1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "sysemu/sysemu.h" 28 #include "hw/hw.h" 29 #include "elf.h" 30 #include "net/net.h" 31 #include "sysemu/blockdev.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/kvm.h" 34 #include "kvm_ppc.h" 35 #include "mmu-hash64.h" 36 37 #include "hw/boards.h" 38 #include "hw/ppc/ppc.h" 39 #include "hw/loader.h" 40 41 #include "hw/ppc/spapr.h" 42 #include "hw/ppc/spapr_vio.h" 43 #include "hw/pci-host/spapr.h" 44 #include "hw/ppc/xics.h" 45 #include "hw/pci/msi.h" 46 47 #include "hw/pci/pci.h" 48 49 #include "exec/address-spaces.h" 50 #include "hw/usb.h" 51 #include "qemu/config-file.h" 52 #include "qemu/error-report.h" 53 54 #include <libfdt.h> 55 56 /* SLOF memory layout: 57 * 58 * SLOF raw image loaded at 0, copies its romfs right below the flat 59 * device-tree, then position SLOF itself 31M below that 60 * 61 * So we set FW_OVERHEAD to 40MB which should account for all of that 62 * and more 63 * 64 * We load our kernel at 4M, leaving space for SLOF initial image 65 */ 66 #define FDT_MAX_SIZE 0x40000 67 #define RTAS_MAX_SIZE 0x10000 68 #define FW_MAX_SIZE 0x400000 69 #define FW_FILE_NAME "slof.bin" 70 #define FW_OVERHEAD 0x2800000 71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 72 73 #define MIN_RMA_SLOF 128UL 74 75 #define TIMEBASE_FREQ 512000000ULL 76 77 #define MAX_CPUS 256 78 #define XICS_IRQS 1024 79 80 #define PHANDLE_XICP 0x00001111 81 82 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) 83 84 sPAPREnvironment *spapr; 85 86 int spapr_allocate_irq(int hint, bool lsi) 87 { 88 int irq; 89 90 if (hint) { 91 irq = hint; 92 if (hint >= spapr->next_irq) { 93 spapr->next_irq = hint + 1; 94 } 95 /* FIXME: we should probably check for collisions somehow */ 96 } else { 97 irq = spapr->next_irq++; 98 } 99 100 /* Configure irq type */ 101 if (!xics_get_qirq(spapr->icp, irq)) { 102 return 0; 103 } 104 105 xics_set_irq_type(spapr->icp, irq, lsi); 106 107 return irq; 108 } 109 110 /* 111 * Allocate block of consequtive IRQs, returns a number of the first. 112 * If msi==true, aligns the first IRQ number to num. 113 */ 114 int spapr_allocate_irq_block(int num, bool lsi, bool msi) 115 { 116 int first = -1; 117 int i, hint = 0; 118 119 /* 120 * MSIMesage::data is used for storing VIRQ so 121 * it has to be aligned to num to support multiple 122 * MSI vectors. MSI-X is not affected by this. 123 * The hint is used for the first IRQ, the rest should 124 * be allocated continuously. 125 */ 126 if (msi) { 127 assert((num == 1) || (num == 2) || (num == 4) || 128 (num == 8) || (num == 16) || (num == 32)); 129 hint = (spapr->next_irq + num - 1) & ~(num - 1); 130 } 131 132 for (i = 0; i < num; ++i) { 133 int irq; 134 135 irq = spapr_allocate_irq(hint, lsi); 136 if (!irq) { 137 return -1; 138 } 139 140 if (0 == i) { 141 first = irq; 142 hint = 0; 143 } 144 145 /* If the above doesn't create a consecutive block then that's 146 * an internal bug */ 147 assert(irq == (first + i)); 148 } 149 150 return first; 151 } 152 153 static XICSState *try_create_xics(const char *type, int nr_servers, 154 int nr_irqs) 155 { 156 DeviceState *dev; 157 158 dev = qdev_create(NULL, type); 159 qdev_prop_set_uint32(dev, "nr_servers", nr_servers); 160 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); 161 if (qdev_init(dev) < 0) { 162 return NULL; 163 } 164 165 return XICS_COMMON(dev); 166 } 167 168 static XICSState *xics_system_init(int nr_servers, int nr_irqs) 169 { 170 XICSState *icp = NULL; 171 172 if (kvm_enabled()) { 173 QemuOpts *machine_opts = qemu_get_machine_opts(); 174 bool irqchip_allowed = qemu_opt_get_bool(machine_opts, 175 "kernel_irqchip", true); 176 bool irqchip_required = qemu_opt_get_bool(machine_opts, 177 "kernel_irqchip", false); 178 if (irqchip_allowed) { 179 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs); 180 } 181 182 if (irqchip_required && !icp) { 183 perror("Failed to create in-kernel XICS\n"); 184 abort(); 185 } 186 } 187 188 if (!icp) { 189 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs); 190 } 191 192 if (!icp) { 193 perror("Failed to create XICS\n"); 194 abort(); 195 } 196 197 return icp; 198 } 199 200 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) 201 { 202 int ret = 0, offset; 203 CPUState *cpu; 204 char cpu_model[32]; 205 int smt = kvmppc_smt_threads(); 206 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 207 208 CPU_FOREACH(cpu) { 209 DeviceClass *dc = DEVICE_GET_CLASS(cpu); 210 int index = ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); 211 uint32_t associativity[] = {cpu_to_be32(0x5), 212 cpu_to_be32(0x0), 213 cpu_to_be32(0x0), 214 cpu_to_be32(0x0), 215 cpu_to_be32(cpu->numa_node), 216 cpu_to_be32(index)}; 217 218 if ((index % smt) != 0) { 219 continue; 220 } 221 222 snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name, 223 index); 224 225 offset = fdt_path_offset(fdt, cpu_model); 226 if (offset < 0) { 227 return offset; 228 } 229 230 if (nb_numa_nodes > 1) { 231 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, 232 sizeof(associativity)); 233 if (ret < 0) { 234 return ret; 235 } 236 } 237 238 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 239 pft_size_prop, sizeof(pft_size_prop)); 240 if (ret < 0) { 241 return ret; 242 } 243 } 244 return ret; 245 } 246 247 248 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, 249 size_t maxsize) 250 { 251 size_t maxcells = maxsize / sizeof(uint32_t); 252 int i, j, count; 253 uint32_t *p = prop; 254 255 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 256 struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; 257 258 if (!sps->page_shift) { 259 break; 260 } 261 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { 262 if (sps->enc[count].page_shift == 0) { 263 break; 264 } 265 } 266 if ((p - prop) >= (maxcells - 3 - count * 2)) { 267 break; 268 } 269 *(p++) = cpu_to_be32(sps->page_shift); 270 *(p++) = cpu_to_be32(sps->slb_enc); 271 *(p++) = cpu_to_be32(count); 272 for (j = 0; j < count; j++) { 273 *(p++) = cpu_to_be32(sps->enc[j].page_shift); 274 *(p++) = cpu_to_be32(sps->enc[j].pte_enc); 275 } 276 } 277 278 return (p - prop) * sizeof(uint32_t); 279 } 280 281 #define _FDT(exp) \ 282 do { \ 283 int ret = (exp); \ 284 if (ret < 0) { \ 285 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ 286 #exp, fdt_strerror(ret)); \ 287 exit(1); \ 288 } \ 289 } while (0) 290 291 292 static void *spapr_create_fdt_skel(hwaddr initrd_base, 293 hwaddr initrd_size, 294 hwaddr kernel_size, 295 bool little_endian, 296 const char *boot_device, 297 const char *kernel_cmdline, 298 uint32_t epow_irq) 299 { 300 void *fdt; 301 CPUState *cs; 302 uint32_t start_prop = cpu_to_be32(initrd_base); 303 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); 304 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" 305 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode"; 306 char qemu_hypertas_prop[] = "hcall-memop1"; 307 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; 308 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; 309 int i, smt = kvmppc_smt_threads(); 310 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; 311 312 fdt = g_malloc0(FDT_MAX_SIZE); 313 _FDT((fdt_create(fdt, FDT_MAX_SIZE))); 314 315 if (kernel_size) { 316 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); 317 } 318 if (initrd_size) { 319 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); 320 } 321 _FDT((fdt_finish_reservemap(fdt))); 322 323 /* Root node */ 324 _FDT((fdt_begin_node(fdt, ""))); 325 _FDT((fdt_property_string(fdt, "device_type", "chrp"))); 326 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); 327 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); 328 329 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); 330 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); 331 332 /* /chosen */ 333 _FDT((fdt_begin_node(fdt, "chosen"))); 334 335 /* Set Form1_affinity */ 336 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); 337 338 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); 339 _FDT((fdt_property(fdt, "linux,initrd-start", 340 &start_prop, sizeof(start_prop)))); 341 _FDT((fdt_property(fdt, "linux,initrd-end", 342 &end_prop, sizeof(end_prop)))); 343 if (kernel_size) { 344 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 345 cpu_to_be64(kernel_size) }; 346 347 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); 348 if (little_endian) { 349 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); 350 } 351 } 352 if (boot_device) { 353 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); 354 } 355 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); 356 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); 357 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); 358 359 _FDT((fdt_end_node(fdt))); 360 361 /* cpus */ 362 _FDT((fdt_begin_node(fdt, "cpus"))); 363 364 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); 365 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); 366 367 CPU_FOREACH(cs) { 368 PowerPCCPU *cpu = POWERPC_CPU(cs); 369 CPUPPCState *env = &cpu->env; 370 DeviceClass *dc = DEVICE_GET_CLASS(cs); 371 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 372 int index = ppc_get_vcpu_dt_id(cpu); 373 uint32_t servers_prop[smp_threads]; 374 uint32_t gservers_prop[smp_threads * 2]; 375 char *nodename; 376 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 377 0xffffffff, 0xffffffff}; 378 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; 379 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 380 uint32_t page_sizes_prop[64]; 381 size_t page_sizes_prop_size; 382 383 if ((index % smt) != 0) { 384 continue; 385 } 386 387 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 388 389 _FDT((fdt_begin_node(fdt, nodename))); 390 391 g_free(nodename); 392 393 _FDT((fdt_property_cell(fdt, "reg", index))); 394 _FDT((fdt_property_string(fdt, "device_type", "cpu"))); 395 396 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); 397 _FDT((fdt_property_cell(fdt, "d-cache-block-size", 398 env->dcache_line_size))); 399 _FDT((fdt_property_cell(fdt, "d-cache-line-size", 400 env->dcache_line_size))); 401 _FDT((fdt_property_cell(fdt, "i-cache-block-size", 402 env->icache_line_size))); 403 _FDT((fdt_property_cell(fdt, "i-cache-line-size", 404 env->icache_line_size))); 405 406 if (pcc->l1_dcache_size) { 407 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size))); 408 } else { 409 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); 410 } 411 if (pcc->l1_icache_size) { 412 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size))); 413 } else { 414 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); 415 } 416 417 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); 418 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); 419 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); 420 _FDT((fdt_property_string(fdt, "status", "okay"))); 421 _FDT((fdt_property(fdt, "64-bit", NULL, 0))); 422 423 /* Build interrupt servers and gservers properties */ 424 for (i = 0; i < smp_threads; i++) { 425 servers_prop[i] = cpu_to_be32(index + i); 426 /* Hack, direct the group queues back to cpu 0 */ 427 gservers_prop[i*2] = cpu_to_be32(index + i); 428 gservers_prop[i*2 + 1] = 0; 429 } 430 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", 431 servers_prop, sizeof(servers_prop)))); 432 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", 433 gservers_prop, sizeof(gservers_prop)))); 434 435 if (env->spr_cb[SPR_PURR].oea_read) { 436 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0))); 437 } 438 439 if (env->mmu_model & POWERPC_MMU_1TSEG) { 440 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", 441 segs, sizeof(segs)))); 442 } 443 444 /* Advertise VMX/VSX (vector extensions) if available 445 * 0 / no property == no vector extensions 446 * 1 == VMX / Altivec available 447 * 2 == VSX available */ 448 if (env->insns_flags & PPC_ALTIVEC) { 449 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 450 451 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); 452 } 453 454 /* Advertise DFP (Decimal Floating Point) if available 455 * 0 / no property == no DFP 456 * 1 == DFP available */ 457 if (env->insns_flags2 & PPC2_DFP) { 458 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); 459 } 460 461 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, 462 sizeof(page_sizes_prop)); 463 if (page_sizes_prop_size) { 464 _FDT((fdt_property(fdt, "ibm,segment-page-sizes", 465 page_sizes_prop, page_sizes_prop_size))); 466 } 467 468 _FDT((fdt_end_node(fdt))); 469 } 470 471 _FDT((fdt_end_node(fdt))); 472 473 /* RTAS */ 474 _FDT((fdt_begin_node(fdt, "rtas"))); 475 476 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, 477 sizeof(hypertas_prop)))); 478 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, 479 sizeof(qemu_hypertas_prop)))); 480 481 _FDT((fdt_property(fdt, "ibm,associativity-reference-points", 482 refpoints, sizeof(refpoints)))); 483 484 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); 485 486 _FDT((fdt_end_node(fdt))); 487 488 /* interrupt controller */ 489 _FDT((fdt_begin_node(fdt, "interrupt-controller"))); 490 491 _FDT((fdt_property_string(fdt, "device_type", 492 "PowerPC-External-Interrupt-Presentation"))); 493 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); 494 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); 495 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", 496 interrupt_server_ranges_prop, 497 sizeof(interrupt_server_ranges_prop)))); 498 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); 499 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); 500 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); 501 502 _FDT((fdt_end_node(fdt))); 503 504 /* vdevice */ 505 _FDT((fdt_begin_node(fdt, "vdevice"))); 506 507 _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); 508 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); 509 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); 510 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); 511 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); 512 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); 513 514 _FDT((fdt_end_node(fdt))); 515 516 /* event-sources */ 517 spapr_events_fdt_skel(fdt, epow_irq); 518 519 _FDT((fdt_end_node(fdt))); /* close root node */ 520 _FDT((fdt_finish(fdt))); 521 522 return fdt; 523 } 524 525 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) 526 { 527 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), 528 cpu_to_be32(0x0), cpu_to_be32(0x0), 529 cpu_to_be32(0x0)}; 530 char mem_name[32]; 531 