1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "sysemu/sysemu.h" 30 #include "sysemu/numa.h" 31 #include "hw/hw.h" 32 #include "qemu/log.h" 33 #include "hw/fw-path-provider.h" 34 #include "elf.h" 35 #include "net/net.h" 36 #include "sysemu/device_tree.h" 37 #include "sysemu/block-backend.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "qom/cpu.h" 47 48 #include "hw/boards.h" 49 #include "hw/ppc/ppc.h" 50 #include "hw/loader.h" 51 52 #include "hw/ppc/fdt.h" 53 #include "hw/ppc/spapr.h" 54 #include "hw/ppc/spapr_vio.h" 55 #include "hw/pci-host/spapr.h" 56 #include "hw/ppc/xics.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "hw/usb.h" 66 #include "qemu/config-file.h" 67 #include "qemu/error-report.h" 68 #include "trace.h" 69 #include "hw/nmi.h" 70 #include "hw/intc/intc.h" 71 72 #include "hw/compat.h" 73 #include "qemu/cutils.h" 74 #include "hw/ppc/spapr_cpu_core.h" 75 #include "qmp-commands.h" 76 77 #include <libfdt.h> 78 79 /* SLOF memory layout: 80 * 81 * SLOF raw image loaded at 0, copies its romfs right below the flat 82 * device-tree, then position SLOF itself 31M below that 83 * 84 * So we set FW_OVERHEAD to 40MB which should account for all of that 85 * and more 86 * 87 * We load our kernel at 4M, leaving space for SLOF initial image 88 */ 89 #define FDT_MAX_SIZE 0x100000 90 #define RTAS_MAX_SIZE 0x10000 91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 92 #define FW_MAX_SIZE 0x400000 93 #define FW_FILE_NAME "slof.bin" 94 #define FW_OVERHEAD 0x2800000 95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 96 97 #define MIN_RMA_SLOF 128UL 98 99 #define PHANDLE_XICP 0x00001111 100 101 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 102 103 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 104 const char *type_ics, 105 int nr_irqs, Error **errp) 106 { 107 Error *local_err = NULL; 108 Object *obj; 109 110 obj = object_new(type_ics); 111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 113 &error_abort); 114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 115 if (local_err) { 116 goto error; 117 } 118 object_property_set_bool(obj, true, "realized", &local_err); 119 if (local_err) { 120 goto error; 121 } 122 123 return ICS_SIMPLE(obj); 124 125 error: 126 error_propagate(errp, local_err); 127 return NULL; 128 } 129 130 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 131 { 132 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 133 134 if (kvm_enabled()) { 135 if (machine_kernel_irqchip_allowed(machine) && 136 !xics_kvm_init(spapr, errp)) { 137 spapr->icp_type = TYPE_KVM_ICP; 138 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 139 } 140 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 141 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 142 return; 143 } 144 } 145 146 if (!spapr->ics) { 147 xics_spapr_init(spapr); 148 spapr->icp_type = TYPE_ICP; 149 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 150 if (!spapr->ics) { 151 return; 152 } 153 } 154 } 155 156 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 157 int smt_threads) 158 { 159 int i, ret = 0; 160 uint32_t servers_prop[smt_threads]; 161 uint32_t gservers_prop[smt_threads * 2]; 162 int index = ppc_get_vcpu_dt_id(cpu); 163 164 if (cpu->compat_pvr) { 165 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 166 if (ret < 0) { 167 return ret; 168 } 169 } 170 171 /* Build interrupt servers and gservers properties */ 172 for (i = 0; i < smt_threads; i++) { 173 servers_prop[i] = cpu_to_be32(index + i); 174 /* Hack, direct the group queues back to cpu 0 */ 175 gservers_prop[i*2] = cpu_to_be32(index + i); 176 gservers_prop[i*2 + 1] = 0; 177 } 178 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 179 servers_prop, sizeof(servers_prop)); 180 if (ret < 0) { 181 return ret; 182 } 183 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 184 gservers_prop, sizeof(gservers_prop)); 185 186 return ret; 187 } 188 189 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 190 { 191 int index = ppc_get_vcpu_dt_id(cpu); 192 uint32_t associativity[] = {cpu_to_be32(0x5), 193 cpu_to_be32(0x0), 194 cpu_to_be32(0x0), 195 cpu_to_be32(0x0), 196 cpu_to_be32(cpu->node_id), 197 cpu_to_be32(index)}; 198 199 /* Advertise NUMA via ibm,associativity */ 200 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 201 sizeof(associativity)); 202 } 203 204 /* Populate the "ibm,pa-features" property */ 205 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset, 206 bool legacy_guest) 207 { 208 uint8_t pa_features_206[] = { 6, 0, 209 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 210 uint8_t pa_features_207[] = { 24, 0, 211 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 212 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 213 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 214 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 215 uint8_t pa_features_300[] = { 66, 0, 216 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 217 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 219 /* 6: DS207 */ 220 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 221 /* 16: Vector */ 222 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 223 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 224 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 225 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 226 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 227 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 228 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 229 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 231 /* 42: PM, 44: PC RA, 46: SC vec'd */ 232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 233 /* 48: SIMD, 50: QP BFP, 52: String */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 235 /* 54: DecFP, 56: DecI, 58: SHA */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 237 /* 60: NM atomic, 62: RNG */ 238 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 239 }; 240 uint8_t *pa_features; 241 size_t pa_size; 242 243 switch (POWERPC_MMU_VER(env->mmu_model)) { 244 case POWERPC_MMU_VER_2_06: 245 pa_features = pa_features_206; 246 pa_size = sizeof(pa_features_206); 247 break; 248 case POWERPC_MMU_VER_2_07: 249 pa_features = pa_features_207; 250 pa_size = sizeof(pa_features_207); 251 break; 252 case POWERPC_MMU_VER_3_00: 253 pa_features = pa_features_300; 254 pa_size = sizeof(pa_features_300); 255 break; 256 default: 257 return; 258 } 259 260 if (env->ci_large_pages) { 261 /* 262 * Note: we keep CI large pages off by default because a 64K capable 263 * guest provisioned with large pages might otherwise try to map a qemu 264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 265 * even if that qemu runs on a 4k host. 266 * We dd this bit back here if we are confident this is not an issue 267 */ 268 pa_features[3] |= 0x20; 269 } 270 if (kvmppc_has_cap_htm() && pa_size > 24) { 271 pa_features[24] |= 0x80; /* Transactional memory support */ 272 } 273 if (legacy_guest && pa_size > 40) { 274 /* Workaround for broken kernels that attempt (guest) radix 275 * mode when they can't handle it, if they see the radix bit set 276 * in pa-features. So hide it from them. */ 277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 278 } 279 280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 281 } 282 283 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 284 { 285 int ret = 0, offset, cpus_offset; 286 CPUState *cs; 287 char cpu_model[32]; 288 int smt = kvmppc_smt_threads(); 289 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 290 291 CPU_FOREACH(cs) { 292 PowerPCCPU *cpu = POWERPC_CPU(cs); 293 CPUPPCState *env = &cpu->env; 294 DeviceClass *dc = DEVICE_GET_CLASS(cs); 295 int index = ppc_get_vcpu_dt_id(cpu); 296 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 297 298 if ((index % smt) != 0) { 299 continue; 300 } 301 302 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 303 304 cpus_offset = fdt_path_offset(fdt, "/cpus"); 305 if (cpus_offset < 0) { 306 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), 307 "cpus"); 308 if (cpus_offset < 0) { 309 return cpus_offset; 310 } 311 } 312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 313 if (offset < 0) { 314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 315 if (offset < 0) { 316 return offset; 317 } 318 } 319 320 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 321 pft_size_prop, sizeof(pft_size_prop)); 322 if (ret < 0) { 323 return ret; 324 } 325 326 if (nb_numa_nodes > 1) { 327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 328 if (ret < 0) { 329 return ret; 330 } 331 } 332 333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 334 if (ret < 0) { 335 return ret; 336 } 337 338 spapr_populate_pa_features(env, fdt, offset, 339 spapr->cas_legacy_guest_workaround); 340 } 341 return ret; 342 } 343 344 static hwaddr spapr_node0_size(void) 345 { 346 MachineState *machine = MACHINE(qdev_get_machine()); 347 348 if (nb_numa_nodes) { 349 int i; 350 for (i = 0; i < nb_numa_nodes; ++i) { 351 if (numa_info[i].node_mem) { 352 return MIN(pow2floor(numa_info[i].node_mem), 353 machine->ram_size); 354 } 355 } 356 } 357 return machine->ram_size; 358 } 359 360 static void add_str(GString *s, const gchar *s1) 361 { 362 g_string_append_len(s, s1, strlen(s1) + 1); 363 } 364 365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 366 hwaddr size) 367 { 368 uint32_t associativity[] = { 369 cpu_to_be32(0x4), /* length */ 370 cpu_to_be32(0x0), cpu_to_be32(0x0), 371 cpu_to_be32(0x0), cpu_to_be32(nodeid) 372 }; 373 char mem_name[32]; 374 uint64_t mem_reg_property[2]; 375 int off; 376 377 mem_reg_property[0] = cpu_to_be64(start); 378 mem_reg_property[1] = cpu_to_be64(size); 379 380 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 381 off = fdt_add_subnode(fdt, 0, mem_name); 382 _FDT(off); 383 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 384 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 385 sizeof(mem_reg_property)))); 386 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 387 sizeof(associativity)))); 388 return off; 389 } 390 391 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 392 { 393 MachineState *machine = MACHINE(spapr); 394 hwaddr mem_start, node_size; 395 int i, nb_nodes = nb_numa_nodes; 396 NodeInfo *nodes = numa_info; 397 NodeInfo ramnode; 398 399 /* No NUMA nodes, assume there is just one node with whole RAM */ 400 if (!nb_numa_nodes) { 401 nb_nodes = 1; 402 ramnode.node_mem = machine->ram_size; 403 nodes = &ramnode; 404 } 405 406 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 407 if (!nodes[i].node_mem) { 408 continue; 409 } 410 if (mem_start >= machine->ram_size) { 411 node_size = 0; 412 } else { 413 node_size = nodes[i].node_mem; 414 if (node_size > machine->ram_size - mem_start) { 415 node_size = machine->ram_size - mem_start; 416 } 417 } 418 if (!mem_start) { 419 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 sPAPRMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = ppc_get_vcpu_dt_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 458 sPAPRDRConnector *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 error_report("Warning: Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 error_report("Warning: Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 504 } 505 506 if (env->mmu_model & POWERPC_MMU_1TSEG) { 507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 508 segs, sizeof(segs)))); 509 } 510 511 /* Advertise VMX/VSX (vector extensions) if available 512 * 0 / no property == no vector extensions 513 * 1 == VMX / Altivec available 514 * 2 == VSX available */ 515 if (env->insns_flags & PPC_ALTIVEC) { 516 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 517 518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 519 } 520 521 /* Advertise DFP (Decimal Floating Point) if available 522 * 0 / no property == no DFP 523 * 1 == DFP available */ 524 if (env->insns_flags2 & PPC2_DFP) { 525 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 526 } 527 528 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 529 sizeof(page_sizes_prop)); 530 if (page_sizes_prop_size) { 531 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 532 page_sizes_prop, page_sizes_prop_size))); 533 } 534 535 spapr_populate_pa_features(env, fdt, offset, false); 536 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 538 cs->cpu_index / vcpus_per_socket))); 539 540 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 541 pft_size_prop, sizeof(pft_size_prop)))); 542 543 if (nb_numa_nodes > 1) { 544 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 545 } 546 547 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 548 549 if (pcc->radix_page_info) { 550 for (i = 0; i < pcc->radix_page_info->count; i++) { 551 radix_AP_encodings[i] = 552 cpu_to_be32(pcc->radix_page_info->entries[i]); 553 } 554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 555 radix_AP_encodings, 556 pcc->radix_page_info->count * 557 sizeof(radix_AP_encodings[0])))); 558 } 559 } 560 561 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 562 { 563 CPUState *cs; 564 int cpus_offset; 565 char *nodename; 566 int smt = kvmppc_smt_threads(); 567 568 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 569 _FDT(cpus_offset); 570 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 571 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 572 573 /* 574 * We walk the CPUs in reverse order to ensure that CPU DT nodes 575 * created by fdt_add_subnode() end up in the right order in FDT 576 * for the guest kernel the enumerate the CPUs correctly. 