1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/ppc/xics.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "hw/usb.h" 67 #include "qemu/config-file.h" 68 #include "qemu/error-report.h" 69 #include "trace.h" 70 #include "hw/nmi.h" 71 #include "hw/intc/intc.h" 72 73 #include "hw/compat.h" 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "qmp-commands.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_XICP 0x00001111 101 102 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 103 const char *type_ics, 104 int nr_irqs, Error **errp) 105 { 106 Error *local_err = NULL; 107 Object *obj; 108 109 obj = object_new(type_ics); 110 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 111 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 112 &error_abort); 113 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 114 if (local_err) { 115 goto error; 116 } 117 object_property_set_bool(obj, true, "realized", &local_err); 118 if (local_err) { 119 goto error; 120 } 121 122 return ICS_SIMPLE(obj); 123 124 error: 125 error_propagate(errp, local_err); 126 return NULL; 127 } 128 129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 130 { 131 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 132 * and newer QEMUs don't even have them. In both cases, we don't want 133 * to send anything on the wire. 134 */ 135 return false; 136 } 137 138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 139 .name = "icp/server", 140 .version_id = 1, 141 .minimum_version_id = 1, 142 .needed = pre_2_10_vmstate_dummy_icp_needed, 143 .fields = (VMStateField[]) { 144 VMSTATE_UNUSED(4), /* uint32_t xirr */ 145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 146 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 147 VMSTATE_END_OF_LIST() 148 }, 149 }; 150 151 static void pre_2_10_vmstate_register_dummy_icp(int i) 152 { 153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 154 (void *)(uintptr_t) i); 155 } 156 157 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 158 { 159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 160 (void *)(uintptr_t) i); 161 } 162 163 static inline int xics_max_server_number(void) 164 { 165 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads); 166 } 167 168 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 169 { 170 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 171 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 172 173 if (kvm_enabled()) { 174 if (machine_kernel_irqchip_allowed(machine) && 175 !xics_kvm_init(spapr, errp)) { 176 spapr->icp_type = TYPE_KVM_ICP; 177 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 178 } 179 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 180 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 181 return; 182 } 183 } 184 185 if (!spapr->ics) { 186 xics_spapr_init(spapr); 187 spapr->icp_type = TYPE_ICP; 188 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 189 if (!spapr->ics) { 190 return; 191 } 192 } 193 194 if (smc->pre_2_10_has_unused_icps) { 195 int i; 196 197 for (i = 0; i < xics_max_server_number(); i++) { 198 /* Dummy entries get deregistered when real ICPState objects 199 * are registered during CPU core hotplug. 200 */ 201 pre_2_10_vmstate_register_dummy_icp(i); 202 } 203 } 204 } 205 206 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 207 int smt_threads) 208 { 209 int i, ret = 0; 210 uint32_t servers_prop[smt_threads]; 211 uint32_t gservers_prop[smt_threads * 2]; 212 int index = spapr_vcpu_id(cpu); 213 214 if (cpu->compat_pvr) { 215 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 216 if (ret < 0) { 217 return ret; 218 } 219 } 220 221 /* Build interrupt servers and gservers properties */ 222 for (i = 0; i < smt_threads; i++) { 223 servers_prop[i] = cpu_to_be32(index + i); 224 /* Hack, direct the group queues back to cpu 0 */ 225 gservers_prop[i*2] = cpu_to_be32(index + i); 226 gservers_prop[i*2 + 1] = 0; 227 } 228 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 229 servers_prop, sizeof(servers_prop)); 230 if (ret < 0) { 231 return ret; 232 } 233 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 234 gservers_prop, sizeof(gservers_prop)); 235 236 return ret; 237 } 238 239 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 240 { 241 int index = spapr_vcpu_id(cpu); 242 uint32_t associativity[] = {cpu_to_be32(0x5), 243 cpu_to_be32(0x0), 244 cpu_to_be32(0x0), 245 cpu_to_be32(0x0), 246 cpu_to_be32(cpu->node_id), 247 cpu_to_be32(index)}; 248 249 /* Advertise NUMA via ibm,associativity */ 250 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 251 sizeof(associativity)); 252 } 253 254 /* Populate the "ibm,pa-features" property */ 255 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset, 256 bool legacy_guest) 257 { 258 uint8_t pa_features_206[] = { 6, 0, 259 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 260 uint8_t pa_features_207[] = { 24, 0, 261 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 262 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 263 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 265 uint8_t pa_features_300[] = { 66, 0, 266 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 267 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 268 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 269 /* 6: DS207 */ 270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 271 /* 16: Vector */ 272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 273 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 274 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 275 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 276 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 277 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 278 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 279 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 281 /* 42: PM, 44: PC RA, 46: SC vec'd */ 282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 283 /* 48: SIMD, 50: QP BFP, 52: String */ 284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 285 /* 54: DecFP, 56: DecI, 58: SHA */ 286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 287 /* 60: NM atomic, 62: RNG */ 288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 289 }; 290 uint8_t *pa_features; 291 size_t pa_size; 292 293 switch (POWERPC_MMU_VER(env->mmu_model)) { 294 case POWERPC_MMU_VER_2_06: 295 pa_features = pa_features_206; 296 pa_size = sizeof(pa_features_206); 297 break; 298 case POWERPC_MMU_VER_2_07: 299 pa_features = pa_features_207; 300 pa_size = sizeof(pa_features_207); 301 break; 302 case POWERPC_MMU_VER_3_00: 303 pa_features = pa_features_300; 304 pa_size = sizeof(pa_features_300); 305 break; 306 default: 307 return; 308 } 309 310 if (env->ci_large_pages) { 311 /* 312 * Note: we keep CI large pages off by default because a 64K capable 313 * guest provisioned with large pages might otherwise try to map a qemu 314 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 315 * even if that qemu runs on a 4k host. 316 * We dd this bit back here if we are confident this is not an issue 317 */ 318 pa_features[3] |= 0x20; 319 } 320 if (kvmppc_has_cap_htm() && pa_size > 24) { 321 pa_features[24] |= 0x80; /* Transactional memory support */ 322 } 323 if (legacy_guest && pa_size > 40) { 324 /* Workaround for broken kernels that attempt (guest) radix 325 * mode when they can't handle it, if they see the radix bit set 326 * in pa-features. So hide it from them. */ 327 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 328 } 329 330 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 331 } 332 333 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 334 { 335 int ret = 0, offset, cpus_offset; 336 CPUState *cs; 337 char cpu_model[32]; 338 int smt = kvmppc_smt_threads(); 339 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 340 341 CPU_FOREACH(cs) { 342 PowerPCCPU *cpu = POWERPC_CPU(cs); 343 CPUPPCState *env = &cpu->env; 344 DeviceClass *dc = DEVICE_GET_CLASS(cs); 345 int index = spapr_vcpu_id(cpu); 346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 347 348 if ((index % smt) != 0) { 349 continue; 350 } 351 352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 353 354 cpus_offset = fdt_path_offset(fdt, "/cpus"); 355 if (cpus_offset < 0) { 356 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 357 if (cpus_offset < 0) { 358 return cpus_offset; 359 } 360 } 361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 362 if (offset < 0) { 363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 364 if (offset < 0) { 365 return offset; 366 } 367 } 368 369 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 370 pft_size_prop, sizeof(pft_size_prop)); 371 if (ret < 0) { 372 return ret; 373 } 374 375 if (nb_numa_nodes > 1) { 376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 377 if (ret < 0) { 378 return ret; 379 } 380 } 381 382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 383 if (ret < 0) { 384 return ret; 385 } 386 387 spapr_populate_pa_features(env, fdt, offset, 388 spapr->cas_legacy_guest_workaround); 389 } 390 return ret; 391 } 392 393 static hwaddr spapr_node0_size(MachineState *machine) 394 { 395 if (nb_numa_nodes) { 396 int i; 397 for (i = 0; i < nb_numa_nodes; ++i) { 398 if (numa_info[i].node_mem) { 399 return MIN(pow2floor(numa_info[i].node_mem), 400 machine->ram_size); 401 } 402 } 403 } 404 return machine->ram_size; 405 } 406 407 static void add_str(GString *s, const gchar *s1) 408 { 409 g_string_append_len(s, s1, strlen(s1) + 1); 410 } 411 412 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 413 hwaddr size) 414 { 415 uint32_t associativity[] = { 416 cpu_to_be32(0x4), /* length */ 417 cpu_to_be32(0x0), cpu_to_be32(0x0), 418 cpu_to_be32(0x0), cpu_to_be32(nodeid) 419 }; 420 char mem_name[32]; 421 uint64_t mem_reg_property[2]; 422 int off; 423 424 mem_reg_property[0] = cpu_to_be64(start); 425 mem_reg_property[1] = cpu_to_be64(size); 426 427 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 428 off = fdt_add_subnode(fdt, 0, mem_name); 429 _FDT(off); 430 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 431 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 432 sizeof(mem_reg_property)))); 433 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 434 sizeof(associativity)))); 435 return off; 436 } 437 438 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 439 { 440 MachineState *machine = MACHINE(spapr); 441 hwaddr mem_start, node_size; 442 int i, nb_nodes = nb_numa_nodes; 443 NodeInfo *nodes = numa_info; 444 NodeInfo ramnode; 445 446 /* No NUMA nodes, assume there is just one node with whole RAM */ 447 if (!nb_numa_nodes) { 448 nb_nodes = 1; 449 ramnode.node_mem = machine->ram_size; 450 nodes = &ramnode; 451 } 452 453 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 454 if (!nodes[i].node_mem) { 455 continue; 456 } 457 if (mem_start >= machine->ram_size) { 458 node_size = 0; 459 } else { 460 node_size = nodes[i].node_mem; 461 if (node_size > machine->ram_size - mem_start) { 462 node_size = machine->ram_size - mem_start; 463 } 464 } 465 if (!mem_start) { 466 /* ppc_spapr_init() checks for rma_size <= node0_size already */ 467 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 468 mem_start += spapr->rma_size; 469 node_size -= spapr->rma_size; 470 } 471 for ( ; node_size; ) { 472 hwaddr sizetmp = pow2floor(node_size); 473 474 /* mem_start != 0 here */ 475 if (ctzl(mem_start) < ctzl(sizetmp)) { 476 sizetmp = 1ULL << ctzl(mem_start); 477 } 478 479 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 480 node_size -= sizetmp; 481 mem_start += sizetmp; 482 } 483 } 484 485 return 0; 486 } 487 488 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 489 sPAPRMachineState *spapr) 490 { 491 PowerPCCPU *cpu = POWERPC_CPU(cs); 492 CPUPPCState *env = &cpu->env; 493 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 494 int index = spapr_vcpu_id(cpu); 495 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 496 0xffffffff, 0xffffffff}; 497 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 498 : SPAPR_TIMEBASE_FREQ; 499 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 500 uint32_t page_sizes_prop[64]; 501 size_t page_sizes_prop_size; 502 uint32_t vcpus_per_socket = smp_threads * smp_cores; 503 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 504 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu)); 505 sPAPRDRConnector *drc; 506 int drc_index; 507 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 508 int i; 509 510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 511 if (drc) { 512 drc_index = spapr_drc_index(drc); 513 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 514 } 515 516 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 517 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 518 519 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 520 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 521 env->dcache_line_size))); 522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 523 env->dcache_line_size))); 524 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 525 env->icache_line_size))); 526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 527 env->icache_line_size))); 528 529 if (pcc->l1_dcache_size) { 530 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 531 pcc->l1_dcache_size))); 532 } else { 533 warn_report("Unknown L1 dcache size for cpu"); 534 } 535 if (pcc->l1_icache_size) { 536 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 537 pcc->l1_icache_size))); 538 } else { 539 warn_report("Unknown L1 icache size for cpu"); 540 } 541 542 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 543 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 544 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 545 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 546 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 547 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 548 549 if (env->spr_cb[SPR_PURR].oea_read) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 551 } 552 553 if (env->mmu_model & POWERPC_MMU_1TSEG) { 554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 555 segs, sizeof(segs)))); 556 } 557 558 /* Advertise VMX/VSX (vector extensions) if available 559 * 0 / no property == no vector extensions 560 * 1 == VMX / Altivec available 561 * 2 == VSX available */ 562 if (env->insns_flags & PPC_ALTIVEC) { 563 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 564 565 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 566 } 567 568 /* Advertise DFP (Decimal Floating Point) if available 569 * 0 / no property == no DFP 570 * 1 == DFP available */ 571 if (env->insns_flags2 & PPC2_DFP) { 572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 573 } 574 575 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 576 sizeof(page_sizes_prop)); 577 if (page_sizes_prop_size) { 578 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 579 page_sizes_prop, page_sizes_prop_size))); 580 } 581 582 spapr_populate_pa_features(env, fdt, offset, false); 583 584 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 585 cs->cpu_index / vcpus_per_socket))); 586 587 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 588 pft_size_prop, sizeof(pft_size_prop)))); 589 590 if (nb_numa_nodes > 1) { 591 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 592 } 593 594 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 595 596 if (pcc->radix_page_info) { 597 for (i = 0; i < pcc->radix_page_info->count; i++) { 598 radix_AP_encodings[i] = 599 cpu_to_be32(pcc->radix_page_info->entries[i]); 600 } 601 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 602 radix_AP_encodings, 603 pcc->radix_page_info->count * 604 sizeof(radix_AP_encodings[0])))); 605 } 606 } 607 608 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 609 { 610 CPUState *cs; 611 int cpus_offset; 612 char *nodename; 613 int smt = kvmppc_smt_threads(); 614 615 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 616 _FDT(cpus_offset); 617 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 618 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 619 620 /* 621 * We walk the CPUs in reverse order to ensure that CPU DT nodes 622 * created by fdt_add_subnode() end up in the right order in FDT 623 * for the guest kernel the enumerate the CPUs correctly. 