1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 .name = "icp/server", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .needed = pre_2_10_vmstate_dummy_icp_needed, 150 .fields = (VMStateField[]) { 151 VMSTATE_UNUSED(4), /* uint32_t xirr */ 152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 153 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 154 VMSTATE_END_OF_LIST() 155 }, 156 }; 157 158 static void pre_2_10_vmstate_register_dummy_icp(int i) 159 { 160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 165 { 166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 167 (void *)(uintptr_t) i); 168 } 169 170 int spapr_max_server_number(SpaprMachineState *spapr) 171 { 172 MachineState *ms = MACHINE(spapr); 173 174 assert(spapr->vsmt); 175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 176 } 177 178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 179 int smt_threads) 180 { 181 int i, ret = 0; 182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 184 int index = spapr_get_vcpu_id(cpu); 185 186 if (cpu->compat_pvr) { 187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 188 if (ret < 0) { 189 return ret; 190 } 191 } 192 193 /* Build interrupt servers and gservers properties */ 194 for (i = 0; i < smt_threads; i++) { 195 servers_prop[i] = cpu_to_be32(index + i); 196 /* Hack, direct the group queues back to cpu 0 */ 197 gservers_prop[i*2] = cpu_to_be32(index + i); 198 gservers_prop[i*2 + 1] = 0; 199 } 200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 201 servers_prop, sizeof(*servers_prop) * smt_threads); 202 if (ret < 0) { 203 return ret; 204 } 205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 207 208 return ret; 209 } 210 211 static void spapr_dt_pa_features(SpaprMachineState *spapr, 212 PowerPCCPU *cpu, 213 void *fdt, int offset) 214 { 215 uint8_t pa_features_206[] = { 6, 0, 216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 217 uint8_t pa_features_207[] = { 24, 0, 218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 222 uint8_t pa_features_300[] = { 66, 0, 223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 226 /* 6: DS207 */ 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 228 /* 16: Vector */ 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 238 /* 42: PM, 44: PC RA, 46: SC vec'd */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 240 /* 48: SIMD, 50: QP BFP, 52: String */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 242 /* 54: DecFP, 56: DecI, 58: SHA */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 244 /* 60: NM atomic, 62: RNG */ 245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 246 }; 247 uint8_t *pa_features = NULL; 248 size_t pa_size; 249 250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 251 pa_features = pa_features_206; 252 pa_size = sizeof(pa_features_206); 253 } 254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 255 pa_features = pa_features_207; 256 pa_size = sizeof(pa_features_207); 257 } 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_300; 260 pa_size = sizeof(pa_features_300); 261 } 262 if (!pa_features) { 263 return; 264 } 265 266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 267 /* 268 * Note: we keep CI large pages off by default because a 64K capable 269 * guest provisioned with large pages might otherwise try to map a qemu 270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 271 * even if that qemu runs on a 4k host. 272 * We dd this bit back here if we are confident this is not an issue 273 */ 274 pa_features[3] |= 0x20; 275 } 276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 277 pa_features[24] |= 0x80; /* Transactional memory support */ 278 } 279 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 280 /* Workaround for broken kernels that attempt (guest) radix 281 * mode when they can't handle it, if they see the radix bit set 282 * in pa-features. So hide it from them. */ 283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 284 } 285 286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 287 } 288 289 static hwaddr spapr_node0_size(MachineState *machine) 290 { 291 if (machine->numa_state->num_nodes) { 292 int i; 293 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 294 if (machine->numa_state->nodes[i].node_mem) { 295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 296 machine->ram_size); 297 } 298 } 299 } 300 return machine->ram_size; 301 } 302 303 static void add_str(GString *s, const gchar *s1) 304 { 305 g_string_append_len(s, s1, strlen(s1) + 1); 306 } 307 308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 309 hwaddr start, hwaddr size) 310 { 311 char mem_name[32]; 312 uint64_t mem_reg_property[2]; 313 int off; 314 315 mem_reg_property[0] = cpu_to_be64(start); 316 mem_reg_property[1] = cpu_to_be64(size); 317 318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 319 off = fdt_add_subnode(fdt, 0, mem_name); 320 _FDT(off); 321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 323 sizeof(mem_reg_property)))); 324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 325 return off; 326 } 327 328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 329 { 330 MemoryDeviceInfoList *info; 331 332 for (info = list; info; info = info->next) { 333 MemoryDeviceInfo *value = info->value; 334 335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 337 338 if (addr >= pcdimm_info->addr && 339 addr < (pcdimm_info->addr + pcdimm_info->size)) { 340 return pcdimm_info->node; 341 } 342 } 343 } 344 345 return -1; 346 } 347 348 struct sPAPRDrconfCellV2 { 349 uint32_t seq_lmbs; 350 uint64_t base_addr; 351 uint32_t drc_index; 352 uint32_t aa_index; 353 uint32_t flags; 354 } QEMU_PACKED; 355 356 typedef struct DrconfCellQueue { 357 struct sPAPRDrconfCellV2 cell; 358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 359 } DrconfCellQueue; 360 361 static DrconfCellQueue * 362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 363 uint32_t drc_index, uint32_t aa_index, 364 uint32_t flags) 365 { 366 DrconfCellQueue *elem; 367 368 elem = g_malloc0(sizeof(*elem)); 369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 370 elem->cell.base_addr = cpu_to_be64(base_addr); 371 elem->cell.drc_index = cpu_to_be32(drc_index); 372 elem->cell.aa_index = cpu_to_be32(aa_index); 373 elem->cell.flags = cpu_to_be32(flags); 374 375 return elem; 376 } 377 378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 379 int offset, MemoryDeviceInfoList *dimms) 380 { 381 MachineState *machine = MACHINE(spapr); 382 uint8_t *int_buf, *cur_index; 383 int ret; 384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 385 uint64_t addr, cur_addr, size; 386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 387 uint64_t mem_end = machine->device_memory->base + 388 memory_region_size(&machine->device_memory->mr); 389 uint32_t node, buf_len, nr_entries = 0; 390 SpaprDrc *drc; 391 DrconfCellQueue *elem, *next; 392 MemoryDeviceInfoList *info; 393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 395 396 /* Entry to cover RAM and the gap area */ 397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 398 SPAPR_LMB_FLAGS_RESERVED | 399 SPAPR_LMB_FLAGS_DRC_INVALID); 