577 */ 578 CPU_FOREACH_REVERSE(cs) { 579 PowerPCCPU *cpu = POWERPC_CPU(cs); 580 int index = ppc_get_vcpu_dt_id(cpu); 581 DeviceClass *dc = DEVICE_GET_CLASS(cs); 582 int offset; 583 584 if ((index % smt) != 0) { 585 continue; 586 } 587 588 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 589 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 590 g_free(nodename); 591 _FDT(offset); 592 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 593 } 594 595 } 596 597 /* 598 * Adds ibm,dynamic-reconfiguration-memory node. 599 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 600 * of this device tree node. 601 */ 602 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 603 { 604 MachineState *machine = MACHINE(spapr); 605 int ret, i, offset; 606 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 607 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 608 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 609 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 610 memory_region_size(&spapr->hotplug_memory.mr)) / 611 lmb_size; 612 uint32_t *int_buf, *cur_index, buf_len; 613 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 614 615 /* 616 * Don't create the node if there is no hotpluggable memory 617 */ 618 if (machine->ram_size == machine->maxram_size) { 619 return 0; 620 } 621 622 /* 623 * Allocate enough buffer size to fit in ibm,dynamic-memory 624 * or ibm,associativity-lookup-arrays 625 */ 626 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 627 * sizeof(uint32_t); 628 cur_index = int_buf = g_malloc0(buf_len); 629 630 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 631 632 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 633 sizeof(prop_lmb_size)); 634 if (ret < 0) { 635 goto out; 636 } 637 638 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 639 if (ret < 0) { 640 goto out; 641 } 642 643 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 644 if (ret < 0) { 645 goto out; 646 } 647 648 /* ibm,dynamic-memory */ 649 int_buf[0] = cpu_to_be32(nr_lmbs); 650 cur_index++; 651 for (i = 0; i < nr_lmbs; i++) { 652 uint64_t addr = i * lmb_size; 653 uint32_t *dynamic_memory = cur_index; 654 655 if (i >= hotplug_lmb_start) { 656 sPAPRDRConnector *drc; 657 658 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 659 g_assert(drc); 660 661 dynamic_memory[0] = cpu_to_be32(addr >> 32); 662 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 663 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 664 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 665 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 666 if (memory_region_present(get_system_memory(), addr)) { 667 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 668 } else { 669 dynamic_memory[5] = cpu_to_be32(0); 670 } 671 } else { 672 /* 673 * LMB information for RMA, boot time RAM and gap b/n RAM and 674 * hotplug memory region -- all these are marked as reserved 675 * and as having no valid DRC. 676 */ 677 dynamic_memory[0] = cpu_to_be32(addr >> 32); 678 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 679 dynamic_memory[2] = cpu_to_be32(0); 680 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 681 dynamic_memory[4] = cpu_to_be32(-1); 682 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 683 SPAPR_LMB_FLAGS_DRC_INVALID); 684 } 685 686 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 687 } 688 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 689 if (ret < 0) { 690 goto out; 691 } 692 693 /* ibm,associativity-lookup-arrays */ 694 cur_index = int_buf; 695 int_buf[0] = cpu_to_be32(nr_nodes); 696 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 697 cur_index += 2; 698 for (i = 0; i < nr_nodes; i++) { 699 uint32_t associativity[] = { 700 cpu_to_be32(0x0), 701 cpu_to_be32(0x0), 702 cpu_to_be32(0x0), 703 cpu_to_be32(i) 704 }; 705 memcpy(cur_index, associativity, sizeof(associativity)); 706 cur_index += 4; 707 } 708 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 709 (cur_index - int_buf) * sizeof(uint32_t)); 710 out: 711 g_free(int_buf); 712 return ret; 713 } 714 715 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 716 sPAPROptionVector *ov5_updates) 717 { 718 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 719 int ret = 0, offset; 720 721 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 722 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 723 g_assert(smc->dr_lmb_enabled); 724 ret = spapr_populate_drconf_memory(spapr, fdt); 725 if (ret) { 726 goto out; 727 } 728 } 729 730 offset = fdt_path_offset(fdt, "/chosen"); 731 if (offset < 0) { 732 offset = fdt_add_subnode(fdt, 0, "chosen"); 733 if (offset < 0) { 734 return offset; 735 } 736 } 737 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 738 "ibm,architecture-vec-5"); 739 740 out: 741 return ret; 742 } 743 744 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 745 target_ulong addr, target_ulong size, 746 sPAPROptionVector *ov5_updates) 747 { 748 void *fdt, *fdt_skel; 749 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 750 751 size -= sizeof(hdr); 752 753 /* Create sceleton */ 754 fdt_skel = g_malloc0(size); 755 _FDT((fdt_create(fdt_skel, size))); 756 _FDT((fdt_begin_node(fdt_skel, ""))); 757 _FDT((fdt_end_node(fdt_skel))); 758 _FDT((fdt_finish(fdt_skel))); 759 fdt = g_malloc0(size); 760 _FDT((fdt_open_into(fdt_skel, fdt, size))); 761 g_free(fdt_skel); 762 763 /* Fixup cpu nodes */ 764 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 765 766 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 767 return -1; 768 } 769 770 /* Pack resulting tree */ 771 _FDT((fdt_pack(fdt))); 772 773 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 774 trace_spapr_cas_failed(size); 775 return -1; 776 } 777 778 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 779 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 780 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 781 g_free(fdt); 782 783 return 0; 784 } 785 786 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 787 { 788 int rtas; 789 GString *hypertas = g_string_sized_new(256); 790 GString *qemu_hypertas = g_string_sized_new(256); 791 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 792 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 793 memory_region_size(&spapr->hotplug_memory.mr); 794 uint32_t lrdr_capacity[] = { 795 cpu_to_be32(max_hotplug_addr >> 32), 796 cpu_to_be32(max_hotplug_addr & 0xffffffff), 797 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 798 cpu_to_be32(max_cpus / smp_threads), 799 }; 800 801 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 802 803 /* hypertas */ 804 add_str(hypertas, "hcall-pft"); 805 add_str(hypertas, "hcall-term"); 806 add_str(hypertas, "hcall-dabr"); 807 add_str(hypertas, "hcall-interrupt"); 808 add_str(hypertas, "hcall-tce"); 809 add_str(hypertas, "hcall-vio"); 810 add_str(hypertas, "hcall-splpar"); 811 add_str(hypertas, "hcall-bulk"); 812 add_str(hypertas, "hcall-set-mode"); 813 add_str(hypertas, "hcall-sprg0"); 814 add_str(hypertas, "hcall-copy"); 815 add_str(hypertas, "hcall-debug"); 816 add_str(qemu_hypertas, "hcall-memop1"); 817 818 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 819 add_str(hypertas, "hcall-multi-tce"); 820 } 821 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 822 hypertas->str, hypertas->len)); 823 g_string_free(hypertas, TRUE); 824 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 825 qemu_hypertas->str, qemu_hypertas->len)); 826 g_string_free(qemu_hypertas, TRUE); 827 828 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 829 refpoints, sizeof(refpoints))); 830 831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 832 RTAS_ERROR_LOG_MAX)); 833 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 834 RTAS_EVENT_SCAN_RATE)); 835 836 if (msi_nonbroken) { 837 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 838 } 839 840 /* 841 * According to PAPR, rtas ibm,os-term does not guarantee a return 842 * back to the guest cpu. 843 * 844 * While an additional ibm,extended-os-term property indicates 845 * that rtas call return will always occur. Set this property. 846 */ 847 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 848 849 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 850 lrdr_capacity, sizeof(lrdr_capacity))); 851 852 spapr_dt_rtas_tokens(fdt, rtas); 853 } 854 855 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 856 * that the guest may request and thus the valid values for bytes 24..26 of 857 * option vector 5: */ 858 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 859 { 860 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 861 862 char val[2 * 3] = { 863 24, 0x00, /* Hash/Radix, filled in below. */ 864 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 865 26, 0x40, /* Radix options: GTSE == yes. */ 866 }; 867 868 if (kvm_enabled()) { 869 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 870 val[1] = 0x80; /* OV5_MMU_BOTH */ 871 } else if (kvmppc_has_cap_mmu_radix()) { 872 val[1] = 0x40; /* OV5_MMU_RADIX_300 */ 873 } else { 874 val[1] = 0x00; /* Hash */ 875 } 876 } else { 877 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) { 878 /* V3 MMU supports both hash and radix (with dynamic switching) */ 879 val[1] = 0xC0; 880 } else { 881 /* Otherwise we can only do hash */ 882 val[1] = 0x00; 883 } 884 } 885 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 886 val, sizeof(val))); 887 } 888 889 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 890 { 891 MachineState *machine = MACHINE(spapr); 892 int chosen; 893 const char *boot_device = machine->boot_order; 894 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 895 size_t cb = 0; 896 char *bootlist = get_boot_devices_list(&cb, true); 897 898 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 899 900 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 901 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 902 spapr->initrd_base)); 903 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 904 spapr->initrd_base + spapr->initrd_size)); 905 906 if (spapr->kernel_size) { 907 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 908 cpu_to_be64(spapr->kernel_size) }; 909 910 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 911 &kprop, sizeof(kprop))); 912 if (spapr->kernel_le) { 913 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 914 } 915 } 916 if (boot_menu) { 917 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 918 } 919 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 920 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 921 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 922 923 if (cb && bootlist) { 924 int i; 925 926 for (i = 0; i < cb; i++) { 927 if (bootlist[i] == '\n') { 928 bootlist[i] = ' '; 929 } 930 } 931 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 932 } 933 934 if (boot_device && strlen(boot_device)) { 935 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 936 } 937 938 if (!spapr->has_graphics && stdout_path) { 939 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 940 } 941 942 spapr_dt_ov5_platform_support(fdt, chosen); 943 944 g_free(stdout_path); 945 g_free(bootlist); 946 } 947 948 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 949 { 950 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 951 * KVM to work under pHyp with some guest co-operation */ 952 int hypervisor; 953 uint8_t hypercall[16]; 954 955 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 956 /* indicate KVM hypercall interface */ 957 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 958 if (kvmppc_has_cap_fixup_hcalls()) { 959 /* 960 * Older KVM versions with older guest kernels were broken 961 * with the magic page, don't allow the guest to map it. 962 */ 963 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 964 sizeof(hypercall))) { 965 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 966 hypercall, sizeof(hypercall))); 967 } 968 } 969 } 970 971 static void *spapr_build_fdt(sPAPRMachineState *spapr, 972 hwaddr rtas_addr, 973 hwaddr rtas_size) 974 { 975 MachineState *machine = MACHINE(qdev_get_machine()); 976 MachineClass *mc = MACHINE_GET_CLASS(machine); 977 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 978 int ret; 979 void *fdt; 980 sPAPRPHBState *phb; 981 char *buf; 982 int smt = kvmppc_smt_threads(); 983 984 fdt = g_malloc0(FDT_MAX_SIZE); 985 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 986 987 /* Root node */ 988 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 989 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 990 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 991 992 /* 993 * Add info to guest to indentify which host is it being run on 994 * and what is the uuid of the guest 995 */ 996 if (kvmppc_get_host_model(&buf)) { 997 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 998 g_free(buf); 999 } 1000 if (kvmppc_get_host_serial(&buf)) { 1001 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1002 g_free(buf); 1003 } 1004 1005 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1006 1007 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1008 