624 */ 625 CPU_FOREACH_REVERSE(cs) { 626 PowerPCCPU *cpu = POWERPC_CPU(cs); 627 int index = spapr_vcpu_id(cpu); 628 DeviceClass *dc = DEVICE_GET_CLASS(cs); 629 int offset; 630 631 if ((index % smt) != 0) { 632 continue; 633 } 634 635 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 636 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 637 g_free(nodename); 638 _FDT(offset); 639 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 640 } 641 642 } 643 644 /* 645 * Adds ibm,dynamic-reconfiguration-memory node. 646 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 647 * of this device tree node. 648 */ 649 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 650 { 651 MachineState *machine = MACHINE(spapr); 652 int ret, i, offset; 653 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 654 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 655 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 656 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 657 memory_region_size(&spapr->hotplug_memory.mr)) / 658 lmb_size; 659 uint32_t *int_buf, *cur_index, buf_len; 660 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 661 662 /* 663 * Don't create the node if there is no hotpluggable memory 664 */ 665 if (machine->ram_size == machine->maxram_size) { 666 return 0; 667 } 668 669 /* 670 * Allocate enough buffer size to fit in ibm,dynamic-memory 671 * or ibm,associativity-lookup-arrays 672 */ 673 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 674 * sizeof(uint32_t); 675 cur_index = int_buf = g_malloc0(buf_len); 676 677 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 678 679 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 680 sizeof(prop_lmb_size)); 681 if (ret < 0) { 682 goto out; 683 } 684 685 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 686 if (ret < 0) { 687 goto out; 688 } 689 690 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 691 if (ret < 0) { 692 goto out; 693 } 694 695 /* ibm,dynamic-memory */ 696 int_buf[0] = cpu_to_be32(nr_lmbs); 697 cur_index++; 698 for (i = 0; i < nr_lmbs; i++) { 699 uint64_t addr = i * lmb_size; 700 uint32_t *dynamic_memory = cur_index; 701 702 if (i >= hotplug_lmb_start) { 703 sPAPRDRConnector *drc; 704 705 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 706 g_assert(drc); 707 708 dynamic_memory[0] = cpu_to_be32(addr >> 32); 709 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 710 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 711 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 712 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL)); 713 if (memory_region_present(get_system_memory(), addr)) { 714 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 715 } else { 716 dynamic_memory[5] = cpu_to_be32(0); 717 } 718 } else { 719 /* 720 * LMB information for RMA, boot time RAM and gap b/n RAM and 721 * hotplug memory region -- all these are marked as reserved 722 * and as having no valid DRC. 723 */ 724 dynamic_memory[0] = cpu_to_be32(addr >> 32); 725 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 726 dynamic_memory[2] = cpu_to_be32(0); 727 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 728 dynamic_memory[4] = cpu_to_be32(-1); 729 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 730 SPAPR_LMB_FLAGS_DRC_INVALID); 731 } 732 733 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 734 } 735 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 736 if (ret < 0) { 737 goto out; 738 } 739 740 /* ibm,associativity-lookup-arrays */ 741 cur_index = int_buf; 742 int_buf[0] = cpu_to_be32(nr_nodes); 743 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 744 cur_index += 2; 745 for (i = 0; i < nr_nodes; i++) { 746 uint32_t associativity[] = { 747 cpu_to_be32(0x0), 748 cpu_to_be32(0x0), 749 cpu_to_be32(0x0), 750 cpu_to_be32(i) 751 }; 752 memcpy(cur_index, associativity, sizeof(associativity)); 753 cur_index += 4; 754 } 755 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 756 (cur_index - int_buf) * sizeof(uint32_t)); 757 out: 758 g_free(int_buf); 759 return ret; 760 } 761 762 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 763 sPAPROptionVector *ov5_updates) 764 { 765 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 766 int ret = 0, offset; 767 768 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 769 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 770 g_assert(smc->dr_lmb_enabled); 771 ret = spapr_populate_drconf_memory(spapr, fdt); 772 if (ret) { 773 goto out; 774 } 775 } 776 777 offset = fdt_path_offset(fdt, "/chosen"); 778 if (offset < 0) { 779 offset = fdt_add_subnode(fdt, 0, "chosen"); 780 if (offset < 0) { 781 return offset; 782 } 783 } 784 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 785 "ibm,architecture-vec-5"); 786 787 out: 788 return ret; 789 } 790 791 static bool spapr_hotplugged_dev_before_cas(void) 792 { 793 Object *drc_container, *obj; 794 ObjectProperty *prop; 795 ObjectPropertyIterator iter; 796 797 drc_container = container_get(object_get_root(), "/dr-connector"); 798 object_property_iter_init(&iter, drc_container); 799 while ((prop = object_property_iter_next(&iter))) { 800 if (!strstart(prop->type, "link<", NULL)) { 801 continue; 802 } 803 obj = object_property_get_link(drc_container, prop->name, NULL); 804 if (spapr_drc_needed(obj)) { 805 return true; 806 } 807 } 808 return false; 809 } 810 811 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 812 target_ulong addr, target_ulong size, 813 sPAPROptionVector *ov5_updates) 814 { 815 void *fdt, *fdt_skel; 816 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 817 818 if (spapr_hotplugged_dev_before_cas()) { 819 return 1; 820 } 821 822 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 823 error_report("SLOF provided an unexpected CAS buffer size " 824 TARGET_FMT_lu " (min: %zu, max: %u)", 825 size, sizeof(hdr), FW_MAX_SIZE); 826 exit(EXIT_FAILURE); 827 } 828 829 size -= sizeof(hdr); 830 831 /* Create skeleton */ 832 fdt_skel = g_malloc0(size); 833 _FDT((fdt_create(fdt_skel, size))); 834 _FDT((fdt_begin_node(fdt_skel, ""))); 835 _FDT((fdt_end_node(fdt_skel))); 836 _FDT((fdt_finish(fdt_skel))); 837 fdt = g_malloc0(size); 838 _FDT((fdt_open_into(fdt_skel, fdt, size))); 839 g_free(fdt_skel); 840 841 /* Fixup cpu nodes */ 842 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 843 844 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 845 return -1; 846 } 847 848 /* Pack resulting tree */ 849 _FDT((fdt_pack(fdt))); 850 851 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 852 trace_spapr_cas_failed(size); 853 return -1; 854 } 855 856 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 857 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 858 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 859 g_free(fdt); 860 861 return 0; 862 } 863 864 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 865 { 866 int rtas; 867 GString *hypertas = g_string_sized_new(256); 868 GString *qemu_hypertas = g_string_sized_new(256); 869 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 870 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 871 memory_region_size(&spapr->hotplug_memory.mr); 872 uint32_t lrdr_capacity[] = { 873 cpu_to_be32(max_hotplug_addr >> 32), 874 cpu_to_be32(max_hotplug_addr & 0xffffffff), 875 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 876 cpu_to_be32(max_cpus / smp_threads), 877 }; 878 879 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 880 881 /* hypertas */ 882 add_str(hypertas, "hcall-pft"); 883 add_str(hypertas, "hcall-term"); 884 add_str(hypertas, "hcall-dabr"); 885 add_str(hypertas, "hcall-interrupt"); 886 add_str(hypertas, "hcall-tce"); 887 add_str(hypertas, "hcall-vio"); 888 add_str(hypertas, "hcall-splpar"); 889 add_str(hypertas, "hcall-bulk"); 890 add_str(hypertas, "hcall-set-mode"); 891 add_str(hypertas, "hcall-sprg0"); 892 add_str(hypertas, "hcall-copy"); 893 add_str(hypertas, "hcall-debug"); 894 add_str(qemu_hypertas, "hcall-memop1"); 895 896 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 897 add_str(hypertas, "hcall-multi-tce"); 898 } 899 900 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 901 add_str(hypertas, "hcall-hpt-resize"); 902 } 903 904 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 905 hypertas->str, hypertas->len)); 906 g_string_free(hypertas, TRUE); 907 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 908 qemu_hypertas->str, qemu_hypertas->len)); 909 g_string_free(qemu_hypertas, TRUE); 910 911 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 912 refpoints, sizeof(refpoints))); 913 914 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 915 RTAS_ERROR_LOG_MAX)); 916 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 917 RTAS_EVENT_SCAN_RATE)); 918 919 if (msi_nonbroken) { 920 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 921 } 922 923 /* 924 * According to PAPR, rtas ibm,os-term does not guarantee a return 925 * back to the guest cpu. 926 * 927 * While an additional ibm,extended-os-term property indicates 928 * that rtas call return will always occur. Set this property. 929 */ 930 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 931 932 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 933 lrdr_capacity, sizeof(lrdr_capacity))); 934 935 spapr_dt_rtas_tokens(fdt, rtas); 936 } 937 938 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 939 * that the guest may request and thus the valid values for bytes 24..26 of 940 * option vector 5: */ 941 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 942 { 943 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 944 945 char val[2 * 4] = { 946 23, 0x00, /* Xive mode, filled in below. */ 947 24, 0x00, /* Hash/Radix, filled in below. */ 948 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 949 26, 0x40, /* Radix options: GTSE == yes. */ 950 }; 951 952 if (kvm_enabled()) { 953 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 954 val[3] = 0x80; /* OV5_MMU_BOTH */ 955 } else if (kvmppc_has_cap_mmu_radix()) { 956 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 957 } else { 958 val[3] = 0x00; /* Hash */ 959 } 960 } else { 961 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) { 962 /* V3 MMU supports both hash and radix (with dynamic switching) */ 963 val[3] = 0xC0; 964 } else { 965 /* Otherwise we can only do hash */ 966 val[3] = 0x00; 967 } 968 } 969 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 970 val, sizeof(val))); 971 } 972 973 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 974 { 975 MachineState *machine = MACHINE(spapr); 976 int chosen; 977 const char *boot_device = machine->boot_order; 978 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 979 size_t cb = 0; 980 char *bootlist = get_boot_devices_list(&cb, true); 981 982 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 983 984 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 985 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 986 spapr->initrd_base)); 987 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 988 spapr->initrd_base + spapr->initrd_size)); 989 990 if (spapr->kernel_size) { 991 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 992 cpu_to_be64(spapr->kernel_size) }; 993 994 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 995 &kprop, sizeof(kprop))); 996 if (spapr->kernel_le) { 997 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 998 } 999 } 1000 if (boot_menu) { 1001 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1002 } 1003 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1004 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1005 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1006 1007 if (cb && bootlist) { 1008 int i; 1009 1010 for (i = 0; i < cb; i++) { 1011 if (bootlist[i] == '\n') { 1012 bootlist[i] = ' '; 1013 } 1014 } 1015 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1016 } 1017 1018 if (boot_device && strlen(boot_device)) { 1019 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1020 } 1021 1022 if (!spapr->has_graphics && stdout_path) { 1023 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1024 } 1025 1026 spapr_dt_ov5_platform_support(fdt, chosen); 1027 1028 g_free(stdout_path); 1029 g_free(bootlist); 1030 } 1031 1032 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1033 { 1034 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1035 * KVM to work under pHyp with some guest co-operation */ 1036 int hypervisor; 1037 uint8_t hypercall[16]; 1038 1039 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1040 /* indicate KVM hypercall interface */ 1041 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1042 if (kvmppc_has_cap_fixup_hcalls()) { 1043 /* 1044 * Older KVM versions with older guest kernels were broken 1045 * with the magic page, don't allow the guest to map it. 1046 */ 1047 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1048 sizeof(hypercall))) { 1049 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1050 hypercall, sizeof(hypercall))); 1051 } 1052 } 1053 } 1054 1055 