1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "cpu-models.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/ppc/xics.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "exec/ram_addr.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "hw/compat.h" 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 #include "hw/mem/memory-device.h" 78 79 #include <libfdt.h> 80 81 /* SLOF memory layout: 82 * 83 * SLOF raw image loaded at 0, copies its romfs right below the flat 84 * device-tree, then position SLOF itself 31M below that 85 * 86 * So we set FW_OVERHEAD to 40MB which should account for all of that 87 * and more 88 * 89 * We load our kernel at 4M, leaving space for SLOF initial image 90 */ 91 #define FDT_MAX_SIZE 0x100000 92 #define RTAS_MAX_SIZE 0x10000 93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 94 #define FW_MAX_SIZE 0x400000 95 #define FW_FILE_NAME "slof.bin" 96 #define FW_OVERHEAD 0x2800000 97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 98 99 #define MIN_RMA_SLOF 128UL 100 101 #define PHANDLE_XICP 0x00001111 102 103 /* These two functions implement the VCPU id numbering: one to compute them 104 * all and one to identify thread 0 of a VCORE. Any change to the first one 105 * is likely to have an impact on the second one, so let's keep them close. 106 */ 107 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 108 { 109 assert(spapr->vsmt); 110 return 111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 112 } 113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 114 PowerPCCPU *cpu) 115 { 116 assert(spapr->vsmt); 117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 118 } 119 120 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 121 const char *type_ics, 122 int nr_irqs, Error **errp) 123 { 124 Error *local_err = NULL; 125 Object *obj; 126 127 obj = object_new(type_ics); 128 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 129 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 130 &error_abort); 131 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 132 if (local_err) { 133 goto error; 134 } 135 object_property_set_bool(obj, true, "realized", &local_err); 136 if (local_err) { 137 goto error; 138 } 139 140 return ICS_SIMPLE(obj); 141 142 error: 143 error_propagate(errp, local_err); 144 return NULL; 145 } 146 147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 148 { 149 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 150 * and newer QEMUs don't even have them. In both cases, we don't want 151 * to send anything on the wire. 152 */ 153 return false; 154 } 155 156 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 157 .name = "icp/server", 158 .version_id = 1, 159 .minimum_version_id = 1, 160 .needed = pre_2_10_vmstate_dummy_icp_needed, 161 .fields = (VMStateField[]) { 162 VMSTATE_UNUSED(4), /* uint32_t xirr */ 163 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 164 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 165 VMSTATE_END_OF_LIST() 166 }, 167 }; 168 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 176 { 177 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 178 (void *)(uintptr_t) i); 179 } 180 181 static int xics_max_server_number(sPAPRMachineState *spapr) 182 { 183 assert(spapr->vsmt); 184 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 185 } 186 187 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 188 { 189 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 190 Error *local_err = NULL; 191 192 if (kvm_enabled()) { 193 if (machine_kernel_irqchip_allowed(machine) && 194 !xics_kvm_init(spapr, &local_err)) { 195 spapr->icp_type = TYPE_KVM_ICP; 196 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, 197 &local_err); 198 } 199 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 200 error_prepend(&local_err, 201 "kernel_irqchip requested but unavailable: "); 202 goto error; 203 } 204 error_free(local_err); 205 local_err = NULL; 206 } 207 208 if (!spapr->ics) { 209 xics_spapr_init(spapr); 210 spapr->icp_type = TYPE_ICP; 211 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, 212 &local_err); 213 } 214 215 error: 216 error_propagate(errp, local_err); 217 } 218 219 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 220 int smt_threads) 221 { 222 int i, ret = 0; 223 uint32_t servers_prop[smt_threads]; 224 uint32_t gservers_prop[smt_threads * 2]; 225 int index = spapr_get_vcpu_id(cpu); 226 227 if (cpu->compat_pvr) { 228 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 229 if (ret < 0) { 230 return ret; 231 } 232 } 233 234 /* Build interrupt servers and gservers properties */ 235 for (i = 0; i < smt_threads; i++) { 236 servers_prop[i] = cpu_to_be32(index + i); 237 /* Hack, direct the group queues back to cpu 0 */ 238 gservers_prop[i*2] = cpu_to_be32(index + i); 239 gservers_prop[i*2 + 1] = 0; 240 } 241 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 242 servers_prop, sizeof(servers_prop)); 243 if (ret < 0) { 244 return ret; 245 } 246 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 247 gservers_prop, sizeof(gservers_prop)); 248 249 return ret; 250 } 251 252 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 253 { 254 int index = spapr_get_vcpu_id(cpu); 255 uint32_t associativity[] = {cpu_to_be32(0x5), 256 cpu_to_be32(0x0), 257 cpu_to_be32(0x0), 258 cpu_to_be32(0x0), 259 cpu_to_be32(cpu->node_id), 260 cpu_to_be32(index)}; 261 262 /* Advertise NUMA via ibm,associativity */ 263 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 264 sizeof(associativity)); 265 } 266 267 /* Populate the "ibm,pa-features" property */ 268 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 269 PowerPCCPU *cpu, 270 void *fdt, int offset, 271 bool legacy_guest) 272 { 273 uint8_t pa_features_206[] = { 6, 0, 274 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 275 uint8_t pa_features_207[] = { 24, 0, 276 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 277 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 278 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 279 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 280 uint8_t pa_features_300[] = { 66, 0, 281 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 282 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 283 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 284 /* 6: DS207 */ 285 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 286 /* 16: Vector */ 287 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 288 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 290 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 292 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 293 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 294 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 296 /* 42: PM, 44: PC RA, 46: SC vec'd */ 297 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 298 /* 48: SIMD, 50: QP BFP, 52: String */ 299 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 300 /* 54: DecFP, 56: DecI, 58: SHA */ 301 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 302 /* 60: NM atomic, 62: RNG */ 303 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 304 }; 305 uint8_t *pa_features = NULL; 306 size_t pa_size; 307 308 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 309 pa_features = pa_features_206; 310 pa_size = sizeof(pa_features_206); 311 } 312 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 313 pa_features = pa_features_207; 314 pa_size = sizeof(pa_features_207); 315 } 316 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 317 pa_features = pa_features_300; 318 pa_size = sizeof(pa_features_300); 319 } 320 if (!pa_features) { 321 return; 322 } 323 324 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 325 /* 326 * Note: we keep CI large pages off by default because a 64K capable 327 * guest provisioned with large pages might otherwise try to map a qemu 328 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 329 * even if that qemu runs on a 4k host. 330 * We dd this bit back here if we are confident this is not an issue 331 */ 332 pa_features[3] |= 0x20; 333 } 334 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 335 pa_features[24] |= 0x80; /* Transactional memory support */ 336 } 337 if (legacy_guest && pa_size > 40) { 338 /* Workaround for broken kernels that attempt (guest) radix 339 * mode when they can't handle it, if they see the radix bit set 340 * in pa-features. So hide it from them. */ 341 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 342 } 343 344 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 345 } 346 347 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 348 { 349 int ret = 0, offset, cpus_offset; 350 CPUState *cs; 351 char cpu_model[32]; 352 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 353 354 CPU_FOREACH(cs) { 355 PowerPCCPU *cpu = POWERPC_CPU(cs); 356 DeviceClass *dc = DEVICE_GET_CLASS(cs); 357 int index = spapr_get_vcpu_id(cpu); 358 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 359 360 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 361 continue; 362 } 363 364 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 365 366 cpus_offset = fdt_path_offset(fdt, "/cpus"); 367 if (cpus_offset < 0) { 368 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 369 if (cpus_offset < 0) { 370 return cpus_offset; 371 } 372 } 373 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 374 if (offset < 0) { 375 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 376 if (offset < 0) { 377 return offset; 378 } 379 } 380 381 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 382 pft_size_prop, sizeof(pft_size_prop)); 383 if (ret < 0) { 384 return ret; 385 } 386 387 if (nb_numa_nodes > 1) { 388 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 389 if (ret < 0) { 390 return ret; 391 } 392 } 393 394 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 395 if (ret < 0) { 396 return ret; 397 } 398 399 spapr_populate_pa_features(spapr, cpu, fdt, offset, 400 spapr->cas_legacy_guest_workaround); 401 } 402 return ret; 403 } 404 405 static hwaddr spapr_node0_size(MachineState *machine) 406 { 407 if (nb_numa_nodes) { 408 int i; 409 for (i = 0; i < nb_numa_nodes; ++i) { 410 if (numa_info[i].node_mem) { 411 return MIN(pow2floor(numa_info[i].node_mem), 412 machine->ram_size); 413 } 414 } 415 } 416 return machine->ram_size; 417 } 418 419 static void add_str(GString *s, const gchar *s1) 420 { 421 g_string_append_len(s, s1, strlen(s1) + 1); 422 } 423 424 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 425 hwaddr size) 426 { 427 uint32_t associativity[] = { 428 cpu_to_be32(0x4), /* length */ 429 cpu_to_be32(0x0), cpu_to_be32(0x0), 430 cpu_to_be32(0x0), cpu_to_be32(nodeid) 431 }; 432 char mem_name[32]; 433 uint64_t mem_reg_property[2]; 434 int off; 435 436 mem_reg_property[0] = cpu_to_be64(start); 437 mem_reg_property[1] = cpu_to_be64(size); 438 439 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 440 off = fdt_add_subnode(fdt, 0, mem_name); 441 _FDT(off); 442 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 443 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 444 sizeof(mem_reg_property)))); 445 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 446 sizeof(associativity)))); 447 return off; 448 } 449 450 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 451 { 452 MachineState *machine = MACHINE(spapr); 453 hwaddr mem_start, node_size; 454 int i, nb_nodes = nb_numa_nodes; 455 NodeInfo *nodes = numa_info; 456 NodeInfo ramnode; 457 458 /* No NUMA nodes, assume there is just one node with whole RAM */ 459 if (!nb_numa_nodes) { 460 nb_nodes = 1; 461 ramnode.node_mem = machine->ram_size; 462 nodes = &ramnode; 463 } 464 465 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 466 if (!nodes[i].node_mem) { 467 continue; 468 } 469 if (mem_start >= machine->ram_size) { 470 node_size = 0; 471 } else { 472 node_size = nodes[i].node_mem; 473 if (node_size > machine->ram_size - mem_start) { 474 node_size = machine->ram_size - mem_start; 475 } 476 } 477 if (!mem_start) { 478 /* spapr_machine_init() checks for rma_size <= node0_size 479 * already */ 480 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 481 mem_start += spapr->rma_size; 482 node_size -= spapr->rma_size; 483 } 484 for ( ; node_size; ) { 485 hwaddr sizetmp = pow2floor(node_size); 486 487 /* mem_start != 0 here */ 488 if (ctzl(mem_start) < ctzl(sizetmp)) { 489 sizetmp = 1ULL << ctzl(mem_start); 490 } 491 492 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 493 node_size -= sizetmp; 494 mem_start += sizetmp; 495 } 496 } 497 498 return 0; 499 } 500 501 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 502 sPAPRMachineState *spapr) 503 { 504 PowerPCCPU *cpu = POWERPC_CPU(cs); 505 CPUPPCState *env = &cpu->env; 506 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 507 int index = spapr_get_vcpu_id(cpu); 508 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 509 0xffffffff, 0xffffffff}; 510 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 511 : SPAPR_TIMEBASE_FREQ; 512 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 513 uint32_t page_sizes_prop[64]; 514 size_t page_sizes_prop_size; 515 uint32_t vcpus_per_socket = smp_threads * smp_cores; 516 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 517 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 518 sPAPRDRConnector *drc; 519 int drc_index; 520 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 521 int i; 522 523 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 524 if (drc) { 525 drc_index = spapr_drc_index(drc); 526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 527 } 528 529 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 530 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 531 532 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 533 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 534 env->dcache_line_size))); 535 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 536 env->dcache_line_size))); 537 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 538 env->icache_line_size))); 539 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 540 env->icache_line_size))); 541 542 if (pcc->l1_dcache_size) { 543 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 544 pcc->l1_dcache_size))); 545 } else { 546 warn_report("Unknown L1 dcache size for cpu"); 547 } 548 if (pcc->l1_icache_size) { 549 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 550 pcc->l1_icache_size))); 551 } else { 552 warn_report("Unknown L1 icache size for cpu"); 553 } 554 555 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 556 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 557 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 558 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 559 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 560 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 561 562 if (env->spr_cb[SPR_PURR].oea_read) { 563 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 564 } 565 566 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 567 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 568 segs, sizeof(segs)))); 569 } 570 571 /* Advertise VSX (vector extensions) if available 572 * 1 == VMX / Altivec available 573 * 2 == VSX available 574 * 575 * Only CPUs for which we create core types in spapr_cpu_core.c 576 * are possible, and all of those have VMX */ 577 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 578 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 579 } else { 580 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 581 } 582 583 /* Advertise DFP (Decimal Floating Point) if available 584 * 0 / no property == no DFP 585 * 1 == DFP available */ 586 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 587 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 588 } 589 590 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 591 sizeof(page_sizes_prop)); 592 if (page_sizes_prop_size) { 593 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 594 page_sizes_prop, page_sizes_prop_size))); 595 } 596 597 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 598 599 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 600 cs->cpu_index / vcpus_per_socket))); 601 602 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 603 pft_size_prop, sizeof(pft_size_prop)))); 604 605 if (nb_numa_nodes > 1) { 606 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 607 } 608 609 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 610 611 if (pcc->radix_page_info) { 612 for (i = 0; i < pcc->radix_page_info->count; i++) { 613 radix_AP_encodings[i] = 614 cpu_to_be32(pcc->radix_page_info->entries[i]); 615 } 616 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 617 radix_AP_encodings, 618 pcc->radix_page_info->count * 619 sizeof(radix_AP_encodings[0])))); 620 } 621 } 622 623 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 624 { 625 CPUState *cs; 626 int cpus_offset; 627 char *nodename; 628 629 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 630 _FDT(cpus_offset); 631 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 632 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 633 634 /* 635 * We walk the CPUs in reverse order to ensure that CPU DT nodes 636 * created by fdt_add_subnode() end up in the right order in FDT 637 * for the guest kernel the enumerate the CPUs correctly. 