xref: /openbmc/qemu/hw/ppc/spapr.c (revision d0e31a10)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "mmu-book3s-v3.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
56 
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
60 
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
67 #include "hw/intc/intc.h"
68 
69 #include "hw/compat.h"
70 #include "qemu/cutils.h"
71 #include "hw/ppc/spapr_cpu_core.h"
72 #include "qmp-commands.h"
73 
74 #include <libfdt.h>
75 
76 /* SLOF memory layout:
77  *
78  * SLOF raw image loaded at 0, copies its romfs right below the flat
79  * device-tree, then position SLOF itself 31M below that
80  *
81  * So we set FW_OVERHEAD to 40MB which should account for all of that
82  * and more
83  *
84  * We load our kernel at 4M, leaving space for SLOF initial image
85  */
86 #define FDT_MAX_SIZE            0x100000
87 #define RTAS_MAX_SIZE           0x10000
88 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
89 #define FW_MAX_SIZE             0x400000
90 #define FW_FILE_NAME            "slof.bin"
91 #define FW_OVERHEAD             0x2800000
92 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
93 
94 #define MIN_RMA_SLOF            128UL
95 
96 #define PHANDLE_XICP            0x00001111
97 
98 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
99 
100 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
101                                   const char *type_ics,
102                                   int nr_irqs, Error **errp)
103 {
104     Error *err = NULL, *local_err = NULL;
105     Object *obj;
106 
107     obj = object_new(type_ics);
108     object_property_add_child(OBJECT(spapr), "ics", obj, NULL);
109     object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
110     object_property_set_int(obj, nr_irqs, "nr-irqs", &err);
111     object_property_set_bool(obj, true, "realized", &local_err);
112     error_propagate(&err, local_err);
113     if (err) {
114         error_propagate(errp, err);
115         return NULL;
116     }
117 
118     return ICS_SIMPLE(obj);
119 }
120 
121 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
122 {
123     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
124 
125     if (kvm_enabled()) {
126         Error *err = NULL;
127 
128         if (machine_kernel_irqchip_allowed(machine) &&
129             !xics_kvm_init(spapr, errp)) {
130             spapr->icp_type = TYPE_KVM_ICP;
131             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err);
132         }
133         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
134             error_reportf_err(err,
135                               "kernel_irqchip requested but unavailable: ");
136         } else {
137             error_free(err);
138         }
139     }
140 
141     if (!spapr->ics) {
142         xics_spapr_init(spapr, errp);
143         spapr->icp_type = TYPE_ICP;
144         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
145     }
146 }
147 
148 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
149                                   int smt_threads)
150 {
151     int i, ret = 0;
152     uint32_t servers_prop[smt_threads];
153     uint32_t gservers_prop[smt_threads * 2];
154     int index = ppc_get_vcpu_dt_id(cpu);
155 
156     if (cpu->compat_pvr) {
157         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
158         if (ret < 0) {
159             return ret;
160         }
161     }
162 
163     /* Build interrupt servers and gservers properties */
164     for (i = 0; i < smt_threads; i++) {
165         servers_prop[i] = cpu_to_be32(index + i);
166         /* Hack, direct the group queues back to cpu 0 */
167         gservers_prop[i*2] = cpu_to_be32(index + i);
168         gservers_prop[i*2 + 1] = 0;
169     }
170     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
171                       servers_prop, sizeof(servers_prop));
172     if (ret < 0) {
173         return ret;
174     }
175     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
176                       gservers_prop, sizeof(gservers_prop));
177 
178     return ret;
179 }
180 
181 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
182 {
183     int ret = 0;
184     PowerPCCPU *cpu = POWERPC_CPU(cs);
185     int index = ppc_get_vcpu_dt_id(cpu);
186     uint32_t associativity[] = {cpu_to_be32(0x5),
187                                 cpu_to_be32(0x0),
188                                 cpu_to_be32(0x0),
189                                 cpu_to_be32(0x0),
190                                 cpu_to_be32(cs->numa_node),
191                                 cpu_to_be32(index)};
192 
193     /* Advertise NUMA via ibm,associativity */
194     if (nb_numa_nodes > 1) {
195         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
196                           sizeof(associativity));
197     }
198 
199     return ret;
200 }
201 
202 /* Populate the "ibm,pa-features" property */
203 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
204                                       bool legacy_guest)
205 {
206     uint8_t pa_features_206[] = { 6, 0,
207         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
208     uint8_t pa_features_207[] = { 24, 0,
209         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
210         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
211         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
212         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
213     uint8_t pa_features_300[] = { 66, 0,
214         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
215         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
216         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
217         /* 6: DS207 */
218         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
219         /* 16: Vector */
220         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
221         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
222         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
223         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
224         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
225         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
226         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
227         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
228         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
229         /* 42: PM, 44: PC RA, 46: SC vec'd */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
231         /* 48: SIMD, 50: QP BFP, 52: String */
232         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
233         /* 54: DecFP, 56: DecI, 58: SHA */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
235         /* 60: NM atomic, 62: RNG */
236         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
237     };
238     uint8_t *pa_features;
239     size_t pa_size;
240 
241     switch (POWERPC_MMU_VER(env->mmu_model)) {
242     case POWERPC_MMU_VER_2_06:
243         pa_features = pa_features_206;
244         pa_size = sizeof(pa_features_206);
245         break;
246     case POWERPC_MMU_VER_2_07:
247         pa_features = pa_features_207;
248         pa_size = sizeof(pa_features_207);
249         break;
250     case POWERPC_MMU_VER_3_00:
251         pa_features = pa_features_300;
252         pa_size = sizeof(pa_features_300);
253         break;
254     default:
255         return;
256     }
257 
258     if (env->ci_large_pages) {
259         /*
260          * Note: we keep CI large pages off by default because a 64K capable
261          * guest provisioned with large pages might otherwise try to map a qemu
262          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
263          * even if that qemu runs on a 4k host.
264          * We dd this bit back here if we are confident this is not an issue
265          */
266         pa_features[3] |= 0x20;
267     }
268     if (kvmppc_has_cap_htm() && pa_size > 24) {
269         pa_features[24] |= 0x80;    /* Transactional memory support */
270     }
271     if (legacy_guest && pa_size > 40) {
272         /* Workaround for broken kernels that attempt (guest) radix
273          * mode when they can't handle it, if they see the radix bit set
274          * in pa-features. So hide it from them. */
275         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
276     }
277 
278     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
279 }
280 
281 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
282 {
283     int ret = 0, offset, cpus_offset;
284     CPUState *cs;
285     char cpu_model[32];
286     int smt = kvmppc_smt_threads();
287     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
288 
289     CPU_FOREACH(cs) {
290         PowerPCCPU *cpu = POWERPC_CPU(cs);
291         CPUPPCState *env = &cpu->env;
292         DeviceClass *dc = DEVICE_GET_CLASS(cs);
293         int index = ppc_get_vcpu_dt_id(cpu);
294         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
295 
296         if ((index % smt) != 0) {
297             continue;
298         }
299 
300         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
301 
302         cpus_offset = fdt_path_offset(fdt, "/cpus");
303         if (cpus_offset < 0) {
304             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
305                                           "cpus");
306             if (cpus_offset < 0) {
307                 return cpus_offset;
308             }
309         }
310         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
311         if (offset < 0) {
312             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
313             if (offset < 0) {
314                 return offset;
315             }
316         }
317 
318         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
319                           pft_size_prop, sizeof(pft_size_prop));
320         if (ret < 0) {
321             return ret;
322         }
323 
324         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
325         if (ret < 0) {
326             return ret;
327         }
328 
329         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
330         if (ret < 0) {
331             return ret;
332         }
333 
334         spapr_populate_pa_features(env, fdt, offset,
335                                          spapr->cas_legacy_guest_workaround);
336     }
337     return ret;
338 }
339 
340 static hwaddr spapr_node0_size(void)
341 {
342     MachineState *machine = MACHINE(qdev_get_machine());
343 
344     if (nb_numa_nodes) {
345         int i;
346         for (i = 0; i < nb_numa_nodes; ++i) {
347             if (numa_info[i].node_mem) {
348                 return MIN(pow2floor(numa_info[i].node_mem),
349                            machine->ram_size);
350             }
351         }
352     }
353     return machine->ram_size;
354 }
355 
356 static void add_str(GString *s, const gchar *s1)
357 {
358     g_string_append_len(s, s1, strlen(s1) + 1);
359 }
360 
361 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
362                                        hwaddr size)
363 {
364     uint32_t associativity[] = {
365         cpu_to_be32(0x4), /* length */
366         cpu_to_be32(0x0), cpu_to_be32(0x0),
367         cpu_to_be32(0x0), cpu_to_be32(nodeid)
368     };
369     char mem_name[32];
370     uint64_t mem_reg_property[2];
371     int off;
372 
373     mem_reg_property[0] = cpu_to_be64(start);
374     mem_reg_property[1] = cpu_to_be64(size);
375 
376     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
377     off = fdt_add_subnode(fdt, 0, mem_name);
378     _FDT(off);
379     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
380     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
381                       sizeof(mem_reg_property))));
382     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
383                       sizeof(associativity))));
384     return off;
385 }
386 
387 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
388 {
389     MachineState *machine = MACHINE(spapr);
390     hwaddr mem_start, node_size;
391     int i, nb_nodes = nb_numa_nodes;
392     NodeInfo *nodes = numa_info;
393     NodeInfo ramnode;
394 
395     /* No NUMA nodes, assume there is just one node with whole RAM */
396     if (!nb_numa_nodes) {
397         nb_nodes = 1;
398         ramnode.node_mem = machine->ram_size;
399         nodes = &ramnode;
400     }
401 
402     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
403         if (!nodes[i].node_mem) {
404             continue;
405         }
406         if (mem_start >= machine->ram_size) {
407             node_size = 0;
408         } else {
409             node_size = nodes[i].node_mem;
410             if (node_size > machine->ram_size - mem_start) {
411                 node_size = machine->ram_size - mem_start;
412             }
413         }
414         if (!mem_start) {
415             /* ppc_spapr_init() checks for rma_size <= node0_size already */
416             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
417             mem_start += spapr->rma_size;
418             node_size -= spapr->rma_size;
419         }
420         for ( ; node_size; ) {
421             hwaddr sizetmp = pow2floor(node_size);
422 
423             /* mem_start != 0 here */
424             if (ctzl(mem_start) < ctzl(sizetmp)) {
425                 sizetmp = 1ULL << ctzl(mem_start);
426             }
427 
428             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
429             node_size -= sizetmp;
430             mem_start += sizetmp;
431         }
432     }
433 
434     return 0;
435 }
436 
437 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
438                                   sPAPRMachineState *spapr)
439 {
440     PowerPCCPU *cpu = POWERPC_CPU(cs);
441     CPUPPCState *env = &cpu->env;
442     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
443     int index = ppc_get_vcpu_dt_id(cpu);
444     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
445                        0xffffffff, 0xffffffff};
446     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
447         : SPAPR_TIMEBASE_FREQ;
448     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
449     uint32_t page_sizes_prop[64];
450     size_t page_sizes_prop_size;
451     uint32_t vcpus_per_socket = smp_threads * smp_cores;
452     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
453     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
454     sPAPRDRConnector *drc;
455     sPAPRDRConnectorClass *drck;
456     int drc_index;
457     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
458     int i;
459 
460     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
461     if (drc) {
462         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
463         drc_index = drck->get_index(drc);
464         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
465     }
466 
467     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
468     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
469 
470     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
471     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
472                            env->dcache_line_size)));
473     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
474                            env->dcache_line_size)));
475     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
476                            env->icache_line_size)));
477     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
478                            env->icache_line_size)));
479 
480     if (pcc->l1_dcache_size) {
481         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
482                                pcc->l1_dcache_size)));
483     } else {
484         error_report("Warning: Unknown L1 dcache size for cpu");
485     }
486     if (pcc->l1_icache_size) {
487         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
488                                pcc->l1_icache_size)));
489     } else {
490         error_report("Warning: Unknown L1 icache size for cpu");
491     }
492 
493     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
494     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
495     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
496     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
497     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
498     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
499 
500     if (env->spr_cb[SPR_PURR].oea_read) {
501         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
502     }
503 
504     if (env->mmu_model & POWERPC_MMU_1TSEG) {
505         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
506                           segs, sizeof(segs))));
507     }
508 
509     /* Advertise VMX/VSX (vector extensions) if available
510      *   0 / no property == no vector extensions
511      *   1               == VMX / Altivec available
512      *   2               == VSX available */
513     if (env->insns_flags & PPC_ALTIVEC) {
514         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
515 
516         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
517     }
518 
519     /* Advertise DFP (Decimal Floating Point) if available
520      *   0 / no property == no DFP
521      *   1               == DFP available */
522     if (env->insns_flags2 & PPC2_DFP) {
523         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
524     }
525 
526     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
527                                                   sizeof(page_sizes_prop));
528     if (page_sizes_prop_size) {
529         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
530                           page_sizes_prop, page_sizes_prop_size)));
531     }
532 
533     spapr_populate_pa_features(env, fdt, offset, false);
534 
535     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
536                            cs->cpu_index / vcpus_per_socket)));
537 
538     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
539                       pft_size_prop, sizeof(pft_size_prop))));
540 
541     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
542 
543     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
544 
545     if (pcc->radix_page_info) {
546         for (i = 0; i < pcc->radix_page_info->count; i++) {
547             radix_AP_encodings[i] =
548                 cpu_to_be32(pcc->radix_page_info->entries[i]);
549         }
550         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
551                           radix_AP_encodings,
552                           pcc->radix_page_info->count *
553                           sizeof(radix_AP_encodings[0]))));
554     }
555 }
556 
557 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
558 {
559     CPUState *cs;
560     int cpus_offset;
561     char *nodename;
562     int smt = kvmppc_smt_threads();
563 
564     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
565     _FDT(cpus_offset);
566     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
567     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
568 
569     /*
570      * We walk the CPUs in reverse order to ensure that CPU DT nodes
571      * created by fdt_add_subnode() end up in the right order in FDT
572      * for the guest kernel the enumerate the CPUs correctly.
