_socket)));
749 
750     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
751                       pft_size_prop, sizeof(pft_size_prop))));
752 
753     if (ms->numa_state->num_nodes > 1) {
754         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755     }
756 
757     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
758 
759     if (pcc->radix_page_info) {
760         for (i = 0; i < pcc->radix_page_info->count; i++) {
761             radix_AP_encodings[i] =
762                 cpu_to_be32(pcc->radix_page_info->entries[i]);
763         }
764         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
765                           radix_AP_encodings,
766                           pcc->radix_page_info->count *
767                           sizeof(radix_AP_encodings[0]))));
768     }
769 
770     /*
771      * We set this property to let the guest know that it can use the large
772      * decrementer and its width in bits.
773      */
774     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
775         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
776                               pcc->lrg_decr_bits)));
777 }
778 
779 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
780 {
781     CPUState **rev;
782     CPUState *cs;
783     int n_cpus;
784     int cpus_offset;
785     int i;
786 
787     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
788     _FDT(cpus_offset);
789     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
790     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
791 
792     /*
793      * We walk the CPUs in reverse order to ensure that CPU DT nodes
794      * created by fdt_add_subnode() end up in the right order in FDT
795      * for the guest kernel the enumerate the CPUs correctly.
796      *
797      * The CPU list cannot be traversed in reverse order, so we need
798      * to do extra work.
799      */
800     n_cpus = 0;
801     rev = NULL;
802     CPU_FOREACH(cs) {
803         rev = g_renew(CPUState *, rev, n_cpus + 1);
804         rev[n_cpus++] = cs;
805     }
806 
807     for (i = n_cpus - 1; i >= 0; i--) {
808         CPUState *cs = rev[i];
809         PowerPCCPU *cpu = POWERPC_CPU(cs);
810         int index = spapr_get_vcpu_id(cpu);
811         DeviceClass *dc = DEVICE_GET_CLASS(cs);
812         g_autofree char *nodename = NULL;
813         int offset;
814 
815         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
816             continue;
817         }
818 
819         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
820         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
821         _FDT(offset);
822         spapr_dt_cpu(cs, fdt, offset, spapr);
823     }
824 
825     g_free(rev);
826 }
827 
828 static int spapr_dt_rng(void *fdt)
829 {
830     int node;
831     int ret;
832 
833     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
834     if (node <= 0) {
835         return -1;
836     }
837     ret = fdt_setprop_string(fdt, node, "device_type",
838                              "ibm,platform-facilities");
839     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
840     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841 
842     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
843     if (node <= 0) {
844         return -1;
845     }
846     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847 
848     return ret ? -1 : 0;
849 }
850 
851 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852 {
853     MachineState *ms = MACHINE(spapr);
854     int rtas;
855     GString *hypertas = g_string_sized_new(256);
856     GString *qemu_hypertas = g_string_sized_new(256);
857     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
858         memory_region_size(&MACHINE(spapr)->device_memory->mr);
859     uint32_t lrdr_capacity[] = {
860         cpu_to_be32(max_device_addr >> 32),
861         cpu_to_be32(max_device_addr & 0xffffffff),
862         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
863         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
864         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
865     };
866 
867     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868 
869     /* hypertas */
870     add_str(hypertas, "hcall-pft");
871     add_str(hypertas, "hcall-term");
872     add_str(hypertas, "hcall-dabr");
873     add_str(hypertas, "hcall-interrupt");
874     add_str(hypertas, "hcall-tce");
875     add_str(hypertas, "hcall-vio");
876     add_str(hypertas, "hcall-splpar");
877     add_str(hypertas, "hcall-join");
878     add_str(hypertas, "hcall-bulk");
879     add_str(hypertas, "hcall-set-mode");
880     add_str(hypertas, "hcall-sprg0");
881     add_str(hypertas, "hcall-copy");
882     add_str(hypertas, "hcall-debug");
883     add_str(hypertas, "hcall-vphn");
884     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
885         add_str(hypertas, "hcall-rpt-invalidate");
886     }
887 
888     add_str(qemu_hypertas, "hcall-memop1");
889 
890     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
891         add_str(hypertas, "hcall-multi-tce");
892     }
893 
894     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
895         add_str(hypertas, "hcall-hpt-resize");
896     }
897 
898     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
899                      hypertas->str, hypertas->len));
900     g_string_free(hypertas, TRUE);
901     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
902                      qemu_hypertas->str, qemu_hypertas->len));
903     g_string_free(qemu_hypertas, TRUE);
904 
905     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
906 
907     /*
908      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
909      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
910      *
911      * The system reset requirements are driven by existing Linux and PowerVM
912      * implementation which (contrary to PAPR) saves r3 in the error log
913      * structure like machine check, so Linux expects to find the saved r3
914      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
915      * does not look at the error value).
916      *
917      * System reset interrupts are not subject to interlock like machine
918      * check, so this memory area could be corrupted if the sreset is
919      * interrupted by a machine check (or vice versa) if it was shared. To
920      * prevent this, system reset uses per-CPU areas for the sreset save
921      * area. A system reset that interrupts a system reset handler could
922      * still overwrite this area, but Linux doesn't try to recover in that
923      * case anyway.
924      *
925      * The extra 8 bytes is required because Linux's FWNMI error log check
926      * is off-by-one.
927      *
928      * RTAS_MIN_SIZE is required for the RTAS blob itself.
929      */
930     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
931                           RTAS_ERROR_LOG_MAX +
932                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
933                           sizeof(uint64_t)));
934     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
935                           RTAS_ERROR_LOG_MAX));
936     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
937                           RTAS_EVENT_SCAN_RATE));
938 
939     g_assert(msi_nonbroken);
940     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
941 
942     /*
943      * According to PAPR, rtas ibm,os-term does not guarantee a return
944      * back to the guest cpu.
945      *
946      * While an additional ibm,extended-os-term property indicates
947      * that rtas call return will always occur. Set this property.
948      */
949     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
950 
951     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
952                      lrdr_capacity, sizeof(lrdr_capacity)));
953 
954     spapr_dt_rtas_tokens(fdt, rtas);
955 }
956 
957 /*
958  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
959  * and the XIVE features that the guest may request and thus the valid
960  * values for bytes 23..26 of option vector 5:
961  */
962 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
963                                           int chosen)
964 {
965     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
966 
967     char val[2 * 4] = {
968         23, 0x00, /* XICS / XIVE mode */
969         24, 0x00, /* Hash/Radix, filled in below. */
970         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
971         26, 0x40, /* Radix options: GTSE == yes. */
972     };
973 
974     if (spapr->irq->xics && spapr->irq->xive) {
975         val[1] = SPAPR_OV5_XIVE_BOTH;
976     } else if (spapr->irq->xive) {
977         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
978     } else {
979         assert(spapr->irq->xics);
980         val[1] = SPAPR_OV5_XIVE_LEGACY;
981     }
982 
983     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
984                           first_ppc_cpu->compat_pvr)) {
985         /*
986          * If we're in a pre POWER9 compat mode then the guest should
987          * do hash and use the legacy interrupt mode
988          */
989         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
990         val[3] = 0x00; /* Hash */
991         spapr_check_mmu_mode(false);
992     } else if (kvm_enabled()) {
993         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
994             val[3] = 0x80; /* OV5_MMU_BOTH */
995         } else if (kvmppc_has_cap_mmu_radix()) {
996             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
997         } else {
998             val[3] = 0x00; /* Hash */
999         }
1000     } else {
1001         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1002         val[3] = 0xC0;
1003     }
1004     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1005                      val, sizeof(val)));
1006 }
1007 
1008 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1009 {
1010     MachineState *machine = MACHINE(spapr);
1011     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1012     int chosen;
1013 
1014     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1015 
1016     if (reset) {
1017         const char *boot_device = spapr->boot_device;
1018         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1019         size_t cb = 0;
1020         char *bootlist = get_boot_devices_list(&cb);
1021 
1022         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1023             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1024                                     machine->kernel_cmdline));
1025         }
1026 
1027         if (spapr->initrd_size) {
1028             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1029                                   spapr->initrd_base));
1030             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1031                                   spapr->initrd_base + spapr->initrd_size));
1032         }
1033 
1034         if (spapr->kernel_size) {
1035             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1036                                   cpu_to_be64(spapr->kernel_size) };
1037 
1038             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1039                          &kprop, sizeof(kprop)));
1040             if (spapr->kernel_le) {
1041                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1042             }
1043         }
1044         if (boot_menu) {
1045             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1046         }
1047         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1048         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1049         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1050 
1051         if (cb && bootlist) {
1052             int i;
1053 
1054             for (i = 0; i < cb; i++) {
1055                 if (bootlist[i] == '\n') {
1056                     bootlist[i] = ' ';
1057                 }
1058             }
1059             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1060         }
1061 
1062         if (boot_device && strlen(boot_device)) {
1063             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1064         }
1065 
1066         if (!spapr->has_graphics && stdout_path) {
1067             /*
1068              * "linux,stdout-path" and "stdout" properties are
1069              * deprecated by linux kernel. New platforms should only
1070              * use the "stdout-path" property. Set the new property
1071              * and continue using older property to remain compatible
1072              * with the existing firmware.
1073              */
1074             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1075             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1076         }
1077 
1078         /*
1079          * We can deal with BAR reallocation just fine, advertise it
1080          * to the guest
1081          */
1082         if (smc->linux_pci_probe) {
1083             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1084         }
1085 
1086         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1087 
1088         g_free(stdout_path);
1089         g_free(bootlist);
1090     }
1091 
1092     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1093 }
1094 
1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1096 {
1097     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098      * KVM to work under pHyp with some guest co-operation */
1099     int hypervisor;
1100     uint8_t hypercall[16];
1101 
1102     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1103     /* indicate KVM hypercall interface */
1104     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1105     if (kvmppc_has_cap_fixup_hcalls()) {
1106         /*
1107          * Older KVM versions with older guest kernels were broken
1108          * with the magic page, don't allow the guest to map it.
1109          */
1110         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1111                                   sizeof(hypercall))) {
1112             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1113                              hypercall, sizeof(hypercall)));
1114         }
1115     }
1116 }
1117 
1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1119 {
1120     MachineState *machine = MACHINE(spapr);
1121     MachineClass *mc = MACHINE_GET_CLASS(machine);
1122     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1123     uint32_t root_drc_type_mask = 0;
1124     int ret;
1125     void *fdt;
1126     SpaprPhbState *phb;
1127     char *buf;
1128 
1129     fdt = g_malloc0(space);
1130     _FDT((fdt_create_empty_tree(fdt, space)));
1131 
1132     /* Root node */
1133     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1134     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1135     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1136 
1137     /* Guest UUID & Name*/
1138     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1139     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1140     if (qemu_uuid_set) {
1141         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1142     }
1143     g_free(buf);
1144 
1145     if (qemu_get_vm_name()) {
1146         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1147                                 qemu_get_vm_name()));
1148     }
1149 
1150     /* Host Model & Serial Number */
1151     if (spapr->host_model) {
1152         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1153     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1154         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1155         g_free(buf);
1156     }
1157 
1158     if (spapr->host_serial) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1160     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1162         g_free(buf);
1163     }
1164 
1165     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1166     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1167 
1168     /* /interrupt controller */
1169     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1170 
1171     ret = spapr_dt_memory(spapr, fdt);
1172     if (ret < 0) {
1173         error_report("couldn't setup memory nodes in fdt");
1174         exit(1);
1175     }
1176 
1177     /* /vdevice */
1178     spapr_dt_vdevice(spapr->vio_bus, fdt);
1179 
1180     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1181         ret = spapr_dt_rng(fdt);
1182         if (ret < 0) {
1183             error_report("could not set up rng device in the fdt");
1184             exit(1);
1185         }
1186     }
1187 
1188     QLIST_FOREACH(phb, &spapr->phbs, list) {
1189         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1190         if (ret < 0) {
1191             error_report("couldn't setup PCI devices in fdt");
1192             exit(1);
1193         }
1194     }
1195 
1196     spapr_dt_cpus(fdt, spapr);
1197 
1198     /* ibm,drc-indexes and friends */
1199     if (smc->dr_lmb_enabled) {
1200         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1201     }
1202     if (smc->dr_phb_enabled) {
1203         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1204     }
1205     if (mc->nvdimm_supported) {
1206         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1207     }
1208     if (root_drc_type_mask) {
1209         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1210     }
1211 
1212     if (mc->has_hotpluggable_cpus) {
1213         int offset = fdt_path_offset(fdt, "/cpus");
1214         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1215         if (ret < 0) {
1216             error_report("Couldn't set up CPU DR device tree properties");
1217             exit(1);
1218         }
1219     }
1220 
1221     /* /event-sources */
1222     spapr_dt_events(spapr, fdt);
1223 
1224     /* /rtas */
1225     spapr_dt_rtas(spapr, fdt);
1226 
1227     /* /chosen */
1228     spapr_dt_chosen(spapr, fdt, reset);
1229 
1230     /* /hypervisor */
1231     if (kvm_enabled()) {
1232         spapr_dt_hypervisor(spapr, fdt);
1233     }
1234 
1235     /* Build memory reserve map */
1236     if (reset) {
1237         if (spapr->kernel_size) {
1238             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1239                                   spapr->kernel_size)));
1240         }
1241         if (spapr->initrd_size) {
1242             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1243                                   spapr->initrd_size)));
1244         }
1245     }
1246 
1247     /* NVDIMM devices */
1248     if (mc->nvdimm_supported) {
1249         spapr_dt_persistent_memory(spapr, fdt);
1250     }
1251 
1252     return fdt;
1253 }
1254 
1255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1256 {
1257     SpaprMachineState *spapr = opaque;
1258 
1259     return (addr & 0x0fffffff) + spapr->kernel_addr;
1260 }
1261 
1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1263                                     PowerPCCPU *cpu)
1264 {
1265     CPUPPCState *env = &cpu->env;
1266 
1267     /* The TCG path should also be holding the BQL at this point */
1268     g_assert(qemu_mutex_iothread_locked());
1269 
1270     if (msr_pr) {
1271         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1272         env->gpr[3] = H_PRIVILEGE;
1273     } else {
1274         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1275     }
1276 }
1277 
1278 struct LPCRSyncState {
1279     target_ulong value;
1280     target_ulong mask;
1281 };
1282 
1283 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1284 {
1285     struct LPCRSyncState *s = arg.host_ptr;
1286     PowerPCCPU *cpu = POWERPC_CPU(cs);
1287     CPUPPCState *env = &cpu->env;
1288     target_ulong lpcr;
1289 
1290     cpu_synchronize_state(cs);
1291     lpcr = env->spr[SPR_LPCR];
1292     lpcr &= ~s->mask;
1293     lpcr |= s->value;
1294     ppc_store_lpcr(cpu, lpcr);
1295 }
1296 
1297 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1298 {
1299     CPUState *cs;
1300     struct LPCRSyncState s = {
1301         .value = value,
1302         .mask = mask
1303     };
1304     CPU_FOREACH(cs) {
1305         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1306     }
1307 }
1308 
1309 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1310 {
1311     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1312 
1313     /* Copy PATE1:GR into PATE0:HR */
1314     entry->dw0 = spapr->patb_entry & PATE0_HR;
1315     entry->dw1 = spapr->patb_entry;
1316 }
1317 
1318 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1319 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1320 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1321 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1322 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1323 
1324 /*
1325  * Get the fd to access the kernel htab, re-opening it if necessary
1326  */
1327 static int get_htab_fd(SpaprMachineState *spapr)
1328 {
1329     Error *local_err = NULL;
1330 
1331     if (spapr->htab_fd >= 0) {
1332         return spapr->htab_fd;
1333     }
1334 
1335     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1336     if (spapr->htab_fd < 0) {
1337         error_report_err(local_err);
1338     }
1339 
1340     return spapr->htab_fd;
1341 }
1342 
1343 void close_htab_fd(SpaprMachineState *spapr)
1344 {
1345     if (spapr->htab_fd >= 0) {
1346         close(spapr->htab_fd);
1347     }
1348     spapr->htab_fd = -1;
1349 }
1350 
1351 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1352 {
1353     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1354 
1355     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1356 }
1357 
1358 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1359 {
1360     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1361 
1362     assert(kvm_enabled());
1363 
1364     if (!spapr->htab) {
1365         return 0;
1366     }
1367 
1368     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1369 }
1370 
1371 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1372                                                 hwaddr ptex, int n)
1373 {
1374     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1375     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1376 
1377     if (!spapr->htab) {
1378         /*
1379          * HTAB is controlled by KVM. Fetch into temporary buffer
1380          */
1381         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1382         kvmppc_read_hptes(hptes, ptex, n);
1383         return hptes;
1384     }
1385 
1386     /*
1387      * HTAB is controlled by QEMU. Just point to the internally
1388      * accessible PTEG.
