1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/migration.h" 42 #include "mmu-hash64.h" 43 #include "mmu-book3s-v3.h" 44 #include "qom/cpu.h" 45 46 #include "hw/boards.h" 47 #include "hw/ppc/ppc.h" 48 #include "hw/loader.h" 49 50 #include "hw/ppc/fdt.h" 51 #include "hw/ppc/spapr.h" 52 #include "hw/ppc/spapr_vio.h" 53 #include "hw/pci-host/spapr.h" 54 #include "hw/ppc/xics.h" 55 #include "hw/pci/msi.h" 56 57 #include "hw/pci/pci.h" 58 #include "hw/scsi/scsi.h" 59 #include "hw/virtio/virtio-scsi.h" 60 61 #include "exec/address-spaces.h" 62 #include "hw/usb.h" 63 #include "qemu/config-file.h" 64 #include "qemu/error-report.h" 65 #include "trace.h" 66 #include "hw/nmi.h" 67 #include "hw/intc/intc.h" 68 69 #include "hw/compat.h" 70 #include "qemu/cutils.h" 71 #include "hw/ppc/spapr_cpu_core.h" 72 #include "qmp-commands.h" 73 74 #include <libfdt.h> 75 76 /* SLOF memory layout: 77 * 78 * SLOF raw image loaded at 0, copies its romfs right below the flat 79 * device-tree, then position SLOF itself 31M below that 80 * 81 * So we set FW_OVERHEAD to 40MB which should account for all of that 82 * and more 83 * 84 * We load our kernel at 4M, leaving space for SLOF initial image 85 */ 86 #define FDT_MAX_SIZE 0x100000 87 #define RTAS_MAX_SIZE 0x10000 88 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 89 #define FW_MAX_SIZE 0x400000 90 #define FW_FILE_NAME "slof.bin" 91 #define FW_OVERHEAD 0x2800000 92 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 93 94 #define MIN_RMA_SLOF 128UL 95 96 #define PHANDLE_XICP 0x00001111 97 98 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 99 100 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 101 const char *type_ics, 102 int nr_irqs, Error **errp) 103 { 104 Error *err = NULL, *local_err = NULL; 105 Object *obj; 106 107 obj = object_new(type_ics); 108 object_property_add_child(OBJECT(spapr), "ics", obj, NULL); 109 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort); 110 object_property_set_int(obj, nr_irqs, "nr-irqs", &err); 111 object_property_set_bool(obj, true, "realized", &local_err); 112 error_propagate(&err, local_err); 113 if (err) { 114 error_propagate(errp, err); 115 return NULL; 116 } 117 118 return ICS_SIMPLE(obj); 119 } 120 121 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 122 { 123 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 124 125 if (kvm_enabled()) { 126 Error *err = NULL; 127 128 if (machine_kernel_irqchip_allowed(machine) && 129 !xics_kvm_init(spapr, errp)) { 130 spapr->icp_type = TYPE_KVM_ICP; 131 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err); 132 } 133 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 134 error_reportf_err(err, 135 "kernel_irqchip requested but unavailable: "); 136 } else { 137 error_free(err); 138 } 139 } 140 141 if (!spapr->ics) { 142 xics_spapr_init(spapr, errp); 143 spapr->icp_type = TYPE_ICP; 144 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 145 } 146 } 147 148 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 149 int smt_threads) 150 { 151 int i, ret = 0; 152 uint32_t servers_prop[smt_threads]; 153 uint32_t gservers_prop[smt_threads * 2]; 154 int index = ppc_get_vcpu_dt_id(cpu); 155 156 if (cpu->compat_pvr) { 157 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 158 if (ret < 0) { 159 return ret; 160 } 161 } 162 163 /* Build interrupt servers and gservers properties */ 164 for (i = 0; i < smt_threads; i++) { 165 servers_prop[i] = cpu_to_be32(index + i); 166 /* Hack, direct the group queues back to cpu 0 */ 167 gservers_prop[i*2] = cpu_to_be32(index + i); 168 gservers_prop[i*2 + 1] = 0; 169 } 170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 171 servers_prop, sizeof(servers_prop)); 172 if (ret < 0) { 173 return ret; 174 } 175 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 176 gservers_prop, sizeof(gservers_prop)); 177 178 return ret; 179 } 180 181 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs) 182 { 183 int ret = 0; 184 PowerPCCPU *cpu = POWERPC_CPU(cs); 185 int index = ppc_get_vcpu_dt_id(cpu); 186 uint32_t associativity[] = {cpu_to_be32(0x5), 187 cpu_to_be32(0x0), 188 cpu_to_be32(0x0), 189 cpu_to_be32(0x0), 190 cpu_to_be32(cs->numa_node), 191 cpu_to_be32(index)}; 192 193 /* Advertise NUMA via ibm,associativity */ 194 if (nb_numa_nodes > 1) { 195 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, 196 sizeof(associativity)); 197 } 198 199 return ret; 200 } 201 202 /* Populate the "ibm,pa-features" property */ 203 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset, 204 bool legacy_guest) 205 { 206 uint8_t pa_features_206[] = { 6, 0, 207 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 208 uint8_t pa_features_207[] = { 24, 0, 209 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 210 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 211 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 212 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 213 uint8_t pa_features_300[] = { 66, 0, 214 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 215 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 217 /* 6: DS207 */ 218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 219 /* 16: Vector */ 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 221 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 222 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */ 223 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 224 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 225 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 226 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 227 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 229 /* 42: PM, 44: PC RA, 46: SC vec'd */ 230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 231 /* 48: SIMD, 50: QP BFP, 52: String */ 232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 233 /* 54: DecFP, 56: DecI, 58: SHA */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 235 /* 60: NM atomic, 62: RNG */ 236 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 237 }; 238 uint8_t *pa_features; 239 size_t pa_size; 240 241 switch (POWERPC_MMU_VER(env->mmu_model)) { 242 case POWERPC_MMU_VER_2_06: 243 pa_features = pa_features_206; 244 pa_size = sizeof(pa_features_206); 245 break; 246 case POWERPC_MMU_VER_2_07: 247 pa_features = pa_features_207; 248 pa_size = sizeof(pa_features_207); 249 break; 250 case POWERPC_MMU_VER_3_00: 251 pa_features = pa_features_300; 252 pa_size = sizeof(pa_features_300); 253 break; 254 default: 255 return; 256 } 257 258 if (env->ci_large_pages) { 259 /* 260 * Note: we keep CI large pages off by default because a 64K capable 261 * guest provisioned with large pages might otherwise try to map a qemu 262 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 263 * even if that qemu runs on a 4k host. 264 * We dd this bit back here if we are confident this is not an issue 265 */ 266 pa_features[3] |= 0x20; 267 } 268 if (kvmppc_has_cap_htm() && pa_size > 24) { 269 pa_features[24] |= 0x80; /* Transactional memory support */ 270 } 271 if (legacy_guest && pa_size > 40) { 272 /* Workaround for broken kernels that attempt (guest) radix 273 * mode when they can't handle it, if they see the radix bit set 274 * in pa-features. So hide it from them. */ 275 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 276 } 277 278 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 279 } 280 281 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 282 { 283 int ret = 0, offset, cpus_offset; 284 CPUState *cs; 285 char cpu_model[32]; 286 int smt = kvmppc_smt_threads(); 287 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 288 289 CPU_FOREACH(cs) { 290 PowerPCCPU *cpu = POWERPC_CPU(cs); 291 CPUPPCState *env = &cpu->env; 292 DeviceClass *dc = DEVICE_GET_CLASS(cs); 293 int index = ppc_get_vcpu_dt_id(cpu); 294 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 295 296 if ((index % smt) != 0) { 297 continue; 298 } 299 300 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 301 302 cpus_offset = fdt_path_offset(fdt, "/cpus"); 303 if (cpus_offset < 0) { 304 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 305 "cpus"); 306 if (cpus_offset < 0) { 307 return cpus_offset; 308 } 309 } 310 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 311 if (offset < 0) { 312 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 313 if (offset < 0) { 314 return offset; 315 } 316 } 317 318 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 319 pft_size_prop, sizeof(pft_size_prop)); 320 if (ret < 0) { 321 return ret; 322 } 323 324 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs); 325 if (ret < 0) { 326 return ret; 327 } 328 329 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 330 if (ret < 0) { 331 return ret; 332 } 333 334 spapr_populate_pa_features(env, fdt, offset, 335 spapr->cas_legacy_guest_workaround); 336 } 337 return ret; 338 } 339 340 static hwaddr spapr_node0_size(void) 341 { 342 MachineState *machine = MACHINE(qdev_get_machine()); 343 344 if (nb_numa_nodes) { 345 int i; 346 for (i = 0; i < nb_numa_nodes; ++i) { 347 if (numa_info[i].node_mem) { 348 return MIN(pow2floor(numa_info[i].node_mem), 349 machine->ram_size); 350 } 351 } 352 } 353 return machine->ram_size; 354 } 355 356 static void add_str(GString *s, const gchar *s1) 357 { 358 g_string_append_len(s, s1, strlen(s1) + 1); 359 } 360 361 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 362 hwaddr size) 363 { 364 uint32_t associativity[] = { 365 cpu_to_be32(0x4), /* length */ 366 cpu_to_be32(0x0), cpu_to_be32(0x0), 367 cpu_to_be32(0x0), cpu_to_be32(nodeid) 368 }; 369 char mem_name[32]; 370 uint64_t mem_reg_property[2]; 371 int off; 372 373 mem_reg_property[0] = cpu_to_be64(start); 374 mem_reg_property[1] = cpu_to_be64(size); 375 376 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 377 off = fdt_add_subnode(fdt, 0, mem_name); 378 _FDT(off); 379 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 380 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 381 sizeof(mem_reg_property)))); 382 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 383 sizeof(associativity)))); 384 return off; 385 } 386 387 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 388 { 389 MachineState *machine = MACHINE(spapr); 390 hwaddr mem_start, node_size; 391 int i, nb_nodes = nb_numa_nodes; 392 NodeInfo *nodes = numa_info; 393 NodeInfo ramnode; 394 395 /* No NUMA nodes, assume there is just one node with whole RAM */ 396 if (!nb_numa_nodes) { 397 nb_nodes = 1; 398 ramnode.node_mem = machine->ram_size; 399 nodes = &ramnode; 400 } 401 402 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 403 if (!nodes[i].node_mem) { 404 continue; 405 } 406 if (mem_start >= machine->ram_size) { 407 node_size = 0; 408 } else { 409 node_size = nodes[i].node_mem; 410 if (node_size > machine->ram_size - mem_start) { 411 node_size = machine->ram_size - mem_start; 412 } 413 } 414 if (!mem_start) { 415 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 416 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 417 mem_start += spapr->rma_size; 418 node_size -= spapr->rma_size; 419 } 420 for ( ; node_size; ) { 421 hwaddr sizetmp = pow2floor(node_size); 422 423 /* mem_start != 0 here */ 424 if (ctzl(mem_start) < ctzl(sizetmp)) { 425 sizetmp = 1ULL << ctzl(mem_start); 426 } 427 428 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 429 node_size -= sizetmp; 430 mem_start += sizetmp; 431 } 432 } 433 434 return 0; 435 } 436 437 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 438 sPAPRMachineState *spapr) 439 { 440 PowerPCCPU *cpu = POWERPC_CPU(cs); 441 CPUPPCState *env = &cpu->env; 442 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 443 int index = ppc_get_vcpu_dt_id(cpu); 444 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 445 0xffffffff, 0xffffffff}; 446 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 447 : SPAPR_TIMEBASE_FREQ; 448 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 449 uint32_t page_sizes_prop[64]; 450 size_t page_sizes_prop_size; 451 uint32_t vcpus_per_socket = smp_threads * smp_cores; 452 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 453 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 454 sPAPRDRConnector *drc; 455 sPAPRDRConnectorClass *drck; 456 int drc_index; 457 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 458 int i; 459 460 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index); 461 if (drc) { 462 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 463 drc_index = drck->get_index(drc); 464 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 465 } 466 467 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 468 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 469 470 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 471 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 472 env->dcache_line_size))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 476 env->icache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 478 env->icache_line_size))); 479 480 if (pcc->l1_dcache_size) { 