573      */
574     CPU_FOREACH_REVERSE(cs) {
575         PowerPCCPU *cpu = POWERPC_CPU(cs);
576         int index = ppc_get_vcpu_dt_id(cpu);
577         DeviceClass *dc = DEVICE_GET_CLASS(cs);
578         int offset;
579 
580         if ((index % smt) != 0) {
581             continue;
582         }
583 
584         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
585         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
586         g_free(nodename);
587         _FDT(offset);
588         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
589     }
590 
591 }
592 
593 /*
594  * Adds ibm,dynamic-reconfiguration-memory node.
595  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
596  * of this device tree node.
597  */
598 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
599 {
600     MachineState *machine = MACHINE(spapr);
601     int ret, i, offset;
602     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
603     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
604     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
605     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
606                        memory_region_size(&spapr->hotplug_memory.mr)) /
607                        lmb_size;
608     uint32_t *int_buf, *cur_index, buf_len;
609     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
610 
611     /*
612      * Don't create the node if there is no hotpluggable memory
613      */
614     if (machine->ram_size == machine->maxram_size) {
615         return 0;
616     }
617 
618     /*
619      * Allocate enough buffer size to fit in ibm,dynamic-memory
620      * or ibm,associativity-lookup-arrays
621      */
622     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
623               * sizeof(uint32_t);
624     cur_index = int_buf = g_malloc0(buf_len);
625 
626     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
627 
628     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
629                     sizeof(prop_lmb_size));
630     if (ret < 0) {
631         goto out;
632     }
633 
634     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
635     if (ret < 0) {
636         goto out;
637     }
638 
639     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
640     if (ret < 0) {
641         goto out;
642     }
643 
644     /* ibm,dynamic-memory */
645     int_buf[0] = cpu_to_be32(nr_lmbs);
646     cur_index++;
647     for (i = 0; i < nr_lmbs; i++) {
648         uint64_t addr = i * lmb_size;
649         uint32_t *dynamic_memory = cur_index;
650 
651         if (i >= hotplug_lmb_start) {
652             sPAPRDRConnector *drc;
653             sPAPRDRConnectorClass *drck;
654 
655             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
656             g_assert(drc);
657             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
658 
659             dynamic_memory[0] = cpu_to_be32(addr >> 32);
660             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
661             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
662             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
663             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
664             if (memory_region_present(get_system_memory(), addr)) {
665                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
666             } else {
667                 dynamic_memory[5] = cpu_to_be32(0);
668             }
669         } else {
670             /*
671              * LMB information for RMA, boot time RAM and gap b/n RAM and
672              * hotplug memory region -- all these are marked as reserved
673              * and as having no valid DRC.
674              */
675             dynamic_memory[0] = cpu_to_be32(addr >> 32);
676             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
677             dynamic_memory[2] = cpu_to_be32(0);
678             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
679             dynamic_memory[4] = cpu_to_be32(-1);
680             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
681                                             SPAPR_LMB_FLAGS_DRC_INVALID);
682         }
683 
684         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
685     }
686     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
687     if (ret < 0) {
688         goto out;
689     }
690 
691     /* ibm,associativity-lookup-arrays */
692     cur_index = int_buf;
693     int_buf[0] = cpu_to_be32(nr_nodes);
694     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
695     cur_index += 2;
696     for (i = 0; i < nr_nodes; i++) {
697         uint32_t associativity[] = {
698             cpu_to_be32(0x0),
699             cpu_to_be32(0x0),
700             cpu_to_be32(0x0),
701             cpu_to_be32(i)
702         };
703         memcpy(cur_index, associativity, sizeof(associativity));
704         cur_index += 4;
705     }
706     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
707             (cur_index - int_buf) * sizeof(uint32_t));
708 out:
709     g_free(int_buf);
710     return ret;
711 }
712 
713 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
714                                 sPAPROptionVector *ov5_updates)
715 {
716     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
717     int ret = 0, offset;
718 
719     /* Generate ibm,dynamic-reconfiguration-memory node if required */
720     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
721         g_assert(smc->dr_lmb_enabled);
722         ret = spapr_populate_drconf_memory(spapr, fdt);
723         if (ret) {
724             goto out;
725         }
726     }
727 
728     offset = fdt_path_offset(fdt, "/chosen");
729     if (offset < 0) {
730         offset = fdt_add_subnode(fdt, 0, "chosen");
731         if (offset < 0) {
732             return offset;
733         }
734     }
735     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
736                                  "ibm,architecture-vec-5");
737 
738 out:
739     return ret;
740 }
741 
742 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
743                                  target_ulong addr, target_ulong size,
744                                  sPAPROptionVector *ov5_updates)
745 {
746     void *fdt, *fdt_skel;
747     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
748 
749     size -= sizeof(hdr);
750 
751     /* Create sceleton */
752     fdt_skel = g_malloc0(size);
753     _FDT((fdt_create(fdt_skel, size)));
754     _FDT((fdt_begin_node(fdt_skel, "")));
755     _FDT((fdt_end_node(fdt_skel)));
756     _FDT((fdt_finish(fdt_skel)));
757     fdt = g_malloc0(size);
758     _FDT((fdt_open_into(fdt_skel, fdt, size)));
759     g_free(fdt_skel);
760 
761     /* Fixup cpu nodes */
762     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
763 
764     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
765         return -1;
766     }
767 
768     /* Pack resulting tree */
769     _FDT((fdt_pack(fdt)));
770 
771     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
772         trace_spapr_cas_failed(size);
773         return -1;
774     }
775 
776     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
777     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
778     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
779     g_free(fdt);
780 
781     return 0;
782 }
783 
784 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
785 {
786     int rtas;
787     GString *hypertas = g_string_sized_new(256);
788     GString *qemu_hypertas = g_string_sized_new(256);
789     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
790     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
791         memory_region_size(&spapr->hotplug_memory.mr);
792     uint32_t lrdr_capacity[] = {
793         cpu_to_be32(max_hotplug_addr >> 32),
794         cpu_to_be32(max_hotplug_addr & 0xffffffff),
795         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
796         cpu_to_be32(max_cpus / smp_threads),
797     };
798 
799     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
800 
801     /* hypertas */
802     add_str(hypertas, "hcall-pft");
803     add_str(hypertas, "hcall-term");
804     add_str(hypertas, "hcall-dabr");
805     add_str(hypertas, "hcall-interrupt");
806     add_str(hypertas, "hcall-tce");
807     add_str(hypertas, "hcall-vio");
808     add_str(hypertas, "hcall-splpar");
809     add_str(hypertas, "hcall-bulk");
810     add_str(hypertas, "hcall-set-mode");
811     add_str(hypertas, "hcall-sprg0");
812     add_str(hypertas, "hcall-copy");
813     add_str(hypertas, "hcall-debug");
814     add_str(qemu_hypertas, "hcall-memop1");
815 
816     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
817         add_str(hypertas, "hcall-multi-tce");
818     }
819     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
820                      hypertas->str, hypertas->len));
821     g_string_free(hypertas, TRUE);
822     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
823                      qemu_hypertas->str, qemu_hypertas->len));
824     g_string_free(qemu_hypertas, TRUE);
825 
826     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
827                      refpoints, sizeof(refpoints)));
828 
829     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
830                           RTAS_ERROR_LOG_MAX));
831     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
832                           RTAS_EVENT_SCAN_RATE));
833 
834     if (msi_nonbroken) {
835         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
836     }
837 
838     /*
839      * According to PAPR, rtas ibm,os-term does not guarantee a return
840      * back to the guest cpu.
841      *
842      * While an additional ibm,extended-os-term property indicates
843      * that rtas call return will always occur. Set this property.
844      */
845     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
846 
847     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
848                      lrdr_capacity, sizeof(lrdr_capacity)));
849 
850     spapr_dt_rtas_tokens(fdt, rtas);
851 }
852 
853 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
854  * that the guest may request and thus the valid values for bytes 24..26 of
855  * option vector 5: */
856 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
857 {
858     char val[2 * 3] = {
859         24, 0x00, /* Hash/Radix, filled in below. */
860         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
861         26, 0x40, /* Radix options: GTSE == yes. */
862     };
863 
864     if (kvm_enabled()) {
865         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
866             val[1] = 0x80; /* OV5_MMU_BOTH */
867         } else if (kvmppc_has_cap_mmu_radix()) {
868             val[1] = 0x40; /* OV5_MMU_RADIX_300 */
869         } else {
870             val[1] = 0x00; /* Hash */
871         }
872     } else {
873         /* TODO: TCG case, hash */
874         val[1] = 0x00;
875     }
876     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
877                      val, sizeof(val)));
878 }
879 
880 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
881 {
882     MachineState *machine = MACHINE(spapr);
883     int chosen;
884     const char *boot_device = machine->boot_order;
885     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
886     size_t cb = 0;
887     char *bootlist = get_boot_devices_list(&cb, true);
888 
889     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
890 
891     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
892     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
893                           spapr->initrd_base));
894     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
895                           spapr->initrd_base + spapr->initrd_size));
896 
897     if (spapr->kernel_size) {
898         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
899                               cpu_to_be64(spapr->kernel_size) };
900 
901         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
902                          &kprop, sizeof(kprop)));
903         if (spapr->kernel_le) {
904             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
905         }
906     }
907     if (boot_menu) {
908         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
909     }
910     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
911     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
912     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
913 
914     if (cb && bootlist) {
915         int i;
916 
917         for (i = 0; i < cb; i++) {
918             if (bootlist[i] == '\n') {
919                 bootlist[i] = ' ';
920             }
921         }
922         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
923     }
924 
925     if (boot_device && strlen(boot_device)) {
926         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
927     }
928 
929     if (!spapr->has_graphics && stdout_path) {
930         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
931     }
932 
933     spapr_dt_ov5_platform_support(fdt, chosen);
934 
935     g_free(stdout_path);
936     g_free(bootlist);
937 }
938 
939 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
940 {
941     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
942      * KVM to work under pHyp with some guest co-operation */
943     int hypervisor;
944     uint8_t hypercall[16];
945 
946     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
947     /* indicate KVM hypercall interface */
948     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
949     if (kvmppc_has_cap_fixup_hcalls()) {
950         /*
951          * Older KVM versions with older guest kernels were broken
952          * with the magic page, don't allow the guest to map it.
