xref: /openbmc/qemu/hw/ppc/spapr.c (revision c3adb58f)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35 #include "mmu-hash64.h"
36 
37 #include "hw/boards.h"
38 #include "hw/ppc/ppc.h"
39 #include "hw/loader.h"
40 
41 #include "hw/ppc/spapr.h"
42 #include "hw/ppc/spapr_vio.h"
43 #include "hw/pci-host/spapr.h"
44 #include "hw/ppc/xics.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/pci/pci.h"
48 
49 #include "exec/address-spaces.h"
50 #include "hw/usb.h"
51 #include "qemu/config-file.h"
52 #include "qemu/error-report.h"
53 
54 #include <libfdt.h>
55 
56 /* SLOF memory layout:
57  *
58  * SLOF raw image loaded at 0, copies its romfs right below the flat
59  * device-tree, then position SLOF itself 31M below that
60  *
61  * So we set FW_OVERHEAD to 40MB which should account for all of that
62  * and more
63  *
64  * We load our kernel at 4M, leaving space for SLOF initial image
65  */
66 #define FDT_MAX_SIZE            0x40000
67 #define RTAS_MAX_SIZE           0x10000
68 #define FW_MAX_SIZE             0x400000
69 #define FW_FILE_NAME            "slof.bin"
70 #define FW_OVERHEAD             0x2800000
71 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72 
73 #define MIN_RMA_SLOF            128UL
74 
75 #define TIMEBASE_FREQ           512000000ULL
76 
77 #define MAX_CPUS                256
78 #define XICS_IRQS               1024
79 
80 #define PHANDLE_XICP            0x00001111
81 
82 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
83 
84 sPAPREnvironment *spapr;
85 
86 int spapr_allocate_irq(int hint, bool lsi)
87 {
88     int irq;
89 
90     if (hint) {
91         irq = hint;
92         if (hint >= spapr->next_irq) {
93             spapr->next_irq = hint + 1;
94         }
95         /* FIXME: we should probably check for collisions somehow */
96     } else {
97         irq = spapr->next_irq++;
98     }
99 
100     /* Configure irq type */
101     if (!xics_get_qirq(spapr->icp, irq)) {
102         return 0;
103     }
104 
105     xics_set_irq_type(spapr->icp, irq, lsi);
106 
107     return irq;
108 }
109 
110 /*
111  * Allocate block of consequtive IRQs, returns a number of the first.
112  * If msi==true, aligns the first IRQ number to num.
113  */
114 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
115 {
116     int first = -1;
117     int i, hint = 0;
118 
119     /*
120      * MSIMesage::data is used for storing VIRQ so
121      * it has to be aligned to num to support multiple
122      * MSI vectors. MSI-X is not affected by this.
123      * The hint is used for the first IRQ, the rest should
124      * be allocated continuously.
125      */
126     if (msi) {
127         assert((num == 1) || (num == 2) || (num == 4) ||
128                (num == 8) || (num == 16) || (num == 32));
129         hint = (spapr->next_irq + num - 1) & ~(num - 1);
130     }
131 
132     for (i = 0; i < num; ++i) {
133         int irq;
134 
135         irq = spapr_allocate_irq(hint, lsi);
136         if (!irq) {
137             return -1;
138         }
139 
140         if (0 == i) {
141             first = irq;
142             hint = 0;
143         }
144 
145         /* If the above doesn't create a consecutive block then that's
146          * an internal bug */
147         assert(irq == (first + i));
148     }
149 
150     return first;
151 }
152 
153 static XICSState *try_create_xics(const char *type, int nr_servers,
154                                   int nr_irqs)
155 {
156     DeviceState *dev;
157 
158     dev = qdev_create(NULL, type);
159     qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
160     qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
161     if (qdev_init(dev) < 0) {
162         return NULL;
163     }
164 
165     return XICS_COMMON(dev);
166 }
167 
168 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
169 {
170     XICSState *icp = NULL;
171 
172     if (kvm_enabled()) {
173         QemuOpts *machine_opts = qemu_get_machine_opts();
174         bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
175                                                 "kernel_irqchip", true);
176         bool irqchip_required = qemu_opt_get_bool(machine_opts,
177                                                   "kernel_irqchip", false);
178         if (irqchip_allowed) {
179             icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
180         }
181 
182         if (irqchip_required && !icp) {
183             perror("Failed to create in-kernel XICS\n");
184             abort();
185         }
186     }
187 
188     if (!icp) {
189         icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
190     }
191 
192     if (!icp) {
193         perror("Failed to create XICS\n");
194         abort();
195     }
196 
197     return icp;
198 }
199 
200 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
201 {
202     int ret = 0, offset;
203     CPUState *cpu;
204     char cpu_model[32];
205     int smt = kvmppc_smt_threads();
206     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
207 
208     CPU_FOREACH(cpu) {
209         DeviceClass *dc = DEVICE_GET_CLASS(cpu);
210         int index = ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
211         uint32_t associativity[] = {cpu_to_be32(0x5),
212                                     cpu_to_be32(0x0),
213                                     cpu_to_be32(0x0),
214                                     cpu_to_be32(0x0),
215                                     cpu_to_be32(cpu->numa_node),
216                                     cpu_to_be32(index)};
217 
218         if ((index % smt) != 0) {
219             continue;
220         }
221 
222         snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
223                  index);
224 
225         offset = fdt_path_offset(fdt, cpu_model);
226         if (offset < 0) {
227             return offset;
228         }
229 
230         if (nb_numa_nodes > 1) {
231             ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
232                               sizeof(associativity));
233             if (ret < 0) {
234                 return ret;
235             }
236         }
237 
238         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
239                           pft_size_prop, sizeof(pft_size_prop));
240         if (ret < 0) {
241             return ret;
242         }
243     }
244     return ret;
245 }