400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 401 nr_entries++; 402 403 cur_addr = machine->device_memory->base; 404 for (info = dimms; info; info = info->next) { 405 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 406 407 addr = di->addr; 408 size = di->size; 409 node = di->node; 410 411 /* 412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 413 * area is marked hotpluggable in the next iteration for the bigger 414 * chunk including the NVDIMM occupied area. 415 */ 416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 417 continue; 418 419 /* Entry for hot-pluggable area */ 420 if (cur_addr < addr) { 421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 422 g_assert(drc); 423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 424 cur_addr, spapr_drc_index(drc), -1, 0); 425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 426 nr_entries++; 427 } 428 429 /* Entry for DIMM */ 430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 431 g_assert(drc); 432 elem = spapr_get_drconf_cell(size / lmb_size, addr, 433 spapr_drc_index(drc), node, 434 (SPAPR_LMB_FLAGS_ASSIGNED | 435 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 437 nr_entries++; 438 cur_addr = addr + size; 439 } 440 441 /* Entry for remaining hotpluggable area */ 442 if (cur_addr < mem_end) { 443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 444 g_assert(drc); 445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 446 cur_addr, spapr_drc_index(drc), -1, 0); 447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 448 nr_entries++; 449 } 450 451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 452 int_buf = cur_index = g_malloc0(buf_len); 453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 454 cur_index += sizeof(nr_entries); 455 456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 457 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 458 cur_index += sizeof(elem->cell); 459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 460 g_free(elem); 461 } 462 463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 464 g_free(int_buf); 465 if (ret < 0) { 466 return -1; 467 } 468 return 0; 469 } 470 471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 472 int offset, MemoryDeviceInfoList *dimms) 473 { 474 MachineState *machine = MACHINE(spapr); 475 int i, ret; 476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 478 uint32_t nr_lmbs = (machine->device_memory->base + 479 memory_region_size(&machine->device_memory->mr)) / 480 lmb_size; 481 uint32_t *int_buf, *cur_index, buf_len; 482 483 /* 484 * Allocate enough buffer size to fit in ibm,dynamic-memory 485 */ 486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 487 cur_index = int_buf = g_malloc0(buf_len); 488 int_buf[0] = cpu_to_be32(nr_lmbs); 489 cur_index++; 490 for (i = 0; i < nr_lmbs; i++) { 491 uint64_t addr = i * lmb_size; 492 uint32_t *dynamic_memory = cur_index; 493 494 if (i >= device_lmb_start) { 495 SpaprDrc *drc; 496 497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 498 g_assert(drc); 499 500 dynamic_memory[0] = cpu_to_be32(addr >> 32); 501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 505 if (memory_region_present(get_system_memory(), addr)) { 506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 507 } else { 508 dynamic_memory[5] = cpu_to_be32(0); 509 } 510 } else { 511 /* 512 * LMB information for RMA, boot time RAM and gap b/n RAM and 513 * device memory region -- all these are marked as reserved 514 * and as having no valid DRC. 515 */ 516 dynamic_memory[0] = cpu_to_be32(addr >> 32); 517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 518 dynamic_memory[2] = cpu_to_be32(0); 519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 520 dynamic_memory[4] = cpu_to_be32(-1); 521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 522 SPAPR_LMB_FLAGS_DRC_INVALID); 523 } 524 525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 526 } 527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 528 g_free(int_buf); 529 if (ret < 0) { 530 return -1; 531 } 532 return 0; 533 } 534 535 /* 536 * Adds ibm,dynamic-reconfiguration-memory node. 537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 538 * of this device tree node. 539 */ 540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 541 void *fdt) 542 { 543 MachineState *machine = MACHINE(spapr); 544 int ret, offset; 545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 547 cpu_to_be32(lmb_size & 0xffffffff)}; 548 MemoryDeviceInfoList *dimms = NULL; 549 550 /* 551 * Don't create the node if there is no device memory 552 */ 553 if (machine->ram_size == machine->maxram_size) { 554 return 0; 555 } 556 557 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 558 559 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 560 sizeof(prop_lmb_size)); 561 if (ret < 0) { 562 return ret; 563 } 564 565 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 566 if (ret < 0) { 567 return ret; 568 } 569 570 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 571 if (ret < 0) { 572 return ret; 573 } 574 575 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 576 dimms = qmp_memory_device_list(); 577 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 578 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 579 } else { 580 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 581 } 582 qapi_free_MemoryDeviceInfoList(dimms); 583 584 if (ret < 0) { 585 return ret; 586 } 587 588 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 589 590 return ret; 591 } 592 593 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 594 { 595 MachineState *machine = MACHINE(spapr); 596 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 597 hwaddr mem_start, node_size; 598 int i, nb_nodes = machine->numa_state->num_nodes; 599 NodeInfo *nodes = machine->numa_state->nodes; 600 601 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 602 if (!nodes[i].node_mem) { 603 continue; 604 } 605 if (mem_start >= machine->ram_size) { 606 node_size = 0; 607 } else { 608 node_size = nodes[i].node_mem; 609 if (node_size > machine->ram_size - mem_start) { 610 node_size = machine->ram_size - mem_start; 611 } 612 } 613 if (!mem_start) { 614 /* spapr_machine_init() checks for rma_size <= node0_size 615 * already */ 616 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 617 mem_start += spapr->rma_size; 618 node_size -= spapr->rma_size; 619 } 620 for ( ; node_size; ) { 621 hwaddr sizetmp = pow2floor(node_size); 622 623 /* mem_start != 0 here */ 624 if (ctzl(mem_start) < ctzl(sizetmp)) { 625 sizetmp = 1ULL << ctzl(mem_start); 626 } 627 628 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 629 node_size -= sizetmp; 630 mem_start += sizetmp; 631 } 632 } 633 634 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 635 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 636 int ret; 637 638 g_assert(smc->dr_lmb_enabled); 639 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 640 if (ret) { 641 return ret; 642 } 643 } 644 645 return 0; 646 } 647 648 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 649 SpaprMachineState *spapr) 650 { 651 MachineState *ms = MACHINE(spapr); 652 