953          */
954         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
955                                   sizeof(hypercall))) {
956             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
957                              hypercall, sizeof(hypercall)));
958         }
959     }
960 }
961 
962 static void *spapr_build_fdt(sPAPRMachineState *spapr,
963                              hwaddr rtas_addr,
964                              hwaddr rtas_size)
965 {
966     MachineState *machine = MACHINE(qdev_get_machine());
967     MachineClass *mc = MACHINE_GET_CLASS(machine);
968     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
969     int ret;
970     void *fdt;
971     sPAPRPHBState *phb;
972     char *buf;
973     int smt = kvmppc_smt_threads();
974 
975     fdt = g_malloc0(FDT_MAX_SIZE);
976     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
977 
978     /* Root node */
979     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
980     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
981     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
982 
983     /*
984      * Add info to guest to indentify which host is it being run on
985      * and what is the uuid of the guest
986      */
987     if (kvmppc_get_host_model(&buf)) {
988         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
989         g_free(buf);
990     }
991     if (kvmppc_get_host_serial(&buf)) {
992         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
993         g_free(buf);
994     }
995 
996     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
997 
998     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
999     if (qemu_uuid_set) {
1000         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1001     }
1002     g_free(buf);
1003 
1004     if (qemu_get_vm_name()) {
1005         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1006                                 qemu_get_vm_name()));
1007     }
1008 
1009     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1010     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1011 
1012     /* /interrupt controller */
1013     spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
1014 
1015     ret = spapr_populate_memory(spapr, fdt);
1016     if (ret < 0) {
1017         error_report("couldn't setup memory nodes in fdt");
1018         exit(1);
1019     }
1020 
1021     /* /vdevice */
1022     spapr_dt_vdevice(spapr->vio_bus, fdt);
1023 
1024     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1025         ret = spapr_rng_populate_dt(fdt);
1026         if (ret < 0) {
1027             error_report("could not set up rng device in the fdt");
1028             exit(1);
1029         }
1030     }
1031 
1032     QLIST_FOREACH(phb, &spapr->phbs, list) {
1033         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1034         if (ret < 0) {
1035             error_report("couldn't setup PCI devices in fdt");
1036             exit(1);
1037         }
1038     }
1039 
1040     /* cpus */
1041     spapr_populate_cpus_dt_node(fdt, spapr);
1042 
1043     if (smc->dr_lmb_enabled) {
1044         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1045     }
1046 
1047     if (mc->has_hotpluggable_cpus) {
1048         int offset = fdt_path_offset(fdt, "/cpus");
1049         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1050                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1051         if (ret < 0) {
1052             error_report("Couldn't set up CPU DR device tree properties");
1053             exit(1);
1054         }
1055     }
1056 
1057     /* /event-sources */
1058     spapr_dt_events(spapr, fdt);
1059 
1060     /* /rtas */
1061     spapr_dt_rtas(spapr, fdt);
1062 
1063     /* /chosen */
1064     spapr_dt_chosen(spapr, fdt);
1065 
1066     /* /hypervisor */
1067     if (kvm_enabled()) {
1068         spapr_dt_hypervisor(spapr, fdt);
1069     }
1070 
1071     /* Build memory reserve map */
1072     if (spapr->kernel_size) {
1073         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1074     }
1075     if (spapr->initrd_size) {
1076         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1077     }
1078 
1079     /* ibm,client-architecture-support updates */
1080     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1081     if (ret < 0) {
1082         error_report("couldn't setup CAS properties fdt");
1083         exit(1);
1084     }
1085 
1086     return fdt;
1087 }
1088 
1089 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1090 {
1091     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1092 }
1093 
1094 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1095                                     PowerPCCPU *cpu)
1096 {
1097     CPUPPCState *env = &cpu->env;
1098 
1099     /* The TCG path should also be holding the BQL at this point */
1100     g_assert(qemu_mutex_iothread_locked());
1101 
1102     if (msr_pr) {
1103         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1104         env->gpr[3] = H_PRIVILEGE;
1105     } else {
1106         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1107     }
1108 }
1109 
1110 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1111 {
1112     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1113 
1114     return spapr->patb_entry;
1115 }
1116 
1117 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1118 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1119 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1120 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1121 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1122 
1123 /*
1124  * Get the fd to access the kernel htab, re-opening it if necessary
1125  */
1126 static int get_htab_fd(sPAPRMachineState *spapr)
1127 {
1128     if (spapr->htab_fd >= 0) {
1129         return spapr->htab_fd;
1130     }
1131 
1132     spapr->htab_fd = kvmppc_get_htab_fd(false);
1133     if (spapr->htab_fd < 0) {
1134         error_report("Unable to open fd for reading hash table from KVM: %s",
1135                      strerror(errno));
1136     }
1137 
1138     return spapr->htab_fd;
1139 }
1140 
1141 void close_htab_fd(sPAPRMachineState *spapr)
1142 {
1143     if (spapr->htab_fd >= 0) {
1144         close(spapr->htab_fd);
1145     }
1146     spapr->htab_fd = -1;
1147 }
1148 
1149 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1150 {
1151     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1152 
1153     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1154 }
1155 
1156 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1157                                                 hwaddr ptex, int n)
1158 {
1159     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1160     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1161 
1162     if (!spapr->htab) {
1163         /*
1164          * HTAB is controlled by KVM. Fetch into temporary buffer
1165          */
1166         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1167         kvmppc_read_hptes(hptes, ptex, n);
1168         return hptes;
1169     }
1170 
1171     /*
1172      * HTAB is controlled by QEMU. Just point to the internally
1173      * accessible PTEG.
1174      */
1175     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1176 }
1177 
1178 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1179                               const ppc_hash_pte64_t *hptes,
1180                               hwaddr ptex, int n)
1181 {
1182     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1183 
1184     if (!spapr->htab) {
1185         g_free((void *)hptes);
1186     }
1187 
1188     /* Nothing to do for qemu managed HPT */
1189 }
1190 
1191 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1192                              uint64_t pte0, uint64_t pte1)
1193 {
1194     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1195     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1196 
1197     if (!spapr->htab) {
1198         kvmppc_write_hpte(ptex, pte0, pte1);
1199     } else {
1200         stq_p(spapr->htab + offset, pte0);
1201         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1202     }
1203 }
1204 
1205 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1206 {
1207     int shift;
1208 
1209     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1210      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1211      * that's much more than is needed for Linux guests */
1212     shift = ctz64(pow2ceil(ramsize)) - 7;
1213     shift = MAX(shift, 18); /* Minimum architected size */
1214     shift = MIN(shift, 46); /* Maximum architected size */
1215     return shift;
1216 }
1217 
1218 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1219                                  Error **errp)
1220 {
1221     long rc;
1222 
1223     /* Clean up any HPT info from a previous boot */
1224     g_free(spapr->htab);
1225     spapr->htab = NULL;
1226     spapr->htab_shift = 0;
1227     close_htab_fd(spapr);
1228 
1229     rc = kvmppc_reset_htab(shift);
1230     if (rc < 0) {
1231         /* kernel-side HPT needed, but couldn't allocate one */
1232         error_setg_errno(errp, errno,
1233                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1234                          shift);
1235         /* This is almost certainly fatal, but if the caller really
1236          * wants to carry on with shift == 0, it's welcome to try */
1237     } else if (rc > 0) {
1238         /* kernel-side HPT allocated */
1239         if (rc != shift) {
1240             error_setg(errp,
1241                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1242                        shift, rc);
1243         }
1244 
1245         spapr->htab_shift = shift;
1246         spapr->htab = NULL;
1247     } else {
1248         /* kernel-side HPT not needed, allocate in userspace instead */
1249         size_t size = 1ULL << shift;
1250         int i;
1251 
1252         spapr->htab = qemu_memalign(size, size);
1253         if (!spapr->htab) {
1254             error_setg_errno(errp, errno,
1255                              "Could not allocate HPT of order %d", shift);
1256             return;
1257         }
1258 
1259         memset(spapr->htab, 0, size);
1260         spapr->htab_shift = shift;
1261 
1262         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1263             DIRTY_HPTE(HPTE(spapr->htab, i));
1264         }
1265     }
1266 }
1267 
1268 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1269 {
1270     spapr_reallocate_hpt(spapr,
1271                      spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1272                      &error_fatal);
1273     if (spapr->vrma_adjust) {
1274         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1275                                           spapr->htab_shift);
1276     }
1277     /* We're setting up a hash table, so that means we're not radix */
1278     spapr->patb_entry = 0;
1279 }
1280 
1281 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1282 {
1283     bool matched = false;
1284 
1285     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1286         matched = true;
1287     }
1288 
1289     if (!matched) {
1290         error_report("Device %s is not supported by this machine yet.",
1291                      qdev_fw_name(DEVICE(sbdev)));
1292         exit(1);
1293     }
1294 }
1295 
1296 static void ppc_spapr_reset(void)
1297 {
1298     MachineState *machine = MACHINE(qdev_get_machine());
1299     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1300     PowerPCCPU *first_ppc_cpu;
1301     uint32_t rtas_limit;
1302     hwaddr rtas_addr, fdt_addr;
1303     void *fdt;
1304     int rc;
1305 
1306     /* Check for unknown sysbus devices */
1307     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1308 
1309     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1310         /* If using KVM with radix mode available, VCPUs can be started
1311          * without a HPT because KVM will start them in radix mode.
1312          * Set the GR bit in PATB so that we know there is no HPT. */
1313         spapr->patb_entry = PATBE1_GR;
1314     } else {
1315         spapr->patb_entry = 0;
1316         spapr_setup_hpt_and_vrma(spapr);
1317     }
1318 
1319     qemu_devices_reset();
1320 
1321     /*
1322      * We place the device tree and RTAS just below either the top of the RMA,
1323      * or just below 2GB, whichever is lowere, so that it can be
1324      * processed with 32-bit real mode code if necessary
1325      */
1326     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1327     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1328     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1329 
1330     /* if this reset wasn't generated by CAS, we should reset our
1331      * negotiated options and start from scratch */
1332     if (!spapr->cas_reboot) {
1333         spapr_ovec_cleanup(spapr->ov5_cas);
1334         spapr->ov5_cas = spapr_ovec_new();
1335     }
1336 
1337     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1338 
1339     spapr_load_rtas(spapr, fdt, rtas_addr);
1340 
1341     rc = fdt_pack(fdt);
1342 
1343     /* Should only fail if we've built a corrupted tree */
1344     assert(rc == 0);
1345 
1346     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1347         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1348                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1349         exit(1);
1350     }
1351 
1352     /* Load the fdt */
1353     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1354     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1355     g_free(fdt);
1356 
1357     /* Set up the entry state */
1358     first_ppc_cpu = POWERPC_CPU(first_cpu);
1359     first_ppc_cpu->env.gpr[3] = fdt_addr;
1360     first_ppc_cpu->env.gpr[5] = 0;
1361     first_cpu->halted = 0;
1362     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1363 
1364     spapr->cas_reboot = false;
1365 }
1366 
1367 static void spapr_create_nvram(sPAPRMachineState *spapr)
1368 {
1369     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1370     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1371 
1372     if (dinfo) {
1373         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1374                             &error_fatal);
1375     }
1376 
1377     qdev_init_nofail(dev);
1378 
1379     spapr->nvram = (struct sPAPRNVRAM *)dev;
1380 }
1381 
1382 static void spapr_rtc_create(sPAPRMachineState *spapr)
1383 {
1384     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1385     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1386                               &error_fatal);
1387     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1388                               &error_fatal);
1389     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1390                               "date", &error_fatal);
1391 }
1392 
1393 /* Returns whether we want to use VGA or not */
1394 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1395 {
1396     switch (vga_interface_type) {
1397     case VGA_NONE:
1398         return false;
1399     case VGA_DEVICE:
1400         return true;
1401     case VGA_STD:
1402     case VGA_VIRTIO:
1403         return pci_vga_init(pci_bus) != NULL;
1404     default:
1405         error_setg(errp,
1406                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1407         return false;
1408     }
1409 }
1410 
1411 static int spapr_post_load(void *opaque, int version_id)
1412 {
1413     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1414     int err = 0;
1415 
1416     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1417         CPUState *cs;
1418         CPU_FOREACH(cs) {
1419             PowerPCCPU *cpu = POWERPC_CPU(cs);
1420             icp_resend(ICP(cpu->intc));
1421         }
1422     }
1423 
1424     /* In earlier versions, there was no separate qdev for the PAPR
1425      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1426      * So when migrating from those versions, poke the incoming offset
1427      * value into the RTC device */
1428     if (version_id < 3) {
1429         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1430     }
1431 
1432     return err;
1433 }
1434 
1435 static bool version_before_3(void *opaque, int version_id)
1436 {
1437     return version_id < 3;
1438 }
1439 
1440 static bool spapr_ov5_cas_needed(void *opaque)
1441 {
1442     sPAPRMachineState *spapr = opaque;
1443     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1444     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1445     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1446     bool cas_needed;
1447 
1448     /* Prior to the introduction of sPAPROptionVector, we had two option
1449      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1450      * Both of these options encode machine topology into the device-tree
1451      * in such a way that the now-booted OS should still be able to interact
1452      * appropriately with QEMU regardless of what options were actually
1453      * negotiatied on the source side.