if (qemu_uuid_set) { 1009 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1010 } 1011 g_free(buf); 1012 1013 if (qemu_get_vm_name()) { 1014 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1015 qemu_get_vm_name())); 1016 } 1017 1018 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1019 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1020 1021 /* /interrupt controller */ 1022 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP); 1023 1024 ret = spapr_populate_memory(spapr, fdt); 1025 if (ret < 0) { 1026 error_report("couldn't setup memory nodes in fdt"); 1027 exit(1); 1028 } 1029 1030 /* /vdevice */ 1031 spapr_dt_vdevice(spapr->vio_bus, fdt); 1032 1033 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1034 ret = spapr_rng_populate_dt(fdt); 1035 if (ret < 0) { 1036 error_report("could not set up rng device in the fdt"); 1037 exit(1); 1038 } 1039 } 1040 1041 QLIST_FOREACH(phb, &spapr->phbs, list) { 1042 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1043 if (ret < 0) { 1044 error_report("couldn't setup PCI devices in fdt"); 1045 exit(1); 1046 } 1047 } 1048 1049 /* cpus */ 1050 spapr_populate_cpus_dt_node(fdt, spapr); 1051 1052 if (smc->dr_lmb_enabled) { 1053 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1054 } 1055 1056 if (mc->has_hotpluggable_cpus) { 1057 int offset = fdt_path_offset(fdt, "/cpus"); 1058 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1059 SPAPR_DR_CONNECTOR_TYPE_CPU); 1060 if (ret < 0) { 1061 error_report("Couldn't set up CPU DR device tree properties"); 1062 exit(1); 1063 } 1064 } 1065 1066 /* /event-sources */ 1067 spapr_dt_events(spapr, fdt); 1068 1069 /* /rtas */ 1070 spapr_dt_rtas(spapr, fdt); 1071 1072 /* /chosen */ 1073 spapr_dt_chosen(spapr, fdt); 1074 1075 /* /hypervisor */ 1076 if (kvm_enabled()) { 1077 spapr_dt_hypervisor(spapr, fdt); 1078 } 1079 1080 /* Build memory reserve map */ 1081 if (spapr->kernel_size) { 1082 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1083 } 1084 if (spapr->initrd_size) { 1085 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1086 } 1087 1088 /* ibm,client-architecture-support updates */ 1089 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1090 if (ret < 0) { 1091 error_report("couldn't setup CAS properties fdt"); 1092 exit(1); 1093 } 1094 1095 return fdt; 1096 } 1097 1098 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1099 { 1100 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1101 } 1102 1103 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1104 PowerPCCPU *cpu) 1105 { 1106 CPUPPCState *env = &cpu->env; 1107 1108 /* The TCG path should also be holding the BQL at this point */ 1109 g_assert(qemu_mutex_iothread_locked()); 1110 1111 if (msr_pr) { 1112 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1113 env->gpr[3] = H_PRIVILEGE; 1114 } else { 1115 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1116 } 1117 } 1118 1119 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1120 { 1121 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1122 1123 return spapr->patb_entry; 1124 } 1125 1126 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1127 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1128 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1129 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1130 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1131 1132 /* 1133 * Get the fd to access the kernel htab, re-opening it if necessary 1134 */ 1135 static int get_htab_fd(sPAPRMachineState *spapr) 1136 { 1137 if (spapr->htab_fd >= 0) { 1138 return spapr->htab_fd; 1139 } 1140 1141 spapr->htab_fd = kvmppc_get_htab_fd(false); 1142 if (spapr->htab_fd < 0) { 1143 error_report("Unable to open fd for reading hash table from KVM: %s", 1144 strerror(errno)); 1145 } 1146 1147 return spapr->htab_fd; 1148 } 1149 1150 void close_htab_fd(sPAPRMachineState *spapr) 1151 { 1152 if (spapr->htab_fd >= 0) { 1153 close(spapr->htab_fd); 1154 } 1155 spapr->htab_fd = -1; 1156 } 1157 1158 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1159 { 1160 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1161 1162 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1163 } 1164 1165 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1166 hwaddr ptex, int n) 1167 { 1168 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1169 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1170 1171 if (!spapr->htab) { 1172 /* 1173 * HTAB is controlled by KVM. Fetch into temporary buffer 1174 */ 1175 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1176 kvmppc_read_hptes(hptes, ptex, n); 1177 return hptes; 1178 } 1179 1180 /* 1181 * HTAB is controlled by QEMU. Just point to the internally 1182 * accessible PTEG. 1183 */ 1184 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1185 } 1186 1187 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1188 const ppc_hash_pte64_t *hptes, 1189 hwaddr ptex, int n) 1190 { 1191 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1192 1193 if (!spapr->htab) { 1194 g_free((void *)hptes); 1195 } 1196 1197 /* Nothing to do for qemu managed HPT */ 1198 } 1199 1200 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1201 uint64_t pte0, uint64_t pte1) 1202 { 1203 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1204 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1205 1206 if (!spapr->htab) { 1207 kvmppc_write_hpte(ptex, pte0, pte1); 1208 } else { 1209 stq_p(spapr->htab + offset, pte0); 1210 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1211 } 1212 } 1213 1214 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1215 { 1216 int shift; 1217 1218 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1219 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1220 * that's much more than is needed for Linux guests */ 1221 shift = ctz64(pow2ceil(ramsize)) - 7; 1222 shift = MAX(shift, 18); /* Minimum architected size */ 1223 shift = MIN(shift, 46); /* Maximum architected size */ 1224 return shift; 1225 } 1226 1227 void spapr_free_hpt(sPAPRMachineState *spapr) 1228 { 1229 g_free(spapr->htab); 1230 spapr->htab = NULL; 1231 spapr->htab_shift = 0; 1232 close_htab_fd(spapr); 1233 } 1234 1235 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1236 Error **errp) 1237 { 1238 long rc; 1239 1240 /* Clean up any HPT info from a previous boot */ 1241 spapr_free_hpt(spapr); 1242 1243 rc = kvmppc_reset_htab(shift); 1244 if (rc < 0) { 1245 /* kernel-side HPT needed, but couldn't allocate one */ 1246 error_setg_errno(errp, errno, 1247 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1248 shift); 1249 /* This is almost certainly fatal, but if the caller really 1250 * wants to carry on with shift == 0, it's welcome to try */ 1251 } else if (rc > 0) { 1252 /* kernel-side HPT allocated */ 1253 if (rc != shift) { 1254 error_setg(errp, 1255 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1256 shift, rc); 1257 } 1258 1259 spapr->htab_shift = shift; 1260 spapr->htab = NULL; 1261 } else { 1262 /* kernel-side HPT not needed, allocate in userspace instead */ 1263 size_t size = 1ULL << shift; 1264 int i; 1265 1266 spapr->htab = qemu_memalign(size, size); 1267 if (!spapr->htab) { 1268 error_setg_errno(errp, errno, 1269 "Could not allocate HPT of order %d", shift); 1270 return; 1271 } 1272 1273 memset(spapr->htab, 0, size); 1274 spapr->htab_shift = shift; 1275 1276 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1277 DIRTY_HPTE(HPTE(spapr->htab, i)); 1278 } 1279 } 1280 } 1281 1282 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1283 { 1284 spapr_reallocate_hpt(spapr, 1285 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size), 1286 &error_fatal); 1287 if (spapr->vrma_adjust) { 1288 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(), 1289 spapr->htab_shift); 1290 } 1291 /* We're setting up a hash table, so that means we're not radix */ 1292 spapr->patb_entry = 0; 1293 } 1294 1295 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1296 { 1297 bool matched = false; 1298 1299 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1300 matched = true; 1301 } 1302 1303 if (!matched) { 1304 error_report("Device %s is not supported by this machine yet.", 1305 qdev_fw_name(DEVICE(sbdev))); 1306 exit(1); 1307 } 1308 } 1309 1310 static void ppc_spapr_reset(void) 1311 { 1312 MachineState *machine = MACHINE(qdev_get_machine()); 1313 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1314 PowerPCCPU *first_ppc_cpu; 1315 uint32_t rtas_limit; 1316 hwaddr rtas_addr, fdt_addr; 1317 void *fdt; 1318 int rc; 1319 1320 /* Check for unknown sysbus devices */ 1321 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1322 1323 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) { 1324 /* If using KVM with radix mode available, VCPUs can be started 1325 * without a HPT because KVM will start them in radix mode. 1326 * Set the GR bit in PATB so that we know there is no HPT. */ 1327 spapr->patb_entry = PATBE1_GR; 1328 } else { 1329 spapr->patb_entry = 0; 1330 spapr_setup_hpt_and_vrma(spapr); 1331 } 1332 1333 qemu_devices_reset(); 1334 1335 /* 1336 * We place the device tree and RTAS just below either the top of the RMA, 1337 * or just below 2GB, whichever is lowere, so that it can be 1338 * processed with 32-bit real mode code if necessary 1339 */ 1340 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1341 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1342 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1343 1344 /* if this reset wasn't generated by CAS, we should reset our 1345 * negotiated options and start from scratch */ 1346 if (!spapr->cas_reboot) { 1347 spapr_ovec_cleanup(spapr->ov5_cas); 1348 spapr->ov5_cas = spapr_ovec_new(); 1349 1350 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1351 } 1352 1353 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1354 1355 spapr_load_rtas(spapr, fdt, rtas_addr); 1356 1357 rc = fdt_pack(fdt); 1358 1359 /* Should only fail if we've built a corrupted tree */ 1360 assert(rc == 0); 1361 1362 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1363 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1364 fdt_totalsize(fdt), FDT_MAX_SIZE); 1365 exit(1); 1366 } 1367 1368 /* Load the fdt */ 1369 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1370 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1371 g_free(fdt); 1372 1373 /* Set up the entry state */ 1374 first_ppc_cpu = POWERPC_CPU(first_cpu); 1375 first_ppc_cpu->env.gpr[3] = fdt_addr; 1376 first_ppc_cpu->env.gpr[5] = 0; 1377 first_cpu->halted = 0; 1378 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1379 1380 spapr->cas_reboot = false; 1381 } 1382 1383 static void spapr_create_nvram(sPAPRMachineState *spapr) 1384 { 1385 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1386 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1387 1388 if (dinfo) { 1389 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1390 &error_fatal); 1391 } 1392 1393 qdev_init_nofail(dev); 1394 1395 spapr->nvram = (struct sPAPRNVRAM *)dev; 1396 } 1397 1398 static void spapr_rtc_create(sPAPRMachineState *spapr) 1399 { 1400 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1401 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1402 &error_fatal); 1403 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1404 &error_fatal); 1405 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1406 "date", &error_fatal); 1407 } 1408 1409 /* Returns whether we want to use VGA or not */ 1410 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1411 { 1412 switch (vga_interface_type) { 1413 case VGA_NONE: 1414 return false; 1415 case VGA_DEVICE: 1416 return true; 1417 case VGA_STD: 1418 case VGA_VIRTIO: 1419 return pci_vga_init(pci_bus) != NULL; 1420 default: 1421 error_setg(errp, 1422 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1423 return false; 1424 } 1425 } 1426 1427 static int spapr_post_load(void *opaque, int version_id) 1428 { 1429 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1430 int err = 0; 1431 1432 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1433 CPUState *cs; 1434 CPU_FOREACH(cs) { 1435 PowerPCCPU *cpu = POWERPC_CPU(cs); 1436 icp_resend(ICP(cpu->intc)); 1437 } 1438 } 1439 1440 /* In earlier versions, there was no separate qdev for the PAPR 1441 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1442 * So when migrating from those versions, poke the incoming offset 1443 * value into the RTC device */ 1444 if (version_id < 3) { 1445 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1446 } 1447 1448 if (spapr->patb_entry) { 1449 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1450 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1451 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1452 1453 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1454 if (err) { 1455 error_report("Process table config unsupported by the host"); 1456 return -EINVAL; 1457 } 1458 } 1459 1460 return err; 1461 } 1462 1463 static bool version_before_3(void *opaque, int version_id) 1464 { 1465 return version_id < 3; 1466 } 1467 1468 static bool spapr_ov5_cas_needed(void *opaque) 1469 { 1470 sPAPRMachineState *spapr = opaque; 1471 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1472 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1473 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1474 bool cas_needed; 1475 1476 /* Prior to the introduction of sPAPROptionVector, we had two option 1477 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1478 * Both of these options encode machine topology into the device-tree 1479 * in such a way that the now-booted OS should still be able to interact 1480 * appropriately with QEMU regardless of what options were actually 1481 * negotiatied on the source side. 1482 * 1483 * As such, we can avoid migrating the CAS-negotiated options if these 1484 * are the only options available on the current machine/platform. 