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1056 hwaddr rtas_addr, 1057 hwaddr rtas_size) 1058 { 1059 MachineState *machine = MACHINE(spapr); 1060 MachineClass *mc = MACHINE_GET_CLASS(machine); 1061 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1062 int ret; 1063 void *fdt; 1064 sPAPRPHBState *phb; 1065 char *buf; 1066 1067 fdt = g_malloc0(FDT_MAX_SIZE); 1068 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1069 1070 /* Root node */ 1071 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1072 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1073 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1074 1075 /* 1076 * Add info to guest to indentify which host is it being run on 1077 * and what is the uuid of the guest 1078 */ 1079 if (kvmppc_get_host_model(&buf)) { 1080 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1081 g_free(buf); 1082 } 1083 if (kvmppc_get_host_serial(&buf)) { 1084 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1085 g_free(buf); 1086 } 1087 1088 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1089 1090 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1091 if (qemu_uuid_set) { 1092 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1093 } 1094 g_free(buf); 1095 1096 if (qemu_get_vm_name()) { 1097 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1098 qemu_get_vm_name())); 1099 } 1100 1101 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1102 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1103 1104 /* /interrupt controller */ 1105 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP); 1106 1107 ret = spapr_populate_memory(spapr, fdt); 1108 if (ret < 0) { 1109 error_report("couldn't setup memory nodes in fdt"); 1110 exit(1); 1111 } 1112 1113 /* /vdevice */ 1114 spapr_dt_vdevice(spapr->vio_bus, fdt); 1115 1116 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1117 ret = spapr_rng_populate_dt(fdt); 1118 if (ret < 0) { 1119 error_report("could not set up rng device in the fdt"); 1120 exit(1); 1121 } 1122 } 1123 1124 QLIST_FOREACH(phb, &spapr->phbs, list) { 1125 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1126 if (ret < 0) { 1127 error_report("couldn't setup PCI devices in fdt"); 1128 exit(1); 1129 } 1130 } 1131 1132 /* cpus */ 1133 spapr_populate_cpus_dt_node(fdt, spapr); 1134 1135 if (smc->dr_lmb_enabled) { 1136 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1137 } 1138 1139 if (mc->has_hotpluggable_cpus) { 1140 int offset = fdt_path_offset(fdt, "/cpus"); 1141 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1142 SPAPR_DR_CONNECTOR_TYPE_CPU); 1143 if (ret < 0) { 1144 error_report("Couldn't set up CPU DR device tree properties"); 1145 exit(1); 1146 } 1147 } 1148 1149 /* /event-sources */ 1150 spapr_dt_events(spapr, fdt); 1151 1152 /* /rtas */ 1153 spapr_dt_rtas(spapr, fdt); 1154 1155 /* /chosen */ 1156 spapr_dt_chosen(spapr, fdt); 1157 1158 /* /hypervisor */ 1159 if (kvm_enabled()) { 1160 spapr_dt_hypervisor(spapr, fdt); 1161 } 1162 1163 /* Build memory reserve map */ 1164 if (spapr->kernel_size) { 1165 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1166 } 1167 if (spapr->initrd_size) { 1168 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1169 } 1170 1171 /* ibm,client-architecture-support updates */ 1172 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1173 if (ret < 0) { 1174 error_report("couldn't setup CAS properties fdt"); 1175 exit(1); 1176 } 1177 1178 return fdt; 1179 } 1180 1181 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1182 { 1183 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1184 } 1185 1186 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1187 PowerPCCPU *cpu) 1188 { 1189 CPUPPCState *env = &cpu->env; 1190 1191 /* The TCG path should also be holding the BQL at this point */ 1192 g_assert(qemu_mutex_iothread_locked()); 1193 1194 if (msr_pr) { 1195 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1196 env->gpr[3] = H_PRIVILEGE; 1197 } else { 1198 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1199 } 1200 } 1201 1202 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1203 { 1204 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1205 1206 return spapr->patb_entry; 1207 } 1208 1209 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1210 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1211 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1212 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1213 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1214 1215 /* 1216 * Get the fd to access the kernel htab, re-opening it if necessary 1217 */ 1218 static int get_htab_fd(sPAPRMachineState *spapr) 1219 { 1220 Error *local_err = NULL; 1221 1222 if (spapr->htab_fd >= 0) { 1223 return spapr->htab_fd; 1224 } 1225 1226 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1227 if (spapr->htab_fd < 0) { 1228 error_report_err(local_err); 1229 } 1230 1231 return spapr->htab_fd; 1232 } 1233 1234 void close_htab_fd(sPAPRMachineState *spapr) 1235 { 1236 if (spapr->htab_fd >= 0) { 1237 close(spapr->htab_fd); 1238 } 1239 spapr->htab_fd = -1; 1240 } 1241 1242 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1243 { 1244 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1245 1246 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1247 } 1248 1249 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1250 { 1251 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1252 1253 assert(kvm_enabled()); 1254 1255 if (!spapr->htab) { 1256 return 0; 1257 } 1258 1259 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1260 } 1261 1262 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1263 hwaddr ptex, int n) 1264 { 1265 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1266 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1267 1268 if (!spapr->htab) { 1269 /* 1270 * HTAB is controlled by KVM. Fetch into temporary buffer 1271 */ 1272 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1273 kvmppc_read_hptes(hptes, ptex, n); 1274 return hptes; 1275 } 1276 1277 /* 1278 * HTAB is controlled by QEMU. Just point to the internally 1279 * accessible PTEG. 1280 */ 1281 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1282 } 1283 1284 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1285 const ppc_hash_pte64_t *hptes, 1286 hwaddr ptex, int n) 1287 { 1288 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1289 1290 if (!spapr->htab) { 1291 g_free((void *)hptes); 1292 } 1293 1294 /* Nothing to do for qemu managed HPT */ 1295 } 1296 1297 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1298 uint64_t pte0, uint64_t pte1) 1299 { 1300 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1301 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1302 1303 if (!spapr->htab) { 1304 kvmppc_write_hpte(ptex, pte0, pte1); 1305 } else { 1306 stq_p(spapr->htab + offset, pte0); 1307 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1308 } 1309 } 1310 1311 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1312 { 1313 int shift; 1314 1315 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1316 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1317 * that's much more than is needed for Linux guests */ 1318 shift = ctz64(pow2ceil(ramsize)) - 7; 1319 shift = MAX(shift, 18); /* Minimum architected size */ 1320 shift = MIN(shift, 46); /* Maximum architected size */ 1321 return shift; 1322 } 1323 1324 void spapr_free_hpt(sPAPRMachineState *spapr) 1325 { 1326 g_free(spapr->htab); 1327 spapr->htab = NULL; 1328 spapr->htab_shift = 0; 1329 close_htab_fd(spapr); 1330 } 1331 1332 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1333 Error **errp) 1334 { 1335 long rc; 1336 1337 /* Clean up any HPT info from a previous boot */ 1338 spapr_free_hpt(spapr); 1339 1340 rc = kvmppc_reset_htab(shift); 1341 if (rc < 0) { 1342 /* kernel-side HPT needed, but couldn't allocate one */ 1343 error_setg_errno(errp, errno, 1344 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1345 shift); 1346 /* This is almost certainly fatal, but if the caller really 1347 * wants to carry on with shift == 0, it's welcome to try */ 1348 } else if (rc > 0) { 1349 /* kernel-side HPT allocated */ 1350 if (rc != shift) { 1351 error_setg(errp, 1352 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1353 shift, rc); 1354 } 1355 1356 spapr->htab_shift = shift; 1357 spapr->htab = NULL; 1358 } else { 1359 /* kernel-side HPT not needed, allocate in userspace instead */ 1360 size_t size = 1ULL << shift; 1361 int i; 1362 1363 spapr->htab = qemu_memalign(size, size); 1364 if (!spapr->htab) { 1365 error_setg_errno(errp, errno, 1366 "Could not allocate HPT of order %d", shift); 1367 return; 1368 } 1369 1370 memset(spapr->htab, 0, size); 1371 spapr->htab_shift = shift; 1372 1373 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1374 DIRTY_HPTE(HPTE(spapr->htab, i)); 1375 } 1376 } 1377 } 1378 1379 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1380 { 1381 int hpt_shift; 1382 1383 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1384 || (spapr->cas_reboot 1385 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1386 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1387 } else { 1388 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size); 1389 } 1390 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1391 1392 if (spapr->vrma_adjust) { 1393 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1394 spapr->htab_shift); 1395 } 1396 /* We're setting up a hash table, so that means we're not radix */ 1397 spapr->patb_entry = 0; 1398 } 1399 1400 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1401 { 1402 bool matched = false; 1403 1404 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1405 matched = true; 1406 } 1407 1408 if (!matched) { 1409 error_report("Device %s is not supported by this machine yet.", 1410 qdev_fw_name(DEVICE(sbdev))); 1411 exit(1); 1412 } 1413 } 1414 1415 static void ppc_spapr_reset(void) 1416 { 1417 MachineState *machine = MACHINE(qdev_get_machine()); 1418 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1419 PowerPCCPU *first_ppc_cpu; 1420 uint32_t rtas_limit; 1421 hwaddr rtas_addr, fdt_addr; 1422 void *fdt; 1423 int rc; 1424 1425 /* Check for unknown sysbus devices */ 1426 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1427 1428 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) { 1429 /* If using KVM with radix mode available, VCPUs can be started 1430 * without a HPT because KVM will start them in radix mode. 1431 * Set the GR bit in PATB so that we know there is no HPT. */ 1432 spapr->patb_entry = PATBE1_GR; 1433 } else { 1434 spapr_setup_hpt_and_vrma(spapr); 1435 } 1436 1437 qemu_devices_reset(); 1438 spapr_clear_pending_events(spapr); 1439 1440 /* 1441 * We place the device tree and RTAS just below either the top of the RMA, 1442 * or just below 2GB, whichever is lowere, so that it can be 1443 * processed with 32-bit real mode code if necessary 1444 */ 1445 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1446 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1447 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1448 1449 /* if this reset wasn't generated by CAS, we should reset our 1450 * negotiated options and start from scratch */ 1451 if (!spapr->cas_reboot) { 1452 spapr_ovec_cleanup(spapr->ov5_cas); 1453 spapr->ov5_cas = spapr_ovec_new(); 1454 1455 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1456 } 1457 1458 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1459 1460 spapr_load_rtas(spapr, fdt, rtas_addr); 1461 1462 rc = fdt_pack(fdt); 1463 1464 /* Should only fail if we've built a corrupted tree */ 1465 assert(rc == 0); 1466 1467 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1468 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1469 fdt_totalsize(fdt), FDT_MAX_SIZE); 1470 exit(1); 1471 } 1472 1473 /* Load the fdt */ 1474 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1475 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1476 g_free(fdt); 1477 1478 /* Set up the entry state */ 1479 first_ppc_cpu = POWERPC_CPU(first_cpu); 1480 first_ppc_cpu->env.gpr[3] = fdt_addr; 1481 first_ppc_cpu->env.gpr[5] = 0; 1482 first_cpu->halted = 0; 1483 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1484 1485 spapr->cas_reboot = false; 1486 } 1487 1488 static void spapr_create_nvram(sPAPRMachineState *spapr) 1489 { 1490 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1491 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1492 1493 if (dinfo) { 1494 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1495 &error_fatal); 1496 } 1497 1498 qdev_init_nofail(dev); 1499 1500 spapr->nvram = (struct sPAPRNVRAM *)dev; 1501 } 1502 1503 static void spapr_rtc_create(sPAPRMachineState *spapr) 1504 { 1505 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1506 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1507 &error_fatal); 1508 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1509 &error_fatal); 1510 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1511 "date", &error_fatal); 1512 } 1513 1514 /* Returns whether we want to use VGA or not */ 1515 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1516 { 1517 switch (vga_interface_type) { 1518 case VGA_NONE: 1519 return false; 1520 case VGA_DEVICE: 1521 return true; 1522 case VGA_STD: 1523 case VGA_VIRTIO: 1524 return pci_vga_init(pci_bus) != NULL; 1525 default: 1526 error_setg(errp, 1527 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1528 return false; 1529 } 1530 } 1531 1532 static int spapr_post_load(void *opaque, int version_id) 1533 { 1534 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1535 int err = 0; 1536 1537 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1538 CPUState *cs; 1539 CPU_FOREACH(cs) { 1540 PowerPCCPU *cpu = POWERPC_CPU(cs); 1541 icp_resend(ICP(cpu->intc)); 1542 } 1543 } 1544 1545 /* In earlier versions, there was no separate qdev for the PAPR 1546 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1547 * So when migrating from those versions, poke the incoming offset 1548 * value into the RTC device */ 1549 if (version_id < 3) { 1550 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1551 } 1552 1553 if (spapr->patb_entry) { 1554 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1555 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1556 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1557 1558 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1559 if (err) { 1560 error_report("Process table config unsupported by the host"); 1561 return -EINVAL; 1562 } 1563 } 1564 1565 return err; 1566 } 1567 1568 static bool version_before_3(void *opaque, int version_id) 1569 { 1570 return version_id < 3; 1571 } 1572 1573 static bool spapr_pending_events_needed(void *opaque) 1574 { 1575 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1576 return !QTAILQ_EMPTY(&spapr->pending_events); 1577 } 1578 1579 static const VMStateDescription vmstate_spapr_event_entry = { 1580 .name = "spapr_event_log_entry", 1581 .version_id = 1, 1582 .minimum_version_id = 1, 1583 .fields = (VMStateField[]) { 1584 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1585 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1586 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1587 NULL, extended_length), 1588 VMSTATE_END_OF_LIST() 1589 }, 1590 }; 1591 1592 static const VMStateDescription vmstate_spapr_pending_events = { 1593 .name = "spapr_pending_events", 1594 .version_id = 1, 1595 .minimum_version_id = 1, 1596 .needed = spapr_pending_events_needed, 1597 .fields = (VMStateField[]) { 1598 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1599 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1600 VMSTATE_END_OF_LIST() 1601 }, 1602 }; 1603 1604 static bool spapr_ov5_cas_needed(void *opaque) 1605 { 1606 sPAPRMachineState *spapr = opaque; 1607 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1608 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1609 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1610 bool cas_needed; 1611 1612 /* Prior to the introduction of sPAPROptionVector, we had two option 1613 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1614 * Both of these options encode machine topology into the device-tree 1615 * in such a way that the now-booted OS should still be able to interact 1616 * appropriately with QEMU regardless of what options were actually 1617 * negotiatied on the source side. 1618 * 1619 * As such, we can avoid migrating the CAS-negotiated options if these 1620 * are the only options available on the current machine/platform. 