638 */ 639 CPU_FOREACH_REVERSE(cs) { 640 PowerPCCPU *cpu = POWERPC_CPU(cs); 641 int index = spapr_get_vcpu_id(cpu); 642 DeviceClass *dc = DEVICE_GET_CLASS(cs); 643 int offset; 644 645 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 646 continue; 647 } 648 649 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 650 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 651 g_free(nodename); 652 _FDT(offset); 653 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 654 } 655 656 } 657 658 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 659 { 660 MemoryDeviceInfoList *info; 661 662 for (info = list; info; info = info->next) { 663 MemoryDeviceInfo *value = info->value; 664 665 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 666 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 667 668 if (pcdimm_info->addr >= addr && 669 addr < (pcdimm_info->addr + pcdimm_info->size)) { 670 return pcdimm_info->node; 671 } 672 } 673 } 674 675 return -1; 676 } 677 678 struct sPAPRDrconfCellV2 { 679 uint32_t seq_lmbs; 680 uint64_t base_addr; 681 uint32_t drc_index; 682 uint32_t aa_index; 683 uint32_t flags; 684 } QEMU_PACKED; 685 686 typedef struct DrconfCellQueue { 687 struct sPAPRDrconfCellV2 cell; 688 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 689 } DrconfCellQueue; 690 691 static DrconfCellQueue * 692 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 693 uint32_t drc_index, uint32_t aa_index, 694 uint32_t flags) 695 { 696 DrconfCellQueue *elem; 697 698 elem = g_malloc0(sizeof(*elem)); 699 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 700 elem->cell.base_addr = cpu_to_be64(base_addr); 701 elem->cell.drc_index = cpu_to_be32(drc_index); 702 elem->cell.aa_index = cpu_to_be32(aa_index); 703 elem->cell.flags = cpu_to_be32(flags); 704 705 return elem; 706 } 707 708 /* ibm,dynamic-memory-v2 */ 709 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 710 int offset, MemoryDeviceInfoList *dimms) 711 { 712 MachineState *machine = MACHINE(spapr); 713 uint8_t *int_buf, *cur_index, buf_len; 714 int ret; 715 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 716 uint64_t addr, cur_addr, size; 717 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 718 uint64_t mem_end = machine->device_memory->base + 719 memory_region_size(&machine->device_memory->mr); 720 uint32_t node, nr_entries = 0; 721 sPAPRDRConnector *drc; 722 DrconfCellQueue *elem, *next; 723 MemoryDeviceInfoList *info; 724 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 725 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 726 727 /* Entry to cover RAM and the gap area */ 728 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 729 SPAPR_LMB_FLAGS_RESERVED | 730 SPAPR_LMB_FLAGS_DRC_INVALID); 731 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 732 nr_entries++; 733 734 cur_addr = machine->device_memory->base; 735 for (info = dimms; info; info = info->next) { 736 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 737 738 addr = di->addr; 739 size = di->size; 740 node = di->node; 741 742 /* Entry for hot-pluggable area */ 743 if (cur_addr < addr) { 744 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 745 g_assert(drc); 746 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 747 cur_addr, spapr_drc_index(drc), -1, 0); 748 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 749 nr_entries++; 750 } 751 752 /* Entry for DIMM */ 753 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 754 g_assert(drc); 755 elem = spapr_get_drconf_cell(size / lmb_size, addr, 756 spapr_drc_index(drc), node, 757 SPAPR_LMB_FLAGS_ASSIGNED); 758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 759 nr_entries++; 760 cur_addr = addr + size; 761 } 762 763 /* Entry for remaining hotpluggable area */ 764 if (cur_addr < mem_end) { 765 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 766 g_assert(drc); 767 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 768 cur_addr, spapr_drc_index(drc), -1, 0); 769 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 770 nr_entries++; 771 } 772 773 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 774 int_buf = cur_index = g_malloc0(buf_len); 775 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 776 cur_index += sizeof(nr_entries); 777 778 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 779 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 780 cur_index += sizeof(elem->cell); 781 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 782 g_free(elem); 783 } 784 785 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 786 g_free(int_buf); 787 if (ret < 0) { 788 return -1; 789 } 790 return 0; 791 } 792 793 /* ibm,dynamic-memory */ 794 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 795 int offset, MemoryDeviceInfoList *dimms) 796 { 797 MachineState *machine = MACHINE(spapr); 798 int i, ret; 799 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 800 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 801 uint32_t nr_lmbs = (machine->device_memory->base + 802 memory_region_size(&machine->device_memory->mr)) / 803 lmb_size; 804 uint32_t *int_buf, *cur_index, buf_len; 805 806 /* 807 * Allocate enough buffer size to fit in ibm,dynamic-memory 808 */ 809 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 810 cur_index = int_buf = g_malloc0(buf_len); 811 int_buf[0] = cpu_to_be32(nr_lmbs); 812 cur_index++; 813 for (i = 0; i < nr_lmbs; i++) { 814 uint64_t addr = i * lmb_size; 815 uint32_t *dynamic_memory = cur_index; 816 817 if (i >= device_lmb_start) { 818 sPAPRDRConnector *drc; 819 820 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 821 g_assert(drc); 822 823 dynamic_memory[0] = cpu_to_be32(addr >> 32); 824 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 825 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 826 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 827 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 828 if (memory_region_present(get_system_memory(), addr)) { 829 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 830 } else { 831 dynamic_memory[5] = cpu_to_be32(0); 832 } 833 } else { 834 /* 835 * LMB information for RMA, boot time RAM and gap b/n RAM and 836 * device memory region -- all these are marked as reserved 837 * and as having no valid DRC. 838 */ 839 dynamic_memory[0] = cpu_to_be32(addr >> 32); 840 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 841 dynamic_memory[2] = cpu_to_be32(0); 842 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 843 dynamic_memory[4] = cpu_to_be32(-1); 844 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 845 SPAPR_LMB_FLAGS_DRC_INVALID); 846 } 847 848 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 849 } 850 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 851 g_free(int_buf); 852 if (ret < 0) { 853 return -1; 854 } 855 return 0; 856 } 857 858 /* 859 * Adds ibm,dynamic-reconfiguration-memory node. 860 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 861 * of this device tree node. 862 */ 863 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 864 { 865 MachineState *machine = MACHINE(spapr); 866 int ret, i, offset; 867 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 868 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 869 uint32_t *int_buf, *cur_index, buf_len; 870 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 871 MemoryDeviceInfoList *dimms = NULL; 872 873 /* 874 * Don't create the node if there is no device memory 875 */ 876 if (machine->ram_size == machine->maxram_size) { 877 return 0; 878 } 879 880 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 881 882 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 883 sizeof(prop_lmb_size)); 884 if (ret < 0) { 885 return ret; 886 } 887 888 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 889 if (ret < 0) { 890 return ret; 891 } 892 893 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 894 if (ret < 0) { 895 return ret; 896 } 897 898 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 899 dimms = qmp_memory_device_list(); 900 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 901 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 902 } else { 903 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 904 } 905 qapi_free_MemoryDeviceInfoList(dimms); 906 907 if (ret < 0) { 908 return ret; 909 } 910 911 /* ibm,associativity-lookup-arrays */ 912 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 913 cur_index = int_buf = g_malloc0(buf_len); 914 915 cur_index = int_buf; 916 int_buf[0] = cpu_to_be32(nr_nodes); 917 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 918 cur_index += 2; 919 for (i = 0; i < nr_nodes; i++) { 920 uint32_t associativity[] = { 921 cpu_to_be32(0x0), 922 cpu_to_be32(0x0), 923 cpu_to_be32(0x0), 924 cpu_to_be32(i) 925 }; 926 memcpy(cur_index, associativity, sizeof(associativity)); 927 cur_index += 4; 928 } 929 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 930 (cur_index - int_buf) * sizeof(uint32_t)); 931 g_free(int_buf); 932 933 return ret; 934 } 935 936 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 937 sPAPROptionVector *ov5_updates) 938 { 939 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 940 int ret = 0, offset; 941 942 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 943 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 944 g_assert(smc->dr_lmb_enabled); 945 ret = spapr_populate_drconf_memory(spapr, fdt); 946 if (ret) { 947 goto out; 948 } 949 } 950 951 offset = fdt_path_offset(fdt, "/chosen"); 952 if (offset < 0) { 953 offset = fdt_add_subnode(fdt, 0, "chosen"); 954 if (offset < 0) { 955 return offset; 956 } 957 } 958 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 959 "ibm,architecture-vec-5"); 960 961 out: 962 return ret; 963 } 964 965 static bool spapr_hotplugged_dev_before_cas(void) 966 { 967 Object *drc_container, *obj; 968 ObjectProperty *prop; 969 ObjectPropertyIterator iter; 970 971 drc_container = container_get(object_get_root(), "/dr-connector"); 972 object_property_iter_init(&iter, drc_container); 973 while ((prop = object_property_iter_next(&iter))) { 974 if (!strstart(prop->type, "link<", NULL)) { 975 continue; 976 } 977 obj = object_property_get_link(drc_container, prop->name, NULL); 978 if (spapr_drc_needed(obj)) { 979 return true; 980 } 981 } 982 return false; 983 } 984 985 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 986 target_ulong addr, target_ulong size, 987 sPAPROptionVector *ov5_updates) 988 { 989 void *fdt, *fdt_skel; 990 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 991 992 if (spapr_hotplugged_dev_before_cas()) { 993 return 1; 994 } 995 996 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 997 error_report("SLOF provided an unexpected CAS buffer size " 998 TARGET_FMT_lu " (min: %zu, max: %u)", 999 size, sizeof(hdr), FW_MAX_SIZE); 1000 exit(EXIT_FAILURE); 1001 } 1002 1003 size -= sizeof(hdr); 1004 1005 /* Create skeleton */ 1006 fdt_skel = g_malloc0(size); 1007 _FDT((fdt_create(fdt_skel, size))); 1008 _FDT((fdt_finish_reservemap(fdt_skel))); 1009 _FDT((fdt_begin_node(fdt_skel, ""))); 1010 _FDT((fdt_end_node(fdt_skel))); 1011 _FDT((fdt_finish(fdt_skel))); 1012 fdt = g_malloc0(size); 1013 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1014 g_free(fdt_skel); 1015 1016 /* Fixup cpu nodes */ 1017 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1018 1019 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1020 return -1; 1021 } 1022 1023 /* Pack resulting tree */ 1024 _FDT((fdt_pack(fdt))); 1025 1026 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1027 trace_spapr_cas_failed(size); 1028 return -1; 1029 } 1030 1031 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1032 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1033 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1034 g_free(fdt); 1035 1036 return 0; 1037 } 1038 1039 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1040 { 1041 int rtas; 1042 GString *hypertas = g_string_sized_new(256); 1043 GString *qemu_hypertas = g_string_sized_new(256); 1044 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1045 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1046 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1047 uint32_t lrdr_capacity[] = { 1048 cpu_to_be32(max_device_addr >> 32), 1049 cpu_to_be32(max_device_addr & 0xffffffff), 1050 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1051 cpu_to_be32(max_cpus / smp_threads), 1052 }; 1053 uint32_t maxdomains[] = { 1054 cpu_to_be32(4), 1055 cpu_to_be32(0), 1056 cpu_to_be32(0), 1057 cpu_to_be32(0), 1058 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0), 1059 }; 1060 1061 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1062 1063 /* hypertas */ 1064 add_str(hypertas, "hcall-pft"); 1065 add_str(hypertas, "hcall-term"); 1066 add_str(hypertas, "hcall-dabr"); 1067 add_str(hypertas, "hcall-interrupt"); 1068 add_str(hypertas, "hcall-tce"); 1069 add_str(hypertas, "hcall-vio"); 1070 add_str(hypertas, "hcall-splpar"); 1071 add_str(hypertas, "hcall-bulk"); 1072 add_str(hypertas, "hcall-set-mode"); 1073 add_str(hypertas, "hcall-sprg0"); 1074 add_str(hypertas, "hcall-copy"); 1075 add_str(hypertas, "hcall-debug"); 1076 add_str(qemu_hypertas, "hcall-memop1"); 1077 1078 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1079 add_str(hypertas, "hcall-multi-tce"); 1080 } 1081 1082 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1083 add_str(hypertas, "hcall-hpt-resize"); 1084 } 1085 1086 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1087 hypertas->str, hypertas->len)); 1088 g_string_free(hypertas, TRUE); 1089 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1090 qemu_hypertas->str, qemu_hypertas->len)); 1091 g_string_free(qemu_hypertas, TRUE); 1092 1093 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1094 refpoints, sizeof(refpoints))); 1095 1096 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1097 maxdomains, sizeof(maxdomains))); 1098 1099 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1100 RTAS_ERROR_LOG_MAX)); 1101 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1102 RTAS_EVENT_SCAN_RATE)); 1103 1104 g_assert(msi_nonbroken); 1105 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1106 1107 /* 1108 * According to PAPR, rtas ibm,os-term does not guarantee a return 1109 * back to the guest cpu. 1110 * 1111 * While an additional ibm,extended-os-term property indicates 1112 * that rtas call return will always occur. Set this property. 