246 
247 
248 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
249                                      size_t maxsize)
250 {
251     size_t maxcells = maxsize / sizeof(uint32_t);
252     int i, j, count;
253     uint32_t *p = prop;
254 
255     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
256         struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
257 
258         if (!sps->page_shift) {
259             break;
260         }
261         for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
262             if (sps->enc[count].page_shift == 0) {
263                 break;
264             }
265         }
266         if ((p - prop) >= (maxcells - 3 - count * 2)) {
267             break;
268         }
269         *(p++) = cpu_to_be32(sps->page_shift);
270         *(p++) = cpu_to_be32(sps->slb_enc);
271         *(p++) = cpu_to_be32(count);
272         for (j = 0; j < count; j++) {
273             *(p++) = cpu_to_be32(sps->enc[j].page_shift);
274             *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
275         }
276     }
277 
278     return (p - prop) * sizeof(uint32_t);
279 }
280 
281 #define _FDT(exp) \
282     do { \
283         int ret = (exp);                                           \
284         if (ret < 0) {                                             \
285             fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
286                     #exp, fdt_strerror(ret));                      \
287             exit(1);                                               \
288         }                                                          \
289     } while (0)
290 
291 
292 static void *spapr_create_fdt_skel(hwaddr initrd_base,
293                                    hwaddr initrd_size,
294                                    hwaddr kernel_size,
295                                    bool little_endian,
296                                    const char *boot_device,
297                                    const char *kernel_cmdline,
298                                    uint32_t epow_irq)
299 {
300     void *fdt;
301     CPUState *cs;
302     uint32_t start_prop = cpu_to_be32(initrd_base);
303     uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
304     char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
305         "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
306     char qemu_hypertas_prop[] = "hcall-memop1";
307     uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
308     uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
309     int i, smt = kvmppc_smt_threads();
310     unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
311 
312     fdt = g_malloc0(FDT_MAX_SIZE);
313     _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
314 
315     if (kernel_size) {
316         _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
317     }
318     if (initrd_size) {
319         _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
320     }
321     _FDT((fdt_finish_reservemap(fdt)));
322 
323     /* Root node */
324     _FDT((fdt_begin_node(fdt, "")));
325     _FDT((fdt_property_string(fdt, "device_type", "chrp")));
326     _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
327     _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
328 
329     _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
330     _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
331 
332     /* /chosen */
333     _FDT((fdt_begin_node(fdt, "chosen")));
334 
335     /* Set Form1_affinity */
336     _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
337 
338     _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
339     _FDT((fdt_property(fdt, "linux,initrd-start",
340                        &start_prop, sizeof(start_prop))));
341     _FDT((fdt_property(fdt, "linux,initrd-end",
342                        &end_prop, sizeof(end_prop))));
343     if (kernel_size) {
344         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
345                               cpu_to_be64(kernel_size) };
346 
347         _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
348         if (little_endian) {
349             _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
350         }
351     }
352     if (boot_device) {
353         _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
354     }
355     _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
356     _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
357     _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
358 
359     _FDT((fdt_end_node(fdt)));
360 
361     /* cpus */
362     _FDT((fdt_begin_node(fdt, "cpus")));
363 
364     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
365     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
366 
367     CPU_FOREACH(cs) {
368         PowerPCCPU *cpu = POWERPC_CPU(cs);
369         CPUPPCState *env = &cpu->env;
370         DeviceClass *dc = DEVICE_GET_CLASS(cs);
371         PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
372         int index = ppc_get_vcpu_dt_id(cpu);
373         uint32_t servers_prop[smp_threads];
374         uint32_t gservers_prop[smp_threads * 2];
375         char *nodename;
376         uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
377                            0xffffffff, 0xffffffff};
378         uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
379         uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
380         uint32_t page_sizes_prop[64];
381         size_t page_sizes_prop_size;
382 
383         if ((index % smt) != 0) {
384             continue;
385         }
386 
387         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
388 
389         _FDT((fdt_begin_node(fdt, nodename)));
390 
391         g_free(nodename);
392 
393         _FDT((fdt_property_cell(fdt, "reg", index)));
394         _FDT((fdt_property_string(fdt, "device_type", "cpu")));
395 
396         _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
397         _FDT((fdt_property_cell(fdt, "d-cache-block-size",
398                                 env->dcache_line_size)));
399         _FDT((fdt_property_cell(fdt, "d-cache-line-size",
400                                 env->dcache_line_size)));
401         _FDT((fdt_property_cell(fdt, "i-cache-block-size",
402                                 env->icache_line_size)));