1621 * Since these are the only options available for pseries-2.7 and 1622 * earlier, this allows us to maintain old->new/new->old migration 1623 * compatibility. 1624 * 1625 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1626 * via default pseries-2.8 machines and explicit command-line parameters. 1627 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1628 * of the actual CAS-negotiated values to continue working properly. For 1629 * example, availability of memory unplug depends on knowing whether 1630 * OV5_HP_EVT was negotiated via CAS. 1631 * 1632 * Thus, for any cases where the set of available CAS-negotiatable 1633 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1634 * include the CAS-negotiated options in the migration stream. 1635 */ 1636 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1637 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1638 1639 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1640 * the mask itself since in the future it's possible "legacy" bits may be 1641 * removed via machine options, which could generate a false positive 1642 * that breaks migration. 1643 */ 1644 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1645 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1646 1647 spapr_ovec_cleanup(ov5_mask); 1648 spapr_ovec_cleanup(ov5_legacy); 1649 spapr_ovec_cleanup(ov5_removed); 1650 1651 return cas_needed; 1652 } 1653 1654 static const VMStateDescription vmstate_spapr_ov5_cas = { 1655 .name = "spapr_option_vector_ov5_cas", 1656 .version_id = 1, 1657 .minimum_version_id = 1, 1658 .needed = spapr_ov5_cas_needed, 1659 .fields = (VMStateField[]) { 1660 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1661 vmstate_spapr_ovec, sPAPROptionVector), 1662 VMSTATE_END_OF_LIST() 1663 }, 1664 }; 1665 1666 static bool spapr_patb_entry_needed(void *opaque) 1667 { 1668 sPAPRMachineState *spapr = opaque; 1669 1670 return !!spapr->patb_entry; 1671 } 1672 1673 static const VMStateDescription vmstate_spapr_patb_entry = { 1674 .name = "spapr_patb_entry", 1675 .version_id = 1, 1676 .minimum_version_id = 1, 1677 .needed = spapr_patb_entry_needed, 1678 .fields = (VMStateField[]) { 1679 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1680 VMSTATE_END_OF_LIST() 1681 }, 1682 }; 1683 1684 static const VMStateDescription vmstate_spapr = { 1685 .name = "spapr", 1686 .version_id = 3, 1687 .minimum_version_id = 1, 1688 .post_load = spapr_post_load, 1689 .fields = (VMStateField[]) { 1690 /* used to be @next_irq */ 1691 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1692 1693 /* RTC offset */ 1694 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1695 1696 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1697 VMSTATE_END_OF_LIST() 1698 }, 1699 .subsections = (const VMStateDescription*[]) { 1700 &vmstate_spapr_ov5_cas, 1701 &vmstate_spapr_patb_entry, 1702 &vmstate_spapr_pending_events, 1703 NULL 1704 } 1705 }; 1706 1707 static int htab_save_setup(QEMUFile *f, void *opaque) 1708 { 1709 sPAPRMachineState *spapr = opaque; 1710 1711 /* "Iteration" header */ 1712 if (!spapr->htab_shift) { 1713 qemu_put_be32(f, -1); 1714 } else { 1715 qemu_put_be32(f, spapr->htab_shift); 1716 } 1717 1718 if (spapr->htab) { 1719 spapr->htab_save_index = 0; 1720 spapr->htab_first_pass = true; 1721 } else { 1722 if (spapr->htab_shift) { 1723 assert(kvm_enabled()); 1724 } 1725 } 1726 1727 1728 return 0; 1729 } 1730 1731 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1732 int chunkstart, int n_valid, int n_invalid) 1733 { 1734 qemu_put_be32(f, chunkstart); 1735 qemu_put_be16(f, n_valid); 1736 qemu_put_be16(f, n_invalid); 1737 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1738 HASH_PTE_SIZE_64 * n_valid); 1739 } 1740 1741 static void htab_save_end_marker(QEMUFile *f) 1742 { 1743 qemu_put_be32(f, 0); 1744 qemu_put_be16(f, 0); 1745 qemu_put_be16(f, 0); 1746 } 1747 1748 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1749 int64_t max_ns) 1750 { 1751 bool has_timeout = max_ns != -1; 1752 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1753 int index = spapr->htab_save_index; 1754 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1755 1756 assert(spapr->htab_first_pass); 1757 1758 do { 1759 int chunkstart; 1760 1761 /* Consume invalid HPTEs */ 1762 while ((index < htabslots) 1763 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1764 CLEAN_HPTE(HPTE(spapr->htab, index)); 1765 index++; 1766 } 1767 1768 /* Consume valid HPTEs */ 1769 chunkstart = index; 1770 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1771 && HPTE_VALID(HPTE(spapr->htab, index))) { 1772 CLEAN_HPTE(HPTE(spapr->htab, index)); 1773 index++; 1774 } 1775 1776 if (index > chunkstart) { 1777 int n_valid = index - chunkstart; 1778 1779 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 1780 1781 if (has_timeout && 1782 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1783 break; 1784 } 1785 } 1786 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1787 1788 if (index >= htabslots) { 1789 assert(index == htabslots); 1790 index = 0; 1791 spapr->htab_first_pass = false; 1792 } 1793 spapr->htab_save_index = index; 1794 } 1795 1796 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1797 int64_t max_ns) 1798 { 1799 bool final = max_ns < 0; 1800 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1801 int examined = 0, sent = 0; 1802 int index = spapr->htab_save_index; 1803 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1804 1805 assert(!spapr->htab_first_pass); 1806 1807 do { 1808 int chunkstart, invalidstart; 1809 1810 /* Consume non-dirty HPTEs */ 1811 while ((index < htabslots) 1812 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1813 index++; 1814 examined++; 1815 } 1816 1817 chunkstart = index; 1818 /* Consume valid dirty HPTEs */ 1819 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1820 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1821 && HPTE_VALID(HPTE(spapr->htab, index))) { 1822 CLEAN_HPTE(HPTE(spapr->htab, index)); 1823 index++; 1824 examined++; 1825 } 1826 1827 invalidstart = index; 1828 /* Consume invalid dirty HPTEs */ 1829 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1830 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1831 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1832 CLEAN_HPTE(HPTE(spapr->htab, index)); 1833 index++; 1834 examined++; 1835 } 1836 1837 if (index > chunkstart) { 1838 int n_valid = invalidstart - chunkstart; 1839 int n_invalid = index - invalidstart; 1840 1841 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 1842 sent += index - chunkstart; 1843 1844 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1845 break; 1846 } 1847 } 1848 1849 if (examined >= htabslots) { 1850 break; 1851 } 1852 1853 if (index >= htabslots) { 1854 assert(index == htabslots); 1855 index = 0; 1856 } 1857 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1858 1859 if (index >= htabslots) { 1860 assert(index == htabslots); 1861 index = 0; 1862 } 1863 1864 spapr->htab_save_index = index; 1865 1866 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1867 } 1868 1869 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1870 #define MAX_KVM_BUF_SIZE 2048 1871 1872 static int htab_save_iterate(QEMUFile *f, void *opaque) 1873 { 1874 sPAPRMachineState *spapr = opaque; 1875 int fd; 1876 int rc = 0; 1877 1878 /* Iteration header */ 1879 if (!spapr->htab_shift) { 1880 qemu_put_be32(f, -1); 1881 return 1; 1882 } else { 1883 qemu_put_be32(f, 0); 1884 } 1885 1886 if (!spapr->htab) { 1887 assert(kvm_enabled()); 1888 1889 fd = get_htab_fd(spapr); 1890 if (fd < 0) { 1891 return fd; 1892 } 1893 1894 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 1895 if (rc < 0) { 1896 return rc; 1897 } 1898 } else if (spapr->htab_first_pass) { 1899 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 1900 } else { 1901 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 1902 } 1903 1904 htab_save_end_marker(f); 1905 1906 return rc; 1907 } 1908 1909 static int htab_save_complete(QEMUFile *f, void *opaque) 1910 { 1911 sPAPRMachineState *spapr = opaque; 1912 int fd; 1913 1914 /* Iteration header */ 1915 if (!spapr->htab_shift) { 1916 qemu_put_be32(f, -1); 1917 return 0; 1918 } else { 1919 qemu_put_be32(f, 0); 1920 } 1921 1922 if (!spapr->htab) { 1923 int rc; 1924 1925 assert(kvm_enabled()); 1926 1927 fd = get_htab_fd(spapr); 1928 if (fd < 0) { 1929 return fd; 1930 } 1931 1932 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 1933 if (rc < 0) { 1934 return rc; 1935 } 1936 } else { 1937 if (spapr->htab_first_pass) { 1938 htab_save_first_pass(f, spapr, -1); 1939 } 1940 htab_save_later_pass(f, spapr, -1); 1941 } 1942 1943 /* End marker */ 1944 htab_save_end_marker(f); 1945 1946 return 0; 1947 } 1948 1949 static int htab_load(QEMUFile *f, void *opaque, int version_id) 1950 { 1951 sPAPRMachineState *spapr = opaque; 1952 uint32_t section_hdr; 1953 int fd = -1; 1954 Error *local_err = NULL; 1955 1956 if (version_id < 1 || version_id > 1) { 1957 error_report("htab_load() bad version"); 1958 return -EINVAL; 1959 } 1960 1961 section_hdr = qemu_get_be32(f); 1962 1963 if (section_hdr == -1) { 1964 spapr_free_hpt(spapr); 1965 return 0; 1966 } 1967 1968 if (section_hdr) { 1969 /* First section gives the htab size */ 1970 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 1971 if (local_err) { 1972 error_report_err(local_err); 1973 return -EINVAL; 1974 } 1975 return 0; 1976 } 1977 1978 if (!spapr->htab) { 1979 assert(kvm_enabled()); 1980 1981 fd = kvmppc_get_htab_fd(true, 0, &local_err); 1982 if (fd < 0) { 1983 error_report_err(local_err); 1984 return fd; 1985 } 1986 } 1987 1988 while (true) { 1989 uint32_t index; 1990 uint16_t n_valid, n_invalid; 1991 1992 index = qemu_get_be32(f); 1993 n_valid = qemu_get_be16(f); 1994 n_invalid = qemu_get_be16(f); 1995 1996 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 1997 /* End of Stream */ 1998 break; 1999 } 2000 2001 if ((index + n_valid + n_invalid) > 2002 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2003 /* Bad index in stream */ 2004 error_report( 2005 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2006 index, n_valid, n_invalid, spapr->htab_shift); 2007 return -EINVAL; 2008 } 2009 2010 if (spapr->htab) { 2011 if (n_valid) { 2012 qemu_get_buffer(f, HPTE(spapr->htab, index), 2013 HASH_PTE_SIZE_64 * n_valid); 2014 } 2015 if (n_invalid) { 2016 memset(HPTE(spapr->htab, index + n_valid), 0, 2017 HASH_PTE_SIZE_64 * n_invalid); 2018 } 2019 } else { 2020 int rc; 2021 2022 assert(fd >= 0); 2023 2024 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2025 if (rc < 0) { 2026 return rc; 2027 } 2028 } 2029 } 2030 2031 if (!spapr->htab) { 2032 assert(fd >= 0); 2033 close(fd); 2034 } 2035 2036 return 0; 2037 } 2038 2039 static void htab_save_cleanup(void *opaque) 2040 { 2041 sPAPRMachineState *spapr = opaque; 2042 2043 close_htab_fd(spapr); 2044 } 2045 2046 static SaveVMHandlers savevm_htab_handlers = { 2047 .save_setup = htab_save_setup, 2048 .save_live_iterate = htab_save_iterate, 2049 .save_live_complete_precopy = htab_save_complete, 2050 .save_cleanup = htab_save_cleanup, 2051 .load_state = htab_load, 2052 }; 2053 2054 static void spapr_boot_set(void *opaque, const char *boot_device, 2055 Error **errp) 2056 { 2057 MachineState *machine = MACHINE(opaque); 2058 machine->boot_order = g_strdup(boot_device); 2059 } 2060 2061 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2062 { 2063 MachineState *machine = MACHINE(spapr); 2064 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2065 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2066 int i; 2067 2068 for (i = 0; i < nr_lmbs; i++) { 2069 uint64_t addr; 2070 2071 addr = i * lmb_size + spapr->hotplug_memory.base; 2072 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2073 addr / lmb_size); 2074 } 2075 } 2076 2077 /* 2078 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2079 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2080 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2081 */ 2082 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2083 { 2084 int i; 2085 2086 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2087 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2088 " is not aligned to %llu MiB", 2089 machine->ram_size, 2090 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2091 return; 2092 } 2093 2094 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2095 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2096 " is not aligned to %llu MiB", 2097 machine->ram_size, 2098 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2099 return; 2100 } 2101 2102 for (i = 0; i < nb_numa_nodes; i++) { 2103 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2104 error_setg(errp, 2105 "Node %d memory size 0x%" PRIx64 