1485 * Since these are the only options available for pseries-2.7 and 1486 * earlier, this allows us to maintain old->new/new->old migration 1487 * compatibility. 1488 * 1489 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1490 * via default pseries-2.8 machines and explicit command-line parameters. 1491 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1492 * of the actual CAS-negotiated values to continue working properly. For 1493 * example, availability of memory unplug depends on knowing whether 1494 * OV5_HP_EVT was negotiated via CAS. 1495 * 1496 * Thus, for any cases where the set of available CAS-negotiatable 1497 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1498 * include the CAS-negotiated options in the migration stream. 1499 */ 1500 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1501 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1502 1503 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1504 * the mask itself since in the future it's possible "legacy" bits may be 1505 * removed via machine options, which could generate a false positive 1506 * that breaks migration. 1507 */ 1508 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1509 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1510 1511 spapr_ovec_cleanup(ov5_mask); 1512 spapr_ovec_cleanup(ov5_legacy); 1513 spapr_ovec_cleanup(ov5_removed); 1514 1515 return cas_needed; 1516 } 1517 1518 static const VMStateDescription vmstate_spapr_ov5_cas = { 1519 .name = "spapr_option_vector_ov5_cas", 1520 .version_id = 1, 1521 .minimum_version_id = 1, 1522 .needed = spapr_ov5_cas_needed, 1523 .fields = (VMStateField[]) { 1524 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1525 vmstate_spapr_ovec, sPAPROptionVector), 1526 VMSTATE_END_OF_LIST() 1527 }, 1528 }; 1529 1530 static bool spapr_patb_entry_needed(void *opaque) 1531 { 1532 sPAPRMachineState *spapr = opaque; 1533 1534 return !!spapr->patb_entry; 1535 } 1536 1537 static const VMStateDescription vmstate_spapr_patb_entry = { 1538 .name = "spapr_patb_entry", 1539 .version_id = 1, 1540 .minimum_version_id = 1, 1541 .needed = spapr_patb_entry_needed, 1542 .fields = (VMStateField[]) { 1543 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1544 VMSTATE_END_OF_LIST() 1545 }, 1546 }; 1547 1548 static const VMStateDescription vmstate_spapr = { 1549 .name = "spapr", 1550 .version_id = 3, 1551 .minimum_version_id = 1, 1552 .post_load = spapr_post_load, 1553 .fields = (VMStateField[]) { 1554 /* used to be @next_irq */ 1555 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1556 1557 /* RTC offset */ 1558 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1559 1560 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1561 VMSTATE_END_OF_LIST() 1562 }, 1563 .subsections = (const VMStateDescription*[]) { 1564 &vmstate_spapr_ov5_cas, 1565 &vmstate_spapr_patb_entry, 1566 NULL 1567 } 1568 }; 1569 1570 static int htab_save_setup(QEMUFile *f, void *opaque) 1571 { 1572 sPAPRMachineState *spapr = opaque; 1573 1574 /* "Iteration" header */ 1575 if (!spapr->htab_shift) { 1576 qemu_put_be32(f, -1); 1577 } else { 1578 qemu_put_be32(f, spapr->htab_shift); 1579 } 1580 1581 if (spapr->htab) { 1582 spapr->htab_save_index = 0; 1583 spapr->htab_first_pass = true; 1584 } else { 1585 if (spapr->htab_shift) { 1586 assert(kvm_enabled()); 1587 } 1588 } 1589 1590 1591 return 0; 1592 } 1593 1594 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1595 int64_t max_ns) 1596 { 1597 bool has_timeout = max_ns != -1; 1598 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1599 int index = spapr->htab_save_index; 1600 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1601 1602 assert(spapr->htab_first_pass); 1603 1604 do { 1605 int chunkstart; 1606 1607 /* Consume invalid HPTEs */ 1608 while ((index < htabslots) 1609 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1610 CLEAN_HPTE(HPTE(spapr->htab, index)); 1611 index++; 1612 } 1613 1614 /* Consume valid HPTEs */ 1615 chunkstart = index; 1616 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1617 && HPTE_VALID(HPTE(spapr->htab, index))) { 1618 CLEAN_HPTE(HPTE(spapr->htab, index)); 1619 index++; 1620 } 1621 1622 if (index > chunkstart) { 1623 int n_valid = index - chunkstart; 1624 1625 qemu_put_be32(f, chunkstart); 1626 qemu_put_be16(f, n_valid); 1627 qemu_put_be16(f, 0); 1628 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1629 HASH_PTE_SIZE_64 * n_valid); 1630 1631 if (has_timeout && 1632 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1633 break; 1634 } 1635 } 1636 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1637 1638 if (index >= htabslots) { 1639 assert(index == htabslots); 1640 index = 0; 1641 spapr->htab_first_pass = false; 1642 } 1643 spapr->htab_save_index = index; 1644 } 1645 1646 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1647 int64_t max_ns) 1648 { 1649 bool final = max_ns < 0; 1650 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1651 int examined = 0, sent = 0; 1652 int index = spapr->htab_save_index; 1653 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1654 1655 assert(!spapr->htab_first_pass); 1656 1657 do { 1658 int chunkstart, invalidstart; 1659 1660 /* Consume non-dirty HPTEs */ 1661 while ((index < htabslots) 1662 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1663 index++; 1664 examined++; 1665 } 1666 1667 chunkstart = index; 1668 /* Consume valid dirty HPTEs */ 1669 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1670 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1671 && HPTE_VALID(HPTE(spapr->htab, index))) { 1672 CLEAN_HPTE(HPTE(spapr->htab, index)); 1673 index++; 1674 examined++; 1675 } 1676 1677 invalidstart = index; 1678 /* Consume invalid dirty HPTEs */ 1679 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1680 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1681 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1682 CLEAN_HPTE(HPTE(spapr->htab, index)); 1683 index++; 1684 examined++; 1685 } 1686 1687 if (index > chunkstart) { 1688 int n_valid = invalidstart - chunkstart; 1689 int n_invalid = index - invalidstart; 1690 1691 qemu_put_be32(f, chunkstart); 1692 qemu_put_be16(f, n_valid); 1693 qemu_put_be16(f, n_invalid); 1694 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1695 HASH_PTE_SIZE_64 * n_valid); 1696 sent += index - chunkstart; 1697 1698 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1699 break; 1700 } 1701 } 1702 1703 if (examined >= htabslots) { 1704 break; 1705 } 1706 1707 if (index >= htabslots) { 1708 assert(index == htabslots); 1709 index = 0; 1710 } 1711 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1712 1713 if (index >= htabslots) { 1714 assert(index == htabslots); 1715 index = 0; 1716 } 1717 1718 spapr->htab_save_index = index; 1719 1720 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1721 } 1722 1723 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1724 #define MAX_KVM_BUF_SIZE 2048 1725 1726 static int htab_save_iterate(QEMUFile *f, void *opaque) 1727 { 1728 sPAPRMachineState *spapr = opaque; 1729 int fd; 1730 int rc = 0; 1731 1732 /* Iteration header */ 1733 if (!spapr->htab_shift) { 1734 qemu_put_be32(f, -1); 1735 return 0; 1736 } else { 1737 qemu_put_be32(f, 0); 1738 } 1739 1740 if (!spapr->htab) { 1741 assert(kvm_enabled()); 1742 1743 fd = get_htab_fd(spapr); 1744 if (fd < 0) { 1745 return fd; 1746 } 1747 1748 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1749 if (rc < 0) { 1750 return rc; 1751 } 1752 } else if (spapr->htab_first_pass) { 1753 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1754 } else { 1755 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1756 } 1757 1758 /* End marker */ 1759 qemu_put_be32(f, 0); 1760 qemu_put_be16(f, 0); 1761 qemu_put_be16(f, 0); 1762 1763 return rc; 1764 } 1765 1766 static int htab_save_complete(QEMUFile *f, void *opaque) 1767 { 1768 sPAPRMachineState *spapr = opaque; 1769 int fd; 1770 1771 /* Iteration header */ 1772 if (!spapr->htab_shift) { 1773 qemu_put_be32(f, -1); 1774 return 0; 1775 } else { 1776 qemu_put_be32(f, 0); 1777 } 1778 1779 if (!spapr->htab) { 1780 int rc; 1781 1782 assert(kvm_enabled()); 1783 1784 fd = get_htab_fd(spapr); 1785 if (fd < 0) { 1786 return fd; 1787 } 1788 1789 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1790 if (rc < 0) { 1791 return rc; 1792 } 1793 } else { 1794 if (spapr->htab_first_pass) { 1795 htab_save_first_pass(f, spapr, -1); 1796 } 1797 htab_save_later_pass(f, spapr, -1); 1798 } 1799 1800 /* End marker */ 1801 qemu_put_be32(f, 0); 1802 qemu_put_be16(f, 0); 1803 qemu_put_be16(f, 0); 1804 1805 return 0; 1806 } 1807 1808 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1809 { 1810 sPAPRMachineState *spapr = opaque; 1811 uint32_t section_hdr; 1812 int fd = -1; 1813 1814 if (version_id < 1 || version_id > 1) { 1815 error_report("htab_load() bad version"); 1816 return -EINVAL; 1817 } 1818 1819 section_hdr = qemu_get_be32(f); 1820 1821 if (section_hdr == -1) { 1822 spapr_free_hpt(spapr); 1823 return 0; 1824 } 1825 1826 if (section_hdr) { 1827 Error *local_err = NULL; 1828 1829 /* First section gives the htab size */ 1830 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1831 if (local_err) { 1832 error_report_err(local_err); 1833 return -EINVAL; 1834 } 1835 return 0; 1836 } 1837 1838 if (!spapr->htab) { 1839 assert(kvm_enabled()); 1840 1841 fd = kvmppc_get_htab_fd(true); 1842 if (fd < 0) { 1843 error_report("Unable to open fd to restore KVM hash table: %s", 1844 strerror(errno)); 1845 } 1846 } 1847 1848 while (true) { 1849 uint32_t index; 1850 uint16_t n_valid, n_invalid; 1851 1852 index = qemu_get_be32(f); 1853 n_valid = qemu_get_be16(f); 1854 n_invalid = qemu_get_be16(f); 1855 1856 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1857 /* End of Stream */ 1858 break; 1859 } 1860 1861 if ((index + n_valid + n_invalid) > 1862 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1863 /* Bad index in stream */ 1864 error_report( 1865 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 1866 index, n_valid, n_invalid, spapr->htab_shift); 1867 return -EINVAL; 1868 } 1869 1870 if (spapr->htab) { 1871 if (n_valid) { 1872 qemu_get_buffer(f, HPTE(spapr->htab, index), 1873 HASH_PTE_SIZE_64 * n_valid); 1874 } 1875 if (n_invalid) { 1876 memset(HPTE(spapr->htab, index + n_valid), 0, 1877 HASH_PTE_SIZE_64 * n_invalid); 1878 } 1879 } else { 1880 int rc; 1881 1882 assert(fd >= 0); 1883 1884 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1885 if (rc < 0) { 1886 return rc; 1887 } 1888 } 1889 } 1890 1891 if (!spapr->htab) { 1892 assert(fd >= 0); 1893 close(fd); 1894 } 1895 1896 return 0; 1897 } 1898 1899 static void htab_cleanup(void *opaque) 1900 { 1901 sPAPRMachineState *spapr = opaque; 1902 1903 close_htab_fd(spapr); 1904 } 1905 1906 static SaveVMHandlers savevm_htab_handlers = { 1907 .save_live_setup = htab_save_setup, 1908 .save_live_iterate = htab_save_iterate, 1909 .save_live_complete_precopy = htab_save_complete, 1910 .cleanup = htab_cleanup, 1911 .load_state = htab_load, 1912 }; 1913 1914 static void spapr_boot_set(void *opaque, const char *boot_device, 1915 Error **errp) 1916 { 1917 MachineState *machine = MACHINE(qdev_get_machine()); 1918 machine->boot_order = g_strdup(boot_device); 1919 } 1920 1921 /* 1922 * Reset routine for LMB DR devices. 1923 * 1924 * Unlike PCI DR devices, LMB DR devices explicitly register this reset 1925 * routine. Reset for PCI DR devices will be handled by PHB reset routine 1926 * when it walks all its children devices. LMB devices reset occurs 1927 * as part of spapr_ppc_reset(). 1928 */ 1929 static void spapr_drc_reset(void *opaque) 1930 { 1931 sPAPRDRConnector *drc = opaque; 1932 DeviceState *d = DEVICE(drc); 1933 1934 if (d) { 1935 device_reset(d); 1936 } 1937 } 1938 1939 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 1940 { 1941 MachineState *machine = MACHINE(spapr); 1942 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 1943 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 1944 int i; 1945 1946 for (i = 0; i < nr_lmbs; i++) { 1947 sPAPRDRConnector *drc; 1948 uint64_t addr; 1949 1950 addr = i * lmb_size + spapr->hotplug_memory.base; 1951 drc = spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 1952 addr/lmb_size); 1953 qemu_register_reset(spapr_drc_reset, drc); 1954 } 1955 } 1956 1957 /* 1958 * If RAM size, maxmem size and individual node mem sizes aren't aligned 1959 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 1960 * since we can't support such unaligned sizes with DRCONF_MEMORY. 