403         _FDT((fdt_property_cell(fdt, "i-cache-line-size",
404                                 env->icache_line_size)));
405 
406         if (pcc->l1_dcache_size) {
407             _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
408         } else {
409             fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
410         }
411         if (pcc->l1_icache_size) {
412             _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
413         } else {
414             fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
415         }
416 
417         _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
418         _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
419         _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
420         _FDT((fdt_property_string(fdt, "status", "okay")));
421         _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
422 
423         /* Build interrupt servers and gservers properties */
424         for (i = 0; i < smp_threads; i++) {
425             servers_prop[i] = cpu_to_be32(index + i);
426             /* Hack, direct the group queues back to cpu 0 */
427             gservers_prop[i*2] = cpu_to_be32(index + i);
428             gservers_prop[i*2 + 1] = 0;
429         }
430         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
431                            servers_prop, sizeof(servers_prop))));
432         _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
433                            gservers_prop, sizeof(gservers_prop))));
434 
435         if (env->spr_cb[SPR_PURR].oea_read) {
436             _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
437         }
438 
439         if (env->mmu_model & POWERPC_MMU_1TSEG) {
440             _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
441                                segs, sizeof(segs))));
442         }
443 
444         /* Advertise VMX/VSX (vector extensions) if available
445          *   0 / no property == no vector extensions
446          *   1               == VMX / Altivec available
447          *   2               == VSX available */
448         if (env->insns_flags & PPC_ALTIVEC) {
449             uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
450 
451             _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
452         }
453 
454         /* Advertise DFP (Decimal Floating Point) if available
455          *   0 / no property == no DFP
456          *   1               == DFP available */
457         if (env->insns_flags2 & PPC2_DFP) {
458             _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
459         }
460 
461         page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
462                                                       sizeof(page_sizes_prop));
463         if (page_sizes_prop_size) {
464             _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
465                                page_sizes_prop, page_sizes_prop_size)));
466         }
467 
468         _FDT((fdt_end_node(fdt)));
469     }
470 
471     _FDT((fdt_end_node(fdt)));
472 
473     /* RTAS */
474     _FDT((fdt_begin_node(fdt, "rtas")));
475 
476     _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
477                        sizeof(hypertas_prop))));
478     _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
479                        sizeof(qemu_hypertas_prop))));
480 
481     _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
482         refpoints, sizeof(refpoints))));
483 
484     _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
485 
486     _FDT((fdt_end_node(fdt)));
487 
488     /* interrupt controller */
489     _FDT((fdt_begin_node(fdt, "interrupt-controller")));
490 
491     _FDT((fdt_property_string(fdt, "device_type",
492                               "PowerPC-External-Interrupt-Presentation")));
493     _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
494     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
495     _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
496                        interrupt_server_ranges_prop,
497                        sizeof(interrupt_server_ranges_prop))));
498     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
499     _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
500     _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
501 
502     _FDT((fdt_end_node(fdt)));
503 
504     /* vdevice */
505     _FDT((fdt_begin_node(fdt, "vdevice")));
506 
507     _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
508     _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
509     _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
510     _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
511     _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
512     _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
513 
514     _FDT((fdt_end_node(fdt)));
515 
516     /* event-sources */
517     spapr_events_fdt_skel(fdt, epow_irq);
518 
519     _FDT((fdt_end_node(fdt))); /* close root node */
520     _FDT((fdt_finish(fdt)));
521 
522     return fdt;
523 }
524 
525 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
526 {
527     uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
528                                 cpu_to_be32(0x0), cpu_to_be32(0x0),
529                                 cpu_to_be32(0x0)};
530     char mem_name[32];
531     hwaddr node0_size, mem_start, node_size;
532     uint64_t mem_reg_property[2];
533     int i, off;
534 
535     /* memory node(s) */
536     if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
537         node0_size = node_mem[0];
538     } else {
539         node0_size = ram_size;
540     }
541 
542     /* RMA */
543     mem_reg_property[0] = 0;
544     mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
545     off = fdt_add_subnode(fdt, 0, "memory@0");
546     _FDT(off);
547     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
548     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
549                       sizeof(mem_reg_property))));
550     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
551                       sizeof(associativity))));
552 
553     /* RAM: Node 0 */
554     if (node0_size > spapr->rma_size) {
555         mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
556         mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
557 