hwaddr node0_size, mem_start, node_size; 532 uint64_t mem_reg_property[2]; 533 int i, off; 534 535 /* memory node(s) */ 536 if (nb_numa_nodes > 1 && node_mem[0] < ram_size) { 537 node0_size = node_mem[0]; 538 } else { 539 node0_size = ram_size; 540 } 541 542 /* RMA */ 543 mem_reg_property[0] = 0; 544 mem_reg_property[1] = cpu_to_be64(spapr->rma_size); 545 off = fdt_add_subnode(fdt, 0, "memory@0"); 546 _FDT(off); 547 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 548 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 549 sizeof(mem_reg_property)))); 550 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 551 sizeof(associativity)))); 552 553 /* RAM: Node 0 */ 554 if (node0_size > spapr->rma_size) { 555 mem_reg_property[0] = cpu_to_be64(spapr->rma_size); 556 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); 557 558 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); 559 off = fdt_add_subnode(fdt, 0, mem_name); 560 _FDT(off); 561 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 562 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 563 sizeof(mem_reg_property)))); 564 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 565 sizeof(associativity)))); 566 } 567 568 /* RAM: Node 1 and beyond */ 569 mem_start = node0_size; 570 for (i = 1; i < nb_numa_nodes; i++) { 571 mem_reg_property[0] = cpu_to_be64(mem_start); 572 if (mem_start >= ram_size) { 573 node_size = 0; 574 } else { 575 node_size = node_mem[i]; 576 if (node_size > ram_size - mem_start) { 577 node_size = ram_size - mem_start; 578 } 579 } 580 mem_reg_property[1] = cpu_to_be64(node_size); 581 associativity[3] = associativity[4] = cpu_to_be32(i); 582 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); 583 off = fdt_add_subnode(fdt, 0, mem_name); 584 _FDT(off); 585 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 586 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 587 sizeof(mem_reg_property)))); 588 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 589 sizeof(associativity)))); 590 mem_start += node_size; 591 } 592 593 return 0; 594 } 595 596 static void spapr_finalize_fdt(sPAPREnvironment *spapr, 597 hwaddr fdt_addr, 598 hwaddr rtas_addr, 599 hwaddr rtas_size) 600 { 601 int ret; 602 void *fdt; 603 sPAPRPHBState *phb; 604 605 fdt = g_malloc(FDT_MAX_SIZE); 606 607 /* open out the base tree into a temp buffer for the final tweaks */ 608 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); 609 610 ret = spapr_populate_memory(spapr, fdt); 611 if (ret < 0) { 612 fprintf(stderr, "couldn't setup memory nodes in fdt\n"); 613 exit(1); 614 } 615 616 ret = spapr_populate_vdevice(spapr->vio_bus, fdt); 617 if (ret < 0) { 618 fprintf(stderr, "couldn't setup vio devices in fdt\n"); 619 exit(1); 620 } 621 622 QLIST_FOREACH(phb, &spapr->phbs, list) { 623 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 624 } 625 626 if (ret < 0) { 627 fprintf(stderr, "couldn't setup PCI devices in fdt\n"); 628 exit(1); 629 } 630 631 /* RTAS */ 632 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); 633 if (ret < 0) { 634 fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); 635 } 636 637 /* Advertise NUMA via ibm,associativity */ 638 ret = spapr_fixup_cpu_dt(fdt, spapr); 639 if (ret < 0) { 640 fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); 641 } 642 643 if (!spapr->has_graphics) { 644 spapr_populate_chosen_stdout(fdt, spapr->vio_bus); 645 } 646 647 _FDT((fdt_pack(fdt))); 648 649 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 650 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", 651 fdt_totalsize(fdt), FDT_MAX_SIZE); 652 exit(1); 653 } 654 655 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 656 657 g_free(fdt); 658 } 659 660 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 661 { 662 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 663 } 664 665 static void emulate_spapr_hypercall(PowerPCCPU *cpu) 666 { 667 CPUPPCState *env = &cpu->env; 668 669 if (msr_pr) { 670 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 671 env->gpr[3] = H_PRIVILEGE; 672 } else { 673 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 674 } 675 } 676 677 static void spapr_reset_htab(sPAPREnvironment *spapr) 678 { 679 long shift; 680 681 /* allocate hash page table. For now we always make this 16mb, 682 * later we should probably make it scale to the size of guest 683 * RAM */ 684 685 shift = kvmppc_reset_htab(spapr->htab_shift); 686 687 if (shift > 0) { 688 /* Kernel handles htab, we don't need to allocate one */ 689 spapr->htab_shift = shift; 690 kvmppc_kern_htab = true; 691 } else { 692 if (!spapr->htab) { 693 /* Allocate an htab if we don't yet have one */ 694 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); 695 } 696 697 /* And clear it */ 698 memset(spapr->htab, 0, HTAB_SIZE(spapr)); 699 } 700 701 /* Update the RMA size if necessary */ 702 