1961 */ 1962 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 1963 { 1964 int i; 1965 1966 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1967 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 1968 " is not aligned to %llu MiB", 1969 machine->ram_size, 1970 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1971 return; 1972 } 1973 1974 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 1975 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 1976 " is not aligned to %llu MiB", 1977 machine->ram_size, 1978 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1979 return; 1980 } 1981 1982 for (i = 0; i < nb_numa_nodes; i++) { 1983 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 1984 error_setg(errp, 1985 "Node %d memory size 0x%" PRIx64 1986 " is not aligned to %llu MiB", 1987 i, numa_info[i].node_mem, 1988 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 1989 return; 1990 } 1991 } 1992 } 1993 1994 /* find cpu slot in machine->possible_cpus by core_id */ 1995 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 1996 { 1997 int index = id / smp_threads; 1998 1999 if (index >= ms->possible_cpus->len) { 2000 return NULL; 2001 } 2002 if (idx) { 2003 *idx = index; 2004 } 2005 return &ms->possible_cpus->cpus[index]; 2006 } 2007 2008 static void spapr_init_cpus(sPAPRMachineState *spapr) 2009 { 2010 MachineState *machine = MACHINE(spapr); 2011 MachineClass *mc = MACHINE_GET_CLASS(machine); 2012 char *type = spapr_get_cpu_core_type(machine->cpu_model); 2013 int smt = kvmppc_smt_threads(); 2014 const CPUArchIdList *possible_cpus; 2015 int boot_cores_nr = smp_cpus / smp_threads; 2016 int i; 2017 2018 if (!type) { 2019 error_report("Unable to find sPAPR CPU Core definition"); 2020 exit(1); 2021 } 2022 2023 possible_cpus = mc->possible_cpu_arch_ids(machine); 2024 if (mc->has_hotpluggable_cpus) { 2025 if (smp_cpus % smp_threads) { 2026 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2027 smp_cpus, smp_threads); 2028 exit(1); 2029 } 2030 if (max_cpus % smp_threads) { 2031 error_report("max_cpus (%u) must be multiple of threads (%u)", 2032 max_cpus, smp_threads); 2033 exit(1); 2034 } 2035 } else { 2036 if (max_cpus != smp_cpus) { 2037 error_report("This machine version does not support CPU hotplug"); 2038 exit(1); 2039 } 2040 boot_cores_nr = possible_cpus->len; 2041 } 2042 2043 for (i = 0; i < possible_cpus->len; i++) { 2044 int core_id = i * smp_threads; 2045 2046 if (mc->has_hotpluggable_cpus) { 2047 sPAPRDRConnector *drc = 2048 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2049 (core_id / smp_threads) * smt); 2050 2051 qemu_register_reset(spapr_drc_reset, drc); 2052 } 2053 2054 if (i < boot_cores_nr) { 2055 Object *core = object_new(type); 2056 int nr_threads = smp_threads; 2057 2058 /* Handle the partially filled core for older machine types */ 2059 if ((i + 1) * smp_threads >= smp_cpus) { 2060 nr_threads = smp_cpus - i * smp_threads; 2061 } 2062 2063 object_property_set_int(core, nr_threads, "nr-threads", 2064 &error_fatal); 2065 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2066 &error_fatal); 2067 object_property_set_bool(core, true, "realized", &error_fatal); 2068 } 2069 } 2070 g_free(type); 2071 } 2072 2073 /* pSeries LPAR / sPAPR hardware init */ 2074 static void ppc_spapr_init(MachineState *machine) 2075 { 2076 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2077 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2078 const char *kernel_filename = machine->kernel_filename; 2079 const char *initrd_filename = machine->initrd_filename; 2080 PCIHostState *phb; 2081 int i; 2082 MemoryRegion *sysmem = get_system_memory(); 2083 MemoryRegion *ram = g_new(MemoryRegion, 1); 2084 MemoryRegion *rma_region; 2085 void *rma = NULL; 2086 hwaddr rma_alloc_size; 2087 hwaddr node0_size = spapr_node0_size(); 2088 long load_limit, fw_size; 2089 char *filename; 2090 2091 msi_nonbroken = true; 2092 2093 QLIST_INIT(&spapr->phbs); 2094 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2095 2096 /* Allocate RMA if necessary */ 2097 rma_alloc_size = kvmppc_alloc_rma(&rma); 2098 2099 if (rma_alloc_size == -1) { 2100 error_report("Unable to create RMA"); 2101 exit(1); 2102 } 2103 2104 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2105 spapr->rma_size = rma_alloc_size; 2106 } else { 2107 spapr->rma_size = node0_size; 2108 2109 /* With KVM, we don't actually know whether KVM supports an 2110 * unbounded RMA (PR KVM) or is limited by the hash table size 2111 * (HV KVM using VRMA), so we always assume the latter 2112 * 2113 * In that case, we also limit the initial allocations for RTAS 2114 * etc... to 256M since we have no way to know what the VRMA size 2115 * is going to be as it depends on the size of the hash table 2116 * isn't determined yet. 2117 */ 2118 if (kvm_enabled()) { 2119 spapr->vrma_adjust = 1; 2120 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2121 } 2122 2123 /* Actually we don't support unbounded RMA anymore since we 2124 * added proper emulation of HV mode. The max we can get is 2125 * 16G which also happens to be what we configure for PAPR 2126 * mode so make sure we don't do anything bigger than that 2127 */ 2128 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2129 } 2130 2131 if (spapr->rma_size > node0_size) { 2132 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2133 spapr->rma_size); 2134 exit(1); 2135 } 2136 2137 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2138 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2139 2140 /* Set up Interrupt Controller before we create the VCPUs */ 2141 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2142 2143 /* Set up containers for ibm,client-set-architecture negotiated options */ 2144 spapr->ov5 = spapr_ovec_new(); 2145 spapr->ov5_cas = spapr_ovec_new(); 2146 2147 if (smc->dr_lmb_enabled) { 2148 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2149 spapr_validate_node_memory(machine, &error_fatal); 2150 } 2151 2152 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2153 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { 2154 /* KVM and TCG always allow GTSE with radix... */ 2155 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2156 } 2157 /* ... but not with hash (currently). */ 2158 2159 /* advertise support for dedicated HP event source to guests */ 2160 if (spapr->use_hotplug_event_source) { 2161 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2162 } 2163 2164 /* init CPUs */ 2165 if (machine->cpu_model == NULL) { 2166 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu; 2167 } 2168 2169 spapr_cpu_parse_features(spapr); 2170 2171 spapr_init_cpus(spapr); 2172 2173 if (kvm_enabled()) { 2174 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2175 kvmppc_enable_logical_ci_hcalls(); 2176 kvmppc_enable_set_mode_hcall(); 2177 2178 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2179 kvmppc_enable_clear_ref_mod_hcalls(); 2180 } 2181 2182 /* allocate RAM */ 2183 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2184 machine->ram_size); 2185 memory_region_add_subregion(sysmem, 0, ram); 2186 2187 if (rma_alloc_size && rma) { 2188 rma_region = g_new(MemoryRegion, 1); 2189 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2190 rma_alloc_size, rma); 2191 vmstate_register_ram_global(rma_region); 2192 memory_region_add_subregion(sysmem, 0, rma_region); 2193 } 2194 2195 /* initialize hotplug memory address space */ 2196 if (machine->ram_size < machine->maxram_size) { 2197 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2198 /* 2199 * Limit the number of hotpluggable memory slots to half the number 2200 * slots that KVM supports, leaving the other half for PCI and other 2201 * devices. However ensure that number of slots doesn't drop below 32. 2202 */ 2203 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2204 SPAPR_MAX_RAM_SLOTS; 2205 2206 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2207 max_memslots = SPAPR_MAX_RAM_SLOTS; 2208 } 2209 if (machine->ram_slots > max_memslots) { 2210 error_report("Specified number of memory slots %" 2211 PRIu64" exceeds max supported %d", 2212 machine->ram_slots, max_memslots); 2213 exit(1); 2214 } 2215 2216 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2217 SPAPR_HOTPLUG_MEM_ALIGN); 2218 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2219 "hotplug-memory", hotplug_mem_size); 2220 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2221 &spapr->hotplug_memory.mr); 2222 } 2223 2224 if (smc->dr_lmb_enabled) { 2225 spapr_create_lmb_dr_connectors(spapr); 2226 } 2227 2228 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2229 if (!filename) { 2230 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2231 exit(1); 2232 } 2233 spapr->rtas_size = get_image_size(filename); 2234 if (spapr->rtas_size < 0) { 2235 error_report("Could not get size of LPAR rtas '%s'", filename); 2236 exit(1); 2237 } 2238 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2239 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2240 error_report("Could not load LPAR rtas '%s'", filename); 2241 exit(1); 2242 } 2243 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2244 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2245 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2246 exit(1); 2247 } 2248 g_free(filename); 2249 2250 /* Set up RTAS event infrastructure */ 2251 spapr_events_init(spapr); 2252 2253 /* Set up the RTC RTAS interfaces */ 2254 spapr_rtc_create(spapr); 2255 2256 /* Set up VIO bus */ 2257 spapr->vio_bus = spapr_vio_bus_init(); 2258 2259 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2260 if (serial_hds[i]) { 2261 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2262 } 2263 } 2264 2265 /* We always have at least the nvram device on VIO */ 2266 spapr_create_nvram(spapr); 2267 2268 /* Set up PCI */ 2269 spapr_pci_rtas_init(); 2270 2271 phb = spapr_create_phb(spapr, 0); 2272 2273 for (i = 0; i < nb_nics; i++) { 2274 NICInfo *nd = &nd_table[i]; 2275 2276 if (!nd->model) { 2277 nd->model = g_strdup("ibmveth"); 2278 } 2279 2280 if (strcmp(nd->model, "ibmveth") == 0) { 2281 spapr_vlan_create(spapr->vio_bus, nd); 2282 } else { 2283 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2284 } 2285 } 2286 2287 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2288 spapr_vscsi_create(spapr->vio_bus); 2289 } 2290 2291 /* Graphics */ 2292 if (spapr_vga_init(phb->bus, &error_fatal)) { 2293 spapr->has_graphics = true; 2294 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2295 } 2296 2297 if (machine->usb) { 2298 if (smc->use_ohci_by_default) { 2299 pci_create_simple(phb->bus, -1, "pci-ohci"); 2300 } else { 2301 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2302 } 2303 2304 if (spapr->has_graphics) { 2305 USBBus *usb_bus = usb_bus_find(-1); 2306 2307 usb_create_simple(usb_bus, "usb-kbd"); 2308 usb_create_simple(usb_bus, "usb-mouse"); 2309 } 2310 } 2311 2312 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2313 error_report( 2314 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2315 MIN_RMA_SLOF); 2316 exit(1); 2317 } 2318 2319 if (kernel_filename) { 2320 uint64_t lowaddr = 0; 2321 2322 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2323 NULL, NULL, &lowaddr, NULL, 1, 2324 PPC_ELF_MACHINE, 0, 0); 2325 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2326 spapr->kernel_size = load_elf(kernel_filename, 2327 translate_kernel_address, NULL, NULL, 2328 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2329 0, 0); 2330 spapr->kernel_le = spapr->kernel_size > 0; 2331 } 2332 if (spapr->kernel_size < 0) { 2333 error_report("error loading %s: %s", kernel_filename, 2334 load_elf_strerror(spapr->kernel_size)); 2335 exit(1); 2336 } 2337 2338 /* load initrd */ 2339 if (initrd_filename) { 2340 /* Try to locate the initrd in the gap between the kernel 2341 * and the firmware. Add a bit of space just in case 2342 */ 2343 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2344 + 0x1ffff) & ~0xffff; 2345 spapr->initrd_size = load_image_targphys(initrd_filename, 2346 spapr->initrd_base, 2347 load_limit 2348 - spapr->initrd_base); 2349 if (spapr->initrd_size < 0) { 2350 error_report("could not load initial ram disk '%s'", 2351 initrd_filename); 2352 exit(1); 2353 } 2354 } 2355 } 2356 2357 if (bios_name == NULL) { 2358 bios_name = FW_FILE_NAME; 2359 } 2360 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2361 if (!filename) { 2362 error_report("Could not find LPAR firmware '%s'", bios_name); 2363 exit(1); 2364 } 2365 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2366 if (fw_size <= 0) { 2367 error_report("Could not load LPAR firmware '%s'", filename); 2368 exit(1); 2369 } 2370 g_free(filename); 2371 2372 /* FIXME: Should register things through the MachineState's qdev 2373 * interface, this is a legacy from the sPAPREnvironment structure 2374 * which predated MachineState but had a similar function */ 2375 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2376 register_savevm_live(NULL, "spapr/htab", -1, 1, 2377 &savevm_htab_handlers, spapr); 2378 2379 qemu_register_boot_set(spapr_boot_set, spapr); 2380 2381 if (kvm_enabled()) { 2382 /* to stop and start vmclock */ 2383 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2384 &spapr->tb); 2385 2386 kvmppc_spapr_enable_inkernel_multitce(); 2387 } 2388 } 2389 2390 static int spapr_kvm_type(const char *vm_type) 2391 { 2392 if (!vm_type) { 2393 return 0; 2394 } 2395 2396 if (!strcmp(vm_type, "HV")) { 2397 return 1; 2398 } 2399 2400 if (!strcmp(vm_type, "PR")) { 2401 return 2; 2402 } 2403 2404 error_report("Unknown kvm-type specified '%s'", vm_type); 2405 exit(1); 2406 } 2407 2408 /* 2409 * Implementation of an interface to adjust firmware path 2410 * for the bootindex property handling. 