PowerPCCPU *cpu = POWERPC_CPU(cs); 653 CPUPPCState *env = &cpu->env; 654 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 655 int index = spapr_get_vcpu_id(cpu); 656 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 657 0xffffffff, 0xffffffff}; 658 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 659 : SPAPR_TIMEBASE_FREQ; 660 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 661 uint32_t page_sizes_prop[64]; 662 size_t page_sizes_prop_size; 663 unsigned int smp_threads = ms->smp.threads; 664 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 665 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 666 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 667 SpaprDrc *drc; 668 int drc_index; 669 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 670 int i; 671 672 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 673 if (drc) { 674 drc_index = spapr_drc_index(drc); 675 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 676 } 677 678 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 679 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 680 681 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 685 env->dcache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 687 env->icache_line_size))); 688 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 689 env->icache_line_size))); 690 691 if (pcc->l1_dcache_size) { 692 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 693 pcc->l1_dcache_size))); 694 } else { 695 warn_report("Unknown L1 dcache size for cpu"); 696 } 697 if (pcc->l1_icache_size) { 698 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 699 pcc->l1_icache_size))); 700 } else { 701 warn_report("Unknown L1 icache size for cpu"); 702 } 703 704 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 705 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 706 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 707 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 708 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 709 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 710 711 if (ppc_has_spr(cpu, SPR_PURR)) { 712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 713 } 714 if (ppc_has_spr(cpu, SPR_PURR)) { 715 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 716 } 717 718 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 719 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 720 segs, sizeof(segs)))); 721 } 722 723 /* Advertise VSX (vector extensions) if available 724 * 1 == VMX / Altivec available 725 * 2 == VSX available 726 * 727 * Only CPUs for which we create core types in spapr_cpu_core.c 728 * are possible, and all of those have VMX */ 729 if (env->insns_flags & PPC_ALTIVEC) { 730 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 732 } else { 733 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 734 } 735 } 736 737 /* Advertise DFP (Decimal Floating Point) if available 738 * 0 / no property == no DFP 739 * 1 == DFP available */ 740 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 741 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 742 } 743 744 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 745 sizeof(page_sizes_prop)); 746 if (page_sizes_prop_size) { 747 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 748 page_sizes_prop, page_sizes_prop_size))); 749 } 750 751 spapr_dt_pa_features(spapr, cpu, fdt, offset); 752 753 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 754 cs->cpu_index / vcpus_per_socket))); 755 756 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 757 pft_size_prop, sizeof(pft_size_prop)))); 758 759 if (ms->numa_state->num_nodes > 1) { 760 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 761 } 762 763 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 764 765 if (pcc->radix_page_info) { 766 for (i = 0; i < pcc->radix_page_info->count; i++) { 767 radix_AP_encodings[i] = 768 cpu_to_be32(pcc->radix_page_info->entries[i]); 769 } 770 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 771 radix_AP_encodings, 772 pcc->radix_page_info->count * 773 sizeof(radix_AP_encodings[0])))); 774 } 775 776 /* 777 * We set this property to let the guest know that it can use the large 778 * decrementer and its width in bits. 779 */ 780 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 781 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 782 pcc->lrg_decr_bits))); 783 } 784 785 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 786 { 787 CPUState **rev; 788 CPUState *cs; 789 int n_cpus; 790 int cpus_offset; 791 int i; 792 793 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 794 _FDT(cpus_offset); 795 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 796 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 797 798 /* 799 * We walk the CPUs in reverse order to ensure that CPU DT nodes 800 * created by fdt_add_subnode() end up in the right order in FDT 801 * for the guest kernel the enumerate the CPUs correctly. 802 * 803 * The CPU list cannot be traversed in reverse order, so we need 804 * to do extra work. 805 */ 806 n_cpus = 0; 807 rev = NULL; 808 CPU_FOREACH(cs) { 809 rev = g_renew(CPUState *, rev, n_cpus + 1); 810 rev[n_cpus++] = cs; 811 } 812 813 for (i = n_cpus - 1; i >= 0; i--) { 814 CPUState *cs = rev[i]; 815 PowerPCCPU *cpu = POWERPC_CPU(cs); 816 int index = spapr_get_vcpu_id(cpu); 817 DeviceClass *dc = DEVICE_GET_CLASS(cs); 818 g_autofree char *nodename = NULL; 819 int offset; 820 821 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 822 continue; 823 } 824 825 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 826 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 827 _FDT(offset); 828 spapr_dt_cpu(cs, fdt, offset, spapr); 829 } 830 831 g_free(rev); 832 } 833 834 static int spapr_dt_rng(void *fdt) 835 { 836 int node; 837 int ret; 838 839 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 840 if (node <= 0) { 841 return -1; 842 } 843 ret = fdt_setprop_string(fdt, node, "device_type", 844 "ibm,platform-facilities"); 845 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 846 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 847 848 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 849 if (node <= 0) { 850 return -1; 851 } 852 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 853 854 return ret ? -1 : 0; 855 } 856 857 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 858 { 859 MachineState *ms = MACHINE(spapr); 860 int rtas; 861 GString *hypertas = g_string_sized_new(256); 862 GString *qemu_hypertas = g_string_sized_new(256); 863 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 864 memory_region_size(&MACHINE(spapr)->device_memory->mr); 865 uint32_t lrdr_capacity[] = { 866 cpu_to_be32(max_device_addr >> 32), 867 cpu_to_be32(max_device_addr & 0xffffffff), 868 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 869 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 870 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 871 }; 872 873 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 874 875 /* hypertas */ 876 add_str(hypertas, "hcall-pft"); 877 add_str(hypertas, "hcall-term"); 878 add_str(hypertas, "hcall-dabr"); 