1454      *
1455      * As such, we can avoid migrating the CAS-negotiated options if these
1456      * are the only options available on the current machine/platform.
1457      * Since these are the only options available for pseries-2.7 and
1458      * earlier, this allows us to maintain old->new/new->old migration
1459      * compatibility.
1460      *
1461      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1462      * via default pseries-2.8 machines and explicit command-line parameters.
1463      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1464      * of the actual CAS-negotiated values to continue working properly. For
1465      * example, availability of memory unplug depends on knowing whether
1466      * OV5_HP_EVT was negotiated via CAS.
1467      *
1468      * Thus, for any cases where the set of available CAS-negotiatable
1469      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1470      * include the CAS-negotiated options in the migration stream.
1471      */
1472     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1473     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1474 
1475     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1476      * the mask itself since in the future it's possible "legacy" bits may be
1477      * removed via machine options, which could generate a false positive
1478      * that breaks migration.
1479      */
1480     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1481     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1482 
1483     spapr_ovec_cleanup(ov5_mask);
1484     spapr_ovec_cleanup(ov5_legacy);
1485     spapr_ovec_cleanup(ov5_removed);
1486 
1487     return cas_needed;
1488 }
1489 
1490 static const VMStateDescription vmstate_spapr_ov5_cas = {
1491     .name = "spapr_option_vector_ov5_cas",
1492     .version_id = 1,
1493     .minimum_version_id = 1,
1494     .needed = spapr_ov5_cas_needed,
1495     .fields = (VMStateField[]) {
1496         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1497                                  vmstate_spapr_ovec, sPAPROptionVector),
1498         VMSTATE_END_OF_LIST()
1499     },
1500 };
1501 
1502 static bool spapr_patb_entry_needed(void *opaque)
1503 {
1504     sPAPRMachineState *spapr = opaque;
1505 
1506     return !!spapr->patb_entry;
1507 }
1508 
1509 static const VMStateDescription vmstate_spapr_patb_entry = {
1510     .name = "spapr_patb_entry",
1511     .version_id = 1,
1512     .minimum_version_id = 1,
1513     .needed = spapr_patb_entry_needed,
1514     .fields = (VMStateField[]) {
1515         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1516         VMSTATE_END_OF_LIST()
1517     },
1518 };
1519 
1520 static const VMStateDescription vmstate_spapr = {
1521     .name = "spapr",
1522     .version_id = 3,
1523     .minimum_version_id = 1,
1524     .post_load = spapr_post_load,
1525     .fields = (VMStateField[]) {
1526         /* used to be @next_irq */
1527         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1528 
1529         /* RTC offset */
1530         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1531 
1532         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1533         VMSTATE_END_OF_LIST()
1534     },
1535     .subsections = (const VMStateDescription*[]) {
1536         &vmstate_spapr_ov5_cas,
1537         &vmstate_spapr_patb_entry,
1538         NULL
1539     }
1540 };
1541 
1542 static int htab_save_setup(QEMUFile *f, void *opaque)
1543 {
1544     sPAPRMachineState *spapr = opaque;
1545 
1546     /* "Iteration" header */
1547     qemu_put_be32(f, spapr->htab_shift);
1548 
1549     if (spapr->htab) {
1550         spapr->htab_save_index = 0;
1551         spapr->htab_first_pass = true;
1552     } else {
1553         assert(kvm_enabled());
1554     }
1555 
1556 
1557     return 0;
1558 }
1559 
1560 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1561                                  int64_t max_ns)
1562 {
1563     bool has_timeout = max_ns != -1;
1564     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1565     int index = spapr->htab_save_index;
1566     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1567 
1568     assert(spapr->htab_first_pass);
1569 
1570     do {
1571         int chunkstart;
1572 
1573         /* Consume invalid HPTEs */
1574         while ((index < htabslots)
1575                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1576             CLEAN_HPTE(HPTE(spapr->htab, index));
1577             index++;
1578         }
1579 
1580         /* Consume valid HPTEs */
1581         chunkstart = index;
1582         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1583                && HPTE_VALID(HPTE(spapr->htab, index))) {
1584             CLEAN_HPTE(HPTE(spapr->htab, index));
1585             index++;
1586         }
1587 
1588         if (index > chunkstart) {
1589             int n_valid = index - chunkstart;
1590 
1591             qemu_put_be32(f, chunkstart);
1592             qemu_put_be16(f, n_valid);
1593             qemu_put_be16(f, 0);
1594             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1595                             HASH_PTE_SIZE_64 * n_valid);
1596 
1597             if (has_timeout &&
1598                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1599                 break;
1600             }
1601         }
1602     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1603 
1604     if (index >= htabslots) {
1605         assert(index == htabslots);
1606         index = 0;
1607         spapr->htab_first_pass = false;
1608     }
1609     spapr->htab_save_index = index;
1610 }
1611 
1612 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1613                                 int64_t max_ns)
1614 {
1615     bool final = max_ns < 0;
1616     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1617     int examined = 0, sent = 0;
1618     int index = spapr->htab_save_index;
1619     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1620 
1621     assert(!spapr->htab_first_pass);
1622 
1623     do {
1624         int chunkstart, invalidstart;
1625 
1626         /* Consume non-dirty HPTEs */
1627         while ((index < htabslots)
1628                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1629             index++;
1630             examined++;
1631         }
1632 
1633         chunkstart = index;
1634         /* Consume valid dirty HPTEs */
1635         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1636                && HPTE_DIRTY(HPTE(spapr->htab, index))
1637                && HPTE_VALID(HPTE(spapr->htab, index))) {
1638             CLEAN_HPTE(HPTE(spapr->htab, index));
1639             index++;
1640             examined++;
1641         }
1642 
1643         invalidstart = index;
1644         /* Consume invalid dirty HPTEs */
1645         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1646                && HPTE_DIRTY(HPTE(spapr->htab, index))
1647                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1648             CLEAN_HPTE(HPTE(spapr->htab, index));
1649             index++;
1650             examined++;
1651         }
1652 
1653         if (index > chunkstart) {
1654             int n_valid = invalidstart - chunkstart;
1655             int n_invalid = index - invalidstart;
1656 
1657             qemu_put_be32(f, chunkstart);
1658             qemu_put_be16(f, n_valid);
1659             qemu_put_be16(f, n_invalid);
1660             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1661                             HASH_PTE_SIZE_64 * n_valid);
1662             sent += index - chunkstart;
1663 
1664             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1665                 break;
1666             }
1667         }
1668 
1669         if (examined >= htabslots) {
1670             break;
1671         }
1672 
1673         if (index >= htabslots) {
1674             assert(index == htabslots);
1675             index = 0;
1676         }
1677     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1678 
1679     if (index >= htabslots) {
1680         assert(index == htabslots);
1681         index = 0;
1682     }
1683 
1684     spapr->htab_save_index = index;
1685 
1686     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1687 }
1688 
1689 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1690 #define MAX_KVM_BUF_SIZE    2048
1691 
1692 static int htab_save_iterate(QEMUFile *f, void *opaque)
1693 {
1694     sPAPRMachineState *spapr = opaque;
1695     int fd;
1696     int rc = 0;
1697 
1698     /* Iteration header */
1699     qemu_put_be32(f, 0);
1700 
1701     if (!spapr->htab) {
1702         assert(kvm_enabled());
1703 
1704         fd = get_htab_fd(spapr);
1705         if (fd < 0) {
1706             return fd;
1707         }
1708 
1709         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1710         if (rc < 0) {
1711             return rc;
1712         }
1713     } else  if (spapr->htab_first_pass) {
1714         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1715     } else {
1716         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1717     }
1718 
1719     /* End marker */
1720     qemu_put_be32(f, 0);
1721     qemu_put_be16(f, 0);
1722     qemu_put_be16(f, 0);
1723 
1724     return rc;
1725 }
1726 
1727 static int htab_save_complete(QEMUFile *f, void *opaque)
1728 {
1729     sPAPRMachineState *spapr = opaque;
1730     int fd;
1731 
1732     /* Iteration header */
1733     qemu_put_be32(f, 0);
1734 
1735     if (!spapr->htab) {
1736         int rc;
1737 
1738         assert(kvm_enabled());
1739 
1740         fd = get_htab_fd(spapr);
1741         if (fd < 0) {
1742             return fd;
1743         }
1744 
1745         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1746         if (rc < 0) {
1747             return rc;
1748         }
1749     } else {
1750         if (spapr->htab_first_pass) {
1751             htab_save_first_pass(f, spapr, -1);
1752         }
1753         htab_save_later_pass(f, spapr, -1);
1754     }
1755 
1756     /* End marker */
1757     qemu_put_be32(f, 0);
1758     qemu_put_be16(f, 0);
1759     qemu_put_be16(f, 0);
1760 
1761     return 0;
1762 }
1763 
1764 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1765 {
1766     sPAPRMachineState *spapr = opaque;
1767     uint32_t section_hdr;
1768     int fd = -1;
1769 
1770     if (version_id < 1 || version_id > 1) {
1771         error_report("htab_load() bad version");
1772         return -EINVAL;
1773     }
1774 
1775     section_hdr = qemu_get_be32(f);
1776 
1777     if (section_hdr) {
1778         Error *local_err = NULL;
1779 
1780         /* First section gives the htab size */
1781         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1782         if (local_err) {
1783             error_report_err(local_err);
1784             return -EINVAL;
1785         }
1786         return 0;
1787     }
1788 
1789     if (!spapr->htab) {
1790         assert(kvm_enabled());
1791 
1792         fd = kvmppc_get_htab_fd(true);
1793         if (fd < 0) {
1794             error_report("Unable to open fd to restore KVM hash table: %s",
1795                          strerror(errno));
1796         }
1797     }
1798 
1799     while (true) {
1800         uint32_t index;
1801         uint16_t n_valid, n_invalid;
1802 
1803         index = qemu_get_be32(f);
1804         n_valid = qemu_get_be16(f);
1805         n_invalid = qemu_get_be16(f);
1806 
1807         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1808             /* End of Stream */
1809             break;
1810         }
1811 
1812         if ((index + n_valid + n_invalid) >
1813             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1814             /* Bad index in stream */
1815             error_report(
1816                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1817                 index, n_valid, n_invalid, spapr->htab_shift);
1818             return -EINVAL;
1819         }
1820 
1821         if (spapr->htab) {
1822             if (n_valid) {
1823                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1824                                 HASH_PTE_SIZE_64 * n_valid);
1825             }
1826             if (n_invalid) {
1827                 memset(HPTE(spapr->htab, index + n_valid), 0,
1828                        HASH_PTE_SIZE_64 * n_invalid);
1829             }
1830         } else {
1831             int rc;
1832 
1833             assert(fd >= 0);
1834 
1835             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1836             if (rc < 0) {
1837                 return rc;
1838             }
1839         }
1840     }
1841 
1842     if (!spapr->htab) {
1843         assert(fd >= 0);
1844         close(fd);
1845     }
1846 
1847     return 0;
1848 }
1849 
1850 static void htab_cleanup(void *opaque)
1851 {
1852     sPAPRMachineState *spapr = opaque;
1853 
1854     close_htab_fd(spapr);
1855 }
1856 
1857 static SaveVMHandlers savevm_htab_handlers = {
1858     .save_live_setup = htab_save_setup,
1859     .save_live_iterate = htab_save_iterate,
1860     .save_live_complete_precopy = htab_save_complete,
1861     .cleanup = htab_cleanup,
1862     .load_state = htab_load,
1863 };
1864 
1865 static void spapr_boot_set(void *opaque, const char *boot_device,
1866                            Error **errp)
1867 {
1868     MachineState *machine = MACHINE(qdev_get_machine());
1869     machine->boot_order = g_strdup(boot_device);
1870 }
1871 
1872 /*
1873  * Reset routine for LMB DR devices.