558         sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
559         off = fdt_add_subnode(fdt, 0, mem_name);
560         _FDT(off);
561         _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
562         _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
563                           sizeof(mem_reg_property))));
564         _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
565                           sizeof(associativity))));
566     }
567 
568     /* RAM: Node 1 and beyond */
569     mem_start = node0_size;
570     for (i = 1; i < nb_numa_nodes; i++) {
571         mem_reg_property[0] = cpu_to_be64(mem_start);
572         if (mem_start >= ram_size) {
573             node_size = 0;
574         } else {
575             node_size = node_mem[i];
576             if (node_size > ram_size - mem_start) {
577                 node_size = ram_size - mem_start;
578             }
579         }
580         mem_reg_property[1] = cpu_to_be64(node_size);
581         associativity[3] = associativity[4] = cpu_to_be32(i);
582         sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
583         off = fdt_add_subnode(fdt, 0, mem_name);
584         _FDT(off);
585         _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
586         _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
587                           sizeof(mem_reg_property))));
588         _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
589                           sizeof(associativity))));
590         mem_start += node_size;
591     }
592 
593     return 0;
594 }
595 
596 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
597                                hwaddr fdt_addr,
598                                hwaddr rtas_addr,
599                                hwaddr rtas_size)
600 {
601     int ret;
602     void *fdt;
603     sPAPRPHBState *phb;
604 
605     fdt = g_malloc(FDT_MAX_SIZE);
606 
607     /* open out the base tree into a temp buffer for the final tweaks */
608     _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
609 
610     ret = spapr_populate_memory(spapr, fdt);
611     if (ret < 0) {
612         fprintf(stderr, "couldn't setup memory nodes in fdt\n");
613         exit(1);
614     }
615 
616     ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
617     if (ret < 0) {
618         fprintf(stderr, "couldn't setup vio devices in fdt\n");
619         exit(1);
620     }
621 
622     QLIST_FOREACH(phb, &spapr->phbs, list) {
623         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
624     }
625 
626     if (ret < 0) {
627         fprintf(stderr, "couldn't setup PCI devices in fdt\n");
628         exit(1);
629     }
630 
631     /* RTAS */
632     ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
633     if (ret < 0) {
634         fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
635     }
636 
637     /* Advertise NUMA via ibm,associativity */
638     ret = spapr_fixup_cpu_dt(fdt, spapr);
639     if (ret < 0) {
640         fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
641     }
642 
643     if (!spapr->has_graphics) {
644         spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
645     }
646 
647     _FDT((fdt_pack(fdt)));
648 
649     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
650         hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
651                  fdt_totalsize(fdt), FDT_MAX_SIZE);
652         exit(1);
653     }
654 
655     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
656 
657     g_free(fdt);
658 }
659 
660 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
661 {
662     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
663 }
664 
665 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
666 {
667     CPUPPCState *env = &cpu->env;
668 
669     if (msr_pr) {
670         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
671         env->gpr[3] = H_PRIVILEGE;
672     } else {
673         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
674     }
675 }
676 
677 static void spapr_reset_htab(sPAPREnvironment *spapr)
678 {
679     long shift;
680 
681     /* allocate hash page table.  For now we always make this 16mb,
682      * later we should probably make it scale to the size of guest
683      * RAM */
684 
685     shift = kvmppc_reset_htab(spapr->htab_shift);
686 
687     if (shift > 0) {
688         /* Kernel handles htab, we don't need to allocate one */
689         spapr->htab_shift = shift;
690         kvmppc_kern_htab = true;
691     } else {
692         if (!spapr->htab) {
693             /* Allocate an htab if we don't yet have one */
694             spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
695         }
696 
697         /* And clear it */
698         memset(spapr->htab, 0, HTAB_SIZE(spapr));
699     }
700 
701     /* Update the RMA size if necessary */
702     if (spapr->vrma_adjust) {
703         hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
704         spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
705     }
706 }
707 
708 static void ppc_spapr_reset(void)
709 {
710     PowerPCCPU *first_ppc_cpu;
711 
712     /* Reset the hash table & recalc the RMA */
713     spapr_reset_htab(spapr);
714 
715     qemu_devices_reset();
716 
717     /* Load the fdt */
718     spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
719                        spapr->rtas_size);
720 
721     /* Set up the entry state */
722     first_ppc_cpu = POWERPC_CPU(first_cpu);
723     first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
724     first_ppc_cpu->env.gpr[5] = 0;
725     first_cpu->halted = 0;
726     first_ppc_cpu->env.nip = spapr->entry_point;
727 
728 }
729 
730 static void spapr_cpu_reset(void *opaque)
731 {
732     PowerPCCPU *cpu = opaque;
733     CPUState *cs = CPU(cpu);
734     CPUPPCState *env = &cpu->env;
735 
736     cpu_reset(cs);
737 
738     /* All CPUs start halted.  CPU0 is unhalted from the machine level
739      * reset code and the rest are explicitly started up by the guest
740      * using an RTAS call */
741     cs->halted = 1;
742 
743     env->spr[SPR_HIOR] = 0;
744 
745     env->external_htab = (uint8_t *)spapr->htab;
746     if (kvm_enabled() && !env->external_htab) {
747         /*
748          * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
749          * functions do the right thing.
