xref: /openbmc/qemu/hw/ppc/spapr.c (revision c39f95dc)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "qom/cpu.h"
48 
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52 
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
59 
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
64 
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72 
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "qmp-commands.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_XICP            0x00001111
101 
102 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
103                                   const char *type_ics,
104                                   int nr_irqs, Error **errp)
105 {
106     Error *local_err = NULL;
107     Object *obj;
108 
109     obj = object_new(type_ics);
110     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
111     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
112                                    &error_abort);
113     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
114     if (local_err) {
115         goto error;
116     }
117     object_property_set_bool(obj, true, "realized", &local_err);
118     if (local_err) {
119         goto error;
120     }
121 
122     return ICS_SIMPLE(obj);
123 
124 error:
125     error_propagate(errp, local_err);
126     return NULL;
127 }
128 
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132      * and newer QEMUs don't even have them. In both cases, we don't want
133      * to send anything on the wire.
134      */
135     return false;
136 }
137 
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139     .name = "icp/server",
140     .version_id = 1,
141     .minimum_version_id = 1,
142     .needed = pre_2_10_vmstate_dummy_icp_needed,
143     .fields = (VMStateField[]) {
144         VMSTATE_UNUSED(4), /* uint32_t xirr */
145         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146         VMSTATE_UNUSED(1), /* uint8_t mfrr */
147         VMSTATE_END_OF_LIST()
148     },
149 };
150 
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154                      (void *)(uintptr_t) i);
155 }
156 
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160                        (void *)(uintptr_t) i);
161 }
162 
163 static inline int xics_max_server_number(void)
164 {
165     return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
166 }
167 
168 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
169 {
170     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
171     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
172 
173     if (kvm_enabled()) {
174         if (machine_kernel_irqchip_allowed(machine) &&
175             !xics_kvm_init(spapr, errp)) {
176             spapr->icp_type = TYPE_KVM_ICP;
177             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
178         }
179         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
180             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
181             return;
182         }
183     }
184 
185     if (!spapr->ics) {
186         xics_spapr_init(spapr);
187         spapr->icp_type = TYPE_ICP;
188         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
189         if (!spapr->ics) {
190             return;
191         }
192     }
193 
194     if (smc->pre_2_10_has_unused_icps) {
195         int i;
196 
197         for (i = 0; i < xics_max_server_number(); i++) {
198             /* Dummy entries get deregistered when real ICPState objects
199              * are registered during CPU core hotplug.
200              */
201             pre_2_10_vmstate_register_dummy_icp(i);
202         }
203     }
204 }
205 
206 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
207                                   int smt_threads)
208 {
209     int i, ret = 0;
210     uint32_t servers_prop[smt_threads];
211     uint32_t gservers_prop[smt_threads * 2];
212     int index = spapr_vcpu_id(cpu);
213 
214     if (cpu->compat_pvr) {
215         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
216         if (ret < 0) {
217             return ret;
218         }
219     }
220 
221     /* Build interrupt servers and gservers properties */
222     for (i = 0; i < smt_threads; i++) {
223         servers_prop[i] = cpu_to_be32(index + i);
224         /* Hack, direct the group queues back to cpu 0 */
225         gservers_prop[i*2] = cpu_to_be32(index + i);
226         gservers_prop[i*2 + 1] = 0;
227     }
228     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
229                       servers_prop, sizeof(servers_prop));
230     if (ret < 0) {
231         return ret;
232     }
233     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
234                       gservers_prop, sizeof(gservers_prop));
235 
236     return ret;
237 }
238 
239 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
240 {
241     int index = spapr_vcpu_id(cpu);
242     uint32_t associativity[] = {cpu_to_be32(0x5),
243                                 cpu_to_be32(0x0),
244                                 cpu_to_be32(0x0),
245                                 cpu_to_be32(0x0),
246                                 cpu_to_be32(cpu->node_id),
247                                 cpu_to_be32(index)};
248 
249     /* Advertise NUMA via ibm,associativity */
250     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
251                           sizeof(associativity));
252 }
253 
254 /* Populate the "ibm,pa-features" property */
255 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
256                                       bool legacy_guest)
257 {
258     uint8_t pa_features_206[] = { 6, 0,
259         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
260     uint8_t pa_features_207[] = { 24, 0,
261         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
262         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
263         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
264         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
265     uint8_t pa_features_300[] = { 66, 0,
266         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
267         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
268         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
269         /* 6: DS207 */
270         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
271         /* 16: Vector */
272         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
273         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
274         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
275         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
276         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
277         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
278         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
279         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
280         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
281         /* 42: PM, 44: PC RA, 46: SC vec'd */
282         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
283         /* 48: SIMD, 50: QP BFP, 52: String */
284         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
285         /* 54: DecFP, 56: DecI, 58: SHA */
286         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
287         /* 60: NM atomic, 62: RNG */
288         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
289     };
290     uint8_t *pa_features;
291     size_t pa_size;
292 
293     switch (POWERPC_MMU_VER(env->mmu_model)) {
294     case POWERPC_MMU_VER_2_06:
295         pa_features = pa_features_206;
296         pa_size = sizeof(pa_features_206);
297         break;
298     case POWERPC_MMU_VER_2_07:
299         pa_features = pa_features_207;
300         pa_size = sizeof(pa_features_207);
301         break;
302     case POWERPC_MMU_VER_3_00:
303         pa_features = pa_features_300;
304         pa_size = sizeof(pa_features_300);
305         break;
306     default:
307         return;
308     }
309 
310     if (env->ci_large_pages) {
311         /*
312          * Note: we keep CI large pages off by default because a 64K capable
313          * guest provisioned with large pages might otherwise try to map a qemu
314          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
315          * even if that qemu runs on a 4k host.
316          * We dd this bit back here if we are confident this is not an issue
317          */
318         pa_features[3] |= 0x20;
319     }
320     if (kvmppc_has_cap_htm() && pa_size > 24) {
321         pa_features[24] |= 0x80;    /* Transactional memory support */
322     }
323     if (legacy_guest && pa_size > 40) {
324         /* Workaround for broken kernels that attempt (guest) radix
325          * mode when they can't handle it, if they see the radix bit set
326          * in pa-features. So hide it from them. */
327         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
328     }
329 
330     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
331 }
332 
333 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
334 {
335     int ret = 0, offset, cpus_offset;
336     CPUState *cs;
337     char cpu_model[32];
338     int smt = kvmppc_smt_threads();
339     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
340 
341     CPU_FOREACH(cs) {
342         PowerPCCPU *cpu = POWERPC_CPU(cs);
343         CPUPPCState *env = &cpu->env;
344         DeviceClass *dc = DEVICE_GET_CLASS(cs);
345         int index = spapr_vcpu_id(cpu);
346         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
347 
348         if ((index % smt) != 0) {
349             continue;
350         }
351 
352         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
353 
354         cpus_offset = fdt_path_offset(fdt, "/cpus");
355         if (cpus_offset < 0) {
356             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
357             if (cpus_offset < 0) {
358                 return cpus_offset;
359             }
360         }
361         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
362         if (offset < 0) {
363             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364             if (offset < 0) {
365                 return offset;
366             }
367         }
368 
369         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370                           pft_size_prop, sizeof(pft_size_prop));
371         if (ret < 0) {
372             return ret;
373         }
374 
375         if (nb_numa_nodes > 1) {
376             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377             if (ret < 0) {
378                 return ret;
379             }
380         }
381 
382         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
383         if (ret < 0) {
384             return ret;
385         }
386 
387         spapr_populate_pa_features(env, fdt, offset,
388                                          spapr->cas_legacy_guest_workaround);
389     }
390     return ret;
391 }
392 
393 static hwaddr spapr_node0_size(MachineState *machine)
394 {
395     if (nb_numa_nodes) {
396         int i;
397         for (i = 0; i < nb_numa_nodes; ++i) {
398             if (numa_info[i].node_mem) {
399                 return MIN(pow2floor(numa_info[i].node_mem),
400                            machine->ram_size);
401             }
402         }
403     }
404     return machine->ram_size;
405 }
406 
407 static void add_str(GString *s, const gchar *s1)
408 {
409     g_string_append_len(s, s1, strlen(s1) + 1);
410 }
411 
412 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
413                                        hwaddr size)
414 {
415     uint32_t associativity[] = {
416         cpu_to_be32(0x4), /* length */
417         cpu_to_be32(0x0), cpu_to_be32(0x0),
418         cpu_to_be32(0x0), cpu_to_be32(nodeid)
419     };
420     char mem_name[32];
421     uint64_t mem_reg_property[2];
422     int off;
423 
424     mem_reg_property[0] = cpu_to_be64(start);
425     mem_reg_property[1] = cpu_to_be64(size);
426 
427     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
428     off = fdt_add_subnode(fdt, 0, mem_name);
429     _FDT(off);
430     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
431     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
432                       sizeof(mem_reg_property))));
433     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
434                       sizeof(associativity))));
435     return off;
436 }
437 
438 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
439 {
440     MachineState *machine = MACHINE(spapr);
441     hwaddr mem_start, node_size;
442     int i, nb_nodes = nb_numa_nodes;
443     NodeInfo *nodes = numa_info;
444     NodeInfo ramnode;
445 
446     /* No NUMA nodes, assume there is just one node with whole RAM */
447     if (!nb_numa_nodes) {
448         nb_nodes = 1;
449         ramnode.node_mem = machine->ram_size;
450         nodes = &ramnode;
451     }
452 
453     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
454         if (!nodes[i].node_mem) {
455             continue;
456         }
457         if (mem_start >= machine->ram_size) {
458             node_size = 0;
459         } else {
460             node_size = nodes[i].node_mem;
461             if (node_size > machine->ram_size - mem_start) {
462                 node_size = machine->ram_size - mem_start;
463             }
464         }
465         if (!mem_start) {
466             /* ppc_spapr_init() checks for rma_size <= node0_size already */
467             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
468             mem_start += spapr->rma_size;
469             node_size -= spapr->rma_size;
470         }
471         for ( ; node_size; ) {
472             hwaddr sizetmp = pow2floor(node_size);
473 
474             /* mem_start != 0 here */
475             if (ctzl(mem_start) < ctzl(sizetmp)) {
476                 sizetmp = 1ULL << ctzl(mem_start);
477             }
478 
479             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
480             node_size -= sizetmp;
481             mem_start += sizetmp;
482         }
483     }
484 
485     return 0;
486 }
487 
488 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
489                                   sPAPRMachineState *spapr)
490 {
491     PowerPCCPU *cpu = POWERPC_CPU(cs);
492     CPUPPCState *env = &cpu->env;
493     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
494     int index = spapr_vcpu_id(cpu);
495     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
496                        0xffffffff, 0xffffffff};
497     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
498         : SPAPR_TIMEBASE_FREQ;
499     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
500     uint32_t page_sizes_prop[64];
501     size_t page_sizes_prop_size;
502     uint32_t vcpus_per_socket = smp_threads * smp_cores;
503     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
504     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
505     sPAPRDRConnector *drc;
506     int drc_index;
507     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
508     int i;
509 
510     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
511     if (drc) {
512         drc_index = spapr_drc_index(drc);
513         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
514     }
515 
516     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
517     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
518 
519     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
520     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
521                            env->dcache_line_size)));
522     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
523                            env->dcache_line_size)));
524     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
525                            env->icache_line_size)));
526     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
527                            env->icache_line_size)));
528 
529     if (pcc->l1_dcache_size) {
530         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
531                                pcc->l1_dcache_size)));
532     } else {
533         warn_report("Unknown L1 dcache size for cpu");
534     }
535     if (pcc->l1_icache_size) {
536         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
537                                pcc->l1_icache_size)));
538     } else {
539         warn_report("Unknown L1 icache size for cpu");
540     }
541 
542     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
543     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
544     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
545     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
546     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
547     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
548 
549     if (env->spr_cb[SPR_PURR].oea_read) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
551     }
552 
553     if (env->mmu_model & POWERPC_MMU_1TSEG) {
554         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
555                           segs, sizeof(segs))));
556     }
557 
558     /* Advertise VMX/VSX (vector extensions) if available
559      *   0 / no property == no vector extensions
560      *   1               == VMX / Altivec available
561      *   2               == VSX available */
562     if (env->insns_flags & PPC_ALTIVEC) {
563         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
564 
565         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
566     }
567 
568     /* Advertise DFP (Decimal Floating Point) if available
569      *   0 / no property == no DFP
570      *   1               == DFP available */
571     if (env->insns_flags2 & PPC2_DFP) {
572         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
573     }
574 
575     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
576                                                   sizeof(page_sizes_prop));
577     if (page_sizes_prop_size) {
578         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
579                           page_sizes_prop, page_sizes_prop_size)));
580     }
581 
582     spapr_populate_pa_features(env, fdt, offset, false);
583 
584     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
585                            cs->cpu_index / vcpus_per_socket)));
586 
587     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
588                       pft_size_prop, sizeof(pft_size_prop))));
589 
590     if (nb_numa_nodes > 1) {
591         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
592     }
593 
594     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
595 
596     if (pcc->radix_page_info) {
597         for (i = 0; i < pcc->radix_page_info->count; i++) {
598             radix_AP_encodings[i] =
599                 cpu_to_be32(pcc->radix_page_info->entries[i]);
600         }
601         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
602                           radix_AP_encodings,
603                           pcc->radix_page_info->count *
604                           sizeof(radix_AP_encodings[0]))));
605     }
606 }
607 
608 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
609 {
610     CPUState *cs;
611     int cpus_offset;
612     char *nodename;
613     int smt = kvmppc_smt_threads();
614 
615     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
616     _FDT(cpus_offset);
617     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
618     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
619 
620     /*
621      * We walk the CPUs in reverse order to ensure that CPU DT nodes
622      * created by fdt_add_subnode() end up in the right order in FDT
623      * for the guest kernel the enumerate the CPUs correctly.