1113 */ 1114 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1115 1116 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1117 lrdr_capacity, sizeof(lrdr_capacity))); 1118 1119 spapr_dt_rtas_tokens(fdt, rtas); 1120 } 1121 1122 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 1123 * that the guest may request and thus the valid values for bytes 24..26 of 1124 * option vector 5: */ 1125 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 1126 { 1127 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1128 1129 char val[2 * 4] = { 1130 23, 0x00, /* Xive mode, filled in below. */ 1131 24, 0x00, /* Hash/Radix, filled in below. */ 1132 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1133 26, 0x40, /* Radix options: GTSE == yes. */ 1134 }; 1135 1136 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1137 first_ppc_cpu->compat_pvr)) { 1138 /* If we're in a pre POWER9 compat mode then the guest should do hash */ 1139 val[3] = 0x00; /* Hash */ 1140 } else if (kvm_enabled()) { 1141 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1142 val[3] = 0x80; /* OV5_MMU_BOTH */ 1143 } else if (kvmppc_has_cap_mmu_radix()) { 1144 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1145 } else { 1146 val[3] = 0x00; /* Hash */ 1147 } 1148 } else { 1149 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1150 val[3] = 0xC0; 1151 } 1152 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1153 val, sizeof(val))); 1154 } 1155 1156 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1157 { 1158 MachineState *machine = MACHINE(spapr); 1159 int chosen; 1160 const char *boot_device = machine->boot_order; 1161 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1162 size_t cb = 0; 1163 char *bootlist = get_boot_devices_list(&cb, true); 1164 1165 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1166 1167 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1168 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1169 spapr->initrd_base)); 1170 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1171 spapr->initrd_base + spapr->initrd_size)); 1172 1173 if (spapr->kernel_size) { 1174 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1175 cpu_to_be64(spapr->kernel_size) }; 1176 1177 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1178 &kprop, sizeof(kprop))); 1179 if (spapr->kernel_le) { 1180 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1181 } 1182 } 1183 if (boot_menu) { 1184 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1185 } 1186 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1187 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1188 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1189 1190 if (cb && bootlist) { 1191 int i; 1192 1193 for (i = 0; i < cb; i++) { 1194 if (bootlist[i] == '\n') { 1195 bootlist[i] = ' '; 1196 } 1197 } 1198 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1199 } 1200 1201 if (boot_device && strlen(boot_device)) { 1202 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1203 } 1204 1205 if (!spapr->has_graphics && stdout_path) { 1206 /* 1207 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1208 * kernel. New platforms should only use the "stdout-path" property. Set 1209 * the new property and continue using older property to remain 1210 * compatible with the existing firmware. 1211 */ 1212 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1213 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1214 } 1215 1216 spapr_dt_ov5_platform_support(fdt, chosen); 1217 1218 g_free(stdout_path); 1219 g_free(bootlist); 1220 } 1221 1222 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1223 { 1224 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1225 * KVM to work under pHyp with some guest co-operation */ 1226 int hypervisor; 1227 uint8_t hypercall[16]; 1228 1229 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1230 /* indicate KVM hypercall interface */ 1231 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1232 if (kvmppc_has_cap_fixup_hcalls()) { 1233 /* 1234 * Older KVM versions with older guest kernels were broken 1235 * with the magic page, don't allow the guest to map it. 1236 */ 1237 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1238 sizeof(hypercall))) { 1239 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1240 hypercall, sizeof(hypercall))); 1241 } 1242 } 1243 } 1244 1245 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1246 hwaddr rtas_addr, 1247 hwaddr rtas_size) 1248 { 1249 MachineState *machine = MACHINE(spapr); 1250 MachineClass *mc = MACHINE_GET_CLASS(machine); 1251 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1252 int ret; 1253 void *fdt; 1254 sPAPRPHBState *phb; 1255 char *buf; 1256 1257 fdt = g_malloc0(FDT_MAX_SIZE); 1258 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1259 1260 /* Root node */ 1261 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1262 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1263 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1264 1265 /* 1266 * Add info to guest to indentify which host is it being run on 1267 * and what is the uuid of the guest 1268 */ 1269 if (kvmppc_get_host_model(&buf)) { 1270 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1271 g_free(buf); 1272 } 1273 if (kvmppc_get_host_serial(&buf)) { 1274 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1275 g_free(buf); 1276 } 1277 1278 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1279 1280 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1281 if (qemu_uuid_set) { 1282 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1283 } 1284 g_free(buf); 1285 1286 if (qemu_get_vm_name()) { 1287 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1288 qemu_get_vm_name())); 1289 } 1290 1291 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1292 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1293 1294 /* /interrupt controller */ 1295 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP); 1296 1297 ret = spapr_populate_memory(spapr, fdt); 1298 if (ret < 0) { 1299 error_report("couldn't setup memory nodes in fdt"); 1300 exit(1); 1301 } 1302 1303 /* /vdevice */ 1304 spapr_dt_vdevice(spapr->vio_bus, fdt); 1305 1306 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1307 ret = spapr_rng_populate_dt(fdt); 1308 if (ret < 0) { 1309 error_report("could not set up rng device in the fdt"); 1310 exit(1); 1311 } 1312 } 1313 1314 QLIST_FOREACH(phb, &spapr->phbs, list) { 1315 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1316 if (ret < 0) { 1317 error_report("couldn't setup PCI devices in fdt"); 1318 exit(1); 1319 } 1320 } 1321 1322 /* cpus */ 1323 spapr_populate_cpus_dt_node(fdt, spapr); 1324 1325 if (smc->dr_lmb_enabled) { 1326 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1327 } 1328 1329 if (mc->has_hotpluggable_cpus) { 1330 int offset = fdt_path_offset(fdt, "/cpus"); 1331 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1332 SPAPR_DR_CONNECTOR_TYPE_CPU); 1333 if (ret < 0) { 1334 error_report("Couldn't set up CPU DR device tree properties"); 1335 exit(1); 1336 } 1337 } 1338 1339 /* /event-sources */ 1340 spapr_dt_events(spapr, fdt); 1341 1342 /* /rtas */ 1343 spapr_dt_rtas(spapr, fdt); 1344 1345 /* /chosen */ 1346 spapr_dt_chosen(spapr, fdt); 1347 1348 /* /hypervisor */ 1349 if (kvm_enabled()) { 1350 spapr_dt_hypervisor(spapr, fdt); 1351 } 1352 1353 /* Build memory reserve map */ 1354 if (spapr->kernel_size) { 1355 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1356 } 1357 if (spapr->initrd_size) { 1358 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1359 } 1360 1361 /* ibm,client-architecture-support updates */ 1362 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1363 if (ret < 0) { 1364 error_report("couldn't setup CAS properties fdt"); 1365 exit(1); 1366 } 1367 1368 return fdt; 1369 } 1370 1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1372 { 1373 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1374 } 1375 1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1377 PowerPCCPU *cpu) 1378 { 1379 CPUPPCState *env = &cpu->env; 1380 1381 /* The TCG path should also be holding the BQL at this point */ 1382 g_assert(qemu_mutex_iothread_locked()); 1383 1384 if (msr_pr) { 1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1386 env->gpr[3] = H_PRIVILEGE; 1387 } else { 1388 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1389 } 1390 } 1391 1392 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1393 { 1394 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1395 1396 return spapr->patb_entry; 1397 } 1398 1399 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1400 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1401 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1402 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1403 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1404 1405 /* 1406 * Get the fd to access the kernel htab, re-opening it if necessary 1407 */ 1408 static int get_htab_fd(sPAPRMachineState *spapr) 1409 { 1410 Error *local_err = NULL; 1411 1412 if (spapr->htab_fd >= 0) { 1413 return spapr->htab_fd; 1414 } 1415 1416 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1417 if (spapr->htab_fd < 0) { 1418 error_report_err(local_err); 1419 } 1420 1421 return spapr->htab_fd; 1422 } 1423 1424 void close_htab_fd(sPAPRMachineState *spapr) 1425 { 1426 if (spapr->htab_fd >= 0) { 1427 close(spapr->htab_fd); 1428 } 1429 spapr->htab_fd = -1; 1430 } 1431 1432 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1433 { 1434 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1435 1436 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1437 } 1438 1439 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1440 { 1441 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1442 1443 assert(kvm_enabled()); 1444 1445 if (!spapr->htab) { 1446 return 0; 1447 } 1448 1449 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1450 } 1451 1452 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1453 hwaddr ptex, int n) 1454 { 1455 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1456 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1457 1458 if (!spapr->htab) { 1459 /* 1460 * HTAB is controlled by KVM. Fetch into temporary buffer 1461 */ 1462 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1463 kvmppc_read_hptes(hptes, ptex, n); 1464 return hptes; 1465 } 1466 1467 /* 1468 * HTAB is controlled by QEMU. Just point to the internally 1469 * accessible PTEG. 1470 */ 1471 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1472 } 1473 1474 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1475 const ppc_hash_pte64_t *hptes, 1476 hwaddr ptex, int n) 1477 { 1478 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1479 1480 if (!spapr->htab) { 1481 g_free((void *)hptes); 1482 } 1483 1484 /* Nothing to do for qemu managed HPT */ 1485 } 1486 1487 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1488 uint64_t pte0, uint64_t pte1) 1489 { 1490 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1491 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1492 1493 if (!spapr->htab) { 1494 kvmppc_write_hpte(ptex, pte0, pte1); 1495 } else { 1496 stq_p(spapr->htab + offset, pte0); 1497 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1498 } 1499 } 1500 1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1502 { 1503 int shift; 1504 1505 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1506 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1507 * that's much more than is needed for Linux guests */ 1508 shift = ctz64(pow2ceil(ramsize)) - 7; 1509 shift = MAX(shift, 18); /* Minimum architected size */ 1510 shift = MIN(shift, 46); /* Maximum architected size */ 1511 return shift; 1512 } 1513 1514 void spapr_free_hpt(sPAPRMachineState *spapr) 1515 { 1516 g_free(spapr->htab); 1517 spapr->htab = NULL; 1518 spapr->htab_shift = 0; 1519 close_htab_fd(spapr); 1520 } 1521 1522 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1523 Error **errp) 1524 { 1525 long rc; 1526 1527 /* Clean up any HPT info from a previous boot */ 1528 spapr_free_hpt(spapr); 1529 1530 rc = kvmppc_reset_htab(shift); 1531 if (rc < 0) { 1532 /* kernel-side HPT needed, but couldn't allocate one */ 1533 error_setg_errno(errp, errno, 1534 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1535 shift); 1536 /* This is almost certainly fatal, but if the caller really 1537 * wants to carry on with shift == 0, it's welcome to try */ 1538 } else if (rc > 0) { 1539 /* kernel-side HPT allocated */ 1540 if (rc != shift) { 1541 error_setg(errp, 1542 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1543 shift, rc); 1544 } 1545 1546 spapr->htab_shift = shift; 1547 spapr->htab = NULL; 1548 } else { 1549 /* kernel-side HPT not needed, allocate in userspace instead */ 1550 size_t size = 1ULL << shift; 1551 int i; 1552 1553 spapr->htab = qemu_memalign(size, size); 1554 if (!spapr->htab) { 1555 error_setg_errno(errp, errno, 1556 "Could not allocate HPT of order %d", shift); 1557 return; 1558 } 1559 1560 memset(spapr->htab, 0, size); 1561 spapr->htab_shift = shift; 1562 1563 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1564 DIRTY_HPTE(HPTE(spapr->htab, i)); 1565 } 1566 } 1567 /* We're setting up a hash table, so that means we're not radix */ 1568 spapr->patb_entry = 0; 1569 } 1570 1571 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1572 { 1573 int hpt_shift; 1574 1575 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1576 || (spapr->cas_reboot 1577 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1578 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1579 } else { 1580 uint64_t current_ram_size; 1581 1582 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1583 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1584 } 1585 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1586 1587 if (spapr->vrma_adjust) { 1588 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1589 spapr->htab_shift); 1590 } 1591 } 1592 1593 static int spapr_reset_drcs(Object *child, void *opaque) 1594 { 1595 sPAPRDRConnector *drc = 1596 (sPAPRDRConnector *) object_dynamic_cast(child, 1597 TYPE_SPAPR_DR_CONNECTOR); 1598 1599 if (drc) { 1600 spapr_drc_reset(drc); 1601 } 1602 1603 return 0; 1604 } 1605 1606 static void spapr_machine_reset(void) 1607 { 1608 MachineState *machine = MACHINE(qdev_get_machine()); 1609 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1610 PowerPCCPU *first_ppc_cpu; 1611 uint32_t rtas_limit; 1612 hwaddr rtas_addr, fdt_addr; 1613 void *fdt; 1614 int rc; 1615 1616 spapr_caps_apply(spapr); 1617 1618 first_ppc_cpu = POWERPC_CPU(first_cpu); 1619 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1620 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1621 spapr->max_compat_pvr)) { 1622 /* If using KVM with radix mode available, VCPUs can be started 1623 * without a HPT because KVM will start them in radix mode. 1624 * Set the GR bit in PATB so that we know there is no HPT. */ 1625 spapr->patb_entry = PATBE1_GR; 1626 } else { 1627 spapr_setup_hpt_and_vrma(spapr); 1628 } 1629 1630 /* if this reset wasn't generated by CAS, we should reset our 1631 * negotiated options and start from scratch */ 1632 if (!spapr->cas_reboot) { 1633 spapr_ovec_cleanup(spapr->ov5_cas); 1634 spapr->ov5_cas = spapr_ovec_new(); 1635 1636 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1637 } 1638 1639 qemu_devices_reset(); 1640 1641 /* DRC reset may cause a device to be unplugged. This will cause troubles 1642 * if this device is used by another device (eg, a running vhost backend 1643 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1644 * situations, we reset DRCs after all devices have been reset. 