879 add_str(hypertas, "hcall-interrupt"); 880 add_str(hypertas, "hcall-tce"); 881 add_str(hypertas, "hcall-vio"); 882 add_str(hypertas, "hcall-splpar"); 883 add_str(hypertas, "hcall-join"); 884 add_str(hypertas, "hcall-bulk"); 885 add_str(hypertas, "hcall-set-mode"); 886 add_str(hypertas, "hcall-sprg0"); 887 add_str(hypertas, "hcall-copy"); 888 add_str(hypertas, "hcall-debug"); 889 add_str(hypertas, "hcall-vphn"); 890 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 891 add_str(hypertas, "hcall-rpt-invalidate"); 892 } 893 894 add_str(qemu_hypertas, "hcall-memop1"); 895 896 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 897 add_str(hypertas, "hcall-multi-tce"); 898 } 899 900 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 901 add_str(hypertas, "hcall-hpt-resize"); 902 } 903 904 add_str(hypertas, "hcall-watchdog"); 905 906 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 907 hypertas->str, hypertas->len)); 908 g_string_free(hypertas, TRUE); 909 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 910 qemu_hypertas->str, qemu_hypertas->len)); 911 g_string_free(qemu_hypertas, TRUE); 912 913 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 914 915 /* 916 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 917 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 918 * 919 * The system reset requirements are driven by existing Linux and PowerVM 920 * implementation which (contrary to PAPR) saves r3 in the error log 921 * structure like machine check, so Linux expects to find the saved r3 922 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 923 * does not look at the error value). 924 * 925 * System reset interrupts are not subject to interlock like machine 926 * check, so this memory area could be corrupted if the sreset is 927 * interrupted by a machine check (or vice versa) if it was shared. To 928 * prevent this, system reset uses per-CPU areas for the sreset save 929 * area. A system reset that interrupts a system reset handler could 930 * still overwrite this area, but Linux doesn't try to recover in that 931 * case anyway. 932 * 933 * The extra 8 bytes is required because Linux's FWNMI error log check 934 * is off-by-one. 935 * 936 * RTAS_MIN_SIZE is required for the RTAS blob itself. 937 */ 938 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 939 RTAS_ERROR_LOG_MAX + 940 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 941 sizeof(uint64_t))); 942 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 943 RTAS_ERROR_LOG_MAX)); 944 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 945 RTAS_EVENT_SCAN_RATE)); 946 947 g_assert(msi_nonbroken); 948 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 949 950 /* 951 * According to PAPR, rtas ibm,os-term does not guarantee a return 952 * back to the guest cpu. 953 * 954 * While an additional ibm,extended-os-term property indicates 955 * that rtas call return will always occur. Set this property. 956 */ 957 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 958 959 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 960 lrdr_capacity, sizeof(lrdr_capacity))); 961 962 spapr_dt_rtas_tokens(fdt, rtas); 963 } 964 965 /* 966 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 967 * and the XIVE features that the guest may request and thus the valid 968 * values for bytes 23..26 of option vector 5: 969 */ 970 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 971 int chosen) 972 { 973 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 974 975 char val[2 * 4] = { 976 23, 0x00, /* XICS / XIVE mode */ 977 24, 0x00, /* Hash/Radix, filled in below. */ 978 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 979 26, 0x40, /* Radix options: GTSE == yes. */ 980 }; 981 982 if (spapr->irq->xics && spapr->irq->xive) { 983 val[1] = SPAPR_OV5_XIVE_BOTH; 984 } else if (spapr->irq->xive) { 985 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 986 } else { 987 assert(spapr->irq->xics); 988 val[1] = SPAPR_OV5_XIVE_LEGACY; 989 } 990 991 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 992 first_ppc_cpu->compat_pvr)) { 993 /* 994 * If we're in a pre POWER9 compat mode then the guest should 995 * do hash and use the legacy interrupt mode 996 */ 997 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 998 val[3] = 0x00; /* Hash */ 999 spapr_check_mmu_mode(false); 1000 } else if (kvm_enabled()) { 1001 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1002 val[3] = 0x80; /* OV5_MMU_BOTH */ 1003 } else if (kvmppc_has_cap_mmu_radix()) { 1004 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1005 } else { 1006 val[3] = 0x00; /* Hash */ 1007 } 1008 } else { 1009 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1010 val[3] = 0xC0; 1011 } 1012 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1013 val, sizeof(val))); 1014 } 1015 1016 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1017 { 1018 MachineState *machine = MACHINE(spapr); 1019 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1020 uint8_t rng_seed[32]; 1021 int chosen; 1022 1023 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1024 1025 if (reset) { 1026 const char *boot_device = spapr->boot_device; 1027 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1028 size_t cb = 0; 1029 g_autofree char *bootlist = get_boot_devices_list(&cb); 1030 1031 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1032 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1033 machine->kernel_cmdline)); 1034 } 1035 1036 if (spapr->initrd_size) { 1037 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1038 spapr->initrd_base)); 1039 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1040 spapr->initrd_base + spapr->initrd_size)); 1041 } 1042 1043 if (spapr->kernel_size) { 1044 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1045 cpu_to_be64(spapr->kernel_size) }; 1046 1047 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1048 &kprop, sizeof(kprop))); 1049 if (spapr->kernel_le) { 1050 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1051 } 1052 } 1053 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1054 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1055 } 1056 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1057 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1058 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1059 1060 if (cb && bootlist) { 1061 int i; 1062 1063 for (i = 0; i < cb; i++) { 1064 if (bootlist[i] == '\n') { 1065 bootlist[i] = ' '; 1066 } 1067 } 1068 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1069 } 1070 1071 if (boot_device && strlen(boot_device)) { 1072 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1073 } 1074 1075 if (spapr->want_stdout_path && stdout_path) { 1076 /* 1077 * "linux,stdout-path" and "stdout" properties are 1078 * deprecated by linux kernel. New platforms should only 1079 * use the "stdout-path" property. Set the new property 1080 * and continue using older property to remain compatible 1081 * with the existing firmware. 