2106 " is not aligned to %llu MiB", 2107 i, numa_info[i].node_mem, 2108 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2109 return; 2110 } 2111 } 2112 } 2113 2114 /* find cpu slot in machine->possible_cpus by core_id */ 2115 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2116 { 2117 int index = id / smp_threads; 2118 2119 if (index >= ms->possible_cpus->len) { 2120 return NULL; 2121 } 2122 if (idx) { 2123 *idx = index; 2124 } 2125 return &ms->possible_cpus->cpus[index]; 2126 } 2127 2128 static void spapr_init_cpus(sPAPRMachineState *spapr) 2129 { 2130 MachineState *machine = MACHINE(spapr); 2131 MachineClass *mc = MACHINE_GET_CLASS(machine); 2132 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2133 int smt = kvmppc_smt_threads(); 2134 const CPUArchIdList *possible_cpus; 2135 int boot_cores_nr = smp_cpus / smp_threads; 2136 int i; 2137 2138 if (!type) { 2139 error_report("Unable to find sPAPR CPU Core definition"); 2140 exit(1); 2141 } 2142 2143 possible_cpus = mc->possible_cpu_arch_ids(machine); 2144 if (mc->has_hotpluggable_cpus) { 2145 if (smp_cpus % smp_threads) { 2146 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2147 smp_cpus, smp_threads); 2148 exit(1); 2149 } 2150 if (max_cpus % smp_threads) { 2151 error_report("max_cpus (%u) must be multiple of threads (%u)", 2152 max_cpus, smp_threads); 2153 exit(1); 2154 } 2155 } else { 2156 if (max_cpus != smp_cpus) { 2157 error_report("This machine version does not support CPU hotplug"); 2158 exit(1); 2159 } 2160 boot_cores_nr = possible_cpus->len; 2161 } 2162 2163 for (i = 0; i < possible_cpus->len; i++) { 2164 int core_id = i * smp_threads; 2165 2166 if (mc->has_hotpluggable_cpus) { 2167 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2168 (core_id / smp_threads) * smt); 2169 } 2170 2171 if (i < boot_cores_nr) { 2172 Object *core = object_new(type); 2173 int nr_threads = smp_threads; 2174 2175 /* Handle the partially filled core for older machine types */ 2176 if ((i + 1) * smp_threads >= smp_cpus) { 2177 nr_threads = smp_cpus - i * smp_threads; 2178 } 2179 2180 object_property_set_int(core, nr_threads, "nr-threads", 2181 &error_fatal); 2182 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2183 &error_fatal); 2184 object_property_set_bool(core, true, "realized", &error_fatal); 2185 } 2186 } 2187 } 2188 2189 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2190 { 2191 Error *local_err = NULL; 2192 bool vsmt_user = !!spapr->vsmt; 2193 int kvm_smt = kvmppc_smt_threads(); 2194 int ret; 2195 2196 if (!kvm_enabled() && (smp_threads > 1)) { 2197 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2198 "on a pseries machine"); 2199 goto out; 2200 } 2201 if (!is_power_of_2(smp_threads)) { 2202 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2203 "machine because it must be a power of 2", smp_threads); 2204 goto out; 2205 } 2206 2207 /* Detemine the VSMT mode to use: */ 2208 if (vsmt_user) { 2209 if (spapr->vsmt < smp_threads) { 2210 error_setg(&local_err, "Cannot support VSMT mode %d" 2211 " because it must be >= threads/core (%d)", 2212 spapr->vsmt, smp_threads); 2213 goto out; 2214 } 2215 /* In this case, spapr->vsmt has been set by the command line */ 2216 } else { 2217 /* Choose a VSMT mode that may be higher than necessary but is 2218 * likely to be compatible with hosts that don't have VSMT. */ 2219 spapr->vsmt = MAX(kvm_smt, smp_threads); 2220 } 2221 2222 /* KVM: If necessary, set the SMT mode: */ 2223 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2224 ret = kvmppc_set_smt_threads(spapr->vsmt); 2225 if (ret) { 2226 error_setg(&local_err, 2227 "Failed to set KVM's VSMT mode to %d (errno %d)", 2228 spapr->vsmt, ret); 2229 if (!vsmt_user) { 2230 error_append_hint(&local_err, "On PPC, a VM with %d threads/" 2231 "core on a host with %d threads/core requires " 2232 " the use of VSMT mode %d.\n", 2233 smp_threads, kvm_smt, spapr->vsmt); 2234 } 2235 kvmppc_hint_smt_possible(&local_err); 2236 goto out; 2237 } 2238 } 2239 /* else TCG: nothing to do currently */ 2240 out: 2241 error_propagate(errp, local_err); 2242 } 2243 2244 /* pSeries LPAR / sPAPR hardware init */ 2245 static void ppc_spapr_init(MachineState *machine) 2246 { 2247 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2248 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2249 const char *kernel_filename = machine->kernel_filename; 2250 const char *initrd_filename = machine->initrd_filename; 2251 PCIHostState *phb; 2252 int i; 2253 MemoryRegion *sysmem = get_system_memory(); 2254 MemoryRegion *ram = g_new(MemoryRegion, 1); 2255 MemoryRegion *rma_region; 2256 void *rma = NULL; 2257 hwaddr rma_alloc_size; 2258 hwaddr node0_size = spapr_node0_size(machine); 2259 long load_limit, fw_size; 2260 char *filename; 2261 Error *resize_hpt_err = NULL; 2262 2263 msi_nonbroken = true; 2264 2265 QLIST_INIT(&spapr->phbs); 2266 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2267 2268 /* Check HPT resizing availability */ 2269 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2270 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2271 /* 2272 * If the user explicitly requested a mode we should either 2273 * supply it, or fail completely (which we do below). But if 2274 * it's not set explicitly, we reset our mode to something 2275 * that works 2276 */ 2277 if (resize_hpt_err) { 2278 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2279 error_free(resize_hpt_err); 2280 resize_hpt_err = NULL; 2281 } else { 2282 spapr->resize_hpt = smc->resize_hpt_default; 2283 } 2284 } 2285 2286 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2287 2288 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2289 /* 2290 * User requested HPT resize, but this host can't supply it. Bail out 2291 */ 2292 error_report_err(resize_hpt_err); 2293 exit(1); 2294 } 2295 2296 /* Allocate RMA if necessary */ 2297 rma_alloc_size = kvmppc_alloc_rma(&rma); 2298 2299 if (rma_alloc_size == -1) { 2300 error_report("Unable to create RMA"); 2301 exit(1); 2302 } 2303 2304 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2305 spapr->rma_size = rma_alloc_size; 2306 } else { 2307 spapr->rma_size = node0_size; 2308 2309 /* With KVM, we don't actually know whether KVM supports an 2310 * unbounded RMA (PR KVM) or is limited by the hash table size 2311 * (HV KVM using VRMA), so we always assume the latter 2312 * 2313 * In that case, we also limit the initial allocations for RTAS 2314 * etc... to 256M since we have no way to know what the VRMA size 2315 * is going to be as it depends on the size of the hash table 2316 * isn't determined yet. 2317 */ 2318 if (kvm_enabled()) { 2319 spapr->vrma_adjust = 1; 2320 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2321 } 2322 2323 /* Actually we don't support unbounded RMA anymore since we 2324 * added proper emulation of HV mode. The max we can get is 2325 * 16G which also happens to be what we configure for PAPR 2326 * mode so make sure we don't do anything bigger than that 2327 */ 2328 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2329 } 2330 2331 if (spapr->rma_size > node0_size) { 2332 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2333 spapr->rma_size); 2334 exit(1); 2335 } 2336 2337 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2338 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2339 2340 /* Set up Interrupt Controller before we create the VCPUs */ 2341 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2342 2343 /* Set up containers for ibm,client-architecture-support negotiated options 2344 */ 2345 spapr->ov5 = spapr_ovec_new(); 2346 spapr->ov5_cas = spapr_ovec_new(); 2347 2348 if (smc->dr_lmb_enabled) { 2349 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2350 spapr_validate_node_memory(machine, &error_fatal); 2351 } 2352 2353 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2354 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { 2355 /* KVM and TCG always allow GTSE with radix... */ 2356 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2357 } 2358 /* ... but not with hash (currently). */ 2359 2360 /* advertise support for dedicated HP event source to guests */ 2361 if (spapr->use_hotplug_event_source) { 2362 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2363 } 2364 2365 /* advertise support for HPT resizing */ 2366 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2367 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2368 } 2369 2370 /* init CPUs */ 2371 spapr_set_vsmt_mode(spapr, &error_fatal); 2372 2373 spapr_init_cpus(spapr); 2374 2375 if (kvm_enabled()) { 2376 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2377 kvmppc_enable_logical_ci_hcalls(); 2378 kvmppc_enable_set_mode_hcall(); 2379 2380 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2381 kvmppc_enable_clear_ref_mod_hcalls(); 2382 } 2383 2384 /* allocate RAM */ 2385 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2386 machine->ram_size); 2387 memory_region_add_subregion(sysmem, 0, ram); 2388 2389 if (rma_alloc_size && rma) { 2390 rma_region = g_new(MemoryRegion, 1); 2391 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2392 rma_alloc_size, rma); 2393 vmstate_register_ram_global(rma_region); 2394 memory_region_add_subregion(sysmem, 0, rma_region); 2395 } 2396 2397 /* initialize hotplug memory address space */ 2398 if (machine->ram_size < machine->maxram_size) { 2399 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2400 /* 2401 * Limit the number of hotpluggable memory slots to half the number 2402 * slots that KVM supports, leaving the other half for PCI and other 2403 * devices. However ensure that number of slots doesn't drop below 32. 2404 */ 2405 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2406 SPAPR_MAX_RAM_SLOTS; 2407 2408 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2409 max_memslots = SPAPR_MAX_RAM_SLOTS; 2410 } 2411 if (machine->ram_slots > max_memslots) { 2412 error_report("Specified number of memory slots %" 2413 PRIu64" exceeds max supported %d", 2414 machine->ram_slots, max_memslots); 2415 exit(1); 2416 } 2417 2418 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2419 SPAPR_HOTPLUG_MEM_ALIGN); 2420 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2421 "hotplug-memory", hotplug_mem_size); 2422 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2423 &spapr->hotplug_memory.mr); 2424 } 2425 2426 if (smc->dr_lmb_enabled) { 2427 spapr_create_lmb_dr_connectors(spapr); 2428 } 2429 2430 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2431 if (!filename) { 2432 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2433 exit(1); 2434 } 2435 spapr->rtas_size = get_image_size(filename); 2436 if (spapr->rtas_size < 0) { 2437 error_report("Could not get size of LPAR rtas '%s'", filename); 2438 exit(1); 2439 } 2440 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2441 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2442 error_report("Could not load LPAR rtas '%s'", filename); 2443 exit(1); 2444 } 2445 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2446 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2447 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2448 exit(1); 2449 } 2450 g_free(filename); 2451 2452 /* Set up RTAS event infrastructure */ 2453 spapr_events_init(spapr); 2454 2455 /* Set up the RTC RTAS interfaces */ 2456 spapr_rtc_create(spapr); 2457 2458 /* Set up VIO bus */ 2459 spapr->vio_bus = spapr_vio_bus_init(); 2460 2461 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2462 if (serial_hds[i]) { 2463 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2464 } 2465 } 2466 2467 /* We always have at least the nvram device on VIO */ 2468 spapr_create_nvram(spapr); 2469 2470 /* Set up PCI */ 2471 spapr_pci_rtas_init(); 2472 2473 phb = spapr_create_phb(spapr, 0); 2474 2475 for (i = 0; i < nb_nics; i++) { 2476 NICInfo *nd = &nd_table[i]; 2477 2478 if (!nd->model) { 2479 nd->model = g_strdup("ibmveth"); 2480 } 2481 2482 if (strcmp(nd->model, "ibmveth") == 0) { 2483 spapr_vlan_create(spapr->vio_bus, nd); 2484 } else { 2485 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2486 } 2487 } 2488 2489 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2490 spapr_vscsi_create(spapr->vio_bus); 2491 } 2492 2493 /* Graphics */ 2494 if (spapr_vga_init(phb->bus, &error_fatal)) { 2495 spapr->has_graphics = true; 2496 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2497 } 2498 2499 if (machine->usb) { 2500 if (smc->use_ohci_by_default) { 2501 pci_create_simple(phb->bus, -1, "pci-ohci"); 2502 } else { 2503 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2504 } 2505 2506 if (spapr->has_graphics) { 2507 USBBus *usb_bus = usb_bus_find(-1); 2508 2509 usb_create_simple(usb_bus, "usb-kbd"); 2510 usb_create_simple(usb_bus, "usb-mouse"); 2511 } 2512 } 2513 2514 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2515 error_report( 2516 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2517 MIN_RMA_SLOF); 2518 exit(1); 2519 } 2520 2521 if (kernel_filename) { 2522 uint64_t lowaddr = 0; 2523 2524 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2525 NULL, NULL, &lowaddr, NULL, 1, 2526 PPC_ELF_MACHINE, 0, 0); 2527 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2528 spapr->kernel_size = load_elf(kernel_filename, 2529 translate_kernel_address, NULL, NULL, 2530 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2531 0, 0); 2532 spapr->kernel_le = spapr->kernel_size > 0; 2533 } 2534 if (spapr->kernel_size < 0) { 2535 error_report("error loading %s: %s", kernel_filename, 2536 load_elf_strerror(spapr->kernel_size)); 2537 exit(1); 2538 } 2539 2540 /* load initrd */ 2541 if (initrd_filename) { 2542 /* Try to locate the initrd in the gap between the kernel 2543 * and the firmware. Add a bit of space just in case 2544 */ 2545 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2546 + 0x1ffff) & ~0xffff; 2547 spapr->initrd_size = load_image_targphys(initrd_filename, 2548 spapr->initrd_base, 2549 load_limit 2550 - spapr->initrd_base); 2551 if (spapr->initrd_size < 0) { 2552 error_report("could not load initial ram disk '%s'", 2553 initrd_filename); 2554 exit(1); 2555 } 2556 } 2557 } 2558 2559 if (bios_name == NULL) { 2560 bios_name = FW_FILE_NAME; 2561 } 2562 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2563 if (!filename) { 2564 error_report("Could not find LPAR firmware '%s'", bios_name); 2565 exit(1); 2566 } 2567 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2568 if (fw_size <= 0) { 2569 error_report("Could not load LPAR firmware '%s'", filename); 2570 exit(1); 2571 } 2572 g_free(filename); 2573 2574 /* FIXME: Should register things through the MachineState's qdev 2575 * interface, this is a legacy from the sPAPREnvironment structure 2576 * which predated MachineState but had a similar function */ 2577 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2578 register_savevm_live(NULL, "spapr/htab", -1, 1, 2579 &savevm_htab_handlers, spapr); 2580 2581 qemu_register_boot_set(spapr_boot_set, spapr); 2582 2583 if (kvm_enabled()) { 2584 /* to stop and start vmclock */ 2585 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2586 &spapr->tb); 2587 2588 kvmppc_spapr_enable_inkernel_multitce(); 2589 } 2590 } 2591 2592 static int spapr_kvm_type(const char *vm_type) 2593 { 2594 if (!vm_type) { 2595 return 0; 2596 } 2597 2598 if (!strcmp(vm_type, "HV")) { 2599 return 1; 2600 } 2601 2602 if (!strcmp(vm_type, "PR")) { 2603 return 2; 2604 } 2605 2606 error_report("Unknown kvm-type specified '%s'", vm_type); 2607 exit(1); 2608 } 2609 2610 /* 2611 * Implementation of an interface to adjust firmware path 2612 * for the bootindex property handling. 