1645 */ 1646 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1647 1648 spapr_clear_pending_events(spapr); 1649 1650 /* 1651 * We place the device tree and RTAS just below either the top of the RMA, 1652 * or just below 2GB, whichever is lowere, so that it can be 1653 * processed with 32-bit real mode code if necessary 1654 */ 1655 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1656 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1657 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1658 1659 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1660 1661 spapr_load_rtas(spapr, fdt, rtas_addr); 1662 1663 rc = fdt_pack(fdt); 1664 1665 /* Should only fail if we've built a corrupted tree */ 1666 assert(rc == 0); 1667 1668 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1669 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1670 fdt_totalsize(fdt), FDT_MAX_SIZE); 1671 exit(1); 1672 } 1673 1674 /* Load the fdt */ 1675 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1676 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1677 g_free(fdt); 1678 1679 /* Set up the entry state */ 1680 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1681 first_ppc_cpu->env.gpr[5] = 0; 1682 1683 spapr->cas_reboot = false; 1684 } 1685 1686 static void spapr_create_nvram(sPAPRMachineState *spapr) 1687 { 1688 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1689 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1690 1691 if (dinfo) { 1692 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1693 &error_fatal); 1694 } 1695 1696 qdev_init_nofail(dev); 1697 1698 spapr->nvram = (struct sPAPRNVRAM *)dev; 1699 } 1700 1701 static void spapr_rtc_create(sPAPRMachineState *spapr) 1702 { 1703 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1704 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1705 &error_fatal); 1706 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1707 &error_fatal); 1708 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1709 "date", &error_fatal); 1710 } 1711 1712 /* Returns whether we want to use VGA or not */ 1713 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1714 { 1715 switch (vga_interface_type) { 1716 case VGA_NONE: 1717 return false; 1718 case VGA_DEVICE: 1719 return true; 1720 case VGA_STD: 1721 case VGA_VIRTIO: 1722 return pci_vga_init(pci_bus) != NULL; 1723 default: 1724 error_setg(errp, 1725 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1726 return false; 1727 } 1728 } 1729 1730 static int spapr_pre_load(void *opaque) 1731 { 1732 int rc; 1733 1734 rc = spapr_caps_pre_load(opaque); 1735 if (rc) { 1736 return rc; 1737 } 1738 1739 return 0; 1740 } 1741 1742 static int spapr_post_load(void *opaque, int version_id) 1743 { 1744 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1745 int err = 0; 1746 1747 err = spapr_caps_post_migration(spapr); 1748 if (err) { 1749 return err; 1750 } 1751 1752 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1753 CPUState *cs; 1754 CPU_FOREACH(cs) { 1755 PowerPCCPU *cpu = POWERPC_CPU(cs); 1756 icp_resend(ICP(cpu->intc)); 1757 } 1758 } 1759 1760 /* In earlier versions, there was no separate qdev for the PAPR 1761 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1762 * So when migrating from those versions, poke the incoming offset 1763 * value into the RTC device */ 1764 if (version_id < 3) { 1765 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1766 } 1767 1768 if (kvm_enabled() && spapr->patb_entry) { 1769 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1770 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1771 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1772 1773 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1774 if (err) { 1775 error_report("Process table config unsupported by the host"); 1776 return -EINVAL; 1777 } 1778 } 1779 1780 return err; 1781 } 1782 1783 static int spapr_pre_save(void *opaque) 1784 { 1785 int rc; 1786 1787 rc = spapr_caps_pre_save(opaque); 1788 if (rc) { 1789 return rc; 1790 } 1791 1792 return 0; 1793 } 1794 1795 static bool version_before_3(void *opaque, int version_id) 1796 { 1797 return version_id < 3; 1798 } 1799 1800 static bool spapr_pending_events_needed(void *opaque) 1801 { 1802 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1803 return !QTAILQ_EMPTY(&spapr->pending_events); 1804 } 1805 1806 static const VMStateDescription vmstate_spapr_event_entry = { 1807 .name = "spapr_event_log_entry", 1808 .version_id = 1, 1809 .minimum_version_id = 1, 1810 .fields = (VMStateField[]) { 1811 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1812 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1813 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1814 NULL, extended_length), 1815 VMSTATE_END_OF_LIST() 1816 }, 1817 }; 1818 1819 static const VMStateDescription vmstate_spapr_pending_events = { 1820 .name = "spapr_pending_events", 1821 .version_id = 1, 1822 .minimum_version_id = 1, 1823 .needed = spapr_pending_events_needed, 1824 .fields = (VMStateField[]) { 1825 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1826 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1827 VMSTATE_END_OF_LIST() 1828 }, 1829 }; 1830 1831 static bool spapr_ov5_cas_needed(void *opaque) 1832 { 1833 sPAPRMachineState *spapr = opaque; 1834 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1835 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1836 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1837 bool cas_needed; 1838 1839 /* Prior to the introduction of sPAPROptionVector, we had two option 1840 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1841 * Both of these options encode machine topology into the device-tree 1842 * in such a way that the now-booted OS should still be able to interact 1843 * appropriately with QEMU regardless of what options were actually 1844 * negotiatied on the source side. 1845 * 1846 * As such, we can avoid migrating the CAS-negotiated options if these 1847 * are the only options available on the current machine/platform. 1848 * Since these are the only options available for pseries-2.7 and 1849 * earlier, this allows us to maintain old->new/new->old migration 1850 * compatibility. 1851 * 1852 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1853 * via default pseries-2.8 machines and explicit command-line parameters. 1854 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1855 * of the actual CAS-negotiated values to continue working properly. For 1856 * example, availability of memory unplug depends on knowing whether 1857 * OV5_HP_EVT was negotiated via CAS. 1858 * 1859 * Thus, for any cases where the set of available CAS-negotiatable 1860 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1861 * include the CAS-negotiated options in the migration stream, unless 1862 * if they affect boot time behaviour only. 1863 */ 1864 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1865 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1866 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1867 1868 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1869 * the mask itself since in the future it's possible "legacy" bits may be 1870 * removed via machine options, which could generate a false positive 1871 * that breaks migration. 1872 */ 1873 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1874 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1875 1876 spapr_ovec_cleanup(ov5_mask); 1877 spapr_ovec_cleanup(ov5_legacy); 1878 spapr_ovec_cleanup(ov5_removed); 1879 1880 return cas_needed; 1881 } 1882 1883 static const VMStateDescription vmstate_spapr_ov5_cas = { 1884 .name = "spapr_option_vector_ov5_cas", 1885 .version_id = 1, 1886 .minimum_version_id = 1, 1887 .needed = spapr_ov5_cas_needed, 1888 .fields = (VMStateField[]) { 1889 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1890 vmstate_spapr_ovec, sPAPROptionVector), 1891 VMSTATE_END_OF_LIST() 1892 }, 1893 }; 1894 1895 static bool spapr_patb_entry_needed(void *opaque) 1896 { 1897 sPAPRMachineState *spapr = opaque; 1898 1899 return !!spapr->patb_entry; 1900 } 1901 1902 static const VMStateDescription vmstate_spapr_patb_entry = { 1903 .name = "spapr_patb_entry", 1904 .version_id = 1, 1905 .minimum_version_id = 1, 1906 .needed = spapr_patb_entry_needed, 1907 .fields = (VMStateField[]) { 1908 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1909 VMSTATE_END_OF_LIST() 1910 }, 1911 }; 1912 1913 static const VMStateDescription vmstate_spapr = { 1914 .name = "spapr", 1915 .version_id = 3, 1916 .minimum_version_id = 1, 1917 .pre_load = spapr_pre_load, 1918 .post_load = spapr_post_load, 1919 .pre_save = spapr_pre_save, 1920 .fields = (VMStateField[]) { 1921 /* used to be @next_irq */ 1922 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1923 1924 /* RTC offset */ 1925 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1926 1927 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1928 VMSTATE_END_OF_LIST() 1929 }, 1930 .subsections = (const VMStateDescription*[]) { 1931 &vmstate_spapr_ov5_cas, 1932 &vmstate_spapr_patb_entry, 1933 &vmstate_spapr_pending_events, 1934 &vmstate_spapr_cap_htm, 1935 &vmstate_spapr_cap_vsx, 1936 &vmstate_spapr_cap_dfp, 1937 &vmstate_spapr_cap_cfpc, 1938 &vmstate_spapr_cap_sbbc, 1939 &vmstate_spapr_cap_ibs, 1940 NULL 1941 } 1942 }; 1943 1944 static int htab_save_setup(QEMUFile *f, void *opaque) 1945 { 1946 sPAPRMachineState *spapr = opaque; 1947 1948 /* "Iteration" header */ 1949 if (!spapr->htab_shift) { 1950 qemu_put_be32(f, -1); 1951 } else { 1952 qemu_put_be32(f, spapr->htab_shift); 1953 } 1954 1955 if (spapr->htab) { 1956 spapr->htab_save_index = 0; 1957 spapr->htab_first_pass = true; 1958 } else { 1959 if (spapr->htab_shift) { 1960 assert(kvm_enabled()); 1961 } 1962 } 1963 1964 1965 return 0; 1966 } 1967 1968 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1969 int chunkstart, int n_valid, int n_invalid) 1970 { 1971 qemu_put_be32(f, chunkstart); 1972 qemu_put_be16(f, n_valid); 1973 qemu_put_be16(f, n_invalid); 1974 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1975 HASH_PTE_SIZE_64 * n_valid); 1976 } 1977 1978 static void htab_save_end_marker(QEMUFile *f) 1979 { 1980 qemu_put_be32(f, 0); 1981 qemu_put_be16(f, 0); 1982 qemu_put_be16(f, 0); 1983 } 1984 1985 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1986 int64_t max_ns) 1987 { 1988 bool has_timeout = max_ns != -1; 1989 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1990 int index = spapr->htab_save_index; 1991 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1992 1993 assert(spapr->htab_first_pass); 1994 1995 do { 1996 int chunkstart; 1997 1998 /* Consume invalid HPTEs */ 1999 while ((index < htabslots) 2000 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2001 CLEAN_HPTE(HPTE(spapr->htab, index)); 2002 index++; 2003 } 2004 2005 /* Consume valid HPTEs */ 2006 chunkstart = index; 2007 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2008 && HPTE_VALID(HPTE(spapr->htab, index))) { 2009 CLEAN_HPTE(HPTE(spapr->htab, index)); 2010 index++; 2011 } 2012 2013 if (index > chunkstart) { 2014 int n_valid = index - chunkstart; 2015 2016 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2017 2018 if (has_timeout && 2019 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2020 break; 2021 } 2022 } 2023 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2024 2025 if (index >= htabslots) { 2026 assert(index == htabslots); 2027 index = 0; 2028 spapr->htab_first_pass = false; 2029 } 2030 spapr->htab_save_index = index; 2031 } 2032 2033 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2034 int64_t max_ns) 2035 { 2036 bool final = max_ns < 0; 2037 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2038 int examined = 0, sent = 0; 2039 int index = spapr->htab_save_index; 2040 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2041 2042 assert(!spapr->htab_first_pass); 2043 2044 do { 2045 int chunkstart, invalidstart; 2046 2047 /* Consume non-dirty HPTEs */ 2048 while ((index < htabslots) 2049 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2050 index++; 2051 examined++; 2052 } 2053 2054 chunkstart = index; 2055 /* Consume valid dirty HPTEs */ 2056 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2057 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2058 && HPTE_VALID(HPTE(spapr->htab, index))) { 2059 CLEAN_HPTE(HPTE(spapr->htab, index)); 2060 index++; 2061 examined++; 2062 } 2063 2064 invalidstart = index; 2065 /* Consume invalid dirty HPTEs */ 2066 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2067 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2068 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2069 CLEAN_HPTE(HPTE(spapr->htab, index)); 2070 index++; 2071 examined++; 2072 } 2073 2074 if (index > chunkstart) { 2075 int n_valid = invalidstart - chunkstart; 2076 int n_invalid = index - invalidstart; 2077 2078 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2079 sent += index - chunkstart; 2080 2081 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2082 break; 2083 } 2084 } 2085 2086 if (examined >= htabslots) { 2087 break; 2088 } 2089 2090 if (index >= htabslots) { 2091 assert(index == htabslots); 2092 index = 0; 2093 } 2094 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2095 2096 if (index >= htabslots) { 2097 assert(index == htabslots); 2098 index = 0; 2099 } 2100 2101 spapr->htab_save_index = index; 2102 2103 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2104 } 2105 2106 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2107 #define MAX_KVM_BUF_SIZE 2048 2108 2109 static int htab_save_iterate(QEMUFile *f, void *opaque) 2110 { 2111 sPAPRMachineState *spapr = opaque; 2112 int fd; 2113 int rc = 0; 2114 2115 /* Iteration header */ 2116 if (!spapr->htab_shift) { 2117 qemu_put_be32(f, -1); 2118 return 1; 2119 } else { 2120 qemu_put_be32(f, 0); 2121 } 2122 2123 if (!spapr->htab) { 2124 assert(kvm_enabled()); 2125 2126 fd = get_htab_fd(spapr); 2127 if (fd < 0) { 2128 return fd; 2129 } 2130 2131 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2132 if (rc < 0) { 2133 return rc; 2134 } 2135 } else if (spapr->htab_first_pass) { 2136 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2137 } else { 2138 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2139 } 2140 2141 htab_save_end_marker(f); 2142 2143 return rc; 2144 } 2145 2146 static int htab_save_complete(QEMUFile *f, void *opaque) 2147 { 2148 sPAPRMachineState *spapr = opaque; 2149 int fd; 2150 2151 /* Iteration header */ 2152 if (!spapr->htab_shift) { 2153 qemu_put_be32(f, -1); 2154 return 0; 2155 } else { 2156 qemu_put_be32(f, 0); 2157 } 2158 2159 if (!spapr->htab) { 2160 int rc; 2161 2162 assert(kvm_enabled()); 2163 2164 fd = get_htab_fd(spapr); 2165 if (fd < 0) { 2166 return fd; 2167 } 2168 2169 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2170 if (rc < 0) { 2171 return rc; 2172 } 2173 } else { 2174 if (spapr->htab_first_pass) { 2175 htab_save_first_pass(f, spapr, -1); 2176 } 2177 htab_save_later_pass(f, spapr, -1); 2178 } 2179 2180 /* End marker */ 2181 htab_save_end_marker(f); 2182 2183 return 0; 2184 } 2185 2186 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2187 { 2188 sPAPRMachineState *spapr = opaque; 2189 uint32_t section_hdr; 2190 int fd = -1; 2191 Error *local_err = NULL; 2192 2193 if (version_id < 1 || version_id > 1) { 2194 error_report("htab_load() bad version"); 2195 return -EINVAL; 2196 } 2197 2198 section_hdr = qemu_get_be32(f); 2199 2200 if (section_hdr == -1) { 2201 spapr_free_hpt(spapr); 2202 return 0; 2203 } 2204 2205 if (section_hdr) { 2206 /* First section gives the htab size */ 2207 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2208 if (local_err) { 2209 error_report_err(local_err); 2210 return -EINVAL; 2211 } 2212 return 0; 2213 } 2214 2215 if (!spapr->htab) { 2216 assert(kvm_enabled()); 2217 2218 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2219 if (fd < 0) { 2220 error_report_err(local_err); 2221 return fd; 2222 } 2223 } 2224 2225 while (true) { 2226 uint32_t index; 2227 uint16_t n_valid, n_invalid; 2228 2229 index = qemu_get_be32(f); 2230 n_valid = qemu_get_be16(f); 2231 n_invalid = qemu_get_be16(f); 2232 2233 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2234 /* End of Stream */ 2235 break; 2236 } 2237 2238 if ((index + n_valid + n_invalid) > 2239 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2240 /* Bad index in stream */ 2241 error_report( 2242 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2243 index, n_valid, n_invalid, spapr->htab_shift); 2244 return -EINVAL; 2245 } 2246 2247 if (spapr->htab) { 2248 if (n_valid) { 2249 qemu_get_buffer(f, HPTE(spapr->htab, index), 2250 HASH_PTE_SIZE_64 * n_valid); 2251 } 2252 if (n_invalid) { 2253 memset(HPTE(spapr->htab, index + n_valid), 0, 2254 HASH_PTE_SIZE_64 * n_invalid); 2255 } 2256 } else { 2257 int rc; 2258 2259 assert(fd >= 0); 2260 2261 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2262 if (rc < 0) { 2263 return rc; 2264 } 2265 } 2266 } 2267 2268 if (!spapr->htab) { 2269 assert(fd >= 0); 2270 close(fd); 2271 } 2272 2273 return 0; 2274 } 2275 2276 static void htab_save_cleanup(void *opaque) 2277 { 2278 sPAPRMachineState *spapr = opaque; 2279 2280 close_htab_fd(spapr); 2281 } 2282 2283 static SaveVMHandlers savevm_htab_handlers = { 2284 .save_setup = htab_save_setup, 2285 .save_live_iterate = htab_save_iterate, 2286 .save_live_complete_precopy = htab_save_complete, 2287 .save_cleanup = htab_save_cleanup, 2288 .load_state = htab_load, 2289 }; 2290 2291 static void spapr_boot_set(void *opaque, const char *boot_device, 2292 Error **errp) 2293 { 2294 MachineState *machine = MACHINE(opaque); 2295 machine->boot_order = g_strdup(boot_device); 2296 } 2297 2298 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2299 { 2300 MachineState *machine = MACHINE(spapr); 2301 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2302 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2303 int i; 2304 2305 for (i = 0; i < nr_lmbs; i++) { 2306 uint64_t addr; 2307 2308 addr = i * lmb_size + machine->device_memory->base; 2309 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2310 addr / lmb_size); 2311 } 2312 } 2313 2314 /* 2315 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2316 