1874  *
1875  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1876  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1877  * when it walks all its children devices. LMB devices reset occurs
1878  * as part of spapr_ppc_reset().
1879  */
1880 static void spapr_drc_reset(void *opaque)
1881 {
1882     sPAPRDRConnector *drc = opaque;
1883     DeviceState *d = DEVICE(drc);
1884 
1885     if (d) {
1886         device_reset(d);
1887     }
1888 }
1889 
1890 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1891 {
1892     MachineState *machine = MACHINE(spapr);
1893     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1894     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1895     int i;
1896 
1897     for (i = 0; i < nr_lmbs; i++) {
1898         sPAPRDRConnector *drc;
1899         uint64_t addr;
1900 
1901         addr = i * lmb_size + spapr->hotplug_memory.base;
1902         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1903                                      addr/lmb_size);
1904         qemu_register_reset(spapr_drc_reset, drc);
1905     }
1906 }
1907 
1908 /*
1909  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1910  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1911  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1912  */
1913 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1914 {
1915     int i;
1916 
1917     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1918         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1919                    " is not aligned to %llu MiB",
1920                    machine->ram_size,
1921                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1922         return;
1923     }
1924 
1925     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1926         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1927                    " is not aligned to %llu MiB",
1928                    machine->ram_size,
1929                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1930         return;
1931     }
1932 
1933     for (i = 0; i < nb_numa_nodes; i++) {
1934         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1935             error_setg(errp,
1936                        "Node %d memory size 0x%" PRIx64
1937                        " is not aligned to %llu MiB",
1938                        i, numa_info[i].node_mem,
1939                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1940             return;
1941         }
1942     }
1943 }
1944 
1945 /* find cpu slot in machine->possible_cpus by core_id */
1946 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1947 {
1948     int index = id / smp_threads;
1949 
1950     if (index >= ms->possible_cpus->len) {
1951         return NULL;
1952     }
1953     if (idx) {
1954         *idx = index;
1955     }
1956     return &ms->possible_cpus->cpus[index];
1957 }
1958 
1959 static void spapr_init_cpus(sPAPRMachineState *spapr)
1960 {
1961     MachineState *machine = MACHINE(spapr);
1962     MachineClass *mc = MACHINE_GET_CLASS(machine);
1963     char *type = spapr_get_cpu_core_type(machine->cpu_model);
1964     int smt = kvmppc_smt_threads();
1965     const CPUArchIdList *possible_cpus;
1966     int boot_cores_nr = smp_cpus / smp_threads;
1967     int i;
1968 
1969     if (!type) {
1970         error_report("Unable to find sPAPR CPU Core definition");
1971         exit(1);
1972     }
1973 
1974     possible_cpus = mc->possible_cpu_arch_ids(machine);
1975     if (mc->has_hotpluggable_cpus) {
1976         if (smp_cpus % smp_threads) {
1977             error_report("smp_cpus (%u) must be multiple of threads (%u)",
1978                          smp_cpus, smp_threads);
1979             exit(1);
1980         }
1981         if (max_cpus % smp_threads) {
1982             error_report("max_cpus (%u) must be multiple of threads (%u)",
1983                          max_cpus, smp_threads);
1984             exit(1);
1985         }
1986     } else {
1987         if (max_cpus != smp_cpus) {
1988             error_report("This machine version does not support CPU hotplug");
1989             exit(1);
1990         }
1991         boot_cores_nr = possible_cpus->len;
1992     }
1993 
1994     for (i = 0; i < possible_cpus->len; i++) {
1995         int core_id = i * smp_threads;
1996 
1997         if (mc->has_hotpluggable_cpus) {
1998             sPAPRDRConnector *drc =
1999                 spapr_dr_connector_new(OBJECT(spapr),
2000                                        SPAPR_DR_CONNECTOR_TYPE_CPU,
2001                                        (core_id / smp_threads) * smt);
2002 
2003             qemu_register_reset(spapr_drc_reset, drc);
2004         }
2005 
2006         if (i < boot_cores_nr) {
2007             Object *core  = object_new(type);
2008             int nr_threads = smp_threads;
2009 
2010             /* Handle the partially filled core for older machine types */
2011             if ((i + 1) * smp_threads >= smp_cpus) {
2012                 nr_threads = smp_cpus - i * smp_threads;
2013             }
2014 
2015             object_property_set_int(core, nr_threads, "nr-threads",
2016                                     &error_fatal);
2017             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2018                                     &error_fatal);
2019             object_property_set_bool(core, true, "realized", &error_fatal);
2020         }
2021     }
2022     g_free(type);
2023 }
2024 
2025 /* pSeries LPAR / sPAPR hardware init */
2026 static void ppc_spapr_init(MachineState *machine)
2027 {
2028     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2029     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2030     const char *kernel_filename = machine->kernel_filename;
2031     const char *initrd_filename = machine->initrd_filename;
2032     PCIHostState *phb;
2033     int i;
2034     MemoryRegion *sysmem = get_system_memory();
2035     MemoryRegion *ram = g_new(MemoryRegion, 1);
2036     MemoryRegion *rma_region;
2037     void *rma = NULL;
2038     hwaddr rma_alloc_size;
2039     hwaddr node0_size = spapr_node0_size();
2040     long load_limit, fw_size;
2041     char *filename;
2042 
2043     msi_nonbroken = true;
2044 
2045     QLIST_INIT(&spapr->phbs);
2046 
2047     /* Allocate RMA if necessary */
2048     rma_alloc_size = kvmppc_alloc_rma(&rma);
2049 
2050     if (rma_alloc_size == -1) {
2051         error_report("Unable to create RMA");
2052         exit(1);
2053     }
2054 
2055     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2056         spapr->rma_size = rma_alloc_size;
2057     } else {
2058         spapr->rma_size = node0_size;
2059 
2060         /* With KVM, we don't actually know whether KVM supports an
2061          * unbounded RMA (PR KVM) or is limited by the hash table size
2062          * (HV KVM using VRMA), so we always assume the latter
2063          *
2064          * In that case, we also limit the initial allocations for RTAS
2065          * etc... to 256M since we have no way to know what the VRMA size
2066          * is going to be as it depends on the size of the hash table
2067          * isn't determined yet.
2068          */
2069         if (kvm_enabled()) {
2070             spapr->vrma_adjust = 1;
2071             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2072         }
2073 
2074         /* Actually we don't support unbounded RMA anymore since we
2075          * added proper emulation of HV mode. The max we can get is
2076          * 16G which also happens to be what we configure for PAPR
2077          * mode so make sure we don't do anything bigger than that
2078          */
2079         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2080     }
2081 
2082     if (spapr->rma_size > node0_size) {
2083         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2084                      spapr->rma_size);
2085         exit(1);
2086     }
2087 
2088     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2089     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2090 
2091     /* Set up Interrupt Controller before we create the VCPUs */
2092     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2093 
2094     /* Set up containers for ibm,client-set-architecture negotiated options */
2095     spapr->ov5 = spapr_ovec_new();
2096     spapr->ov5_cas = spapr_ovec_new();
2097 
2098     if (smc->dr_lmb_enabled) {
2099         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2100         spapr_validate_node_memory(machine, &error_fatal);
2101     }
2102 
2103     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2104     if (kvmppc_has_cap_mmu_radix()) {
2105         /* KVM always allows GTSE with radix... */
2106         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2107     }
2108     /* ... but not with hash (currently). */
2109 
2110     /* advertise support for dedicated HP event source to guests */
2111     if (spapr->use_hotplug_event_source) {
2112         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2113     }
2114 
2115     /* init CPUs */
2116     if (machine->cpu_model == NULL) {
2117         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2118     }
2119 
2120     ppc_cpu_parse_features(machine->cpu_model);
2121 
2122     spapr_init_cpus(spapr);
2123 
2124     if (kvm_enabled()) {
2125         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2126         kvmppc_enable_logical_ci_hcalls();
2127         kvmppc_enable_set_mode_hcall();
2128 
2129         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2130         kvmppc_enable_clear_ref_mod_hcalls();
2131     }
2132 
2133     /* allocate RAM */
2134     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2135                                          machine->ram_size);
2136     memory_region_add_subregion(sysmem, 0, ram);
2137 
2138     if (rma_alloc_size && rma) {
2139         rma_region = g_new(MemoryRegion, 1);
2140         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2141                                    rma_alloc_size, rma);
2142         vmstate_register_ram_global(rma_region);
2143         memory_region_add_subregion(sysmem, 0, rma_region);
2144     }
2145 
2146     /* initialize hotplug memory address space */
2147     if (machine->ram_size < machine->maxram_size) {
2148         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2149         /*
2150          * Limit the number of hotpluggable memory slots to half the number
2151          * slots that KVM supports, leaving the other half for PCI and other
2152          * devices. However ensure that number of slots doesn't drop below 32.