624      */
625     CPU_FOREACH_REVERSE(cs) {
626         PowerPCCPU *cpu = POWERPC_CPU(cs);
627         int index = spapr_vcpu_id(cpu);
628         DeviceClass *dc = DEVICE_GET_CLASS(cs);
629         int offset;
630 
631         if ((index % smt) != 0) {
632             continue;
633         }
634 
635         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
636         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
637         g_free(nodename);
638         _FDT(offset);
639         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
640     }
641 
642 }
643 
644 /*
645  * Adds ibm,dynamic-reconfiguration-memory node.
646  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
647  * of this device tree node.
648  */
649 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
650 {
651     MachineState *machine = MACHINE(spapr);
652     int ret, i, offset;
653     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
654     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
655     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
656     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
657                        memory_region_size(&spapr->hotplug_memory.mr)) /
658                        lmb_size;
659     uint32_t *int_buf, *cur_index, buf_len;
660     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
661 
662     /*
663      * Don't create the node if there is no hotpluggable memory
664      */
665     if (machine->ram_size == machine->maxram_size) {
666         return 0;
667     }
668 
669     /*
670      * Allocate enough buffer size to fit in ibm,dynamic-memory
671      * or ibm,associativity-lookup-arrays
672      */
673     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
674               * sizeof(uint32_t);
675     cur_index = int_buf = g_malloc0(buf_len);
676 
677     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
678 
679     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
680                     sizeof(prop_lmb_size));
681     if (ret < 0) {
682         goto out;
683     }
684 
685     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
686     if (ret < 0) {
687         goto out;
688     }
689 
690     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
691     if (ret < 0) {
692         goto out;
693     }
694 
695     /* ibm,dynamic-memory */
696     int_buf[0] = cpu_to_be32(nr_lmbs);
697     cur_index++;
698     for (i = 0; i < nr_lmbs; i++) {
699         uint64_t addr = i * lmb_size;
700         uint32_t *dynamic_memory = cur_index;
701 
702         if (i >= hotplug_lmb_start) {
703             sPAPRDRConnector *drc;
704 
705             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
706             g_assert(drc);
707 
708             dynamic_memory[0] = cpu_to_be32(addr >> 32);
709             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
710             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
711             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
712             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
713             if (memory_region_present(get_system_memory(), addr)) {
714                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
715             } else {
716                 dynamic_memory[5] = cpu_to_be32(0);
717             }
718         } else {
719             /*
720              * LMB information for RMA, boot time RAM and gap b/n RAM and
721              * hotplug memory region -- all these are marked as reserved
722              * and as having no valid DRC.
723              */
724             dynamic_memory[0] = cpu_to_be32(addr >> 32);
725             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
726             dynamic_memory[2] = cpu_to_be32(0);
727             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
728             dynamic_memory[4] = cpu_to_be32(-1);
729             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
730                                             SPAPR_LMB_FLAGS_DRC_INVALID);
731         }
732 
733         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
734     }
735     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
736     if (ret < 0) {
737         goto out;
738     }
739 
740     /* ibm,associativity-lookup-arrays */
741     cur_index = int_buf;
742     int_buf[0] = cpu_to_be32(nr_nodes);
743     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
744     cur_index += 2;
745     for (i = 0; i < nr_nodes; i++) {
746         uint32_t associativity[] = {
747             cpu_to_be32(0x0),
748             cpu_to_be32(0x0),
749             cpu_to_be32(0x0),
750             cpu_to_be32(i)
751         };
752         memcpy(cur_index, associativity, sizeof(associativity));
753         cur_index += 4;
754     }
755     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
756             (cur_index - int_buf) * sizeof(uint32_t));
757 out:
758     g_free(int_buf);
759     return ret;
760 }
761 
762 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
763                                 sPAPROptionVector *ov5_updates)
764 {
765     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
766     int ret = 0, offset;
767 
768     /* Generate ibm,dynamic-reconfiguration-memory node if required */
769     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
770         g_assert(smc->dr_lmb_enabled);
771         ret = spapr_populate_drconf_memory(spapr, fdt);
772         if (ret) {
773             goto out;
774         }
775     }
776 
777     offset = fdt_path_offset(fdt, "/chosen");
778     if (offset < 0) {
779         offset = fdt_add_subnode(fdt, 0, "chosen");
780         if (offset < 0) {
781             return offset;
782         }
783     }
784     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
785                                  "ibm,architecture-vec-5");
786 
787 out:
788     return ret;
789 }
790 
791 static bool spapr_hotplugged_dev_before_cas(void)
792 {
793     Object *drc_container, *obj;
794     ObjectProperty *prop;
795     ObjectPropertyIterator iter;
796 
797     drc_container = container_get(object_get_root(), "/dr-connector");
798     object_property_iter_init(&iter, drc_container);
799     while ((prop = object_property_iter_next(&iter))) {
800         if (!strstart(prop->type, "link<", NULL)) {
801             continue;
802         }
803         obj = object_property_get_link(drc_container, prop->name, NULL);
804         if (spapr_drc_needed(obj)) {
805             return true;
806         }
807     }
808     return false;
809 }
810 
811 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
812                                  target_ulong addr, target_ulong size,
813                                  sPAPROptionVector *ov5_updates)
814 {
815     void *fdt, *fdt_skel;
816     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
817 
818     if (spapr_hotplugged_dev_before_cas()) {
819         return 1;
820     }
821 
822     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
823         error_report("SLOF provided an unexpected CAS buffer size "
824                      TARGET_FMT_lu " (min: %zu, max: %u)",
825                      size, sizeof(hdr), FW_MAX_SIZE);
826         exit(EXIT_FAILURE);
827     }
828 
829     size -= sizeof(hdr);
830 
831     /* Create skeleton */
832     fdt_skel = g_malloc0(size);
833     _FDT((fdt_create(fdt_skel, size)));
834     _FDT((fdt_begin_node(fdt_skel, "")));
835     _FDT((fdt_end_node(fdt_skel)));
836     _FDT((fdt_finish(fdt_skel)));
837     fdt = g_malloc0(size);
838     _FDT((fdt_open_into(fdt_skel, fdt, size)));
839     g_free(fdt_skel);
840 
841     /* Fixup cpu nodes */
842     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
843 
844     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
845         return -1;
846     }
847 
848     /* Pack resulting tree */
849     _FDT((fdt_pack(fdt)));
850 
851     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
852         trace_spapr_cas_failed(size);
853         return -1;
854     }
855 
856     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
857     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
858     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
859     g_free(fdt);
860 
861     return 0;
862 }
863 
864 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
865 {
866     int rtas;
867     GString *hypertas = g_string_sized_new(256);
868     GString *qemu_hypertas = g_string_sized_new(256);
869     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
870     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
871         memory_region_size(&spapr->hotplug_memory.mr);
872     uint32_t lrdr_capacity[] = {
873         cpu_to_be32(max_hotplug_addr >> 32),
874         cpu_to_be32(max_hotplug_addr & 0xffffffff),
875         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
876         cpu_to_be32(max_cpus / smp_threads),
877     };
878 
879     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
880 
881     /* hypertas */
882     add_str(hypertas, "hcall-pft");
883     add_str(hypertas, "hcall-term");
884     add_str(hypertas, "hcall-dabr");
885     add_str(hypertas, "hcall-interrupt");
886     add_str(hypertas, "hcall-tce");
887     add_str(hypertas, "hcall-vio");
888     add_str(hypertas, "hcall-splpar");
889     add_str(hypertas, "hcall-bulk");
890     add_str(hypertas, "hcall-set-mode");
891     add_str(hypertas, "hcall-sprg0");
892     add_str(hypertas, "hcall-copy");
893     add_str(hypertas, "hcall-debug");
894     add_str(qemu_hypertas, "hcall-memop1");
895 
896     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
897         add_str(hypertas, "hcall-multi-tce");
898     }
899 
900     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
901         add_str(hypertas, "hcall-hpt-resize");
902     }
903 
904     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905                      hypertas->str, hypertas->len));
906     g_string_free(hypertas, TRUE);
907     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908                      qemu_hypertas->str, qemu_hypertas->len));
909     g_string_free(qemu_hypertas, TRUE);
910 
911     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
912                      refpoints, sizeof(refpoints)));
913 
914     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
915                           RTAS_ERROR_LOG_MAX));
916     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
917                           RTAS_EVENT_SCAN_RATE));
918 
919     if (msi_nonbroken) {
920         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
921     }
922 
923     /*
924      * According to PAPR, rtas ibm,os-term does not guarantee a return
925      * back to the guest cpu.
926      *
927      * While an additional ibm,extended-os-term property indicates
928      * that rtas call return will always occur. Set this property.
929      */
930     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
931 
932     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
933                      lrdr_capacity, sizeof(lrdr_capacity)));
934 
935     spapr_dt_rtas_tokens(fdt, rtas);
936 }
937 
938 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
939  * that the guest may request and thus the valid values for bytes 24..26 of
940  * option vector 5: */
941 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
942 {
943     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
944 
945     char val[2 * 4] = {
946         23, 0x00, /* Xive mode, filled in below. */
947         24, 0x00, /* Hash/Radix, filled in below. */
948         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
949         26, 0x40, /* Radix options: GTSE == yes. */
950     };
951 
952     if (kvm_enabled()) {
953         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
954             val[3] = 0x80; /* OV5_MMU_BOTH */
955         } else if (kvmppc_has_cap_mmu_radix()) {
956             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
957         } else {
958             val[3] = 0x00; /* Hash */
959         }
960     } else {
961         if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
962             /* V3 MMU supports both hash and radix (with dynamic switching) */
963             val[3] = 0xC0;
964         } else {
965             /* Otherwise we can only do hash */
966             val[3] = 0x00;
967         }
968     }
969     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
970                      val, sizeof(val)));
971 }
972 
973 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
974 {
975     MachineState *machine = MACHINE(spapr);
976     int chosen;
977     const char *boot_device = machine->boot_order;
978     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
979     size_t cb = 0;
980     char *bootlist = get_boot_devices_list(&cb, true);
981 
982     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
983 
984     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
985     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
986                           spapr->initrd_base));
987     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
988                           spapr->initrd_base + spapr->initrd_size));
989 
990     if (spapr->kernel_size) {
991         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
992                               cpu_to_be64(spapr->kernel_size) };
993 
994         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
995                          &kprop, sizeof(kprop)));
996         if (spapr->kernel_le) {
997             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
998         }
999     }
1000     if (boot_menu) {
1001         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1002     }
1003     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1004     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1005     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1006 
1007     if (cb && bootlist) {
1008         int i;
1009 
1010         for (i = 0; i < cb; i++) {
1011             if (bootlist[i] == '\n') {
1012                 bootlist[i] = ' ';
1013             }
1014         }
1015         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1016     }
1017 
1018     if (boot_device && strlen(boot_device)) {
1019         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1020     }
1021 
1022     if (!spapr->has_graphics && stdout_path) {
1023         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1024     }
1025 
1026     spapr_dt_ov5_platform_support(fdt, chosen);
1027 
1028     g_free(stdout_path);
1029     g_free(bootlist);
1030 }
1031 
1032 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1033 {
1034     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1035      * KVM to work under pHyp with some guest co-operation */
1036     int hypervisor;
1037     uint8_t hypercall[16];
1038 
1039     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1040     /* indicate KVM hypercall interface */
1041     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1042     if (kvmppc_has_cap_fixup_hcalls()) {
1043         /*
1044          * Older KVM versions with older guest kernels were broken
1045          * with the magic page, don't allow the guest to map it.