1389      */
1390     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1391 }
1392 
1393 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1394                               const ppc_hash_pte64_t *hptes,
1395                               hwaddr ptex, int n)
1396 {
1397     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1398 
1399     if (!spapr->htab) {
1400         g_free((void *)hptes);
1401     }
1402 
1403     /* Nothing to do for qemu managed HPT */
1404 }
1405 
1406 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1407                       uint64_t pte0, uint64_t pte1)
1408 {
1409     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1410     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1411 
1412     if (!spapr->htab) {
1413         kvmppc_write_hpte(ptex, pte0, pte1);
1414     } else {
1415         if (pte0 & HPTE64_V_VALID) {
1416             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1417             /*
1418              * When setting valid, we write PTE1 first. This ensures
1419              * proper synchronization with the reading code in
1420              * ppc_hash64_pteg_search()
1421              */
1422             smp_wmb();
1423             stq_p(spapr->htab + offset, pte0);
1424         } else {
1425             stq_p(spapr->htab + offset, pte0);
1426             /*
1427              * When clearing it we set PTE0 first. This ensures proper
1428              * synchronization with the reading code in
1429              * ppc_hash64_pteg_search()
1430              */
1431             smp_wmb();
1432             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1433         }
1434     }
1435 }
1436 
1437 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1438                              uint64_t pte1)
1439 {
1440     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1441     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1442 
1443     if (!spapr->htab) {
1444         /* There should always be a hash table when this is called */
1445         error_report("spapr_hpte_set_c called with no hash table !");
1446         return;
1447     }
1448 
1449     /* The HW performs a non-atomic byte update */
1450     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1451 }
1452 
1453 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1454                              uint64_t pte1)
1455 {
1456     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1457     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1458 
1459     if (!spapr->htab) {
1460         /* There should always be a hash table when this is called */
1461         error_report("spapr_hpte_set_r called with no hash table !");
1462         return;
1463     }
1464 
1465     /* The HW performs a non-atomic byte update */
1466     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1467 }
1468 
1469 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1470 {
1471     int shift;
1472 
1473     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1474      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1475      * that's much more than is needed for Linux guests */
1476     shift = ctz64(pow2ceil(ramsize)) - 7;
1477     shift = MAX(shift, 18); /* Minimum architected size */
1478     shift = MIN(shift, 46); /* Maximum architected size */
1479     return shift;
1480 }
1481 
1482 void spapr_free_hpt(SpaprMachineState *spapr)
1483 {
1484     g_free(spapr->htab);
1485     spapr->htab = NULL;
1486     spapr->htab_shift = 0;
1487     close_htab_fd(spapr);
1488 }
1489 
1490 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1491 {
1492     ERRP_GUARD();
1493     long rc;
1494 
1495     /* Clean up any HPT info from a previous boot */
1496     spapr_free_hpt(spapr);
1497 
1498     rc = kvmppc_reset_htab(shift);
1499 
1500     if (rc == -EOPNOTSUPP) {
1501         error_setg(errp, "HPT not supported in nested guests");
1502         return -EOPNOTSUPP;
1503     }
1504 
1505     if (rc < 0) {
1506         /* kernel-side HPT needed, but couldn't allocate one */
1507         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1508                          shift);
1509         error_append_hint(errp, "Try smaller maxmem?\n");
1510         return -errno;
1511     } else if (rc > 0) {
1512         /* kernel-side HPT allocated */
1513         if (rc != shift) {
1514             error_setg(errp,
1515                        "Requested order %d HPT, but kernel allocated order %ld",
1516                        shift, rc);
1517             error_append_hint(errp, "Try smaller maxmem?\n");
1518             return -ENOSPC;
1519         }
1520 
1521         spapr->htab_shift = shift;
1522         spapr->htab = NULL;
1523     } else {
1524         /* kernel-side HPT not needed, allocate in userspace instead */
1525         size_t size = 1ULL << shift;
1526         int i;
1527 
1528         spapr->htab = qemu_memalign(size, size);
1529         memset(spapr->htab, 0, size);
1530         spapr->htab_shift = shift;
1531 
1532         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1533             DIRTY_HPTE(HPTE(spapr->htab, i));
1534         }
1535     }
1536     /* We're setting up a hash table, so that means we're not radix */
1537     spapr->patb_entry = 0;
1538     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1539     return 0;
1540 }
1541 
1542 void spapr_setup_hpt(SpaprMachineState *spapr)
1543 {
1544     int hpt_shift;
1545 
1546     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1547         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1548     } else {
1549         uint64_t current_ram_size;
1550 
1551         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1552         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1553     }
1554     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1555 
1556     if (kvm_enabled()) {
1557         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1558 
1559         /* Check our RMA fits in the possible VRMA */
1560         if (vrma_limit < spapr->rma_size) {
1561             error_report("Unable to create %" HWADDR_PRIu
1562                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1563                          spapr->rma_size / MiB, vrma_limit / MiB);
1564             exit(EXIT_FAILURE);
1565         }
1566     }
1567 }
1568 
1569 void spapr_check_mmu_mode(bool guest_radix)
1570 {
1571     if (guest_radix) {
1572         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1573             error_report("Guest requested unavailable MMU mode (radix).");
1574             exit(EXIT_FAILURE);
1575         }
1576     } else {
1577         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1578             && !kvmppc_has_cap_mmu_hash_v3()) {
1579             error_report("Guest requested unavailable MMU mode (hash).");
1580             exit(EXIT_FAILURE);
1581         }
1582     }
1583 }
1584 
1585 static void spapr_machine_reset(MachineState *machine)
1586 {
1587     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1588     PowerPCCPU *first_ppc_cpu;
1589     hwaddr fdt_addr;
1590     void *fdt;
1591     int rc;
1592 
1593     pef_kvm_reset(machine->cgs, &error_fatal);
1594     spapr_caps_apply(spapr);
1595 
1596     first_ppc_cpu = POWERPC_CPU(first_cpu);
1597     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1598         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1599                               spapr->max_compat_pvr)) {
1600         /*
1601          * If using KVM with radix mode available, VCPUs can be started
1602          * without a HPT because KVM will start them in radix mode.
1603          * Set the GR bit in PATE so that we know there is no HPT.
1604          */
1605         spapr->patb_entry = PATE1_GR;
1606         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1607     } else {
1608         spapr_setup_hpt(spapr);
1609     }
1610 
1611     qemu_devices_reset();
1612 
1613     spapr_ovec_cleanup(spapr->ov5_cas);
1614     spapr->ov5_cas = spapr_ovec_new();
1615 
1616     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1617 
1618     /*
1619      * This is fixing some of the default configuration of the XIVE
1620      * devices. To be called after the reset of the machine devices.
1621      */
1622     spapr_irq_reset(spapr, &error_fatal);
1623 
1624     /*
1625      * There is no CAS under qtest. Simulate one to please the code that
1626      * depends on spapr->ov5_cas. This is especially needed to test device
1627      * unplug, so we do that before resetting the DRCs.
1628      */
1629     if (qtest_enabled()) {
1630         spapr_ovec_cleanup(spapr->ov5_cas);
1631         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1632     }
1633 
1634     /* DRC reset may cause a device to be unplugged. This will cause troubles
1635      * if this device is used by another device (eg, a running vhost backend
1636      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1637      * situations, we reset DRCs after all devices have been reset.
1638      */
1639     spapr_drc_reset_all(spapr);
1640 
1641     spapr_clear_pending_events(spapr);
1642 
1643     /*
1644      * We place the device tree just below either the top of the RMA,
1645      * or just below 2GB, whichever is lower, so that it can be
1646      * processed with 32-bit real mode code if necessary
1647      */
1648     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1649 
1650     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1651     if (spapr->vof) {
1652         spapr_vof_reset(spapr, fdt, &error_fatal);
1653         /*
1654          * Do not pack the FDT as the client may change properties.
1655          * VOF client does not expect the FDT so we do not load it to the VM.
1656          */
1657     } else {
1658         rc = fdt_pack(fdt);
1659         /* Should only fail if we've built a corrupted tree */
1660         assert(rc == 0);
1661 
1662         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1663                                   0, fdt_addr, 0);
1664         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1665     }
1666     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1667 
1668     g_free(spapr->fdt_blob);
1669     spapr->fdt_size = fdt_totalsize(fdt);
1670     spapr->fdt_initial_size = spapr->fdt_size;
1671     spapr->fdt_blob = fdt;
1672 
1673     /* Set up the entry state */
1674     first_ppc_cpu->env.gpr[5] = 0;
1675 
1676     spapr->fwnmi_system_reset_addr = -1;
1677     spapr->fwnmi_machine_check_addr = -1;
1678     spapr->fwnmi_machine_check_interlock = -1;
1679 
1680     /* Signal all vCPUs waiting on this condition */
1681     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1682 
1683     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1684 }
1685 
1686 static void spapr_create_nvram(SpaprMachineState *spapr)
1687 {
1688     DeviceState *dev = qdev_new("spapr-nvram");
1689     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1690 
1691     if (dinfo) {
1692         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1693                                 &error_fatal);
1694     }
1695 
1696     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1697 
1698     spapr->nvram = (struct SpaprNvram *)dev;
1699 }
1700 
1701 static void spapr_rtc_create(SpaprMachineState *spapr)
1702 {
1703     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1704                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1705                                        &error_fatal, NULL);
1706     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1707     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1708                               "date");
1709 }
1710 
1711 /* Returns whether we want to use VGA or not */
1712 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1713 {
1714     switch (vga_interface_type) {
1715     case VGA_NONE:
1716         return false;
1717     case VGA_DEVICE:
1718         return true;
1719     case VGA_STD:
1720     case VGA_VIRTIO:
1721     case VGA_CIRRUS:
1722         return pci_vga_init(pci_bus) != NULL;
1723     default:
1724         error_setg(errp,
1725                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1726         return false;
1727     }
1728 }
1729 
1730 static int spapr_pre_load(void *opaque)
1731 {
1732     int rc;
1733 
1734     rc = spapr_caps_pre_load(opaque);
1735     if (rc) {
1736         return rc;
1737     }
1738 
1739     return 0;
1740 }
1741 
1742 static int spapr_post_load(void *opaque, int version_id)
1743 {
1744     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1745     int err = 0;
1746 
1747     err = spapr_caps_post_migration(spapr);
1748     if (err) {
1749         return err;
1750     }
1751 
1752     /*
1753      * In earlier versions, there was no separate qdev for the PAPR
1754      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1755      * So when migrating from those versions, poke the incoming offset
1756      * value into the RTC device
1757      */
1758     if (version_id < 3) {
1759         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1760         if (err) {
1761             return err;
1762         }
1763     }
1764 
1765     if (kvm_enabled() && spapr->patb_entry) {
1766         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1767         bool radix = !!(spapr->patb_entry & PATE1_GR);
1768         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1769 
1770         /*
1771          * Update LPCR:HR and UPRT as they may not be set properly in
1772          * the stream
1773          */
1774         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1775                             LPCR_HR | LPCR_UPRT);
1776 
1777         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1778         if (err) {
1779             error_report("Process table config unsupported by the host");
1780             return -EINVAL;
1781         }
1782     }
1783 
1784     err = spapr_irq_post_load(spapr, version_id);
1785     if (err) {
1786         return err;
1787     }
1788 
1789     return err;
1790 }
1791 
1792 static int spapr_pre_save(void *opaque)
1793 {
1794     int rc;
1795 
1796     rc = spapr_caps_pre_save(opaque);
1797     if (rc) {
1798         return rc;
1799     }
1800 
1801     return 0;
1802 }
1803 
1804 static bool version_before_3(void *opaque, int version_id)
1805 {
1806     return version_id < 3;
1807 }
1808 
1809 static bool spapr_pending_events_needed(void *opaque)
1810 {
1811     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1812     return !QTAILQ_EMPTY(&spapr->pending_events);
1813 }
1814 
1815 static const VMStateDescription vmstate_spapr_event_entry = {
1816     .name = "spapr_event_log_entry",
1817     .version_id = 1,
1818     .minimum_version_id = 1,
1819     .fields = (VMStateField[]) {
1820         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1821         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1822         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1823                                      NULL, extended_length),
1824         VMSTATE_END_OF_LIST()
1825     },
1826 };
1827 
1828 static const VMStateDescription vmstate_spapr_pending_events = {
1829     .name = "spapr_pending_events",
1830     .version_id = 1,
1831     .minimum_version_id = 1,
1832     .needed = spapr_pending_events_needed,
1833     .fields = (VMStateField[]) {
1834         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1835                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1836         VMSTATE_END_OF_LIST()
1837     },
1838 };
1839 
1840 static bool spapr_ov5_cas_needed(void *opaque)
1841 {
1842     SpaprMachineState *spapr = opaque;
1843     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1844     bool cas_needed;
1845 
1846     /* Prior to the introduction of SpaprOptionVector, we had two option
1847      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1848      * Both of these options encode machine topology into the device-tree
1849      * in such a way that the now-booted OS should still be able to interact
1850      * appropriately with QEMU regardless of what options were actually
1851      * negotiatied on the source side.
1852      *
1853      * As such, we can avoid migrating the CAS-negotiated options if these
1854      * are the only options available on the current machine/platform.
1855      * Since these are the only options available for pseries-2.7 and
1856      * earlier, this allows us to maintain old->new/new->old migration
1857      * compatibility.
1858      *
1859      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1860      * via default pseries-2.8 machines and explicit command-line parameters.