2153          */
2154         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2155                            SPAPR_MAX_RAM_SLOTS;
2156 
2157         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2158             max_memslots = SPAPR_MAX_RAM_SLOTS;
2159         }
2160         if (machine->ram_slots > max_memslots) {
2161             error_report("Specified number of memory slots %"
2162                          PRIu64" exceeds max supported %d",
2163                          machine->ram_slots, max_memslots);
2164             exit(1);
2165         }
2166 
2167         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2168                                               SPAPR_HOTPLUG_MEM_ALIGN);
2169         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2170                            "hotplug-memory", hotplug_mem_size);
2171         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2172                                     &spapr->hotplug_memory.mr);
2173     }
2174 
2175     if (smc->dr_lmb_enabled) {
2176         spapr_create_lmb_dr_connectors(spapr);
2177     }
2178 
2179     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2180     if (!filename) {
2181         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2182         exit(1);
2183     }
2184     spapr->rtas_size = get_image_size(filename);
2185     if (spapr->rtas_size < 0) {
2186         error_report("Could not get size of LPAR rtas '%s'", filename);
2187         exit(1);
2188     }
2189     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2190     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2191         error_report("Could not load LPAR rtas '%s'", filename);
2192         exit(1);
2193     }
2194     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2195         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2196                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2197         exit(1);
2198     }
2199     g_free(filename);
2200 
2201     /* Set up RTAS event infrastructure */
2202     spapr_events_init(spapr);
2203 
2204     /* Set up the RTC RTAS interfaces */
2205     spapr_rtc_create(spapr);
2206 
2207     /* Set up VIO bus */
2208     spapr->vio_bus = spapr_vio_bus_init();
2209 
2210     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2211         if (serial_hds[i]) {
2212             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2213         }
2214     }
2215 
2216     /* We always have at least the nvram device on VIO */
2217     spapr_create_nvram(spapr);
2218 
2219     /* Set up PCI */
2220     spapr_pci_rtas_init();
2221 
2222     phb = spapr_create_phb(spapr, 0);
2223 
2224     for (i = 0; i < nb_nics; i++) {
2225         NICInfo *nd = &nd_table[i];
2226 
2227         if (!nd->model) {
2228             nd->model = g_strdup("ibmveth");
2229         }
2230 
2231         if (strcmp(nd->model, "ibmveth") == 0) {
2232             spapr_vlan_create(spapr->vio_bus, nd);
2233         } else {
2234             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2235         }
2236     }
2237 
2238     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2239         spapr_vscsi_create(spapr->vio_bus);
2240     }
2241 
2242     /* Graphics */
2243     if (spapr_vga_init(phb->bus, &error_fatal)) {
2244         spapr->has_graphics = true;
2245         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2246     }
2247 
2248     if (machine->usb) {
2249         if (smc->use_ohci_by_default) {
2250             pci_create_simple(phb->bus, -1, "pci-ohci");
2251         } else {
2252             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2253         }
2254 
2255         if (spapr->has_graphics) {
2256             USBBus *usb_bus = usb_bus_find(-1);
2257 
2258             usb_create_simple(usb_bus, "usb-kbd");
2259             usb_create_simple(usb_bus, "usb-mouse");
2260         }
2261     }
2262 
2263     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2264         error_report(
2265             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2266             MIN_RMA_SLOF);
2267         exit(1);
2268     }
2269 
2270     if (kernel_filename) {
2271         uint64_t lowaddr = 0;
2272 
2273         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2274                                       NULL, NULL, &lowaddr, NULL, 1,
2275                                       PPC_ELF_MACHINE, 0, 0);
2276         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2277             spapr->kernel_size = load_elf(kernel_filename,
2278                                           translate_kernel_address, NULL, NULL,
2279                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2280                                           0, 0);
2281             spapr->kernel_le = spapr->kernel_size > 0;
2282         }
2283         if (spapr->kernel_size < 0) {
2284             error_report("error loading %s: %s", kernel_filename,
2285                          load_elf_strerror(spapr->kernel_size));
2286             exit(1);
2287         }
2288 
2289         /* load initrd */
2290         if (initrd_filename) {
2291             /* Try to locate the initrd in the gap between the kernel
2292              * and the firmware. Add a bit of space just in case
2293              */
2294             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2295                                   + 0x1ffff) & ~0xffff;
2296             spapr->initrd_size = load_image_targphys(initrd_filename,
2297                                                      spapr->initrd_base,
2298                                                      load_limit
2299                                                      - spapr->initrd_base);
2300             if (spapr->initrd_size < 0) {
2301                 error_report("could not load initial ram disk '%s'",
2302                              initrd_filename);
2303                 exit(1);
2304             }
2305         }
2306     }
2307 
2308     if (bios_name == NULL) {
2309         bios_name = FW_FILE_NAME;
2310     }
2311     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2312     if (!filename) {
2313         error_report("Could not find LPAR firmware '%s'", bios_name);
2314         exit(1);
2315     }
2316     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2317     if (fw_size <= 0) {
2318         error_report("Could not load LPAR firmware '%s'", filename);
2319         exit(1);
2320     }
2321     g_free(filename);
2322 
2323     /* FIXME: Should register things through the MachineState's qdev
2324      * interface, this is a legacy from the sPAPREnvironment structure
2325      * which predated MachineState but had a similar function */
2326     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2327     register_savevm_live(NULL, "spapr/htab", -1, 1,
2328                          &savevm_htab_handlers, spapr);
2329 
2330     /* used by RTAS */
2331     QTAILQ_INIT(&spapr->ccs_list);
2332     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2333 
2334     qemu_register_boot_set(spapr_boot_set, spapr);
2335 
2336     if (kvm_enabled()) {
2337         /* to stop and start vmclock */
2338         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2339                                          &spapr->tb);
2340 
2341         kvmppc_spapr_enable_inkernel_multitce();
2342     }
2343 }
2344 
2345 static int spapr_kvm_type(const char *vm_type)
2346 {
2347     if (!vm_type) {
2348         return 0;
2349     }
2350 
2351     if (!strcmp(vm_type, "HV")) {
2352         return 1;
2353     }
2354 
2355     if (!strcmp(vm_type, "PR")) {
2356         return 2;
2357     }
2358 
2359     error_report("Unknown kvm-type specified '%s'", vm_type);
2360     exit(1);
2361 }
2362 
2363 /*
2364  * Implementation of an interface to adjust firmware path
2365  * for the bootindex property handling.
2366  */
2367 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2368                                    DeviceState *dev)
2369 {
2370 #define CAST(type, obj, name) \
2371     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2372     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2373     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2374 
2375     if (d) {
2376         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2377         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2378         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2379 
2380         if (spapr) {
2381             /*
2382              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2383              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2384              * in the top 16 bits of the 64-bit LUN
2385              */
2386             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2387             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2388                                    (uint64_t)id << 48);
2389         } else if (virtio) {
2390             /*
2391              * We use SRP luns of the form 01000000 | (target << 8) | lun
2392              * in the top 32 bits of the 64-bit LUN
2393              * Note: the quote above is from SLOF and it is wrong,
2394              * the actual binding is:
2395              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2396              */
2397             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2398             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2399                                    (uint64_t)id << 32);
2400         } else if (usb) {
2401             /*
2402              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2403              * in the top 32 bits of the 64-bit LUN
2404              */
2405             unsigned usb_port = atoi(usb->port->path);
2406             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2407             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2408                                    (uint64_t)id << 32);
2409         }
2410     }
2411 
2412     /*
2413      * SLOF probes the USB devices, and if it recognizes that the device is a
2414      * storage device, it changes its name to "storage" instead of "usb-host",
2415      * and additionally adds a child node for the SCSI LUN, so the correct
2416      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2417      */
2418     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2419         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2420         if (usb_host_dev_is_scsi_storage(usbdev)) {
2421             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2422         }
2423     }
2424 
2425     if (phb) {
2426         /* Replace "pci" with "pci@800000020000000" */
2427         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2428     }
2429 
2430     return NULL;
2431 }
2432 
2433 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2434 {
2435     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2436 
2437     return g_strdup(spapr->kvm_type);
2438 }
2439 
2440 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2441 {
2442     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2443 
2444     g_free(spapr->kvm_type);
2445     spapr->kvm_type = g_strdup(value);
2446 }
2447 
2448 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2449 {
2450     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2451 
2452     return spapr->use_hotplug_event_source;
2453 }
2454 
2455 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2456                                             Error **errp)
2457 {
2458     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2459 
2460     spapr->use_hotplug_event_source = value;
2461 }
2462 
2463 static void spapr_machine_initfn(Object *obj)
2464 {
2465     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2466 
2467     spapr->htab_fd = -1;
2468     spapr->use_hotplug_event_source = true;
2469     object_property_add_str(obj, "kvm-type",
2470                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2471     object_property_set_description(obj, "kvm-type",
2472                                     "Specifies the KVM virtualization mode (HV, PR)",
2473                                     NULL);
2474     object_property_add_bool(obj, "modern-hotplug-events",
2475                             spapr_get_modern_hotplug_events,
2476                             spapr_set_modern_hotplug_events,
2477                             NULL);
2478     object_property_set_description(obj, "modern-hotplug-events",
2479                                     "Use dedicated hotplug event mechanism in"
2480                                     " place of standard EPOW events when possible"
2481                                     " (required for memory hot-unplug support)",
2482                                     NULL);
2483 }
2484 
2485 static void spapr_machine_finalizefn(Object *obj)
2486 {
2487     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2488 
2489     g_free(spapr->kvm_type);
2490 }
2491 
2492 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2493 {
2494     cpu_synchronize_state(cs);
2495     ppc_cpu_do_system_reset(cs);
2496 }
2497 
2498 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2499 {
2500     CPUState *cs;
2501 
2502     CPU_FOREACH(cs) {
2503         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2504     }
2505 }
2506 
2507 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2508                            uint32_t node, bool dedicated_hp_event_source,
2509                            Error **errp)
2510 {
2511     sPAPRDRConnector *drc;
2512     sPAPRDRConnectorClass *drck;
2513     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2514     int i, fdt_offset, fdt_size;
2515     void *fdt;
2516     uint64_t addr = addr_start;
2517 
2518     for (i = 0; i < nr_lmbs; i++) {
2519         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2520                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2521         g_assert(drc);
2522 
2523         fdt = create_device_tree(&fdt_size);
2524         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2525                                                 SPAPR_MEMORY_BLOCK_SIZE);
2526 
2527         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2528         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2529         addr += SPAPR_MEMORY_BLOCK_SIZE;
2530         if (!dev->hotplugged) {
2531             /* guests expect coldplugged LMBs to be pre-allocated */
2532             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2533             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2534         }
2535     }
2536     /* send hotplug notification to the
2537      * guest only in case of hotplugged memory
2538      */
2539     if (dev->hotplugged) {
2540         if (dedicated_hp_event_source) {
2541             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2542                     addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2543             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2544             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2545                                                    nr_lmbs,
2546                                                    drck->get_index(drc));
2547         } else {
2548             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2549                                            nr_lmbs);
2550         }
2551     }
2552 }
2553 
2554 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2555                               uint32_t node, Error **errp)
2556 {
2557     Error *local_err = NULL;
2558     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2559     PCDIMMDevice *dimm = PC_DIMM(dev);
2560     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2561     MemoryRegion *mr = ddc->get_memory_region(dimm);
2562     uint64_t align = memory_region_get_alignment(mr);
2563     uint64_t size = memory_region_size(mr);
2564     uint64_t addr;
2565     char *mem_dev;
2566 
2567     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2568         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2569                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2570         goto out;
2571     }
2572 
2573     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2574     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2575         error_setg(&local_err, "Memory backend has bad page size. "
2576                    "Use 'memory-backend-file' with correct mem-path.");
2577         goto out;
2578     }
2579 
2580     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2581     if (local_err) {
2582         goto out;
2583     }
2584 
2585     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2586     if (local_err) {
2587         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2588         goto out;
2589     }
2590 
2591     spapr_add_lmbs(dev, addr, size, node,
2592                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2593                    &error_abort);
2594 
2595 out:
2596     error_propagate(errp, local_err);
2597 }
2598 
2599 typedef struct sPAPRDIMMState {
2600     uint32_t nr_lmbs;
2601 } sPAPRDIMMState;
2602 
2603 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2604 {
2605     sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2606     HotplugHandler *hotplug_ctrl;
2607 
2608     if (--ds->nr_lmbs) {
2609         return;
2610     }
2611 
2612     g_free(ds);
2613 
2614     /*
2615      * Now that all the LMBs have been removed by the guest, call the
2616      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2617      */
2618     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2619     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2620 }
2621 
2622 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2623                            Error **errp)
2624 {
2625     sPAPRDRConnector *drc;
2626     sPAPRDRConnectorClass *drck;
2627     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2628     int i;
2629     sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2630     uint64_t addr = addr_start;
2631 
2632     ds->nr_lmbs = nr_lmbs;
2633     for (i = 0; i < nr_lmbs; i++) {
2634         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2635                 addr / SPAPR_MEMORY_BLOCK_SIZE);
2636         g_assert(drc);
2637 
2638         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2639         drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2640         addr += SPAPR_MEMORY_BLOCK_SIZE;
2641     }
2642 
2643     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2644                                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2645     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2646     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2647                                               nr_lmbs,
2648                                               drck->get_index(drc));
2649 }
2650 
2651 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2652                                 Error **errp)
2653 {
2654     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2655     PCDIMMDevice *dimm = PC_DIMM(dev);
2656     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2657     MemoryRegion *mr = ddc->get_memory_region(dimm);
2658 
2659     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2660     object_unparent(OBJECT(dev));
2661 }
2662 
2663 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2664                                         DeviceState *dev, Error **errp)
2665 {
2666     Error *local_err = NULL;
2667     PCDIMMDevice *dimm = PC_DIMM(dev);
2668     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2669     MemoryRegion *mr = ddc->get_memory_region(dimm);
2670     uint64_t size = memory_region_size(mr);
2671     uint64_t addr;
2672 
2673     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2674     if (local_err) {
2675         goto out;
2676     }
2677 
2678     spapr_del_lmbs(dev, addr, size, &error_abort);
2679 out:
2680     error_propagate(errp, local_err);
2681 }
2682 
2683 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2684                                     sPAPRMachineState *spapr)
2685 {
2686     PowerPCCPU *cpu = POWERPC_CPU(cs);
2687     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2688     int id = ppc_get_vcpu_dt_id(cpu);
2689     void *fdt;
2690     int offset, fdt_size;
2691     char *nodename;
2692 
2693     fdt = create_device_tree(&fdt_size);
2694     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2695     offset = fdt_add_subnode(fdt, 0, nodename);
2696 
2697     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2698     g_free(nodename);
2699 
2700     *fdt_offset = offset;
2701     return fdt;
2702 }
2703 
2704 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2705                               Error **errp)
2706 {
2707     MachineState *ms = MACHINE(qdev_get_machine());
2708     CPUCore *cc = CPU_CORE(dev);
2709     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2710 
2711     core_slot->cpu = NULL;
2712     object_unparent(OBJECT(dev));
2713 }
2714 
2715 static void spapr_core_release(DeviceState *dev, void *opaque)
2716 {
2717     HotplugHandler *hotplug_ctrl;
2718 
2719     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2720     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2721 }
2722 
2723 static
2724 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2725                                Error **errp)
2726 {
2727     int index;
2728     sPAPRDRConnector *drc;
2729     sPAPRDRConnectorClass *drck;
2730     Error *local_err = NULL;
2731     CPUCore *cc = CPU_CORE(dev);
2732     int smt = kvmppc_smt_threads();
2733 
2734     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2735         error_setg(errp, "Unable to find CPU core with core-id: %d",
2736                    cc->core_id);
2737         return;
2738     }
2739     if (index == 0) {
2740         error_setg(errp, "Boot CPU core may not be unplugged");
2741         return;
2742     }
2743 
2744     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2745     g_assert(drc);
2746 
2747     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2748     drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2749     if (local_err) {
2750         error_propagate(errp, local_err);
2751         return;
2752     }
2753 
2754     spapr_hotplug_req_remove_by_index(drc);
2755 }
2756 
2757 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2758                             Error **errp)
2759 {
2760     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2761     MachineClass *mc = MACHINE_GET_CLASS(spapr);
2762     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2763     CPUCore *cc = CPU_CORE(dev);
2764     CPUState *cs = CPU(core->threads);
2765     sPAPRDRConnector *drc;
2766     Error *local_err = NULL;
2767     void *fdt = NULL;
2768     int fdt_offset = 0;
2769     int smt = kvmppc_smt_threads();
2770     CPUArchId *core_slot;
2771     int index;
2772 
2773     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2774     if (!core_slot) {
2775         error_setg(errp, "Unable to find CPU core with core-id: %d",
2776                    cc->core_id);
2777         return;
2778     }
2779     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2780 
2781     g_assert(drc || !mc->has_hotpluggable_cpus);
2782 
2783     /*
2784      * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2785      * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2786      */
2787     if (dev->hotplugged) {
2788         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2789     }
2790 
2791     if (drc) {
2792         sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2793         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2794         if (local_err) {
2795             g_free(fdt);
2796             error_propagate(errp, local_err);
2797             return;
2798         }
2799     }
2800 
2801     if (dev->hotplugged) {
2802         /*
2803          * Send hotplug notification interrupt to the guest only in case
2804          * of hotplugged CPUs.