1046          */
1047         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1048                                   sizeof(hypercall))) {
1049             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1050                              hypercall, sizeof(hypercall)));
1051         }
1052     }
1053 }
1054 
1055 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1056                              hwaddr rtas_addr,
1057                              hwaddr rtas_size)
1058 {
1059     MachineState *machine = MACHINE(spapr);
1060     MachineClass *mc = MACHINE_GET_CLASS(machine);
1061     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1062     int ret;
1063     void *fdt;
1064     sPAPRPHBState *phb;
1065     char *buf;
1066 
1067     fdt = g_malloc0(FDT_MAX_SIZE);
1068     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1069 
1070     /* Root node */
1071     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1072     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1073     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1074 
1075     /*
1076      * Add info to guest to indentify which host is it being run on
1077      * and what is the uuid of the guest
1078      */
1079     if (kvmppc_get_host_model(&buf)) {
1080         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1081         g_free(buf);
1082     }
1083     if (kvmppc_get_host_serial(&buf)) {
1084         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1085         g_free(buf);
1086     }
1087 
1088     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1089 
1090     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1091     if (qemu_uuid_set) {
1092         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1093     }
1094     g_free(buf);
1095 
1096     if (qemu_get_vm_name()) {
1097         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1098                                 qemu_get_vm_name()));
1099     }
1100 
1101     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1102     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1103 
1104     /* /interrupt controller */
1105     spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1106 
1107     ret = spapr_populate_memory(spapr, fdt);
1108     if (ret < 0) {
1109         error_report("couldn't setup memory nodes in fdt");
1110         exit(1);
1111     }
1112 
1113     /* /vdevice */
1114     spapr_dt_vdevice(spapr->vio_bus, fdt);
1115 
1116     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1117         ret = spapr_rng_populate_dt(fdt);
1118         if (ret < 0) {
1119             error_report("could not set up rng device in the fdt");
1120             exit(1);
1121         }
1122     }
1123 
1124     QLIST_FOREACH(phb, &spapr->phbs, list) {
1125         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1126         if (ret < 0) {
1127             error_report("couldn't setup PCI devices in fdt");
1128             exit(1);
1129         }
1130     }
1131 
1132     /* cpus */
1133     spapr_populate_cpus_dt_node(fdt, spapr);
1134 
1135     if (smc->dr_lmb_enabled) {
1136         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1137     }
1138 
1139     if (mc->has_hotpluggable_cpus) {
1140         int offset = fdt_path_offset(fdt, "/cpus");
1141         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1142                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1143         if (ret < 0) {
1144             error_report("Couldn't set up CPU DR device tree properties");
1145             exit(1);
1146         }
1147     }
1148 
1149     /* /event-sources */
1150     spapr_dt_events(spapr, fdt);
1151 
1152     /* /rtas */
1153     spapr_dt_rtas(spapr, fdt);
1154 
1155     /* /chosen */
1156     spapr_dt_chosen(spapr, fdt);
1157 
1158     /* /hypervisor */
1159     if (kvm_enabled()) {
1160         spapr_dt_hypervisor(spapr, fdt);
1161     }
1162 
1163     /* Build memory reserve map */
1164     if (spapr->kernel_size) {
1165         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1166     }
1167     if (spapr->initrd_size) {
1168         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1169     }
1170 
1171     /* ibm,client-architecture-support updates */
1172     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1173     if (ret < 0) {
1174         error_report("couldn't setup CAS properties fdt");
1175         exit(1);
1176     }
1177 
1178     return fdt;
1179 }
1180 
1181 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1182 {
1183     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1184 }
1185 
1186 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1187                                     PowerPCCPU *cpu)
1188 {
1189     CPUPPCState *env = &cpu->env;
1190 
1191     /* The TCG path should also be holding the BQL at this point */
1192     g_assert(qemu_mutex_iothread_locked());
1193 
1194     if (msr_pr) {
1195         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1196         env->gpr[3] = H_PRIVILEGE;
1197     } else {
1198         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1199     }
1200 }
1201 
1202 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1203 {
1204     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1205 
1206     return spapr->patb_entry;
1207 }
1208 
1209 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1210 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1211 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1212 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1213 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1214 
1215 /*
1216  * Get the fd to access the kernel htab, re-opening it if necessary
1217  */
1218 static int get_htab_fd(sPAPRMachineState *spapr)
1219 {
1220     Error *local_err = NULL;
1221 
1222     if (spapr->htab_fd >= 0) {
1223         return spapr->htab_fd;
1224     }
1225 
1226     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1227     if (spapr->htab_fd < 0) {
1228         error_report_err(local_err);
1229     }
1230 
1231     return spapr->htab_fd;
1232 }
1233 
1234 void close_htab_fd(sPAPRMachineState *spapr)
1235 {
1236     if (spapr->htab_fd >= 0) {
1237         close(spapr->htab_fd);
1238     }
1239     spapr->htab_fd = -1;
1240 }
1241 
1242 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1243 {
1244     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245 
1246     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1247 }
1248 
1249 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1250 {
1251     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1252 
1253     assert(kvm_enabled());
1254 
1255     if (!spapr->htab) {
1256         return 0;
1257     }
1258 
1259     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1260 }
1261 
1262 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1263                                                 hwaddr ptex, int n)
1264 {
1265     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1266     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1267 
1268     if (!spapr->htab) {
1269         /*
1270          * HTAB is controlled by KVM. Fetch into temporary buffer
1271          */
1272         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1273         kvmppc_read_hptes(hptes, ptex, n);
1274         return hptes;
1275     }
1276 
1277     /*
1278      * HTAB is controlled by QEMU. Just point to the internally
1279      * accessible PTEG.
1280      */
1281     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1282 }
1283 
1284 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1285                               const ppc_hash_pte64_t *hptes,
1286                               hwaddr ptex, int n)
1287 {
1288     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1289 
1290     if (!spapr->htab) {
1291         g_free((void *)hptes);
1292     }
1293 
1294     /* Nothing to do for qemu managed HPT */
1295 }
1296 
1297 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1298                              uint64_t pte0, uint64_t pte1)
1299 {
1300     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1301     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1302 
1303     if (!spapr->htab) {
1304         kvmppc_write_hpte(ptex, pte0, pte1);
1305     } else {
1306         stq_p(spapr->htab + offset, pte0);
1307         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1308     }
1309 }
1310 
1311 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1312 {
1313     int shift;
1314 
1315     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1316      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1317      * that's much more than is needed for Linux guests */
1318     shift = ctz64(pow2ceil(ramsize)) - 7;
1319     shift = MAX(shift, 18); /* Minimum architected size */
1320     shift = MIN(shift, 46); /* Maximum architected size */
1321     return shift;
1322 }
1323 
1324 void spapr_free_hpt(sPAPRMachineState *spapr)
1325 {
1326     g_free(spapr->htab);
1327     spapr->htab = NULL;
1328     spapr->htab_shift = 0;
1329     close_htab_fd(spapr);
1330 }
1331 
1332 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1333                           Error **errp)
1334 {
1335     long rc;
1336 
1337     /* Clean up any HPT info from a previous boot */
1338     spapr_free_hpt(spapr);
1339 
1340     rc = kvmppc_reset_htab(shift);
1341     if (rc < 0) {
1342         /* kernel-side HPT needed, but couldn't allocate one */
1343         error_setg_errno(errp, errno,
1344                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1345                          shift);
1346         /* This is almost certainly fatal, but if the caller really
1347          * wants to carry on with shift == 0, it's welcome to try */
1348     } else if (rc > 0) {
1349         /* kernel-side HPT allocated */
1350         if (rc != shift) {
1351             error_setg(errp,
1352                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1353                        shift, rc);
1354         }
1355 
1356         spapr->htab_shift = shift;
1357         spapr->htab = NULL;
1358     } else {
1359         /* kernel-side HPT not needed, allocate in userspace instead */
1360         size_t size = 1ULL << shift;
1361         int i;
1362 
1363         spapr->htab = qemu_memalign(size, size);
1364         if (!spapr->htab) {
1365             error_setg_errno(errp, errno,
1366                              "Could not allocate HPT of order %d", shift);
1367             return;
1368         }
1369 
1370         memset(spapr->htab, 0, size);
1371         spapr->htab_shift = shift;
1372 
1373         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1374             DIRTY_HPTE(HPTE(spapr->htab, i));
1375         }
1376     }
1377 }
1378 
1379 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1380 {
1381     int hpt_shift;
1382 
1383     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1384         || (spapr->cas_reboot
1385             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1386         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1387     } else {
1388         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1389     }
1390     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1391 
1392     if (spapr->vrma_adjust) {
1393         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1394                                           spapr->htab_shift);
1395     }
1396     /* We're setting up a hash table, so that means we're not radix */
1397     spapr->patb_entry = 0;
1398 }
1399 
1400 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1401 {
1402     bool matched = false;
1403 
1404     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1405         matched = true;
1406     }
1407 
1408     if (!matched) {
1409         error_report("Device %s is not supported by this machine yet.",
1410                      qdev_fw_name(DEVICE(sbdev)));
1411         exit(1);
1412     }
1413 }
1414 
1415 static void ppc_spapr_reset(void)
1416 {
1417     MachineState *machine = MACHINE(qdev_get_machine());
1418     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1419     PowerPCCPU *first_ppc_cpu;
1420     uint32_t rtas_limit;
1421     hwaddr rtas_addr, fdt_addr;
1422     void *fdt;
1423     int rc;
1424 
1425     /* Check for unknown sysbus devices */
1426     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1427 
1428     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1429         /* If using KVM with radix mode available, VCPUs can be started
1430          * without a HPT because KVM will start them in radix mode.
1431          * Set the GR bit in PATB so that we know there is no HPT. */
1432         spapr->patb_entry = PATBE1_GR;
1433     } else {
1434         spapr_setup_hpt_and_vrma(spapr);
1435     }
1436 
1437     qemu_devices_reset();
1438     spapr_clear_pending_events(spapr);
1439 
1440     /*
1441      * We place the device tree and RTAS just below either the top of the RMA,
1442      * or just below 2GB, whichever is lowere, so that it can be
1443      * processed with 32-bit real mode code if necessary
1444      */
1445     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1446     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1447     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1448 
1449     /* if this reset wasn't generated by CAS, we should reset our
1450      * negotiated options and start from scratch */
1451     if (!spapr->cas_reboot) {
1452         spapr_ovec_cleanup(spapr->ov5_cas);
1453         spapr->ov5_cas = spapr_ovec_new();
1454 
1455         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1456     }
1457 
1458     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1459 
1460     spapr_load_rtas(spapr, fdt, rtas_addr);
1461 
1462     rc = fdt_pack(fdt);
1463 
1464     /* Should only fail if we've built a corrupted tree */
1465     assert(rc == 0);
1466 
1467     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1468         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1469                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1470         exit(1);
1471     }
1472 
1473     /* Load the fdt */
1474     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1475     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1476     g_free(fdt);
1477 
1478     /* Set up the entry state */
1479     first_ppc_cpu = POWERPC_CPU(first_cpu);
1480     first_ppc_cpu->env.gpr[3] = fdt_addr;
1481     first_ppc_cpu->env.gpr[5] = 0;
1482     first_cpu->halted = 0;
1483     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1484 
1485     spapr->cas_reboot = false;
1486 }
1487 
1488 static void spapr_create_nvram(sPAPRMachineState *spapr)
1489 {
1490     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1491     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1492 
1493     if (dinfo) {
1494         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1495                             &error_fatal);
1496     }
1497 
1498     qdev_init_nofail(dev);
1499 
1500     spapr->nvram = (struct sPAPRNVRAM *)dev;
1501 }
1502 
1503 static void spapr_rtc_create(sPAPRMachineState *spapr)
1504 {
1505     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1506     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1507                               &error_fatal);
1508     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1509                               &error_fatal);
1510     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1511                               "date", &error_fatal);
1512 }
1513 
1514 /* Returns whether we want to use VGA or not */
1515 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1516 {
1517     switch (vga_interface_type) {
1518     case VGA_NONE:
1519         return false;
1520     case VGA_DEVICE:
1521         return true;
1522     case VGA_STD:
1523     case VGA_VIRTIO:
1524         return pci_vga_init(pci_bus) != NULL;
1525     default:
1526         error_setg(errp,
1527                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1528         return false;
1529     }
1530 }
1531 
1532 static int spapr_post_load(void *opaque, int version_id)
1533 {
1534     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1535     int err = 0;
1536 
1537     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1538         CPUState *cs;
1539         CPU_FOREACH(cs) {
1540             PowerPCCPU *cpu = POWERPC_CPU(cs);
1541             icp_resend(ICP(cpu->intc));
1542         }
1543     }
1544 
1545     /* In earlier versions, there was no separate qdev for the PAPR
1546      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1547      * So when migrating from those versions, poke the incoming offset
1548      * value into the RTC device */
1549     if (version_id < 3) {
1550         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1551     }
1552 
1553     if (spapr->patb_entry) {
1554         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1555         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1556         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1557 
1558         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1559         if (err) {
1560             error_report("Process table config unsupported by the host");
1561             return -EINVAL;
1562         }
1563     }
1564 
1565     return err;
1566 }
1567 
1568 static bool version_before_3(void *opaque, int version_id)
1569 {
1570     return version_id < 3;
1571 }
1572 
1573 static bool spapr_pending_events_needed(void *opaque)
1574 {
1575     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1576     return !QTAILQ_EMPTY(&spapr->pending_events);
1577 }
1578 
1579 static const VMStateDescription vmstate_spapr_event_entry = {
1580     .name = "spapr_event_log_entry",
1581     .version_id = 1,
1582     .minimum_version_id = 1,
1583     .fields = (VMStateField[]) {
1584         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1585         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1586         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1587                                      NULL, extended_length),
1588         VMSTATE_END_OF_LIST()
1589     },
1590 };
1591 
1592 static const VMStateDescription vmstate_spapr_pending_events = {
1593     .name = "spapr_pending_events",
1594     .version_id = 1,
1595     .minimum_version_id = 1,
1596     .needed = spapr_pending_events_needed,
1597     .fields = (VMStateField[]) {
1598         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1599                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1600         VMSTATE_END_OF_LIST()
1601     },
1602 };
1603 
1604 static bool spapr_ov5_cas_needed(void *opaque)
1605 {
1606     sPAPRMachineState *spapr = opaque;
1607     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1608     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1609     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1610     bool cas_needed;
1611 
1612     /* Prior to the introduction of sPAPROptionVector, we had two option
1613      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1614      * Both of these options encode machine topology into the device-tree
1615      * in such a way that the now-booted OS should still be able to interact
1616      * appropriately with QEMU regardless of what options were actually
1617      * negotiatied on the source side.
1618      *
1619      * As such, we can avoid migrating the CAS-negotiated options if these
1620      * are the only options available on the current machine/platform.
1621      * Since these are the only options available for pseries-2.7 and
1622      * earlier, this allows us to maintain old->new/new->old migration
1623      * compatibility.
1624      *
1625      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1626      * via default pseries-2.8 machines and explicit command-line parameters.