2613 */ 2614 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2615 DeviceState *dev) 2616 { 2617 #define CAST(type, obj, name) \ 2618 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2619 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2620 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2621 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2622 2623 if (d) { 2624 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2625 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2626 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2627 2628 if (spapr) { 2629 /* 2630 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2631 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2632 * in the top 16 bits of the 64-bit LUN 2633 */ 2634 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2635 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2636 (uint64_t)id << 48); 2637 } else if (virtio) { 2638 /* 2639 * We use SRP luns of the form 01000000 | (target << 8) | lun 2640 * in the top 32 bits of the 64-bit LUN 2641 * Note: the quote above is from SLOF and it is wrong, 2642 * the actual binding is: 2643 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2644 */ 2645 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2646 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2647 (uint64_t)id << 32); 2648 } else if (usb) { 2649 /* 2650 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2651 * in the top 32 bits of the 64-bit LUN 2652 */ 2653 unsigned usb_port = atoi(usb->port->path); 2654 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2655 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2656 (uint64_t)id << 32); 2657 } 2658 } 2659 2660 /* 2661 * SLOF probes the USB devices, and if it recognizes that the device is a 2662 * storage device, it changes its name to "storage" instead of "usb-host", 2663 * and additionally adds a child node for the SCSI LUN, so the correct 2664 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2665 */ 2666 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2667 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2668 if (usb_host_dev_is_scsi_storage(usbdev)) { 2669 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2670 } 2671 } 2672 2673 if (phb) { 2674 /* Replace "pci" with "pci@800000020000000" */ 2675 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2676 } 2677 2678 if (vsc) { 2679 /* Same logic as virtio above */ 2680 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2681 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2682 } 2683 2684 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2685 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2686 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2687 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2688 } 2689 2690 return NULL; 2691 } 2692 2693 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2694 { 2695 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2696 2697 return g_strdup(spapr->kvm_type); 2698 } 2699 2700 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2701 { 2702 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2703 2704 g_free(spapr->kvm_type); 2705 spapr->kvm_type = g_strdup(value); 2706 } 2707 2708 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2709 { 2710 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2711 2712 return spapr->use_hotplug_event_source; 2713 } 2714 2715 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2716 Error **errp) 2717 { 2718 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2719 2720 spapr->use_hotplug_event_source = value; 2721 } 2722 2723 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2724 { 2725 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2726 2727 switch (spapr->resize_hpt) { 2728 case SPAPR_RESIZE_HPT_DEFAULT: 2729 return g_strdup("default"); 2730 case SPAPR_RESIZE_HPT_DISABLED: 2731 return g_strdup("disabled"); 2732 case SPAPR_RESIZE_HPT_ENABLED: 2733 return g_strdup("enabled"); 2734 case SPAPR_RESIZE_HPT_REQUIRED: 2735 return g_strdup("required"); 2736 } 2737 g_assert_not_reached(); 2738 } 2739 2740 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 2741 { 2742 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2743 2744 if (strcmp(value, "default") == 0) { 2745 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 2746 } else if (strcmp(value, "disabled") == 0) { 2747 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2748 } else if (strcmp(value, "enabled") == 0) { 2749 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 2750 } else if (strcmp(value, "required") == 0) { 2751 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 2752 } else { 2753 error_setg(errp, "Bad value for \"resize-hpt\" property"); 2754 } 2755 } 2756 2757 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 2758 void *opaque, Error **errp) 2759 { 2760 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 2761 } 2762 2763 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 2764 void *opaque, Error **errp) 2765 { 2766 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 2767 } 2768 2769 static void spapr_machine_initfn(Object *obj) 2770 { 2771 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2772 2773 spapr->htab_fd = -1; 2774 spapr->use_hotplug_event_source = true; 2775 object_property_add_str(obj, "kvm-type", 2776 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2777 object_property_set_description(obj, "kvm-type", 2778 "Specifies the KVM virtualization mode (HV, PR)", 2779 NULL); 2780 object_property_add_bool(obj, "modern-hotplug-events", 2781 spapr_get_modern_hotplug_events, 2782 spapr_set_modern_hotplug_events, 2783 NULL); 2784 object_property_set_description(obj, "modern-hotplug-events", 2785 "Use dedicated hotplug event mechanism in" 2786 " place of standard EPOW events when possible" 2787 " (required for memory hot-unplug support)", 2788 NULL); 2789 2790 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 2791 "Maximum permitted CPU compatibility mode", 2792 &error_fatal); 2793 2794 object_property_add_str(obj, "resize-hpt", 2795 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 2796 object_property_set_description(obj, "resize-hpt", 2797 "Resizing of the Hash Page Table (enabled, disabled, required)", 2798 NULL); 2799 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 2800 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 2801 object_property_set_description(obj, "vsmt", 2802 "Virtual SMT: KVM behaves as if this were" 2803 " the host's SMT mode", &error_abort); 2804 } 2805 2806 static void spapr_machine_finalizefn(Object *obj) 2807 { 2808 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2809 2810 g_free(spapr->kvm_type); 2811 } 2812 2813 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2814 { 2815 cpu_synchronize_state(cs); 2816 ppc_cpu_do_system_reset(cs); 2817 } 2818 2819 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2820 { 2821 CPUState *cs; 2822 2823 CPU_FOREACH(cs) { 2824 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2825 } 2826 } 2827 2828 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2829 uint32_t node, bool dedicated_hp_event_source, 2830 Error **errp) 2831 { 2832 sPAPRDRConnector *drc; 2833 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2834 int i, fdt_offset, fdt_size; 2835 void *fdt; 2836 uint64_t addr = addr_start; 2837 bool hotplugged = spapr_drc_hotplugged(dev); 2838 Error *local_err = NULL; 2839 2840 for (i = 0; i < nr_lmbs; i++) { 2841 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2842 addr / SPAPR_MEMORY_BLOCK_SIZE); 2843 g_assert(drc); 2844 2845 fdt = create_device_tree(&fdt_size); 2846 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2847 SPAPR_MEMORY_BLOCK_SIZE); 2848 2849 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 2850 if (local_err) { 2851 while (addr > addr_start) { 2852 addr -= SPAPR_MEMORY_BLOCK_SIZE; 2853 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2854 addr / SPAPR_MEMORY_BLOCK_SIZE); 2855 spapr_drc_detach(drc); 2856 } 2857 g_free(fdt); 2858 error_propagate(errp, local_err); 2859 return; 2860 } 2861 if (!hotplugged) { 2862 spapr_drc_reset(drc); 2863 } 2864 addr += SPAPR_MEMORY_BLOCK_SIZE; 2865 } 2866 /* send hotplug notification to the 2867 * guest only in case of hotplugged memory 2868 */ 2869 if (hotplugged) { 2870 if (dedicated_hp_event_source) { 2871 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2872 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 2873 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 2874 nr_lmbs, 2875 spapr_drc_index(drc)); 2876 } else { 2877 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 2878 nr_lmbs); 2879 } 2880 } 2881 } 2882 2883 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2884 uint32_t node, Error **errp) 2885 { 2886 Error *local_err = NULL; 2887 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 2888 PCDIMMDevice *dimm = PC_DIMM(dev); 2889 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2890 MemoryRegion *mr; 2891 uint64_t align, size, addr; 2892 2893 mr = ddc->get_memory_region(dimm, &local_err); 2894 if (local_err) { 2895 goto out; 2896 } 2897 align = memory_region_get_alignment(mr); 2898 size = memory_region_size(mr); 2899 2900 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 2901 if (local_err) { 2902 goto out; 2903 } 2904 2905 addr = object_property_get_uint(OBJECT(dimm), 2906 PC_DIMM_ADDR_PROP, &local_err); 2907 if (local_err) { 2908 goto out_unplug; 2909 } 2910 2911 spapr_add_lmbs(dev, addr, size, node, 2912 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 2913 &local_err); 2914 if (local_err) { 2915 goto out_unplug; 2916 } 2917 2918 return; 2919 2920 out_unplug: 2921 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 2922 out: 2923 error_propagate(errp, local_err); 2924 } 2925 2926 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 2927 Error **errp) 2928 { 2929 PCDIMMDevice *dimm = PC_DIMM(dev); 2930 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 2931 MemoryRegion *mr; 2932 uint64_t size; 2933 char *mem_dev; 2934 2935 mr = ddc->get_memory_region(dimm, errp); 2936 if (!mr) { 2937 return; 2938 } 2939 size = memory_region_size(mr); 2940 2941 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 2942 error_setg(errp, "Hotplugged memory size must be a multiple of " 2943 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2944 return; 2945 } 2946 2947 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 2948 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 2949 error_setg(errp, "Memory backend has bad page size. " 2950 "Use 'memory-backend-file' with correct mem-path."); 2951 goto out; 2952 } 2953 2954 out: 2955 g_free(mem_dev); 2956 } 2957 2958 struct sPAPRDIMMState { 2959 PCDIMMDevice *dimm; 2960 uint32_t nr_lmbs; 2961 QTAILQ_ENTRY(sPAPRDIMMState) next; 2962 }; 2963 2964 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 2965 PCDIMMDevice *dimm) 2966 { 2967 sPAPRDIMMState *dimm_state = NULL; 2968 2969 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 2970 if (dimm_state->dimm == dimm) { 2971 break; 2972 } 2973 } 2974 return dimm_state; 2975 } 2976 2977 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 2978 uint32_t nr_lmbs, 2979 PCDIMMDevice *dimm) 2980 { 2981 sPAPRDIMMState *ds = NULL; 2982 2983 /* 2984 * If this request is for a DIMM whose removal had failed earlier 2985 * (due to guest's refusal to remove the LMBs), we would have this 2986 * dimm already in the pending_dimm_unplugs list. In that 2987 * case don't add again. 2988 */ 2989 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 2990 if (!ds) { 2991 ds = g_malloc0(sizeof(sPAPRDIMMState)); 2992 ds->nr_lmbs = nr_lmbs; 2993 ds->dimm = dimm; 2994 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 2995 } 2996 return ds; 2997 } 2998 2999 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3000 sPAPRDIMMState *dimm_state) 3001 { 3002 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3003 g_free(dimm_state); 3004 } 3005 3006 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3007 PCDIMMDevice *dimm) 3008 { 3009 sPAPRDRConnector *drc; 3010 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3011 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3012 uint64_t size = memory_region_size(mr); 3013 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3014 uint32_t avail_lmbs = 0; 3015 uint64_t addr_start, addr; 3016 int i; 3017 3018 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3019 &error_abort); 3020 3021 addr = addr_start; 3022 for (i = 0; i < nr_lmbs; i++) { 3023 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3024 addr / SPAPR_MEMORY_BLOCK_SIZE); 3025 g_assert(drc); 3026 if (drc->dev) { 3027 avail_lmbs++; 3028 } 3029 addr += SPAPR_MEMORY_BLOCK_SIZE; 3030 } 3031 3032 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3033 } 3034 3035 /* Callback to be called during DRC release. */ 3036 void spapr_lmb_release(DeviceState *dev) 3037 { 3038 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev)); 3039 PCDIMMDevice *dimm = PC_DIMM(dev); 3040 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3041 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3042 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3043 3044 /* This information will get lost if a migration occurs 3045 * during the unplug process. In this case recover it. */ 3046 if (ds == NULL) { 3047 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3048 g_assert(ds); 3049 /* The DRC being examined by the caller at least must be counted */ 3050 g_assert(ds->nr_lmbs); 3051 } 3052 3053 if (--ds->nr_lmbs) { 3054 return; 3055 } 3056 3057 /* 3058 * Now that all the LMBs have been removed by the guest, call the 3059 * pc-dimm unplug handler to cleanup up the pc-dimm device. 