1861      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1862      * of the actual CAS-negotiated values to continue working properly. For
1863      * example, availability of memory unplug depends on knowing whether
1864      * OV5_HP_EVT was negotiated via CAS.
1865      *
1866      * Thus, for any cases where the set of available CAS-negotiatable
1867      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1868      * include the CAS-negotiated options in the migration stream, unless
1869      * if they affect boot time behaviour only.
1870      */
1871     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1872     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1873     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1874 
1875     /* We need extra information if we have any bits outside the mask
1876      * defined above */
1877     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1878 
1879     spapr_ovec_cleanup(ov5_mask);
1880 
1881     return cas_needed;
1882 }
1883 
1884 static const VMStateDescription vmstate_spapr_ov5_cas = {
1885     .name = "spapr_option_vector_ov5_cas",
1886     .version_id = 1,
1887     .minimum_version_id = 1,
1888     .needed = spapr_ov5_cas_needed,
1889     .fields = (VMStateField[]) {
1890         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1891                                  vmstate_spapr_ovec, SpaprOptionVector),
1892         VMSTATE_END_OF_LIST()
1893     },
1894 };
1895 
1896 static bool spapr_patb_entry_needed(void *opaque)
1897 {
1898     SpaprMachineState *spapr = opaque;
1899 
1900     return !!spapr->patb_entry;
1901 }
1902 
1903 static const VMStateDescription vmstate_spapr_patb_entry = {
1904     .name = "spapr_patb_entry",
1905     .version_id = 1,
1906     .minimum_version_id = 1,
1907     .needed = spapr_patb_entry_needed,
1908     .fields = (VMStateField[]) {
1909         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1910         VMSTATE_END_OF_LIST()
1911     },
1912 };
1913 
1914 static bool spapr_irq_map_needed(void *opaque)
1915 {
1916     SpaprMachineState *spapr = opaque;
1917 
1918     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1919 }
1920 
1921 static const VMStateDescription vmstate_spapr_irq_map = {
1922     .name = "spapr_irq_map",
1923     .version_id = 1,
1924     .minimum_version_id = 1,
1925     .needed = spapr_irq_map_needed,
1926     .fields = (VMStateField[]) {
1927         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1928         VMSTATE_END_OF_LIST()
1929     },
1930 };
1931 
1932 static bool spapr_dtb_needed(void *opaque)
1933 {
1934     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1935 
1936     return smc->update_dt_enabled;
1937 }
1938 
1939 static int spapr_dtb_pre_load(void *opaque)
1940 {
1941     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1942 
1943     g_free(spapr->fdt_blob);
1944     spapr->fdt_blob = NULL;
1945     spapr->fdt_size = 0;
1946 
1947     return 0;
1948 }
1949 
1950 static const VMStateDescription vmstate_spapr_dtb = {
1951     .name = "spapr_dtb",
1952     .version_id = 1,
1953     .minimum_version_id = 1,
1954     .needed = spapr_dtb_needed,
1955     .pre_load = spapr_dtb_pre_load,
1956     .fields = (VMStateField[]) {
1957         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1958         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1959         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1960                                      fdt_size),
1961         VMSTATE_END_OF_LIST()
1962     },
1963 };
1964 
1965 static bool spapr_fwnmi_needed(void *opaque)
1966 {
1967     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1968 
1969     return spapr->fwnmi_machine_check_addr != -1;
1970 }
1971 
1972 static int spapr_fwnmi_pre_save(void *opaque)
1973 {
1974     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1975 
1976     /*
1977      * Check if machine check handling is in progress and print a
1978      * warning message.
1979      */
1980     if (spapr->fwnmi_machine_check_interlock != -1) {
1981         warn_report("A machine check is being handled during migration. The"
1982                 "handler may run and log hardware error on the destination");
1983     }
1984 
1985     return 0;
1986 }
1987 
1988 static const VMStateDescription vmstate_spapr_fwnmi = {
1989     .name = "spapr_fwnmi",
1990     .version_id = 1,
1991     .minimum_version_id = 1,
1992     .needed = spapr_fwnmi_needed,
1993     .pre_save = spapr_fwnmi_pre_save,
1994     .fields = (VMStateField[]) {
1995         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1996         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1997         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1998         VMSTATE_END_OF_LIST()
1999     },
2000 };
2001 
2002 static const VMStateDescription vmstate_spapr = {
2003     .name = "spapr",
2004     .version_id = 3,
2005     .minimum_version_id = 1,
2006     .pre_load = spapr_pre_load,
2007     .post_load = spapr_post_load,
2008     .pre_save = spapr_pre_save,
2009     .fields = (VMStateField[]) {
2010         /* used to be @next_irq */
2011         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2012 
2013         /* RTC offset */
2014         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2015 
2016         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2017         VMSTATE_END_OF_LIST()
2018     },
2019     .subsections = (const VMStateDescription*[]) {
2020         &vmstate_spapr_ov5_cas,
2021         &vmstate_spapr_patb_entry,
2022         &vmstate_spapr_pending_events,
2023         &vmstate_spapr_cap_htm,
2024         &vmstate_spapr_cap_vsx,
2025         &vmstate_spapr_cap_dfp,
2026         &vmstate_spapr_cap_cfpc,
2027         &vmstate_spapr_cap_sbbc,
2028         &vmstate_spapr_cap_ibs,
2029         &vmstate_spapr_cap_hpt_maxpagesize,
2030         &vmstate_spapr_irq_map,
2031         &vmstate_spapr_cap_nested_kvm_hv,
2032         &vmstate_spapr_dtb,
2033         &vmstate_spapr_cap_large_decr,
2034         &vmstate_spapr_cap_ccf_assist,
2035         &vmstate_spapr_cap_fwnmi,
2036         &vmstate_spapr_fwnmi,
2037         &vmstate_spapr_cap_rpt_invalidate,
2038         NULL
2039     }
2040 };
2041 
2042 static int htab_save_setup(QEMUFile *f, void *opaque)
2043 {
2044     SpaprMachineState *spapr = opaque;
2045 
2046     /* "Iteration" header */
2047     if (!spapr->htab_shift) {
2048         qemu_put_be32(f, -1);
2049     } else {
2050         qemu_put_be32(f, spapr->htab_shift);
2051     }
2052 
2053     if (spapr->htab) {
2054         spapr->htab_save_index = 0;
2055         spapr->htab_first_pass = true;
2056     } else {
2057         if (spapr->htab_shift) {
2058             assert(kvm_enabled());
2059         }
2060     }
2061 
2062 
2063     return 0;
2064 }
2065 
2066 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2067                             int chunkstart, int n_valid, int n_invalid)
2068 {
2069     qemu_put_be32(f, chunkstart);
2070     qemu_put_be16(f, n_valid);
2071     qemu_put_be16(f, n_invalid);
2072     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2073                     HASH_PTE_SIZE_64 * n_valid);
2074 }
2075 
2076 static void htab_save_end_marker(QEMUFile *f)
2077 {
2078     qemu_put_be32(f, 0);
2079     qemu_put_be16(f, 0);
2080     qemu_put_be16(f, 0);
2081 }
2082 
2083 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2084                                  int64_t max_ns)
2085 {
2086     bool has_timeout = max_ns != -1;
2087     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2088     int index = spapr->htab_save_index;
2089     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2090 
2091     assert(spapr->htab_first_pass);
2092 
2093     do {
2094         int chunkstart;
2095 
2096         /* Consume invalid HPTEs */
2097         while ((index < htabslots)
2098                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2099             CLEAN_HPTE(HPTE(spapr->htab, index));
2100             index++;
2101         }
2102 
2103         /* Consume valid HPTEs */
2104         chunkstart = index;
2105         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2106                && HPTE_VALID(HPTE(spapr->htab, index))) {
2107             CLEAN_HPTE(HPTE(spapr->htab, index));
2108             index++;
2109         }
2110 
2111         if (index > chunkstart) {
2112             int n_valid = index - chunkstart;
2113 
2114             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2115 
2116             if (has_timeout &&
2117                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2118                 break;
2119             }
2120         }
2121     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2122 
2123     if (index >= htabslots) {
2124         assert(index == htabslots);
2125         index = 0;
2126         spapr->htab_first_pass = false;
2127     }
2128     spapr->htab_save_index = index;
2129 }
2130 
2131 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2132                                 int64_t max_ns)
2133 {
2134     bool final = max_ns < 0;
2135     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2136     int examined = 0, sent = 0;
2137     int index = spapr->htab_save_index;
2138     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2139 
2140     assert(!spapr->htab_first_pass);
2141 
2142     do {
2143         int chunkstart, invalidstart;
2144 
2145         /* Consume non-dirty HPTEs */
2146         while ((index < htabslots)
2147                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2148             index++;
2149             examined++;
2150         }
2151 
2152         chunkstart = index;
2153         /* Consume valid dirty HPTEs */
2154         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2155                && HPTE_DIRTY(HPTE(spapr->htab, index))
2156                && HPTE_VALID(HPTE(spapr->htab, index))) {
2157             CLEAN_HPTE(HPTE(spapr->htab, index));
2158             index++;
2159             examined++;
2160         }
2161 
2162         invalidstart = index;
2163         /* Consume invalid dirty HPTEs */
2164         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2165                && HPTE_DIRTY(HPTE(spapr->htab, index))
2166                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2167             CLEAN_HPTE(HPTE(spapr->htab, index));
2168             index++;
2169             examined++;
2170         }
2171 
2172         if (index > chunkstart) {
2173             int n_valid = invalidstart - chunkstart;
2174             int n_invalid = index - invalidstart;
2175 
2176             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2177             sent += index - chunkstart;
2178 
2179             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2180                 break;
2181             }
2182         }
2183 
2184         if (examined >= htabslots) {
2185             break;
2186         }
2187 
2188         if (index >= htabslots) {
2189             assert(index == htabslots);
2190             index = 0;
2191         }
2192     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2193 
2194     if (index >= htabslots) {
2195         assert(index == htabslots);
2196         index = 0;
2197     }
2198 
2199     spapr->htab_save_index = index;
2200 
2201     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2202 }
2203 
2204 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2205 #define MAX_KVM_BUF_SIZE    2048
2206 
2207 static int htab_save_iterate(QEMUFile *f, void *opaque)
2208 {
2209     SpaprMachineState *spapr = opaque;
2210     int fd;
2211     int rc = 0;
2212 
2213     /* Iteration header */
2214     if (!spapr->htab_shift) {
2215         qemu_put_be32(f, -1);
2216         return 1;
2217     } else {
2218         qemu_put_be32(f, 0);
2219     }
2220 
2221     if (!spapr->htab) {
2222         assert(kvm_enabled());
2223 
2224         fd = get_htab_fd(spapr);
2225         if (fd < 0) {
2226             return fd;
2227         }
2228 
2229         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2230         if (rc < 0) {
2231             return rc;
2232         }
2233     } else  if (spapr->htab_first_pass) {
2234         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2235     } else {
2236         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2237     }
2238 
2239     htab_save_end_marker(f);
2240 
2241     return rc;
2242 }
2243 
2244 static int htab_save_complete(QEMUFile *f, void *opaque)
2245 {
2246     SpaprMachineState *spapr = opaque;
2247     int fd;
2248 
2249     /* Iteration header */
2250     if (!spapr->htab_shift) {
2251         qemu_put_be32(f, -1);
2252         return 0;
2253     } else {
2254         qemu_put_be32(f, 0);
2255     }
2256 
2257     if (!spapr->htab) {
2258         int rc;
2259 
2260         assert(kvm_enabled());
2261 
2262         fd = get_htab_fd(spapr);
2263         if (fd < 0) {
2264             return fd;
2265         }
2266 
2267         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2268         if (rc < 0) {
2269             return rc;
2270         }
2271     } else {
2272         if (spapr->htab_first_pass) {
2273             htab_save_first_pass(f, spapr, -1);
2274         }
2275         htab_save_later_pass(f, spapr, -1);
2276     }
2277 
2278     /* End marker */
2279     htab_save_end_marker(f);
2280 
2281     return 0;
2282 }
2283 
2284 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2285 {
2286     SpaprMachineState *spapr = opaque;
2287     uint32_t section_hdr;
2288     int fd = -1;
2289     Error *local_err = NULL;
2290 
2291     if (version_id < 1 || version_id > 1) {
2292         error_report("htab_load() bad version");
2293         return -EINVAL;
2294     }
2295 
2296     section_hdr = qemu_get_be32(f);
2297 
2298     if (section_hdr == -1) {
2299         spapr_free_hpt(spapr);
2300         return 0;
2301     }
2302 
2303     if (section_hdr) {
2304         int ret;
2305 
2306         /* First section gives the htab size */
2307         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2308         if (ret < 0) {
2309             error_report_err(local_err);
2310             return ret;
2311         }
2312         return 0;
2313     }
2314 
2315     if (!spapr->htab) {
2316         assert(kvm_enabled());
2317 
2318         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2319         if (fd < 0) {
2320             error_report_err(local_err);
2321             return fd;
2322         }
2323     }
2324 
2325     while (true) {
2326         uint32_t index;
2327         uint16_t n_valid, n_invalid;
2328 
2329         index = qemu_get_be32(f);
2330         n_valid = qemu_get_be16(f);
2331         n_invalid = qemu_get_be16(f);
2332 
2333         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2334             /* End of Stream */
2335             break;
2336         }
2337 
2338         if ((index + n_valid + n_invalid) >
2339             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2340             /* Bad index in stream */
2341             error_report(
2342                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2343                 index, n_valid, n_invalid, spapr->htab_shift);
2344             return -EINVAL;
2345         }
2346 
2347         if (spapr->htab) {
2348             if (n_valid) {
2349                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2350                                 HASH_PTE_SIZE_64 * n_valid);
2351             }
2352             if (n_invalid) {
2353                 memset(HPTE(spapr->htab, index + n_valid), 0,
2354                        HASH_PTE_SIZE_64 * n_invalid);
2355             }
2356         } else {
2357             int rc;
2358 
2359             assert(fd >= 0);
2360 
2361             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2362                                         &local_err);
2363             if (rc < 0) {
2364                 error_report_err(local_err);
2365                 return rc;
2366             }
2367         }
2368     }
2369 
2370     if (!spapr->htab) {
2371         assert(fd >= 0);
2372         close(fd);
2373     }
2374 
2375     return 0;
2376 }
2377 
2378 static void htab_save_cleanup(void *opaque)
2379 {
2380     SpaprMachineState *spapr = opaque;
2381 
2382     close_htab_fd(spapr);
2383 }
2384 
2385 static SaveVMHandlers savevm_htab_handlers = {
2386     .save_setup = htab_save_setup,
2387     .save_live_iterate = htab_save_iterate,
2388     .save_live_complete_precopy = htab_save_complete,
2389     .save_cleanup = htab_save_cleanup,
2390     .load_state = htab_load,
2391 };
2392 
2393 static void spapr_boot_set(void *opaque, const char *boot_device,
2394                            Error **errp)
2395 {
2396     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2397 
2398     g_free(spapr->boot_device);
2399     spapr->boot_device = g_strdup(boot_device);
2400 }
2401 
2402 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2403 {
2404     MachineState *machine = MACHINE(spapr);
2405     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2406     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2407     int i;
2408 
2409     for (i = 0; i < nr_lmbs; i++) {
2410         uint64_t addr;
2411 
2412         addr = i * lmb_size + machine->device_memory->base;
2413         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2414                                addr / lmb_size);
2415     }
2416 }
2417 
2418 /*
2419  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2420  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2421  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2422  */
2423 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2424 {
2425     int i;
2426 
2427     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2428         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2429                    " is not aligned to %" PRIu64 " MiB",
2430                    machine->ram_size,
2431                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2432         return;
2433     }
2434 
2435     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2436         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2437                    " is not aligned to %" PRIu64 " MiB",
2438                    machine->ram_size,
2439                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2440         return;
2441     }
2442 
2443     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2444         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2445             error_setg(errp,
2446                        "Node %d memory size 0x%" PRIx64
2447                        " is not aligned to %" PRIu64 " MiB",
2448                        i, machine->numa_state->nodes[i].node_mem,
2449                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2450             return;
2451         }
2452     }
2453 }
2454 
2455 /* find cpu slot in machine->possible_cpus by core_id */
2456 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2457 {
2458     int index = id / ms->smp.threads;
2459 
2460     if (index >= ms->possible_cpus->len) {
2461         return NULL;
2462     }
2463     if (idx) {
2464         *idx = index;
2465     }
2466     return &ms->possible_cpus->cpus[index];
2467 }
2468 
2469 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2470 {
2471     MachineState *ms = MACHINE(spapr);
2472     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2473     Error *local_err = NULL;
2474     bool vsmt_user = !!spapr->vsmt;
2475     int kvm_smt = kvmppc_smt_threads();
2476     int ret;
2477     unsigned int smp_threads = ms->smp.threads;
2478 
2479     if (!kvm_enabled() && (smp_threads > 1)) {
2480         error_setg(errp, "TCG cannot support more than 1 thread/core "
2481                    "on a pseries machine");
2482         return;
2483     }
2484     if (!is_power_of_2(smp_threads)) {
2485         error_setg(errp, "Cannot support %d threads/core on a pseries "
2486                    "machine because it must be a power of 2", smp_threads);
2487         return;
2488     }
2489 
2490     /* Detemine the VSMT mode to use: */
2491     if (vsmt_user) {
2492         if (spapr->vsmt < smp_threads) {
2493             error_setg(errp, "Cannot support VSMT mode %d"
2494                        " because it must be >= threads/core (%d)",
2495                        spapr->vsmt, smp_threads);
2496             return;
2497         }
2498         /* In this case, spapr->vsmt has been set by the command line */
2499     } else if (!smc->smp_threads_vsmt) {
2500         /*
2501          * Default VSMT value is tricky, because we need it to be as
2502          * consistent as possible (for migration), but this requires
2503          * changing it for at least some existing cases.  We pick 8 as
2504          * the value that we'd get with KVM on POWER8, the
2505          * overwhelmingly common case in production systems.