750          */
751         env->external_htab = (void *)1;
752     }
753     env->htab_base = -1;
754     /*
755      * htab_mask is the mask used to normalize hash value to PTEG index.
756      * htab_shift is log2 of hash table size.
757      * We have 8 hpte per group, and each hpte is 16 bytes.
758      * ie have 128 bytes per hpte entry.
759      */
760     env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
761     env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
762         (spapr->htab_shift - 18);
763 }
764 
765 static void spapr_create_nvram(sPAPREnvironment *spapr)
766 {
767     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
768     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
769 
770     if (dinfo) {
771         qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
772     }
773 
774     qdev_init_nofail(dev);
775 
776     spapr->nvram = (struct sPAPRNVRAM *)dev;
777 }
778 
779 /* Returns whether we want to use VGA or not */
780 static int spapr_vga_init(PCIBus *pci_bus)
781 {
782     switch (vga_interface_type) {
783     case VGA_NONE:
784         return false;
785     case VGA_DEVICE:
786         return true;
787     case VGA_STD:
788         return pci_vga_init(pci_bus) != NULL;
789     default:
790         fprintf(stderr, "This vga model is not supported,"
791                 "currently it only supports -vga std\n");
792         exit(0);
793     }
794 }
795 
796 static const VMStateDescription vmstate_spapr = {
797     .name = "spapr",
798     .version_id = 1,
799     .minimum_version_id = 1,
800     .minimum_version_id_old = 1,
801     .fields      = (VMStateField []) {
802         VMSTATE_UINT32(next_irq, sPAPREnvironment),
803 
804         /* RTC offset */
805         VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
806 
807         VMSTATE_END_OF_LIST()
808     },
809 };
810 
811 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
812 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
813 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
814 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
815 
816 static int htab_save_setup(QEMUFile *f, void *opaque)
817 {
818     sPAPREnvironment *spapr = opaque;
819 
820     /* "Iteration" header */
821     qemu_put_be32(f, spapr->htab_shift);
822 
823     if (spapr->htab) {
824         spapr->htab_save_index = 0;
825         spapr->htab_first_pass = true;
826     } else {
827         assert(kvm_enabled());
828 
829         spapr->htab_fd = kvmppc_get_htab_fd(false);
830         if (spapr->htab_fd < 0) {
831             fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
832                     strerror(errno));
833             return -1;
834         }
835     }
836 
837 
838     return 0;
839 }
840 
841 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
842                                  int64_t max_ns)
843 {
844     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
845     int index = spapr->htab_save_index;
846     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
847 
848     assert(spapr->htab_first_pass);
849 
850     do {
851         int chunkstart;
852 
853         /* Consume invalid HPTEs */
854         while ((index < htabslots)
855                && !HPTE_VALID(HPTE(spapr->htab, index))) {
856             index++;
857             CLEAN_HPTE(HPTE(spapr->htab, index));
858         }
859 
860         /* Consume valid HPTEs */
861         chunkstart = index;
862         while ((index < htabslots)
863                && HPTE_VALID(HPTE(spapr->htab, index))) {
864             index++;
865             CLEAN_HPTE(HPTE(spapr->htab, index));
866         }
867 
868         if (index > chunkstart) {
869             int n_valid = index - chunkstart;
870 
871             qemu_put_be32(f, chunkstart);
872             qemu_put_be16(f, n_valid);
873             qemu_put_be16(f, 0);
874             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
875                             HASH_PTE_SIZE_64 * n_valid);
876 
877             if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
878                 break;
879             }
880         }
881     } while ((index < htabslots) && !qemu_file_rate_limit(f));
882 
883     if (index >= htabslots) {
884         assert(index == htabslots);
885         index = 0;
886         spapr->htab_first_pass = false;
887     }
888     spapr->htab_save_index = index;
889 }
890 
891 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
892                                 int64_t max_ns)
893 {
894     bool final = max_ns < 0;
895     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
896     int examined = 0, sent = 0;
897     int index = spapr->htab_save_index;
898     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
899 
900     assert(!spapr->htab_first_pass);
901 
902     do {
903         int chunkstart, invalidstart;
904 
905         /* Consume non-dirty HPTEs */
906         while ((index < htabslots)
907                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
908             index++;
909             examined++;
910         }
911 
912         chunkstart = index;
913         /* Consume valid dirty HPTEs */