481 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 482 pcc->l1_dcache_size))); 483 } else { 484 error_report("Warning: Unknown L1 dcache size for cpu"); 485 } 486 if (pcc->l1_icache_size) { 487 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 488 pcc->l1_icache_size))); 489 } else { 490 error_report("Warning: Unknown L1 icache size for cpu"); 491 } 492 493 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 494 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 495 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 496 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 497 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 498 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 499 500 if (env->spr_cb[SPR_PURR].oea_read) { 501 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 502 } 503 504 if (env->mmu_model & POWERPC_MMU_1TSEG) { 505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 506 segs, sizeof(segs)))); 507 } 508 509 /* Advertise VMX/VSX (vector extensions) if available 510 * 0 / no property == no vector extensions 511 * 1 == VMX / Altivec available 512 * 2 == VSX available */ 513 if (env->insns_flags & PPC_ALTIVEC) { 514 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 515 516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 517 } 518 519 /* Advertise DFP (Decimal Floating Point) if available 520 * 0 / no property == no DFP 521 * 1 == DFP available */ 522 if (env->insns_flags2 & PPC2_DFP) { 523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 524 } 525 526 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 527 sizeof(page_sizes_prop)); 528 if (page_sizes_prop_size) { 529 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 530 page_sizes_prop, page_sizes_prop_size))); 531 } 532 533 spapr_populate_pa_features(env, fdt, offset, false); 534 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 536 cs->cpu_index / vcpus_per_socket))); 537 538 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 539 pft_size_prop, sizeof(pft_size_prop)))); 540 541 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs)); 542 543 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 544 545 if (pcc->radix_page_info) { 546 for (i = 0; i < pcc->radix_page_info->count; i++) { 547 radix_AP_encodings[i] = 548 cpu_to_be32(pcc->radix_page_info->entries[i]); 549 } 550 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 551 radix_AP_encodings, 552 pcc->radix_page_info->count * 553 sizeof(radix_AP_encodings[0])))); 554 } 555 } 556 557 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 558 { 559 CPUState *cs; 560 int cpus_offset; 561 char *nodename; 562 int smt = kvmppc_smt_threads(); 563 564 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 565 _FDT(cpus_offset); 566 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 567 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 568 569 /* 570 * We walk the CPUs in reverse order to ensure that CPU DT nodes 571 * created by fdt_add_subnode() end up in the right order in FDT 572 * for the guest kernel the enumerate the CPUs correctly. 573 */ 574 CPU_FOREACH_REVERSE(cs) { 575 PowerPCCPU *cpu = POWERPC_CPU(cs); 576 int index = ppc_get_vcpu_dt_id(cpu); 577 DeviceClass *dc = DEVICE_GET_CLASS(cs); 578 int offset; 579 580 if ((index % smt) != 0) { 581 continue; 582 } 583 584 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 585 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 586 g_free(nodename); 587 _FDT(offset); 588 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 589 } 590 591 } 592 593 /* 594 * Adds ibm,dynamic-reconfiguration-memory node. 595 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 596 * of this device tree node. 597 */ 598 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 599 { 600 MachineState *machine = MACHINE(spapr); 601 int ret, i, offset; 602 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 603 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 604 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 605 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 606 memory_region_size(&spapr->hotplug_memory.mr)) / 607 lmb_size; 608 uint32_t *int_buf, *cur_index, buf_len; 609 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 610 611 /* 612 * Don't create the node if there is no hotpluggable memory 613 */ 614 if (machine->ram_size == machine->maxram_size) { 615 return 0; 616 } 617 618 /* 619 * Allocate enough buffer size to fit in ibm,dynamic-memory 620 * or ibm,associativity-lookup-arrays 621 */ 622 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 623 * sizeof(uint32_t); 624 cur_index = int_buf = g_malloc0(buf_len); 625 626 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 627 628 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 629 sizeof(prop_lmb_size)); 630 if (ret < 0) { 631 goto out; 632 } 633 634 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 635 if (ret < 0) { 636 goto out; 637 } 638 639 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 640 if (ret < 0) { 641 goto out; 642 } 643 644 /* ibm,dynamic-memory */ 645 int_buf[0] = cpu_to_be32(nr_lmbs); 646 cur_index++; 647 for (i = 0; i < nr_lmbs; i++) { 648 uint64_t addr = i * lmb_size; 649 uint32_t *dynamic_memory = cur_index; 650 651 if (i >= hotplug_lmb_start) { 652 sPAPRDRConnector *drc; 653 sPAPRDRConnectorClass *drck; 654 655 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i); 656 g_assert(drc); 657 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 658 659 dynamic_memory[0] = cpu_to_be32(addr >> 32); 660 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 661 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc)); 662 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 663 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 664 if (memory_region_present(get_system_memory(), addr)) { 665 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 666 } else { 667 dynamic_memory[5] = cpu_to_be32(0); 668 } 669 } else { 670 /* 671 * LMB information for RMA, boot time RAM and gap b/n RAM and 672 * hotplug memory region -- all these are marked as reserved 673 * and as having no valid DRC. 674 */ 675 dynamic_memory[0] = cpu_to_be32(addr >> 32); 676 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 677 dynamic_memory[2] = cpu_to_be32(0); 678 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 679 dynamic_memory[4] = cpu_to_be32(-1); 680 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 681 SPAPR_LMB_FLAGS_DRC_INVALID); 682 } 683 684 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 685 } 686 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 687 if (ret < 0) { 688 goto out; 689 } 690 691 /* ibm,associativity-lookup-arrays */ 692 cur_index = int_buf; 693 int_buf[0] = cpu_to_be32(nr_nodes); 694 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 695 cur_index += 2; 696 for (i = 0; i < nr_nodes; i++) { 697 uint32_t associativity[] = { 698 cpu_to_be32(0x0), 699 cpu_to_be32(0x0), 700 cpu_to_be32(0x0), 701 cpu_to_be32(i) 702 }; 703 memcpy(cur_index, associativity, sizeof(associativity)); 704 cur_index += 4; 705 } 706 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 707 (cur_index - int_buf) * sizeof(uint32_t)); 708 out: 709 g_free(int_buf); 710 return ret; 711 } 712 713 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 714 sPAPROptionVector *ov5_updates) 715 { 716 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 717 int ret = 0, offset; 718 719 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 720 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 721 g_assert(smc->dr_lmb_enabled); 722 ret = spapr_populate_drconf_memory(spapr, fdt); 723 if (ret) { 724 goto out; 725 } 726 } 727 728 offset = fdt_path_offset(fdt, "/chosen"); 729 if (offset < 0) { 730 offset = fdt_add_subnode(fdt, 0, "chosen"); 731 if (offset < 0) { 732 return offset; 733 } 734 } 735 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 736 "ibm,architecture-vec-5"); 737 738 out: 739 return ret; 740 } 741 742 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 743 target_ulong addr, target_ulong size, 744 sPAPROptionVector *ov5_updates) 745 { 746 void *fdt, *fdt_skel; 747 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 748 749 size -= sizeof(hdr); 750 751 /* Create sceleton */ 752 fdt_skel = g_malloc0(size); 753 _FDT((fdt_create(fdt_skel, size))); 754 _FDT((fdt_begin_node(fdt_skel, ""))); 755 _FDT((fdt_end_node(fdt_skel))); 756 _FDT((fdt_finish(fdt_skel))); 757 fdt = g_malloc0(size); 758 _FDT((fdt_open_into(fdt_skel, fdt, size))); 759 g_free(fdt_skel); 760 761 /* Fixup cpu nodes */ 762 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 763 764 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 765 return -1; 766 } 767 768 /* Pack resulting tree */ 769 _FDT((fdt_pack(fdt))); 770 771 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 772 trace_spapr_cas_failed(size); 773 return -1; 774 } 775 776 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 777 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 778 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 779 g_free(fdt); 780 781 return 0; 782 } 783 784 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 785 { 786 int rtas; 787 GString *hypertas = g_string_sized_new(256); 788 GString *qemu_hypertas = g_string_sized_new(256); 789 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 790 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 791 memory_region_size(&spapr->hotplug_memory.mr); 792 uint32_t lrdr_capacity[] = { 793 cpu_to_be32(max_hotplug_addr >> 32), 794 cpu_to_be32(max_hotplug_addr & 0xffffffff), 795 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 796 cpu_to_be32(max_cpus / smp_threads), 797 }; 798 799 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 800 801 /* hypertas */ 802 add_str(hypertas, "hcall-pft"); 803 add_str(hypertas, "hcall-term"); 804 add_str(hypertas, "hcall-dabr"); 805 add_str(hypertas, "hcall-interrupt"); 806 add_str(hypertas, "hcall-tce"); 807 add_str(hypertas, "hcall-vio"); 808 add_str(hypertas, "hcall-splpar"); 809 add_str(hypertas, "hcall-bulk"); 810 add_str(hypertas, "hcall-set-mode"); 811 add_str(hypertas, "hcall-sprg0"); 812 add_str(hypertas, "hcall-copy"); 813 add_str(hypertas, "hcall-debug"); 814 add_str(qemu_hypertas, "hcall-memop1"); 815 816 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 817 add_str(hypertas, "hcall-multi-tce"); 818 } 819 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 820 hypertas->str, hypertas->len)); 821 g_string_free(hypertas, TRUE); 822 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 823 qemu_hypertas->str, qemu_hypertas->len)); 824 g_string_free(qemu_hypertas, TRUE); 825 826 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 827 refpoints, sizeof(refpoints))); 828 829 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 830 RTAS_ERROR_LOG_MAX)); 831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 832 RTAS_EVENT_SCAN_RATE)); 833 834 if (msi_nonbroken) { 835 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 836 } 837 838 /* 839 * According to PAPR, rtas ibm,os-term does not guarantee a return 840 * back to the guest cpu. 841 * 842 * While an additional ibm,extended-os-term property indicates 843 * that rtas call return will always occur. Set this property. 