2506          */
2507         spapr->vsmt = MAX(8, smp_threads);
2508     } else {
2509         spapr->vsmt = smp_threads;
2510     }
2511 
2512     /* KVM: If necessary, set the SMT mode: */
2513     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2514         ret = kvmppc_set_smt_threads(spapr->vsmt);
2515         if (ret) {
2516             /* Looks like KVM isn't able to change VSMT mode */
2517             error_setg(&local_err,
2518                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2519                        spapr->vsmt, ret);
2520             /* We can live with that if the default one is big enough
2521              * for the number of threads, and a submultiple of the one
2522              * we want.  In this case we'll waste some vcpu ids, but
2523              * behaviour will be correct */
2524             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2525                 warn_report_err(local_err);
2526             } else {
2527                 if (!vsmt_user) {
2528                     error_append_hint(&local_err,
2529                                       "On PPC, a VM with %d threads/core"
2530                                       " on a host with %d threads/core"
2531                                       " requires the use of VSMT mode %d.\n",
2532                                       smp_threads, kvm_smt, spapr->vsmt);
2533                 }
2534                 kvmppc_error_append_smt_possible_hint(&local_err);
2535                 error_propagate(errp, local_err);
2536             }
2537         }
2538     }
2539     /* else TCG: nothing to do currently */
2540 }
2541 
2542 static void spapr_init_cpus(SpaprMachineState *spapr)
2543 {
2544     MachineState *machine = MACHINE(spapr);
2545     MachineClass *mc = MACHINE_GET_CLASS(machine);
2546     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2547     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2548     const CPUArchIdList *possible_cpus;
2549     unsigned int smp_cpus = machine->smp.cpus;
2550     unsigned int smp_threads = machine->smp.threads;
2551     unsigned int max_cpus = machine->smp.max_cpus;
2552     int boot_cores_nr = smp_cpus / smp_threads;
2553     int i;
2554 
2555     possible_cpus = mc->possible_cpu_arch_ids(machine);
2556     if (mc->has_hotpluggable_cpus) {
2557         if (smp_cpus % smp_threads) {
2558             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2559                          smp_cpus, smp_threads);
2560             exit(1);
2561         }
2562         if (max_cpus % smp_threads) {
2563             error_report("max_cpus (%u) must be multiple of threads (%u)",
2564                          max_cpus, smp_threads);
2565             exit(1);
2566         }
2567     } else {
2568         if (max_cpus != smp_cpus) {
2569             error_report("This machine version does not support CPU hotplug");
2570             exit(1);
2571         }
2572         boot_cores_nr = possible_cpus->len;
2573     }
2574 
2575     if (smc->pre_2_10_has_unused_icps) {
2576         int i;
2577 
2578         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2579             /* Dummy entries get deregistered when real ICPState objects
2580              * are registered during CPU core hotplug.
2581              */
2582             pre_2_10_vmstate_register_dummy_icp(i);
2583         }
2584     }
2585 
2586     for (i = 0; i < possible_cpus->len; i++) {
2587         int core_id = i * smp_threads;
2588 
2589         if (mc->has_hotpluggable_cpus) {
2590             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2591                                    spapr_vcpu_id(spapr, core_id));
2592         }
2593 
2594         if (i < boot_cores_nr) {
2595             Object *core  = object_new(type);
2596             int nr_threads = smp_threads;
2597 
2598             /* Handle the partially filled core for older machine types */
2599             if ((i + 1) * smp_threads >= smp_cpus) {
2600                 nr_threads = smp_cpus - i * smp_threads;
2601             }
2602 
2603             object_property_set_int(core, "nr-threads", nr_threads,
2604                                     &error_fatal);
2605             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2606                                     &error_fatal);
2607             qdev_realize(DEVICE(core), NULL, &error_fatal);
2608 
2609             object_unref(core);
2610         }
2611     }
2612 }
2613 
2614 static PCIHostState *spapr_create_default_phb(void)
2615 {
2616     DeviceState *dev;
2617 
2618     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2619     qdev_prop_set_uint32(dev, "index", 0);
2620     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2621 
2622     return PCI_HOST_BRIDGE(dev);
2623 }
2624 
2625 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2626 {
2627     MachineState *machine = MACHINE(spapr);
2628     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2629     hwaddr rma_size = machine->ram_size;
2630     hwaddr node0_size = spapr_node0_size(machine);
2631 
2632     /* RMA has to fit in the first NUMA node */
2633     rma_size = MIN(rma_size, node0_size);
2634 
2635     /*
2636      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2637      * never exceed that
2638      */
2639     rma_size = MIN(rma_size, 1 * TiB);
2640 
2641     /*
2642      * Clamp the RMA size based on machine type.  This is for
2643      * migration compatibility with older qemu versions, which limited
2644      * the RMA size for complicated and mostly bad reasons.
2645      */
2646     if (smc->rma_limit) {
2647         rma_size = MIN(rma_size, smc->rma_limit);
2648     }
2649 
2650     if (rma_size < MIN_RMA_SLOF) {
2651         error_setg(errp,
2652                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2653                    "ldMiB guest RMA (Real Mode Area memory)",
2654                    MIN_RMA_SLOF / MiB);
2655         return 0;
2656     }
2657 
2658     return rma_size;
2659 }
2660 
2661 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2662 {
2663     MachineState *machine = MACHINE(spapr);
2664     int i;
2665 
2666     for (i = 0; i < machine->ram_slots; i++) {
2667         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2668     }
2669 }
2670 
2671 /* pSeries LPAR / sPAPR hardware init */
2672 static void spapr_machine_init(MachineState *machine)
2673 {
2674     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2675     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2676     MachineClass *mc = MACHINE_GET_CLASS(machine);
2677     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2678     const char *bios_name = machine->firmware ?: bios_default;
2679     const char *kernel_filename = machine->kernel_filename;
2680     const char *initrd_filename = machine->initrd_filename;
2681     PCIHostState *phb;
2682     int i;
2683     MemoryRegion *sysmem = get_system_memory();
2684     long load_limit, fw_size;
2685     char *filename;
2686     Error *resize_hpt_err = NULL;
2687 
2688     /*
2689      * if Secure VM (PEF) support is configured, then initialize it
2690      */
2691     pef_kvm_init(machine->cgs, &error_fatal);
2692 
2693     msi_nonbroken = true;
2694 
2695     QLIST_INIT(&spapr->phbs);
2696     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2697 
2698     /* Determine capabilities to run with */
2699     spapr_caps_init(spapr);
2700 
2701     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2702     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2703         /*
2704          * If the user explicitly requested a mode we should either
2705          * supply it, or fail completely (which we do below).  But if
2706          * it's not set explicitly, we reset our mode to something
2707          * that works
2708          */
2709         if (resize_hpt_err) {
2710             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2711             error_free(resize_hpt_err);
2712             resize_hpt_err = NULL;
2713         } else {
2714             spapr->resize_hpt = smc->resize_hpt_default;
2715         }
2716     }
2717 
2718     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2719 
2720     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2721         /*
2722          * User requested HPT resize, but this host can't supply it.  Bail out
2723          */
2724         error_report_err(resize_hpt_err);
2725         exit(1);
2726     }
2727     error_free(resize_hpt_err);
2728 
2729     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2730 
2731     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2732     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2733 
2734     /*
2735      * VSMT must be set in order to be able to compute VCPU ids, ie to
2736      * call spapr_max_server_number() or spapr_vcpu_id().
2737      */
2738     spapr_set_vsmt_mode(spapr, &error_fatal);
2739 
2740     /* Set up Interrupt Controller before we create the VCPUs */
2741     spapr_irq_init(spapr, &error_fatal);
2742 
2743     /* Set up containers for ibm,client-architecture-support negotiated options
2744      */
2745     spapr->ov5 = spapr_ovec_new();
2746     spapr->ov5_cas = spapr_ovec_new();
2747 
2748     if (smc->dr_lmb_enabled) {
2749         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2750         spapr_validate_node_memory(machine, &error_fatal);
2751     }
2752 
2753     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2754 
2755     /* advertise support for dedicated HP event source to guests */
2756     if (spapr->use_hotplug_event_source) {
2757         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2758     }
2759 
2760     /* advertise support for HPT resizing */
2761     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2762         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2763     }
2764 
2765     /* advertise support for ibm,dyamic-memory-v2 */
2766     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2767 
2768     /* advertise XIVE on POWER9 machines */
2769     if (spapr->irq->xive) {
2770         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2771     }
2772 
2773     /* init CPUs */
2774     spapr_init_cpus(spapr);
2775 
2776     /*
2777      * check we don't have a memory-less/cpu-less NUMA node
2778      * Firmware relies on the existing memory/cpu topology to provide the
2779      * NUMA topology to the kernel.
2780      * And the linux kernel needs to know the NUMA topology at start
2781      * to be able to hotplug CPUs later.
2782      */
2783     if (machine->numa_state->num_nodes) {
2784         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2785             /* check for memory-less node */
2786             if (machine->numa_state->nodes[i].node_mem == 0) {
2787                 CPUState *cs;
2788                 int found = 0;
2789                 /* check for cpu-less node */
2790                 CPU_FOREACH(cs) {
2791                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2792                     if (cpu->node_id == i) {
2793                         found = 1;
2794                         break;
2795                     }
2796                 }
2797                 /* memory-less and cpu-less node */
2798                 if (!found) {
2799                     error_report(
2800                        "Memory-less/cpu-less nodes are not supported (node %d)",
2801                                  i);
2802                     exit(1);
2803                 }
2804             }
2805         }
2806 
2807     }
2808 
2809     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2810 
2811     /* Init numa_assoc_array */
2812     spapr_numa_associativity_init(spapr, machine);
2813 
2814     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2815         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2816                               spapr->max_compat_pvr)) {
2817         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2818         /* KVM and TCG always allow GTSE with radix... */
2819         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2820     }
2821     /* ... but not with hash (currently). */
2822 
2823     if (kvm_enabled()) {
2824         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2825         kvmppc_enable_logical_ci_hcalls();
2826         kvmppc_enable_set_mode_hcall();
2827 
2828         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2829         kvmppc_enable_clear_ref_mod_hcalls();
2830 
2831         /* Enable H_PAGE_INIT */
2832         kvmppc_enable_h_page_init();
2833     }
2834 
2835     /* map RAM */
2836     memory_region_add_subregion(sysmem, 0, machine->ram);
2837 
2838     /* always allocate the device memory information */
2839     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2840 
2841     /* initialize hotplug memory address space */
2842     if (machine->ram_size < machine->maxram_size) {
2843         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2844         /*
2845          * Limit the number of hotpluggable memory slots to half the number
2846          * slots that KVM supports, leaving the other half for PCI and other
2847          * devices. However ensure that number of slots doesn't drop below 32.
2848          */
2849         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2850                            SPAPR_MAX_RAM_SLOTS;
2851 
2852         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2853             max_memslots = SPAPR_MAX_RAM_SLOTS;
2854         }
2855         if (machine->ram_slots > max_memslots) {
2856             error_report("Specified number of memory slots %"
2857                          PRIu64" exceeds max supported %d",
2858                          machine->ram_slots, max_memslots);
2859             exit(1);
2860         }
2861 
2862         machine->device_memory->base = ROUND_UP(machine->ram_size,
2863                                                 SPAPR_DEVICE_MEM_ALIGN);
2864         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2865                            "device-memory", device_mem_size);
2866         memory_region_add_subregion(sysmem, machine->device_memory->base,
2867                                     &machine->device_memory->mr);
2868     }
2869 
2870     if (smc->dr_lmb_enabled) {
2871         spapr_create_lmb_dr_connectors(spapr);
2872     }
2873 
2874     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2875         /* Create the error string for live migration blocker */
2876         error_setg(&spapr->fwnmi_migration_blocker,
2877             "A machine check is being handled during migration. The handler"
2878             "may run and log hardware error on the destination");
2879     }
2880 
2881     if (mc->nvdimm_supported) {
2882         spapr_create_nvdimm_dr_connectors(spapr);
2883     }
2884 
2885     /* Set up RTAS event infrastructure */
2886     spapr_events_init(spapr);
2887 
2888     /* Set up the RTC RTAS interfaces */
2889     spapr_rtc_create(spapr);
2890 
2891     /* Set up VIO bus */
2892     spapr->vio_bus = spapr_vio_bus_init();
2893 
2894     for (i = 0; serial_hd(i); i++) {
2895         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2896     }
2897 
2898     /* We always have at least the nvram device on VIO */
2899     spapr_create_nvram(spapr);
2900 
2901     /*
2902      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2903      * connectors (described in root DT node's "ibm,drc-types" property)
2904      * are pre-initialized here. additional child connectors (such as
2905      * connectors for a PHBs PCI slots) are added as needed during their
2906      * parent's realization.