914         while ((index < htabslots)
915                && HPTE_DIRTY(HPTE(spapr->htab, index))
916                && HPTE_VALID(HPTE(spapr->htab, index))) {
917             CLEAN_HPTE(HPTE(spapr->htab, index));
918             index++;
919             examined++;
920         }
921 
922         invalidstart = index;
923         /* Consume invalid dirty HPTEs */
924         while ((index < htabslots)
925                && HPTE_DIRTY(HPTE(spapr->htab, index))
926                && !HPTE_VALID(HPTE(spapr->htab, index))) {
927             CLEAN_HPTE(HPTE(spapr->htab, index));
928             index++;
929             examined++;
930         }
931 
932         if (index > chunkstart) {
933             int n_valid = invalidstart - chunkstart;
934             int n_invalid = index - invalidstart;
935 
936             qemu_put_be32(f, chunkstart);
937             qemu_put_be16(f, n_valid);
938             qemu_put_be16(f, n_invalid);
939             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
940                             HASH_PTE_SIZE_64 * n_valid);
941             sent += index - chunkstart;
942 
943             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
944                 break;
945             }
946         }
947 
948         if (examined >= htabslots) {
949             break;
950         }
951 
952         if (index >= htabslots) {
953             assert(index == htabslots);
954             index = 0;
955         }
956     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
957 
958     if (index >= htabslots) {
959         assert(index == htabslots);
960         index = 0;
961     }
962 
963     spapr->htab_save_index = index;
964 
965     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
966 }
967 
968 #define MAX_ITERATION_NS    5000000 /* 5 ms */
969 #define MAX_KVM_BUF_SIZE    2048
970 
971 static int htab_save_iterate(QEMUFile *f, void *opaque)
972 {
973     sPAPREnvironment *spapr = opaque;
974     int rc = 0;
975 
976     /* Iteration header */
977     qemu_put_be32(f, 0);
978 
979     if (!spapr->htab) {
980         assert(kvm_enabled());
981 
982         rc = kvmppc_save_htab(f, spapr->htab_fd,
983                               MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
984         if (rc < 0) {
985             return rc;
986         }
987     } else  if (spapr->htab_first_pass) {
988         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
989     } else {
990         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
991     }
992 
993     /* End marker */
994     qemu_put_be32(f, 0);
995     qemu_put_be16(f, 0);
996     qemu_put_be16(f, 0);
997 
998     return rc;
999 }
1000 
1001 static int htab_save_complete(QEMUFile *f, void *opaque)
1002 {
1003     sPAPREnvironment *spapr = opaque;
1004 
1005     /* Iteration header */
1006     qemu_put_be32(f, 0);
1007 
1008     if (!spapr->htab) {
1009         int rc;
1010 
1011         assert(kvm_enabled());
1012 
1013         rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1014         if (rc < 0) {
1015             return rc;
1016         }
1017         close(spapr->htab_fd);
1018         spapr->htab_fd = -1;
1019     } else {
1020         htab_save_later_pass(f, spapr, -1);
1021     }
1022 
1023     /* End marker */
1024     qemu_put_be32(f, 0);
1025     qemu_put_be16(f, 0);
1026     qemu_put_be16(f, 0);
1027 
1028     return 0;
1029 }
1030 
1031 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1032 {
1033     sPAPREnvironment *spapr = opaque;
1034     uint32_t section_hdr;
1035     int fd = -1;
1036 
1037     if (version_id < 1 || version_id > 1) {
1038         fprintf(stderr, "htab_load() bad version\n");
1039         return -EINVAL;
1040     }
1041 
1042     section_hdr = qemu_get_be32(f);
1043 
1044     if (section_hdr) {
1045         /* First section, just the hash shift */
1046         if (spapr->htab_shift != section_hdr) {
1047             return -EINVAL;
1048         }
1049         return 0;
1050     }
1051 
1052     if (!spapr->htab) {
1053         assert(kvm_enabled());
1054 
1055         fd = kvmppc_get_htab_fd(true);
1056         if (fd < 0) {
1057             fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1058                     strerror(errno));
1059         }
1060     }
1061 
1062     while (true) {
1063         uint32_t index;
1064         uint16_t n_valid, n_invalid;
1065 
1066         index = qemu_get_be32(f);
1067         n_valid = qemu_get_be16(f);
1068         n_invalid = qemu_get_be16(f);
1069 
1070         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1071             /* End of Stream */
1072             break;
1073         }
1074 
1075         if ((index + n_valid + n_invalid) >
1076             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1077             /* Bad index in stream */
1078             fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1079                     "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1080                     spapr->htab_shift);
1081             return -EINVAL;
1082         }
1083 
1084         if (spapr->htab) {
1085             if (n_valid) {