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2317 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2318 */ 2319 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2320 { 2321 int i; 2322 2323 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2324 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2325 " is not aligned to %" PRIu64 " MiB", 2326 machine->ram_size, 2327 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2328 return; 2329 } 2330 2331 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2332 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2333 " is not aligned to %" PRIu64 " MiB", 2334 machine->ram_size, 2335 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2336 return; 2337 } 2338 2339 for (i = 0; i < nb_numa_nodes; i++) { 2340 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2341 error_setg(errp, 2342 "Node %d memory size 0x%" PRIx64 2343 " is not aligned to %" PRIu64 " MiB", 2344 i, numa_info[i].node_mem, 2345 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2346 return; 2347 } 2348 } 2349 } 2350 2351 /* find cpu slot in machine->possible_cpus by core_id */ 2352 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2353 { 2354 int index = id / smp_threads; 2355 2356 if (index >= ms->possible_cpus->len) { 2357 return NULL; 2358 } 2359 if (idx) { 2360 *idx = index; 2361 } 2362 return &ms->possible_cpus->cpus[index]; 2363 } 2364 2365 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2366 { 2367 Error *local_err = NULL; 2368 bool vsmt_user = !!spapr->vsmt; 2369 int kvm_smt = kvmppc_smt_threads(); 2370 int ret; 2371 2372 if (!kvm_enabled() && (smp_threads > 1)) { 2373 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2374 "on a pseries machine"); 2375 goto out; 2376 } 2377 if (!is_power_of_2(smp_threads)) { 2378 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2379 "machine because it must be a power of 2", smp_threads); 2380 goto out; 2381 } 2382 2383 /* Detemine the VSMT mode to use: */ 2384 if (vsmt_user) { 2385 if (spapr->vsmt < smp_threads) { 2386 error_setg(&local_err, "Cannot support VSMT mode %d" 2387 " because it must be >= threads/core (%d)", 2388 spapr->vsmt, smp_threads); 2389 goto out; 2390 } 2391 /* In this case, spapr->vsmt has been set by the command line */ 2392 } else { 2393 /* 2394 * Default VSMT value is tricky, because we need it to be as 2395 * consistent as possible (for migration), but this requires 2396 * changing it for at least some existing cases. We pick 8 as 2397 * the value that we'd get with KVM on POWER8, the 2398 * overwhelmingly common case in production systems. 2399 */ 2400 spapr->vsmt = MAX(8, smp_threads); 2401 } 2402 2403 /* KVM: If necessary, set the SMT mode: */ 2404 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2405 ret = kvmppc_set_smt_threads(spapr->vsmt); 2406 if (ret) { 2407 /* Looks like KVM isn't able to change VSMT mode */ 2408 error_setg(&local_err, 2409 "Failed to set KVM's VSMT mode to %d (errno %d)", 2410 spapr->vsmt, ret); 2411 /* We can live with that if the default one is big enough 2412 * for the number of threads, and a submultiple of the one 2413 * we want. In this case we'll waste some vcpu ids, but 2414 * behaviour will be correct */ 2415 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2416 warn_report_err(local_err); 2417 local_err = NULL; 2418 goto out; 2419 } else { 2420 if (!vsmt_user) { 2421 error_append_hint(&local_err, 2422 "On PPC, a VM with %d threads/core" 2423 " on a host with %d threads/core" 2424 " requires the use of VSMT mode %d.\n", 2425 smp_threads, kvm_smt, spapr->vsmt); 2426 } 2427 kvmppc_hint_smt_possible(&local_err); 2428 goto out; 2429 } 2430 } 2431 } 2432 /* else TCG: nothing to do currently */ 2433 out: 2434 error_propagate(errp, local_err); 2435 } 2436 2437 static void spapr_init_cpus(sPAPRMachineState *spapr) 2438 { 2439 MachineState *machine = MACHINE(spapr); 2440 MachineClass *mc = MACHINE_GET_CLASS(machine); 2441 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2442 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2443 const CPUArchIdList *possible_cpus; 2444 int boot_cores_nr = smp_cpus / smp_threads; 2445 int i; 2446 2447 possible_cpus = mc->possible_cpu_arch_ids(machine); 2448 if (mc->has_hotpluggable_cpus) { 2449 if (smp_cpus % smp_threads) { 2450 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2451 smp_cpus, smp_threads); 2452 exit(1); 2453 } 2454 if (max_cpus % smp_threads) { 2455 error_report("max_cpus (%u) must be multiple of threads (%u)", 2456 max_cpus, smp_threads); 2457 exit(1); 2458 } 2459 } else { 2460 if (max_cpus != smp_cpus) { 2461 error_report("This machine version does not support CPU hotplug"); 2462 exit(1); 2463 } 2464 boot_cores_nr = possible_cpus->len; 2465 } 2466 2467 /* VSMT must be set in order to be able to compute VCPU ids, ie to 2468 * call xics_max_server_number() or spapr_vcpu_id(). 2469 */ 2470 spapr_set_vsmt_mode(spapr, &error_fatal); 2471 2472 if (smc->pre_2_10_has_unused_icps) { 2473 int i; 2474 2475 for (i = 0; i < xics_max_server_number(spapr); i++) { 2476 /* Dummy entries get deregistered when real ICPState objects 2477 * are registered during CPU core hotplug. 2478 */ 2479 pre_2_10_vmstate_register_dummy_icp(i); 2480 } 2481 } 2482 2483 for (i = 0; i < possible_cpus->len; i++) { 2484 int core_id = i * smp_threads; 2485 2486 if (mc->has_hotpluggable_cpus) { 2487 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2488 spapr_vcpu_id(spapr, core_id)); 2489 } 2490 2491 if (i < boot_cores_nr) { 2492 Object *core = object_new(type); 2493 int nr_threads = smp_threads; 2494 2495 /* Handle the partially filled core for older machine types */ 2496 if ((i + 1) * smp_threads >= smp_cpus) { 2497 nr_threads = smp_cpus - i * smp_threads; 2498 } 2499 2500 object_property_set_int(core, nr_threads, "nr-threads", 2501 &error_fatal); 2502 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2503 &error_fatal); 2504 object_property_set_bool(core, true, "realized", &error_fatal); 2505 } 2506 } 2507 } 2508 2509 /* pSeries LPAR / sPAPR hardware init */ 2510 static void spapr_machine_init(MachineState *machine) 2511 { 2512 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2513 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2514 const char *kernel_filename = machine->kernel_filename; 2515 const char *initrd_filename = machine->initrd_filename; 2516 PCIHostState *phb; 2517 int i; 2518 MemoryRegion *sysmem = get_system_memory(); 2519 MemoryRegion *ram = g_new(MemoryRegion, 1); 2520 hwaddr node0_size = spapr_node0_size(machine); 2521 long load_limit, fw_size; 2522 char *filename; 2523 Error *resize_hpt_err = NULL; 2524 2525 msi_nonbroken = true; 2526 2527 QLIST_INIT(&spapr->phbs); 2528 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2529 2530 /* Determine capabilities to run with */ 2531 spapr_caps_init(spapr); 2532 2533 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2534 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2535 /* 2536 * If the user explicitly requested a mode we should either 2537 * supply it, or fail completely (which we do below). But if 2538 * it's not set explicitly, we reset our mode to something 2539 * that works 2540 */ 2541 if (resize_hpt_err) { 2542 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2543 error_free(resize_hpt_err); 2544 resize_hpt_err = NULL; 2545 } else { 2546 spapr->resize_hpt = smc->resize_hpt_default; 2547 } 2548 } 2549 2550 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2551 2552 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2553 /* 2554 * User requested HPT resize, but this host can't supply it. Bail out 2555 */ 2556 error_report_err(resize_hpt_err); 2557 exit(1); 2558 } 2559 2560 spapr->rma_size = node0_size; 2561 2562 /* With KVM, we don't actually know whether KVM supports an 2563 * unbounded RMA (PR KVM) or is limited by the hash table size 2564 * (HV KVM using VRMA), so we always assume the latter 2565 * 2566 * In that case, we also limit the initial allocations for RTAS 2567 * etc... to 256M since we have no way to know what the VRMA size 2568 * is going to be as it depends on the size of the hash table 2569 * which isn't determined yet. 2570 */ 2571 if (kvm_enabled()) { 2572 spapr->vrma_adjust = 1; 2573 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2574 } 2575 2576 /* Actually we don't support unbounded RMA anymore since we added 2577 * proper emulation of HV mode. The max we can get is 16G which 2578 * also happens to be what we configure for PAPR mode so make sure 2579 * we don't do anything bigger than that 2580 */ 2581 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2582 2583 if (spapr->rma_size > node0_size) { 2584 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2585 spapr->rma_size); 2586 exit(1); 2587 } 2588 2589 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2590 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2591 2592 /* Set up Interrupt Controller before we create the VCPUs */ 2593 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2594 2595 /* Set up containers for ibm,client-architecture-support negotiated options 2596 */ 2597 spapr->ov5 = spapr_ovec_new(); 2598 spapr->ov5_cas = spapr_ovec_new(); 2599 2600 if (smc->dr_lmb_enabled) { 2601 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2602 spapr_validate_node_memory(machine, &error_fatal); 2603 } 2604 2605 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2606 2607 /* advertise support for dedicated HP event source to guests */ 2608 if (spapr->use_hotplug_event_source) { 2609 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2610 } 2611 2612 /* advertise support for HPT resizing */ 2613 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2614 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2615 } 2616 2617 /* advertise support for ibm,dyamic-memory-v2 */ 2618 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2619 2620 /* init CPUs */ 2621 spapr_init_cpus(spapr); 2622 2623 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2624 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2625 spapr->max_compat_pvr)) { 2626 /* KVM and TCG always allow GTSE with radix... */ 2627 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2628 } 2629 /* ... but not with hash (currently). */ 2630 2631 if (kvm_enabled()) { 2632 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2633 kvmppc_enable_logical_ci_hcalls(); 2634 kvmppc_enable_set_mode_hcall(); 2635 2636 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2637 kvmppc_enable_clear_ref_mod_hcalls(); 2638 } 2639 2640 /* allocate RAM */ 2641 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2642 machine->ram_size); 2643 memory_region_add_subregion(sysmem, 0, ram); 2644 2645 /* always allocate the device memory information */ 2646 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2647 2648 /* initialize hotplug memory address space */ 2649 if (machine->ram_size < machine->maxram_size) { 2650 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2651 /* 2652 * Limit the number of hotpluggable memory slots to half the number 2653 * slots that KVM supports, leaving the other half for PCI and other 2654 * devices. However ensure that number of slots doesn't drop below 32. 2655 */ 2656 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2657 SPAPR_MAX_RAM_SLOTS; 2658 2659 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2660 max_memslots = SPAPR_MAX_RAM_SLOTS; 2661 } 2662 if (machine->ram_slots > max_memslots) { 2663 error_report("Specified number of memory slots %" 2664 PRIu64" exceeds max supported %d", 2665 machine->ram_slots, max_memslots); 2666 exit(1); 2667 } 2668 2669 machine->device_memory->base = ROUND_UP(machine->ram_size, 2670 SPAPR_DEVICE_MEM_ALIGN); 2671 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2672 "device-memory", device_mem_size); 2673 memory_region_add_subregion(sysmem, machine->device_memory->base, 2674 &machine->device_memory->mr); 2675 } 2676 2677 if (smc->dr_lmb_enabled) { 2678 spapr_create_lmb_dr_connectors(spapr); 2679 } 2680 2681 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2682 if (!filename) { 2683 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2684 exit(1); 2685 } 2686 spapr->rtas_size = get_image_size(filename); 2687 if (spapr->rtas_size < 0) { 2688 error_report("Could not get size of LPAR rtas '%s'", filename); 2689 exit(1); 2690 } 2691 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2692 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2693 error_report("Could not load LPAR rtas '%s'", filename); 2694 exit(1); 2695 } 2696 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2697 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2698 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2699 exit(1); 2700 } 2701 g_free(filename); 2702 2703 /* Set up RTAS event infrastructure */ 2704 spapr_events_init(spapr); 2705 2706 /* Set up the RTC RTAS interfaces */ 2707 spapr_rtc_create(spapr); 2708 2709 /* Set up VIO bus */ 2710 spapr->vio_bus = spapr_vio_bus_init(); 2711 2712 for (i = 0; i < serial_max_hds(); i++) { 2713 if (serial_hd(i)) { 2714 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2715 } 2716 } 2717 2718 /* We always have at least the nvram device on VIO */ 2719 spapr_create_nvram(spapr); 2720 2721 /* Set up PCI */ 2722 spapr_pci_rtas_init(); 2723 2724 phb = spapr_create_phb(spapr, 0); 2725 2726 for (i = 0; i < nb_nics; i++) { 2727 NICInfo *nd = &nd_table[i]; 2728 2729 if (!nd->model) { 2730 nd->model = g_strdup("spapr-vlan"); 2731 } 2732 2733 if (g_str_equal(nd->model, "spapr-vlan") || 2734 g_str_equal(nd->model, "ibmveth")) { 2735 spapr_vlan_create(spapr->vio_bus, nd); 2736 } else { 2737 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2738 } 2739 } 2740 2741 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2742 spapr_vscsi_create(spapr->vio_bus); 2743 } 2744 2745 /* Graphics */ 2746 if (spapr_vga_init(phb->bus, &error_fatal)) { 2747 spapr->has_graphics = true; 2748 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2749 } 2750 2751 if (machine->usb) { 2752 if (smc->use_ohci_by_default) { 2753 pci_create_simple(phb->bus, -1, "pci-ohci"); 2754 } else { 2755 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2756 } 2757 2758 if (spapr->has_graphics) { 2759 USBBus *usb_bus = usb_bus_find(-1); 2760 2761 usb_create_simple(usb_bus, "usb-kbd"); 2762 usb_create_simple(usb_bus, "usb-mouse"); 2763 } 2764 } 2765 2766 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2767 error_report( 2768 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2769 MIN_RMA_SLOF); 2770 exit(1); 2771 } 2772 2773 if (kernel_filename) { 2774 uint64_t lowaddr = 0; 2775 2776 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2777 NULL, NULL, &lowaddr, NULL, 1, 2778 PPC_ELF_MACHINE, 0, 0); 2779 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2780 spapr->kernel_size = load_elf(kernel_filename, 2781 translate_kernel_address, NULL, NULL, 2782 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2783 0, 0); 2784 spapr->kernel_le = spapr->kernel_size > 0; 2785 } 2786 if (spapr->kernel_size < 0) { 2787 error_report("error loading %s: %s", kernel_filename, 2788 load_elf_strerror(spapr->kernel_size)); 2789 exit(1); 2790 } 2791 2792 /* load initrd */ 2793 if (initrd_filename) { 2794 /* Try to locate the initrd in the gap between the kernel 2795 * and the firmware. Add a bit of space just in case 2796 */ 2797 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2798 + 0x1ffff) & ~0xffff; 2799 spapr->initrd_size = load_image_targphys(initrd_filename, 2800 spapr->initrd_base, 2801 load_limit 2802 - spapr->initrd_base); 2803 if (spapr->initrd_size < 0) { 2804 error_report("could not load initial ram disk '%s'", 2805 initrd_filename); 2806 exit(1); 2807 } 2808 } 2809 } 2810 2811 if (bios_name == NULL) { 2812 bios_name = FW_FILE_NAME; 2813 } 2814 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2815 if (!filename) { 2816 error_report("Could not find LPAR firmware '%s'", bios_name); 2817 exit(1); 2818 } 2819 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2820 if (fw_size <= 0) { 2821 error_report("Could not load LPAR firmware '%s'", filename); 2822 exit(1); 2823 } 2824 g_free(filename); 2825 2826 /* FIXME: Should register things through the MachineState's qdev 2827 * interface, this is a legacy from the sPAPREnvironment structure 2828 * which predated MachineState but had a similar function */ 2829 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2830 register_savevm_live(NULL, "spapr/htab", -1, 1, 2831 &savevm_htab_handlers, spapr); 2832 2833 qemu_register_boot_set(spapr_boot_set, spapr); 2834 2835 if (kvm_enabled()) { 2836 /* to stop and start vmclock */ 2837 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2838 &spapr->tb); 2839 2840 kvmppc_spapr_enable_inkernel_multitce(); 2841 } 2842 } 2843 2844 static int spapr_kvm_type(const char *vm_type) 2845 { 2846 if (!vm_type) { 2847 return 0; 2848 } 2849 2850 if (!strcmp(vm_type, "HV")) { 2851 return 1; 2852 } 2853 2854 if (!strcmp(vm_type, "PR")) { 2855 return 2; 2856 } 2857 2858 error_report("Unknown kvm-type specified '%s'", vm_type); 2859 exit(1); 2860 } 2861 2862 /* 2863 * Implementation of an interface to adjust firmware path 2864 * for the bootindex property handling. 