844 */ 845 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 846 847 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 848 lrdr_capacity, sizeof(lrdr_capacity))); 849 850 spapr_dt_rtas_tokens(fdt, rtas); 851 } 852 853 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 854 * that the guest may request and thus the valid values for bytes 24..26 of 855 * option vector 5: */ 856 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 857 { 858 char val[2 * 3] = { 859 24, 0x00, /* Hash/Radix, filled in below. */ 860 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 861 26, 0x40, /* Radix options: GTSE == yes. */ 862 }; 863 864 if (kvm_enabled()) { 865 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 866 val[1] = 0x80; /* OV5_MMU_BOTH */ 867 } else if (kvmppc_has_cap_mmu_radix()) { 868 val[1] = 0x40; /* OV5_MMU_RADIX_300 */ 869 } else { 870 val[1] = 0x00; /* Hash */ 871 } 872 } else { 873 /* TODO: TCG case, hash */ 874 val[1] = 0x00; 875 } 876 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 877 val, sizeof(val))); 878 } 879 880 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 881 { 882 MachineState *machine = MACHINE(spapr); 883 int chosen; 884 const char *boot_device = machine->boot_order; 885 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 886 size_t cb = 0; 887 char *bootlist = get_boot_devices_list(&cb, true); 888 889 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 890 891 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 892 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 893 spapr->initrd_base)); 894 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 895 spapr->initrd_base + spapr->initrd_size)); 896 897 if (spapr->kernel_size) { 898 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 899 cpu_to_be64(spapr->kernel_size) }; 900 901 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 902 &kprop, sizeof(kprop))); 903 if (spapr->kernel_le) { 904 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 905 } 906 } 907 if (boot_menu) { 908 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 909 } 910 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 911 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 912 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 913 914 if (cb && bootlist) { 915 int i; 916 917 for (i = 0; i < cb; i++) { 918 if (bootlist[i] == '\n') { 919 bootlist[i] = ' '; 920 } 921 } 922 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 923 } 924 925 if (boot_device && strlen(boot_device)) { 926 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 927 } 928 929 if (!spapr->has_graphics && stdout_path) { 930 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 931 } 932 933 spapr_dt_ov5_platform_support(fdt, chosen); 934 935 g_free(stdout_path); 936 g_free(bootlist); 937 } 938 939 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 940 { 941 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 942 * KVM to work under pHyp with some guest co-operation */ 943 int hypervisor; 944 uint8_t hypercall[16]; 945 946 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 947 /* indicate KVM hypercall interface */ 948 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 949 if (kvmppc_has_cap_fixup_hcalls()) { 950 /* 951 * Older KVM versions with older guest kernels were broken 952 * with the magic page, don't allow the guest to map it. 953 */ 954 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 955 sizeof(hypercall))) { 956 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 957 hypercall, sizeof(hypercall))); 958 } 959 } 960 } 961 962 static void *spapr_build_fdt(sPAPRMachineState *spapr, 963 hwaddr rtas_addr, 964 hwaddr rtas_size) 965 { 966 MachineState *machine = MACHINE(qdev_get_machine()); 967 MachineClass *mc = MACHINE_GET_CLASS(machine); 968 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 969 int ret; 970 void *fdt; 971 sPAPRPHBState *phb; 972 char *buf; 973 int smt = kvmppc_smt_threads(); 974 975 fdt = g_malloc0(FDT_MAX_SIZE); 976 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 977 978 /* Root node */ 979 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 980 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 981 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 982 983 /* 984 * Add info to guest to indentify which host is it being run on 985 * and what is the uuid of the guest 986 */ 987 if (kvmppc_get_host_model(&buf)) { 988 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 989 g_free(buf); 990 } 991 if (kvmppc_get_host_serial(&buf)) { 992 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 993 g_free(buf); 994 } 995 996 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 997 998 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 999 if (qemu_uuid_set) { 1000 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1001 } 1002 g_free(buf); 1003 1004 if (qemu_get_vm_name()) { 1005 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1006 qemu_get_vm_name())); 1007 } 1008 1009 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1010 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1011 1012 /* /interrupt controller */ 1013 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP); 1014 1015 ret = spapr_populate_memory(spapr, fdt); 1016 if (ret < 0) { 1017 error_report("couldn't setup memory nodes in fdt"); 1018 exit(1); 1019 } 1020 1021 /* /vdevice */ 1022 spapr_dt_vdevice(spapr->vio_bus, fdt); 1023 1024 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1025 ret = spapr_rng_populate_dt(fdt); 1026 if (ret < 0) { 1027 error_report("could not set up rng device in the fdt"); 1028 exit(1); 1029 } 1030 } 1031 1032 QLIST_FOREACH(phb, &spapr->phbs, list) { 1033 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1034 if (ret < 0) { 1035 error_report("couldn't setup PCI devices in fdt"); 1036 exit(1); 1037 } 1038 } 1039 1040 /* cpus */ 1041 spapr_populate_cpus_dt_node(fdt, spapr); 1042 1043 if (smc->dr_lmb_enabled) { 1044 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1045 } 1046 1047 if (mc->has_hotpluggable_cpus) { 1048 int offset = fdt_path_offset(fdt, "/cpus"); 1049 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1050 SPAPR_DR_CONNECTOR_TYPE_CPU); 1051 if (ret < 0) { 1052 error_report("Couldn't set up CPU DR device tree properties"); 1053 exit(1); 1054 } 1055 } 1056 1057 /* /event-sources */ 1058 spapr_dt_events(spapr, fdt); 1059 1060 /* /rtas */ 1061 spapr_dt_rtas(spapr, fdt); 1062 1063 /* /chosen */ 1064 spapr_dt_chosen(spapr, fdt); 1065 1066 /* /hypervisor */ 1067 if (kvm_enabled()) { 1068 spapr_dt_hypervisor(spapr, fdt); 1069 } 1070 1071 /* Build memory reserve map */ 1072 if (spapr->kernel_size) { 1073 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1074 } 1075 if (spapr->initrd_size) { 1076 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1077 } 1078 1079 /* ibm,client-architecture-support updates */ 1080 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1081 if (ret < 0) { 1082 error_report("couldn't setup CAS properties fdt"); 1083 exit(1); 1084 } 1085 1086 return fdt; 1087 } 1088 1089 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1090 { 1091 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1092 } 1093 1094 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1095 PowerPCCPU *cpu) 1096 { 1097 CPUPPCState *env = &cpu->env; 1098 1099 /* The TCG path should also be holding the BQL at this point */ 1100 g_assert(qemu_mutex_iothread_locked()); 1101 1102 if (msr_pr) { 1103 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1104 env->gpr[3] = H_PRIVILEGE; 1105 } else { 1106 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1107 } 1108 } 1109 1110 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1111 { 1112 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1113 1114 return spapr->patb_entry; 1115 } 1116 1117 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1118 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1119 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1120 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1121 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1122 1123 /* 1124 * Get the fd to access the kernel htab, re-opening it if necessary 1125 */ 1126 static int get_htab_fd(sPAPRMachineState *spapr) 1127 { 1128 if (spapr->htab_fd >= 0) { 1129 return spapr->htab_fd; 1130 } 1131 1132 spapr->htab_fd = kvmppc_get_htab_fd(false); 1133 if (spapr->htab_fd < 0) { 1134 error_report("Unable to open fd for reading hash table from KVM: %s", 1135 strerror(errno)); 1136 } 1137 1138 return spapr->htab_fd; 1139 } 1140 1141 void close_htab_fd(sPAPRMachineState *spapr) 1142 { 1143 if (spapr->htab_fd >= 0) { 1144 close(spapr->htab_fd); 1145 } 1146 spapr->htab_fd = -1; 1147 } 1148 1149 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1150 { 1151 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1152 1153 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1154 } 1155 1156 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1157 hwaddr ptex, int n) 1158 { 1159 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1160 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1161 1162 if (!spapr->htab) { 1163 /* 1164 * HTAB is controlled by KVM. Fetch into temporary buffer 1165 */ 1166 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1167 kvmppc_read_hptes(hptes, ptex, n); 1168 return hptes; 1169 } 1170 1171 /* 1172 * HTAB is controlled by QEMU. Just point to the internally 1173 * accessible PTEG. 1174 */ 1175 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1176 } 1177 1178 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1179 const ppc_hash_pte64_t *hptes, 1180 hwaddr ptex, int n) 1181 { 1182 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1183 1184 if (!spapr->htab) { 1185 g_free((void *)hptes); 1186 } 1187 1188 /* Nothing to do for qemu managed HPT */ 1189 } 1190 1191 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1192 uint64_t pte0, uint64_t pte1) 1193 { 1194 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1195 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1196 1197 if (!spapr->htab) { 1198 kvmppc_write_hpte(ptex, pte0, pte1); 1199 } else { 1200 stq_p(spapr->htab + offset, pte0); 1201 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1202 } 1203 } 1204 1205 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1206 { 1207 int shift; 1208 1209 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1210 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1211 * that's much more than is needed for Linux guests */ 1212 shift = ctz64(pow2ceil(ramsize)) - 7; 1213 shift = MAX(shift, 18); /* Minimum architected size */ 1214 shift = MIN(shift, 46); /* Maximum architected size */ 1215 return shift; 1216 } 1217 1218 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1219 Error **errp) 1220 { 1221 long rc; 1222 1223 /* Clean up any HPT info from a previous boot */ 1224 g_free(spapr->htab); 1225 spapr->htab = NULL; 1226 spapr->htab_shift = 0; 1227 close_htab_fd(spapr); 1228 1229 rc = kvmppc_reset_htab(shift); 1230 if (rc < 0) { 1231 /* kernel-side HPT needed, but couldn't allocate one */ 1232 error_setg_errno(errp, errno, 1233 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1234 shift); 1235 /* This is almost certainly fatal, but if the caller really 1236 * wants to carry on with shift == 0, it's welcome to try */ 1237 } else if (rc > 0) { 1238 /* kernel-side HPT allocated */ 1239 if (rc != shift) { 1240 error_setg(errp, 1241 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1242 shift, rc); 1243 } 1244 1245 spapr->htab_shift = shift; 1246 spapr->htab = NULL; 1247 } else { 1248 /* kernel-side HPT not needed, allocate in userspace instead */ 1249 size_t size = 1ULL << shift; 1250 int i; 1251 1252 spapr->htab = qemu_memalign(size, size); 1253 if (!spapr->htab) { 1254 error_setg_errno(errp, errno, 1255 "Could not allocate HPT of order %d", shift); 1256 return; 1257 } 1258 1259 memset(spapr->htab, 0, size); 1260 spapr->htab_shift = shift; 1261 1262 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1263 DIRTY_HPTE(HPTE(spapr->htab, i)); 1264 } 1265 } 1266 } 1267 1268 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1269 { 1270 spapr_reallocate_hpt(spapr, 1271 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size), 1272 &error_fatal); 1273 if (spapr->vrma_adjust) { 1274 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1275 spapr->htab_shift); 1276 } 1277 /* We're setting up a hash table, so that means we're not radix */ 1278 spapr->patb_entry = 0; 1279 } 1280 1281 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1282 { 1283 bool matched = false; 1284 1285 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1286 matched = true; 1287 } 1288 1289 if (!matched) { 1290 error_report("Device %s is not supported by this machine yet.", 1291 qdev_fw_name(DEVICE(sbdev))); 1292 exit(1); 1293 } 1294 } 1295 1296 static void ppc_spapr_reset(void) 1297 { 1298 MachineState *machine = MACHINE(qdev_get_machine()); 1299 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1300 PowerPCCPU *first_ppc_cpu; 1301 uint32_t rtas_limit; 1302 hwaddr rtas_addr, fdt_addr; 1303 void *fdt; 1304 int rc; 1305 1306 /* Check for unknown sysbus devices */ 1307 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1308 1309 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) { 1310 /* If using KVM with radix mode available, VCPUs can be started 1311 * without a HPT because KVM will start them in radix mode. 1312 * Set the GR bit in PATB so that we know there is no HPT. */ 1313 spapr->patb_entry = PATBE1_GR; 1314 } else { 1315 spapr->patb_entry = 0; 1316 spapr_setup_hpt_and_vrma(spapr); 1317 } 1318 1319 qemu_devices_reset(); 1320 1321 /* 1322 * We place the device tree and RTAS just below either the top of the RMA, 1323 * or just below 2GB, whichever is lowere, so that it can be 1324 * processed with 32-bit real mode code if necessary 1325 */ 1326 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1327 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1328 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1329 1330 /* if this reset wasn't generated by CAS, we should reset our 1331 * negotiated options and start from scratch */ 1332 if (!spapr->cas_reboot) { 1333 spapr_ovec_cleanup(spapr->ov5_cas); 1334 spapr->ov5_cas = spapr_ovec_new(); 1335 } 1336 1337 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1338 1339 spapr_load_rtas(spapr, fdt, rtas_addr); 1340 1341 rc = fdt_pack(fdt); 1342 1343 /* Should only fail if we've built a corrupted tree */ 1344 assert(rc == 0); 1345 1346 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1347 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1348 fdt_totalsize(fdt), FDT_MAX_SIZE); 1349 exit(1); 1350 } 1351 1352 /* Load the