1086                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1087                                 HASH_PTE_SIZE_64 * n_valid);
1088             }
1089             if (n_invalid) {
1090                 memset(HPTE(spapr->htab, index + n_valid), 0,
1091                        HASH_PTE_SIZE_64 * n_invalid);
1092             }
1093         } else {
1094             int rc;
1095 
1096             assert(fd >= 0);
1097 
1098             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1099             if (rc < 0) {
1100                 return rc;
1101             }
1102         }
1103     }
1104 
1105     if (!spapr->htab) {
1106         assert(fd >= 0);
1107         close(fd);
1108     }
1109 
1110     return 0;
1111 }
1112 
1113 static SaveVMHandlers savevm_htab_handlers = {
1114     .save_live_setup = htab_save_setup,
1115     .save_live_iterate = htab_save_iterate,
1116     .save_live_complete = htab_save_complete,
1117     .load_state = htab_load,
1118 };
1119 
1120 /* pSeries LPAR / sPAPR hardware init */
1121 static void ppc_spapr_init(QEMUMachineInitArgs *args)
1122 {
1123     ram_addr_t ram_size = args->ram_size;
1124     const char *cpu_model = args->cpu_model;
1125     const char *kernel_filename = args->kernel_filename;
1126     const char *kernel_cmdline = args->kernel_cmdline;
1127     const char *initrd_filename = args->initrd_filename;
1128     const char *boot_device = args->boot_order;
1129     PowerPCCPU *cpu;
1130     CPUPPCState *env;
1131     PCIHostState *phb;
1132     int i;
1133     MemoryRegion *sysmem = get_system_memory();
1134     MemoryRegion *ram = g_new(MemoryRegion, 1);
1135     hwaddr rma_alloc_size;
1136     hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1137     uint32_t initrd_base = 0;
1138     long kernel_size = 0, initrd_size = 0;
1139     long load_limit, rtas_limit, fw_size;
1140     bool kernel_le = false;
1141     char *filename;
1142 
1143     msi_supported = true;
1144 
1145     spapr = g_malloc0(sizeof(*spapr));
1146     QLIST_INIT(&spapr->phbs);
1147 
1148     cpu_ppc_hypercall = emulate_spapr_hypercall;
1149 
1150     /* Allocate RMA if necessary */
1151     rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1152 
1153     if (rma_alloc_size == -1) {
1154         hw_error("qemu: Unable to create RMA\n");
1155         exit(1);
1156     }
1157 
1158     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1159         spapr->rma_size = rma_alloc_size;
1160     } else {
1161         spapr->rma_size = node0_size;
1162 
1163         /* With KVM, we don't actually know whether KVM supports an
1164          * unbounded RMA (PR KVM) or is limited by the hash table size
1165          * (HV KVM using VRMA), so we always assume the latter
1166          *
1167          * In that case, we also limit the initial allocations for RTAS
1168          * etc... to 256M since we have no way to know what the VRMA size
1169          * is going to be as it depends on the size of the hash table
1170          * isn't determined yet.
1171          */
1172         if (kvm_enabled()) {
1173             spapr->vrma_adjust = 1;
1174             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1175         }
1176     }
1177 
1178     if (spapr->rma_size > node0_size) {
1179         fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1180                 spapr->rma_size);
1181         exit(1);
1182     }
1183 
1184     /* We place the device tree and RTAS just below either the top of the RMA,
1185      * or just below 2GB, whichever is lowere, so that it can be
1186      * processed with 32-bit real mode code if necessary */
1187     rtas_limit = MIN(spapr->rma_size, 0x80000000);
1188     spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1189     spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1190     load_limit = spapr->fdt_addr - FW_OVERHEAD;
1191 
1192     /* We aim for a hash table of size 1/128 the size of RAM.  The
1193      * normal rule of thumb is 1/64 the size of RAM, but that's much
1194      * more than needed for the Linux guests we support. */
1195     spapr->htab_shift = 18; /* Minimum architected size */
1196     while (spapr->htab_shift <= 46) {
1197         if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1198             break;
1199         }
1200         spapr->htab_shift++;
1201     }
1202 
1203     /* Set up Interrupt Controller before we create the VCPUs */
1204     spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1205                                   XICS_IRQS);
1206     spapr->next_irq = XICS_IRQ_BASE;
1207 
1208     /* init CPUs */
1209     if (cpu_model == NULL) {
1210         cpu_model = kvm_enabled() ? "host" : "POWER7";
1211     }
1212     for (i = 0; i < smp_cpus; i++) {
1213         cpu = cpu_ppc_init(cpu_model);
1214         if (cpu == NULL) {
1215             fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1216             exit(1);
1217         }
1218         env = &cpu->env;
1219 
1220         /* Set time-base frequency to 512 MHz */
1221         cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1222 
1223         /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1224          * MSR[IP] should never be set.