1627      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1628      * of the actual CAS-negotiated values to continue working properly. For
1629      * example, availability of memory unplug depends on knowing whether
1630      * OV5_HP_EVT was negotiated via CAS.
1631      *
1632      * Thus, for any cases where the set of available CAS-negotiatable
1633      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1634      * include the CAS-negotiated options in the migration stream.
1635      */
1636     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1637     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1638 
1639     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1640      * the mask itself since in the future it's possible "legacy" bits may be
1641      * removed via machine options, which could generate a false positive
1642      * that breaks migration.
1643      */
1644     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1645     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1646 
1647     spapr_ovec_cleanup(ov5_mask);
1648     spapr_ovec_cleanup(ov5_legacy);
1649     spapr_ovec_cleanup(ov5_removed);
1650 
1651     return cas_needed;
1652 }
1653 
1654 static const VMStateDescription vmstate_spapr_ov5_cas = {
1655     .name = "spapr_option_vector_ov5_cas",
1656     .version_id = 1,
1657     .minimum_version_id = 1,
1658     .needed = spapr_ov5_cas_needed,
1659     .fields = (VMStateField[]) {
1660         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1661                                  vmstate_spapr_ovec, sPAPROptionVector),
1662         VMSTATE_END_OF_LIST()
1663     },
1664 };
1665 
1666 static bool spapr_patb_entry_needed(void *opaque)
1667 {
1668     sPAPRMachineState *spapr = opaque;
1669 
1670     return !!spapr->patb_entry;
1671 }
1672 
1673 static const VMStateDescription vmstate_spapr_patb_entry = {
1674     .name = "spapr_patb_entry",
1675     .version_id = 1,
1676     .minimum_version_id = 1,
1677     .needed = spapr_patb_entry_needed,
1678     .fields = (VMStateField[]) {
1679         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1680         VMSTATE_END_OF_LIST()
1681     },
1682 };
1683 
1684 static const VMStateDescription vmstate_spapr = {
1685     .name = "spapr",
1686     .version_id = 3,
1687     .minimum_version_id = 1,
1688     .post_load = spapr_post_load,
1689     .fields = (VMStateField[]) {
1690         /* used to be @next_irq */
1691         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1692 
1693         /* RTC offset */
1694         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1695 
1696         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1697         VMSTATE_END_OF_LIST()
1698     },
1699     .subsections = (const VMStateDescription*[]) {
1700         &vmstate_spapr_ov5_cas,
1701         &vmstate_spapr_patb_entry,
1702         &vmstate_spapr_pending_events,
1703         NULL
1704     }
1705 };
1706 
1707 static int htab_save_setup(QEMUFile *f, void *opaque)
1708 {
1709     sPAPRMachineState *spapr = opaque;
1710 
1711     /* "Iteration" header */
1712     if (!spapr->htab_shift) {
1713         qemu_put_be32(f, -1);
1714     } else {
1715         qemu_put_be32(f, spapr->htab_shift);
1716     }
1717 
1718     if (spapr->htab) {
1719         spapr->htab_save_index = 0;
1720         spapr->htab_first_pass = true;
1721     } else {
1722         if (spapr->htab_shift) {
1723             assert(kvm_enabled());
1724         }
1725     }
1726 
1727 
1728     return 0;
1729 }
1730 
1731 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1732                             int chunkstart, int n_valid, int n_invalid)
1733 {
1734     qemu_put_be32(f, chunkstart);
1735     qemu_put_be16(f, n_valid);
1736     qemu_put_be16(f, n_invalid);
1737     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1738                     HASH_PTE_SIZE_64 * n_valid);
1739 }
1740 
1741 static void htab_save_end_marker(QEMUFile *f)
1742 {
1743     qemu_put_be32(f, 0);
1744     qemu_put_be16(f, 0);
1745     qemu_put_be16(f, 0);
1746 }
1747 
1748 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1749                                  int64_t max_ns)
1750 {
1751     bool has_timeout = max_ns != -1;
1752     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1753     int index = spapr->htab_save_index;
1754     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1755 
1756     assert(spapr->htab_first_pass);
1757 
1758     do {
1759         int chunkstart;
1760 
1761         /* Consume invalid HPTEs */
1762         while ((index < htabslots)
1763                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1764             CLEAN_HPTE(HPTE(spapr->htab, index));
1765             index++;
1766         }
1767 
1768         /* Consume valid HPTEs */
1769         chunkstart = index;
1770         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1771                && HPTE_VALID(HPTE(spapr->htab, index))) {
1772             CLEAN_HPTE(HPTE(spapr->htab, index));
1773             index++;
1774         }
1775 
1776         if (index > chunkstart) {
1777             int n_valid = index - chunkstart;
1778 
1779             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1780 
1781             if (has_timeout &&
1782                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1783                 break;
1784             }
1785         }
1786     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1787 
1788     if (index >= htabslots) {
1789         assert(index == htabslots);
1790         index = 0;
1791         spapr->htab_first_pass = false;
1792     }
1793     spapr->htab_save_index = index;
1794 }
1795 
1796 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1797                                 int64_t max_ns)
1798 {
1799     bool final = max_ns < 0;
1800     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1801     int examined = 0, sent = 0;
1802     int index = spapr->htab_save_index;
1803     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1804 
1805     assert(!spapr->htab_first_pass);
1806 
1807     do {
1808         int chunkstart, invalidstart;
1809 
1810         /* Consume non-dirty HPTEs */
1811         while ((index < htabslots)
1812                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1813             index++;
1814             examined++;
1815         }
1816 
1817         chunkstart = index;
1818         /* Consume valid dirty HPTEs */
1819         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1820                && HPTE_DIRTY(HPTE(spapr->htab, index))
1821                && HPTE_VALID(HPTE(spapr->htab, index))) {
1822             CLEAN_HPTE(HPTE(spapr->htab, index));
1823             index++;
1824             examined++;
1825         }
1826 
1827         invalidstart = index;
1828         /* Consume invalid dirty HPTEs */
1829         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1830                && HPTE_DIRTY(HPTE(spapr->htab, index))
1831                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1832             CLEAN_HPTE(HPTE(spapr->htab, index));
1833             index++;
1834             examined++;
1835         }
1836 
1837         if (index > chunkstart) {
1838             int n_valid = invalidstart - chunkstart;
1839             int n_invalid = index - invalidstart;
1840 
1841             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1842             sent += index - chunkstart;
1843 
1844             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1845                 break;
1846             }
1847         }
1848 
1849         if (examined >= htabslots) {
1850             break;
1851         }
1852 
1853         if (index >= htabslots) {
1854             assert(index == htabslots);
1855             index = 0;
1856         }
1857     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1858 
1859     if (index >= htabslots) {
1860         assert(index == htabslots);
1861         index = 0;
1862     }
1863 
1864     spapr->htab_save_index = index;
1865 
1866     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1867 }
1868 
1869 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1870 #define MAX_KVM_BUF_SIZE    2048
1871 
1872 static int htab_save_iterate(QEMUFile *f, void *opaque)
1873 {
1874     sPAPRMachineState *spapr = opaque;
1875     int fd;
1876     int rc = 0;
1877 
1878     /* Iteration header */
1879     if (!spapr->htab_shift) {
1880         qemu_put_be32(f, -1);
1881         return 1;
1882     } else {
1883         qemu_put_be32(f, 0);
1884     }
1885 
1886     if (!spapr->htab) {
1887         assert(kvm_enabled());
1888 
1889         fd = get_htab_fd(spapr);
1890         if (fd < 0) {
1891             return fd;
1892         }
1893 
1894         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1895         if (rc < 0) {
1896             return rc;
1897         }
1898     } else  if (spapr->htab_first_pass) {
1899         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1900     } else {
1901         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1902     }
1903 
1904     htab_save_end_marker(f);
1905 
1906     return rc;
1907 }
1908 
1909 static int htab_save_complete(QEMUFile *f, void *opaque)
1910 {
1911     sPAPRMachineState *spapr = opaque;
1912     int fd;
1913 
1914     /* Iteration header */
1915     if (!spapr->htab_shift) {
1916         qemu_put_be32(f, -1);
1917         return 0;
1918     } else {
1919         qemu_put_be32(f, 0);
1920     }
1921 
1922     if (!spapr->htab) {
1923         int rc;
1924 
1925         assert(kvm_enabled());
1926 
1927         fd = get_htab_fd(spapr);
1928         if (fd < 0) {
1929             return fd;
1930         }
1931 
1932         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1933         if (rc < 0) {
1934             return rc;
1935         }
1936     } else {
1937         if (spapr->htab_first_pass) {
1938             htab_save_first_pass(f, spapr, -1);
1939         }
1940         htab_save_later_pass(f, spapr, -1);
1941     }
1942 
1943     /* End marker */
1944     htab_save_end_marker(f);
1945 
1946     return 0;
1947 }
1948 
1949 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1950 {
1951     sPAPRMachineState *spapr = opaque;
1952     uint32_t section_hdr;
1953     int fd = -1;
1954     Error *local_err = NULL;
1955 
1956     if (version_id < 1 || version_id > 1) {
1957         error_report("htab_load() bad version");
1958         return -EINVAL;
1959     }
1960 
1961     section_hdr = qemu_get_be32(f);
1962 
1963     if (section_hdr == -1) {
1964         spapr_free_hpt(spapr);
1965         return 0;
1966     }
1967 
1968     if (section_hdr) {
1969         /* First section gives the htab size */
1970         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1971         if (local_err) {
1972             error_report_err(local_err);
1973             return -EINVAL;
1974         }
1975         return 0;
1976     }
1977 
1978     if (!spapr->htab) {
1979         assert(kvm_enabled());
1980 
1981         fd = kvmppc_get_htab_fd(true, 0, &local_err);
1982         if (fd < 0) {
1983             error_report_err(local_err);
1984             return fd;
1985         }
1986     }
1987 
1988     while (true) {
1989         uint32_t index;
1990         uint16_t n_valid, n_invalid;
1991 
1992         index = qemu_get_be32(f);
1993         n_valid = qemu_get_be16(f);
1994         n_invalid = qemu_get_be16(f);
1995 
1996         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1997             /* End of Stream */
1998             break;
1999         }
2000 
2001         if ((index + n_valid + n_invalid) >
2002             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2003             /* Bad index in stream */
2004             error_report(
2005                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2006                 index, n_valid, n_invalid, spapr->htab_shift);
2007             return -EINVAL;
2008         }
2009 
2010         if (spapr->htab) {
2011             if (n_valid) {
2012                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2013                                 HASH_PTE_SIZE_64 * n_valid);
2014             }
2015             if (n_invalid) {
2016                 memset(HPTE(spapr->htab, index + n_valid), 0,
2017                        HASH_PTE_SIZE_64 * n_invalid);
2018             }
2019         } else {
2020             int rc;
2021 
2022             assert(fd >= 0);
2023 
2024             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2025             if (rc < 0) {
2026                 return rc;
2027             }
2028         }
2029     }
2030 
2031     if (!spapr->htab) {
2032         assert(fd >= 0);
2033         close(fd);
2034     }
2035 
2036     return 0;
2037 }
2038 
2039 static void htab_save_cleanup(void *opaque)
2040 {
2041     sPAPRMachineState *spapr = opaque;
2042 
2043     close_htab_fd(spapr);
2044 }
2045 
2046 static SaveVMHandlers savevm_htab_handlers = {
2047     .save_setup = htab_save_setup,
2048     .save_live_iterate = htab_save_iterate,
2049     .save_live_complete_precopy = htab_save_complete,
2050     .save_cleanup = htab_save_cleanup,
2051     .load_state = htab_load,
2052 };
2053 
2054 static void spapr_boot_set(void *opaque, const char *boot_device,
2055                            Error **errp)
2056 {
2057     MachineState *machine = MACHINE(opaque);
2058     machine->boot_order = g_strdup(boot_device);
2059 }
2060 
2061 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2062 {
2063     MachineState *machine = MACHINE(spapr);
2064     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2065     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2066     int i;
2067 
2068     for (i = 0; i < nr_lmbs; i++) {
2069         uint64_t addr;
2070 
2071         addr = i * lmb_size + spapr->hotplug_memory.base;
2072         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2073                                addr / lmb_size);
2074     }
2075 }
2076 
2077 /*
2078  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2079  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2080  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2081  */
2082 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2083 {
2084     int i;
2085 
2086     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2087         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2088                    " is not aligned to %llu MiB",
2089                    machine->ram_size,
2090                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2091         return;
2092     }
2093 
2094     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2095         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2096                    " is not aligned to %llu MiB",
2097                    machine->ram_size,
2098                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2099         return;
2100     }
2101 
2102     for (i = 0; i < nb_numa_nodes; i++) {
2103         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2104             error_setg(errp,
2105                        "Node %d memory size 0x%" PRIx64
2106                        " is not aligned to %llu MiB",
2107                        i, numa_info[i].node_mem,
2108                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2109             return;
2110         }
2111     }
2112 }
2113 
2114 /* find cpu slot in machine->possible_cpus by core_id */
2115 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2116 {
2117     int index = id / smp_threads;
2118 
2119     if (index >= ms->possible_cpus->len) {
2120         return NULL;
2121     }
2122     if (idx) {
2123         *idx = index;
2124     }
2125     return &ms->possible_cpus->cpus[index];
2126 }
2127 
2128 static void spapr_init_cpus(sPAPRMachineState *spapr)
2129 {
2130     MachineState *machine = MACHINE(spapr);
2131     MachineClass *mc = MACHINE_GET_CLASS(machine);
2132     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2133     int smt = kvmppc_smt_threads();
2134     const CPUArchIdList *possible_cpus;
2135     int boot_cores_nr = smp_cpus / smp_threads;
2136     int i;
2137 
2138     if (!type) {
2139         error_report("Unable to find sPAPR CPU Core definition");
2140         exit(1);
2141     }
2142 
2143     possible_cpus = mc->possible_cpu_arch_ids(machine);
2144     if (mc->has_hotpluggable_cpus) {
2145         if (smp_cpus % smp_threads) {
2146             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2147                          smp_cpus, smp_threads);
2148             exit(1);
2149         }
2150         if (max_cpus % smp_threads) {
2151             error_report("max_cpus (%u) must be multiple of threads (%u)",
2152                          max_cpus, smp_threads);
2153             exit(1);
2154         }
2155     } else {
2156         if (max_cpus != smp_cpus) {
2157             error_report("This machine version does not support CPU hotplug");
2158             exit(1);
2159         }
2160         boot_cores_nr = possible_cpus->len;
2161     }
2162 
2163     for (i = 0; i < possible_cpus->len; i++) {
2164         int core_id = i * smp_threads;
2165 
2166         if (mc->has_hotpluggable_cpus) {