fdt */ 1353 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1354 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1355 g_free(fdt); 1356 1357 /* Set up the entry state */ 1358 first_ppc_cpu = POWERPC_CPU(first_cpu); 1359 first_ppc_cpu->env.gpr[3] = fdt_addr; 1360 first_ppc_cpu->env.gpr[5] = 0; 1361 first_cpu->halted = 0; 1362 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1363 1364 spapr->cas_reboot = false; 1365 } 1366 1367 static void spapr_create_nvram(sPAPRMachineState *spapr) 1368 { 1369 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1370 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1371 1372 if (dinfo) { 1373 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1374 &error_fatal); 1375 } 1376 1377 qdev_init_nofail(dev); 1378 1379 spapr->nvram = (struct sPAPRNVRAM *)dev; 1380 } 1381 1382 static void spapr_rtc_create(sPAPRMachineState *spapr) 1383 { 1384 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1385 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1386 &error_fatal); 1387 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1388 &error_fatal); 1389 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1390 "date", &error_fatal); 1391 } 1392 1393 /* Returns whether we want to use VGA or not */ 1394 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1395 { 1396 switch (vga_interface_type) { 1397 case VGA_NONE: 1398 return false; 1399 case VGA_DEVICE: 1400 return true; 1401 case VGA_STD: 1402 case VGA_VIRTIO: 1403 return pci_vga_init(pci_bus) != NULL; 1404 default: 1405 error_setg(errp, 1406 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1407 return false; 1408 } 1409 } 1410 1411 static int spapr_post_load(void *opaque, int version_id) 1412 { 1413 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1414 int err = 0; 1415 1416 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1417 CPUState *cs; 1418 CPU_FOREACH(cs) { 1419 PowerPCCPU *cpu = POWERPC_CPU(cs); 1420 icp_resend(ICP(cpu->intc)); 1421 } 1422 } 1423 1424 /* In earlier versions, there was no separate qdev for the PAPR 1425 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1426 * So when migrating from those versions, poke the incoming offset 1427 * value into the RTC device */ 1428 if (version_id < 3) { 1429 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1430 } 1431 1432 return err; 1433 } 1434 1435 static bool version_before_3(void *opaque, int version_id) 1436 { 1437 return version_id < 3; 1438 } 1439 1440 static bool spapr_ov5_cas_needed(void *opaque) 1441 { 1442 sPAPRMachineState *spapr = opaque; 1443 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1444 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1445 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1446 bool cas_needed; 1447 1448 /* Prior to the introduction of sPAPROptionVector, we had two option 1449 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1450 * Both of these options encode machine topology into the device-tree 1451 * in such a way that the now-booted OS should still be able to interact 1452 * appropriately with QEMU regardless of what options were actually 1453 * negotiatied on the source side. 1454 * 1455 * As such, we can avoid migrating the CAS-negotiated options if these 1456 * are the only options available on the current machine/platform. 1457 * Since these are the only options available for pseries-2.7 and 1458 * earlier, this allows us to maintain old->new/new->old migration 1459 * compatibility. 1460 * 1461 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1462 * via default pseries-2.8 machines and explicit command-line parameters. 1463 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1464 * of the actual CAS-negotiated values to continue working properly. For 1465 * example, availability of memory unplug depends on knowing whether 1466 * OV5_HP_EVT was negotiated via CAS. 1467 * 1468 * Thus, for any cases where the set of available CAS-negotiatable 1469 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1470 * include the CAS-negotiated options in the migration stream. 1471 */ 1472 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1473 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1474 1475 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1476 * the mask itself since in the future it's possible "legacy" bits may be 1477 * removed via machine options, which could generate a false positive 1478 * that breaks migration. 1479 */ 1480 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1481 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1482 1483 spapr_ovec_cleanup(ov5_mask); 1484 spapr_ovec_cleanup(ov5_legacy); 1485 spapr_ovec_cleanup(ov5_removed); 1486 1487 return cas_needed; 1488 } 1489 1490 static const VMStateDescription vmstate_spapr_ov5_cas = { 1491 .name = "spapr_option_vector_ov5_cas", 1492 .version_id = 1, 1493 .minimum_version_id = 1, 1494 .needed = spapr_ov5_cas_needed, 1495 .fields = (VMStateField[]) { 1496 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1497 vmstate_spapr_ovec, sPAPROptionVector), 1498 VMSTATE_END_OF_LIST() 1499 }, 1500 }; 1501 1502 static bool spapr_patb_entry_needed(void *opaque) 1503 { 1504 sPAPRMachineState *spapr = opaque; 1505 1506 return !!spapr->patb_entry; 1507 } 1508 1509 static const VMStateDescription vmstate_spapr_patb_entry = { 1510 .name = "spapr_patb_entry", 1511 .version_id = 1, 1512 .minimum_version_id = 1, 1513 .needed = spapr_patb_entry_needed, 1514 .fields = (VMStateField[]) { 1515 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1516 VMSTATE_END_OF_LIST() 1517 }, 1518 }; 1519 1520 static const VMStateDescription vmstate_spapr = { 1521 .name = "spapr", 1522 .version_id = 3, 1523 .minimum_version_id = 1, 1524 .post_load = spapr_post_load, 1525 .fields = (VMStateField[]) { 1526 /* used to be @next_irq */ 1527 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1528 1529 /* RTC offset */ 1530 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1531 1532 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1533 VMSTATE_END_OF_LIST() 1534 }, 1535 .subsections = (const VMStateDescription*[]) { 1536 &vmstate_spapr_ov5_cas, 1537 &vmstate_spapr_patb_entry, 1538 NULL 1539 } 1540 }; 1541 1542 static int htab_save_setup(QEMUFile *f, void *opaque) 1543 { 1544 sPAPRMachineState *spapr = opaque; 1545 1546 /* "Iteration" header */ 1547 qemu_put_be32(f, spapr->htab_shift); 1548 1549 if (spapr->htab) { 1550 spapr->htab_save_index = 0; 1551 spapr->htab_first_pass = true; 1552 } else { 1553 assert(kvm_enabled()); 1554 } 1555 1556 1557 return 0; 1558 } 1559 1560 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1561 int64_t max_ns) 1562 { 1563 bool has_timeout = max_ns != -1; 1564 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1565 int index = spapr->htab_save_index; 1566 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1567 1568 assert(spapr->htab_first_pass); 1569 1570 do { 1571 int chunkstart; 1572 1573 /* Consume invalid HPTEs */ 1574 while ((index < htabslots) 1575 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1576 CLEAN_HPTE(HPTE(spapr->htab, index)); 1577 index++; 1578 } 1579 1580 /* Consume valid HPTEs */ 1581 chunkstart = index; 1582 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1583 && HPTE_VALID(HPTE(spapr->htab, index))) { 1584 CLEAN_HPTE(HPTE(spapr->htab, index)); 1585 index++; 1586 } 1587 1588 if (index > chunkstart) { 1589 int n_valid = index - chunkstart; 1590 1591 qemu_put_be32(f, chunkstart); 1592 qemu_put_be16(f, n_valid); 1593 qemu_put_be16(f, 0); 1594 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1595 HASH_PTE_SIZE_64 * n_valid); 1596 1597 if (has_timeout && 1598 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1599 break; 1600 } 1601 } 1602 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1603 1604 if (index >= htabslots) { 1605 assert(index == htabslots); 1606 index = 0; 1607 spapr->htab_first_pass = false; 1608 } 1609 spapr->htab_save_index = index; 1610 } 1611 1612 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1613 int64_t max_ns) 1614 { 1615 bool final = max_ns < 0; 1616 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1617 int examined = 0, sent = 0; 1618 int index = spapr->htab_save_index; 1619 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1620 1621 assert(!spapr->htab_first_pass); 1622 1623 do { 1624 int chunkstart, invalidstart; 1625 1626 /* Consume non-dirty HPTEs */ 1627 while ((index < htabslots) 1628 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1629 index++; 1630 examined++; 1631 } 1632 1633 chunkstart = index; 1634 /* Consume valid dirty HPTEs */ 1635 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1636 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1637 && HPTE_VALID(HPTE(spapr->htab, index))) { 1638 CLEAN_HPTE(HPTE(spapr->htab, index)); 1639 index++; 1640 examined++; 1641 } 1642 1643 invalidstart = index; 1644 /* Consume invalid dirty HPTEs */ 1645 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1646 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1647 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1648 CLEAN_HPTE(HPTE(spapr->htab, index)); 1649 index++; 1650 examined++; 1651 } 1652 1653 if (index > chunkstart) { 1654 int n_valid = invalidstart - chunkstart; 1655 int n_invalid = index - invalidstart; 1656 1657 qemu_put_be32(f, chunkstart); 1658 qemu_put_be16(f, n_valid); 1659 qemu_put_be16(f, n_invalid); 1660 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1661 HASH_PTE_SIZE_64 * n_valid); 1662 sent += index - chunkstart; 1663 1664 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1665 break; 1666 } 1667 } 1668 1669 if (examined >= htabslots) { 1670 break; 1671 } 1672 1673 if (index >= htabslots) { 1674 assert(index == htabslots); 1675 index = 0; 1676 } 1677 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1678 1679 if (index >= htabslots) { 1680 assert(index == htabslots); 1681 index = 0; 1682 } 1683 1684 spapr->htab_save_index = index; 1685 1686 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1687 } 1688 1689 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1690 #define MAX_KVM_BUF_SIZE 2048 1691 1692 static int htab_save_iterate(QEMUFile *f, void *opaque) 1693 { 1694 sPAPRMachineState *spapr = opaque; 1695 int fd; 1696 int rc = 0; 1697 1698 /* Iteration header */ 1699 qemu_put_be32(f, 0); 1700 1701 if (!spapr->htab) { 1702 assert(kvm_enabled()); 1703 1704 fd = get_htab_fd(spapr); 1705 if (fd < 0) { 1706 return fd; 1707 } 1708 1709 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1710 if (rc < 0) { 1711 return rc; 1712 } 1713 } else if (spapr->htab_first_pass) { 1714 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1715 } else { 1716 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1717 } 1718 1719 /* End marker */ 1720 qemu_put_be32(f, 0); 1721 qemu_put_be16(f, 0); 1722 qemu_put_be16(f, 0); 1723 1724 return rc; 1725 } 1726 1727 static int htab_save_complete(QEMUFile *f, void *opaque) 1728 { 1729 sPAPRMachineState *spapr = opaque; 1730 int fd; 1731 1732 /* Iteration header */ 1733 qemu_put_be32(f, 0); 1734 1735 if (!spapr->htab) { 1736 int rc; 1737 1738 assert(kvm_enabled()); 1739 1740 fd = get_htab_fd(spapr); 1741 if (fd < 0) { 1742 return fd; 1743 } 1744 1745 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1746 if (rc < 0) { 1747 return rc; 1748 } 1749 } else { 1750 if (spapr->htab_first_pass) { 1751 htab_save_first_pass(f, spapr, -1); 1752 } 1753 htab_save_later_pass(f, spapr, -1); 1754 } 1755 1756 /* End marker */ 1757 qemu_put_be32(f, 0); 1758 qemu_put_be16(f, 0); 1759 qemu_put_be16(f, 0); 1760 1761 return 0; 1762 } 1763 1764 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1765 { 1766 sPAPRMachineState *spapr = opaque; 1767 uint32_t section_hdr; 1768 int fd = -1; 1769 1770 if (version_id < 1 || version_id > 1) { 1771 error_report("htab_load() bad version"); 1772 return -EINVAL; 1773 } 1774 1775 section_hdr = qemu_get_be32(f); 1776 1777 if (section_hdr) { 1778 Error *local_err = NULL; 1779 1780 /* First section gives the htab size */ 1781 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1782 if (local_err) { 1783 error_report_err(local_err); 1784 return -EINVAL; 1785 } 1786 return 0; 1787 } 1788 1789 if (!spapr->htab) { 1790 assert(kvm_enabled()); 1791 1792 fd = kvmppc_get_htab_fd(true); 1793 if (fd < 0) { 1794 error_report("Unable to open fd to restore KVM hash table: %s", 1795 strerror(errno)); 1796 } 1797 } 1798 1799 while (true) { 1800 uint32_t index; 1801 uint16_t n_valid, n_invalid; 1802 1803 index = qemu_get_be32(f); 1804 n_valid = qemu_get_be16(f); 1805 n_invalid = qemu_get_be16(f); 1806 1807 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1808 /* End of Stream */ 1809 break; 1810 } 1811 1812 if ((index + n_valid + n_invalid) > 1813 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1814 /* Bad index in stream */ 1815 error_report( 1816 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1817 index, n_valid, n_invalid, spapr->htab_shift); 1818 return -EINVAL; 1819 } 1820 1821 if (spapr->htab) { 1822 if (n_valid) { 1823 qemu_get_buffer(f, HPTE(spapr->htab, index), 1824 HASH_PTE_SIZE_64 * n_valid); 1825 } 1826 if (n_invalid) { 1827 memset(HPTE(spapr->htab, index + n_valid), 0, 1828 HASH_PTE_SIZE_64 * n_invalid); 1829 } 1830 } else { 1831 int rc; 1832 1833 assert(fd >= 0); 1834 1835 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1836 if (rc < 0) { 1837 return rc; 1838 } 1839 } 1840 } 1841 1842 if (!spapr->htab) { 1843 assert(fd >= 0); 1844 close(fd); 1845 } 1846 1847 return 0; 1848 } 1849 1850 static void htab_cleanup(void *opaque) 1851 { 1852 sPAPRMachineState *spapr = opaque; 1853 1854 close_htab_fd(spapr); 1855 } 1856 1857 static SaveVMHandlers savevm_htab_handlers = { 1858 .save_live_setup = htab_save_setup, 1859 .save_live_iterate = htab_save_iterate, 1860 .save_live_complete_precopy = htab_save_complete, 1861 .cleanup = htab_cleanup, 1862 .load_state = htab_load, 1863 }; 1864 1865 static void spapr_boot_set(void *opaque, const char *boot_device, 1866 Error **errp) 1867 { 1868 MachineState *machine = MACHINE(qdev_get_machine()); 1869 machine->boot_order = g_strdup(boot_device); 1870 } 1871 1872 /* 1873 * Reset routine for LMB DR devices. 