2805          */
2806         spapr_hotplug_req_add_by_index(drc);
2807     } else {
2808         /*
2809          * Set the right DRC states for cold plugged CPU.
2810          */
2811         if (drc) {
2812             sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2813             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2814             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2815         }
2816     }
2817     core_slot->cpu = OBJECT(dev);
2818 }
2819 
2820 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2821                                 Error **errp)
2822 {
2823     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2824     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2825     Error *local_err = NULL;
2826     CPUCore *cc = CPU_CORE(dev);
2827     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2828     const char *type = object_get_typename(OBJECT(dev));
2829     CPUArchId *core_slot;
2830     int index;
2831 
2832     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2833         error_setg(&local_err, "CPU hotplug not supported for this machine");
2834         goto out;
2835     }
2836 
2837     if (strcmp(base_core_type, type)) {
2838         error_setg(&local_err, "CPU core type should be %s", base_core_type);
2839         goto out;
2840     }
2841 
2842     if (cc->core_id % smp_threads) {
2843         error_setg(&local_err, "invalid core id %d", cc->core_id);
2844         goto out;
2845     }
2846 
2847     if (cc->nr_threads != smp_threads) {
2848         error_setg(errp, "invalid nr-threads %d, must be %d",
2849                    cc->nr_threads, smp_threads);
2850         return;
2851     }
2852 
2853     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2854     if (!core_slot) {
2855         error_setg(&local_err, "core id %d out of range", cc->core_id);
2856         goto out;
2857     }
2858 
2859     if (core_slot->cpu) {
2860         error_setg(&local_err, "core %d already populated", cc->core_id);
2861         goto out;
2862     }
2863 
2864 out:
2865     g_free(base_core_type);
2866     error_propagate(errp, local_err);
2867 }
2868 
2869 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2870                                       DeviceState *dev, Error **errp)
2871 {
2872     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2873 
2874     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2875         int node;
2876 
2877         if (!smc->dr_lmb_enabled) {
2878             error_setg(errp, "Memory hotplug not supported for this machine");
2879             return;
2880         }
2881         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2882         if (*errp) {
2883             return;
2884         }
2885         if (node < 0 || node >= MAX_NODES) {
2886             error_setg(errp, "Invaild node %d", node);
2887             return;
2888         }
2889 
2890         /*
2891          * Currently PowerPC kernel doesn't allow hot-adding memory to
2892          * memory-less node, but instead will silently add the memory
2893          * to the first node that has some memory. This causes two
2894          * unexpected behaviours for the user.
2895          *
2896          * - Memory gets hotplugged to a different node than what the user
2897          *   specified.
2898          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2899          *   to memory-less node, a reboot will set things accordingly
2900          *   and the previously hotplugged memory now ends in the right node.
2901          *   This appears as if some memory moved from one node to another.
2902          *
2903          * So until kernel starts supporting memory hotplug to memory-less
2904          * nodes, just prevent such attempts upfront in QEMU.
2905          */
2906         if (nb_numa_nodes && !numa_info[node].node_mem) {
2907             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2908                        node);
2909             return;
2910         }
2911 
2912         spapr_memory_plug(hotplug_dev, dev, node, errp);
2913     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2914         spapr_core_plug(hotplug_dev, dev, errp);
2915     }
2916 }
2917 
2918 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2919                                       DeviceState *dev, Error **errp)
2920 {
2921     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2922     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2923 
2924     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2925         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2926             spapr_memory_unplug(hotplug_dev, dev, errp);
2927         } else {
2928             error_setg(errp, "Memory hot unplug not supported for this guest");
2929         }
2930     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2931         if (!mc->has_hotpluggable_cpus) {
2932             error_setg(errp, "CPU hot unplug not supported on this machine");
2933             return;
2934         }
2935         spapr_core_unplug(hotplug_dev, dev, errp);
2936     }
2937 }
2938 
2939 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2940                                                 DeviceState *dev, Error **errp)
2941 {
2942     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2943     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2944 
2945     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2946         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2947             spapr_memory_unplug_request(hotplug_dev, dev, errp);
2948         } else {
2949             /* NOTE: this means there is a window after guest reset, prior to
2950              * CAS negotiation, where unplug requests will fail due to the
2951              * capability not being detected yet. This is a bit different than
2952              * the case with PCI unplug, where the events will be queued and
2953              * eventually handled by the guest after boot
2954              */
2955             error_setg(errp, "Memory hot unplug not supported for this guest");
2956         }
2957     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2958         if (!mc->has_hotpluggable_cpus) {
2959             error_setg(errp, "CPU hot unplug not supported on this machine");
2960             return;
2961         }
2962         spapr_core_unplug_request(hotplug_dev, dev, errp);
2963     }
2964 }
2965 
2966 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2967                                           DeviceState *dev, Error **errp)
2968 {
2969     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2970         spapr_core_pre_plug(hotplug_dev, dev, errp);
2971     }
2972 }
2973 
2974 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2975                                                  DeviceState *dev)
2976 {
2977     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2978         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2979         return HOTPLUG_HANDLER(machine);
2980     }
2981     return NULL;
2982 }
2983 
2984 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2985 {
2986     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2987      * socket means much for the paravirtualized PAPR platform) */
2988     return cpu_index / smp_threads / smp_cores;
2989 }
2990 
2991 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2992 {
2993     int i;
2994     int spapr_max_cores = max_cpus / smp_threads;
2995     MachineClass *mc = MACHINE_GET_CLASS(machine);
2996 
2997     if (!mc->has_hotpluggable_cpus) {
2998         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2999     }
3000     if (machine->possible_cpus) {
3001         assert(machine->possible_cpus->len == spapr_max_cores);
3002         return machine->possible_cpus;
3003     }
3004 
3005     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3006                              sizeof(CPUArchId) * spapr_max_cores);
3007     machine->possible_cpus->len = spapr_max_cores;
3008     for (i = 0; i < machine->possible_cpus->len; i++) {
3009         int core_id = i * smp_threads;
3010 
3011         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3012         machine->possible_cpus->cpus[i].arch_id = core_id;
3013         machine->possible_cpus->cpus[i].props.has_core_id = true;
3014         machine->possible_cpus->cpus[i].props.core_id = core_id;
3015         /* TODO: add 'has_node/node' here to describe
3016            to which node core belongs */
3017     }
3018     return machine->possible_cpus;
3019 }
3020 
3021 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3022                                 uint64_t *buid, hwaddr *pio,
3023                                 hwaddr *mmio32, hwaddr *mmio64,
3024                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3025 {
3026     /*
3027      * New-style PHB window placement.
3028      *
3029      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3030      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3031      * windows.
3032      *
3033      * Some guest kernels can't work with MMIO windows above 1<<46
3034      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3035      *
3036      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3037      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3038      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3039      * 1TiB 64-bit MMIO windows for each PHB.