if (spapr->vrma_adjust) { 703 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; 704 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift); 705 } 706 } 707 708 static void ppc_spapr_reset(void) 709 { 710 PowerPCCPU *first_ppc_cpu; 711 712 /* Reset the hash table & recalc the RMA */ 713 spapr_reset_htab(spapr); 714 715 qemu_devices_reset(); 716 717 /* Load the fdt */ 718 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, 719 spapr->rtas_size); 720 721 /* Set up the entry state */ 722 first_ppc_cpu = POWERPC_CPU(first_cpu); 723 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; 724 first_ppc_cpu->env.gpr[5] = 0; 725 first_cpu->halted = 0; 726 first_ppc_cpu->env.nip = spapr->entry_point; 727 728 } 729 730 static void spapr_cpu_reset(void *opaque) 731 { 732 PowerPCCPU *cpu = opaque; 733 CPUState *cs = CPU(cpu); 734 CPUPPCState *env = &cpu->env; 735 736 cpu_reset(cs); 737 738 /* All CPUs start halted. CPU0 is unhalted from the machine level 739 * reset code and the rest are explicitly started up by the guest 740 * using an RTAS call */ 741 cs->halted = 1; 742 743 env->spr[SPR_HIOR] = 0; 744 745 env->external_htab = (uint8_t *)spapr->htab; 746 if (kvm_enabled() && !env->external_htab) { 747 /* 748 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* 749 * functions do the right thing. 750 */ 751 env->external_htab = (void *)1; 752 } 753 env->htab_base = -1; 754 /* 755 * htab_mask is the mask used to normalize hash value to PTEG index. 756 * htab_shift is log2 of hash table size. 757 * We have 8 hpte per group, and each hpte is 16 bytes. 758 * ie have 128 bytes per hpte entry. 759 */ 760 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1; 761 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | 762 (spapr->htab_shift - 18); 763 } 764 765 static void spapr_create_nvram(sPAPREnvironment *spapr) 766 { 767 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 768 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 769 770 if (dinfo) { 771 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); 772 } 773 774 qdev_init_nofail(dev); 775 776 spapr->nvram = (struct sPAPRNVRAM *)dev; 777 } 778 779 /* Returns whether we want to use VGA or not */ 780 static int spapr_vga_init(PCIBus *pci_bus) 781 { 782 switch (vga_interface_type) { 783 case VGA_NONE: 784 return false; 785 case VGA_DEVICE: 786 return true; 787 case VGA_STD: 788 return pci_vga_init(pci_bus) != NULL; 789 default: 790 fprintf(stderr, "This vga model is not supported," 791 "currently it only supports -vga std\n"); 792 exit(0); 793 } 794 } 795 796 static const VMStateDescription vmstate_spapr = { 797 .name = "spapr", 798 .version_id = 1, 799 .minimum_version_id = 1, 800 .minimum_version_id_old = 1, 801 .fields = (VMStateField []) { 802 VMSTATE_UINT32(next_irq, sPAPREnvironment), 803 804 /* RTC offset */ 805 VMSTATE_UINT64(rtc_offset, sPAPREnvironment), 806 807 VMSTATE_END_OF_LIST() 808 }, 809 }; 810 811 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 812 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 813 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 814 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 815 816 static int htab_save_setup(QEMUFile *f, void *opaque) 817 { 818 sPAPREnvironment *spapr = opaque; 819 820 /* "Iteration" header */ 821 qemu_put_be32(f, spapr->htab_shift); 822 823 if (spapr->htab) { 824 spapr->htab_save_index = 0; 825 spapr->htab_first_pass = true; 826 } else { 827 assert(kvm_enabled()); 828 829 spapr->htab_fd = kvmppc_get_htab_fd(false); 830 if (spapr->htab_fd < 0) { 831 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", 832 strerror(errno)); 833 return -1; 834 } 835 } 836 837 838 return 0; 839 } 840 841 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr, 842 int64_t max_ns) 843 { 844 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 845 int index = spapr->htab_save_index; 846 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 847 848 assert(spapr->htab_first_pass); 849 850 do { 851 int chunkstart; 852 853 /* Consume invalid HPTEs */ 854 while ((index < htabslots) 855 && !HPTE_VALID(HPTE(spapr->htab, index))) { 856 index++; 857 CLEAN_HPTE(HPTE(spapr->htab, index)); 858 } 859 860 /* Consume valid HPTEs */ 861 chunkstart = index; 862 while ((index < htabslots) 863 && HPTE_VALID(HPTE(spapr->htab, index))) { 864 index++; 865 CLEAN_HPTE(HPTE(spapr->htab, index)); 866 } 867 868 if (index > chunkstart) { 869 int n_valid = index - chunkstart; 870 871 qemu_put_be32(f, chunkstart); 872 qemu_put_be16(f, n_valid); 873 qemu_put_be16(f, 0); 874 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 875 HASH_PTE_SIZE_64 * n_valid); 876 877 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 878 break; 879 } 880 } 881 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 882 883 if (index >= htabslots) { 884 assert(index == htabslots); 