2167             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2168                                    (core_id / smp_threads) * smt);
2169         }
2170 
2171         if (i < boot_cores_nr) {
2172             Object *core  = object_new(type);
2173             int nr_threads = smp_threads;
2174 
2175             /* Handle the partially filled core for older machine types */
2176             if ((i + 1) * smp_threads >= smp_cpus) {
2177                 nr_threads = smp_cpus - i * smp_threads;
2178             }
2179 
2180             object_property_set_int(core, nr_threads, "nr-threads",
2181                                     &error_fatal);
2182             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2183                                     &error_fatal);
2184             object_property_set_bool(core, true, "realized", &error_fatal);
2185         }
2186     }
2187 }
2188 
2189 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2190 {
2191     Error *local_err = NULL;
2192     bool vsmt_user = !!spapr->vsmt;
2193     int kvm_smt = kvmppc_smt_threads();
2194     int ret;
2195 
2196     if (!kvm_enabled() && (smp_threads > 1)) {
2197         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2198                      "on a pseries machine");
2199         goto out;
2200     }
2201     if (!is_power_of_2(smp_threads)) {
2202         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2203                      "machine because it must be a power of 2", smp_threads);
2204         goto out;
2205     }
2206 
2207     /* Detemine the VSMT mode to use: */
2208     if (vsmt_user) {
2209         if (spapr->vsmt < smp_threads) {
2210             error_setg(&local_err, "Cannot support VSMT mode %d"
2211                          " because it must be >= threads/core (%d)",
2212                          spapr->vsmt, smp_threads);
2213             goto out;
2214         }
2215         /* In this case, spapr->vsmt has been set by the command line */
2216     } else {
2217         /* Choose a VSMT mode that may be higher than necessary but is
2218          * likely to be compatible with hosts that don't have VSMT. */
2219         spapr->vsmt = MAX(kvm_smt, smp_threads);
2220     }
2221 
2222     /* KVM: If necessary, set the SMT mode: */
2223     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2224         ret = kvmppc_set_smt_threads(spapr->vsmt);
2225         if (ret) {
2226             error_setg(&local_err,
2227                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2228                        spapr->vsmt, ret);
2229             if (!vsmt_user) {
2230                 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2231                              "core on a host with %d threads/core requires "
2232                              " the use of VSMT mode %d.\n",
2233                              smp_threads, kvm_smt, spapr->vsmt);
2234             }
2235             kvmppc_hint_smt_possible(&local_err);
2236             goto out;
2237         }
2238     }
2239     /* else TCG: nothing to do currently */
2240 out:
2241     error_propagate(errp, local_err);
2242 }
2243 
2244 /* pSeries LPAR / sPAPR hardware init */
2245 static void ppc_spapr_init(MachineState *machine)
2246 {
2247     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2248     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2249     const char *kernel_filename = machine->kernel_filename;
2250     const char *initrd_filename = machine->initrd_filename;
2251     PCIHostState *phb;
2252     int i;
2253     MemoryRegion *sysmem = get_system_memory();
2254     MemoryRegion *ram = g_new(MemoryRegion, 1);
2255     MemoryRegion *rma_region;
2256     void *rma = NULL;
2257     hwaddr rma_alloc_size;
2258     hwaddr node0_size = spapr_node0_size(machine);
2259     long load_limit, fw_size;
2260     char *filename;
2261     Error *resize_hpt_err = NULL;
2262 
2263     msi_nonbroken = true;
2264 
2265     QLIST_INIT(&spapr->phbs);
2266     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2267 
2268     /* Check HPT resizing availability */
2269     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2270     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2271         /*
2272          * If the user explicitly requested a mode we should either
2273          * supply it, or fail completely (which we do below).  But if
2274          * it's not set explicitly, we reset our mode to something
2275          * that works
2276          */
2277         if (resize_hpt_err) {
2278             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2279             error_free(resize_hpt_err);
2280             resize_hpt_err = NULL;
2281         } else {
2282             spapr->resize_hpt = smc->resize_hpt_default;
2283         }
2284     }
2285 
2286     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2287 
2288     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2289         /*
2290          * User requested HPT resize, but this host can't supply it.  Bail out
2291          */
2292         error_report_err(resize_hpt_err);
2293         exit(1);
2294     }
2295 
2296     /* Allocate RMA if necessary */
2297     rma_alloc_size = kvmppc_alloc_rma(&rma);
2298 
2299     if (rma_alloc_size == -1) {
2300         error_report("Unable to create RMA");
2301         exit(1);
2302     }
2303 
2304     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2305         spapr->rma_size = rma_alloc_size;
2306     } else {
2307         spapr->rma_size = node0_size;
2308 
2309         /* With KVM, we don't actually know whether KVM supports an
2310          * unbounded RMA (PR KVM) or is limited by the hash table size
2311          * (HV KVM using VRMA), so we always assume the latter
2312          *
2313          * In that case, we also limit the initial allocations for RTAS
2314          * etc... to 256M since we have no way to know what the VRMA size
2315          * is going to be as it depends on the size of the hash table
2316          * isn't determined yet.
2317          */
2318         if (kvm_enabled()) {
2319             spapr->vrma_adjust = 1;
2320             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2321         }
2322 
2323         /* Actually we don't support unbounded RMA anymore since we
2324          * added proper emulation of HV mode. The max we can get is
2325          * 16G which also happens to be what we configure for PAPR
2326          * mode so make sure we don't do anything bigger than that
2327          */
2328         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2329     }
2330 
2331     if (spapr->rma_size > node0_size) {
2332         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2333                      spapr->rma_size);
2334         exit(1);
2335     }
2336 
2337     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2338     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2339 
2340     /* Set up Interrupt Controller before we create the VCPUs */
2341     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2342 
2343     /* Set up containers for ibm,client-architecture-support negotiated options
2344      */
2345     spapr->ov5 = spapr_ovec_new();
2346     spapr->ov5_cas = spapr_ovec_new();
2347 
2348     if (smc->dr_lmb_enabled) {
2349         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2350         spapr_validate_node_memory(machine, &error_fatal);
2351     }
2352 
2353     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2354     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2355         /* KVM and TCG always allow GTSE with radix... */
2356         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2357     }
2358     /* ... but not with hash (currently). */
2359 
2360     /* advertise support for dedicated HP event source to guests */
2361     if (spapr->use_hotplug_event_source) {
2362         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2363     }
2364 
2365     /* advertise support for HPT resizing */
2366     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2367         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2368     }
2369 
2370     /* init CPUs */
2371     spapr_set_vsmt_mode(spapr, &error_fatal);
2372 
2373     spapr_init_cpus(spapr);
2374 
2375     if (kvm_enabled()) {
2376         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2377         kvmppc_enable_logical_ci_hcalls();
2378         kvmppc_enable_set_mode_hcall();
2379 
2380         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2381         kvmppc_enable_clear_ref_mod_hcalls();
2382     }
2383 
2384     /* allocate RAM */
2385     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2386                                          machine->ram_size);
2387     memory_region_add_subregion(sysmem, 0, ram);
2388 
2389     if (rma_alloc_size && rma) {
2390         rma_region = g_new(MemoryRegion, 1);
2391         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2392                                    rma_alloc_size, rma);
2393         vmstate_register_ram_global(rma_region);
2394         memory_region_add_subregion(sysmem, 0, rma_region);
2395     }
2396 
2397     /* initialize hotplug memory address space */
2398     if (machine->ram_size < machine->maxram_size) {
2399         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2400         /*
2401          * Limit the number of hotpluggable memory slots to half the number
2402          * slots that KVM supports, leaving the other half for PCI and other
2403          * devices. However ensure that number of slots doesn't drop below 32.
2404          */
2405         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2406                            SPAPR_MAX_RAM_SLOTS;
2407 
2408         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2409             max_memslots = SPAPR_MAX_RAM_SLOTS;
2410         }
2411         if (machine->ram_slots > max_memslots) {
2412             error_report("Specified number of memory slots %"
2413                          PRIu64" exceeds max supported %d",
2414                          machine->ram_slots, max_memslots);
2415             exit(1);
2416         }
2417 
2418         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2419                                               SPAPR_HOTPLUG_MEM_ALIGN);
2420         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2421                            "hotplug-memory", hotplug_mem_size);
2422         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2423                                     &spapr->hotplug_memory.mr);
2424     }
2425 
2426     if (smc->dr_lmb_enabled) {
2427         spapr_create_lmb_dr_connectors(spapr);
2428     }
2429 
2430     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2431     if (!filename) {
2432         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2433         exit(1);
2434     }
2435     spapr->rtas_size = get_image_size(filename);
2436     if (spapr->rtas_size < 0) {
2437         error_report("Could not get size of LPAR rtas '%s'", filename);
2438         exit(1);
2439     }
2440     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2441     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2442         error_report("Could not load LPAR rtas '%s'", filename);
2443         exit(1);
2444     }
2445     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2446         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2447                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2448         exit(1);
2449     }
2450     g_free(filename);
2451 
2452     /* Set up RTAS event infrastructure */
2453     spapr_events_init(spapr);
2454 
2455     /* Set up the RTC RTAS interfaces */
2456     spapr_rtc_create(spapr);
2457 
2458     /* Set up VIO bus */
2459     spapr->vio_bus = spapr_vio_bus_init();
2460 
2461     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2462         if (serial_hds[i]) {
2463             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2464         }
2465     }
2466 
2467     /* We always have at least the nvram device on VIO */
2468     spapr_create_nvram(spapr);
2469 
2470     /* Set up PCI */
2471     spapr_pci_rtas_init();
2472 
2473     phb = spapr_create_phb(spapr, 0);
2474 
2475     for (i = 0; i < nb_nics; i++) {
2476         NICInfo *nd = &nd_table[i];
2477 
2478         if (!nd->model) {
2479             nd->model = g_strdup("ibmveth");
2480         }
2481 
2482         if (strcmp(nd->model, "ibmveth") == 0) {
2483             spapr_vlan_create(spapr->vio_bus, nd);
2484         } else {
2485             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2486         }
2487     }
2488 
2489     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2490         spapr_vscsi_create(spapr->vio_bus);
2491     }
2492 
2493     /* Graphics */
2494     if (spapr_vga_init(phb->bus, &error_fatal)) {
2495         spapr->has_graphics = true;
2496         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2497     }
2498 
2499     if (machine->usb) {
2500         if (smc->use_ohci_by_default) {
2501             pci_create_simple(phb->bus, -1, "pci-ohci");
2502         } else {
2503             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2504         }
2505 
2506         if (spapr->has_graphics) {
2507             USBBus *usb_bus = usb_bus_find(-1);
2508 
2509             usb_create_simple(usb_bus, "usb-kbd");
2510             usb_create_simple(usb_bus, "usb-mouse");
2511         }
2512     }
2513 
2514     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2515         error_report(
2516             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2517             MIN_RMA_SLOF);
2518         exit(1);
2519     }
2520 
2521     if (kernel_filename) {
2522         uint64_t lowaddr = 0;
2523 
2524         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2525                                       NULL, NULL, &lowaddr, NULL, 1,
2526                                       PPC_ELF_MACHINE, 0, 0);
2527         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2528             spapr->kernel_size = load_elf(kernel_filename,
2529                                           translate_kernel_address, NULL, NULL,
2530                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2531                                           0, 0);
2532             spapr->kernel_le = spapr->kernel_size > 0;
2533         }
2534         if (spapr->kernel_size < 0) {
2535             error_report("error loading %s: %s", kernel_filename,
2536                          load_elf_strerror(spapr->kernel_size));
2537             exit(1);
2538         }
2539 
2540         /* load initrd */
2541         if (initrd_filename) {
2542             /* Try to locate the initrd in the gap between the kernel
2543              * and the firmware. Add a bit of space just in case
2544              */
2545             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2546                                   + 0x1ffff) & ~0xffff;
2547             spapr->initrd_size = load_image_targphys(initrd_filename,
2548                                                      spapr->initrd_base,
2549                                                      load_limit
2550                                                      - spapr->initrd_base);
2551             if (spapr->initrd_size < 0) {
2552                 error_report("could not load initial ram disk '%s'",
2553                              initrd_filename);
2554                 exit(1);
2555             }
2556         }
2557     }
2558 
2559     if (bios_name == NULL) {
2560         bios_name = FW_FILE_NAME;
2561     }
2562     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2563     if (!filename) {
2564         error_report("Could not find LPAR firmware '%s'", bios_name);
2565         exit(1);
2566     }
2567     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2568     if (fw_size <= 0) {
2569         error_report("Could not load LPAR firmware '%s'", filename);
2570         exit(1);
2571     }
2572     g_free(filename);
2573 
2574     /* FIXME: Should register things through the MachineState's qdev
2575      * interface, this is a legacy from the sPAPREnvironment structure
2576      * which predated MachineState but had a similar function */
2577     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2578     register_savevm_live(NULL, "spapr/htab", -1, 1,
2579                          &savevm_htab_handlers, spapr);
2580 
2581     qemu_register_boot_set(spapr_boot_set, spapr);
2582 
2583     if (kvm_enabled()) {
2584         /* to stop and start vmclock */
2585         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2586                                          &spapr->tb);
2587 
2588         kvmppc_spapr_enable_inkernel_multitce();
2589     }
2590 }
2591 
2592 static int spapr_kvm_type(const char *vm_type)
2593 {
2594     if (!vm_type) {
2595         return 0;
2596     }
2597 
2598     if (!strcmp(vm_type, "HV")) {
2599         return 1;
2600     }
2601 
2602     if (!strcmp(vm_type, "PR")) {
2603         return 2;
2604     }
2605 
2606     error_report("Unknown kvm-type specified '%s'", vm_type);
2607     exit(1);
2608 }
2609 
2610 /*
2611  * Implementation of an interface to adjust firmware path
2612  * for the bootindex property handling.