2865 */ 2866 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2867 DeviceState *dev) 2868 { 2869 #define CAST(type, obj, name) \ 2870 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2871 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2872 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2873 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2874 2875 if (d) { 2876 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2877 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2878 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2879 2880 if (spapr) { 2881 /* 2882 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2883 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2884 * in the top 16 bits of the 64-bit LUN 2885 */ 2886 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2887 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2888 (uint64_t)id << 48); 2889 } else if (virtio) { 2890 /* 2891 * We use SRP luns of the form 01000000 | (target << 8) | lun 2892 * in the top 32 bits of the 64-bit LUN 2893 * Note: the quote above is from SLOF and it is wrong, 2894 * the actual binding is: 2895 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2896 */ 2897 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2898 if (d->lun >= 256) { 2899 /* Use the LUN "flat space addressing method" */ 2900 id |= 0x4000; 2901 } 2902 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2903 (uint64_t)id << 32); 2904 } else if (usb) { 2905 /* 2906 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2907 * in the top 32 bits of the 64-bit LUN 2908 */ 2909 unsigned usb_port = atoi(usb->port->path); 2910 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2911 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2912 (uint64_t)id << 32); 2913 } 2914 } 2915 2916 /* 2917 * SLOF probes the USB devices, and if it recognizes that the device is a 2918 * storage device, it changes its name to "storage" instead of "usb-host", 2919 * and additionally adds a child node for the SCSI LUN, so the correct 2920 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2921 */ 2922 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2923 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2924 if (usb_host_dev_is_scsi_storage(usbdev)) { 2925 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2926 } 2927 } 2928 2929 if (phb) { 2930 /* Replace "pci" with "pci@800000020000000" */ 2931 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2932 } 2933 2934 if (vsc) { 2935 /* Same logic as virtio above */ 2936 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2937 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2938 } 2939 2940 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2941 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2942 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2943 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2944 } 2945 2946 return NULL; 2947 } 2948 2949 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2950 { 2951 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2952 2953 return g_strdup(spapr->kvm_type); 2954 } 2955 2956 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2957 { 2958 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2959 2960 g_free(spapr->kvm_type); 2961 spapr->kvm_type = g_strdup(value); 2962 } 2963 2964 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2965 { 2966 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2967 2968 return spapr->use_hotplug_event_source; 2969 } 2970 2971 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2972 Error **errp) 2973 { 2974 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2975 2976 spapr->use_hotplug_event_source = value; 2977 } 2978 2979 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 2980 { 2981 return true; 2982 } 2983 2984 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2985 { 2986 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2987 2988 switch (spapr->resize_hpt) { 2989 case SPAPR_RESIZE_HPT_DEFAULT: 2990 return g_strdup("default"); 2991 case SPAPR_RESIZE_HPT_DISABLED: 2992 return g_strdup("disabled"); 2993 case SPAPR_RESIZE_HPT_ENABLED: 2994 return g_strdup("enabled"); 2995 case SPAPR_RESIZE_HPT_REQUIRED: 2996 return g_strdup("required"); 2997 } 2998 g_assert_not_reached(); 2999 } 3000 3001 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3002 { 3003 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3004 3005 if (strcmp(value, "default") == 0) { 3006 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3007 } else if (strcmp(value, "disabled") == 0) { 3008 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3009 } else if (strcmp(value, "enabled") == 0) { 3010 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3011 } else if (strcmp(value, "required") == 0) { 3012 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3013 } else { 3014 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3015 } 3016 } 3017 3018 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3019 void *opaque, Error **errp) 3020 { 3021 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3022 } 3023 3024 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3025 void *opaque, Error **errp) 3026 { 3027 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3028 } 3029 3030 static void spapr_instance_init(Object *obj) 3031 { 3032 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3033 3034 spapr->htab_fd = -1; 3035 spapr->use_hotplug_event_source = true; 3036 object_property_add_str(obj, "kvm-type", 3037 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3038 object_property_set_description(obj, "kvm-type", 3039 "Specifies the KVM virtualization mode (HV, PR)", 3040 NULL); 3041 object_property_add_bool(obj, "modern-hotplug-events", 3042 spapr_get_modern_hotplug_events, 3043 spapr_set_modern_hotplug_events, 3044 NULL); 3045 object_property_set_description(obj, "modern-hotplug-events", 3046 "Use dedicated hotplug event mechanism in" 3047 " place of standard EPOW events when possible" 3048 " (required for memory hot-unplug support)", 3049 NULL); 3050 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3051 "Maximum permitted CPU compatibility mode", 3052 &error_fatal); 3053 3054 object_property_add_str(obj, "resize-hpt", 3055 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3056 object_property_set_description(obj, "resize-hpt", 3057 "Resizing of the Hash Page Table (enabled, disabled, required)", 3058 NULL); 3059 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3060 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3061 object_property_set_description(obj, "vsmt", 3062 "Virtual SMT: KVM behaves as if this were" 3063 " the host's SMT mode", &error_abort); 3064 object_property_add_bool(obj, "vfio-no-msix-emulation", 3065 spapr_get_msix_emulation, NULL, NULL); 3066 } 3067 3068 static void spapr_machine_finalizefn(Object *obj) 3069 { 3070 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3071 3072 g_free(spapr->kvm_type); 3073 } 3074 3075 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3076 { 3077 cpu_synchronize_state(cs); 3078 ppc_cpu_do_system_reset(cs); 3079 } 3080 3081 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3082 { 3083 CPUState *cs; 3084 3085 CPU_FOREACH(cs) { 3086 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3087 } 3088 } 3089 3090 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3091 uint32_t node, bool dedicated_hp_event_source, 3092 Error **errp) 3093 { 3094 sPAPRDRConnector *drc; 3095 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3096 int i, fdt_offset, fdt_size; 3097 void *fdt; 3098 uint64_t addr = addr_start; 3099 bool hotplugged = spapr_drc_hotplugged(dev); 3100 Error *local_err = NULL; 3101 3102 for (i = 0; i < nr_lmbs; i++) { 3103 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3104 addr / SPAPR_MEMORY_BLOCK_SIZE); 3105 g_assert(drc); 3106 3107 fdt = create_device_tree(&fdt_size); 3108 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3109 SPAPR_MEMORY_BLOCK_SIZE); 3110 3111 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3112 if (local_err) { 3113 while (addr > addr_start) { 3114 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3115 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3116 addr / SPAPR_MEMORY_BLOCK_SIZE); 3117 spapr_drc_detach(drc); 3118 } 3119 g_free(fdt); 3120 error_propagate(errp, local_err); 3121 return; 3122 } 3123 if (!hotplugged) { 3124 spapr_drc_reset(drc); 3125 } 3126 addr += SPAPR_MEMORY_BLOCK_SIZE; 3127 } 3128 /* send hotplug notification to the 3129 * guest only in case of hotplugged memory 3130 */ 3131 if (hotplugged) { 3132 if (dedicated_hp_event_source) { 3133 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3134 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3135 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3136 nr_lmbs, 3137 spapr_drc_index(drc)); 3138 } else { 3139 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3140 nr_lmbs); 3141 } 3142 } 3143 } 3144 3145 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3146 Error **errp) 3147 { 3148 Error *local_err = NULL; 3149 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3150 PCDIMMDevice *dimm = PC_DIMM(dev); 3151 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3152 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3153 uint64_t align, size, addr; 3154 uint32_t node; 3155 3156 align = memory_region_get_alignment(mr); 3157 size = memory_region_size(mr); 3158 3159 pc_dimm_plug(dev, MACHINE(ms), align, &local_err); 3160 if (local_err) { 3161 goto out; 3162 } 3163 3164 addr = object_property_get_uint(OBJECT(dimm), 3165 PC_DIMM_ADDR_PROP, &local_err); 3166 if (local_err) { 3167 goto out_unplug; 3168 } 3169 3170 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 3171 &error_abort); 3172 spapr_add_lmbs(dev, addr, size, node, 3173 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3174 &local_err); 3175 if (local_err) { 3176 goto out_unplug; 3177 } 3178 3179 return; 3180 3181 out_unplug: 3182 pc_dimm_unplug(dev, MACHINE(ms)); 3183 out: 3184 error_propagate(errp, local_err); 3185 } 3186 3187 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3188 Error **errp) 3189 { 3190 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3191 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3192 PCDIMMDevice *dimm = PC_DIMM(dev); 3193 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3194 MemoryRegion *mr; 3195 uint64_t size; 3196 Object *memdev; 3197 hwaddr pagesize; 3198 3199 if (!smc->dr_lmb_enabled) { 3200 error_setg(errp, "Memory hotplug not supported for this machine"); 3201 return; 3202 } 3203 3204 mr = ddc->get_memory_region(dimm, errp); 3205 if (!mr) { 3206 return; 3207 } 3208 size = memory_region_size(mr); 3209 3210 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3211 error_setg(errp, "Hotplugged memory size must be a multiple of " 3212 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3213 return; 3214 } 3215 3216 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3217 &error_abort); 3218 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3219 spapr_check_pagesize(spapr, pagesize, errp); 3220 } 3221 3222 struct sPAPRDIMMState { 3223 PCDIMMDevice *dimm; 3224 uint32_t nr_lmbs; 3225 QTAILQ_ENTRY(sPAPRDIMMState) next; 3226 }; 3227 3228 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3229 PCDIMMDevice *dimm) 3230 { 3231 sPAPRDIMMState *dimm_state = NULL; 3232 3233 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3234 if (dimm_state->dimm == dimm) { 3235 break; 3236 } 3237 } 3238 return dimm_state; 3239 } 3240 3241 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3242 uint32_t nr_lmbs, 3243 PCDIMMDevice *dimm) 3244 { 3245 sPAPRDIMMState *ds = NULL; 3246 3247 /* 3248 * If this request is for a DIMM whose removal had failed earlier 3249 * (due to guest's refusal to remove the LMBs), we would have this 3250 * dimm already in the pending_dimm_unplugs list. In that 3251 * case don't add again. 3252 */ 3253 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3254 if (!ds) { 3255 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3256 ds->nr_lmbs = nr_lmbs; 3257 ds->dimm = dimm; 3258 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3259 } 3260 return ds; 3261 } 3262 3263 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3264 sPAPRDIMMState *dimm_state) 3265 { 3266 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3267 g_free(dimm_state); 3268 } 3269 3270 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3271 PCDIMMDevice *dimm) 3272 { 3273 sPAPRDRConnector *drc; 3274 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3275 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3276 uint64_t size = memory_region_size(mr); 3277 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3278 uint32_t avail_lmbs = 0; 3279 uint64_t addr_start, addr; 3280 int i; 3281 3282 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3283 &error_abort); 3284 3285 addr = addr_start; 3286 for (i = 0; i < nr_lmbs; i++) { 3287 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3288 addr / SPAPR_MEMORY_BLOCK_SIZE); 3289 g_assert(drc); 3290 if (drc->dev) { 3291 avail_lmbs++; 3292 } 3293 addr += SPAPR_MEMORY_BLOCK_SIZE; 3294 } 3295 3296 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3297 } 3298 3299 /* Callback to be called during DRC release. */ 3300 void spapr_lmb_release(DeviceState *dev) 3301 { 3302 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3303 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3304 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3305 3306 /* This information will get lost if a migration occurs 3307 * during the unplug process. In this case recover it. */ 3308 if (ds == NULL) { 3309 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3310 g_assert(ds); 3311 /* The DRC being examined by the caller at least must be counted */ 3312 g_assert(ds->nr_lmbs); 3313 } 3314 3315 if (--ds->nr_lmbs) { 3316 return; 3317 } 3318 3319 /* 3320 * Now that all the LMBs have been removed by the guest, call the 3321 * unplug handler chain. This can never fail. 3322 */ 3323 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3324 } 3325 3326 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3327 { 3328 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3329 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3330 3331 pc_dimm_unplug(dev, MACHINE(hotplug_dev)); 3332 object_unparent(OBJECT(dev)); 3333 spapr_pending_dimm_unplugs_remove(spapr, ds); 3334 } 3335 3336 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3337 DeviceState *dev, Error **errp) 3338 { 3339 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3340 Error *local_err = NULL; 3341 PCDIMMDevice *dimm = PC_DIMM(dev); 3342 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3343 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3344 uint32_t nr_lmbs; 3345 uint64_t size, addr_start, addr; 3346 int i; 3347 sPAPRDRConnector *drc; 3348 3349 size = memory_region_size(mr); 3350 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3351 3352 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3353 &local_err); 3354 if (local_err) { 3355 goto out; 3356 } 3357 3358 /* 3359 * An existing pending dimm state for this DIMM means that there is an 3360 * unplug operation in progress, waiting for the spapr_lmb_release 3361 * callback to complete the job (BQL can't cover that far). In this case, 3362 * bail out to avoid detaching DRCs that were already released. 