1874 * 1875 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1876 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1877 * when it walks all its children devices. LMB devices reset occurs 1878 * as part of spapr_ppc_reset(). 1879 */ 1880 static void spapr_drc_reset(void *opaque) 1881 { 1882 sPAPRDRConnector *drc = opaque; 1883 DeviceState *d = DEVICE(drc); 1884 1885 if (d) { 1886 device_reset(d); 1887 } 1888 } 1889 1890 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1891 { 1892 MachineState *machine = MACHINE(spapr); 1893 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1894 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1895 int i; 1896 1897 for (i = 0; i < nr_lmbs; i++) { 1898 sPAPRDRConnector *drc; 1899 uint64_t addr; 1900 1901 addr = i * lmb_size + spapr->hotplug_memory.base; 1902 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB, 1903 addr/lmb_size); 1904 qemu_register_reset(spapr_drc_reset, drc); 1905 } 1906 } 1907 1908 /* 1909 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1910 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1911 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1912 */ 1913 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1914 { 1915 int i; 1916 1917 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1918 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1919 " is not aligned to %llu MiB", 1920 machine->ram_size, 1921 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1922 return; 1923 } 1924 1925 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1926 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1927 " is not aligned to %llu MiB", 1928 machine->ram_size, 1929 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1930 return; 1931 } 1932 1933 for (i = 0; i < nb_numa_nodes; i++) { 1934 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1935 error_setg(errp, 1936 "Node %d memory size 0x%" PRIx64 1937 " is not aligned to %llu MiB", 1938 i, numa_info[i].node_mem, 1939 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1940 return; 1941 } 1942 } 1943 } 1944 1945 /* find cpu slot in machine->possible_cpus by core_id */ 1946 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1947 { 1948 int index = id / smp_threads; 1949 1950 if (index >= ms->possible_cpus->len) { 1951 return NULL; 1952 } 1953 if (idx) { 1954 *idx = index; 1955 } 1956 return &ms->possible_cpus->cpus[index]; 1957 } 1958 1959 static void spapr_init_cpus(sPAPRMachineState *spapr) 1960 { 1961 MachineState *machine = MACHINE(spapr); 1962 MachineClass *mc = MACHINE_GET_CLASS(machine); 1963 char *type = spapr_get_cpu_core_type(machine->cpu_model); 1964 int smt = kvmppc_smt_threads(); 1965 const CPUArchIdList *possible_cpus; 1966 int boot_cores_nr = smp_cpus / smp_threads; 1967 int i; 1968 1969 if (!type) { 1970 error_report("Unable to find sPAPR CPU Core definition"); 1971 exit(1); 1972 } 1973 1974 possible_cpus = mc->possible_cpu_arch_ids(machine); 1975 if (mc->has_hotpluggable_cpus) { 1976 if (smp_cpus % smp_threads) { 1977 error_report("smp_cpus (%u) must be multiple of threads (%u)", 1978 smp_cpus, smp_threads); 1979 exit(1); 1980 } 1981 if (max_cpus % smp_threads) { 1982 error_report("max_cpus (%u) must be multiple of threads (%u)", 1983 max_cpus, smp_threads); 1984 exit(1); 1985 } 1986 } else { 1987 if (max_cpus != smp_cpus) { 1988 error_report("This machine version does not support CPU hotplug"); 1989 exit(1); 1990 } 1991 boot_cores_nr = possible_cpus->len; 1992 } 1993 1994 for (i = 0; i < possible_cpus->len; i++) { 1995 int core_id = i * smp_threads; 1996 1997 if (mc->has_hotpluggable_cpus) { 1998 sPAPRDRConnector *drc = 1999 spapr_dr_connector_new(OBJECT(spapr), 2000 SPAPR_DR_CONNECTOR_TYPE_CPU, 2001 (core_id / smp_threads) * smt); 2002 2003 qemu_register_reset(spapr_drc_reset, drc); 2004 } 2005 2006 if (i < boot_cores_nr) { 2007 Object *core = object_new(type); 2008 int nr_threads = smp_threads; 2009 2010 /* Handle the partially filled core for older machine types */ 2011 if ((i + 1) * smp_threads >= smp_cpus) { 2012 nr_threads = smp_cpus - i * smp_threads; 2013 } 2014 2015 object_property_set_int(core, nr_threads, "nr-threads", 2016 &error_fatal); 2017 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2018 &error_fatal); 2019 object_property_set_bool(core, true, "realized", &error_fatal); 2020 } 2021 } 2022 g_free(type); 2023 } 2024 2025 /* pSeries LPAR / sPAPR hardware init */ 2026 static void ppc_spapr_init(MachineState *machine) 2027 { 2028 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2029 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2030 const char *kernel_filename = machine->kernel_filename; 2031 const char *initrd_filename = machine->initrd_filename; 2032 PCIHostState *phb; 2033 int i; 2034 MemoryRegion *sysmem = get_system_memory(); 2035 MemoryRegion *ram = g_new(MemoryRegion, 1); 2036 MemoryRegion *rma_region; 2037 void *rma = NULL; 2038 hwaddr rma_alloc_size; 2039 hwaddr node0_size = spapr_node0_size(); 2040 long load_limit, fw_size; 2041 char *filename; 2042 2043 msi_nonbroken = true; 2044 2045 QLIST_INIT(&spapr->phbs); 2046 2047 /* Allocate RMA if necessary */ 2048 rma_alloc_size = kvmppc_alloc_rma(&rma); 2049 2050 if (rma_alloc_size == -1) { 2051 error_report("Unable to create RMA"); 2052 exit(1); 2053 } 2054 2055 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2056 spapr->rma_size = rma_alloc_size; 2057 } else { 2058 spapr->rma_size = node0_size; 2059 2060 /* With KVM, we don't actually know whether KVM supports an 2061 * unbounded RMA (PR KVM) or is limited by the hash table size 2062 * (HV KVM using VRMA), so we always assume the latter 2063 * 2064 * In that case, we also limit the initial allocations for RTAS 2065 * etc... to 256M since we have no way to know what the VRMA size 2066 * is going to be as it depends on the size of the hash table 2067 * isn't determined yet. 2068 */ 2069 if (kvm_enabled()) { 2070 spapr->vrma_adjust = 1; 2071 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2072 } 2073 2074 /* Actually we don't support unbounded RMA anymore since we 2075 * added proper emulation of HV mode. The max we can get is 2076 * 16G which also happens to be what we configure for PAPR 2077 * mode so make sure we don't do anything bigger than that 2078 */ 2079 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2080 } 2081 2082 if (spapr->rma_size > node0_size) { 2083 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2084 spapr->rma_size); 2085 exit(1); 2086 } 2087 2088 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2089 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2090 2091 /* Set up Interrupt Controller before we create the VCPUs */ 2092 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2093 2094 /* Set up containers for ibm,client-set-architecture negotiated options */ 2095 spapr->ov5 = spapr_ovec_new(); 2096 spapr->ov5_cas = spapr_ovec_new(); 2097 2098 if (smc->dr_lmb_enabled) { 2099 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2100 spapr_validate_node_memory(machine, &error_fatal); 2101 } 2102 2103 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2104 if (kvmppc_has_cap_mmu_radix()) { 2105 /* KVM always allows GTSE with radix... */ 2106 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2107 } 2108 /* ... but not with hash (currently). */ 2109 2110 /* advertise support for dedicated HP event source to guests */ 2111 if (spapr->use_hotplug_event_source) { 2112 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2113 } 2114 2115 /* init CPUs */ 2116 if (machine->cpu_model == NULL) { 2117 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 2118 } 2119 2120 ppc_cpu_parse_features(machine->cpu_model); 2121 2122 spapr_init_cpus(spapr); 2123 2124 if (kvm_enabled()) { 2125 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2126 kvmppc_enable_logical_ci_hcalls(); 2127 kvmppc_enable_set_mode_hcall(); 2128 2129 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2130 kvmppc_enable_clear_ref_mod_hcalls(); 2131 } 2132 2133 /* allocate RAM */ 2134 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2135 machine->ram_size); 2136 memory_region_add_subregion(sysmem, 0, ram); 2137 2138 if (rma_alloc_size && rma) { 2139 rma_region = g_new(MemoryRegion, 1); 2140 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2141 rma_alloc_size, rma); 2142 vmstate_register_ram_global(rma_region); 2143 memory_region_add_subregion(sysmem, 0, rma_region); 2144 } 2145 2146 /* initialize hotplug memory address space */ 2147 if (machine->ram_size < machine->maxram_size) { 2148 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2149 /* 2150 * Limit the number of hotpluggable memory slots to half the number 2151 * slots that KVM supports, leaving the other half for PCI and other 2152 * devices. However ensure that number of slots doesn't drop below 32. 2153 */ 2154 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2155 SPAPR_MAX_RAM_SLOTS; 2156 2157 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2158 max_memslots = SPAPR_MAX_RAM_SLOTS; 2159 } 2160 if (machine->ram_slots > max_memslots) { 2161 error_report("Specified number of memory slots %" 2162 PRIu64" exceeds max supported %d", 2163 machine->ram_slots, max_memslots); 2164 exit(1); 2165 } 2166 2167 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2168 SPAPR_HOTPLUG_MEM_ALIGN); 2169 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2170 "hotplug-memory", hotplug_mem_size); 2171 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2172 &spapr->hotplug_memory.mr); 2173 } 2174 2175 if (smc->dr_lmb_enabled) { 2176 spapr_create_lmb_dr_connectors(spapr); 2177 } 2178 2179 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2180 if (!filename) { 2181 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2182 exit(1); 2183 } 2184 spapr->rtas_size = get_image_size(filename); 2185 if (spapr->rtas_size < 0) { 2186 error_report("Could not get size of LPAR rtas '%s'", filename); 2187 exit(1); 2188 } 2189 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2190 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2191 error_report("Could not load LPAR rtas '%s'", filename); 2192 exit(1); 2193 } 2194 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2195 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2196 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2197 exit(1); 2198 } 2199 g_free(filename); 2200 2201 /* Set up RTAS event infrastructure */ 2202 spapr_events_init(spapr); 2203 2204 /* Set up the RTC RTAS interfaces */ 2205 spapr_rtc_create(spapr); 2206 2207 /* Set up VIO bus */ 2208 spapr->vio_bus = spapr_vio_bus_init(); 2209 2210 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2211 if (serial_hds[i]) { 2212 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2213 } 2214 } 2215 2216 /* We always have at least the nvram device on VIO */ 2217 spapr_create_nvram(spapr); 2218 2219 /* Set up PCI */ 2220 spapr_pci_rtas_init(); 2221 2222 phb = spapr_create_phb(spapr, 0); 2223 2224 for (i = 0; i < nb_nics; i++) { 2225 NICInfo *nd = &nd_table[i]; 2226 2227 if (!nd->model) { 2228 nd->model = g_strdup("ibmveth"); 2229 } 2230 2231 if (strcmp(nd->model, "ibmveth") == 0) { 2232 spapr_vlan_create(spapr->vio_bus, nd); 2233 } else { 2234 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2235 } 2236 } 2237 2238 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2239 spapr_vscsi_create(spapr->vio_bus); 2240 } 2241 2242 /* Graphics */ 2243 if (spapr_vga_init(phb->bus, &error_fatal)) { 2244 spapr->has_graphics = true; 2245 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2246 } 2247 2248 if (machine->usb) { 2249 if (smc->use_ohci_by_default) { 2250 pci_create_simple(phb->bus, -1, "pci-ohci"); 2251 } else { 2252 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2253 } 2254 2255 if (spapr->has_graphics) { 2256 