2907      */
2908     if (smc->dr_phb_enabled) {
2909         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2910             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2911         }
2912     }
2913 
2914     /* Set up PCI */
2915     spapr_pci_rtas_init();
2916 
2917     phb = spapr_create_default_phb();
2918 
2919     for (i = 0; i < nb_nics; i++) {
2920         NICInfo *nd = &nd_table[i];
2921 
2922         if (!nd->model) {
2923             nd->model = g_strdup("spapr-vlan");
2924         }
2925 
2926         if (g_str_equal(nd->model, "spapr-vlan") ||
2927             g_str_equal(nd->model, "ibmveth")) {
2928             spapr_vlan_create(spapr->vio_bus, nd);
2929         } else {
2930             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2931         }
2932     }
2933 
2934     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2935         spapr_vscsi_create(spapr->vio_bus);
2936     }
2937 
2938     /* Graphics */
2939     if (spapr_vga_init(phb->bus, &error_fatal)) {
2940         spapr->has_graphics = true;
2941         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2942     }
2943 
2944     if (machine->usb) {
2945         if (smc->use_ohci_by_default) {
2946             pci_create_simple(phb->bus, -1, "pci-ohci");
2947         } else {
2948             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2949         }
2950 
2951         if (spapr->has_graphics) {
2952             USBBus *usb_bus = usb_bus_find(-1);
2953 
2954             usb_create_simple(usb_bus, "usb-kbd");
2955             usb_create_simple(usb_bus, "usb-mouse");
2956         }
2957     }
2958 
2959     if (kernel_filename) {
2960         spapr->kernel_size = load_elf(kernel_filename, NULL,
2961                                       translate_kernel_address, spapr,
2962                                       NULL, NULL, NULL, NULL, 1,
2963                                       PPC_ELF_MACHINE, 0, 0);
2964         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2965             spapr->kernel_size = load_elf(kernel_filename, NULL,
2966                                           translate_kernel_address, spapr,
2967                                           NULL, NULL, NULL, NULL, 0,
2968                                           PPC_ELF_MACHINE, 0, 0);
2969             spapr->kernel_le = spapr->kernel_size > 0;
2970         }
2971         if (spapr->kernel_size < 0) {
2972             error_report("error loading %s: %s", kernel_filename,
2973                          load_elf_strerror(spapr->kernel_size));
2974             exit(1);
2975         }
2976 
2977         /* load initrd */
2978         if (initrd_filename) {
2979             /* Try to locate the initrd in the gap between the kernel
2980              * and the firmware. Add a bit of space just in case
2981              */
2982             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2983                                   + 0x1ffff) & ~0xffff;
2984             spapr->initrd_size = load_image_targphys(initrd_filename,
2985                                                      spapr->initrd_base,
2986                                                      load_limit
2987                                                      - spapr->initrd_base);
2988             if (spapr->initrd_size < 0) {
2989                 error_report("could not load initial ram disk '%s'",
2990                              initrd_filename);
2991                 exit(1);
2992             }
2993         }
2994     }
2995 
2996     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2997     if (!filename) {
2998         error_report("Could not find LPAR firmware '%s'", bios_name);
2999         exit(1);
3000     }
3001     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3002     if (fw_size <= 0) {
3003         error_report("Could not load LPAR firmware '%s'", filename);
3004         exit(1);
3005     }
3006     g_free(filename);
3007 
3008     /* FIXME: Should register things through the MachineState's qdev
3009      * interface, this is a legacy from the sPAPREnvironment structure
3010      * which predated MachineState but had a similar function */
3011     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3012     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3013                          &savevm_htab_handlers, spapr);
3014 
3015     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3016 
3017     qemu_register_boot_set(spapr_boot_set, spapr);
3018 
3019     /*
3020      * Nothing needs to be done to resume a suspended guest because
3021      * suspending does not change the machine state, so no need for
3022      * a ->wakeup method.
3023      */
3024     qemu_register_wakeup_support();
3025 
3026     if (kvm_enabled()) {
3027         /* to stop and start vmclock */
3028         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3029                                          &spapr->tb);
3030 
3031         kvmppc_spapr_enable_inkernel_multitce();
3032     }
3033 
3034     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3035     if (spapr->vof) {
3036         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3037         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3038     }
3039 }
3040 
3041 #define DEFAULT_KVM_TYPE "auto"
3042 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3043 {
3044     /*
3045      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3046      * accomodate the 'HV' and 'PV' formats that exists in the
3047      * wild. The 'auto' mode is being introduced already as
3048      * lower-case, thus we don't need to bother checking for
3049      * "AUTO".
3050      */
3051     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3052         return 0;
3053     }
3054 
3055     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3056         return 1;
3057     }
3058 
3059     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3060         return 2;
3061     }
3062 
3063     error_report("Unknown kvm-type specified '%s'", vm_type);
3064     exit(1);
3065 }
3066 
3067 /*
3068  * Implementation of an interface to adjust firmware path
3069  * for the bootindex property handling.
3070  */
3071 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3072                                    DeviceState *dev)
3073 {
3074 #define CAST(type, obj, name) \
3075     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3076     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3077     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3078     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3079     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3080 
3081     if (d) {
3082         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3083         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3084         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3085 
3086         if (spapr) {
3087             /*
3088              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3089              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3090              * 0x8000 | (target << 8) | (bus << 5) | lun
3091              * (see the "Logical unit addressing format" table in SAM5)
3092              */
3093             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3094             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3095                                    (uint64_t)id << 48);
3096         } else if (virtio) {
3097             /*
3098              * We use SRP luns of the form 01000000 | (target << 8) | lun
3099              * in the top 32 bits of the 64-bit LUN
3100              * Note: the quote above is from SLOF and it is wrong,
3101              * the actual binding is:
3102              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3103              */
3104             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3105             if (d->lun >= 256) {
3106                 /* Use the LUN "flat space addressing method" */
3107                 id |= 0x4000;
3108             }
3109             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3110                                    (uint64_t)id << 32);
3111         } else if (usb) {
3112             /*
3113              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3114              * in the top 32 bits of the 64-bit LUN
3115              */
3116             unsigned usb_port = atoi(usb->port->path);
3117             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3118             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3119                                    (uint64_t)id << 32);
3120         }
3121     }
3122 
3123     /*
3124      * SLOF probes the USB devices, and if it recognizes that the device is a
3125      * storage device, it changes its name to "storage" instead of "usb-host",
3126      * and additionally adds a child node for the SCSI LUN, so the correct
3127      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3128      */
3129     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3130         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3131         if (usb_device_is_scsi_storage(usbdev)) {
3132             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3133         }
3134     }
3135 
3136     if (phb) {
3137         /* Replace "pci" with "pci@800000020000000" */
3138         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3139     }
3140 
3141     if (vsc) {
3142         /* Same logic as virtio above */
3143         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3144         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3145     }
3146 
3147     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3148         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3149         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3150         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3151     }
3152 
3153     if (pcidev) {
3154         return spapr_pci_fw_dev_name(pcidev);
3155     }
3156 
3157     return NULL;
3158 }
3159 
3160 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3161 {
3162     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3163 
3164     return g_strdup(spapr->kvm_type);
3165 }
3166 
3167 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3168 {
3169     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3170 
3171     g_free(spapr->kvm_type);
3172     spapr->kvm_type = g_strdup(value);
3173 }
3174 
3175 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3176 {
3177     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3178 
3179     return spapr->use_hotplug_event_source;
3180 }
3181 
3182 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3183                                             Error **errp)
3184 {
3185     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3186 
3187     spapr->use_hotplug_event_source = value;
3188 }
3189 
3190 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3191 {
3192     return true;
3193 }
3194 
3195 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3196 {
3197     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3198 
3199     switch (spapr->resize_hpt) {
3200     case SPAPR_RESIZE_HPT_DEFAULT:
3201         return g_strdup("default");
3202     case SPAPR_RESIZE_HPT_DISABLED:
3203         return g_strdup("disabled");
3204     case SPAPR_RESIZE_HPT_ENABLED:
3205         return g_strdup("enabled");
3206     case SPAPR_RESIZE_HPT_REQUIRED:
3207         return g_strdup("required");
3208     }
3209     g_assert_not_reached();
3210 }
3211 
3212 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3213 {
3214     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3215 
3216     if (strcmp(value, "default") == 0) {
3217         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3218     } else if (strcmp(value, "disabled") == 0) {
3219         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3220     } else if (strcmp(value, "enabled") == 0) {
3221         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3222     } else if (strcmp(value, "required") == 0) {
3223         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3224     } else {
3225         error_setg(errp, "Bad value for \"resize-hpt\" property");
3226     }
3227 }
3228 
3229 static bool spapr_get_vof(Object *obj, Error **errp)
3230 {
3231     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3232 
3233     return spapr->vof != NULL;
3234 }
3235 
3236 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3237 {
3238     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 
3240     if (spapr->vof) {
3241         vof_cleanup(spapr->vof);
3242         g_free(spapr->vof);
3243         spapr->vof = NULL;
3244     }
3245     if (!value) {
3246         return;
3247     }
3248     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3249 }
3250 
3251 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3252 {
3253     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3254 
3255     if (spapr->irq == &spapr_irq_xics_legacy) {
3256         return g_strdup("legacy");
3257     } else if (spapr->irq == &spapr_irq_xics) {
3258         return g_strdup("xics");
3259     } else if (spapr->irq == &spapr_irq_xive) {
3260         return g_strdup("xive");
3261     } else if (spapr->irq == &spapr_irq_dual) {
3262         return g_strdup("dual");
3263     }
3264     g_assert_not_reached();
3265 }
3266 
3267 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3268 {
3269     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3270 
3271     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3272         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3273         return;
3274     }
3275 
3276     /* The legacy IRQ backend can not be set */
3277     if (strcmp(value, "xics") == 0) {
3278         spapr->irq = &spapr_irq_xics;
3279     } else if (strcmp(value, "xive") == 0) {
3280         spapr->irq = &spapr_irq_xive;
3281     } else if (strcmp(value, "dual") == 0) {
3282         spapr->irq = &spapr_irq_dual;
3283     } else {
3284         error_setg(errp, "Bad value for \"ic-mode\" property");
3285     }
3286 }
3287 
3288 static char *spapr_get_host_model(Object *obj, Error **errp)
3289 {
3290     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3291 
3292     return g_strdup(spapr->host_model);
3293 }
3294 
3295 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3296 {
3297     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298 
3299     g_free(spapr->host_model);
3300     spapr->host_model = g_strdup(value);
3301 }
3302 
3303 static char *spapr_get_host_serial(Object *obj, Error **errp)
3304 {
3305     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3306 
3307     return g_strdup(spapr->host_serial);
3308 }
3309 
3310 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3311 {
3312     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313 
3314     g_free(spapr->host_serial);
3315     spapr->host_serial = g_strdup(value);
3316 }
3317 
3318 static void spapr_instance_init(Object *obj)
3319 {
3320     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3321     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3322     MachineState *ms = MACHINE(spapr);
3323     MachineClass *mc = MACHINE_GET_CLASS(ms);
3324 
3325     /*
3326      * NVDIMM support went live in 5.1 without considering that, in
3327      * other archs, the user needs to enable NVDIMM support with the
3328      * 'nvdimm' machine option and the default behavior is NVDIMM
3329      * support disabled. It is too late to roll back to the standard
3330      * behavior without breaking 5.1 guests.
3331      */
3332     if (mc->nvdimm_supported) {
3333         ms->nvdimms_state->is_enabled = true;
3334     }
3335 
3336     spapr->htab_fd = -1;
3337     spapr->use_hotplug_event_source = true;
3338     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3339     object_property_add_str(obj, "kvm-type",
3340                             spapr_get_kvm_type, spapr_set_kvm_type);
3341     object_property_set_description(obj, "kvm-type",
3342                                     "Specifies the KVM virtualization mode (auto,"
3343                                     " hv, pr). Defaults to 'auto'. This mode will use"
3344                                     " any available KVM module loaded in the host,"
3345                                     " where kvm_hv takes precedence if both kvm_hv and"
3346                                     " kvm_pr are loaded.");
3347     object_property_add_bool(obj, "modern-hotplug-events",
3348                             spapr_get_modern_hotplug_events,
3349                             spapr_set_modern_hotplug_events);
3350     object_property_set_description(obj, "modern-hotplug-events",
3351                                     "Use dedicated hotplug event mechanism in"
3352                                     " place of standard EPOW events when possible"
3353                                     " (required for memory hot-unplug support)");
3354     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3355                             "Maximum permitted CPU compatibility mode");
3356 
3357     object_property_add_str(obj, "resize-hpt",
3358                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3359     object_property_set_description(obj, "resize-hpt",
3360                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3361     object_property_add_uint32_ptr(obj, "vsmt",
3362                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3363     object_property_set_description(obj, "vsmt",
3364                                     "Virtual SMT: KVM behaves as if this were"
3365                                     " the host's SMT mode");
3366 
3367     object_property_add_bool(obj, "vfio-no-msix-emulation",
3368                              spapr_get_msix_emulation, NULL);
3369 
3370     object_property_add_uint64_ptr(obj, "kernel-addr",
3371                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3372     object_property_set_description(obj, "kernel-addr",
3373                                     stringify(KERNEL_LOAD_ADDR)
3374                                     " for -kernel is the default");
3375     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3376 
3377     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3378     object_property_set_description(obj, "x-vof",
3379                                     "Enable Virtual Open Firmware (experimental)");
3380 
3381     /* The machine class defines the default interrupt controller mode */
3382     spapr->irq = smc->irq;
3383     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3384                             spapr_set_ic_mode);
3385     object_property_set_description(obj, "ic-mode",
3386                  "Specifies the interrupt controller mode (xics, xive, dual)");
3387 
3388     object_property_add_str(obj, "host-model",
3389         spapr_get_host_model, spapr_set_host_model);
3390     object_property_set_description(obj, "host-model",
3391         "Host model to advertise in guest device tree");
3392     object_property_add_str(obj, "host-serial",
3393         spapr_get_host_serial, spapr_set_host_serial);
3394     object_property_set_description(obj, "host-serial",
3395         "Host serial number to advertise in guest device tree");
3396 }
3397 
3398 static void spapr_machine_finalizefn(Object *obj)
3399 {
3400     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3401 
3402     g_free(spapr->kvm_type);
3403 }
3404 
3405 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3406 {
3407     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3408     PowerPCCPU *cpu = POWERPC_CPU(cs);
3409     CPUPPCState *env = &cpu->env;
3410 
3411     cpu_synchronize_state(cs);
3412     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3413     if (spapr->fwnmi_system_reset_addr != -1) {
3414         uint64_t rtas_addr, addr;
3415 
3416         /* get rtas addr from fdt */
3417         rtas_addr = spapr_get_rtas_addr();
3418         if (!rtas_addr) {
3419             qemu_system_guest_panicked(NULL);
3420             return;
3421         }
3422 
3423         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3424         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3425         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3426         env->gpr[3] = addr;
3427     }
3428     ppc_cpu_do_system_reset(cs);
3429     if (spapr->fwnmi_system_reset_addr != -1) {
3430         env->nip = spapr->fwnmi_system_reset_addr;
3431     }
3432 }
3433 
3434 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3435 {
3436     CPUState *cs;
3437 
3438     CPU_FOREACH(cs) {
3439         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3440     }
3441 }
3442 
3443 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3444                           void *fdt, int *fdt_start_offset, Error **errp)
3445 {
3446     uint64_t addr;
3447     uint32_t node;
3448 
3449     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3450     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3451                                     &error_abort);
3452     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3453                                              SPAPR_MEMORY_BLOCK_SIZE);
3454     return 0;
3455 }
3456 
3457 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3458                            bool dedicated_hp_event_source)
3459 {
3460     SpaprDrc *drc;
3461     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3462     int i;
3463     uint64_t addr = addr_start;
3464     bool hotplugged = spapr_drc_hotplugged(dev);
3465 
3466     for (i = 0; i < nr_lmbs; i++) {
3467         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3468                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3469         g_assert(drc);
3470 
3471         /*
3472          * memory_device_get_free_addr() provided a range of free addresses
3473          * that doesn't overlap with any existing mapping at pre-plug. The
3474          * corresponding LMB DRCs are thus assumed to be all attachable.