2411 */ 2412 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2413 DeviceState *dev) 2414 { 2415 #define CAST(type, obj, name) \ 2416 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2417 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2418 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2419 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2420 2421 if (d) { 2422 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2423 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2424 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2425 2426 if (spapr) { 2427 /* 2428 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2429 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2430 * in the top 16 bits of the 64-bit LUN 2431 */ 2432 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2433 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2434 (uint64_t)id << 48); 2435 } else if (virtio) { 2436 /* 2437 * We use SRP luns of the form 01000000 | (target << 8) | lun 2438 * in the top 32 bits of the 64-bit LUN 2439 * Note: the quote above is from SLOF and it is wrong, 2440 * the actual binding is: 2441 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2442 */ 2443 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2444 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2445 (uint64_t)id << 32); 2446 } else if (usb) { 2447 /* 2448 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2449 * in the top 32 bits of the 64-bit LUN 2450 */ 2451 unsigned usb_port = atoi(usb->port->path); 2452 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2453 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2454 (uint64_t)id << 32); 2455 } 2456 } 2457 2458 /* 2459 * SLOF probes the USB devices, and if it recognizes that the device is a 2460 * storage device, it changes its name to "storage" instead of "usb-host", 2461 * and additionally adds a child node for the SCSI LUN, so the correct 2462 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2463 */ 2464 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2465 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2466 if (usb_host_dev_is_scsi_storage(usbdev)) { 2467 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2468 } 2469 } 2470 2471 if (phb) { 2472 /* Replace "pci" with "pci@800000020000000" */ 2473 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2474 } 2475 2476 if (vsc) { 2477 /* Same logic as virtio above */ 2478 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2479 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2480 } 2481 2482 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2483 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2484 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2485 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2486 } 2487 2488 return NULL; 2489 } 2490 2491 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2492 { 2493 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2494 2495 return g_strdup(spapr->kvm_type); 2496 } 2497 2498 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2499 { 2500 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2501 2502 g_free(spapr->kvm_type); 2503 spapr->kvm_type = g_strdup(value); 2504 } 2505 2506 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2507 { 2508 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2509 2510 return spapr->use_hotplug_event_source; 2511 } 2512 2513 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2514 Error **errp) 2515 { 2516 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2517 2518 spapr->use_hotplug_event_source = value; 2519 } 2520 2521 static void spapr_machine_initfn(Object *obj) 2522 { 2523 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2524 2525 spapr->htab_fd = -1; 2526 spapr->use_hotplug_event_source = true; 2527 object_property_add_str(obj, "kvm-type", 2528 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2529 object_property_set_description(obj, "kvm-type", 2530 "Specifies the KVM virtualization mode (HV, PR)", 2531 NULL); 2532 object_property_add_bool(obj, "modern-hotplug-events", 2533 spapr_get_modern_hotplug_events, 2534 spapr_set_modern_hotplug_events, 2535 NULL); 2536 object_property_set_description(obj, "modern-hotplug-events", 2537 "Use dedicated hotplug event mechanism in" 2538 " place of standard EPOW events when possible" 2539 " (required for memory hot-unplug support)", 2540 NULL); 2541 2542 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 2543 "Maximum permitted CPU compatibility mode", 2544 &error_fatal); 2545 } 2546 2547 static void spapr_machine_finalizefn(Object *obj) 2548 { 2549 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2550 2551 g_free(spapr->kvm_type); 2552 } 2553 2554 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2555 { 2556 cpu_synchronize_state(cs); 2557 ppc_cpu_do_system_reset(cs); 2558 } 2559 2560 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2561 { 2562 CPUState *cs; 2563 2564 CPU_FOREACH(cs) { 2565 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2566 } 2567 } 2568 2569 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2570 uint32_t node, bool dedicated_hp_event_source, 2571 Error **errp) 2572 { 2573 sPAPRDRConnector *drc; 2574 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2575 int i, fdt_offset, fdt_size; 2576 void *fdt; 2577 uint64_t addr = addr_start; 2578 2579 for (i = 0; i < nr_lmbs; i++) { 2580 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2581 addr / SPAPR_MEMORY_BLOCK_SIZE); 2582 g_assert(drc); 2583 2584 fdt = create_device_tree(&fdt_size); 2585 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2586 SPAPR_MEMORY_BLOCK_SIZE); 2587 2588 spapr_drc_attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp); 2589 addr += SPAPR_MEMORY_BLOCK_SIZE; 2590 if (!dev->hotplugged) { 2591 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2592 /* guests expect coldplugged LMBs to be pre-allocated */ 2593 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2594 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2595 } 2596 } 2597 /* send hotplug notification to the 2598 * guest only in case of hotplugged memory 2599 */ 2600 if (dev->hotplugged) { 2601 if (dedicated_hp_event_source) { 2602 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2603 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2604 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2605 nr_lmbs, 2606 spapr_drc_index(drc)); 2607 } else { 2608 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2609 nr_lmbs); 2610 } 2611 } 2612 } 2613 2614 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2615 uint32_t node, Error **errp) 2616 { 2617 Error *local_err = NULL; 2618 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2619 PCDIMMDevice *dimm = PC_DIMM(dev); 2620 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2621 MemoryRegion *mr = ddc->get_memory_region(dimm); 2622 uint64_t align = memory_region_get_alignment(mr); 2623 uint64_t size = memory_region_size(mr); 2624 uint64_t addr; 2625 2626 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2627 if (local_err) { 2628 goto out; 2629 } 2630 2631 addr = object_property_get_uint(OBJECT(dimm), 2632 PC_DIMM_ADDR_PROP, &local_err); 2633 if (local_err) { 2634 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2635 goto out; 2636 } 2637 2638 spapr_add_lmbs(dev, addr, size, node, 2639 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2640 &error_abort); 2641 2642 out: 2643 error_propagate(errp, local_err); 2644 } 2645 2646 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2647 Error **errp) 2648 { 2649 PCDIMMDevice *dimm = PC_DIMM(dev); 2650 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2651 MemoryRegion *mr = ddc->get_memory_region(dimm); 2652 uint64_t size = memory_region_size(mr); 2653 char *mem_dev; 2654 2655 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2656 error_setg(errp, "Hotplugged memory size must be a multiple of " 2657 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2658 return; 2659 } 2660 2661 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2662 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2663 error_setg(errp, "Memory backend has bad page size. " 2664 "Use 'memory-backend-file' with correct mem-path."); 2665 goto out; 2666 } 2667 2668 out: 2669 g_free(mem_dev); 2670 } 2671 2672 struct sPAPRDIMMState { 2673 PCDIMMDevice *dimm; 2674 uint32_t nr_lmbs; 2675 QTAILQ_ENTRY(sPAPRDIMMState) next; 2676 }; 2677 2678 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 2679 PCDIMMDevice *dimm) 2680 { 2681 sPAPRDIMMState *dimm_state = NULL; 2682 2683 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 2684 if (dimm_state->dimm == dimm) { 2685 break; 2686 } 2687 } 2688 return dimm_state; 2689 } 2690 2691 static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 2692 sPAPRDIMMState *dimm_state) 2693 { 2694 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm)); 2695 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next); 2696 } 2697 2698 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 2699 sPAPRDIMMState *dimm_state) 2700 { 2701 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 2702 g_free(dimm_state); 2703 } 2704 2705 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 2706 PCDIMMDevice *dimm) 2707 { 2708 sPAPRDRConnector *drc; 2709 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2710 MemoryRegion *mr = ddc->get_memory_region(dimm); 2711 uint64_t size = memory_region_size(mr); 2712 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2713 uint32_t avail_lmbs = 0; 2714 uint64_t addr_start, addr; 2715 int i; 2716 sPAPRDIMMState *ds; 2717 2718 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 2719 &error_abort); 2720 2721 addr = addr_start; 2722 for (i = 0; i < nr_lmbs; i++) { 2723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2724 addr / SPAPR_MEMORY_BLOCK_SIZE); 2725 g_assert(drc); 2726 if (drc->dev) { 2727 avail_lmbs++; 2728 } 2729 addr += SPAPR_MEMORY_BLOCK_SIZE; 2730 } 2731 2732 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2733 ds->nr_lmbs = avail_lmbs; 2734 ds->dimm = dimm; 2735 spapr_pending_dimm_unplugs_add(ms, ds); 2736 return ds; 2737 } 2738 2739 /* Callback to be called during DRC release. */ 2740 void spapr_lmb_release(DeviceState *dev) 2741 { 2742 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 2743 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 2744 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 2745 2746 /* This information will get lost if a migration occurs 2747 * during the unplug process. In this case recover it. */ 2748 if (ds == NULL) { 2749 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 2750 /* The DRC being examined by the caller at least must be counted */ 2751 g_assert(ds->nr_lmbs); 2752 } 2753 2754 if (--ds->nr_lmbs) { 2755 return; 2756 } 2757 2758 spapr_pending_dimm_unplugs_remove(spapr, ds); 2759 2760 /* 2761 * Now that all the LMBs have been removed by the guest, call the 2762 * pc-dimm unplug handler to cleanup up the pc-dimm device. 2763 */ 2764 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2765 } 2766 2767 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2768 Error **errp) 2769 { 2770 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2771 PCDIMMDevice *dimm = PC_DIMM(dev); 2772 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2773 MemoryRegion *mr = ddc->get_memory_region(dimm); 2774 2775 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2776 object_unparent(OBJECT(dev)); 2777 } 2778 2779 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 2780 DeviceState *dev, Error **errp) 2781 { 2782 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 2783 Error *local_err = NULL; 2784 PCDIMMDevice *dimm = PC_DIMM(dev); 2785 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2786 MemoryRegion *mr = ddc->get_memory_region(dimm); 2787 uint64_t size = memory_region_size(mr); 2788 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 2789 uint64_t addr_start, addr; 2790 int i; 2791 sPAPRDRConnector *drc; 2792 sPAPRDIMMState *ds; 2793 2794 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 2795 &local_err); 2796 if (local_err) { 2797 goto out; 2798 } 2799 2800 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2801 ds->nr_lmbs = nr_lmbs; 2802 ds->dimm = dimm; 2803 spapr_pending_dimm_unplugs_add(spapr, ds); 2804 2805 addr = addr_start; 2806 for (i = 0; i < nr_lmbs; i++) { 2807 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2808 addr / SPAPR_MEMORY_BLOCK_SIZE); 2809 g_assert(drc); 2810 2811 spapr_drc_detach(drc, dev, errp); 2812 addr += SPAPR_MEMORY_BLOCK_SIZE; 2813 } 2814 2815 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2816 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2817 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2818 nr_lmbs, spapr_drc_index(drc)); 2819 out: 2820 error_propagate(errp, local_err); 2821 } 2822 2823 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 2824 sPAPRMachineState *spapr) 2825 { 2826 PowerPCCPU *cpu = POWERPC_CPU(cs); 2827 DeviceClass *dc = DEVICE_GET_CLASS(cs); 2828 int id = ppc_get_vcpu_dt_id(cpu); 2829 void *fdt; 