2613  */
2614 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2615                                    DeviceState *dev)
2616 {
2617 #define CAST(type, obj, name) \
2618     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2619     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2620     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2621     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2622 
2623     if (d) {
2624         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2625         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2626         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2627 
2628         if (spapr) {
2629             /*
2630              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2631              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2632              * in the top 16 bits of the 64-bit LUN
2633              */
2634             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2635             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2636                                    (uint64_t)id << 48);
2637         } else if (virtio) {
2638             /*
2639              * We use SRP luns of the form 01000000 | (target << 8) | lun
2640              * in the top 32 bits of the 64-bit LUN
2641              * Note: the quote above is from SLOF and it is wrong,
2642              * the actual binding is:
2643              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2644              */
2645             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2646             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2647                                    (uint64_t)id << 32);
2648         } else if (usb) {
2649             /*
2650              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2651              * in the top 32 bits of the 64-bit LUN
2652              */
2653             unsigned usb_port = atoi(usb->port->path);
2654             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2655             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2656                                    (uint64_t)id << 32);
2657         }
2658     }
2659 
2660     /*
2661      * SLOF probes the USB devices, and if it recognizes that the device is a
2662      * storage device, it changes its name to "storage" instead of "usb-host",
2663      * and additionally adds a child node for the SCSI LUN, so the correct
2664      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2665      */
2666     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2667         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2668         if (usb_host_dev_is_scsi_storage(usbdev)) {
2669             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2670         }
2671     }
2672 
2673     if (phb) {
2674         /* Replace "pci" with "pci@800000020000000" */
2675         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2676     }
2677 
2678     if (vsc) {
2679         /* Same logic as virtio above */
2680         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2681         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2682     }
2683 
2684     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2685         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2686         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2687         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2688     }
2689 
2690     return NULL;
2691 }
2692 
2693 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2694 {
2695     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2696 
2697     return g_strdup(spapr->kvm_type);
2698 }
2699 
2700 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2701 {
2702     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2703 
2704     g_free(spapr->kvm_type);
2705     spapr->kvm_type = g_strdup(value);
2706 }
2707 
2708 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2709 {
2710     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2711 
2712     return spapr->use_hotplug_event_source;
2713 }
2714 
2715 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2716                                             Error **errp)
2717 {
2718     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2719 
2720     spapr->use_hotplug_event_source = value;
2721 }
2722 
2723 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2724 {
2725     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2726 
2727     switch (spapr->resize_hpt) {
2728     case SPAPR_RESIZE_HPT_DEFAULT:
2729         return g_strdup("default");
2730     case SPAPR_RESIZE_HPT_DISABLED:
2731         return g_strdup("disabled");
2732     case SPAPR_RESIZE_HPT_ENABLED:
2733         return g_strdup("enabled");
2734     case SPAPR_RESIZE_HPT_REQUIRED:
2735         return g_strdup("required");
2736     }
2737     g_assert_not_reached();
2738 }
2739 
2740 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2741 {
2742     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2743 
2744     if (strcmp(value, "default") == 0) {
2745         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2746     } else if (strcmp(value, "disabled") == 0) {
2747         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2748     } else if (strcmp(value, "enabled") == 0) {
2749         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2750     } else if (strcmp(value, "required") == 0) {
2751         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2752     } else {
2753         error_setg(errp, "Bad value for \"resize-hpt\" property");
2754     }
2755 }
2756 
2757 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2758                                    void *opaque, Error **errp)
2759 {
2760     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2761 }
2762 
2763 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2764                                    void *opaque, Error **errp)
2765 {
2766     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2767 }
2768 
2769 static void spapr_machine_initfn(Object *obj)
2770 {
2771     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2772 
2773     spapr->htab_fd = -1;
2774     spapr->use_hotplug_event_source = true;
2775     object_property_add_str(obj, "kvm-type",
2776                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2777     object_property_set_description(obj, "kvm-type",
2778                                     "Specifies the KVM virtualization mode (HV, PR)",
2779                                     NULL);
2780     object_property_add_bool(obj, "modern-hotplug-events",
2781                             spapr_get_modern_hotplug_events,
2782                             spapr_set_modern_hotplug_events,
2783                             NULL);
2784     object_property_set_description(obj, "modern-hotplug-events",
2785                                     "Use dedicated hotplug event mechanism in"
2786                                     " place of standard EPOW events when possible"
2787                                     " (required for memory hot-unplug support)",
2788                                     NULL);
2789 
2790     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2791                             "Maximum permitted CPU compatibility mode",
2792                             &error_fatal);
2793 
2794     object_property_add_str(obj, "resize-hpt",
2795                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2796     object_property_set_description(obj, "resize-hpt",
2797                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
2798                                     NULL);
2799     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2800                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2801     object_property_set_description(obj, "vsmt",
2802                                     "Virtual SMT: KVM behaves as if this were"
2803                                     " the host's SMT mode", &error_abort);
2804 }
2805 
2806 static void spapr_machine_finalizefn(Object *obj)
2807 {
2808     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2809 
2810     g_free(spapr->kvm_type);
2811 }
2812 
2813 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2814 {
2815     cpu_synchronize_state(cs);
2816     ppc_cpu_do_system_reset(cs);
2817 }
2818 
2819 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2820 {
2821     CPUState *cs;
2822 
2823     CPU_FOREACH(cs) {
2824         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2825     }
2826 }
2827 
2828 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2829                            uint32_t node, bool dedicated_hp_event_source,
2830                            Error **errp)
2831 {
2832     sPAPRDRConnector *drc;
2833     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2834     int i, fdt_offset, fdt_size;
2835     void *fdt;
2836     uint64_t addr = addr_start;
2837     bool hotplugged = spapr_drc_hotplugged(dev);
2838     Error *local_err = NULL;
2839 
2840     for (i = 0; i < nr_lmbs; i++) {
2841         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2842                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2843         g_assert(drc);
2844 
2845         fdt = create_device_tree(&fdt_size);
2846         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2847                                                 SPAPR_MEMORY_BLOCK_SIZE);
2848 
2849         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2850         if (local_err) {
2851             while (addr > addr_start) {
2852                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2853                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2854                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2855                 spapr_drc_detach(drc);
2856             }
2857             g_free(fdt);
2858             error_propagate(errp, local_err);
2859             return;
2860         }
2861         if (!hotplugged) {
2862             spapr_drc_reset(drc);
2863         }
2864         addr += SPAPR_MEMORY_BLOCK_SIZE;
2865     }
2866     /* send hotplug notification to the
2867      * guest only in case of hotplugged memory
2868      */
2869     if (hotplugged) {
2870         if (dedicated_hp_event_source) {
2871             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2872                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2873             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2874                                                    nr_lmbs,
2875                                                    spapr_drc_index(drc));
2876         } else {
2877             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2878                                            nr_lmbs);
2879         }
2880     }
2881 }
2882 
2883 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2884                               uint32_t node, Error **errp)
2885 {
2886     Error *local_err = NULL;
2887     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2888     PCDIMMDevice *dimm = PC_DIMM(dev);
2889     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2890     MemoryRegion *mr;
2891     uint64_t align, size, addr;
2892 
2893     mr = ddc->get_memory_region(dimm, &local_err);
2894     if (local_err) {
2895         goto out;
2896     }
2897     align = memory_region_get_alignment(mr);
2898     size = memory_region_size(mr);
2899 
2900     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2901     if (local_err) {
2902         goto out;
2903     }
2904 
2905     addr = object_property_get_uint(OBJECT(dimm),
2906                                     PC_DIMM_ADDR_PROP, &local_err);
2907     if (local_err) {
2908         goto out_unplug;
2909     }
2910 
2911     spapr_add_lmbs(dev, addr, size, node,
2912                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2913                    &local_err);
2914     if (local_err) {
2915         goto out_unplug;
2916     }
2917 
2918     return;
2919 
2920 out_unplug:
2921     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2922 out:
2923     error_propagate(errp, local_err);
2924 }
2925 
2926 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2927                                   Error **errp)
2928 {
2929     PCDIMMDevice *dimm = PC_DIMM(dev);
2930     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2931     MemoryRegion *mr;
2932     uint64_t size;
2933     char *mem_dev;
2934 
2935     mr = ddc->get_memory_region(dimm, errp);
2936     if (!mr) {
2937         return;
2938     }
2939     size = memory_region_size(mr);
2940 
2941     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2942         error_setg(errp, "Hotplugged memory size must be a multiple of "
2943                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2944         return;
2945     }
2946 
2947     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2948     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2949         error_setg(errp, "Memory backend has bad page size. "
2950                    "Use 'memory-backend-file' with correct mem-path.");
2951         goto out;
2952     }
2953 
2954 out:
2955     g_free(mem_dev);
2956 }
2957 
2958 struct sPAPRDIMMState {
2959     PCDIMMDevice *dimm;
2960     uint32_t nr_lmbs;
2961     QTAILQ_ENTRY(sPAPRDIMMState) next;
2962 };
2963 
2964 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2965                                                        PCDIMMDevice *dimm)
2966 {
2967     sPAPRDIMMState *dimm_state = NULL;
2968 
2969     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2970         if (dimm_state->dimm == dimm) {
2971             break;
2972         }
2973     }
2974     return dimm_state;
2975 }
2976 
2977 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2978                                                       uint32_t nr_lmbs,
2979                                                       PCDIMMDevice *dimm)
2980 {
2981     sPAPRDIMMState *ds = NULL;
2982 
2983     /*
2984      * If this request is for a DIMM whose removal had failed earlier
2985      * (due to guest's refusal to remove the LMBs), we would have this
2986      * dimm already in the pending_dimm_unplugs list. In that
2987      * case don't add again.
2988      */
2989     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2990     if (!ds) {
2991         ds = g_malloc0(sizeof(sPAPRDIMMState));
2992         ds->nr_lmbs = nr_lmbs;
2993         ds->dimm = dimm;
2994         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2995     }
2996     return ds;
2997 }
2998 
2999 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3000                                               sPAPRDIMMState *dimm_state)
3001 {
3002     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3003     g_free(dimm_state);
3004 }
3005 
3006 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3007                                                         PCDIMMDevice *dimm)
3008 {
3009     sPAPRDRConnector *drc;
3010     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3011     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3012     uint64_t size = memory_region_size(mr);
3013     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3014     uint32_t avail_lmbs = 0;
3015     uint64_t addr_start, addr;
3016     int i;
3017 
3018     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3019                                          &error_abort);
3020 
3021     addr = addr_start;
3022     for (i = 0; i < nr_lmbs; i++) {
3023         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3024                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3025         g_assert(drc);
3026         if (drc->dev) {
3027             avail_lmbs++;
3028         }
3029         addr += SPAPR_MEMORY_BLOCK_SIZE;
3030     }
3031 
3032     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3033 }
3034 
3035 /* Callback to be called during DRC release. */
3036 void spapr_lmb_release(DeviceState *dev)
3037 {
3038     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3039     PCDIMMDevice *dimm = PC_DIMM(dev);
3040     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3041     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3042     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3043 
3044     /* This information will get lost if a migration occurs
3045      * during the unplug process. In this case recover it. */
3046     if (ds == NULL) {
3047         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3048         g_assert(ds);
3049         /* The DRC being examined by the caller at least must be counted */
3050         g_assert(ds->nr_lmbs);
3051     }
3052 
3053     if (--ds->nr_lmbs) {
3054         return;
3055     }
3056 
3057     /*
3058      * Now that all the LMBs have been removed by the guest, call the
3059      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3060      */
3061     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3062     object_unparent(OBJECT(dev));
3063     spapr_pending_dimm_unplugs_remove(spapr, ds);
3064 }
3065 
3066 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3067                                         DeviceState *dev, Error **errp)
3068 {
3069     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3070     Error *local_err = NULL;
3071     PCDIMMDevice *dimm = PC_DIMM(dev);
3072     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3073     MemoryRegion *mr;
3074     uint32_t nr_lmbs;
3075     uint64_t size, addr_start, addr;
3076     int i;
3077     sPAPRDRConnector *drc;
3078 
3079     mr = ddc->get_memory_region(dimm, &local_err);
3080     if (local_err) {
3081         goto out;
3082     }
3083     size = memory_region_size(mr);
3084     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3085 
3086     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3087                                          &local_err);
3088     if (local_err) {
3089         goto out;
3090     }
3091 
3092     /*
3093      * An existing pending dimm state for this DIMM means that there is an
3094      * unplug operation in progress, waiting for the spapr_lmb_release
3095      * callback to complete the job (BQL can't cover that far). In this case,
3096      * bail out to avoid detaching DRCs that were already released.