1225          */
1226         env->msr_mask &= ~(1 << 6);
1227 
1228         /* Tell KVM that we're in PAPR mode */
1229         if (kvm_enabled()) {
1230             kvmppc_set_papr(cpu);
1231         }
1232 
1233         xics_cpu_setup(spapr->icp, cpu);
1234 
1235         qemu_register_reset(spapr_cpu_reset, cpu);
1236     }
1237 
1238     /* allocate RAM */
1239     spapr->ram_limit = ram_size;
1240     if (spapr->ram_limit > rma_alloc_size) {
1241         ram_addr_t nonrma_base = rma_alloc_size;
1242         ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1243 
1244         memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1245         vmstate_register_ram_global(ram);
1246         memory_region_add_subregion(sysmem, nonrma_base, ram);
1247     }
1248 
1249     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1250     spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1251                                            rtas_limit - spapr->rtas_addr);
1252     if (spapr->rtas_size < 0) {
1253         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1254         exit(1);
1255     }
1256     if (spapr->rtas_size > RTAS_MAX_SIZE) {
1257         hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1258                  spapr->rtas_size, RTAS_MAX_SIZE);
1259         exit(1);
1260     }
1261     g_free(filename);
1262 
1263     /* Set up EPOW events infrastructure */
1264     spapr_events_init(spapr);
1265 
1266     /* Set up VIO bus */
1267     spapr->vio_bus = spapr_vio_bus_init();
1268 
1269     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1270         if (serial_hds[i]) {
1271             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1272         }
1273     }
1274 
1275     /* We always have at least the nvram device on VIO */
1276     spapr_create_nvram(spapr);
1277 
1278     /* Set up PCI */
1279     spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1280     spapr_pci_rtas_init();
1281 
1282     phb = spapr_create_phb(spapr, 0);
1283 
1284     for (i = 0; i < nb_nics; i++) {
1285         NICInfo *nd = &nd_table[i];
1286 
1287         if (!nd->model) {
1288             nd->model = g_strdup("ibmveth");
1289         }
1290 
1291         if (strcmp(nd->model, "ibmveth") == 0) {
1292             spapr_vlan_create(spapr->vio_bus, nd);
1293         } else {
1294             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1295         }
1296     }
1297 
1298     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1299         spapr_vscsi_create(spapr->vio_bus);
1300     }
1301 
1302     /* Graphics */
1303     if (spapr_vga_init(phb->bus)) {
1304         spapr->has_graphics = true;
1305     }
1306 
1307     if (usb_enabled(spapr->has_graphics)) {
1308         pci_create_simple(phb->bus, -1, "pci-ohci");
1309         if (spapr->has_graphics) {
1310             usbdevice_create("keyboard");
1311             usbdevice_create("mouse");
1312         }
1313     }
1314 
1315     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1316         fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1317                 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1318         exit(1);
1319     }
1320 
1321     if (kernel_filename) {
1322         uint64_t lowaddr = 0;
1323 
1324         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1325                                NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1326         if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1327             kernel_size = load_elf(kernel_filename,
1328                                    translate_kernel_address, NULL,
1329                                    NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1330             kernel_le = kernel_size > 0;
1331         }
1332         if (kernel_size < 0) {
1333             fprintf(stderr, "qemu: error loading %s: %s\n",
1334                     kernel_filename, load_elf_strerror(kernel_size));
1335             exit(1);
1336         }
1337 
1338         /* load initrd */
1339         if (initrd_filename) {
1340             /* Try to locate the initrd in the gap between the kernel
1341              * and the firmware. Add a bit of space just in case
1342              */
1343             initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1344             initrd_size = load_image_targphys(initrd_filename, initrd_base,
1345                                               load_limit - initrd_base);
1346             if (initrd_size < 0) {
1347                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1348                         initrd_filename);
1349                 exit(1);
1350             }
1351         } else {
1352             initrd_base = 0;
1353             initrd_size = 0;
1354         }
1355     }
1356 
1357     if (bios_name == NULL) {
1358         bios_name = FW_FILE_NAME;
1359     }
1360     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1361     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1362     if (fw_size < 0) {
1363         hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1364         exit(1);
1365     }
1366     g_free(filename);
1367 
1368     spapr->entry_point = 0x100;
1369 
1370     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1371     register_savevm_live(NULL, "spapr/htab", -1, 1,
1372                          &savevm_htab_handlers, spapr);
1373 
1374     /* Prepare the device tree */
1375     spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1376                                             kernel_size, kernel_le,
1377                                             boot_device, kernel_cmdline,
1378                                             spapr->epow_irq);
1379     assert(spapr->fdt_skel != NULL);
1380 }
1381 
1382 static int spapr_kvm_type(const char *vm_type)
1383 {
1384     if (!vm_type) {
1385         return 0;
1386     }
1387 
1388     if (!strcmp(vm_type, "HV")) {
1389         return 1;
1390     }
1391 
1392     if (!strcmp(vm_type, "PR")) {
1393         return 2;
1394     }
1395 
1396     error_report("Unknown kvm-type specified '%s'", vm_type);
1397     exit(1);
1398 }
1399 
1400 static QEMUMachine spapr_machine = {
1401     .name = "pseries",
1402     .desc = "pSeries Logical Partition (PAPR compliant)",
1403     .is_default = 1,
1404     .init = ppc_spapr_init,
1405     .reset = ppc_spapr_reset,
1406     .block_default_type = IF_SCSI,
1407     .max_cpus = MAX_CPUS,
1408     .no_parallel = 1,
1409     .default_boot_order = NULL,
1410     .kvm_type = spapr_kvm_type,
1411 };
1412 
1413 static void spapr_machine_init(void)
1414 {
1415     qemu_register_machine(&spapr_machine);
1416 }
1417 
1418 machine_init(spapr_machine_init);
1419