USBBus *usb_bus = usb_bus_find(-1); 2257 2258 usb_create_simple(usb_bus, "usb-kbd"); 2259 usb_create_simple(usb_bus, "usb-mouse"); 2260 } 2261 } 2262 2263 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2264 error_report( 2265 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2266 MIN_RMA_SLOF); 2267 exit(1); 2268 } 2269 2270 if (kernel_filename) { 2271 uint64_t lowaddr = 0; 2272 2273 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2274 NULL, NULL, &lowaddr, NULL, 1, 2275 PPC_ELF_MACHINE, 0, 0); 2276 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2277 spapr->kernel_size = load_elf(kernel_filename, 2278 translate_kernel_address, NULL, NULL, 2279 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2280 0, 0); 2281 spapr->kernel_le = spapr->kernel_size > 0; 2282 } 2283 if (spapr->kernel_size < 0) { 2284 error_report("error loading %s: %s", kernel_filename, 2285 load_elf_strerror(spapr->kernel_size)); 2286 exit(1); 2287 } 2288 2289 /* load initrd */ 2290 if (initrd_filename) { 2291 /* Try to locate the initrd in the gap between the kernel 2292 * and the firmware. Add a bit of space just in case 2293 */ 2294 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2295 + 0x1ffff) & ~0xffff; 2296 spapr->initrd_size = load_image_targphys(initrd_filename, 2297 spapr->initrd_base, 2298 load_limit 2299 - spapr->initrd_base); 2300 if (spapr->initrd_size < 0) { 2301 error_report("could not load initial ram disk '%s'", 2302 initrd_filename); 2303 exit(1); 2304 } 2305 } 2306 } 2307 2308 if (bios_name == NULL) { 2309 bios_name = FW_FILE_NAME; 2310 } 2311 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2312 if (!filename) { 2313 error_report("Could not find LPAR firmware '%s'", bios_name); 2314 exit(1); 2315 } 2316 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2317 if (fw_size <= 0) { 2318 error_report("Could not load LPAR firmware '%s'", filename); 2319 exit(1); 2320 } 2321 g_free(filename); 2322 2323 /* FIXME: Should register things through the MachineState's qdev 2324 * interface, this is a legacy from the sPAPREnvironment structure 2325 * which predated MachineState but had a similar function */ 2326 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2327 register_savevm_live(NULL, "spapr/htab", -1, 1, 2328 &savevm_htab_handlers, spapr); 2329 2330 /* used by RTAS */ 2331 QTAILQ_INIT(&spapr->ccs_list); 2332 qemu_register_reset(spapr_ccs_reset_hook, spapr); 2333 2334 qemu_register_boot_set(spapr_boot_set, spapr); 2335 2336 if (kvm_enabled()) { 2337 /* to stop and start vmclock */ 2338 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2339 &spapr->tb); 2340 2341 kvmppc_spapr_enable_inkernel_multitce(); 2342 } 2343 } 2344 2345 static int spapr_kvm_type(const char *vm_type) 2346 { 2347 if (!vm_type) { 2348 return 0; 2349 } 2350 2351 if (!strcmp(vm_type, "HV")) { 2352 return 1; 2353 } 2354 2355 if (!strcmp(vm_type, "PR")) { 2356 return 2; 2357 } 2358 2359 error_report("Unknown kvm-type specified '%s'", vm_type); 2360 exit(1); 2361 } 2362 2363 /* 2364 * Implementation of an interface to adjust firmware path 2365 * for the bootindex property handling. 2366 */ 2367 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2368 DeviceState *dev) 2369 { 2370 #define CAST(type, obj, name) \ 2371 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2372 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2373 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2374 2375 if (d) { 2376 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2377 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2378 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2379 2380 if (spapr) { 2381 /* 2382 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2383 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2384 * in the top 16 bits of the 64-bit LUN 2385 */ 2386 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2387 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2388 (uint64_t)id << 48); 2389 } else if (virtio) { 2390 /* 2391 * We use SRP luns of the form 01000000 | (target << 8) | lun 2392 * in the top 32 bits of the 64-bit LUN 2393 * Note: the quote above is from SLOF and it is wrong, 2394 * the actual binding is: 2395 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2396 */ 2397 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2398 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2399 (uint64_t)id << 32); 2400 } else if (usb) { 2401 /* 2402 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2403 * in the top 32 bits of the 64-bit LUN 2404 */ 2405 unsigned usb_port = atoi(usb->port->path); 2406 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2407 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2408 (uint64_t)id << 32); 2409 } 2410 } 2411 2412 /* 2413 * SLOF probes the USB devices, and if it recognizes that the device is a 2414 * storage device, it changes its name to "storage" instead of "usb-host", 2415 * and additionally adds a child node for the SCSI LUN, so the correct 2416 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2417 */ 2418 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2419 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2420 if (usb_host_dev_is_scsi_storage(usbdev)) { 2421 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2422 } 2423 } 2424 2425 if (phb) { 2426 /* Replace "pci" with "pci@800000020000000" */ 2427 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2428 } 2429 2430 return NULL; 2431 } 2432 2433 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2434 { 2435 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2436 2437 return g_strdup(spapr->kvm_type); 2438 } 2439 2440 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2441 { 2442 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2443 2444 g_free(spapr->kvm_type); 2445 spapr->kvm_type = g_strdup(value); 2446 } 2447 2448 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2449 { 2450 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2451 2452 return spapr->use_hotplug_event_source; 2453 } 2454 2455 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2456 Error **errp) 2457 { 2458 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2459 2460 spapr->use_hotplug_event_source = value; 2461 } 2462 2463 static void spapr_machine_initfn(Object *obj) 2464 { 2465 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2466 2467 spapr->htab_fd = -1; 2468 spapr->use_hotplug_event_source = true; 2469 object_property_add_str(obj, "kvm-type", 2470 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2471 object_property_set_description(obj, "kvm-type", 2472 "Specifies the KVM virtualization mode (HV, PR)", 2473 NULL); 2474 object_property_add_bool(obj, "modern-hotplug-events", 2475 spapr_get_modern_hotplug_events, 2476 spapr_set_modern_hotplug_events, 2477 NULL); 2478 object_property_set_description(obj, "modern-hotplug-events", 2479 "Use dedicated hotplug event mechanism in" 2480 " place of standard EPOW events when possible" 2481 " (required for memory hot-unplug support)", 2482 NULL); 2483 } 2484 2485 static void spapr_machine_finalizefn(Object *obj) 2486 { 2487 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2488 2489 g_free(spapr->kvm_type); 2490 } 2491 2492 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2493 { 2494 cpu_synchronize_state(cs); 2495 ppc_cpu_do_system_reset(cs); 2496 } 2497 2498 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2499 { 2500 CPUState *cs; 2501 2502 CPU_FOREACH(cs) { 2503 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2504 } 2505 } 2506 2507 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2508 uint32_t node, bool dedicated_hp_event_source, 2509 Error **errp) 2510 { 2511 sPAPRDRConnector *drc; 2512 sPAPRDRConnectorClass *drck; 2513 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2514 int i, fdt_offset, fdt_size; 2515 void *fdt; 2516 uint64_t addr = addr_start; 2517 2518 for (i = 0; i < nr_lmbs; i++) { 2519 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2520 addr/SPAPR_MEMORY_BLOCK_SIZE); 2521 g_assert(drc); 2522 2523 fdt = create_device_tree(&fdt_size); 2524 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2525 SPAPR_MEMORY_BLOCK_SIZE); 2526 2527 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2528 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2529 addr += SPAPR_MEMORY_BLOCK_SIZE; 2530 if (!dev->hotplugged) { 2531 /* guests expect coldplugged LMBs to be pre-allocated */ 2532 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2533 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2534 } 2535 } 2536 /* send hotplug notification to the 2537 * guest only in case of hotplugged memory 2538 */ 2539 if (dev->hotplugged) { 2540 if (dedicated_hp_event_source) { 2541 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2542 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2543 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2544 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2545 nr_lmbs, 2546 drck->get_index(drc)); 2547 } else { 2548 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2549 nr_lmbs); 2550 } 2551 } 2552 } 2553 2554 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2555 uint32_t node, Error **errp) 2556 { 2557 Error *local_err = NULL; 2558 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2559 PCDIMMDevice *dimm = PC_DIMM(dev); 2560 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2561 MemoryRegion *mr = ddc->get_memory_region(dimm); 2562 uint64_t align = memory_region_get_alignment(mr); 2563 uint64_t size = memory_region_size(mr); 2564 uint64_t addr; 2565 char *mem_dev; 2566 2567 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2568 error_setg(&local_err, "Hotplugged memory size must be a multiple of " 2569 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE); 2570 goto out; 2571 } 2572 2573 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2574 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2575 error_setg(&local_err, "Memory backend has bad page size. " 2576 "Use 'memory-backend-file' with correct mem-path."); 2577 goto out; 2578 } 2579 2580 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2581 if (local_err) { 2582 goto out; 2583 } 2584 2585 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2586 if (local_err) { 2587 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2588 goto out; 2589 } 2590 2591 spapr_add_lmbs(dev, addr, size, node, 2592 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2593 &error_abort); 2594 2595 out: 2596 error_propagate(errp, local_err); 2597 } 2598 2599 typedef struct sPAPRDIMMState { 2600 uint32_t nr_lmbs; 2601 } sPAPRDIMMState; 2602 2603 static void spapr_lmb_release(DeviceState *dev, void *opaque) 2604 { 2605 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque; 2606 HotplugHandler *hotplug_ctrl; 2607 2608 if (--ds->nr_lmbs) { 2609 return; 2610 } 2611 2612 g_free(ds); 2613 2614 /* 2615 * Now that all the LMBs have been removed by the guest, call the 2616 * pc-dimm unplug handler to cleanup up the pc-dimm device. 2617 */ 2618 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2619 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2620 } 2621 2622 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2623 Error **errp) 2624 { 2625 sPAPRDRConnector *drc; 2626 sPAPRDRConnectorClass *drck; 2627 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2628 int i; 2629 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState)); 2630 uint64_t addr = addr_start; 2631 2632 ds->nr_lmbs = nr_lmbs; 2633 for (i = 0; i < nr_lmbs; i++) { 2634 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2635 addr / SPAPR_MEMORY_BLOCK_SIZE); 2636 g_assert(drc); 2637 2638 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2639 drck->detach(drc, dev, spapr_lmb_release, ds, errp); 2640 addr += SPAPR_MEMORY_BLOCK_SIZE; 2641 } 2642 2643 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, 2644 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2645 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2646 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2647 nr_lmbs, 2648 drck->get_index(drc)); 2649 } 2650 2651 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2652 Error **errp) 2653 { 2654 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2655 PCDIMMDevice *dimm = PC_DIMM(dev); 2656 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2657 MemoryRegion *mr = ddc->get_memory_region(dimm); 2658 2659 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2660 object_unparent(OBJECT(dev)); 2661 } 2662 2663 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 2664 DeviceState *dev, Error **errp) 2665 { 2666 Error *local_err = NULL; 2667 PCDIMMDevice *dimm = PC_DIMM(dev); 2668 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2669 MemoryRegion *mr = ddc->get_memory_region(dimm); 2670 uint64_t size = memory_region_size(mr); 2671 uint64_t addr; 2672 2673 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err); 2674 if (local_err) { 2675 goto out; 2676 } 2677 2678 