1082 */ 1083 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1084 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1085 } 1086 1087 /* 1088 * We can deal with BAR reallocation just fine, advertise it 1089 * to the guest 1090 */ 1091 if (smc->linux_pci_probe) { 1092 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1093 } 1094 1095 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1096 } 1097 1098 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 1099 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed))); 1100 1101 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1102 } 1103 1104 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1105 { 1106 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1107 * KVM to work under pHyp with some guest co-operation */ 1108 int hypervisor; 1109 uint8_t hypercall[16]; 1110 1111 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1112 /* indicate KVM hypercall interface */ 1113 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1114 if (kvmppc_has_cap_fixup_hcalls()) { 1115 /* 1116 * Older KVM versions with older guest kernels were broken 1117 * with the magic page, don't allow the guest to map it. 1118 */ 1119 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1120 sizeof(hypercall))) { 1121 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1122 hypercall, sizeof(hypercall))); 1123 } 1124 } 1125 } 1126 1127 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1128 { 1129 MachineState *machine = MACHINE(spapr); 1130 MachineClass *mc = MACHINE_GET_CLASS(machine); 1131 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1132 uint32_t root_drc_type_mask = 0; 1133 int ret; 1134 void *fdt; 1135 SpaprPhbState *phb; 1136 char *buf; 1137 1138 fdt = g_malloc0(space); 1139 _FDT((fdt_create_empty_tree(fdt, space))); 1140 1141 /* Root node */ 1142 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1143 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1144 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1145 1146 /* Guest UUID & Name*/ 1147 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1148 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1149 if (qemu_uuid_set) { 1150 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1151 } 1152 g_free(buf); 1153 1154 if (qemu_get_vm_name()) { 1155 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1156 qemu_get_vm_name())); 1157 } 1158 1159 /* Host Model & Serial Number */ 1160 if (spapr->host_model) { 1161 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1162 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1163 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1164 g_free(buf); 1165 } 1166 1167 if (spapr->host_serial) { 1168 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1169 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1170 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1171 g_free(buf); 1172 } 1173 1174 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1175 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1176 1177 /* /interrupt controller */ 1178 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1179 1180 ret = spapr_dt_memory(spapr, fdt); 1181 if (ret < 0) { 1182 error_report("couldn't setup memory nodes in fdt"); 1183 exit(1); 1184 } 1185 1186 /* /vdevice */ 1187 spapr_dt_vdevice(spapr->vio_bus, fdt); 1188 1189 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1190 ret = spapr_dt_rng(fdt); 1191 if (ret < 0) { 1192 error_report("could not set up rng device in the fdt"); 1193 exit(1); 1194 } 1195 } 1196 1197 QLIST_FOREACH(phb, &spapr->phbs, list) { 1198 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1199 if (ret < 0) { 1200 error_report("couldn't setup PCI devices in fdt"); 1201 exit(1); 1202 } 1203 } 1204 1205 spapr_dt_cpus(fdt, spapr); 1206 1207 /* ibm,drc-indexes and friends */ 1208 if (smc->dr_lmb_enabled) { 1209 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1210 } 1211 if (smc->dr_phb_enabled) { 1212 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1213 } 1214 if (mc->nvdimm_supported) { 1215 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1216 } 1217 if (root_drc_type_mask) { 1218 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1219 } 1220 1221 if (mc->has_hotpluggable_cpus) { 1222 int offset = fdt_path_offset(fdt, "/cpus"); 1223 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1224 if (ret < 0) { 1225 error_report("Couldn't set up CPU DR device tree properties"); 1226 exit(1); 1227 } 1228 } 1229 1230 /* /event-sources */ 1231 spapr_dt_events(spapr, fdt); 1232 1233 /* /rtas */ 1234 spapr_dt_rtas(spapr, fdt); 1235 1236 /* /chosen */ 1237 spapr_dt_chosen(spapr, fdt, reset); 1238 1239 /* /hypervisor */ 1240 if (kvm_enabled()) { 1241 spapr_dt_hypervisor(spapr, fdt); 1242 } 1243 1244 /* Build memory reserve map */ 1245 if (reset) { 1246 if (spapr->kernel_size) { 1247 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1248 spapr->kernel_size))); 1249 } 1250 if (spapr->initrd_size) { 1251 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1252 spapr->initrd_size))); 1253 } 1254 } 1255 1256 /* NVDIMM devices */ 1257 if (mc->nvdimm_supported) { 1258 spapr_dt_persistent_memory(spapr, fdt); 1259 } 1260 1261 return fdt; 1262 } 1263 1264 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1265 { 1266 SpaprMachineState *spapr = opaque; 1267 1268 return (addr & 0x0fffffff) + spapr->kernel_addr; 1269 } 1270 1271 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1272 PowerPCCPU *cpu) 1273 { 1274 CPUPPCState *env = &cpu->env; 1275 1276 /* The TCG path should also be holding the BQL at this point */ 1277 g_assert(qemu_mutex_iothread_locked()); 1278 1279 g_assert(!vhyp_cpu_in_nested(cpu)); 1280 1281 if (FIELD_EX64(env->msr, MSR, PR)) { 1282 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1283 env->gpr[3] = H_PRIVILEGE; 1284 } else { 1285 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1286 } 1287 } 1288 1289 struct LPCRSyncState { 1290 target_ulong value; 1291 target_ulong mask; 1292 }; 1293 1294 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1295 { 1296 struct LPCRSyncState *s = arg.host_ptr; 1297 PowerPCCPU *cpu = POWERPC_CPU(cs); 1298 CPUPPCState *env = &cpu->env; 1299 target_ulong lpcr; 1300 1301 cpu_synchronize_state(cs); 1302 lpcr = env->spr[SPR_LPCR]; 1303 lpcr &= ~s->mask; 1304 lpcr |= s->value; 1305 ppc_store_lpcr(cpu, lpcr); 1306 } 1307 1308 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1309 { 1310 CPUState *cs; 1311 struct LPCRSyncState s = { 1312 .value = value, 1313 .mask = mask 1314 }; 1315 CPU_FOREACH(cs) { 1316 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1317 } 1318 } 1319 1320 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1321 target_ulong lpid, ppc_v3_pate_t *entry) 1322 { 1323 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1324 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1325 1326 if (!spapr_cpu->in_nested) { 1327 assert(lpid == 0); 1328 1329 /* Copy PATE1:GR into PATE0:HR */ 1330 entry->dw0 = spapr->patb_entry & PATE0_HR; 1331 entry->dw1 = spapr->patb_entry; 1332 1333 } else { 1334 uint64_t patb, pats; 1335 1336 assert(lpid != 0); 1337 1338 patb = spapr->nested_ptcr & PTCR_PATB; 1339 pats = spapr->nested_ptcr & PTCR_PATS; 1340 1341 /* Check if partition table is properly