3097      */
3098     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3099         error_setg(&local_err,
3100                    "Memory unplug already in progress for device %s",
3101                    dev->id);
3102         goto out;
3103     }
3104 
3105     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3106 
3107     addr = addr_start;
3108     for (i = 0; i < nr_lmbs; i++) {
3109         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3110                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3111         g_assert(drc);
3112 
3113         spapr_drc_detach(drc);
3114         addr += SPAPR_MEMORY_BLOCK_SIZE;
3115     }
3116 
3117     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3118                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3119     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3120                                               nr_lmbs, spapr_drc_index(drc));
3121 out:
3122     error_propagate(errp, local_err);
3123 }
3124 
3125 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3126                                            sPAPRMachineState *spapr)
3127 {
3128     PowerPCCPU *cpu = POWERPC_CPU(cs);
3129     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3130     int id = spapr_vcpu_id(cpu);
3131     void *fdt;
3132     int offset, fdt_size;
3133     char *nodename;
3134 
3135     fdt = create_device_tree(&fdt_size);
3136     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3137     offset = fdt_add_subnode(fdt, 0, nodename);
3138 
3139     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3140     g_free(nodename);
3141 
3142     *fdt_offset = offset;
3143     return fdt;
3144 }
3145 
3146 /* Callback to be called during DRC release. */
3147 void spapr_core_release(DeviceState *dev)
3148 {
3149     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3150     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3151     CPUCore *cc = CPU_CORE(dev);
3152     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3153 
3154     if (smc->pre_2_10_has_unused_icps) {
3155         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3156         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3157         size_t size = object_type_get_instance_size(scc->cpu_type);
3158         int i;
3159 
3160         for (i = 0; i < cc->nr_threads; i++) {
3161             CPUState *cs = CPU(sc->threads + i * size);
3162 
3163             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3164         }
3165     }
3166 
3167     assert(core_slot);
3168     core_slot->cpu = NULL;
3169     object_unparent(OBJECT(dev));
3170 }
3171 
3172 static
3173 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3174                                Error **errp)
3175 {
3176     int index;
3177     sPAPRDRConnector *drc;
3178     CPUCore *cc = CPU_CORE(dev);
3179     int smt = kvmppc_smt_threads();
3180 
3181     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3182         error_setg(errp, "Unable to find CPU core with core-id: %d",
3183                    cc->core_id);
3184         return;
3185     }
3186     if (index == 0) {
3187         error_setg(errp, "Boot CPU core may not be unplugged");
3188         return;
3189     }
3190 
3191     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3192     g_assert(drc);
3193 
3194     spapr_drc_detach(drc);
3195 
3196     spapr_hotplug_req_remove_by_index(drc);
3197 }
3198 
3199 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3200                             Error **errp)
3201 {
3202     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3203     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3204     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3205     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3206     CPUCore *cc = CPU_CORE(dev);
3207     CPUState *cs = CPU(core->threads);
3208     sPAPRDRConnector *drc;
3209     Error *local_err = NULL;
3210     int smt = kvmppc_smt_threads();
3211     CPUArchId *core_slot;
3212     int index;
3213     bool hotplugged = spapr_drc_hotplugged(dev);
3214 
3215     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3216     if (!core_slot) {
3217         error_setg(errp, "Unable to find CPU core with core-id: %d",
3218                    cc->core_id);
3219         return;
3220     }
3221     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3222 
3223     g_assert(drc || !mc->has_hotpluggable_cpus);
3224 
3225     if (drc) {
3226         void *fdt;
3227         int fdt_offset;
3228 
3229         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3230 
3231         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3232         if (local_err) {
3233             g_free(fdt);
3234             error_propagate(errp, local_err);
3235             return;
3236         }
3237 
3238         if (hotplugged) {
3239             /*
3240              * Send hotplug notification interrupt to the guest only
3241              * in case of hotplugged CPUs.
3242              */
3243             spapr_hotplug_req_add_by_index(drc);
3244         } else {
3245             spapr_drc_reset(drc);
3246         }
3247     }
3248 
3249     core_slot->cpu = OBJECT(dev);
3250 
3251     if (smc->pre_2_10_has_unused_icps) {
3252         sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3253         size_t size = object_type_get_instance_size(scc->cpu_type);
3254         int i;
3255 
3256         for (i = 0; i < cc->nr_threads; i++) {
3257             sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3258             void *obj = sc->threads + i * size;
3259 
3260             cs = CPU(obj);
3261             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3262         }
3263     }
3264 }
3265 
3266 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3267                                 Error **errp)
3268 {
3269     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3270     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3271     Error *local_err = NULL;
3272     CPUCore *cc = CPU_CORE(dev);
3273     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3274     const char *type = object_get_typename(OBJECT(dev));
3275     CPUArchId *core_slot;
3276     int index;
3277 
3278     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3279         error_setg(&local_err, "CPU hotplug not supported for this machine");
3280         goto out;
3281     }
3282 
3283     if (strcmp(base_core_type, type)) {
3284         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3285         goto out;
3286     }
3287 
3288     if (cc->core_id % smp_threads) {
3289         error_setg(&local_err, "invalid core id %d", cc->core_id);
3290         goto out;
3291     }
3292 
3293     /*
3294      * In general we should have homogeneous threads-per-core, but old
3295      * (pre hotplug support) machine types allow the last core to have
3296      * reduced threads as a compatibility hack for when we allowed
3297      * total vcpus not a multiple of threads-per-core.
3298      */
3299     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3300         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3301                    cc->nr_threads, smp_threads);
3302         goto out;
3303     }
3304 
3305     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3306     if (!core_slot) {
3307         error_setg(&local_err, "core id %d out of range", cc->core_id);
3308         goto out;
3309     }
3310 
3311     if (core_slot->cpu) {
3312         error_setg(&local_err, "core %d already populated", cc->core_id);
3313         goto out;
3314     }
3315 
3316     numa_cpu_pre_plug(core_slot, dev, &local_err);
3317 
3318 out:
3319     error_propagate(errp, local_err);
3320 }
3321 
3322 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3323                                       DeviceState *dev, Error **errp)
3324 {
3325     MachineState *ms = MACHINE(hotplug_dev);
3326     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3327 
3328     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3329         int node;
3330 
3331         if (!smc->dr_lmb_enabled) {
3332             error_setg(errp, "Memory hotplug not supported for this machine");
3333             return;
3334         }
3335         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3336         if (*errp) {
3337             return;
3338         }
3339         if (node < 0 || node >= MAX_NODES) {
3340             error_setg(errp, "Invaild node %d", node);
3341             return;
3342         }
3343 
3344         /*
3345          * Currently PowerPC kernel doesn't allow hot-adding memory to
3346          * memory-less node, but instead will silently add the memory
3347          * to the first node that has some memory. This causes two
3348          * unexpected behaviours for the user.
3349          *
3350          * - Memory gets hotplugged to a different node than what the user
3351          *   specified.
3352          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3353          *   to memory-less node, a reboot will set things accordingly
3354          *   and the previously hotplugged memory now ends in the right node.
3355          *   This appears as if some memory moved from one node to another.
3356          *
3357          * So until kernel starts supporting memory hotplug to memory-less
3358          * nodes, just prevent such attempts upfront in QEMU.
3359          */
3360         if (nb_numa_nodes && !numa_info[node].node_mem) {
3361             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3362                        node);
3363             return;
3364         }
3365 
3366         spapr_memory_plug(hotplug_dev, dev, node, errp);
3367     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3368         spapr_core_plug(hotplug_dev, dev, errp);
3369     }
3370 }
3371 
3372 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3373                                                 DeviceState *dev, Error **errp)
3374 {
3375     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3376     MachineClass *mc = MACHINE_GET_CLASS(sms);
3377 
3378     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3379         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3380             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3381         } else {
3382             /* NOTE: this means there is a window after guest reset, prior to
3383              * CAS negotiation, where unplug requests will fail due to the
3384              * capability not being detected yet. This is a bit different than
3385              * the case with PCI unplug, where the events will be queued and
3386              * eventually handled by the guest after boot
3387              */
3388             error_setg(errp, "Memory hot unplug not supported for this guest");
3389         }
3390     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3391         if (!mc->has_hotpluggable_cpus) {
3392             error_setg(errp, "CPU hot unplug not supported on this machine");
3393             return;
3394         }
3395         spapr_core_unplug_request(hotplug_dev, dev, errp);
3396     }
3397 }
3398 
3399 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3400                                           DeviceState *dev, Error **errp)
3401 {
3402     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3403         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3404     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3405         spapr_core_pre_plug(hotplug_dev, dev, errp);
3406     }
3407 }
3408 
3409 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3410                                                  DeviceState *dev)
3411 {
3412     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3413         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3414         return HOTPLUG_HANDLER(machine);
3415     }
3416     return NULL;
3417 }
3418 
3419 static CpuInstanceProperties
3420 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3421 {
3422     CPUArchId *core_slot;
3423     MachineClass *mc = MACHINE_GET_CLASS(machine);
3424 
3425     /* make sure possible_cpu are intialized */
3426     mc->possible_cpu_arch_ids(machine);
3427     /* get CPU core slot containing thread that matches cpu_index */
3428     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3429     assert(core_slot);
3430     return core_slot->props;
3431 }
3432 
3433 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3434 {
3435     return idx / smp_cores % nb_numa_nodes;
3436 }
3437 
3438 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3439 {
3440     int i;
3441     int spapr_max_cores = max_cpus / smp_threads;
3442     MachineClass *mc = MACHINE_GET_CLASS(machine);
3443 
3444     if (!mc->has_hotpluggable_cpus) {
3445         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3446     }
3447     if (machine->possible_cpus) {
3448         assert(machine->possible_cpus->len == spapr_max_cores);
3449         return machine->possible_cpus;
3450     }
3451 
3452     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3453                              sizeof(CPUArchId) * spapr_max_cores);
3454     machine->possible_cpus->len = spapr_max_cores;
3455     for (i = 0; i < machine->possible_cpus->len; i++) {
3456         int core_id = i * smp_threads;
3457 
3458         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3459         machine->possible_cpus->cpus[i].arch_id = core_id;
3460         machine->possible_cpus->cpus[i].props.has_core_id = true;
3461         machine->possible_cpus->cpus[i].props.core_id = core_id;
3462     }
3463     return machine->possible_cpus;
3464 }
3465 
3466 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3467                                 uint64_t *buid, hwaddr *pio,
3468                                 hwaddr *mmio32, hwaddr *mmio64,
3469                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3470 {
3471     /*
3472      * New-style PHB window placement.
3473      *
3474      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3475      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3476      * windows.
3477      *
3478      * Some guest kernels can't work with MMIO windows above 1<<46
3479      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3480      *
3481      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3482      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3483      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3484      * 1TiB 64-bit MMIO windows for each PHB.