3475          */
3476         spapr_drc_attach(drc, dev);
3477         if (!hotplugged) {
3478             spapr_drc_reset(drc);
3479         }
3480         addr += SPAPR_MEMORY_BLOCK_SIZE;
3481     }
3482     /* send hotplug notification to the
3483      * guest only in case of hotplugged memory
3484      */
3485     if (hotplugged) {
3486         if (dedicated_hp_event_source) {
3487             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3488                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3489             g_assert(drc);
3490             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3491                                                    nr_lmbs,
3492                                                    spapr_drc_index(drc));
3493         } else {
3494             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3495                                            nr_lmbs);
3496         }
3497     }
3498 }
3499 
3500 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3501 {
3502     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3503     PCDIMMDevice *dimm = PC_DIMM(dev);
3504     uint64_t size, addr;
3505     int64_t slot;
3506     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3507 
3508     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3509 
3510     pc_dimm_plug(dimm, MACHINE(ms));
3511 
3512     if (!is_nvdimm) {
3513         addr = object_property_get_uint(OBJECT(dimm),
3514                                         PC_DIMM_ADDR_PROP, &error_abort);
3515         spapr_add_lmbs(dev, addr, size,
3516                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3517     } else {
3518         slot = object_property_get_int(OBJECT(dimm),
3519                                        PC_DIMM_SLOT_PROP, &error_abort);
3520         /* We should have valid slot number at this point */
3521         g_assert(slot >= 0);
3522         spapr_add_nvdimm(dev, slot);
3523     }
3524 }
3525 
3526 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3527                                   Error **errp)
3528 {
3529     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3530     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3531     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3532     PCDIMMDevice *dimm = PC_DIMM(dev);
3533     Error *local_err = NULL;
3534     uint64_t size;
3535     Object *memdev;
3536     hwaddr pagesize;
3537 
3538     if (!smc->dr_lmb_enabled) {
3539         error_setg(errp, "Memory hotplug not supported for this machine");
3540         return;
3541     }
3542 
3543     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3544     if (local_err) {
3545         error_propagate(errp, local_err);
3546         return;
3547     }
3548 
3549     if (is_nvdimm) {
3550         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3551             return;
3552         }
3553     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3554         error_setg(errp, "Hotplugged memory size must be a multiple of "
3555                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3556         return;
3557     }
3558 
3559     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3560                                       &error_abort);
3561     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3562     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3563         return;
3564     }
3565 
3566     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3567 }
3568 
3569 struct SpaprDimmState {
3570     PCDIMMDevice *dimm;
3571     uint32_t nr_lmbs;
3572     QTAILQ_ENTRY(SpaprDimmState) next;
3573 };
3574 
3575 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3576                                                        PCDIMMDevice *dimm)
3577 {
3578     SpaprDimmState *dimm_state = NULL;
3579 
3580     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3581         if (dimm_state->dimm == dimm) {
3582             break;
3583         }
3584     }
3585     return dimm_state;
3586 }
3587 
3588 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3589                                                       uint32_t nr_lmbs,
3590                                                       PCDIMMDevice *dimm)
3591 {
3592     SpaprDimmState *ds = NULL;
3593 
3594     /*
3595      * If this request is for a DIMM whose removal had failed earlier
3596      * (due to guest's refusal to remove the LMBs), we would have this
3597      * dimm already in the pending_dimm_unplugs list. In that
3598      * case don't add again.
3599      */
3600     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3601     if (!ds) {
3602         ds = g_malloc0(sizeof(SpaprDimmState));
3603         ds->nr_lmbs = nr_lmbs;
3604         ds->dimm = dimm;
3605         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3606     }
3607     return ds;
3608 }
3609 
3610 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3611                                               SpaprDimmState *dimm_state)
3612 {
3613     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3614     g_free(dimm_state);
3615 }
3616 
3617 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3618                                                         PCDIMMDevice *dimm)
3619 {
3620     SpaprDrc *drc;
3621     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3622                                                   &error_abort);
3623     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3624     uint32_t avail_lmbs = 0;
3625     uint64_t addr_start, addr;
3626     int i;
3627 
3628     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3629                                           &error_abort);
3630 
3631     addr = addr_start;
3632     for (i = 0; i < nr_lmbs; i++) {
3633         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3634                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3635         g_assert(drc);
3636         if (drc->dev) {
3637             avail_lmbs++;
3638         }
3639         addr += SPAPR_MEMORY_BLOCK_SIZE;
3640     }
3641 
3642     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3643 }
3644 
3645 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3646 {
3647     SpaprDimmState *ds;
3648     PCDIMMDevice *dimm;
3649     SpaprDrc *drc;
3650     uint32_t nr_lmbs;
3651     uint64_t size, addr_start, addr;
3652     g_autofree char *qapi_error = NULL;
3653     int i;
3654 
3655     if (!dev) {
3656         return;
3657     }
3658 
3659     dimm = PC_DIMM(dev);
3660     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3661 
3662     /*
3663      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3664      * unplug state, but one of its DRC is marked as unplug_requested.
3665      * This is bad and weird enough to g_assert() out.
3666      */
3667     g_assert(ds);
3668 
3669     spapr_pending_dimm_unplugs_remove(spapr, ds);
3670 
3671     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3672     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3673 
3674     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3675                                           &error_abort);
3676 
3677     addr = addr_start;
3678     for (i = 0; i < nr_lmbs; i++) {
3679         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3680                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3681         g_assert(drc);
3682 
3683         drc->unplug_requested = false;
3684         addr += SPAPR_MEMORY_BLOCK_SIZE;
3685     }
3686 
3687     /*
3688      * Tell QAPI that something happened and the memory
3689      * hotunplug wasn't successful.
3690      */
3691     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3692                                  "for device %s", dev->id);
3693     qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3694 }
3695 
3696 /* Callback to be called during DRC release. */
3697 void spapr_lmb_release(DeviceState *dev)
3698 {
3699     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3700     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3701     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3702 
3703     /* This information will get lost if a migration occurs
3704      * during the unplug process. In this case recover it. */
3705     if (ds == NULL) {
3706         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3707         g_assert(ds);
3708         /* The DRC being examined by the caller at least must be counted */
3709         g_assert(ds->nr_lmbs);
3710     }
3711 
3712     if (--ds->nr_lmbs) {
3713         return;
3714     }
3715 
3716     /*
3717      * Now that all the LMBs have been removed by the guest, call the
3718      * unplug handler chain. This can never fail.
3719      */
3720     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3721     object_unparent(OBJECT(dev));
3722 }
3723 
3724 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3725 {
3726     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3727     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3728 
3729     /* We really shouldn't get this far without anything to unplug */
3730     g_assert(ds);
3731 
3732     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3733     qdev_unrealize(dev);
3734     spapr_pending_dimm_unplugs_remove(spapr, ds);
3735 }
3736 
3737 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3738                                         DeviceState *dev, Error **errp)
3739 {
3740     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3741     PCDIMMDevice *dimm = PC_DIMM(dev);
3742     uint32_t nr_lmbs;
3743     uint64_t size, addr_start, addr;
3744     int i;
3745     SpaprDrc *drc;
3746 
3747     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3748         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3749         return;
3750     }
3751 
3752     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3753     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3754 
3755     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3756                                           &error_abort);
3757 
3758     /*
3759      * An existing pending dimm state for this DIMM means that there is an
3760      * unplug operation in progress, waiting for the spapr_lmb_release
3761      * callback to complete the job (BQL can't cover that far). In this case,
3762      * bail out to avoid detaching DRCs that were already released.
3763      */
3764     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3765         error_setg(errp, "Memory unplug already in progress for device %s",
3766                    dev->id);
3767         return;
3768     }
3769 
3770     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3771 
3772     addr = addr_start;
3773     for (i = 0; i < nr_lmbs; i++) {
3774         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3775                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3776         g_assert(drc);
3777 
3778         spapr_drc_unplug_request(drc);
3779         addr += SPAPR_MEMORY_BLOCK_SIZE;
3780     }
3781 
3782     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3783                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3784     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3785                                               nr_lmbs, spapr_drc_index(drc));
3786 }
3787 
3788 /* Callback to be called during DRC release. */
3789 void spapr_core_release(DeviceState *dev)
3790 {
3791     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3792 
3793     /* Call the unplug handler chain. This can never fail. */
3794     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3795     object_unparent(OBJECT(dev));
3796 }
3797 
3798 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3799 {
3800     MachineState *ms = MACHINE(hotplug_dev);
3801     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3802     CPUCore *cc = CPU_CORE(dev);
3803     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3804 
3805     if (smc->pre_2_10_has_unused_icps) {
3806         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3807         int i;
3808 
3809         for (i = 0; i < cc->nr_threads; i++) {
3810             CPUState *cs = CPU(sc->threads[i]);
3811 
3812             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3813         }
3814     }
3815 
3816     assert(core_slot);
3817     core_slot->cpu = NULL;
3818     qdev_unrealize(dev);
3819 }
3820 
3821 static
3822 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3823                                Error **errp)
3824 {
3825     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3826     int index;
3827     SpaprDrc *drc;
3828     CPUCore *cc = CPU_CORE(dev);
3829 
3830     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3831         error_setg(errp, "Unable to find CPU core with core-id: %d",
3832                    cc->core_id);
3833         return;
3834     }
3835     if (index == 0) {
3836         error_setg(errp, "Boot CPU core may not be unplugged");
3837         return;
3838     }
3839 
3840     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3841                           spapr_vcpu_id(spapr, cc->core_id));
3842     g_assert(drc);
3843 
3844     if (!spapr_drc_unplug_requested(drc)) {
3845         spapr_drc_unplug_request(drc);
3846     }
3847 
3848     /*
3849      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3850      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3851      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3852      * attempt (e.g. the kernel will refuse to remove the last online
3853      * CPU), we will never attempt it again because unplug_requested
3854      * will still be 'true' in that case.
3855      */
3856     spapr_hotplug_req_remove_by_index(drc);
3857 }
3858 
3859 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3860                            void *fdt, int *fdt_start_offset, Error **errp)
3861 {
3862     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3863     CPUState *cs = CPU(core->threads[0]);
3864     PowerPCCPU *cpu = POWERPC_CPU(cs);
3865     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3866     int id = spapr_get_vcpu_id(cpu);
3867     g_autofree char *nodename = NULL;
3868     int offset;
3869 
3870     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3871     offset = fdt_add_subnode(fdt, 0, nodename);
3872 
3873     spapr_dt_cpu(cs, fdt, offset, spapr);
3874 
3875     /*
3876      * spapr_dt_cpu() does not fill the 'name' property in the
3877      * CPU node. The function is called during boot process, before
3878      * and after CAS, and overwriting the 'name' property written
3879      * by SLOF is not allowed.
3880      *
3881      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3882      * CPUs more compatible with the coldplugged ones, which have
3883      * the 'name' property. Linux Kernel also relies on this
3884      * property to identify CPU nodes.
3885      */
3886     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3887 
3888     *fdt_start_offset = offset;
3889     return 0;
3890 }
3891 
3892 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3893 {
3894     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3895     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3896     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3897     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3898     CPUCore *cc = CPU_CORE(dev);
3899     CPUState *cs;
3900     SpaprDrc *drc;
3901     CPUArchId *core_slot;
3902     int index;
3903     bool hotplugged = spapr_drc_hotplugged(dev);
3904     int i;
3905 
3906     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3907     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3908 
3909     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3910                           spapr_vcpu_id(spapr, cc->core_id));
3911 
3912     g_assert(drc || !mc->has_hotpluggable_cpus);
3913 
3914     if (drc) {
3915         /*
3916          * spapr_core_pre_plug() already buys us this is a brand new
3917          * core being plugged into a free slot. Nothing should already
3918          * be attached to the corresponding DRC.
3919          */
3920         spapr_drc_attach(drc, dev);
3921 
3922         if (hotplugged) {
3923             /*
3924              * Send hotplug notification interrupt to the guest only
3925              * in case of hotplugged CPUs.
3926              */
3927             spapr_hotplug_req_add_by_index(drc);
3928         } else {
3929             spapr_drc_reset(drc);
3930         }
3931     }
3932 
3933     core_slot->cpu = OBJECT(dev);
3934 
3935     /*
3936      * Set compatibility mode to match the boot CPU, which was either set
3937      * by the machine reset code or by CAS. This really shouldn't fail at
3938      * this point.
3939      */
3940     if (hotplugged) {
3941         for (i = 0; i < cc->nr_threads; i++) {
3942             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3943                            &error_abort);
3944         }
3945     }
3946 
3947     if (smc->pre_2_10_has_unused_icps) {
3948         for (i = 0; i < cc->nr_threads; i++) {
3949             cs = CPU(core->threads[i]);
3950             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3951         }
3952     }
3953 }
3954 
3955 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3956                                 Error **errp)
3957 {
3958     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3959     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3960     CPUCore *cc = CPU_CORE(dev);
3961     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3962     const char *type = object_get_typename(OBJECT(dev));
3963     CPUArchId *core_slot;
3964     int index;
3965     unsigned int smp_threads = machine->smp.threads;
3966 
3967     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3968         error_setg(errp, "CPU hotplug not supported for this machine");
3969         return;
3970     }
3971 
3972     if (strcmp(base_core_type, type)) {
3973         error_setg(errp, "CPU core type should be %s", base_core_type);
3974         return;
3975     }
3976 
3977     if (cc->core_id % smp_threads) {
3978         error_setg(errp, "invalid core id %d", cc->core_id);
3979         return;
3980     }
3981 
3982     /*
3983      * In general we should have homogeneous threads-per-core, but old
3984      * (pre hotplug support) machine types allow the last core to have
3985      * reduced threads as a compatibility hack for when we allowed
3986      * total vcpus not a multiple of threads-per-core.