885 index = 0; 886 spapr->htab_first_pass = false; 887 } 888 spapr->htab_save_index = index; 889 } 890 891 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr, 892 int64_t max_ns) 893 { 894 bool final = max_ns < 0; 895 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 896 int examined = 0, sent = 0; 897 int index = spapr->htab_save_index; 898 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 899 900 assert(!spapr->htab_first_pass); 901 902 do { 903 int chunkstart, invalidstart; 904 905 /* Consume non-dirty HPTEs */ 906 while ((index < htabslots) 907 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 908 index++; 909 examined++; 910 } 911 912 chunkstart = index; 913 /* Consume valid dirty HPTEs */ 914 while ((index < htabslots) 915 && HPTE_DIRTY(HPTE(spapr->htab, index)) 916 && HPTE_VALID(HPTE(spapr->htab, index))) { 917 CLEAN_HPTE(HPTE(spapr->htab, index)); 918 index++; 919 examined++; 920 } 921 922 invalidstart = index; 923 /* Consume invalid dirty HPTEs */ 924 while ((index < htabslots) 925 && HPTE_DIRTY(HPTE(spapr->htab, index)) 926 && !HPTE_VALID(HPTE(spapr->htab, index))) { 927 CLEAN_HPTE(HPTE(spapr->htab, index)); 928 index++; 929 examined++; 930 } 931 932 if (index > chunkstart) { 933 int n_valid = invalidstart - chunkstart; 934 int n_invalid = index - invalidstart; 935 936 qemu_put_be32(f, chunkstart); 937 qemu_put_be16(f, n_valid); 938 qemu_put_be16(f, n_invalid); 939 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 940 HASH_PTE_SIZE_64 * n_valid); 941 sent += index - chunkstart; 942 943 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 944 break; 945 } 946 } 947 948 if (examined >= htabslots) { 949 break; 950 } 951 952 if (index >= htabslots) { 953 assert(index == htabslots); 954 index = 0; 955 } 956 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 957 958 if (index >= htabslots) { 959 assert(index == htabslots); 960 index = 0; 961 } 962 963 spapr->htab_save_index = index; 964 965 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 966 } 967 968 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 969 #define MAX_KVM_BUF_SIZE 2048 970 971 static int htab_save_iterate(QEMUFile *f, void *opaque) 972 { 973 sPAPREnvironment *spapr = opaque; 974 int rc = 0; 975 976 /* Iteration header */ 977 qemu_put_be32(f, 0); 978 979 if (!spapr->htab) { 980 assert(kvm_enabled()); 981 982 rc = kvmppc_save_htab(f, spapr->htab_fd, 983 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 984 if (rc < 0) { 985 return rc; 986 } 987 } else if (spapr->htab_first_pass) { 988 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 989 } else { 990 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 991 } 992 993 /* End marker */ 994 qemu_put_be32(f, 0); 995 qemu_put_be16(f, 0); 996 qemu_put_be16(f, 0); 997 998 return rc; 999 } 1000 1001 static int htab_save_complete(QEMUFile *f, void *opaque) 1002 { 1003 sPAPREnvironment *spapr = opaque; 1004 1005 /* Iteration header */ 1006 qemu_put_be32(f, 0); 1007 1008 if (!spapr->htab) { 1009 int rc; 1010 1011 assert(kvm_enabled()); 1012 1013 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); 1014 if (rc < 0) { 1015 return rc; 1016 } 1017 close(spapr->htab_fd); 1018 spapr->htab_fd = -1; 1019 } else { 1020 htab_save_later_pass(f, spapr, -1); 1021 } 1022 1023 /* End marker */ 1024 qemu_put_be32(f, 0); 1025 qemu_put_be16(f, 0); 1026 qemu_put_be16(f, 0); 1027 1028 return 0; 1029 } 1030 1031 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1032 { 1033 sPAPREnvironment *spapr = opaque; 1034 uint32_t section_hdr; 1035 int fd = -1; 1036 1037 if (version_id < 1 || version_id > 1) { 1038 fprintf(stderr, "htab_load() bad version\n"); 1039 return -EINVAL; 1040 } 1041 1042 section_hdr = qemu_get_be32(f); 1043 1044 if (section_hdr) { 1045 /* First section, just the hash shift */ 1046 if (spapr->htab_shift != section_hdr) { 1047 return -EINVAL; 1048 } 1049 return 0; 1050 } 1051 1052 if (!spapr->htab) { 1053 assert(kvm_enabled()); 1054 1055 fd = kvmppc_get_htab_fd(true); 1056 if (fd < 0) { 1057 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", 1058 strerror(errno)); 1059 } 1060 } 1061 1062 while (true) { 1063 uint32_t index; 1064 uint16_t n_valid, n_invalid; 1065 1066 index = qemu_get_be32(f); 1067 n_valid = qemu_get_be16(f); 1068 n_invalid = qemu_get_be16(f); 1069 1070 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1071 /* End of Stream */ 1072 break; 1073 } 1074 1075 if ((index + n_valid + n_invalid) > 1076 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 1077 /* Bad index in stream */ 1078 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " 1079 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, 1080 spapr->htab_shift); 1081 return -EINVAL; 1082 } 1083 1084 if (spapr->htab) { 1085 if (n_valid) { 1086 qemu_get_buffer(f, HPTE(spapr->htab, index), 1087 HASH_PTE_SIZE_64 * n_valid); 