3485      */
3486     const uint64_t base_buid = 0x800000020000000ULL;
3487 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3488                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3489     int i;
3490 
3491     /* Sanity check natural alignments */
3492     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3493     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3494     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3495     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3496     /* Sanity check bounds */
3497     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3498                       SPAPR_PCI_MEM32_WIN_SIZE);
3499     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3500                       SPAPR_PCI_MEM64_WIN_SIZE);
3501 
3502     if (index >= SPAPR_MAX_PHBS) {
3503         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3504                    SPAPR_MAX_PHBS - 1);
3505         return;
3506     }
3507 
3508     *buid = base_buid + index;
3509     for (i = 0; i < n_dma; ++i) {
3510         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3511     }
3512 
3513     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3514     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3515     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3516 }
3517 
3518 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3519 {
3520     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3521 
3522     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3523 }
3524 
3525 static void spapr_ics_resend(XICSFabric *dev)
3526 {
3527     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3528 
3529     ics_resend(spapr->ics);
3530 }
3531 
3532 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3533 {
3534     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3535 
3536     return cpu ? ICP(cpu->intc) : NULL;
3537 }
3538 
3539 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3540                                  Monitor *mon)
3541 {
3542     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3543     CPUState *cs;
3544 
3545     CPU_FOREACH(cs) {
3546         PowerPCCPU *cpu = POWERPC_CPU(cs);
3547 
3548         icp_pic_print_info(ICP(cpu->intc), mon);
3549     }
3550 
3551     ics_pic_print_info(spapr->ics, mon);
3552 }
3553 
3554 int spapr_vcpu_id(PowerPCCPU *cpu)
3555 {
3556     CPUState *cs = CPU(cpu);
3557 
3558     if (kvm_enabled()) {
3559         return kvm_arch_vcpu_id(cs);
3560     } else {
3561         return cs->cpu_index;
3562     }
3563 }
3564 
3565 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3566 {
3567     CPUState *cs;
3568 
3569     CPU_FOREACH(cs) {
3570         PowerPCCPU *cpu = POWERPC_CPU(cs);
3571 
3572         if (spapr_vcpu_id(cpu) == vcpu_id) {
3573             return cpu;
3574         }
3575     }
3576 
3577     return NULL;
3578 }
3579 
3580 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3581 {
3582     MachineClass *mc = MACHINE_CLASS(oc);
3583     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3584     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3585     NMIClass *nc = NMI_CLASS(oc);
3586     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3587     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3588     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3589     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3590 
3591     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3592 
3593     /*
3594      * We set up the default / latest behaviour here.  The class_init
3595      * functions for the specific versioned machine types can override
3596      * these details for backwards compatibility
3597      */
3598     mc->init = ppc_spapr_init;
3599     mc->reset = ppc_spapr_reset;
3600     mc->block_default_type = IF_SCSI;
3601     mc->max_cpus = 1024;
3602     mc->no_parallel = 1;
3603     mc->default_boot_order = "";
3604     mc->default_ram_size = 512 * M_BYTE;
3605     mc->kvm_type = spapr_kvm_type;
3606     mc->has_dynamic_sysbus = true;
3607     mc->pci_allow_0_address = true;
3608     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3609     hc->pre_plug = spapr_machine_device_pre_plug;
3610     hc->plug = spapr_machine_device_plug;
3611     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3612     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3613     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3614     hc->unplug_request = spapr_machine_device_unplug_request;
3615 
3616     smc->dr_lmb_enabled = true;
3617     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3618     mc->has_hotpluggable_cpus = true;
3619     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3620     fwc->get_dev_path = spapr_get_fw_dev_path;
3621     nc->nmi_monitor_handler = spapr_nmi;
3622     smc->phb_placement = spapr_phb_placement;
3623     vhc->hypercall = emulate_spapr_hypercall;
3624     vhc->hpt_mask = spapr_hpt_mask;
3625     vhc->map_hptes = spapr_map_hptes;
3626     vhc->unmap_hptes = spapr_unmap_hptes;
3627     vhc->store_hpte = spapr_store_hpte;
3628     vhc->get_patbe = spapr_get_patbe;
3629     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3630     xic->ics_get = spapr_ics_get;
3631     xic->ics_resend = spapr_ics_resend;
3632     xic->icp_get = spapr_icp_get;
3633     ispc->print_info = spapr_pic_print_info;
3634     /* Force NUMA node memory size to be a multiple of
3635      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3636      * in which LMBs are represented and hot-added
3637      */
3638     mc->numa_mem_align_shift = 28;
3639 }
3640 
3641 static const TypeInfo spapr_machine_info = {
3642     .name          = TYPE_SPAPR_MACHINE,
3643     .parent        = TYPE_MACHINE,
3644     .abstract      = true,
3645     .instance_size = sizeof(sPAPRMachineState),
3646     .instance_init = spapr_machine_initfn,
3647     .instance_finalize = spapr_machine_finalizefn,
3648     .class_size    = sizeof(sPAPRMachineClass),
3649     .class_init    = spapr_machine_class_init,
3650     .interfaces = (InterfaceInfo[]) {
3651         { TYPE_FW_PATH_PROVIDER },
3652         { TYPE_NMI },
3653         { TYPE_HOTPLUG_HANDLER },
3654         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3655         { TYPE_XICS_FABRIC },
3656         { TYPE_INTERRUPT_STATS_PROVIDER },
3657         { }
3658     },
3659 };
3660 
3661 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3662     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3663                                                     void *data)      \
3664     {                                                                \
3665         MachineClass *mc = MACHINE_CLASS(oc);                        \
3666         spapr_machine_##suffix##_class_options(mc);                  \
3667         if (latest) {                                                \
3668             mc->alias = "pseries";                                   \
3669             mc->is_default = 1;                                      \
3670         }                                                            \
3671     }                                                                \
3672     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3673     {                                                                \
3674         MachineState *machine = MACHINE(obj);                        \
3675         spapr_machine_##suffix##_instance_options(machine);          \
3676     }                                                                \
3677     static const TypeInfo spapr_machine_##suffix##_info = {          \
3678         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3679         .parent = TYPE_SPAPR_MACHINE,                                \
3680         .class_init = spapr_machine_##suffix##_class_init,           \
3681         .instance_init = spapr_machine_##suffix##_instance_init,     \
3682     };                                                               \
3683     static void spapr_machine_register_##suffix(void)                \
3684     {                                                                \
3685         type_register(&spapr_machine_##suffix##_info);               \
3686     }                                                                \
3687     type_init(spapr_machine_register_##suffix)
3688 
3689 /*
3690  * pseries-2.11
3691  */
3692 static void spapr_machine_2_11_instance_options(MachineState *machine)
3693 {
3694 }
3695 
3696 static void spapr_machine_2_11_class_options(MachineClass *mc)
3697 {
3698     /* Defaults for the latest behaviour inherited from the base class */
3699 }
3700 
3701 DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3702 
3703 /*
3704  * pseries-2.10
3705  */
3706 #define SPAPR_COMPAT_2_10                                              \
3707     HW_COMPAT_2_10                                                     \
3708 
3709 static void spapr_machine_2_10_instance_options(MachineState *machine)
3710 {
3711 }
3712 
3713 static void spapr_machine_2_10_class_options(MachineClass *mc)
3714 {
3715     spapr_machine_2_11_class_options(mc);
3716     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3717 }
3718 
3719 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3720 
3721 /*
3722  * pseries-2.9
3723  */
3724 #define SPAPR_COMPAT_2_9                                               \
3725     HW_COMPAT_2_9                                                      \
3726     {                                                                  \
3727         .driver = TYPE_POWERPC_CPU,                                    \
3728         .property = "pre-2.10-migration",                              \
3729         .value    = "on",                                              \
3730     },                                                                 \
3731 
3732 static void spapr_machine_2_9_instance_options(MachineState *machine)
3733 {
3734     spapr_machine_2_10_instance_options(machine);
3735 }
3736 
3737 static void spapr_machine_2_9_class_options(MachineClass *mc)
3738 {
3739     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3740 
3741     spapr_machine_2_10_class_options(mc);
3742     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3743     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3744     smc->pre_2_10_has_unused_icps = true;
3745     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3746 }
3747 
3748 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3749 
3750 /*
3751  * pseries-2.8
3752  */
3753 #define SPAPR_COMPAT_2_8                                        \
3754     HW_COMPAT_2_8                                               \
3755     {                                                           \
3756         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3757         .property = "pcie-extended-configuration-space",        \
3758         .value    = "off",                                      \
3759     },
3760 
3761 static void spapr_machine_2_8_instance_options(MachineState *machine)
3762 {
3763     spapr_machine_2_9_instance_options(machine);
3764 }
3765 
3766 static void spapr_machine_2_8_class_options(MachineClass *mc)
3767 {
3768     spapr_machine_2_9_class_options(mc);
3769     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3770     mc->numa_mem_align_shift = 23;
3771 }
3772 
3773 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3774 
3775 /*
3776  * pseries-2.7
3777  */
3778 #define SPAPR_COMPAT_2_7                            \
3779     HW_COMPAT_2_7                                   \
3780     {                                               \
3781         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3782         .property = "mem_win_size",                 \
3783         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3784     },                                              \
3785     {                                               \
3786         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3787         .property = "mem64_win_size",               \
3788         .value    = "0",                            \
3789     },                                              \
3790     {                                               \
3791         .driver = TYPE_POWERPC_CPU,                 \
3792         .property = "pre-2.8-migration",            \
3793         .value    = "on",                           \
3794     },                                              \
3795     {                                               \
3796         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3797         .property = "pre-2.8-migration",            \
3798         .value    = "on",                           \
3799     },
3800 
3801 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3802                               uint64_t *buid, hwaddr *pio,
3803                               hwaddr *mmio32, hwaddr *mmio64,
3804                               unsigned n_dma, uint32_t *liobns, Error **errp)
3805 {
3806     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3807     const uint64_t base_buid = 0x800000020000000ULL;
3808     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3809     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3810     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3811     const uint32_t max_index = 255;
3812     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3813 
3814     uint64_t ram_top = MACHINE(spapr)->ram_size;
3815     hwaddr phb0_base, phb_base;
3816     int i;
3817 
3818     /* Do we have hotpluggable memory? */
3819     if (MACHINE(spapr)->maxram_size > ram_top) {
3820         /* Can't just use maxram_size, because there may be an
3821          * alignment gap between normal and hotpluggable memory
3822          * regions */
3823         ram_top = spapr->hotplug_memory.base +
3824             memory_region_size(&spapr->hotplug_memory.mr);
3825     }
3826 
3827     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3828 
3829     if (index > max_index) {
3830         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3831                    max_index);
3832         return;
3833     }
3834 
3835     *buid = base_buid + index;
3836     for (i = 0; i < n_dma; ++i) {
3837         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3838     }
3839 
3840     phb_base = phb0_base + index * phb_spacing;
3841     *pio = phb_base + pio_offset;
3842     *mmio32 = phb_base + mmio_offset;
3843     /*
3844      * We don't set the 64-bit MMIO window, relying on the PHB's
3845      * fallback behaviour of automatically splitting a large "32-bit"
3846      * window into contiguous 32-bit and 64-bit windows
3847      */
3848 }
3849 
3850 static void spapr_machine_2_7_instance_options(MachineState *machine)
3851 {
3852     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3853 
3854     spapr_machine_2_8_instance_options(machine);
3855     spapr->use_hotplug_event_source = false;
3856 }
3857 
3858 static void spapr_machine_2_7_class_options(MachineClass *mc)
3859 {
3860     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3861 
3862     spapr_machine_2_8_class_options(mc);
3863     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
3864     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3865     smc->phb_placement = phb_placement_2_7;
3866 }
3867 
3868 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3869 
3870 /*
3871  * pseries-2.6
3872  */
3873 #define SPAPR_COMPAT_2_6 \
3874     HW_COMPAT_2_6 \
3875     { \
3876         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3877         .property = "ddw",\
3878         .value    = stringify(off),\
3879     },
3880 
3881 static void spapr_machine_2_6_instance_options(MachineState *machine)
3882 {
3883     spapr_machine_2_7_instance_options(machine);
3884 }
3885 
3886 static void spapr_machine_2_6_class_options(MachineClass *mc)
3887 {
3888     spapr_machine_2_7_class_options(mc);
3889     mc->has_hotpluggable_cpus = false;
3890     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3891 }
3892 
3893 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3894 
3895 /*
3896  * pseries-2.5
3897  */
3898 #define SPAPR_COMPAT_2_5 \
3899     HW_COMPAT_2_5 \
3900     { \
3901         .driver   = "spapr-vlan", \
3902         .property = "use-rx-buffer-pools", \
3903         .value    = "off", \
3904     },
3905 
3906 static void spapr_machine_2_5_instance_options(MachineState *machine)
3907 {
3908     spapr_machine_2_6_instance_options(machine);
3909 }
3910 
3911 static void spapr_machine_2_5_class_options(MachineClass *mc)
3912 {
3913     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3914 
3915     spapr_machine_2_6_class_options(mc);
3916     smc->use_ohci_by_default = true;
3917     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3918 }
3919 
3920 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3921 
3922 /*
3923  * pseries-2.4
3924  */
3925 #define SPAPR_COMPAT_2_4 \
3926         HW_COMPAT_2_4
3927 
3928 static void spapr_machine_2_4_instance_options(MachineState *machine)
3929 {
3930     spapr_machine_2_5_instance_options(machine);
3931 }
3932 
3933 static void spapr_machine_2_4_class_options(MachineClass *mc)
3934 {
3935     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3936 
3937     spapr_machine_2_5_class_options(mc);
3938     smc->dr_lmb_enabled = false;
3939     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3940 }
3941 
3942 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3943 
3944 /*
3945  * pseries-2.3
3946  */
3947 #define SPAPR_COMPAT_2_3 \
3948         HW_COMPAT_2_3 \
3949         {\
3950             .driver   = "spapr-pci-host-bridge",\
3951             .property = "dynamic-reconfiguration",\
3952             .value    = "off",\
3953         },
3954 
3955 static void spapr_machine_2_3_instance_options(MachineState *machine)
3956 {
3957     spapr_machine_2_4_instance_options(machine);
3958 }
3959 
3960 static void spapr_machine_2_3_class_options(MachineClass *mc)
3961 {
3962     spapr_machine_2_4_class_options(mc);
3963     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3964 }
3965 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3966 
3967 /*
3968  * pseries-2.2
3969  */
3970 
3971 #define SPAPR_COMPAT_2_2 \
3972         HW_COMPAT_2_2 \
3973         {\
3974             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3975             .property = "mem_win_size",\
3976             .value    = "0x20000000",\
3977         },
3978 
3979 static void spapr_machine_2_2_instance_options(MachineState *machine)
3980 {
3981     spapr_machine_2_3_instance_options(machine);
3982     machine->suppress_vmdesc = true;
3983 }
3984 
3985 static void spapr_machine_2_2_class_options(MachineClass *mc)
3986 {
3987     spapr_machine_2_3_class_options(mc);
3988     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3989 }
3990 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3991 
3992 /*
3993  * pseries-2.1
3994  */
3995 #define SPAPR_COMPAT_2_1 \
3996         HW_COMPAT_2_1
3997 
3998 static void spapr_machine_2_1_instance_options(MachineState *machine)
3999 {
4000     spapr_machine_2_2_instance_options(machine);
4001 }
4002 
4003 static void spapr_machine_2_1_class_options(MachineClass *mc)
4004 {
4005     spapr_machine_2_2_class_options(mc);
4006     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4007 }
4008 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4009 
4010 static void spapr_machine_register_types(void)
4011 {
4012     type_register_static(&spapr_machine_info);
4013 }
4014 
4015 type_init(spapr_machine_register_types)
4016