3987      */
3988     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3989         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3990                    smp_threads);
3991         return;
3992     }
3993 
3994     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3995     if (!core_slot) {
3996         error_setg(errp, "core id %d out of range", cc->core_id);
3997         return;
3998     }
3999 
4000     if (core_slot->cpu) {
4001         error_setg(errp, "core %d already populated", cc->core_id);
4002         return;
4003     }
4004 
4005     numa_cpu_pre_plug(core_slot, dev, errp);
4006 }
4007 
4008 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4009                           void *fdt, int *fdt_start_offset, Error **errp)
4010 {
4011     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4012     int intc_phandle;
4013 
4014     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4015     if (intc_phandle <= 0) {
4016         return -1;
4017     }
4018 
4019     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4020         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4021         return -1;
4022     }
4023 
4024     /* generally SLOF creates these, for hotplug it's up to QEMU */
4025     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4026 
4027     return 0;
4028 }
4029 
4030 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4031                                Error **errp)
4032 {
4033     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4034     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4035     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4036     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4037     SpaprDrc *drc;
4038 
4039     if (dev->hotplugged && !smc->dr_phb_enabled) {
4040         error_setg(errp, "PHB hotplug not supported for this machine");
4041         return false;
4042     }
4043 
4044     if (sphb->index == (uint32_t)-1) {
4045         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4046         return false;
4047     }
4048 
4049     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4050     if (drc && drc->dev) {
4051         error_setg(errp, "PHB %d already attached", sphb->index);
4052         return false;
4053     }
4054 
4055     /*
4056      * This will check that sphb->index doesn't exceed the maximum number of
4057      * PHBs for the current machine type.
4058      */
4059     return
4060         smc->phb_placement(spapr, sphb->index,
4061                            &sphb->buid, &sphb->io_win_addr,
4062                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4063                            windows_supported, sphb->dma_liobn,
4064                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4065                            errp);
4066 }
4067 
4068 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4069 {
4070     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4071     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4072     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4073     SpaprDrc *drc;
4074     bool hotplugged = spapr_drc_hotplugged(dev);
4075 
4076     if (!smc->dr_phb_enabled) {
4077         return;
4078     }
4079 
4080     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4081     /* hotplug hooks should check it's enabled before getting this far */
4082     assert(drc);
4083 
4084     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4085     spapr_drc_attach(drc, dev);
4086 
4087     if (hotplugged) {
4088         spapr_hotplug_req_add_by_index(drc);
4089     } else {
4090         spapr_drc_reset(drc);
4091     }
4092 }
4093 
4094 void spapr_phb_release(DeviceState *dev)
4095 {
4096     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4097 
4098     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4099     object_unparent(OBJECT(dev));
4100 }
4101 
4102 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4103 {
4104     qdev_unrealize(dev);
4105 }
4106 
4107 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4108                                      DeviceState *dev, Error **errp)
4109 {
4110     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4111     SpaprDrc *drc;
4112 
4113     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4114     assert(drc);
4115 
4116     if (!spapr_drc_unplug_requested(drc)) {
4117         spapr_drc_unplug_request(drc);
4118         spapr_hotplug_req_remove_by_index(drc);
4119     } else {
4120         error_setg(errp,
4121                    "PCI Host Bridge unplug already in progress for device %s",
4122                    dev->id);
4123     }
4124 }
4125 
4126 static
4127 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4128                               Error **errp)
4129 {
4130     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4131 
4132     if (spapr->tpm_proxy != NULL) {
4133         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4134         return false;
4135     }
4136 
4137     return true;
4138 }
4139 
4140 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4141 {
4142     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4143     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4144 
4145     /* Already checked in spapr_tpm_proxy_pre_plug() */
4146     g_assert(spapr->tpm_proxy == NULL);
4147 
4148     spapr->tpm_proxy = tpm_proxy;
4149 }
4150 
4151 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4152 {
4153     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4154 
4155     qdev_unrealize(dev);
4156     object_unparent(OBJECT(dev));
4157     spapr->tpm_proxy = NULL;
4158 }
4159 
4160 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4161                                       DeviceState *dev, Error **errp)
4162 {
4163     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4164         spapr_memory_plug(hotplug_dev, dev);
4165     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4166         spapr_core_plug(hotplug_dev, dev);
4167     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4168         spapr_phb_plug(hotplug_dev, dev);
4169     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4170         spapr_tpm_proxy_plug(hotplug_dev, dev);
4171     }
4172 }
4173 
4174 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4175                                         DeviceState *dev, Error **errp)
4176 {
4177     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4178         spapr_memory_unplug(hotplug_dev, dev);
4179     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4180         spapr_core_unplug(hotplug_dev, dev);
4181     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4182         spapr_phb_unplug(hotplug_dev, dev);
4183     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4184         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4185     }
4186 }
4187 
4188 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4189 {
4190     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4191         /*
4192          * CAS will process all pending unplug requests.
4193          *
4194          * HACK: a guest could theoretically have cleared all bits in OV5,
4195          * but none of the guests we care for do.
4196          */
4197         spapr_ovec_empty(spapr->ov5_cas);
4198 }
4199 
4200 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4201                                                 DeviceState *dev, Error **errp)
4202 {
4203     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4204     MachineClass *mc = MACHINE_GET_CLASS(sms);
4205     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4206 
4207     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4208         if (spapr_memory_hot_unplug_supported(sms)) {
4209             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4210         } else {
4211             error_setg(errp, "Memory hot unplug not supported for this guest");
4212         }
4213     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4214         if (!mc->has_hotpluggable_cpus) {
4215             error_setg(errp, "CPU hot unplug not supported on this machine");
4216             return;
4217         }
4218         spapr_core_unplug_request(hotplug_dev, dev, errp);
4219     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4220         if (!smc->dr_phb_enabled) {
4221             error_setg(errp, "PHB hot unplug not supported on this machine");
4222             return;
4223         }
4224         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4225     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4226         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4227     }
4228 }
4229 
4230 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4231                                           DeviceState *dev, Error **errp)
4232 {
4233     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4234         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4235     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4236         spapr_core_pre_plug(hotplug_dev, dev, errp);
4237     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4238         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4239     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4240         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4241     }
4242 }
4243 
4244 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4245                                                  DeviceState *dev)
4246 {
4247     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4248         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4249         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4250         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4251         return HOTPLUG_HANDLER(machine);
4252     }
4253     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4254         PCIDevice *pcidev = PCI_DEVICE(dev);
4255         PCIBus *root = pci_device_root_bus(pcidev);
4256         SpaprPhbState *phb =
4257             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4258                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4259 
4260         if (phb) {
4261             return HOTPLUG_HANDLER(phb);
4262         }
4263     }
4264     return NULL;
4265 }
4266 
4267 static CpuInstanceProperties
4268 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4269 {
4270     CPUArchId *core_slot;
4271     MachineClass *mc = MACHINE_GET_CLASS(machine);
4272 
4273     /* make sure possible_cpu are intialized */
4274     mc->possible_cpu_arch_ids(machine);
4275     /* get CPU core slot containing thread that matches cpu_index */
4276     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4277     assert(core_slot);
4278     return core_slot->props;
4279 }
4280 
4281 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4282 {
4283     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4284 }
4285 
4286 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4287 {
4288     int i;
4289     unsigned int smp_threads = machine->smp.threads;
4290     unsigned int smp_cpus = machine->smp.cpus;
4291     const char *core_type;
4292     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4293     MachineClass *mc = MACHINE_GET_CLASS(machine);
4294 
4295     if (!mc->has_hotpluggable_cpus) {
4296         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4297     }
4298     if (machine->possible_cpus) {
4299         assert(machine->possible_cpus->len == spapr_max_cores);
4300         return machine->possible_cpus;
4301     }
4302 
4303     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4304     if (!core_type) {
4305         error_report("Unable to find sPAPR CPU Core definition");
4306         exit(1);
4307     }
4308 
4309     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4310                              sizeof(CPUArchId) * spapr_max_cores);
4311     machine->possible_cpus->len = spapr_max_cores;
4312     for (i = 0; i < machine->possible_cpus->len; i++) {
4313         int core_id = i * smp_threads;
4314 
4315         machine->possible_cpus->cpus[i].type = core_type;
4316         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4317         machine->possible_cpus->cpus[i].arch_id = core_id;
4318         machine->possible_cpus->cpus[i].props.has_core_id = true;
4319         machine->possible_cpus->cpus[i].props.core_id = core_id;
4320     }
4321     return machine->possible_cpus;
4322 }
4323 
4324 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4325                                 uint64_t *buid, hwaddr *pio,
4326                                 hwaddr *mmio32, hwaddr *mmio64,
4327                                 unsigned n_dma, uint32_t *liobns,
4328                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4329 {
4330     /*
4331      * New-style PHB window placement.
4332      *
4333      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4334      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4335      * windows.
4336      *
4337      * Some guest kernels can't work with MMIO windows above 1<<46
4338      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4339      *
4340      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4341      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4342      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4343      * 1TiB 64-bit MMIO windows for each PHB.
4344      */
4345     const uint64_t base_buid = 0x800000020000000ULL;
4346     int i;
4347 
4348     /* Sanity check natural alignments */
4349     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4350     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4351     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4352     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4353     /* Sanity check bounds */
4354     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4355                       SPAPR_PCI_MEM32_WIN_SIZE);
4356     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4357                       SPAPR_PCI_MEM64_WIN_SIZE);
4358 
4359     if (index >= SPAPR_MAX_PHBS) {
4360         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4361                    SPAPR_MAX_PHBS - 1);
4362         return false;
4363     }
4364 
4365     *buid = base_buid + index;
4366     for (i = 0; i < n_dma; ++i) {
4367         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4368     }
4369 
4370     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4371     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4372     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4373 
4374     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4375     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4376     return true;
4377 }
4378 
4379 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4380 {
4381     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4382 
4383     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4384 }
4385 
4386 static void spapr_ics_resend(XICSFabric *dev)
4387 {
4388     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4389 
4390     ics_resend(spapr->ics);
4391 }
4392 
4393 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4394 {
4395     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4396 
4397     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4398 }
4399 
4400 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4401                                  Monitor *mon)
4402 {
4403     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4404 
4405     spapr_irq_print_info(spapr, mon);
4406     monitor_printf(mon, "irqchip: %s\n",
4407                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4408 }
4409 
4410 /*
4411  * This is a XIVE only operation
4412  */
4413 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4414                            uint8_t nvt_blk, uint32_t nvt_idx,
4415                            bool cam_ignore, uint8_t priority,
4416                            uint32_t logic_serv, XiveTCTXMatch *match)
4417 {
4418     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4419     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4420     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4421     int count;
4422 
4423     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4424                            priority, logic_serv, match);
4425     if (count < 0) {
4426         return count;
4427     }
4428 
4429     /*
4430      * When we implement the save and restore of the thread interrupt
4431      * contexts in the enter/exit CPU handlers of the machine and the
4432      * escalations in QEMU, we should be able to handle non dispatched
4433      * vCPUs.
4434      *
4435      * Until this is done, the sPAPR machine should find at least one
4436      * matching context always.
4437      */
4438     if (count == 0) {
4439         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4440                       nvt_blk, nvt_idx);
4441     }
4442 
4443     return count;
4444 }
4445 
4446 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4447 {
4448     return cpu->vcpu_id;
4449 }
4450 
4451 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4452 {
4453     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4454     MachineState *ms = MACHINE(spapr);
4455     int vcpu_id;
4456 
4457     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4458 
4459     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4460         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4461         error_append_hint(errp, "Adjust the number of cpus to %d "
4462                           "or try to raise the number of threads per core\n",
4463                           vcpu_id * ms->smp.threads / spapr->vsmt);
4464         return false;
4465     }
4466 
4467     cpu->vcpu_id = vcpu_id;
4468     return true;
4469 }
4470 
4471 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4472 {
4473     CPUState *cs;
4474 
4475     CPU_FOREACH(cs) {
4476         PowerPCCPU *cpu = POWERPC_CPU(cs);
4477 
4478         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4479             return cpu;
4480         }
4481     }
4482 
4483     return NULL;
4484 }
4485 
4486 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4487 {
4488     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4489 
4490     /* These are only called by TCG, KVM maintains dispatch state */
4491 
4492     spapr_cpu->prod = false;
4493     if (spapr_cpu->vpa_addr) {
4494         CPUState *cs = CPU(cpu);
4495         uint32_t dispatch;
4496 
4497         dispatch = ldl_be_phys(cs->as,
4498                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4499         dispatch++;
4500         if ((dispatch & 1) != 0) {
4501             qemu_log_mask(LOG_GUEST_ERROR,
4502                           "VPA: incorrect dispatch counter value for "
4503                           "dispatched partition %u, correcting.\n", dispatch);
4504             dispatch++;
4505         }
4506         stl_be_phys(cs->as,
4507                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4508     }
4509 }
4510 
4511 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4512 {
4513     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4514 
4515     if (spapr_cpu->vpa_addr) {
4516         CPUState *cs = CPU(cpu);
4517         uint32_t dispatch;
4518 
4519         dispatch = ldl_be_phys(cs->as,
4520                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4521         dispatch++;
4522         if ((dispatch & 1) != 1) {
4523             qemu_log_mask(LOG_GUEST_ERROR,
4524                           "VPA: incorrect dispatch counter value for "
4525                           "preempted partition %u, correcting.\n", dispatch);
4526             dispatch++;
4527         }
4528         stl_be_phys(cs->as,
4529                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4530     }
4531 }
4532 
4533 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4534 {
4535     MachineClass *mc = MACHINE_CLASS(oc);
4536     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4537     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4538     NMIClass *nc = NMI_CLASS(oc);
4539     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4540     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4541     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4542     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4543     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4544     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4545 
4546     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4547     mc->ignore_boot_device_suffixes = true;
4548 
4549     /*
4550      * We set up the default / latest behaviour here.  The class_init
4551      * functions for the specific versioned machine types can override
4552      * these details for backwards compatibility
4553      */
4554     mc->init = spapr_machine_init;
4555     mc->reset = spapr_machine_reset;
4556     mc->block_default_type = IF_SCSI;
4557 
4558     /*
4559      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4560      * should be limited by the host capability instead of hardcoded.
4561      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4562      * guests are welcome to have as many CPUs as the host are capable
4563      * of emulate.