3060 */ 3061 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr); 3062 object_unparent(OBJECT(dev)); 3063 spapr_pending_dimm_unplugs_remove(spapr, ds); 3064 } 3065 3066 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3067 DeviceState *dev, Error **errp) 3068 { 3069 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3070 Error *local_err = NULL; 3071 PCDIMMDevice *dimm = PC_DIMM(dev); 3072 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3073 MemoryRegion *mr; 3074 uint32_t nr_lmbs; 3075 uint64_t size, addr_start, addr; 3076 int i; 3077 sPAPRDRConnector *drc; 3078 3079 mr = ddc->get_memory_region(dimm, &local_err); 3080 if (local_err) { 3081 goto out; 3082 } 3083 size = memory_region_size(mr); 3084 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3085 3086 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3087 &local_err); 3088 if (local_err) { 3089 goto out; 3090 } 3091 3092 /* 3093 * An existing pending dimm state for this DIMM means that there is an 3094 * unplug operation in progress, waiting for the spapr_lmb_release 3095 * callback to complete the job (BQL can't cover that far). In this case, 3096 * bail out to avoid detaching DRCs that were already released. 3097 */ 3098 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3099 error_setg(&local_err, 3100 "Memory unplug already in progress for device %s", 3101 dev->id); 3102 goto out; 3103 } 3104 3105 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3106 3107 addr = addr_start; 3108 for (i = 0; i < nr_lmbs; i++) { 3109 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3110 addr / SPAPR_MEMORY_BLOCK_SIZE); 3111 g_assert(drc); 3112 3113 spapr_drc_detach(drc); 3114 addr += SPAPR_MEMORY_BLOCK_SIZE; 3115 } 3116 3117 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3118 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3119 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3120 nr_lmbs, spapr_drc_index(drc)); 3121 out: 3122 error_propagate(errp, local_err); 3123 } 3124 3125 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3126 sPAPRMachineState *spapr) 3127 { 3128 PowerPCCPU *cpu = POWERPC_CPU(cs); 3129 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3130 int id = spapr_vcpu_id(cpu); 3131 void *fdt; 3132 int offset, fdt_size; 3133 char *nodename; 3134 3135 fdt = create_device_tree(&fdt_size); 3136 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3137 offset = fdt_add_subnode(fdt, 0, nodename); 3138 3139 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3140 g_free(nodename); 3141 3142 *fdt_offset = offset; 3143 return fdt; 3144 } 3145 3146 /* Callback to be called during DRC release. */ 3147 void spapr_core_release(DeviceState *dev) 3148 { 3149 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev)); 3150 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3151 CPUCore *cc = CPU_CORE(dev); 3152 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3153 3154 if (smc->pre_2_10_has_unused_icps) { 3155 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3156 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc)); 3157 size_t size = object_type_get_instance_size(scc->cpu_type); 3158 int i; 3159 3160 for (i = 0; i < cc->nr_threads; i++) { 3161 CPUState *cs = CPU(sc->threads + i * size); 3162 3163 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3164 } 3165 } 3166 3167 assert(core_slot); 3168 core_slot->cpu = NULL; 3169 object_unparent(OBJECT(dev)); 3170 } 3171 3172 static 3173 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3174 Error **errp) 3175 { 3176 int index; 3177 sPAPRDRConnector *drc; 3178 CPUCore *cc = CPU_CORE(dev); 3179 int smt = kvmppc_smt_threads(); 3180 3181 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3182 error_setg(errp, "Unable to find CPU core with core-id: %d", 3183 cc->core_id); 3184 return; 3185 } 3186 if (index == 0) { 3187 error_setg(errp, "Boot CPU core may not be unplugged"); 3188 return; 3189 } 3190 3191 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 3192 g_assert(drc); 3193 3194 spapr_drc_detach(drc); 3195 3196 spapr_hotplug_req_remove_by_index(drc); 3197 } 3198 3199 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3200 Error **errp) 3201 { 3202 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3203 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3204 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3205 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3206 CPUCore *cc = CPU_CORE(dev); 3207 CPUState *cs = CPU(core->threads); 3208 sPAPRDRConnector *drc; 3209 Error *local_err = NULL; 3210 int smt = kvmppc_smt_threads(); 3211 CPUArchId *core_slot; 3212 int index; 3213 bool hotplugged = spapr_drc_hotplugged(dev); 3214 3215 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3216 if (!core_slot) { 3217 error_setg(errp, "Unable to find CPU core with core-id: %d", 3218 cc->core_id); 3219 return; 3220 } 3221 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt); 3222 3223 g_assert(drc || !mc->has_hotpluggable_cpus); 3224 3225 if (drc) { 3226 void *fdt; 3227 int fdt_offset; 3228 3229 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3230 3231 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3232 if (local_err) { 3233 g_free(fdt); 3234 error_propagate(errp, local_err); 3235 return; 3236 } 3237 3238 if (hotplugged) { 3239 /* 3240 * Send hotplug notification interrupt to the guest only 3241 * in case of hotplugged CPUs. 3242 */ 3243 spapr_hotplug_req_add_by_index(drc); 3244 } else { 3245 spapr_drc_reset(drc); 3246 } 3247 } 3248 3249 core_slot->cpu = OBJECT(dev); 3250 3251 if (smc->pre_2_10_has_unused_icps) { 3252 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc)); 3253 size_t size = object_type_get_instance_size(scc->cpu_type); 3254 int i; 3255 3256 for (i = 0; i < cc->nr_threads; i++) { 3257 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev); 3258 void *obj = sc->threads + i * size; 3259 3260 cs = CPU(obj); 3261 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3262 } 3263 } 3264 } 3265 3266 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3267 Error **errp) 3268 { 3269 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3270 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3271 Error *local_err = NULL; 3272 CPUCore *cc = CPU_CORE(dev); 3273 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3274 const char *type = object_get_typename(OBJECT(dev)); 3275 CPUArchId *core_slot; 3276 int index; 3277 3278 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3279 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3280 goto out; 3281 } 3282 3283 if (strcmp(base_core_type, type)) { 3284 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3285 goto out; 3286 } 3287 3288 if (cc->core_id % smp_threads) { 3289 error_setg(&local_err, "invalid core id %d", cc->core_id); 3290 goto out; 3291 } 3292 3293 /* 3294 * In general we should have homogeneous threads-per-core, but old 3295 * (pre hotplug support) machine types allow the last core to have 3296 * reduced threads as a compatibility hack for when we allowed 3297 * total vcpus not a multiple of threads-per-core. 3298 */ 3299 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3300 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3301 cc->nr_threads, smp_threads); 3302 goto out; 3303 } 3304 3305 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3306 if (!core_slot) { 3307 error_setg(&local_err, "core id %d out of range", cc->core_id); 3308 goto out; 3309 } 3310 3311 if (core_slot->cpu) { 3312 error_setg(&local_err, "core %d already populated", cc->core_id); 3313 goto out; 3314 } 3315 3316 numa_cpu_pre_plug(core_slot, dev, &local_err); 3317 3318 out: 3319 error_propagate(errp, local_err); 3320 } 3321 3322 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3323 DeviceState *dev, Error **errp) 3324 { 3325 MachineState *ms = MACHINE(hotplug_dev); 3326 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3327 3328 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3329 int node; 3330 3331 if (!smc->dr_lmb_enabled) { 3332 error_setg(errp, "Memory hotplug not supported for this machine"); 3333 return; 3334 } 3335 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 3336 if (*errp) { 3337 return; 3338 } 3339 if (node < 0 || node >= MAX_NODES) { 3340 error_setg(errp, "Invaild node %d", node); 3341 return; 3342 } 3343 3344 /* 3345 * Currently PowerPC kernel doesn't allow hot-adding memory to 3346 * memory-less node, but instead will silently add the memory 3347 * to the first node that has some memory. This causes two 3348 * unexpected behaviours for the user. 3349 * 3350 * - Memory gets hotplugged to a different node than what the user 3351 * specified. 3352 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 3353 * to memory-less node, a reboot will set things accordingly 3354 * and the previously hotplugged memory now ends in the right node. 3355 * This appears as if some memory moved from one node to another. 3356 * 3357 * So until kernel starts supporting memory hotplug to memory-less 3358 * nodes, just prevent such attempts upfront in QEMU. 3359 */ 3360 if (nb_numa_nodes && !numa_info[node].node_mem) { 3361 error_setg(errp, "Can't hotplug memory to memory-less node %d", 3362 node); 3363 return; 3364 } 3365 3366 spapr_memory_plug(hotplug_dev, dev, node, errp); 3367 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3368 spapr_core_plug(hotplug_dev, dev, errp); 3369 } 3370 } 3371 3372 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3373 DeviceState *dev, Error **errp) 3374 { 3375 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3376 MachineClass *mc = MACHINE_GET_CLASS(sms); 3377 3378 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3379 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3380 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3381 } else { 3382 /* NOTE: this means there is a window after guest reset, prior to 3383 * CAS negotiation, where unplug requests will fail due to the 3384 * capability not being detected yet. This is a bit different than 3385 * the case with PCI unplug, where the events will be queued and 3386 * eventually handled by the guest after boot 3387 */ 3388 error_setg(errp, "Memory hot unplug not supported for this guest"); 3389 } 3390 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3391 if (!mc->has_hotpluggable_cpus) { 3392 error_setg(errp, "CPU hot unplug not supported on this machine"); 3393 return; 3394 } 3395 spapr_core_unplug_request(hotplug_dev, dev, errp); 3396 } 3397 } 3398 3399 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3400 DeviceState *dev, Error **errp) 3401 { 3402 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3403 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3404 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3405 spapr_core_pre_plug(hotplug_dev, dev, errp); 3406 } 3407 } 3408 3409 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3410 DeviceState *dev) 3411 { 3412 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3413 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3414 return HOTPLUG_HANDLER(machine); 3415 } 3416 return NULL; 3417 } 3418 3419 static CpuInstanceProperties 3420 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3421 { 3422 CPUArchId *core_slot; 3423 MachineClass *mc = MACHINE_GET_CLASS(machine); 3424 3425 /* make sure possible_cpu are intialized */ 3426 mc->possible_cpu_arch_ids(machine); 3427 /* get CPU core slot containing thread that matches cpu_index */ 3428 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3429 assert(core_slot); 3430 return core_slot->props; 3431 } 3432 3433 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3434 { 3435 return idx / smp_cores % nb_numa_nodes; 3436 } 3437 3438 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3439 { 3440 int i; 3441 int spapr_max_cores = max_cpus / smp_threads; 3442 MachineClass *mc = MACHINE_GET_CLASS(machine); 3443 3444 if (!mc->has_hotpluggable_cpus) { 3445 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3446 } 3447 if (machine->possible_cpus) { 3448 assert(machine->possible_cpus->len == spapr_max_cores); 3449 return machine->possible_cpus; 3450 } 3451 3452 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3453 sizeof(CPUArchId) * spapr_max_cores); 3454 machine->possible_cpus->len = spapr_max_cores; 3455 for (i = 0; i < machine->possible_cpus->len; i++) { 3456 int core_id = i * smp_threads; 3457 3458 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3459 machine->possible_cpus->cpus[i].arch_id = core_id; 3460 machine->possible_cpus->cpus[i].props.has_core_id = true; 3461 machine->possible_cpus->cpus[i].props.core_id = core_id; 3462 } 3463 return machine->possible_cpus; 3464 } 3465 3466 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3467 uint64_t *buid, hwaddr *pio, 3468 hwaddr *mmio32, hwaddr *mmio64, 3469 unsigned n_dma, uint32_t *liobns, Error **errp) 3470 { 3471 /* 3472 * New-style PHB window placement. 3473 * 3474 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3475 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3476 * windows. 