spapr_del_lmbs(dev, addr, size, &error_abort); 2679 out: 2680 error_propagate(errp, local_err); 2681 } 2682 2683 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2684 sPAPRMachineState *spapr) 2685 { 2686 PowerPCCPU *cpu = POWERPC_CPU(cs); 2687 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2688 int id = ppc_get_vcpu_dt_id(cpu); 2689 void *fdt; 2690 int offset, fdt_size; 2691 char *nodename; 2692 2693 fdt = create_device_tree(&fdt_size); 2694 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2695 offset = fdt_add_subnode(fdt, 0, nodename); 2696 2697 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2698 g_free(nodename); 2699 2700 *fdt_offset = offset; 2701 return fdt; 2702 } 2703 2704 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2705 Error **errp) 2706 { 2707 MachineState *ms = MACHINE(qdev_get_machine()); 2708 CPUCore *cc = CPU_CORE(dev); 2709 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 2710 2711 core_slot->cpu = NULL; 2712 object_unparent(OBJECT(dev)); 2713 } 2714 2715 static void spapr_core_release(DeviceState *dev, void *opaque) 2716 { 2717 HotplugHandler *hotplug_ctrl; 2718 2719 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2720 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2721 } 2722 2723 static 2724 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 2725 Error **errp) 2726 { 2727 int index; 2728 sPAPRDRConnector *drc; 2729 sPAPRDRConnectorClass *drck; 2730 Error *local_err = NULL; 2731 CPUCore *cc = CPU_CORE(dev); 2732 int smt = kvmppc_smt_threads(); 2733 2734 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 2735 error_setg(errp, "Unable to find CPU core with core-id: %d", 2736 cc->core_id); 2737 return; 2738 } 2739 if (index == 0) { 2740 error_setg(errp, "Boot CPU core may not be unplugged"); 2741 return; 2742 } 2743 2744 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); 2745 g_assert(drc); 2746 2747 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2748 drck->detach(drc, dev, spapr_core_release, NULL, &local_err); 2749 if (local_err) { 2750 error_propagate(errp, local_err); 2751 return; 2752 } 2753 2754 spapr_hotplug_req_remove_by_index(drc); 2755 } 2756 2757 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2758 Error **errp) 2759 { 2760 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 2761 MachineClass *mc = MACHINE_GET_CLASS(spapr); 2762 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 2763 CPUCore *cc = CPU_CORE(dev); 2764 CPUState *cs = CPU(core->threads); 2765 sPAPRDRConnector *drc; 2766 Error *local_err = NULL; 2767 void *fdt = NULL; 2768 int fdt_offset = 0; 2769 int smt = kvmppc_smt_threads(); 2770 CPUArchId *core_slot; 2771 int index; 2772 2773 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2774 if (!core_slot) { 2775 error_setg(errp, "Unable to find CPU core with core-id: %d", 2776 cc->core_id); 2777 return; 2778 } 2779 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt); 2780 2781 g_assert(drc || !mc->has_hotpluggable_cpus); 2782 2783 /* 2784 * Setup CPU DT entries only for hotplugged CPUs. For boot time or 2785 * coldplugged CPUs DT entries are setup in spapr_build_fdt(). 2786 */ 2787 if (dev->hotplugged) { 2788 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 2789 } 2790 2791 if (drc) { 2792 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2793 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err); 2794 if (local_err) { 2795 g_free(fdt); 2796 error_propagate(errp, local_err); 2797 return; 2798 } 2799 } 2800 2801 if (dev->hotplugged) { 2802 /* 2803 * Send hotplug notification interrupt to the guest only in case 2804 * of hotplugged CPUs. 2805 */ 2806 spapr_hotplug_req_add_by_index(drc); 2807 } else { 2808 /* 2809 * Set the right DRC states for cold plugged CPU. 2810 */ 2811 if (drc) { 2812 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2813 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2814 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2815 } 2816 } 2817 core_slot->cpu = OBJECT(dev); 2818 } 2819 2820 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2821 Error **errp) 2822 { 2823 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 2824 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 2825 Error *local_err = NULL; 2826 CPUCore *cc = CPU_CORE(dev); 2827 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); 2828 const char *type = object_get_typename(OBJECT(dev)); 2829 CPUArchId *core_slot; 2830 int index; 2831 2832 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 2833 error_setg(&local_err, "CPU hotplug not supported for this machine"); 2834 goto out; 2835 } 2836 2837 if (strcmp(base_core_type, type)) { 2838 error_setg(&local_err, "CPU core type should be %s", base_core_type); 2839 goto out; 2840 } 2841 2842 if (cc->core_id % smp_threads) { 2843 error_setg(&local_err, "invalid core id %d", cc->core_id); 2844 goto out; 2845 } 2846 2847 if (cc->nr_threads != smp_threads) { 2848 error_setg(errp, "invalid nr-threads %d, must be %d", 2849 cc->nr_threads, smp_threads); 2850 return; 2851 } 2852 2853 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2854 if (!core_slot) { 2855 error_setg(&local_err, "core id %d out of range", cc->core_id); 2856 goto out; 2857 } 2858 2859 if (core_slot->cpu) { 2860 error_setg(&local_err, "core %d already populated", cc->core_id); 2861 goto out; 2862 } 2863 2864 out: 2865 g_free(base_core_type); 2866 error_propagate(errp, local_err); 2867 } 2868 2869 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 2870 DeviceState *dev, Error **errp) 2871 { 2872 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 2873 2874 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2875 int node; 2876 2877 if (!smc->dr_lmb_enabled) { 2878 error_setg(errp, "Memory hotplug not supported for this machine"); 2879 return; 2880 } 2881 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 2882 if (*errp) { 2883 return; 2884 } 2885 if (node < 0 || node >= MAX_NODES) { 2886 error_setg(errp, "Invaild node %d", node); 2887 return; 2888 } 2889 2890 /* 2891 * Currently PowerPC kernel doesn't allow hot-adding memory to 2892 * memory-less node, but instead will silently add the memory 2893 * to the first node that has some memory. This causes two 2894 * unexpected behaviours for the user. 2895 * 2896 * - Memory gets hotplugged to a different node than what the user 2897 * specified. 2898 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 2899 * to memory-less node, a reboot will set things accordingly 2900 * and the previously hotplugged memory now ends in the right node. 2901 * This appears as if some memory moved from one node to another. 2902 * 2903 * So until kernel starts supporting memory hotplug to memory-less 2904 * nodes, just prevent such attempts upfront in QEMU. 2905 */ 2906 if (nb_numa_nodes && !numa_info[node].node_mem) { 2907 error_setg(errp, "Can't hotplug memory to memory-less node %d", 2908 node); 2909 return; 2910 } 2911 2912 spapr_memory_plug(hotplug_dev, dev, node, errp); 2913 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2914 spapr_core_plug(hotplug_dev, dev, errp); 2915 } 2916 } 2917 2918 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 2919 DeviceState *dev, Error **errp) 2920 { 2921 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 2922 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2923 2924 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2925 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 2926 spapr_memory_unplug(hotplug_dev, dev, errp); 2927 } else { 2928 error_setg(errp, "Memory hot unplug not supported for this guest"); 2929 } 2930 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2931 if (!mc->has_hotpluggable_cpus) { 2932 error_setg(errp, "CPU hot unplug not supported on this machine"); 2933 return; 2934 } 2935 spapr_core_unplug(hotplug_dev, dev, errp); 2936 } 2937 } 2938 2939 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 2940 DeviceState *dev, Error **errp) 2941 { 2942 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 2943 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 2944 2945 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2946 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 2947 spapr_memory_unplug_request(hotplug_dev, dev, errp); 2948 } else { 2949 /* NOTE: this means there is a window after guest reset, prior to 2950 * CAS negotiation, where unplug requests will fail due to the 2951 * capability not being detected yet. This is a bit different than 2952 * the case with PCI unplug, where the events will be queued and 2953 * eventually handled by the guest after boot 2954 */ 2955 error_setg(errp, "Memory hot unplug not supported for this guest"); 2956 } 2957 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2958 if (!mc->has_hotpluggable_cpus) { 2959 error_setg(errp, "CPU hot unplug not supported on this machine"); 2960 return; 2961 } 2962 spapr_core_unplug_request(hotplug_dev, dev, errp); 2963 } 2964 } 2965 2966 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 2967 DeviceState *dev, Error **errp) 2968 { 2969 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2970 spapr_core_pre_plug(hotplug_dev, dev, errp); 2971 } 2972 } 2973 2974 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 2975 DeviceState *dev) 2976 { 2977 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2978 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 2979 return HOTPLUG_HANDLER(machine); 2980 } 2981 return NULL; 2982 } 2983 2984 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index) 2985 { 2986 /* Allocate to NUMA nodes on a "socket" basis (not that concept of 2987 * socket means much for the paravirtualized PAPR platform) */ 2988 return cpu_index / smp_threads / smp_cores; 2989 } 2990 2991 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 2992 { 2993 int i; 2994 int spapr_max_cores = max_cpus / smp_threads; 2995 MachineClass *mc = MACHINE_GET_CLASS(machine); 2996 2997 if (!mc->has_hotpluggable_cpus) { 2998 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 2999 } 3000 if (machine->possible_cpus) { 3001 assert(machine->possible_cpus->len == spapr_max_cores); 3002 return machine->possible_cpus; 3003 } 3004 3005 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3006 sizeof(CPUArchId) * spapr_max_cores); 3007 machine->possible_cpus->len = spapr_max_cores; 3008 for (i = 0; i < machine->possible_cpus->len; i++) { 3009 int core_id = i * smp_threads; 3010 3011 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3012 machine->possible_cpus->cpus[i].arch_id = core_id; 3013 machine->possible_cpus->cpus[i].props.has_core_id = true; 3014 machine->possible_cpus->cpus[i].props.core_id = core_id; 3015 /* TODO: add 'has_node/node' here to describe 3016 to which node core belongs */ 3017 } 3018 return machine->possible_cpus; 3019 } 3020 3021 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3022 uint64_t *buid, hwaddr *pio, 3023 hwaddr *mmio32, hwaddr *mmio64, 3024 unsigned n_dma, uint32_t *liobns, Error **errp) 3025 { 3026 /* 3027 * New-style PHB window placement. 3028 * 3029 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3030 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3031 * windows. 