3363 */ 3364 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3365 error_setg(&local_err, 3366 "Memory unplug already in progress for device %s", 3367 dev->id); 3368 goto out; 3369 } 3370 3371 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3372 3373 addr = addr_start; 3374 for (i = 0; i < nr_lmbs; i++) { 3375 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3376 addr / SPAPR_MEMORY_BLOCK_SIZE); 3377 g_assert(drc); 3378 3379 spapr_drc_detach(drc); 3380 addr += SPAPR_MEMORY_BLOCK_SIZE; 3381 } 3382 3383 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3384 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3385 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3386 nr_lmbs, spapr_drc_index(drc)); 3387 out: 3388 error_propagate(errp, local_err); 3389 } 3390 3391 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3392 sPAPRMachineState *spapr) 3393 { 3394 PowerPCCPU *cpu = POWERPC_CPU(cs); 3395 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3396 int id = spapr_get_vcpu_id(cpu); 3397 void *fdt; 3398 int offset, fdt_size; 3399 char *nodename; 3400 3401 fdt = create_device_tree(&fdt_size); 3402 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3403 offset = fdt_add_subnode(fdt, 0, nodename); 3404 3405 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3406 g_free(nodename); 3407 3408 *fdt_offset = offset; 3409 return fdt; 3410 } 3411 3412 /* Callback to be called during DRC release. */ 3413 void spapr_core_release(DeviceState *dev) 3414 { 3415 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3416 3417 /* Call the unplug handler chain. This can never fail. */ 3418 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3419 } 3420 3421 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3422 { 3423 MachineState *ms = MACHINE(hotplug_dev); 3424 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3425 CPUCore *cc = CPU_CORE(dev); 3426 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3427 3428 if (smc->pre_2_10_has_unused_icps) { 3429 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3430 int i; 3431 3432 for (i = 0; i < cc->nr_threads; i++) { 3433 CPUState *cs = CPU(sc->threads[i]); 3434 3435 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3436 } 3437 } 3438 3439 assert(core_slot); 3440 core_slot->cpu = NULL; 3441 object_unparent(OBJECT(dev)); 3442 } 3443 3444 static 3445 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3446 Error **errp) 3447 { 3448 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3449 int index; 3450 sPAPRDRConnector *drc; 3451 CPUCore *cc = CPU_CORE(dev); 3452 3453 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3454 error_setg(errp, "Unable to find CPU core with core-id: %d", 3455 cc->core_id); 3456 return; 3457 } 3458 if (index == 0) { 3459 error_setg(errp, "Boot CPU core may not be unplugged"); 3460 return; 3461 } 3462 3463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3464 spapr_vcpu_id(spapr, cc->core_id)); 3465 g_assert(drc); 3466 3467 spapr_drc_detach(drc); 3468 3469 spapr_hotplug_req_remove_by_index(drc); 3470 } 3471 3472 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3473 Error **errp) 3474 { 3475 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3476 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3477 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3478 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3479 CPUCore *cc = CPU_CORE(dev); 3480 CPUState *cs = CPU(core->threads[0]); 3481 sPAPRDRConnector *drc; 3482 Error *local_err = NULL; 3483 CPUArchId *core_slot; 3484 int index; 3485 bool hotplugged = spapr_drc_hotplugged(dev); 3486 3487 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3488 if (!core_slot) { 3489 error_setg(errp, "Unable to find CPU core with core-id: %d", 3490 cc->core_id); 3491 return; 3492 } 3493 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3494 spapr_vcpu_id(spapr, cc->core_id)); 3495 3496 g_assert(drc || !mc->has_hotpluggable_cpus); 3497 3498 if (drc) { 3499 void *fdt; 3500 int fdt_offset; 3501 3502 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3503 3504 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3505 if (local_err) { 3506 g_free(fdt); 3507 error_propagate(errp, local_err); 3508 return; 3509 } 3510 3511 if (hotplugged) { 3512 /* 3513 * Send hotplug notification interrupt to the guest only 3514 * in case of hotplugged CPUs. 3515 */ 3516 spapr_hotplug_req_add_by_index(drc); 3517 } else { 3518 spapr_drc_reset(drc); 3519 } 3520 } 3521 3522 core_slot->cpu = OBJECT(dev); 3523 3524 if (smc->pre_2_10_has_unused_icps) { 3525 int i; 3526 3527 for (i = 0; i < cc->nr_threads; i++) { 3528 cs = CPU(core->threads[i]); 3529 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3530 } 3531 } 3532 } 3533 3534 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3535 Error **errp) 3536 { 3537 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3538 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3539 Error *local_err = NULL; 3540 CPUCore *cc = CPU_CORE(dev); 3541 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3542 const char *type = object_get_typename(OBJECT(dev)); 3543 CPUArchId *core_slot; 3544 int index; 3545 3546 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3547 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3548 goto out; 3549 } 3550 3551 if (strcmp(base_core_type, type)) { 3552 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3553 goto out; 3554 } 3555 3556 if (cc->core_id % smp_threads) { 3557 error_setg(&local_err, "invalid core id %d", cc->core_id); 3558 goto out; 3559 } 3560 3561 /* 3562 * In general we should have homogeneous threads-per-core, but old 3563 * (pre hotplug support) machine types allow the last core to have 3564 * reduced threads as a compatibility hack for when we allowed 3565 * total vcpus not a multiple of threads-per-core. 3566 */ 3567 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3568 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3569 cc->nr_threads, smp_threads); 3570 goto out; 3571 } 3572 3573 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3574 if (!core_slot) { 3575 error_setg(&local_err, "core id %d out of range", cc->core_id); 3576 goto out; 3577 } 3578 3579 if (core_slot->cpu) { 3580 error_setg(&local_err, "core %d already populated", cc->core_id); 3581 goto out; 3582 } 3583 3584 numa_cpu_pre_plug(core_slot, dev, &local_err); 3585 3586 out: 3587 error_propagate(errp, local_err); 3588 } 3589 3590 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3591 DeviceState *dev, Error **errp) 3592 { 3593 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3594 spapr_memory_plug(hotplug_dev, dev, errp); 3595 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3596 spapr_core_plug(hotplug_dev, dev, errp); 3597 } 3598 } 3599 3600 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3601 DeviceState *dev, Error **errp) 3602 { 3603 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3604 spapr_memory_unplug(hotplug_dev, dev); 3605 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3606 spapr_core_unplug(hotplug_dev, dev); 3607 } 3608 } 3609 3610 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3611 DeviceState *dev, Error **errp) 3612 { 3613 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3614 MachineClass *mc = MACHINE_GET_CLASS(sms); 3615 3616 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3617 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3618 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3619 } else { 3620 /* NOTE: this means there is a window after guest reset, prior to 3621 * CAS negotiation, where unplug requests will fail due to the 3622 * capability not being detected yet. This is a bit different than 3623 * the case with PCI unplug, where the events will be queued and 3624 * eventually handled by the guest after boot 3625 */ 3626 error_setg(errp, "Memory hot unplug not supported for this guest"); 3627 } 3628 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3629 if (!mc->has_hotpluggable_cpus) { 3630 error_setg(errp, "CPU hot unplug not supported on this machine"); 3631 return; 3632 } 3633 spapr_core_unplug_request(hotplug_dev, dev, errp); 3634 } 3635 } 3636 3637 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3638 DeviceState *dev, Error **errp) 3639 { 3640 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3641 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3642 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3643 spapr_core_pre_plug(hotplug_dev, dev, errp); 3644 } 3645 } 3646 3647 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3648 DeviceState *dev) 3649 { 3650 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3651 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3652 return HOTPLUG_HANDLER(machine); 3653 } 3654 return NULL; 3655 } 3656 3657 static CpuInstanceProperties 3658 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3659 { 3660 CPUArchId *core_slot; 3661 MachineClass *mc = MACHINE_GET_CLASS(machine); 3662 3663 /* make sure possible_cpu are intialized */ 3664 mc->possible_cpu_arch_ids(machine); 3665 /* get CPU core slot containing thread that matches cpu_index */ 3666 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3667 assert(core_slot); 3668 return core_slot->props; 3669 } 3670 3671 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3672 { 3673 return idx / smp_cores % nb_numa_nodes; 3674 } 3675 3676 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3677 { 3678 int i; 3679 const char *core_type; 3680 int spapr_max_cores = max_cpus / smp_threads; 3681 MachineClass *mc = MACHINE_GET_CLASS(machine); 3682 3683 if (!mc->has_hotpluggable_cpus) { 3684 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3685 } 3686 if (machine->possible_cpus) { 3687 assert(machine->possible_cpus->len == spapr_max_cores); 3688 return machine->possible_cpus; 3689 } 3690 3691 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3692 if (!core_type) { 3693 error_report("Unable to find sPAPR CPU Core definition"); 3694 exit(1); 3695 } 3696 3697 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3698 sizeof(CPUArchId) * spapr_max_cores); 3699 machine->possible_cpus->len = spapr_max_cores; 3700 for (i = 0; i < machine->possible_cpus->len; i++) { 3701 int core_id = i * smp_threads; 3702 3703 machine->possible_cpus->cpus[i].type = core_type; 3704 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3705 machine->possible_cpus->cpus[i].arch_id = core_id; 3706 machine->possible_cpus->cpus[i].props.has_core_id = true; 3707 machine->possible_cpus->cpus[i].props.core_id = core_id; 3708 } 3709 return machine->possible_cpus; 3710 } 3711 3712 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3713 uint64_t *buid, hwaddr *pio, 3714 hwaddr *mmio32, hwaddr *mmio64, 3715 unsigned n_dma, uint32_t *liobns, Error **errp) 3716 { 3717 /* 3718 * New-style PHB window placement. 3719 * 3720 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3721 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3722 * windows. 3723 * 3724 * Some guest kernels can't work with MMIO windows above 1<<46 3725 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3726 * 3727 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3728 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3729 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3730 * 1TiB 64-bit MMIO windows for each PHB. 3731 */ 3732 const uint64_t base_buid = 0x800000020000000ULL; 3733 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3734 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3735 int i; 3736 3737 /* Sanity check natural alignments */ 3738 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3739 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3740 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3742 /* Sanity check bounds */ 3743 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3744 SPAPR_PCI_MEM32_WIN_SIZE); 3745 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3746 SPAPR_PCI_MEM64_WIN_SIZE); 3747 3748 if (index >= SPAPR_MAX_PHBS) { 3749 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3750 SPAPR_MAX_PHBS - 1); 3751 return; 3752 } 3753 3754 *buid = base_buid + index; 3755 for (i = 0; i < n_dma; ++i) { 3756 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3757 } 3758 3759 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3760 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3761 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3762 } 3763 3764 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3765 { 3766 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3767 3768 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3769 } 3770 3771 static void spapr_ics_resend(XICSFabric *dev) 3772 { 3773 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3774 3775 ics_resend(spapr->ics); 3776 } 3777 3778 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3779 { 3780 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3781 3782 return cpu ? ICP(cpu->intc) : NULL; 3783 } 3784 3785 #define ICS_IRQ_FREE(ics, srcno) \ 3786 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK))) 3787 3788 static int ics_find_free_block(ICSState *ics, int num, int alignnum) 3789 { 3790 int first, i; 3791 3792 for (first = 0; first < ics->nr_irqs; first += alignnum) { 3793 if (num > (ics->nr_irqs - first)) { 3794 return -1; 3795 } 3796 for (i = first; i < first + num; ++i) { 3797 if (!ICS_IRQ_FREE(ics, i)) { 3798 break; 3799 } 3800 } 3801 if (i == (first + num)) { 3802 return first; 3803 } 3804 } 3805 3806 return -1; 3807 } 3808 3809 int spapr_irq_find(sPAPRMachineState *spapr, int num, bool align, Error **errp) 3810 { 3811 ICSState *ics = spapr->ics; 3812 int first = -1; 3813 3814 assert(ics); 3815 3816 /* 3817 * MSIMesage::data is used for storing VIRQ so 3818 * it has to be aligned to num to support multiple 3819 * MSI vectors. MSI-X is not affected by this. 3820 * The hint is used for the first IRQ, the rest should 3821 * be allocated continuously. 3822 */ 3823 if (align) { 3824 assert((num == 1) || (num == 2) || (num == 4) || 3825 (num == 8) || (num == 16) || (num == 32)); 3826 first = ics_find_free_block(ics, num, num); 3827 } else { 3828 first = ics_find_free_block(ics, num, 1); 3829 } 3830 3831 if (first < 0) { 3832 error_setg(errp, "can't find a free %d-IRQ block", num); 3833 return -1; 3834 } 3835 3836 return first + ics->offset; 3837 } 3838 3839 int spapr_irq_claim(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp) 3840 { 3841 ICSState *ics = spapr->ics; 3842 3843 assert(ics); 3844 3845 if (!ics_valid_irq(ics, irq)) { 3846 error_setg(errp, "IRQ %d is invalid", irq); 3847 return -1; 3848 } 3849 3850 if (!ICS_IRQ_FREE(ics, irq - ics->offset)) { 3851 error_setg(errp, "IRQ %d is not free", irq); 3852 return -1; 3853 } 3854 3855 ics_set_irq_type(ics, irq - ics->offset, lsi); 3856 return 0; 3857 } 3858 3859 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num) 3860 { 3861 ICSState *ics = spapr->ics; 3862 int srcno = irq - ics->offset; 3863 int i; 3864 3865 if (ics_valid_irq(ics, irq)) { 3866 trace_spapr_irq_free(0, irq, num); 3867 for (i = srcno; i < srcno + num; ++i) { 3868 if (ICS_IRQ_FREE(ics, i)) { 3869 trace_spapr_irq_free_warn(0, i + ics->offset); 3870 } 3871 memset(&ics->irqs[i], 0, sizeof(ICSIRQState)); 3872 } 3873 } 3874 } 3875 3876 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq) 3877 { 3878 ICSState *ics = spapr->ics; 3879 3880 if (ics_valid_irq(ics, irq)) { 3881 return ics->qirqs[irq - ics->offset]; 3882 } 3883 3884 return NULL; 3885 } 3886 3887 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3888 Monitor *mon) 3889 { 3890 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3891 CPUState *cs; 3892 3893 CPU_FOREACH(cs) { 3894 PowerPCCPU *cpu = POWERPC_CPU(cs); 3895 3896 icp_pic_print_info(ICP(cpu->intc), mon); 3897 } 3898 3899 ics_pic_print_info(spapr->ics, mon); 3900 } 3901 3902 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3903 { 3904 return cpu->vcpu_id; 3905 } 3906 3907 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3908 { 3909 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3910 int vcpu_id; 3911 3912 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3913 3914 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3915 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3916 error_append_hint(errp, "Adjust the number of cpus to %d " 3917 "or try to raise the number of threads per core\n", 3918 vcpu_id * smp_threads / spapr->vsmt); 3919 return; 3920 } 3921 3922 cpu->vcpu_id = vcpu_id; 3923 } 3924 3925 