3477 * 3478 * Some guest kernels can't work with MMIO windows above 1<<46 3479 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3480 * 3481 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3482 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3483 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3484 * 1TiB 64-bit MMIO windows for each PHB. 3485 */ 3486 const uint64_t base_buid = 0x800000020000000ULL; 3487 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3488 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3489 int i; 3490 3491 /* Sanity check natural alignments */ 3492 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3493 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3494 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3495 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3496 /* Sanity check bounds */ 3497 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3498 SPAPR_PCI_MEM32_WIN_SIZE); 3499 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3500 SPAPR_PCI_MEM64_WIN_SIZE); 3501 3502 if (index >= SPAPR_MAX_PHBS) { 3503 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3504 SPAPR_MAX_PHBS - 1); 3505 return; 3506 } 3507 3508 *buid = base_buid + index; 3509 for (i = 0; i < n_dma; ++i) { 3510 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3511 } 3512 3513 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3514 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3515 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3516 } 3517 3518 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3519 { 3520 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3521 3522 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3523 } 3524 3525 static void spapr_ics_resend(XICSFabric *dev) 3526 { 3527 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3528 3529 ics_resend(spapr->ics); 3530 } 3531 3532 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3533 { 3534 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3535 3536 return cpu ? ICP(cpu->intc) : NULL; 3537 } 3538 3539 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3540 Monitor *mon) 3541 { 3542 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3543 CPUState *cs; 3544 3545 CPU_FOREACH(cs) { 3546 PowerPCCPU *cpu = POWERPC_CPU(cs); 3547 3548 icp_pic_print_info(ICP(cpu->intc), mon); 3549 } 3550 3551 ics_pic_print_info(spapr->ics, mon); 3552 } 3553 3554 int spapr_vcpu_id(PowerPCCPU *cpu) 3555 { 3556 CPUState *cs = CPU(cpu); 3557 3558 if (kvm_enabled()) { 3559 return kvm_arch_vcpu_id(cs); 3560 } else { 3561 return cs->cpu_index; 3562 } 3563 } 3564 3565 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3566 { 3567 CPUState *cs; 3568 3569 CPU_FOREACH(cs) { 3570 PowerPCCPU *cpu = POWERPC_CPU(cs); 3571 3572 if (spapr_vcpu_id(cpu) == vcpu_id) { 3573 return cpu; 3574 } 3575 } 3576 3577 return NULL; 3578 } 3579 3580 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3581 { 3582 MachineClass *mc = MACHINE_CLASS(oc); 3583 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3584 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3585 NMIClass *nc = NMI_CLASS(oc); 3586 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3587 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3588 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3589 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3590 3591 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3592 3593 /* 3594 * We set up the default / latest behaviour here. The class_init 3595 * functions for the specific versioned machine types can override 3596 * these details for backwards compatibility 3597 */ 3598 mc->init = ppc_spapr_init; 3599 mc->reset = ppc_spapr_reset; 3600 mc->block_default_type = IF_SCSI; 3601 mc->max_cpus = 1024; 3602 mc->no_parallel = 1; 3603 mc->default_boot_order = ""; 3604 mc->default_ram_size = 512 * M_BYTE; 3605 mc->kvm_type = spapr_kvm_type; 3606 mc->has_dynamic_sysbus = true; 3607 mc->pci_allow_0_address = true; 3608 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3609 hc->pre_plug = spapr_machine_device_pre_plug; 3610 hc->plug = spapr_machine_device_plug; 3611 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3612 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3613 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3614 hc->unplug_request = spapr_machine_device_unplug_request; 3615 3616 smc->dr_lmb_enabled = true; 3617 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3618 mc->has_hotpluggable_cpus = true; 3619 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3620 fwc->get_dev_path = spapr_get_fw_dev_path; 3621 nc->nmi_monitor_handler = spapr_nmi; 3622 smc->phb_placement = spapr_phb_placement; 3623 vhc->hypercall = emulate_spapr_hypercall; 3624 vhc->hpt_mask = spapr_hpt_mask; 3625 vhc->map_hptes = spapr_map_hptes; 3626 vhc->unmap_hptes = spapr_unmap_hptes; 3627 vhc->store_hpte = spapr_store_hpte; 3628 vhc->get_patbe = spapr_get_patbe; 3629 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 3630 xic->ics_get = spapr_ics_get; 3631 xic->ics_resend = spapr_ics_resend; 3632 xic->icp_get = spapr_icp_get; 3633 ispc->print_info = spapr_pic_print_info; 3634 /* Force NUMA node memory size to be a multiple of 3635 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3636 * in which LMBs are represented and hot-added 3637 */ 3638 mc->numa_mem_align_shift = 28; 3639 } 3640 3641 static const TypeInfo spapr_machine_info = { 3642 .name = TYPE_SPAPR_MACHINE, 3643 .parent = TYPE_MACHINE, 3644 .abstract = true, 3645 .instance_size = sizeof(sPAPRMachineState), 3646 .instance_init = spapr_machine_initfn, 3647 .instance_finalize = spapr_machine_finalizefn, 3648 .class_size = sizeof(sPAPRMachineClass), 3649 .class_init = spapr_machine_class_init, 3650 .interfaces = (InterfaceInfo[]) { 3651 { TYPE_FW_PATH_PROVIDER }, 3652 { TYPE_NMI }, 3653 { TYPE_HOTPLUG_HANDLER }, 3654 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3655 { TYPE_XICS_FABRIC }, 3656 { TYPE_INTERRUPT_STATS_PROVIDER }, 3657 { } 3658 }, 3659 }; 3660 3661 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3662 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3663 void *data) \ 3664 { \ 3665 MachineClass *mc = MACHINE_CLASS(oc); \ 3666 spapr_machine_##suffix##_class_options(mc); \ 3667 if (latest) { \ 3668 mc->alias = "pseries"; \ 3669 mc->is_default = 1; \ 3670 } \ 3671 } \ 3672 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3673 { \ 3674 MachineState *machine = MACHINE(obj); \ 3675 spapr_machine_##suffix##_instance_options(machine); \ 3676 } \ 3677 static const TypeInfo spapr_machine_##suffix##_info = { \ 3678 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3679 .parent = TYPE_SPAPR_MACHINE, \ 3680 .class_init = spapr_machine_##suffix##_class_init, \ 3681 .instance_init = spapr_machine_##suffix##_instance_init, \ 3682 }; \ 3683 static void spapr_machine_register_##suffix(void) \ 3684 { \ 3685 type_register(&spapr_machine_##suffix##_info); \ 3686 } \ 3687 type_init(spapr_machine_register_##suffix) 3688 3689 /* 3690 * pseries-2.11 3691 */ 3692 static void spapr_machine_2_11_instance_options(MachineState *machine) 3693 { 3694 } 3695 3696 static void spapr_machine_2_11_class_options(MachineClass *mc) 3697 { 3698 /* Defaults for the latest behaviour inherited from the base class */ 3699 } 3700 3701 DEFINE_SPAPR_MACHINE(2_11, "2.11", true); 3702 3703 /* 3704 * pseries-2.10 3705 */ 3706 #define SPAPR_COMPAT_2_10 \ 3707 HW_COMPAT_2_10 \ 3708 3709 static void spapr_machine_2_10_instance_options(MachineState *machine) 3710 { 3711 } 3712 3713 static void spapr_machine_2_10_class_options(MachineClass *mc) 3714 { 3715 spapr_machine_2_11_class_options(mc); 3716 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 3717 } 3718 3719 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 3720 3721 /* 3722 * pseries-2.9 3723 */ 3724 #define SPAPR_COMPAT_2_9 \ 3725 HW_COMPAT_2_9 \ 3726 { \ 3727 .driver = TYPE_POWERPC_CPU, \ 3728 .property = "pre-2.10-migration", \ 3729 .value = "on", \ 3730 }, \ 3731 3732 static void spapr_machine_2_9_instance_options(MachineState *machine) 3733 { 3734 spapr_machine_2_10_instance_options(machine); 3735 } 3736 3737 static void spapr_machine_2_9_class_options(MachineClass *mc) 3738 { 3739 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3740 3741 spapr_machine_2_10_class_options(mc); 3742 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 3743 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 3744 smc->pre_2_10_has_unused_icps = true; 3745 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 3746 } 3747 3748 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 3749 3750 /* 3751 * pseries-2.8 3752 */ 3753 #define SPAPR_COMPAT_2_8 \ 3754 HW_COMPAT_2_8 \ 3755 { \ 3756 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3757 .property = "pcie-extended-configuration-space", \ 3758 .value = "off", \ 3759 }, 3760 3761 static void spapr_machine_2_8_instance_options(MachineState *machine) 3762 { 3763 spapr_machine_2_9_instance_options(machine); 3764 } 3765 3766 static void spapr_machine_2_8_class_options(MachineClass *mc) 3767 { 3768 spapr_machine_2_9_class_options(mc); 3769 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 3770 mc->numa_mem_align_shift = 23; 3771 } 3772 3773 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 3774 3775 /* 3776 * pseries-2.7 3777 */ 3778 #define SPAPR_COMPAT_2_7 \ 3779 HW_COMPAT_2_7 \ 3780 { \ 3781 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3782 .property = "mem_win_size", \ 3783 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 3784 }, \ 3785 { \ 3786 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3787 .property = "mem64_win_size", \ 3788 .value = "0", \ 3789 }, \ 3790 { \ 3791 .driver = TYPE_POWERPC_CPU, \ 3792 .property = "pre-2.8-migration", \ 3793 .value = "on", \ 3794 }, \ 3795 { \ 3796 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 3797 .property = "pre-2.8-migration", \ 3798 .value = "on", \ 3799 }, 3800 3801 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 3802 uint64_t *buid, hwaddr *pio, 3803 hwaddr *mmio32, hwaddr *mmio64, 3804 unsigned n_dma, uint32_t *liobns, Error **errp) 3805 { 3806 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 3807 const uint64_t base_buid = 0x800000020000000ULL; 3808 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 3809 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 3810 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 3811 const uint32_t max_index = 255; 3812 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 3813 3814 uint64_t ram_top = MACHINE(spapr)->ram_size; 3815 hwaddr phb0_base, phb_base; 3816 int i; 3817 3818 /* Do we have hotpluggable memory? */ 3819 if (MACHINE(spapr)->maxram_size > ram_top) { 3820 /* Can't just use maxram_size, because there may be an 3821 * alignment gap between normal and hotpluggable memory 3822 * regions */ 3823 ram_top = spapr->hotplug_memory.base + 3824 memory_region_size(&spapr->hotplug_memory.mr); 3825 } 3826 3827 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 3828 3829 if (index > max_index) { 3830 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 3831 max_index); 3832 return; 3833 } 3834 3835 *buid = base_buid + index; 3836 for (i = 0; i < n_dma; ++i) { 3837 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3838 } 3839 3840 phb_base = phb0_base + index * phb_spacing; 3841 *pio = phb_base + pio_offset; 3842 *mmio32 = phb_base + mmio_offset; 3843 /* 3844 * We don't set the 64-bit MMIO window, relying on the PHB's 3845 * fallback behaviour of automatically splitting a large "32-bit" 3846 * window into contiguous 32-bit and 64-bit windows 3847 */ 3848 } 3849 3850 static void spapr_machine_2_7_instance_options(MachineState *machine) 3851 { 3852 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 3853 3854 spapr_machine_2_8_instance_options(machine); 3855 spapr->use_hotplug_event_source = false; 3856 } 3857 3858 static void spapr_machine_2_7_class_options(MachineClass *mc) 3859 { 3860 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3861 3862 spapr_machine_2_8_class_options(mc); 3863 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 3864 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 3865 smc->phb_placement = phb_placement_2_7; 3866 } 3867 3868 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 3869 3870 /* 3871 * pseries-2.6 3872 */ 3873 #define SPAPR_COMPAT_2_6 \ 3874 HW_COMPAT_2_6 \ 3875 { \ 3876 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3877 .property = "ddw",\ 3878 .value = stringify(off),\ 3879 }, 3880 3881 static void spapr_machine_2_6_instance_options(MachineState *machine) 3882 { 3883 spapr_machine_2_7_instance_options(machine); 3884 } 3885 3886 static void spapr_machine_2_6_class_options(MachineClass *mc) 3887 { 3888 spapr_machine_2_7_class_options(mc); 3889 mc->has_hotpluggable_cpus = false; 3890 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 3891 } 3892 3893 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 3894 3895 /* 3896 * pseries-2.5 3897 */ 3898 #define SPAPR_COMPAT_2_5 \ 3899 HW_COMPAT_2_5 \ 3900 { \ 3901 .driver = "spapr-vlan", \ 3902 .property = "use-rx-buffer-pools", \ 3903 .value = "off", \ 3904 }, 3905 3906 static void spapr_machine_2_5_instance_options(MachineState *machine) 3907 { 3908 spapr_machine_2_6_instance_options(machine); 3909 } 3910 3911 static void spapr_machine_2_5_class_options(MachineClass *mc) 3912 { 3913 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3914 3915 spapr_machine_2_6_class_options(mc); 3916 smc->use_ohci_by_default = true; 3917 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 3918 } 3919 3920 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 3921 3922 /* 3923 * pseries-2.4 3924 */ 3925 #define SPAPR_COMPAT_2_4 \ 3926 HW_COMPAT_2_4 3927 3928 static void spapr_machine_2_4_instance_options(MachineState *machine) 3929 { 3930 spapr_machine_2_5_instance_options(machine); 3931 } 3932 3933 static void spapr_machine_2_4_class_options(MachineClass *mc) 3934 { 3935 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3936 3937 spapr_machine_2_5_class_options(mc); 3938 smc->dr_lmb_enabled = false; 3939 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 3940 } 3941 3942 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 3943 3944 /* 3945 * pseries-2.3 3946 */ 3947 #define SPAPR_COMPAT_2_3 \ 3948 HW_COMPAT_2_3 \ 3949 {\ 3950 .driver = "spapr-pci-host-bridge",\ 3951 .property = "dynamic-reconfiguration",\ 3952 .value = "off",\ 3953 }, 3954 3955 static void spapr_machine_2_3_instance_options(MachineState *machine) 3956 { 3957 spapr_machine_2_4_instance_options(machine); 3958 } 3959 3960 static void spapr_machine_2_3_class_options(MachineClass *mc) 3961 { 3962 spapr_machine_2_4_class_options(mc); 3963 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 3964 } 3965 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 3966 3967 /* 3968 * pseries-2.2 3969 */ 3970 3971 #define SPAPR_COMPAT_2_2 \ 3972 HW_COMPAT_2_2 \ 3973 {\ 3974 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 3975 .property = "mem_win_size",\ 3976 .value = "0x20000000",\ 3977 }, 3978 3979 static void spapr_machine_2_2_instance_options(MachineState *machine) 3980 { 3981 spapr_machine_2_3_instance_options(machine); 3982 machine->suppress_vmdesc = true; 3983 } 3984 3985 static void spapr_machine_2_2_class_options(MachineClass *mc) 3986 { 3987 spapr_machine_2_3_class_options(mc); 3988 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 3989 } 3990 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 3991 3992 /* 3993 * pseries-2.1 3994 */ 3995 #define SPAPR_COMPAT_2_1 \ 3996 HW_COMPAT_2_1 3997 3998 static void spapr_machine_2_1_instance_options(MachineState *machine) 3999 { 4000 spapr_machine_2_2_instance_options(machine); 4001 } 4002 4003 static void spapr_machine_2_1_class_options(MachineClass *mc) 4004 { 4005 spapr_machine_2_2_class_options(mc); 4006 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4007 } 4008 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4009 4010 static void spapr_machine_register_types(void) 4011 { 4012 type_register_static(&spapr_machine_info); 4013 } 4014 4015 type_init(spapr_machine_register_types) 4016