1088 } 1089 if (n_invalid) { 1090 memset(HPTE(spapr->htab, index + n_valid), 0, 1091 HASH_PTE_SIZE_64 * n_invalid); 1092 } 1093 } else { 1094 int rc; 1095 1096 assert(fd >= 0); 1097 1098 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 1099 if (rc < 0) { 1100 return rc; 1101 } 1102 } 1103 } 1104 1105 if (!spapr->htab) { 1106 assert(fd >= 0); 1107 close(fd); 1108 } 1109 1110 return 0; 1111 } 1112 1113 static SaveVMHandlers savevm_htab_handlers = { 1114 .save_live_setup = htab_save_setup, 1115 .save_live_iterate = htab_save_iterate, 1116 .save_live_complete = htab_save_complete, 1117 .load_state = htab_load, 1118 }; 1119 1120 /* pSeries LPAR / sPAPR hardware init */ 1121 static void ppc_spapr_init(QEMUMachineInitArgs *args) 1122 { 1123 ram_addr_t ram_size = args->ram_size; 1124 const char *cpu_model = args->cpu_model; 1125 const char *kernel_filename = args->kernel_filename; 1126 const char *kernel_cmdline = args->kernel_cmdline; 1127 const char *initrd_filename = args->initrd_filename; 1128 const char *boot_device = args->boot_order; 1129 PowerPCCPU *cpu; 1130 CPUPPCState *env; 1131 PCIHostState *phb; 1132 int i; 1133 MemoryRegion *sysmem = get_system_memory(); 1134 MemoryRegion *ram = g_new(MemoryRegion, 1); 1135 hwaddr rma_alloc_size; 1136 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; 1137 uint32_t initrd_base = 0; 1138 long kernel_size = 0, initrd_size = 0; 1139 long load_limit, rtas_limit, fw_size; 1140 bool kernel_le = false; 1141 char *filename; 1142 1143 msi_supported = true; 1144 1145 spapr = g_malloc0(sizeof(*spapr)); 1146 QLIST_INIT(&spapr->phbs); 1147 1148 cpu_ppc_hypercall = emulate_spapr_hypercall; 1149 1150 /* Allocate RMA if necessary */ 1151 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); 1152 1153 if (rma_alloc_size == -1) { 1154 hw_error("qemu: Unable to create RMA\n"); 1155 exit(1); 1156 } 1157 1158 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 1159 spapr->rma_size = rma_alloc_size; 1160 } else { 1161 spapr->rma_size = node0_size; 1162 1163 /* With KVM, we don't actually know whether KVM supports an 1164 * unbounded RMA (PR KVM) or is limited by the hash table size 1165 * (HV KVM using VRMA), so we always assume the latter 1166 * 1167 * In that case, we also limit the initial allocations for RTAS 1168 * etc... to 256M since we have no way to know what the VRMA size 1169 * is going to be as it depends on the size of the hash table 1170 * isn't determined yet. 1171 */ 1172 if (kvm_enabled()) { 1173 spapr->vrma_adjust = 1; 1174 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 1175 } 1176 } 1177 1178 if (spapr->rma_size > node0_size) { 1179 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", 1180 spapr->rma_size); 1181 exit(1); 1182 } 1183 1184 /* We place the device tree and RTAS just below either the top of the RMA, 1185 * or just below 2GB, whichever is lowere, so that it can be 1186 * processed with 32-bit real mode code if necessary */ 1187 rtas_limit = MIN(spapr->rma_size, 0x80000000); 1188 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1189 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; 1190 load_limit = spapr->fdt_addr - FW_OVERHEAD; 1191 1192 /* We aim for a hash table of size 1/128 the size of RAM. The 1193 * normal rule of thumb is 1/64 the size of RAM, but that's much 1194 * more than needed for the Linux guests we support. */ 1195 spapr->htab_shift = 18; /* Minimum architected size */ 1196 while (spapr->htab_shift <= 46) { 1197 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { 1198 break; 1199 } 1200 spapr->htab_shift++; 1201 } 1202 1203 /* Set up Interrupt Controller before we create the VCPUs */ 1204 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads, 1205 XICS_IRQS); 1206 spapr->next_irq = XICS_IRQ_BASE; 1207 1208 /* init CPUs */ 1209 if (cpu_model == NULL) { 1210 cpu_model = kvm_enabled() ? "host" : "POWER7"; 1211 } 1212 for (i = 0; i < smp_cpus; i++) { 1213 cpu = cpu_ppc_init(cpu_model); 1214 if (cpu == NULL) { 1215 fprintf(stderr, "Unable to find PowerPC CPU definition\n"); 1216 exit(1); 1217 } 1218 env = &cpu->env; 1219 1220 /* Set time-base frequency to 512 MHz */ 1221 cpu_ppc_tb_init(env, TIMEBASE_FREQ); 1222 1223 /* PAPR always has exception vectors in RAM not ROM. To ensure this, 1224 * MSR[IP] should never be set. 1225 */ 1226 env->msr_mask &= ~(1 << 6); 1227 1228 /* Tell KVM that we're in PAPR mode */ 1229 if (kvm_enabled()) { 1230 kvmppc_set_papr(cpu); 1231 } 1232 1233 xics_cpu_setup(spapr->icp, cpu); 1234 1235 qemu_register_reset(spapr_cpu_reset, cpu); 1236 } 1237 1238 /* allocate RAM */ 1239 spapr->ram_limit = ram_size; 1240 if (spapr->ram_limit > rma_alloc_size) { 1241 ram_addr_t nonrma_base = rma_alloc_size; 1242 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; 1243 1244 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size); 