3032 * 3033 * Some guest kernels can't work with MMIO windows above 1<<46 3034 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3035 * 3036 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3037 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3038 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3039 * 1TiB 64-bit MMIO windows for each PHB. 3040 */ 3041 const uint64_t base_buid = 0x800000020000000ULL; 3042 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3043 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3044 int i; 3045 3046 /* Sanity check natural alignments */ 3047 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3048 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3049 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3050 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3051 /* Sanity check bounds */ 3052 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3053 SPAPR_PCI_MEM32_WIN_SIZE); 3054 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3055 SPAPR_PCI_MEM64_WIN_SIZE); 3056 3057 if (index >= SPAPR_MAX_PHBS) { 3058 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3059 SPAPR_MAX_PHBS - 1); 3060 return; 3061 } 3062 3063 *buid = base_buid + index; 3064 for (i = 0; i < n_dma; ++i) { 3065 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3066 } 3067 3068 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3069 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3070 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3071 } 3072 3073 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3074 { 3075 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3076 3077 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3078 } 3079 3080 static void spapr_ics_resend(XICSFabric *dev) 3081 { 3082 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3083 3084 ics_resend(spapr->ics); 3085 } 3086 3087 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id) 3088 { 3089 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id); 3090 3091 return cpu ? ICP(cpu->intc) : NULL; 3092 } 3093 3094 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3095 Monitor *mon) 3096 { 3097 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3098 CPUState *cs; 3099 3100 CPU_FOREACH(cs) { 3101 PowerPCCPU *cpu = POWERPC_CPU(cs); 3102 3103 icp_pic_print_info(ICP(cpu->intc), mon); 3104 } 3105 3106 ics_pic_print_info(spapr->ics, mon); 3107 } 3108 3109 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3110 { 3111 MachineClass *mc = MACHINE_CLASS(oc); 3112 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3113 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3114 NMIClass *nc = NMI_CLASS(oc); 3115 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3116 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3117 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3118 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3119 3120 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3121 3122 /* 3123 * We set up the default / latest behaviour here. The class_init 3124 * functions for the specific versioned machine types can override 3125 * these details for backwards compatibility 3126 */ 3127 mc->init = ppc_spapr_init; 3128 mc->reset = ppc_spapr_reset; 3129 mc->block_default_type = IF_SCSI; 3130 mc->max_cpus = 1024; 3131 mc->no_parallel = 1; 3132 mc->default_boot_order = ""; 3133 mc->default_ram_size = 512 * M_BYTE; 3134 mc->kvm_type = spapr_kvm_type; 3135 mc->has_dynamic_sysbus = true; 3136 mc->pci_allow_0_address = true; 3137 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3138 hc->pre_plug = spapr_machine_device_pre_plug; 3139 hc->plug = spapr_machine_device_plug; 3140 hc->unplug = spapr_machine_device_unplug; 3141 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id; 3142 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3143 hc->unplug_request = spapr_machine_device_unplug_request; 3144 3145 smc->dr_lmb_enabled = true; 3146 smc->tcg_default_cpu = "POWER8"; 3147 mc->has_hotpluggable_cpus = true; 3148 fwc->get_dev_path = spapr_get_fw_dev_path; 3149 nc->nmi_monitor_handler = spapr_nmi; 3150 smc->phb_placement = spapr_phb_placement; 3151 vhc->hypercall = emulate_spapr_hypercall; 3152 vhc->hpt_mask = spapr_hpt_mask; 3153 vhc->map_hptes = spapr_map_hptes; 3154 vhc->unmap_hptes = spapr_unmap_hptes; 3155 vhc->store_hpte = spapr_store_hpte; 3156 vhc->get_patbe = spapr_get_patbe; 3157 xic->ics_get = spapr_ics_get; 3158 xic->ics_resend = spapr_ics_resend; 3159 xic->icp_get = spapr_icp_get; 3160 ispc->print_info = spapr_pic_print_info; 3161 /* Force NUMA node memory size to be a multiple of 3162 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3163 * in which LMBs are represented and hot-added 3164 */ 3165 mc->numa_mem_align_shift = 28; 3166 } 3167 3168 static const TypeInfo spapr_machine_info = { 3169 .name = TYPE_SPAPR_MACHINE, 3170 .parent = TYPE_MACHINE, 3171 .abstract = true, 3172 .instance_size = sizeof(sPAPRMachineState), 3173 .instance_init = spapr_machine_initfn, 3174 .instance_finalize = spapr_machine_finalizefn, 3175 .class_size = sizeof(sPAPRMachineClass), 3176 .class_init = spapr_machine_class_init, 3177 .interfaces = (InterfaceInfo[]) { 3178 { TYPE_FW_PATH_PROVIDER }, 3179 { TYPE_NMI }, 3180 { TYPE_HOTPLUG_HANDLER }, 3181 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3182 { TYPE_XICS_FABRIC }, 3183 { TYPE_INTERRUPT_STATS_PROVIDER }, 3184 { } 3185 }, 3186 }; 3187 3188 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3189 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3190 void *data) \ 3191 { \ 3192 MachineClass *mc = MACHINE_CLASS(oc); \ 3193 spapr_machine_##suffix##_class_options(mc); \ 3194 if (latest) { \ 3195 mc->alias = "pseries"; \ 3196 mc->is_default = 1; \ 3197 } \ 3198 } \ 3199 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3200 { \ 3201 MachineState *machine = MACHINE(obj); \ 3202 spapr_machine_##suffix##_instance_options(machine); \ 3203 } \ 3204 static const TypeInfo spapr_machine_##suffix##_info = { \ 3205 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3206 .parent = TYPE_SPAPR_MACHINE, \ 3207 .class_init = spapr_machine_##suffix##_class_init, \ 3208 .instance_init = spapr_machine_##suffix##_instance_init, \ 3209 }; \ 3210 static void spapr_machine_register_##suffix(void) \ 3211 { \ 3212 type_register(&spapr_machine_##suffix##_info); \ 3213 } \ 3214 type_init(spapr_machine_register_##suffix) 3215 3216 /* 3217 * pseries-2.10 3218 */ 3219 static void spapr_machine_2_10_instance_options(MachineState *machine) 3220 { 3221 } 3222 3223 static void spapr_machine_2_10_class_options(MachineClass *mc) 3224 { 3225 /* Defaults for the latest behaviour inherited from the base class */ 3226 } 3227 3228 DEFINE_SPAPR_MACHINE(2_10, "2.10", true); 3229 3230 /* 3231 * pseries-2.9 3232 */ 3233 #define SPAPR_COMPAT_2_9 \ 3234 HW_COMPAT_2_9 3235 3236 static void spapr_machine_2_9_instance_options(MachineState *machine) 3237 { 3238 spapr_machine_2_10_instance_options(machine); 3239 } 3240 3241 static void spapr_machine_2_9_class_options(MachineClass *mc) 3242 { 3243 spapr_machine_2_10_class_options(mc); 3244 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 3245 } 3246 3247 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 3248 3249 /* 3250 * pseries-2.8 3251 */ 3252 #define SPAPR_COMPAT_2_8 \ 3253 HW_COMPAT_2_8 \ 3254 { \ 3255 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3256 .property = "pcie-extended-configuration-space", \ 3257 .value = "off", \ 3258 }, 3259 3260 static void spapr_machine_2_8_instance_options(MachineState *machine) 3261 { 3262 spapr_machine_2_9_instance_options(machine); 3263 } 3264 3265 static void spapr_machine_2_8_class_options(MachineClass *mc) 3266 { 3267 spapr_machine_2_9_class_options(mc); 3268 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3269 mc->numa_mem_align_shift = 23; 3270 } 3271 3272 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3273 3274 /* 3275 * pseries-2.7 3276 */ 3277 #define SPAPR_COMPAT_2_7 \ 3278 HW_COMPAT_2_7 \ 3279 { \ 3280 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3281 .property = "mem_win_size", \ 3282 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3283 }, \ 3284 { \ 3285 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3286 .property = "mem64_win_size", \ 3287 .value = "0", \ 3288 }, \ 3289 { \ 3290 .driver = TYPE_POWERPC_CPU, \ 3291 .property = "pre-2.8-migration", \ 3292 .value = "on", \ 3293 }, \ 3294 { \ 3295 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3296 .property = "pre-2.8-migration", \ 3297 .value = "on", \ 3298 }, 3299 3300 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3301 uint64_t *buid, hwaddr *pio, 3302 hwaddr *mmio32, hwaddr *mmio64, 3303 unsigned n_dma, uint32_t *liobns, Error **errp) 3304 { 3305 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3306 const uint64_t base_buid = 0x800000020000000ULL; 3307 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3308 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3309 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3310 const uint32_t max_index = 255; 3311 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3312 3313 uint64_t ram_top = MACHINE(spapr)->ram_size; 3314 hwaddr phb0_base, phb_base; 3315 int i; 3316 3317 /* Do we have hotpluggable memory? */ 3318 if (MACHINE(spapr)->maxram_size > ram_top) { 3319 /* Can't just use maxram_size, because there may be an 3320 * alignment gap between normal and hotpluggable memory 3321 * regions */ 3322 ram_top = spapr->hotplug_memory.base + 3323 memory_region_size(&spapr->hotplug_memory.mr); 3324 } 3325 3326 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3327 3328 if (index > max_index) { 3329 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3330 max_index); 3331 return; 3332 } 3333 3334 *buid = base_buid + index; 3335 for (i = 0; i < n_dma; ++i) { 3336 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3337 } 3338 3339 phb_base = phb0_base + index * phb_spacing; 3340 *pio = phb_base + pio_offset; 3341 *mmio32 = phb_base + mmio_offset; 3342 /* 3343 * We don't set the 64-bit MMIO window, relying on the PHB's 3344 * fallback behaviour of automatically splitting a large "32-bit" 3345 * window into contiguous 32-bit and 64-bit windows 3346 */ 3347 } 3348 3349 static void spapr_machine_2_7_instance_options(MachineState *machine) 3350 { 3351 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3352 3353 spapr_machine_2_8_instance_options(machine); 3354 spapr->use_hotplug_event_source = false; 3355 } 3356 3357 static void spapr_machine_2_7_class_options(MachineClass *mc) 3358 { 3359 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3360 3361 spapr_machine_2_8_class_options(mc); 3362 smc->tcg_default_cpu = "POWER7"; 3363 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3364 smc->phb_placement = phb_placement_2_7; 3365 } 3366 3367 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3368 3369 /* 3370 * pseries-2.6 3371 */ 3372 #define SPAPR_COMPAT_2_6 \ 3373 HW_COMPAT_2_6 \ 3374 { \ 3375 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3376 .property = "ddw",\ 3377 .value = stringify(off),\ 3378 }, 3379 3380 static void spapr_machine_2_6_instance_options(MachineState *machine) 3381 { 3382 spapr_machine_2_7_instance_options(machine); 3383 } 3384 3385 static void spapr_machine_2_6_class_options(MachineClass *mc) 3386 { 3387 spapr_machine_2_7_class_options(mc); 3388 mc->has_hotpluggable_cpus = false; 3389 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3390 } 3391 3392 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3393 3394 /* 3395 * pseries-2.5 3396 */ 3397 #define SPAPR_COMPAT_2_5 \ 3398 HW_COMPAT_2_5 \ 3399 { \ 3400 .driver = "spapr-vlan", \ 3401 .property = "use-rx-buffer-pools", \ 3402 .value = "off", \ 3403 }, 3404 3405 static void spapr_machine_2_5_instance_options(MachineState *machine) 3406 { 3407 spapr_machine_2_6_instance_options(machine); 3408 } 3409 3410 static void spapr_machine_2_5_class_options(MachineClass *mc) 3411 { 3412 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3413 3414 spapr_machine_2_6_class_options(mc); 3415 smc->use_ohci_by_default = true; 3416 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3417 } 3418 3419 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3420 3421 /* 3422 * pseries-2.4 3423 */ 3424 #define SPAPR_COMPAT_2_4 \ 3425 HW_COMPAT_2_4 3426 3427 static void spapr_machine_2_4_instance_options(MachineState *machine) 3428 { 3429 spapr_machine_2_5_instance_options(machine); 3430 } 3431 3432 static void spapr_machine_2_4_class_options(MachineClass *mc) 3433 { 3434 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3435 3436 spapr_machine_2_5_class_options(mc); 3437 smc->dr_lmb_enabled = false; 3438 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3439 } 3440 3441 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3442 3443 /* 3444 * pseries-2.3 3445 */ 3446 #define SPAPR_COMPAT_2_3 \ 3447 HW_COMPAT_2_3 \ 3448 {\ 3449 .driver = "spapr-pci-host-bridge",\ 3450 .property = "dynamic-reconfiguration",\ 3451 .value = "off",\ 3452 }, 3453 3454 static void spapr_machine_2_3_instance_options(MachineState *machine) 3455 { 3456 spapr_machine_2_4_instance_options(machine); 3457 savevm_skip_section_footers(); 3458 global_state_set_optional(); 3459 savevm_skip_configuration(); 3460 } 3461 3462 static void spapr_machine_2_3_class_options(MachineClass *mc) 3463 { 3464 spapr_machine_2_4_class_options(mc); 3465 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3466 } 3467 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3468 3469 /* 3470 * pseries-2.2 3471 */ 3472 3473 #define SPAPR_COMPAT_2_2 \ 3474 HW_COMPAT_2_2 \ 3475 {\ 3476 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3477 .property = "mem_win_size",\ 3478 .value = "0x20000000",\ 3479 }, 3480 3481 static void spapr_machine_2_2_instance_options(MachineState *machine) 3482 { 3483 spapr_machine_2_3_instance_options(machine); 3484 machine->suppress_vmdesc = true; 3485 } 3486 3487 static void spapr_machine_2_2_class_options(MachineClass *mc) 3488 { 3489 spapr_machine_2_3_class_options(mc); 3490 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3491 } 3492 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3493 3494 /* 3495 * pseries-2.1 3496 */ 3497 #define SPAPR_COMPAT_2_1 \ 3498 HW_COMPAT_2_1 3499 3500 static void spapr_machine_2_1_instance_options(MachineState *machine) 3501 { 3502 spapr_machine_2_2_instance_options(machine); 3503 } 3504 3505 static void spapr_machine_2_1_class_options(MachineClass *mc) 3506 { 3507 spapr_machine_2_2_class_options(mc); 3508 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 3509 } 3510 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 3511 3512 static void spapr_machine_register_types(void) 3513 { 3514 type_register_static(&spapr_machine_info); 3515 } 3516 3517 type_init(spapr_machine_register_types) 3518