aligned */ 1342 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1343 return false; 1344 } 1345 1346 /* Calculate number of entries */ 1347 pats = 1ull << (pats + 12 - 4); 1348 if (pats <= lpid) { 1349 return false; 1350 } 1351 1352 /* Grab entry */ 1353 patb += 16 * lpid; 1354 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1355 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1356 } 1357 1358 return true; 1359 } 1360 1361 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1362 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1363 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1364 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1365 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1366 1367 /* 1368 * Get the fd to access the kernel htab, re-opening it if necessary 1369 */ 1370 static int get_htab_fd(SpaprMachineState *spapr) 1371 { 1372 Error *local_err = NULL; 1373 1374 if (spapr->htab_fd >= 0) { 1375 return spapr->htab_fd; 1376 } 1377 1378 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1379 if (spapr->htab_fd < 0) { 1380 error_report_err(local_err); 1381 } 1382 1383 return spapr->htab_fd; 1384 } 1385 1386 void close_htab_fd(SpaprMachineState *spapr) 1387 { 1388 if (spapr->htab_fd >= 0) { 1389 close(spapr->htab_fd); 1390 } 1391 spapr->htab_fd = -1; 1392 } 1393 1394 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1395 { 1396 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1397 1398 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1399 } 1400 1401 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1402 { 1403 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1404 1405 assert(kvm_enabled()); 1406 1407 if (!spapr->htab) { 1408 return 0; 1409 } 1410 1411 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1412 } 1413 1414 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1415 hwaddr ptex, int n) 1416 { 1417 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1418 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1419 1420 if (!spapr->htab) { 1421 /* 1422 * HTAB is controlled by KVM. Fetch into temporary buffer 1423 */ 1424 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1425 kvmppc_read_hptes(hptes, ptex, n); 1426 return hptes; 1427 } 1428 1429 /* 1430 * HTAB is controlled by QEMU. Just point to the internally 1431 * accessible PTEG. 1432 */ 1433 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1434 } 1435 1436 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1437 const ppc_hash_pte64_t *hptes, 1438 hwaddr ptex, int n) 1439 { 1440 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1441 1442 if (!spapr->htab) { 1443 g_free((void *)hptes); 1444 } 1445 1446 /* Nothing to do for qemu managed HPT */ 1447 } 1448 1449 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1450 uint64_t pte0, uint64_t pte1) 1451 { 1452 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1453 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1454 1455 if (!spapr->htab) { 1456 kvmppc_write_hpte(ptex, pte0, pte1); 1457 } else { 1458 if (pte0 & HPTE64_V_VALID) { 1459 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1460 /* 1461 * When setting valid, we write PTE1 first. This ensures 1462 * proper synchronization with the reading code in 1463 * ppc_hash64_pteg_search() 1464 */ 1465 smp_wmb(); 1466 stq_p(spapr->htab + offset, pte0); 1467 } else { 1468 stq_p(spapr->htab + offset, pte0); 1469 /* 1470 * When clearing it we set PTE0 first. This ensures proper 1471 * synchronization with the reading code in 1472 * ppc_hash64_pteg_search() 1473 */ 1474 smp_wmb(); 1475 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1476 } 1477 } 1478 } 1479 1480 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1481 uint64_t pte1) 1482 { 1483 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1484 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1485 1486 if (!spapr->htab) { 1487 /* There should always be a hash table when this is called */ 1488 error_report("spapr_hpte_set_c called with no hash table !"); 1489 return; 1490 } 1491 1492 /* The HW performs a non-atomic byte update */ 1493 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1494 } 1495 1496 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1497 uint64_t pte1) 1498 { 1499 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1500 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1501 1502 if (!spapr->htab) { 1503 /* There should always be a hash table when this is called */ 1504 error_report("spapr_hpte_set_r called with no hash table !"); 1505 return; 1506 } 1507 1508 /* The HW performs a non-atomic byte update */ 1509 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1510 } 1511 1512 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1513 { 1514 int shift; 1515 1516 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1517 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1518 * that's much more than is needed for Linux guests */ 1519 shift = ctz64(pow2ceil(ramsize)) - 7; 1520 shift = MAX(shift, 18); /* Minimum architected size */ 1521 shift = MIN(shift, 46); /* Maximum architected size */ 1522 return shift; 1523 } 1524 1525 void spapr_free_hpt(SpaprMachineState *spapr) 1526 { 1527 qemu_vfree(spapr->htab); 1528 spapr->htab = NULL; 1529 spapr->htab_shift = 0; 1530 close_htab_fd(spapr); 1531 } 1532 1533 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1534 { 1535 ERRP_GUARD(); 1536 long rc; 1537 1538 /* Clean up any HPT info from a previous boot */ 1539 spapr_free_hpt(spapr); 1540 1541 rc = kvmppc_reset_htab(shift); 1542 1543 if (rc == -EOPNOTSUPP) { 1544 error_setg(errp, "HPT not supported in nested guests"); 1545 return -EOPNOTSUPP; 1546 } 1547 1548 if (rc < 0) { 1549 /* kernel-side HPT needed, but couldn't allocate one */ 1550 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1551 shift); 1552 error_append_hint(errp, "Try smaller maxmem?\n"); 1553 return -errno; 1554 } else if (rc > 0) { 1555 /* kernel-side HPT allocated */ 1556 if (rc != shift) { 1557 error_setg(errp, 1558 "Requested order %d HPT, but kernel allocated order %ld", 1559 shift, rc); 1560 error_append_hint(errp, "Try smaller maxmem?