2830 int offset, fdt_size; 2831 char *nodename; 2832 2833 fdt = create_device_tree(&fdt_size); 2834 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 2835 offset = fdt_add_subnode(fdt, 0, nodename); 2836 2837 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 2838 g_free(nodename); 2839 2840 *fdt_offset = offset; 2841 return fdt; 2842 } 2843 2844 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, 2845 Error **errp) 2846 { 2847 MachineState *ms = MACHINE(qdev_get_machine()); 2848 CPUCore *cc = CPU_CORE(dev); 2849 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 2850 2851 assert(core_slot); 2852 core_slot->cpu = NULL; 2853 object_unparent(OBJECT(dev)); 2854 } 2855 2856 /* Callback to be called during DRC release. */ 2857 void spapr_core_release(DeviceState *dev) 2858 { 2859 HotplugHandler *hotplug_ctrl; 2860 2861 hotplug_ctrl = qdev_get_hotplug_handler(dev); 2862 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 2863 } 2864 2865 static 2866 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 2867 Error **errp) 2868 { 2869 int index; 2870 sPAPRDRConnector *drc; 2871 Error *local_err = NULL; 2872 CPUCore *cc = CPU_CORE(dev); 2873 int smt = kvmppc_smt_threads(); 2874 2875 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 2876 error_setg(errp, "Unable to find CPU core with core-id: %d", 2877 cc->core_id); 2878 return; 2879 } 2880 if (index == 0) { 2881 error_setg(errp, "Boot CPU core may not be unplugged"); 2882 return; 2883 } 2884 2885 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 2886 g_assert(drc); 2887 2888 spapr_drc_detach(drc, dev, &local_err); 2889 if (local_err) { 2890 error_propagate(errp, local_err); 2891 return; 2892 } 2893 2894 spapr_hotplug_req_remove_by_index(drc); 2895 } 2896 2897 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2898 Error **errp) 2899 { 2900 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 2901 MachineClass *mc = MACHINE_GET_CLASS(spapr); 2902 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 2903 CPUCore *cc = CPU_CORE(dev); 2904 CPUState *cs = CPU(core->threads); 2905 sPAPRDRConnector *drc; 2906 Error *local_err = NULL; 2907 void *fdt = NULL; 2908 int fdt_offset = 0; 2909 int smt = kvmppc_smt_threads(); 2910 CPUArchId *core_slot; 2911 int index; 2912 2913 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 2914 if (!core_slot) { 2915 error_setg(errp, "Unable to find CPU core with core-id: %d", 2916 cc->core_id); 2917 return; 2918 } 2919 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 2920 2921 g_assert(drc || !mc->has_hotpluggable_cpus); 2922 2923 /* 2924 * Setup CPU DT entries only for hotplugged CPUs. For boot time or 2925 * coldplugged CPUs DT entries are setup in spapr_build_fdt(). 2926 */ 2927 if (dev->hotplugged) { 2928 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 2929 } 2930 2931 if (drc) { 2932 spapr_drc_attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, 2933 &local_err); 2934 if (local_err) { 2935 g_free(fdt); 2936 error_propagate(errp, local_err); 2937 return; 2938 } 2939 } 2940 2941 if (dev->hotplugged) { 2942 /* 2943 * Send hotplug notification interrupt to the guest only in case 2944 * of hotplugged CPUs. 2945 */ 2946 spapr_hotplug_req_add_by_index(drc); 2947 } else { 2948 /* 2949 * Set the right DRC states for cold plugged CPU. 2950 */ 2951 if (drc) { 2952 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 2953 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE); 2954 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED); 2955 } 2956 } 2957 core_slot->cpu = OBJECT(dev); 2958 } 2959 2960 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2961 Error **errp) 2962 { 2963 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 2964 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 2965 Error *local_err = NULL; 2966 CPUCore *cc = CPU_CORE(dev); 2967 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model); 2968 const char *type = object_get_typename(OBJECT(dev)); 2969 CPUArchId *core_slot; 2970 int index; 2971 2972 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 2973 error_setg(&local_err, "CPU hotplug not supported for this machine"); 2974 goto out; 2975 } 2976 2977 if (strcmp(base_core_type, type)) { 2978 error_setg(&local_err, "CPU core type should be %s", base_core_type); 2979 goto out; 2980 } 2981 2982 if (cc->core_id % smp_threads) { 2983 error_setg(&local_err, "invalid core id %d", cc->core_id); 2984 goto out; 2985 } 2986 2987 /* 2988 * In general we should have homogeneous threads-per-core, but old 2989 * (pre hotplug support) machine types allow the last core to have 2990 * reduced threads as a compatibility hack for when we allowed 2991 * total vcpus not a multiple of threads-per-core. 2992 */ 2993 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 2994 error_setg(errp, "invalid nr-threads %d, must be %d", 2995 cc->nr_threads, smp_threads); 2996 return; 2997 } 2998 2999 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3000 if (!core_slot) { 3001 error_setg(&local_err, "core id %d out of range", cc->core_id); 3002 goto out; 3003 } 3004 3005 if (core_slot->cpu) { 3006 error_setg(&local_err, "core %d already populated", cc->core_id); 3007 goto out; 3008 } 3009 3010 numa_cpu_pre_plug(core_slot, dev, &local_err); 3011 3012 out: 3013 g_free(base_core_type); 3014 error_propagate(errp, local_err); 3015 } 3016 3017 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3018 DeviceState *dev, Error **errp) 3019 { 3020 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine()); 3021 3022 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3023 int node; 3024 3025 if (!smc->dr_lmb_enabled) { 3026 error_setg(errp, "Memory hotplug not supported for this machine"); 3027 return; 3028 } 3029 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 3030 if (*errp) { 3031 return; 3032 } 3033 if (node < 0 || node >= MAX_NODES) { 3034 error_setg(errp, "Invaild node %d", node); 3035 return; 3036 } 3037 3038 /* 3039 * Currently PowerPC kernel doesn't allow hot-adding memory to 3040 * memory-less node, but instead will silently add the memory 3041 * to the first node that has some memory. This causes two 3042 * unexpected behaviours for the user. 3043 * 3044 * - Memory gets hotplugged to a different node than what the user 3045 * specified. 3046 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 3047 * to memory-less node, a reboot will set things accordingly 3048 * and the previously hotplugged memory now ends in the right node. 3049 * This appears as if some memory moved from one node to another. 3050 * 3051 * So until kernel starts supporting memory hotplug to memory-less 3052 * nodes, just prevent such attempts upfront in QEMU. 3053 */ 3054 if (nb_numa_nodes && !numa_info[node].node_mem) { 3055 error_setg(errp, "Can't hotplug memory to memory-less node %d", 3056 node); 3057 return; 3058 } 3059 3060 spapr_memory_plug(hotplug_dev, dev, node, errp); 3061 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3062 spapr_core_plug(hotplug_dev, dev, errp); 3063 } 3064 } 3065 3066 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3067 DeviceState *dev, Error **errp) 3068 { 3069 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 3070 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 3071 3072 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3073 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3074 spapr_memory_unplug(hotplug_dev, dev, errp); 3075 } else { 3076 error_setg(errp, "Memory hot unplug not supported for this guest"); 3077 } 3078 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3079 if (!mc->has_hotpluggable_cpus) { 3080 error_setg(errp, "CPU hot unplug not supported on this machine"); 3081 return; 3082 } 3083 spapr_core_unplug(hotplug_dev, dev, errp); 3084 } 3085 } 3086 3087 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3088 DeviceState *dev, Error **errp) 3089 { 3090 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine()); 3091 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 3092 3093 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3094 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3095 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3096 } else { 3097 /* NOTE: this means there is a window after guest reset, prior to 3098 * CAS negotiation, where unplug requests will fail due to the 3099 * capability not being detected yet. This is a bit different than 3100 * the case with PCI unplug, where the events will be queued and 3101 * eventually handled by the guest after boot 3102 */ 3103 error_setg(errp, "Memory hot unplug not supported for this guest"); 3104 } 3105 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3106 if (!mc->has_hotpluggable_cpus) { 3107 error_setg(errp, "CPU hot unplug not supported on this machine"); 3108 return; 3109 } 3110 spapr_core_unplug_request(hotplug_dev, dev, errp); 3111 } 3112 } 3113 3114 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3115 DeviceState *dev, Error **errp) 3116 { 3117 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3118 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3119 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3120 spapr_core_pre_plug(hotplug_dev, dev, errp); 3121 } 3122 } 3123 3124 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3125 DeviceState *dev) 3126 { 3127 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3128 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3129 return HOTPLUG_HANDLER(machine); 3130 } 3131 return NULL; 3132 } 3133 3134 static CpuInstanceProperties 3135 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3136 { 3137 CPUArchId *core_slot; 3138 MachineClass *mc = MACHINE_GET_CLASS(machine); 3139 3140 /* make sure possible_cpu are intialized */ 3141 mc->possible_cpu_arch_ids(machine); 3142 /* get CPU core slot containing thread that matches cpu_index */ 3143 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3144 assert(core_slot); 3145 return core_slot->props; 3146 } 3147 3148 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3149 { 3150 int i; 3151 int spapr_max_cores = max_cpus / smp_threads; 3152 MachineClass *mc = MACHINE_GET_CLASS(machine); 3153 3154 if (!mc->has_hotpluggable_cpus) { 3155 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3156 } 3157 if (machine->possible_cpus) { 3158 assert(machine->possible_cpus->len == spapr_max_cores); 3159 return machine->possible_cpus; 3160 } 3161 3162 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3163 sizeof(CPUArchId) * spapr_max_cores); 3164 machine->possible_cpus->len = spapr_max_cores; 3165 for (i = 0; i < machine->possible_cpus->len; i++) { 3166 int core_id = i * smp_threads; 3167 3168 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3169 machine->possible_cpus->cpus[i].arch_id = core_id; 3170 machine->possible_cpus->cpus[i].props.has_core_id = true; 3171 machine->possible_cpus->cpus[i].props.core_id = core_id; 3172 3173 /* default distribution of CPUs over NUMA nodes */ 3174 if (nb_numa_nodes) { 3175 /* preset values but do not enable them i.e. 'has_node_id = false', 3176 * numa init code will enable them later if manual mapping wasn't 3177 * present on CLI */ 3178 machine->possible_cpus->cpus[i].props.node_id = 3179 core_id / smp_threads / smp_cores % nb_numa_nodes; 3180 } 3181 } 3182 return machine->possible_cpus; 3183 } 3184 3185 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3186 uint64_t *buid, hwaddr *pio, 3187 hwaddr *mmio32, hwaddr *mmio64, 3188 unsigned n_dma, uint32_t *liobns, Error **errp) 3189 { 3190 /* 3191 * New-style PHB window placement. 3192 * 3193 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3194 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3195 * windows. 