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3926 { 3927 CPUState *cs; 3928 3929 CPU_FOREACH(cs) { 3930 PowerPCCPU *cpu = POWERPC_CPU(cs); 3931 3932 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 3933 return cpu; 3934 } 3935 } 3936 3937 return NULL; 3938 } 3939 3940 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3941 { 3942 MachineClass *mc = MACHINE_CLASS(oc); 3943 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3944 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3945 NMIClass *nc = NMI_CLASS(oc); 3946 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3947 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3948 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3949 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3950 3951 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3952 3953 /* 3954 * We set up the default / latest behaviour here. The class_init 3955 * functions for the specific versioned machine types can override 3956 * these details for backwards compatibility 3957 */ 3958 mc->init = spapr_machine_init; 3959 mc->reset = spapr_machine_reset; 3960 mc->block_default_type = IF_SCSI; 3961 mc->max_cpus = 1024; 3962 mc->no_parallel = 1; 3963 mc->default_boot_order = ""; 3964 mc->default_ram_size = 512 * MiB; 3965 mc->kvm_type = spapr_kvm_type; 3966 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 3967 mc->pci_allow_0_address = true; 3968 assert(!mc->get_hotplug_handler); 3969 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3970 hc->pre_plug = spapr_machine_device_pre_plug; 3971 hc->plug = spapr_machine_device_plug; 3972 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3973 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3974 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3975 hc->unplug_request = spapr_machine_device_unplug_request; 3976 hc->unplug = spapr_machine_device_unplug; 3977 3978 smc->dr_lmb_enabled = true; 3979 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3980 mc->has_hotpluggable_cpus = true; 3981 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3982 fwc->get_dev_path = spapr_get_fw_dev_path; 3983 nc->nmi_monitor_handler = spapr_nmi; 3984 smc->phb_placement = spapr_phb_placement; 3985 vhc->hypercall = emulate_spapr_hypercall; 3986 vhc->hpt_mask = spapr_hpt_mask; 3987 vhc->map_hptes = spapr_map_hptes; 3988 vhc->unmap_hptes = spapr_unmap_hptes; 3989 vhc->store_hpte = spapr_store_hpte; 3990 vhc->get_patbe = spapr_get_patbe; 3991 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 3992 xic->ics_get = spapr_ics_get; 3993 xic->ics_resend = spapr_ics_resend; 3994 xic->icp_get = spapr_icp_get; 3995 ispc->print_info = spapr_pic_print_info; 3996 /* Force NUMA node memory size to be a multiple of 3997 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3998 * in which LMBs are represented and hot-added 3999 */ 4000 mc->numa_mem_align_shift = 28; 4001 4002 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4003 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4004 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4005 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4006 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4007 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4008 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4009 spapr_caps_add_properties(smc, &error_abort); 4010 } 4011 4012 static const TypeInfo spapr_machine_info = { 4013 .name = TYPE_SPAPR_MACHINE, 4014 .parent = TYPE_MACHINE, 4015 .abstract = true, 4016 .instance_size = sizeof(sPAPRMachineState), 4017 .instance_init = spapr_instance_init, 4018 .instance_finalize = spapr_machine_finalizefn, 4019 .class_size = sizeof(sPAPRMachineClass), 4020 .class_init = spapr_machine_class_init, 4021 .interfaces = (InterfaceInfo[]) { 4022 { TYPE_FW_PATH_PROVIDER }, 4023 { TYPE_NMI }, 4024 { TYPE_HOTPLUG_HANDLER }, 4025 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4026 { TYPE_XICS_FABRIC }, 4027 { TYPE_INTERRUPT_STATS_PROVIDER }, 4028 { } 4029 }, 4030 }; 4031 4032 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4033 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4034 void *data) \ 4035 { \ 4036 MachineClass *mc = MACHINE_CLASS(oc); \ 4037 spapr_machine_##suffix##_class_options(mc); \ 4038 if (latest) { \ 4039 mc->alias = "pseries"; \ 4040 mc->is_default = 1; \ 4041 } \ 4042 } \ 4043 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 4044 { \ 4045 MachineState *machine = MACHINE(obj); \ 4046 spapr_machine_##suffix##_instance_options(machine); \ 4047 } \ 4048 static const TypeInfo spapr_machine_##suffix##_info = { \ 4049 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4050 .parent = TYPE_SPAPR_MACHINE, \ 4051 .class_init = spapr_machine_##suffix##_class_init, \ 4052 .instance_init = spapr_machine_##suffix##_instance_init, \ 4053 }; \ 4054 static void spapr_machine_register_##suffix(void) \ 4055 { \ 4056 type_register(&spapr_machine_##suffix##_info); \ 4057 } \ 4058 type_init(spapr_machine_register_##suffix) 4059 4060 /* 4061 * pseries-3.0 4062 */ 4063 static void spapr_machine_3_0_instance_options(MachineState *machine) 4064 { 4065 } 4066 4067 static void spapr_machine_3_0_class_options(MachineClass *mc) 4068 { 4069 /* Defaults for the latest behaviour inherited from the base class */ 4070 } 4071 4072 DEFINE_SPAPR_MACHINE(3_0, "3.0", true); 4073 4074 /* 4075 * pseries-2.12 4076 */ 4077 #define SPAPR_COMPAT_2_12 \ 4078 HW_COMPAT_2_12 \ 4079 { \ 4080 .driver = TYPE_POWERPC_CPU, \ 4081 .property = "pre-3.0-migration", \ 4082 .value = "on", \ 4083 }, \ 4084 { \ 4085 .driver = TYPE_SPAPR_CPU_CORE, \ 4086 .property = "pre-3.0-migration", \ 4087 .value = "on", \ 4088 }, 4089 4090 static void spapr_machine_2_12_instance_options(MachineState *machine) 4091 { 4092 spapr_machine_3_0_instance_options(machine); 4093 } 4094 4095 static void spapr_machine_2_12_class_options(MachineClass *mc) 4096 { 4097 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4098 uint8_t mps; 4099 4100 spapr_machine_3_0_class_options(mc); 4101 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12); 4102 4103 if (kvmppc_hpt_needs_host_contiguous_pages()) { 4104 mps = ctz64(qemu_getrampagesize()); 4105 } else { 4106 mps = 34; /* allow everything up to 16GiB, i.e. everything */ 4107 } 4108 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = mps; 4109 } 4110 4111 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4112 4113 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine) 4114 { 4115 spapr_machine_2_12_instance_options(machine); 4116 } 4117 4118 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4119 { 4120 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4121 4122 spapr_machine_2_12_class_options(mc); 4123 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4124 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4125 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4126 } 4127 4128 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4129 4130 /* 4131 * pseries-2.11 4132 */ 4133 #define SPAPR_COMPAT_2_11 \ 4134 HW_COMPAT_2_11 4135 4136 static void spapr_machine_2_11_instance_options(MachineState *machine) 4137 { 4138 spapr_machine_2_12_instance_options(machine); 4139 } 4140 4141 static void spapr_machine_2_11_class_options(MachineClass *mc) 4142 { 4143 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4144 4145 spapr_machine_2_12_class_options(mc); 4146 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4147 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); 4148 } 4149 4150 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4151 4152 /* 4153 * pseries-2.10 4154 */ 4155 #define SPAPR_COMPAT_2_10 \ 4156 HW_COMPAT_2_10 4157 4158 static void spapr_machine_2_10_instance_options(MachineState *machine) 4159 { 4160 spapr_machine_2_11_instance_options(machine); 4161 } 4162 4163 static void spapr_machine_2_10_class_options(MachineClass *mc) 4164 { 4165 spapr_machine_2_11_class_options(mc); 4166 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 4167 } 4168 4169 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4170 4171 /* 4172 * pseries-2.9 4173 */ 4174 #define SPAPR_COMPAT_2_9 \ 4175 HW_COMPAT_2_9 \ 4176 { \ 4177 .driver = TYPE_POWERPC_CPU, \ 4178 .property = "pre-2.10-migration", \ 4179 .value = "on", \ 4180 }, \ 4181 4182 static void spapr_machine_2_9_instance_options(MachineState *machine) 4183 { 4184 spapr_machine_2_10_instance_options(machine); 4185 } 4186 4187 static void spapr_machine_2_9_class_options(MachineClass *mc) 4188 { 4189 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4190 4191 spapr_machine_2_10_class_options(mc); 4192 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 4193 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4194 smc->pre_2_10_has_unused_icps = true; 4195 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4196 } 4197 4198 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4199 4200 /* 4201 * pseries-2.8 4202 */ 4203 #define SPAPR_COMPAT_2_8 \ 4204 HW_COMPAT_2_8 \ 4205 { \ 4206 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4207 .property = "pcie-extended-configuration-space", \ 4208 .value = "off", \ 4209 }, 4210 4211 static void spapr_machine_2_8_instance_options(MachineState *machine) 4212 { 4213 spapr_machine_2_9_instance_options(machine); 4214 } 4215 4216 static void spapr_machine_2_8_class_options(MachineClass *mc) 4217 { 4218 spapr_machine_2_9_class_options(mc); 4219 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 4220 mc->numa_mem_align_shift = 23; 4221 } 4222 4223 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4224 4225 /* 4226 * pseries-2.7 4227 */ 4228 #define SPAPR_COMPAT_2_7 \ 4229 HW_COMPAT_2_7 \ 4230 { \ 4231 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4232 .property = "mem_win_size", \ 4233 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 4234 }, \ 4235 { \ 4236 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4237 .property = "mem64_win_size", \ 4238 .value = "0", \ 4239 }, \ 4240 { \ 4241 .driver = TYPE_POWERPC_CPU, \ 4242 .property = "pre-2.8-migration", \ 4243 .value = "on", \ 4244 }, \ 4245 { \ 4246 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4247 .property = "pre-2.8-migration", \ 4248 .value = "on", \ 4249 }, 4250 4251 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4252 uint64_t *buid, hwaddr *pio, 4253 hwaddr *mmio32, hwaddr *mmio64, 4254 unsigned n_dma, uint32_t *liobns, Error **errp) 4255 { 4256 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4257 const uint64_t base_buid = 0x800000020000000ULL; 4258 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4259 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4260 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4261 const uint32_t max_index = 255; 4262 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4263 4264 uint64_t ram_top = MACHINE(spapr)->ram_size; 4265 hwaddr phb0_base, phb_base; 4266 int i; 4267 4268 /* Do we have device memory? */ 4269 if (MACHINE(spapr)->maxram_size > ram_top) { 4270 /* Can't just use maxram_size, because there may be an 4271 * alignment gap between normal and device memory regions 4272 */ 4273 ram_top = MACHINE(spapr)->device_memory->base + 4274 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4275 } 4276 4277 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4278 4279 if (index > max_index) { 4280 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4281 max_index); 4282 return; 4283 } 4284 4285 *buid = base_buid + index; 4286 for (i = 0; i < n_dma; ++i) { 4287 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4288 } 4289 4290 phb_base = phb0_base + index * phb_spacing; 4291 *pio = phb_base + pio_offset; 4292 *mmio32 = phb_base + mmio_offset; 4293 /* 4294 * We don't set the 64-bit MMIO window, relying on the PHB's 4295 * fallback behaviour of automatically splitting a large "32-bit" 4296 * window into contiguous 32-bit and 64-bit windows 4297 */ 4298 } 4299 4300 static void spapr_machine_2_7_instance_options(MachineState *machine) 4301 { 4302 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 4303 4304 spapr_machine_2_8_instance_options(machine); 4305 spapr->use_hotplug_event_source = false; 4306 } 4307 4308 static void spapr_machine_2_7_class_options(MachineClass *mc) 4309 { 4310 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4311 4312 spapr_machine_2_8_class_options(mc); 4313 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4314 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 4315 smc->phb_placement = phb_placement_2_7; 4316 } 4317 4318 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4319 4320 /* 4321 * pseries-2.6 4322 */ 4323 #define SPAPR_COMPAT_2_6 \ 4324 HW_COMPAT_2_6 \ 4325 { \ 4326 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4327 .property = "ddw",\ 4328 .value = stringify(off),\ 4329 }, 4330 4331 static void spapr_machine_2_6_instance_options(MachineState *machine) 4332 { 4333 spapr_machine_2_7_instance_options(machine); 4334 } 4335 4336 static void spapr_machine_2_6_class_options(MachineClass *mc) 4337 { 4338 spapr_machine_2_7_class_options(mc); 4339 mc->has_hotpluggable_cpus = false; 4340 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 4341 } 4342 4343 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4344 4345 /* 4346 * pseries-2.5 4347 */ 4348 #define SPAPR_COMPAT_2_5 \ 4349 HW_COMPAT_2_5 \ 4350 { \ 4351 .driver = "spapr-vlan", \ 4352 .property = "use-rx-buffer-pools", \ 4353 .value = "off", \ 4354 }, 4355 4356 static void spapr_machine_2_5_instance_options(MachineState *machine) 4357 { 4358 spapr_machine_2_6_instance_options(machine); 4359 } 4360 4361 static void spapr_machine_2_5_class_options(MachineClass *mc) 4362 { 4363 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4364 4365 spapr_machine_2_6_class_options(mc); 4366 smc->use_ohci_by_default = true; 4367 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 4368 } 4369 4370 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4371 4372 /* 4373 * pseries-2.4 4374 */ 4375 #define SPAPR_COMPAT_2_4 \ 4376 HW_COMPAT_2_4 4377 4378 static void spapr_machine_2_4_instance_options(MachineState *machine) 4379 { 4380 spapr_machine_2_5_instance_options(machine); 4381 } 4382 4383 static void spapr_machine_2_4_class_options(MachineClass *mc) 4384 { 4385 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4386 4387 spapr_machine_2_5_class_options(mc); 4388 smc->dr_lmb_enabled = false; 4389 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 4390 } 4391 4392 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4393 4394 /* 4395 * pseries-2.3 4396 */ 4397 #define SPAPR_COMPAT_2_3 \ 4398 HW_COMPAT_2_3 \ 4399 {\ 4400 .driver = "spapr-pci-host-bridge",\ 4401 .property = "dynamic-reconfiguration",\ 4402 .value = "off",\ 4403 }, 4404 4405 static void spapr_machine_2_3_instance_options(MachineState *machine) 4406 { 4407 spapr_machine_2_4_instance_options(machine); 4408 } 4409 4410 static void spapr_machine_2_3_class_options(MachineClass *mc) 4411 { 4412 spapr_machine_2_4_class_options(mc); 4413 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 4414 } 4415 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4416 4417 /* 4418 * pseries-2.2 4419 */ 4420 4421 #define SPAPR_COMPAT_2_2 \ 4422 HW_COMPAT_2_2 \ 4423 {\ 4424 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4425 .property = "mem_win_size",\ 4426 .value = "0x20000000",\ 4427 }, 4428 4429 static void spapr_machine_2_2_instance_options(MachineState *machine) 4430 { 4431 spapr_machine_2_3_instance_options(machine); 4432 machine->suppress_vmdesc = true; 4433 } 4434 4435 static void spapr_machine_2_2_class_options(MachineClass *mc) 4436 { 4437 spapr_machine_2_3_class_options(mc); 4438 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 4439 } 4440 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4441 4442 /* 4443 * pseries-2.1 4444 */ 4445 #define SPAPR_COMPAT_2_1 \ 4446 HW_COMPAT_2_1 4447 4448 static void spapr_machine_2_1_instance_options(MachineState *machine) 4449 { 4450 spapr_machine_2_2_instance_options(machine); 4451 } 4452 4453 static void spapr_machine_2_1_class_options(MachineClass *mc) 4454 { 4455 spapr_machine_2_2_class_options(mc); 4456 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4457 } 4458 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4459 4460 static void spapr_machine_register_types(void) 4461 { 4462 type_register_static(&spapr_machine_info); 4463 } 4464 4465 type_init(spapr_machine_register_types) 4466