1245 vmstate_register_ram_global(ram); 1246 memory_region_add_subregion(sysmem, nonrma_base, ram); 1247 } 1248 1249 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 1250 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, 1251 rtas_limit - spapr->rtas_addr); 1252 if (spapr->rtas_size < 0) { 1253 hw_error("qemu: could not load LPAR rtas '%s'\n", filename); 1254 exit(1); 1255 } 1256 if (spapr->rtas_size > RTAS_MAX_SIZE) { 1257 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", 1258 spapr->rtas_size, RTAS_MAX_SIZE); 1259 exit(1); 1260 } 1261 g_free(filename); 1262 1263 /* Set up EPOW events infrastructure */ 1264 spapr_events_init(spapr); 1265 1266 /* Set up VIO bus */ 1267 spapr->vio_bus = spapr_vio_bus_init(); 1268 1269 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 1270 if (serial_hds[i]) { 1271 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 1272 } 1273 } 1274 1275 /* We always have at least the nvram device on VIO */ 1276 spapr_create_nvram(spapr); 1277 1278 /* Set up PCI */ 1279 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW); 1280 spapr_pci_rtas_init(); 1281 1282 phb = spapr_create_phb(spapr, 0); 1283 1284 for (i = 0; i < nb_nics; i++) { 1285 NICInfo *nd = &nd_table[i]; 1286 1287 if (!nd->model) { 1288 nd->model = g_strdup("ibmveth"); 1289 } 1290 1291 if (strcmp(nd->model, "ibmveth") == 0) { 1292 spapr_vlan_create(spapr->vio_bus, nd); 1293 } else { 1294 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 1295 } 1296 } 1297 1298 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 1299 spapr_vscsi_create(spapr->vio_bus); 1300 } 1301 1302 /* Graphics */ 1303 if (spapr_vga_init(phb->bus)) { 1304 spapr->has_graphics = true; 1305 } 1306 1307 if (usb_enabled(spapr->has_graphics)) { 1308 pci_create_simple(phb->bus, -1, "pci-ohci"); 1309 if (spapr->has_graphics) { 1310 usbdevice_create("keyboard"); 1311 usbdevice_create("mouse"); 1312 } 1313 } 1314 1315 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 1316 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " 1317 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); 1318 exit(1); 1319 } 1320 1321 if (kernel_filename) { 1322 uint64_t lowaddr = 0; 1323 1324 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 1325 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); 1326 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { 1327 kernel_size = load_elf(kernel_filename, 1328 translate_kernel_address, NULL, 1329 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0); 1330 kernel_le = kernel_size > 0; 1331 } 1332 if (kernel_size < 0) { 1333 fprintf(stderr, "qemu: error loading %s: %s\n", 1334 kernel_filename, load_elf_strerror(kernel_size)); 1335 exit(1); 1336 } 1337 1338 /* load initrd */ 1339 if (initrd_filename) { 1340 /* Try to locate the initrd in the gap between the kernel 1341 * and the firmware. Add a bit of space just in case 1342 */ 1343 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; 1344 initrd_size = load_image_targphys(initrd_filename, initrd_base, 1345 load_limit - initrd_base); 1346 if (initrd_size < 0) { 1347 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 1348 initrd_filename); 1349 exit(1); 1350 } 1351 } else { 1352 initrd_base = 0; 1353 initrd_size = 0; 1354 } 1355 } 1356 1357 if (bios_name == NULL) { 1358 bios_name = FW_FILE_NAME; 1359 } 1360 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1361 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 1362 if (fw_size < 0) { 1363 hw_error("qemu: could not load LPAR rtas '%s'\n", filename); 1364 exit(1); 1365 } 1366 g_free(filename); 1367 1368 spapr->entry_point = 0x100; 1369 1370 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 1371 register_savevm_live(NULL, "spapr/htab", -1, 1, 1372 &savevm_htab_handlers, spapr); 1373 1374 /* Prepare the device tree */ 1375 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, 1376 kernel_size, kernel_le, 1377 boot_device, kernel_cmdline, 1378 spapr->epow_irq); 1379 assert(spapr->fdt_skel != NULL); 1380 } 1381 1382 static int spapr_kvm_type(const char *vm_type) 1383 { 1384 if (!vm_type) { 1385 return 0; 1386 } 1387 1388 if (!strcmp(vm_type, "HV")) { 1389 return 1; 1390 } 1391 1392 if (!strcmp(vm_type, "PR")) { 1393 return 2; 1394 } 1395 1396 error_report("Unknown kvm-type specified '%s'", vm_type); 1397 exit(1); 1398 } 1399 1400 static QEMUMachine spapr_machine = { 1401 .name = "pseries", 1402 .desc = "pSeries Logical Partition (PAPR compliant)", 1403 .is_default = 1, 1404 .init = ppc_spapr_init, 1405 .reset = ppc_spapr_reset, 1406 .block_default_type = IF_SCSI, 1407 .max_cpus = MAX_CPUS, 1408 .no_parallel = 1, 1409 .default_boot_order = NULL, 1410 .kvm_type = spapr_kvm_type, 1411 }; 1412 1413 static void spapr_machine_init(void) 1414 { 1415 qemu_register_machine(&spapr_machine); 1416 } 1417 1418 machine_init(spapr_machine_init); 1419