3040      */
3041     const uint64_t base_buid = 0x800000020000000ULL;
3042 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3043                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3044     int i;
3045 
3046     /* Sanity check natural alignments */
3047     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3048     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3049     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3050     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3051     /* Sanity check bounds */
3052     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3053                       SPAPR_PCI_MEM32_WIN_SIZE);
3054     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3055                       SPAPR_PCI_MEM64_WIN_SIZE);
3056 
3057     if (index >= SPAPR_MAX_PHBS) {
3058         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3059                    SPAPR_MAX_PHBS - 1);
3060         return;
3061     }
3062 
3063     *buid = base_buid + index;
3064     for (i = 0; i < n_dma; ++i) {
3065         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3066     }
3067 
3068     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3069     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3070     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3071 }
3072 
3073 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3074 {
3075     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3076 
3077     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3078 }
3079 
3080 static void spapr_ics_resend(XICSFabric *dev)
3081 {
3082     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3083 
3084     ics_resend(spapr->ics);
3085 }
3086 
3087 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3088 {
3089     PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3090 
3091     return cpu ? ICP(cpu->intc) : NULL;
3092 }
3093 
3094 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3095                                  Monitor *mon)
3096 {
3097     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3098     CPUState *cs;
3099 
3100     CPU_FOREACH(cs) {
3101         PowerPCCPU *cpu = POWERPC_CPU(cs);
3102 
3103         icp_pic_print_info(ICP(cpu->intc), mon);
3104     }
3105 
3106     ics_pic_print_info(spapr->ics, mon);
3107 }
3108 
3109 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3110 {
3111     MachineClass *mc = MACHINE_CLASS(oc);
3112     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3113     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3114     NMIClass *nc = NMI_CLASS(oc);
3115     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3116     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3117     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3118     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3119 
3120     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3121 
3122     /*
3123      * We set up the default / latest behaviour here.  The class_init
3124      * functions for the specific versioned machine types can override
3125      * these details for backwards compatibility
3126      */
3127     mc->init = ppc_spapr_init;
3128     mc->reset = ppc_spapr_reset;
3129     mc->block_default_type = IF_SCSI;
3130     mc->max_cpus = 1024;
3131     mc->no_parallel = 1;
3132     mc->default_boot_order = "";
3133     mc->default_ram_size = 512 * M_BYTE;
3134     mc->kvm_type = spapr_kvm_type;
3135     mc->has_dynamic_sysbus = true;
3136     mc->pci_allow_0_address = true;
3137     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3138     hc->pre_plug = spapr_machine_device_pre_plug;
3139     hc->plug = spapr_machine_device_plug;
3140     hc->unplug = spapr_machine_device_unplug;
3141     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3142     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3143     hc->unplug_request = spapr_machine_device_unplug_request;
3144 
3145     smc->dr_lmb_enabled = true;
3146     smc->tcg_default_cpu = "POWER8";
3147     mc->has_hotpluggable_cpus = true;
3148     fwc->get_dev_path = spapr_get_fw_dev_path;
3149     nc->nmi_monitor_handler = spapr_nmi;
3150     smc->phb_placement = spapr_phb_placement;
3151     vhc->hypercall = emulate_spapr_hypercall;
3152     vhc->hpt_mask = spapr_hpt_mask;
3153     vhc->map_hptes = spapr_map_hptes;
3154     vhc->unmap_hptes = spapr_unmap_hptes;
3155     vhc->store_hpte = spapr_store_hpte;
3156     vhc->get_patbe = spapr_get_patbe;
3157     xic->ics_get = spapr_ics_get;
3158     xic->ics_resend = spapr_ics_resend;
3159     xic->icp_get = spapr_icp_get;
3160     ispc->print_info = spapr_pic_print_info;
3161     /* Force NUMA node memory size to be a multiple of
3162      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3163      * in which LMBs are represented and hot-added
3164      */
3165     mc->numa_mem_align_shift = 28;
3166 }
3167 
3168 static const TypeInfo spapr_machine_info = {
3169     .name          = TYPE_SPAPR_MACHINE,
3170     .parent        = TYPE_MACHINE,
3171     .abstract      = true,
3172     .instance_size = sizeof(sPAPRMachineState),
3173     .instance_init = spapr_machine_initfn,
3174     .instance_finalize = spapr_machine_finalizefn,
3175     .class_size    = sizeof(sPAPRMachineClass),
3176     .class_init    = spapr_machine_class_init,
3177     .interfaces = (InterfaceInfo[]) {
3178         { TYPE_FW_PATH_PROVIDER },
3179         { TYPE_NMI },
3180         { TYPE_HOTPLUG_HANDLER },
3181         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3182         { TYPE_XICS_FABRIC },
3183         { TYPE_INTERRUPT_STATS_PROVIDER },
3184         { }
3185     },
3186 };
3187 
3188 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3189     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3190                                                     void *data)      \
3191     {                                                                \
3192         MachineClass *mc = MACHINE_CLASS(oc);                        \
3193         spapr_machine_##suffix##_class_options(mc);                  \
3194         if (latest) {                                                \
3195             mc->alias = "pseries";                                   \
3196             mc->is_default = 1;                                      \
3197         }                                                            \
3198     }                                                                \
3199     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3200     {                                                                \
3201         MachineState *machine = MACHINE(obj);                        \
3202         spapr_machine_##suffix##_instance_options(machine);          \
3203     }                                                                \
3204     static const TypeInfo spapr_machine_##suffix##_info = {          \
3205         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3206         .parent = TYPE_SPAPR_MACHINE,                                \
3207         .class_init = spapr_machine_##suffix##_class_init,           \
3208         .instance_init = spapr_machine_##suffix##_instance_init,     \
3209     };                                                               \
3210     static void spapr_machine_register_##suffix(void)                \
3211     {                                                                \
3212         type_register(&spapr_machine_##suffix##_info);               \
3213     }                                                                \
3214     type_init(spapr_machine_register_##suffix)
3215 
3216 /*
3217  * pseries-2.10
3218  */
3219 static void spapr_machine_2_10_instance_options(MachineState *machine)
3220 {
3221 }
3222 
3223 static void spapr_machine_2_10_class_options(MachineClass *mc)
3224 {
3225     /* Defaults for the latest behaviour inherited from the base class */
3226 }
3227 
3228 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3229 
3230 /*
3231  * pseries-2.9
3232  */
3233 #define SPAPR_COMPAT_2_9                                               \
3234     HW_COMPAT_2_9
3235 
3236 static void spapr_machine_2_9_instance_options(MachineState *machine)
3237 {
3238     spapr_machine_2_10_instance_options(machine);
3239 }
3240 
3241 static void spapr_machine_2_9_class_options(MachineClass *mc)
3242 {
3243     spapr_machine_2_10_class_options(mc);
3244     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3245 }
3246 
3247 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3248 
3249 /*
3250  * pseries-2.8
3251  */
3252 #define SPAPR_COMPAT_2_8                                        \
3253     HW_COMPAT_2_8                                               \
3254     {                                                           \
3255         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3256         .property = "pcie-extended-configuration-space",        \
3257         .value    = "off",                                      \
3258     },
3259 
3260 static void spapr_machine_2_8_instance_options(MachineState *machine)
3261 {
3262     spapr_machine_2_9_instance_options(machine);
3263 }
3264 
3265 static void spapr_machine_2_8_class_options(MachineClass *mc)
3266 {
3267     spapr_machine_2_9_class_options(mc);
3268     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3269     mc->numa_mem_align_shift = 23;
3270 }
3271 
3272 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3273 
3274 /*
3275  * pseries-2.7
3276  */
3277 #define SPAPR_COMPAT_2_7                            \
3278     HW_COMPAT_2_7                                   \
3279     {                                               \
3280         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3281         .property = "mem_win_size",                 \
3282         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3283     },                                              \
3284     {                                               \
3285         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3286         .property = "mem64_win_size",               \
3287         .value    = "0",                            \
3288     },                                              \
3289     {                                               \
3290         .driver = TYPE_POWERPC_CPU,                 \
3291         .property = "pre-2.8-migration",            \
3292         .value    = "on",                           \
3293     },                                              \
3294     {                                               \
3295         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3296         .property = "pre-2.8-migration",            \
3297         .value    = "on",                           \
3298     },
3299 
3300 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3301                               uint64_t *buid, hwaddr *pio,
3302                               hwaddr *mmio32, hwaddr *mmio64,
3303                               unsigned n_dma, uint32_t *liobns, Error **errp)
3304 {
3305     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3306     const uint64_t base_buid = 0x800000020000000ULL;
3307     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3308     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3309     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3310     const uint32_t max_index = 255;
3311     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3312 
3313     uint64_t ram_top = MACHINE(spapr)->ram_size;
3314     hwaddr phb0_base, phb_base;
3315     int i;
3316 
3317     /* Do we have hotpluggable memory? */
3318     if (MACHINE(spapr)->maxram_size > ram_top) {
3319         /* Can't just use maxram_size, because there may be an
3320          * alignment gap between normal and hotpluggable memory
3321          * regions */
3322         ram_top = spapr->hotplug_memory.base +
3323             memory_region_size(&spapr->hotplug_memory.mr);
3324     }
3325 
3326     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3327 
3328     if (index > max_index) {
3329         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3330                    max_index);
3331         return;
3332     }
3333 
3334     *buid = base_buid + index;
3335     for (i = 0; i < n_dma; ++i) {
3336         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3337     }
3338 
3339     phb_base = phb0_base + index * phb_spacing;
3340     *pio = phb_base + pio_offset;
3341     *mmio32 = phb_base + mmio_offset;
3342     /*
3343      * We don't set the 64-bit MMIO window, relying on the PHB's
3344      * fallback behaviour of automatically splitting a large "32-bit"
3345      * window into contiguous 32-bit and 64-bit windows
3346      */
3347 }
3348 
3349 static void spapr_machine_2_7_instance_options(MachineState *machine)
3350 {
3351     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3352 
3353     spapr_machine_2_8_instance_options(machine);
3354     spapr->use_hotplug_event_source = false;
3355 }
3356 
3357 static void spapr_machine_2_7_class_options(MachineClass *mc)
3358 {
3359     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3360 
3361     spapr_machine_2_8_class_options(mc);
3362     smc->tcg_default_cpu = "POWER7";
3363     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3364     smc->phb_placement = phb_placement_2_7;
3365 }
3366 
3367 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3368 
3369 /*
3370  * pseries-2.6
3371  */
3372 #define SPAPR_COMPAT_2_6 \
3373     HW_COMPAT_2_6 \
3374     { \
3375         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3376         .property = "ddw",\
3377         .value    = stringify(off),\
3378     },
3379 
3380 static void spapr_machine_2_6_instance_options(MachineState *machine)
3381 {
3382     spapr_machine_2_7_instance_options(machine);
3383 }
3384 
3385 static void spapr_machine_2_6_class_options(MachineClass *mc)
3386 {
3387     spapr_machine_2_7_class_options(mc);
3388     mc->has_hotpluggable_cpus = false;
3389     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3390 }
3391 
3392 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3393 
3394 /*
3395  * pseries-2.5
3396  */
3397 #define SPAPR_COMPAT_2_5 \
3398     HW_COMPAT_2_5 \
3399     { \
3400         .driver   = "spapr-vlan", \
3401         .property = "use-rx-buffer-pools", \
3402         .value    = "off", \
3403     },
3404 
3405 static void spapr_machine_2_5_instance_options(MachineState *machine)
3406 {
3407     spapr_machine_2_6_instance_options(machine);
3408 }
3409 
3410 static void spapr_machine_2_5_class_options(MachineClass *mc)
3411 {
3412     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3413 
3414     spapr_machine_2_6_class_options(mc);
3415     smc->use_ohci_by_default = true;
3416     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3417 }
3418 
3419 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3420 
3421 /*
3422  * pseries-2.4
3423  */
3424 #define SPAPR_COMPAT_2_4 \
3425         HW_COMPAT_2_4
3426 
3427 static void spapr_machine_2_4_instance_options(MachineState *machine)
3428 {
3429     spapr_machine_2_5_instance_options(machine);
3430 }
3431 
3432 static void spapr_machine_2_4_class_options(MachineClass *mc)
3433 {
3434     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3435 
3436     spapr_machine_2_5_class_options(mc);
3437     smc->dr_lmb_enabled = false;
3438     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3439 }
3440 
3441 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3442 
3443 /*
3444  * pseries-2.3
3445  */
3446 #define SPAPR_COMPAT_2_3 \
3447         HW_COMPAT_2_3 \
3448         {\
3449             .driver   = "spapr-pci-host-bridge",\
3450             .property = "dynamic-reconfiguration",\
3451             .value    = "off",\
3452         },
3453 
3454 static void spapr_machine_2_3_instance_options(MachineState *machine)
3455 {
3456     spapr_machine_2_4_instance_options(machine);
3457     savevm_skip_section_footers();
3458     global_state_set_optional();
3459     savevm_skip_configuration();
3460 }
3461 
3462 static void spapr_machine_2_3_class_options(MachineClass *mc)
3463 {
3464     spapr_machine_2_4_class_options(mc);
3465     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3466 }
3467 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3468 
3469 /*
3470  * pseries-2.2
3471  */
3472 
3473 #define SPAPR_COMPAT_2_2 \
3474         HW_COMPAT_2_2 \
3475         {\
3476             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3477             .property = "mem_win_size",\
3478             .value    = "0x20000000",\
3479         },
3480 
3481 static void spapr_machine_2_2_instance_options(MachineState *machine)
3482 {
3483     spapr_machine_2_3_instance_options(machine);
3484     machine->suppress_vmdesc = true;
3485 }
3486 
3487 static void spapr_machine_2_2_class_options(MachineClass *mc)
3488 {
3489     spapr_machine_2_3_class_options(mc);
3490     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3491 }
3492 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3493 
3494 /*
3495  * pseries-2.1
3496  */
3497 #define SPAPR_COMPAT_2_1 \
3498         HW_COMPAT_2_1
3499 
3500 static void spapr_machine_2_1_instance_options(MachineState *machine)
3501 {
3502     spapr_machine_2_2_instance_options(machine);
3503 }
3504 
3505 static void spapr_machine_2_1_class_options(MachineClass *mc)
3506 {
3507     spapr_machine_2_2_class_options(mc);
3508     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3509 }
3510 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3511 
3512 static void spapr_machine_register_types(void)
3513 {
3514     type_register_static(&spapr_machine_info);
3515 }
3516 
3517 type_init(spapr_machine_register_types)
3518