3196 * 3197 * Some guest kernels can't work with MMIO windows above 1<<46 3198 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3199 * 3200 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3201 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3202 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3203 * 1TiB 64-bit MMIO windows for each PHB. 3204 */ 3205 const uint64_t base_buid = 0x800000020000000ULL; 3206 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3207 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3208 int i; 3209 3210 /* Sanity check natural alignments */ 3211 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3212 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3213 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3214 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3215 /* Sanity check bounds */ 3216 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3217 SPAPR_PCI_MEM32_WIN_SIZE); 3218 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3219 SPAPR_PCI_MEM64_WIN_SIZE); 3220 3221 if (index >= SPAPR_MAX_PHBS) { 3222 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3223 SPAPR_MAX_PHBS - 1); 3224 return; 3225 } 3226 3227 *buid = base_buid + index; 3228 for (i = 0; i < n_dma; ++i) { 3229 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3230 } 3231 3232 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3233 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3234 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3235 } 3236 3237 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3238 { 3239 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3240 3241 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3242 } 3243 3244 static void spapr_ics_resend(XICSFabric *dev) 3245 { 3246 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3247 3248 ics_resend(spapr->ics); 3249 } 3250 3251 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id) 3252 { 3253 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id); 3254 3255 return cpu ? ICP(cpu->intc) : NULL; 3256 } 3257 3258 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3259 Monitor *mon) 3260 { 3261 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3262 CPUState *cs; 3263 3264 CPU_FOREACH(cs) { 3265 PowerPCCPU *cpu = POWERPC_CPU(cs); 3266 3267 icp_pic_print_info(ICP(cpu->intc), mon); 3268 } 3269 3270 ics_pic_print_info(spapr->ics, mon); 3271 } 3272 3273 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3274 { 3275 MachineClass *mc = MACHINE_CLASS(oc); 3276 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3277 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3278 NMIClass *nc = NMI_CLASS(oc); 3279 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3280 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3281 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3282 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3283 3284 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3285 3286 /* 3287 * We set up the default / latest behaviour here. The class_init 3288 * functions for the specific versioned machine types can override 3289 * these details for backwards compatibility 3290 */ 3291 mc->init = ppc_spapr_init; 3292 mc->reset = ppc_spapr_reset; 3293 mc->block_default_type = IF_SCSI; 3294 mc->max_cpus = 1024; 3295 mc->no_parallel = 1; 3296 mc->default_boot_order = ""; 3297 mc->default_ram_size = 512 * M_BYTE; 3298 mc->kvm_type = spapr_kvm_type; 3299 mc->has_dynamic_sysbus = true; 3300 mc->pci_allow_0_address = true; 3301 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3302 hc->pre_plug = spapr_machine_device_pre_plug; 3303 hc->plug = spapr_machine_device_plug; 3304 hc->unplug = spapr_machine_device_unplug; 3305 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3306 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3307 hc->unplug_request = spapr_machine_device_unplug_request; 3308 3309 smc->dr_lmb_enabled = true; 3310 smc->tcg_default_cpu = "POWER8"; 3311 mc->has_hotpluggable_cpus = true; 3312 fwc->get_dev_path = spapr_get_fw_dev_path; 3313 nc->nmi_monitor_handler = spapr_nmi; 3314 smc->phb_placement = spapr_phb_placement; 3315 vhc->hypercall = emulate_spapr_hypercall; 3316 vhc->hpt_mask = spapr_hpt_mask; 3317 vhc->map_hptes = spapr_map_hptes; 3318 vhc->unmap_hptes = spapr_unmap_hptes; 3319 vhc->store_hpte = spapr_store_hpte; 3320 vhc->get_patbe = spapr_get_patbe; 3321 xic->ics_get = spapr_ics_get; 3322 xic->ics_resend = spapr_ics_resend; 3323 xic->icp_get = spapr_icp_get; 3324 ispc->print_info = spapr_pic_print_info; 3325 /* Force NUMA node memory size to be a multiple of 3326 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3327 * in which LMBs are represented and hot-added 3328 */ 3329 mc->numa_mem_align_shift = 28; 3330 } 3331 3332 static const TypeInfo spapr_machine_info = { 3333 .name = TYPE_SPAPR_MACHINE, 3334 .parent = TYPE_MACHINE, 3335 .abstract = true, 3336 .instance_size = sizeof(sPAPRMachineState), 3337 .instance_init = spapr_machine_initfn, 3338 .instance_finalize = spapr_machine_finalizefn, 3339 .class_size = sizeof(sPAPRMachineClass), 3340 .class_init = spapr_machine_class_init, 3341 .interfaces = (InterfaceInfo[]) { 3342 { TYPE_FW_PATH_PROVIDER }, 3343 { TYPE_NMI }, 3344 { TYPE_HOTPLUG_HANDLER }, 3345 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3346 { TYPE_XICS_FABRIC }, 3347 { TYPE_INTERRUPT_STATS_PROVIDER }, 3348 { } 3349 }, 3350 }; 3351 3352 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3353 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3354 void *data) \ 3355 { \ 3356 MachineClass *mc = MACHINE_CLASS(oc); \ 3357 spapr_machine_##suffix##_class_options(mc); \ 3358 if (latest) { \ 3359 mc->alias = "pseries"; \ 3360 mc->is_default = 1; \ 3361 } \ 3362 } \ 3363 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3364 { \ 3365 MachineState *machine = MACHINE(obj); \ 3366 spapr_machine_##suffix##_instance_options(machine); \ 3367 } \ 3368 static const TypeInfo spapr_machine_##suffix##_info = { \ 3369 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3370 .parent = TYPE_SPAPR_MACHINE, \ 3371 .class_init = spapr_machine_##suffix##_class_init, \ 3372 .instance_init = spapr_machine_##suffix##_instance_init, \ 3373 }; \ 3374 static void spapr_machine_register_##suffix(void) \ 3375 { \ 3376 type_register(&spapr_machine_##suffix##_info); \ 3377 } \ 3378 type_init(spapr_machine_register_##suffix) 3379 3380 /* 3381 * pseries-2.10 3382 */ 3383 static void spapr_machine_2_10_instance_options(MachineState *machine) 3384 { 3385 } 3386 3387 static void spapr_machine_2_10_class_options(MachineClass *mc) 3388 { 3389 /* Defaults for the latest behaviour inherited from the base class */ 3390 } 3391 3392 DEFINE_SPAPR_MACHINE(2_10, "2.10", true); 3393 3394 /* 3395 * pseries-2.9 3396 */ 3397 #define SPAPR_COMPAT_2_9 \ 3398 HW_COMPAT_2_9 \ 3399 { \ 3400 .driver = TYPE_POWERPC_CPU, \ 3401 .property = "pre-2.10-migration", \ 3402 .value = "on", \ 3403 }, \ 3404 3405 static void spapr_machine_2_9_instance_options(MachineState *machine) 3406 { 3407 spapr_machine_2_10_instance_options(machine); 3408 } 3409 3410 static void spapr_machine_2_9_class_options(MachineClass *mc) 3411 { 3412 spapr_machine_2_10_class_options(mc); 3413 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 3414 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 3415 } 3416 3417 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 3418 3419 /* 3420 * pseries-2.8 3421 */ 3422 #define SPAPR_COMPAT_2_8 \ 3423 HW_COMPAT_2_8 \ 3424 { \ 3425 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3426 .property = "pcie-extended-configuration-space", \ 3427 .value = "off", \ 3428 }, 3429 3430 static void spapr_machine_2_8_instance_options(MachineState *machine) 3431 { 3432 spapr_machine_2_9_instance_options(machine); 3433 } 3434 3435 static void spapr_machine_2_8_class_options(MachineClass *mc) 3436 { 3437 spapr_machine_2_9_class_options(mc); 3438 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3439 mc->numa_mem_align_shift = 23; 3440 } 3441 3442 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3443 3444 /* 3445 * pseries-2.7 3446 */ 3447 #define SPAPR_COMPAT_2_7 \ 3448 HW_COMPAT_2_7 \ 3449 { \ 3450 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3451 .property = "mem_win_size", \ 3452 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3453 }, \ 3454 { \ 3455 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3456 .property = "mem64_win_size", \ 3457 .value = "0", \ 3458 }, \ 3459 { \ 3460 .driver = TYPE_POWERPC_CPU, \ 3461 .property = "pre-2.8-migration", \ 3462 .value = "on", \ 3463 }, \ 3464 { \ 3465 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3466 .property = "pre-2.8-migration", \ 3467 .value = "on", \ 3468 }, 3469 3470 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3471 uint64_t *buid, hwaddr *pio, 3472 hwaddr *mmio32, hwaddr *mmio64, 3473 unsigned n_dma, uint32_t *liobns, Error **errp) 3474 { 3475 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3476 const uint64_t base_buid = 0x800000020000000ULL; 3477 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3478 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3479 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3480 const uint32_t max_index = 255; 3481 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3482 3483 uint64_t ram_top = MACHINE(spapr)->ram_size; 3484 hwaddr phb0_base, phb_base; 3485 int i; 3486 3487 /* Do we have hotpluggable memory? */ 3488 if (MACHINE(spapr)->maxram_size > ram_top) { 3489 /* Can't just use maxram_size, because there may be an 3490 * alignment gap between normal and hotpluggable memory 3491 * regions */ 3492 ram_top = spapr->hotplug_memory.base + 3493 memory_region_size(&spapr->hotplug_memory.mr); 3494 } 3495 3496 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3497 3498 if (index > max_index) { 3499 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3500 max_index); 3501 return; 3502 } 3503 3504 *buid = base_buid + index; 3505 for (i = 0; i < n_dma; ++i) { 3506 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3507 } 3508 3509 phb_base = phb0_base + index * phb_spacing; 3510 *pio = phb_base + pio_offset; 3511 *mmio32 = phb_base + mmio_offset; 3512 /* 3513 * We don't set the 64-bit MMIO window, relying on the PHB's 3514 * fallback behaviour of automatically splitting a large "32-bit" 3515 * window into contiguous 32-bit and 64-bit windows 3516 */ 3517 } 3518 3519 static void spapr_machine_2_7_instance_options(MachineState *machine) 3520 { 3521 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3522 3523 spapr_machine_2_8_instance_options(machine); 3524 spapr->use_hotplug_event_source = false; 3525 } 3526 3527 static void spapr_machine_2_7_class_options(MachineClass *mc) 3528 { 3529 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3530 3531 spapr_machine_2_8_class_options(mc); 3532 smc->tcg_default_cpu = "POWER7"; 3533 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3534 smc->phb_placement = phb_placement_2_7; 3535 } 3536 3537 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3538 3539 /* 3540 * pseries-2.6 3541 */ 3542 #define SPAPR_COMPAT_2_6 \ 3543 HW_COMPAT_2_6 \ 3544 { \ 3545 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3546 .property = "ddw",\ 3547 .value = stringify(off),\ 3548 }, 3549 3550 static void spapr_machine_2_6_instance_options(MachineState *machine) 3551 { 3552 spapr_machine_2_7_instance_options(machine); 3553 } 3554 3555 static void spapr_machine_2_6_class_options(MachineClass *mc) 3556 { 3557 spapr_machine_2_7_class_options(mc); 3558 mc->has_hotpluggable_cpus = false; 3559 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3560 } 3561 3562 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3563 3564 /* 3565 * pseries-2.5 3566 */ 3567 #define SPAPR_COMPAT_2_5 \ 3568 HW_COMPAT_2_5 \ 3569 { \ 3570 .driver = "spapr-vlan", \ 3571 .property = "use-rx-buffer-pools", \ 3572 .value = "off", \ 3573 }, 3574 3575 static void spapr_machine_2_5_instance_options(MachineState *machine) 3576 { 3577 spapr_machine_2_6_instance_options(machine); 3578 } 3579 3580 static void spapr_machine_2_5_class_options(MachineClass *mc) 3581 { 3582 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3583 3584 spapr_machine_2_6_class_options(mc); 3585 smc->use_ohci_by_default = true; 3586 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3587 } 3588 3589 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3590 3591 /* 3592 * pseries-2.4 3593 */ 3594 #define SPAPR_COMPAT_2_4 \ 3595 HW_COMPAT_2_4 3596 3597 static void spapr_machine_2_4_instance_options(MachineState *machine) 3598 { 3599 spapr_machine_2_5_instance_options(machine); 3600 } 3601 3602 static void spapr_machine_2_4_class_options(MachineClass *mc) 3603 { 3604 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3605 3606 spapr_machine_2_5_class_options(mc); 3607 smc->dr_lmb_enabled = false; 3608 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3609 } 3610 3611 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3612 3613 /* 3614 * pseries-2.3 3615 */ 3616 #define SPAPR_COMPAT_2_3 \ 3617 HW_COMPAT_2_3 \ 3618 {\ 3619 .driver = "spapr-pci-host-bridge",\ 3620 .property = "dynamic-reconfiguration",\ 3621 .value = "off",\ 3622 }, 3623 3624 static void spapr_machine_2_3_instance_options(MachineState *machine) 3625 { 3626 spapr_machine_2_4_instance_options(machine); 3627 } 3628 3629 static void spapr_machine_2_3_class_options(MachineClass *mc) 3630 { 3631 spapr_machine_2_4_class_options(mc); 3632 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3633 } 3634 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3635 3636 /* 3637 * pseries-2.2 3638 */ 3639 3640 #define SPAPR_COMPAT_2_2 \ 3641 HW_COMPAT_2_2 \ 3642 {\ 3643 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3644 .property = "mem_win_size",\ 3645 .value = "0x20000000",\ 3646 }, 3647 3648 static void spapr_machine_2_2_instance_options(MachineState *machine) 3649 { 3650 spapr_machine_2_3_instance_options(machine); 3651 machine->suppress_vmdesc = true; 3652 } 3653 3654 static void spapr_machine_2_2_class_options(MachineClass *mc) 3655 { 3656 spapr_machine_2_3_class_options(mc); 3657 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3658 } 3659 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3660 3661 /* 3662 * pseries-2.1 3663 */ 3664 #define SPAPR_COMPAT_2_1 \ 3665 HW_COMPAT_2_1 3666 3667 static void spapr_machine_2_1_instance_options(MachineState *machine) 3668 { 3669 spapr_machine_2_2_instance_options(machine); 3670 } 3671 3672 static void spapr_machine_2_1_class_options(MachineClass *mc) 3673 { 3674 spapr_machine_2_2_class_options(mc); 3675 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 3676 } 3677 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 3678 3679 static void spapr_machine_register_types(void) 3680 { 3681 type_register_static(&spapr_machine_info); 3682 } 3683 3684 type_init(spapr_machine_register_types) 3685