\n"); 1561 return -ENOSPC; 1562 } 1563 1564 spapr->htab_shift = shift; 1565 spapr->htab = NULL; 1566 } else { 1567 /* kernel-side HPT not needed, allocate in userspace instead */ 1568 size_t size = 1ULL << shift; 1569 int i; 1570 1571 spapr->htab = qemu_memalign(size, size); 1572 memset(spapr->htab, 0, size); 1573 spapr->htab_shift = shift; 1574 1575 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1576 DIRTY_HPTE(HPTE(spapr->htab, i)); 1577 } 1578 } 1579 /* We're setting up a hash table, so that means we're not radix */ 1580 spapr->patb_entry = 0; 1581 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1582 return 0; 1583 } 1584 1585 void spapr_setup_hpt(SpaprMachineState *spapr) 1586 { 1587 int hpt_shift; 1588 1589 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1590 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1591 } else { 1592 uint64_t current_ram_size; 1593 1594 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1595 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1596 } 1597 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1598 1599 if (kvm_enabled()) { 1600 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1601 1602 /* Check our RMA fits in the possible VRMA */ 1603 if (vrma_limit < spapr->rma_size) { 1604 error_report("Unable to create %" HWADDR_PRIu 1605 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1606 spapr->rma_size / MiB, vrma_limit / MiB); 1607 exit(EXIT_FAILURE); 1608 } 1609 } 1610 } 1611 1612 void spapr_check_mmu_mode(bool guest_radix) 1613 { 1614 if (guest_radix) { 1615 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1616 error_report("Guest requested unavailable MMU mode (radix)."); 1617 exit(EXIT_FAILURE); 1618 } 1619 } else { 1620 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1621 && !kvmppc_has_cap_mmu_hash_v3()) { 1622 error_report("Guest requested unavailable MMU mode (hash)."); 1623 exit(EXIT_FAILURE); 1624 } 1625 } 1626 } 1627 1628 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1629 { 1630 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1631 PowerPCCPU *first_ppc_cpu; 1632 hwaddr fdt_addr; 1633 void *fdt; 1634 int rc; 1635 1636 pef_kvm_reset(machine->cgs, &error_fatal); 1637 spapr_caps_apply(spapr); 1638 1639 first_ppc_cpu = POWERPC_CPU(first_cpu); 1640 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1641 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1642 spapr->max_compat_pvr)) { 1643 /* 1644 * If using KVM with radix mode available, VCPUs can be started 1645 * without a HPT because KVM will start them in radix mode. 1646 * Set the GR bit in PATE so that we know there is no HPT. 1647 */ 1648 spapr->patb_entry = PATE1_GR; 1649 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1650 } else { 1651 spapr_setup_hpt(spapr); 1652 } 1653 1654 qemu_devices_reset(reason); 1655 1656 spapr_ovec_cleanup(spapr->ov5_cas); 1657 spapr->ov5_cas = spapr_ovec_new(); 1658 1659 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1660 1661 /* 1662 * This is fixing some of the default configuration of the XIVE 1663 * devices. To be called after the reset of the machine devices. 1664 */ 1665 spapr_irq_reset(spapr, &error_fatal); 1666 1667 /* 1668 * There is no CAS under qtest. Simulate one to please the code that 1669 * depends on spapr->ov5_cas. This is especially needed to test device 1670 * unplug, so we do that before resetting the DRCs. 1671 */ 1672 if (qtest_enabled()) { 1673 spapr_ovec_cleanup(spapr->ov5_cas); 1674 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1675 } 1676 1677 spapr_nvdimm_finish_flushes(); 1678 1679 /* DRC reset may cause a device to be unplugged. This will cause troubles 1680 * if this device is used by another device (eg, a running vhost backend 1681 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1682 * situations, we reset DRCs after all devices have been reset. 1683 */ 1684 spapr_drc_reset_all(spapr); 1685 1686 spapr_clear_pending_events(spapr); 1687 1688 /* 1689 * We place the device tree just below either the top of the RMA, 1690 * or just below 2GB, whichever is lower, so that it can be 1691 * processed with 32-bit real mode code if necessary 1692 */ 1693 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1694 1695 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1696 if (spapr->vof) { 1697 spapr_vof_reset(spapr, fdt, &error_fatal); 1698 /* 1699 * Do not pack the FDT as the client may change properties. 1700 * VOF client does not expect the FDT so we do not load it to the VM. 1701 */ 1702 } else { 1703 rc = fdt_pack(fdt); 1704 /* Should only fail if we've built a corrupted tree */ 1705 assert(rc == 0); 1706 1707 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1708 0, fdt_addr, 0); 1709 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1710 } 1711 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1712 1713 g_free(spapr->fdt_blob); 1714 spapr->fdt_size = fdt_totalsize(fdt); 1715 spapr->fdt_initial_size = spapr->fdt_size; 1716 spapr->fdt_blob = fdt; 1717 1718 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1719 machine->fdt = fdt; 1720 1721 /* Set up the entry state */ 1722 first_ppc_cpu->env.gpr[5] = 0; 1723 1724 spapr->fwnmi_system_reset_addr = -1; 1725 spapr->fwnmi_machine_check_addr = -1; 1726 spapr->fwnmi_machine_check_interlock = -1; 1727 1728 /* Signal all vCPUs waiting on this condition */ 1729 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1730 1731 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1732 } 1733 1734 static void spapr_create_nvram(SpaprMachineState *spapr) 1735 { 1736 DeviceState *dev = qdev_new("spapr-nvram"); 1737 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1738 1739 if (dinfo) { 1740 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1741 &error_fatal); 1742 } 1743 1744 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1745 1746 spapr->nvram = (struct SpaprNvram *)dev; 1747 } 1748 1749 static void spapr_rtc_create(SpaprMachineState *spapr) 1750 { 1751 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1752 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1753 &error_fatal, NULL); 1754 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1755 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1756 "date"); 1757 } 1758 1759 /* Returns whether we want to use VGA or not */ 1760 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1761 { 1762 vga_interface_created = true; 1763 switch (vga_interface_type) { 1764 case VGA_NONE: 1765 return false; 1766 case VGA_DEVICE: 1767 return true; 1768 case VGA_STD: 1769 case VGA_VIRTIO: 1770 case VGA_CIRRUS: 1771 return pci_vga_init(pci_bus) != NULL; 1772 default: 1773 error_setg(errp, 1774 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1775 return false; 1776 } 1777 } 1778 1779 static int spapr_pre_load(void *opaque) 1780 { 1781 int rc; 1782 1783 rc = spapr_caps_pre_load(opaque); 1784 if (rc) { 1785 return rc; 1786 } 1787 1788 return 0; 1789 } 1790 1791 static int spapr_post_load(void *opaque, int version_id) 1792 { 1793 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1794 int err = 0; 1795 1796 err = spapr_caps_post_migration(spapr); 1797 if (err) { 1798 return err; 1799 } 1800 1801 /* 1802 * In earlier versions, there was no separate qdev for the PAPR 1803 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1804 * So when migrating from those versions, poke the incoming offset 1805 * value into the RTC device 1806 */ 1807 if (version_id < 3) { 1808 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1809 if (err) { 1810 return err; 1811 } 1812 } 1813 1814 if (kvm_enabled() && spapr->patb_entry) { 1815 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1816 bool radix = !!