4564      */
4565     mc->max_cpus = INT32_MAX;
4566 
4567     mc->no_parallel = 1;
4568     mc->default_boot_order = "";
4569     mc->default_ram_size = 512 * MiB;
4570     mc->default_ram_id = "ppc_spapr.ram";
4571     mc->default_display = "std";
4572     mc->kvm_type = spapr_kvm_type;
4573     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4574     mc->pci_allow_0_address = true;
4575     assert(!mc->get_hotplug_handler);
4576     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4577     hc->pre_plug = spapr_machine_device_pre_plug;
4578     hc->plug = spapr_machine_device_plug;
4579     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4580     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4581     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4582     hc->unplug_request = spapr_machine_device_unplug_request;
4583     hc->unplug = spapr_machine_device_unplug;
4584 
4585     smc->dr_lmb_enabled = true;
4586     smc->update_dt_enabled = true;
4587     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4588     mc->has_hotpluggable_cpus = true;
4589     mc->nvdimm_supported = true;
4590     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4591     fwc->get_dev_path = spapr_get_fw_dev_path;
4592     nc->nmi_monitor_handler = spapr_nmi;
4593     smc->phb_placement = spapr_phb_placement;
4594     vhc->hypercall = emulate_spapr_hypercall;
4595     vhc->hpt_mask = spapr_hpt_mask;
4596     vhc->map_hptes = spapr_map_hptes;
4597     vhc->unmap_hptes = spapr_unmap_hptes;
4598     vhc->hpte_set_c = spapr_hpte_set_c;
4599     vhc->hpte_set_r = spapr_hpte_set_r;
4600     vhc->get_pate = spapr_get_pate;
4601     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4602     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4603     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4604     xic->ics_get = spapr_ics_get;
4605     xic->ics_resend = spapr_ics_resend;
4606     xic->icp_get = spapr_icp_get;
4607     ispc->print_info = spapr_pic_print_info;
4608     /* Force NUMA node memory size to be a multiple of
4609      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4610      * in which LMBs are represented and hot-added
4611      */
4612     mc->numa_mem_align_shift = 28;
4613     mc->auto_enable_numa = true;
4614 
4615     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4616     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4617     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4618     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4619     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4620     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4621     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4622     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4623     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4624     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4625     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4626     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4627     spapr_caps_add_properties(smc);
4628     smc->irq = &spapr_irq_dual;
4629     smc->dr_phb_enabled = true;
4630     smc->linux_pci_probe = true;
4631     smc->smp_threads_vsmt = true;
4632     smc->nr_xirqs = SPAPR_NR_XIRQS;
4633     xfc->match_nvt = spapr_match_nvt;
4634     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4635     vmc->quiesce = spapr_vof_quiesce;
4636     vmc->setprop = spapr_vof_setprop;
4637 }
4638 
4639 static const TypeInfo spapr_machine_info = {
4640     .name          = TYPE_SPAPR_MACHINE,
4641     .parent        = TYPE_MACHINE,
4642     .abstract      = true,
4643     .instance_size = sizeof(SpaprMachineState),
4644     .instance_init = spapr_instance_init,
4645     .instance_finalize = spapr_machine_finalizefn,
4646     .class_size    = sizeof(SpaprMachineClass),
4647     .class_init    = spapr_machine_class_init,
4648     .interfaces = (InterfaceInfo[]) {
4649         { TYPE_FW_PATH_PROVIDER },
4650         { TYPE_NMI },
4651         { TYPE_HOTPLUG_HANDLER },
4652         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4653         { TYPE_XICS_FABRIC },
4654         { TYPE_INTERRUPT_STATS_PROVIDER },
4655         { TYPE_XIVE_FABRIC },
4656         { TYPE_VOF_MACHINE_IF },
4657         { }
4658     },
4659 };
4660 
4661 static void spapr_machine_latest_class_options(MachineClass *mc)
4662 {
4663     mc->alias = "pseries";
4664     mc->is_default = true;
4665 }
4666 
4667 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4668     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4669                                                     void *data)      \
4670     {                                                                \
4671         MachineClass *mc = MACHINE_CLASS(oc);                        \
4672         spapr_machine_##suffix##_class_options(mc);                  \
4673         if (latest) {                                                \
4674             spapr_machine_latest_class_options(mc);                  \
4675         }                                                            \
4676     }                                                                \
4677     static const TypeInfo spapr_machine_##suffix##_info = {          \
4678         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4679         .parent = TYPE_SPAPR_MACHINE,                                \
4680         .class_init = spapr_machine_##suffix##_class_init,           \
4681     };                                                               \
4682     static void spapr_machine_register_##suffix(void)                \
4683     {                                                                \
4684         type_register(&spapr_machine_##suffix##_info);               \
4685     }                                                                \
4686     type_init(spapr_machine_register_##suffix)
4687 
4688 /*
4689  * pseries-6.2
4690  */
4691 static void spapr_machine_6_2_class_options(MachineClass *mc)
4692 {
4693     /* Defaults for the latest behaviour inherited from the base class */
4694 }
4695 
4696 DEFINE_SPAPR_MACHINE(6_2, "6.2", true);
4697 
4698 /*
4699  * pseries-6.1
4700  */
4701 static void spapr_machine_6_1_class_options(MachineClass *mc)
4702 {
4703     spapr_machine_6_2_class_options(mc);
4704     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4705 }
4706 
4707 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4708 
4709 /*
4710  * pseries-6.0
4711  */
4712 static void spapr_machine_6_0_class_options(MachineClass *mc)
4713 {
4714     spapr_machine_6_1_class_options(mc);
4715     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4716 }
4717 
4718 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4719 
4720 /*
4721  * pseries-5.2
4722  */
4723 static void spapr_machine_5_2_class_options(MachineClass *mc)
4724 {
4725     spapr_machine_6_0_class_options(mc);
4726     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4727 }
4728 
4729 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4730 
4731 /*
4732  * pseries-5.1
4733  */
4734 static void spapr_machine_5_1_class_options(MachineClass *mc)
4735 {
4736     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4737 
4738     spapr_machine_5_2_class_options(mc);
4739     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4740     smc->pre_5_2_numa_associativity = true;
4741 }
4742 
4743 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4744 
4745 /*
4746  * pseries-5.0
4747  */
4748 static void spapr_machine_5_0_class_options(MachineClass *mc)
4749 {
4750     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4751     static GlobalProperty compat[] = {
4752         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4753     };
4754 
4755     spapr_machine_5_1_class_options(mc);
4756     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4757     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4758     mc->numa_mem_supported = true;
4759     smc->pre_5_1_assoc_refpoints = true;
4760 }
4761 
4762 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4763 
4764 /*
4765  * pseries-4.2
4766  */
4767 static void spapr_machine_4_2_class_options(MachineClass *mc)
4768 {
4769     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4770 
4771     spapr_machine_5_0_class_options(mc);
4772     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4773     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4774     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4775     smc->rma_limit = 16 * GiB;
4776     mc->nvdimm_supported = false;
4777 }
4778 
4779 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4780 
4781 /*
4782  * pseries-4.1
4783  */
4784 static void spapr_machine_4_1_class_options(MachineClass *mc)
4785 {
4786     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4787     static GlobalProperty compat[] = {
4788         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4789         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4790     };
4791 
4792     spapr_machine_4_2_class_options(mc);
4793     smc->linux_pci_probe = false;
4794     smc->smp_threads_vsmt = false;
4795     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4796     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4797 }
4798 
4799 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4800 
4801 /*
4802  * pseries-4.0
4803  */
4804 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4805                               uint64_t *buid, hwaddr *pio,
4806                               hwaddr *mmio32, hwaddr *mmio64,
4807                               unsigned n_dma, uint32_t *liobns,
4808                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4809 {
4810     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4811                              liobns, nv2gpa, nv2atsd, errp)) {
4812         return false;
4813     }
4814 
4815     *nv2gpa = 0;
4816     *nv2atsd = 0;
4817     return true;
4818 }
4819 static void spapr_machine_4_0_class_options(MachineClass *mc)
4820 {
4821     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822 
4823     spapr_machine_4_1_class_options(mc);
4824     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4825     smc->phb_placement = phb_placement_4_0;
4826     smc->irq = &spapr_irq_xics;
4827     smc->pre_4_1_migration = true;
4828 }
4829 
4830 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4831 
4832 /*
4833  * pseries-3.1
4834  */
4835 static void spapr_machine_3_1_class_options(MachineClass *mc)
4836 {
4837     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4838 
4839     spapr_machine_4_0_class_options(mc);
4840     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4841 
4842     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4843     smc->update_dt_enabled = false;
4844     smc->dr_phb_enabled = false;
4845     smc->broken_host_serial_model = true;
4846     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4847     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4848     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4849     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4850 }
4851 
4852 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4853 
4854 /*
4855  * pseries-3.0
4856  */
4857 
4858 static void spapr_machine_3_0_class_options(MachineClass *mc)
4859 {
4860     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4861 
4862     spapr_machine_3_1_class_options(mc);
4863     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4864 
4865     smc->legacy_irq_allocation = true;
4866     smc->nr_xirqs = 0x400;
4867     smc->irq = &spapr_irq_xics_legacy;
4868 }
4869 
4870 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4871 
4872 /*
4873  * pseries-2.12
4874  */
4875 static void spapr_machine_2_12_class_options(MachineClass *mc)
4876 {
4877     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4878     static GlobalProperty compat[] = {
4879         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4880         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4881     };
4882 
4883     spapr_machine_3_0_class_options(mc);
4884     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4885     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4886 
4887     /* We depend on kvm_enabled() to choose a default value for the
4888      * hpt-max-page-size capability. Of course we can't do it here
4889      * because this is too early and the HW accelerator isn't initialzed
4890      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4891      */
4892     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4893 }
4894 
4895 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4896 
4897 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4898 {
4899     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4900 
4901     spapr_machine_2_12_class_options(mc);
4902     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4903     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4904     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4905 }
4906 
4907 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4908 
4909 /*
4910  * pseries-2.11
4911  */
4912 
4913 static void spapr_machine_2_11_class_options(MachineClass *mc)
4914 {
4915     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4916 
4917     spapr_machine_2_12_class_options(mc);
4918     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4919     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4920 }
4921 
4922 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4923 
4924 /*
4925  * pseries-2.10
4926  */
4927 
4928 static void spapr_machine_2_10_class_options(MachineClass *mc)
4929 {
4930     spapr_machine_2_11_class_options(mc);
4931     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4932 }
4933 
4934 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4935 
4936 /*
4937  * pseries-2.9
4938  */
4939 
4940 static void spapr_machine_2_9_class_options(MachineClass *mc)
4941 {
4942     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4943     static GlobalProperty compat[] = {
4944         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4945     };
4946 
4947     spapr_machine_2_10_class_options(mc);
4948     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4949     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4950     smc->pre_2_10_has_unused_icps = true;
4951     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4952 }
4953 
4954 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4955 
4956 /*
4957  * pseries-2.8
4958  */
4959 
4960 static void spapr_machine_2_8_class_options(MachineClass *mc)
4961 {
4962     static GlobalProperty compat[] = {
4963         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4964     };
4965 
4966     spapr_machine_2_9_class_options(mc);
4967     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4968     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4969     mc->numa_mem_align_shift = 23;
4970 }
4971 
4972 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4973 
4974 /*
4975  * pseries-2.7
4976  */
4977 
4978 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4979                               uint64_t *buid, hwaddr *pio,
4980                               hwaddr *mmio32, hwaddr *mmio64,
4981                               unsigned n_dma, uint32_t *liobns,
4982                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4983 {
4984     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4985     const uint64_t base_buid = 0x800000020000000ULL;
4986     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4987     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4988     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4989     const uint32_t max_index = 255;
4990     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4991 
4992     uint64_t ram_top = MACHINE(spapr)->ram_size;
4993     hwaddr phb0_base, phb_base;
4994     int i;
4995 
4996     /* Do we have device memory? */
4997     if (MACHINE(spapr)->maxram_size > ram_top) {
4998         /* Can't just use maxram_size, because there may be an
4999          * alignment gap between normal and device memory regions
5000          */
5001         ram_top = MACHINE(spapr)->device_memory->base +
5002             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5003     }
5004 
5005     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5006 
5007     if (index > max_index) {
5008         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5009                    max_index);
5010         return false;
5011     }
5012 
5013     *buid = base_buid + index;
5014     for (i = 0; i < n_dma; ++i) {
5015         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5016     }
5017 
5018     phb_base = phb0_base + index * phb_spacing;
5019     *pio = phb_base + pio_offset;
5020     *mmio32 = phb_base + mmio_offset;
5021     /*
5022      * We don't set the 64-bit MMIO window, relying on the PHB's
5023      * fallback behaviour of automatically splitting a large "32-bit"
5024      * window into contiguous 32-bit and 64-bit windows
5025      */
5026 
5027     *nv2gpa = 0;
5028     *nv2atsd = 0;
5029     return true;
5030 }
5031 
5032 static void spapr_machine_2_7_class_options(MachineClass *mc)
5033 {
5034     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5035     static GlobalProperty compat[] = {
5036         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5037         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5038         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5039         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5040     };
5041 
5042     spapr_machine_2_8_class_options(mc);
5043     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5044     mc->default_machine_opts = "modern-hotplug-events=off";
5045     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5046     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5047     smc->phb_placement = phb_placement_2_7;
5048 }
5049 
5050 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5051 
5052 /*
5053  * pseries-2.6
5054  */
5055 
5056 static void spapr_machine_2_6_class_options(MachineClass *mc)
5057 {
5058     static GlobalProperty compat[] = {
5059         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5060     };
5061 
5062     spapr_machine_2_7_class_options(mc);
5063     mc->has_hotpluggable_cpus = false;
5064     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5065     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5066 }
5067 
5068 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5069 
5070 /*
5071  * pseries-2.5
5072  */
5073 
5074 static void spapr_machine_2_5_class_options(MachineClass *mc)
5075 {
5076     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5077     static GlobalProperty compat[] = {
5078         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5079     };
5080 
5081     spapr_machine_2_6_class_options(mc);
5082     smc->use_ohci_by_default = true;
5083     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5084     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5085 }
5086 
5087 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5088 
5089 /*
5090  * pseries-2.4
5091  */
5092 
5093 static void spapr_machine_2_4_class_options(MachineClass *mc)
5094 {
5095     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5096 
5097     spapr_machine_2_5_class_options(mc);
5098     smc->dr_lmb_enabled = false;
5099     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5100 }
5101 
5102 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5103 
5104 /*
5105  * pseries-2.3
5106  */
5107 
5108 static void spapr_machine_2_3_class_options(MachineClass *mc)
5109 {
5110     static GlobalProperty compat[] = {
5111         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5112     };
5113     spapr_machine_2_4_class_options(mc);
5114     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5115     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5116 }
5117 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5118 
5119 /*
5120  * pseries-2.2
5121  */
5122 
5123 static void spapr_machine_2_2_class_options(MachineClass *mc)
5124 {
5125     static GlobalProperty compat[] = {
5126         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5127     };
5128 
5129     spapr_machine_2_3_class_options(mc);
5130     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5131     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5132     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5133 }
5134 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5135 
5136 /*
5137  * pseries-2.1
5138  */
5139 
5140 static void spapr_machine_2_1_class_options(MachineClass *mc)
5141 {
5142     spapr_machine_2_2_class_options(mc);
5143     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5144 }
5145 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5146 
5147 static void spapr_machine_register_types(void)
5148 {
5149     type_register_static(&spapr_machine_info);
5150 }
5151 
5152 type_init(spapr_machine_register_types)
5153