(spapr->patb_entry & PATE1_GR); 1817 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1818 1819 /* 1820 * Update LPCR:HR and UPRT as they may not be set properly in 1821 * the stream 1822 */ 1823 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1824 LPCR_HR | LPCR_UPRT); 1825 1826 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1827 if (err) { 1828 error_report("Process table config unsupported by the host"); 1829 return -EINVAL; 1830 } 1831 } 1832 1833 err = spapr_irq_post_load(spapr, version_id); 1834 if (err) { 1835 return err; 1836 } 1837 1838 return err; 1839 } 1840 1841 static int spapr_pre_save(void *opaque) 1842 { 1843 int rc; 1844 1845 rc = spapr_caps_pre_save(opaque); 1846 if (rc) { 1847 return rc; 1848 } 1849 1850 return 0; 1851 } 1852 1853 static bool version_before_3(void *opaque, int version_id) 1854 { 1855 return version_id < 3; 1856 } 1857 1858 static bool spapr_pending_events_needed(void *opaque) 1859 { 1860 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1861 return !QTAILQ_EMPTY(&spapr->pending_events); 1862 } 1863 1864 static const VMStateDescription vmstate_spapr_event_entry = { 1865 .name = "spapr_event_log_entry", 1866 .version_id = 1, 1867 .minimum_version_id = 1, 1868 .fields = (VMStateField[]) { 1869 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1870 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1871 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1872 NULL, extended_length), 1873 VMSTATE_END_OF_LIST() 1874 }, 1875 }; 1876 1877 static const VMStateDescription vmstate_spapr_pending_events = { 1878 .name = "spapr_pending_events", 1879 .version_id = 1, 1880 .minimum_version_id = 1, 1881 .needed = spapr_pending_events_needed, 1882 .fields = (VMStateField[]) { 1883 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1884 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1885 VMSTATE_END_OF_LIST() 1886 }, 1887 }; 1888 1889 static bool spapr_ov5_cas_needed(void *opaque) 1890 { 1891 SpaprMachineState *spapr = opaque; 1892 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1893 bool cas_needed; 1894 1895 /* Prior to the introduction of SpaprOptionVector, we had two option 1896 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1897 * Both of these options encode machine topology into the device-tree 1898 * in such a way that the now-booted OS should still be able to interact 1899 * appropriately with QEMU regardless of what options were actually 1900 * negotiatied on the source side. 1901 * 1902 * As such, we can avoid migrating the CAS-negotiated options if these 1903 * are the only options available on the current machine/platform. 1904 * Since these are the only options available for pseries-2.7 and 1905 * earlier, this allows us to maintain old->new/new->old migration 1906 * compatibility. 1907 * 1908 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1909 * via default pseries-2.8 machines and explicit command-line parameters. 1910 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1911 * of the actual CAS-negotiated values to continue working properly. For 1912 * example, availability of memory unplug depends on knowing whether 1913 * OV5_HP_EVT was negotiated via CAS. 1914 * 1915 * Thus, for any cases where the set of available CAS-negotiatable 1916 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1917 * include the CAS-negotiated options in the migration stream, unless 1918 * if they affect boot time behaviour only. 1919 */ 1920 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1921 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1922 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1923 1924 /* We need extra information if we have any bits outside the mask 1925 * defined above */ 1926 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1927 1928 spapr_ovec_cleanup(ov5_mask); 1929 1930 return cas_needed; 1931 } 1932 1933 static const VMStateDescription vmstate_spapr_ov5_cas = { 1934 .name = "spapr_option_vector_ov5_cas", 1935 .version_id = 1, 1936 .minimum_version_id = 1, 1937 .needed = spapr_ov5_cas_needed, 1938 .fields = (VMStateField[]) { 1939 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1940 vmstate_spapr_ovec, SpaprOptionVector), 1941 VMSTATE_END_OF_LIST() 1942 }, 1943 }; 1944 1945 static bool spapr_patb_entry_needed(void *opaque) 1946 { 1947 SpaprMachineState *spapr = opaque; 1948 1949 return !!spapr->patb_entry; 1950 } 1951 1952 static const VMStateDescription vmstate_spapr_patb_entry = { 1953 .name = "spapr_patb_entry", 1954 .version_id = 1, 1955 .minimum_version_id = 1, 1956 .needed = spapr_patb_entry_needed, 1957 .fields = (VMStateField[]) { 1958 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1959 VMSTATE_END_OF_LIST() 1960 }, 1961 }; 1962 1963 static bool spapr_irq_map_needed(void *opaque) 1964 { 1965 SpaprMachineState *spapr = opaque; 1966 1967 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1968 } 1969 1970 static const VMStateDescription vmstate_spapr_irq_map = { 1971 .name = "spapr_irq_map", 1972 .version_id = 1, 1973 .minimum_version_id = 1, 1974 .needed = spapr_irq_map_needed, 1975 .fields = (VMStateField[]) { 1976 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1977 VMSTATE_END_OF_LIST() 1978 }, 1979 }; 1980 1981 static bool spapr_dtb_needed(void *opaque) 1982 { 1983 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1984 1985 return smc->update_dt_enabled; 1986 } 1987 1988 static int spapr_dtb_pre_load(void *opaque) 1989 { 1990 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1991 1992 g_free(spapr->fdt_blob); 1993 spapr->fdt_blob = NULL; 1994 spapr->fdt_size = 0; 1995 1996 return 0; 1997 } 1998 1999 static const VMStateDescription vmstate_spapr_dtb = { 2000 .name = "spapr_dtb", 2001 .version_id = 1, 2002 .minimum_version_id = 1, 2003 .needed = spapr_dtb_needed, 2004 .pre_load = spapr_dtb_pre_load, 2005 .fields = (VMStateField[]) { 2006 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2007 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2008 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2009 fdt_size), 2010 VMSTATE_END_OF_LIST() 2011 }, 2012 }; 2013 2014 static bool spapr_fwnmi_needed(void *opaque) 2015 { 2016 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2017 2018 return spapr->fwnmi_machine_check_addr != -1; 2019 } 2020 2021 static int spapr_fwnmi_pre_save(void *opaque) 2022 { 2023 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2024 2025 /* 2026 * Check if machine check handling is in progress and print a 2027 * warning message. 2028 */ 2029 if (spapr->fwnmi_machine_check_interlock != -1) { 2030 warn_report("A machine check is being handled during migration. The" 2031 "handler may run and log hardware error on the destination"); 2032 } 2033 2034 return 0; 2035 } 2036 2037 static const VMStateDescription vmstate_spapr_fwnmi = { 2038 .name = "spapr_fwnmi", 2039 .version_id = 1, 2040 .minimum_version_id = 1, 2041 .needed = spapr_fwnmi_needed, 2042 .pre_save = spapr_fwnmi_pre_save, 2043 .fields = (VMStateField[]) { 2044 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2045 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2046 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2047 VMSTATE_END_OF_LIST() 2048 }, 2049 }; 2050 2051 static const VMStateDescription vmstate_spapr = { 2052 .name = "spapr", 2053 .version_id = 3, 2054 .minimum_version_id = 1, 2055 .pre_load = spapr_pre_load, 2056 .post_load = spapr_post_load, 2057 .pre_save = spapr_pre_save, 2058 .fields = (VMStateField[]) { 2059 /* used to be @next_irq */ 2060 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2061 2062 /* RTC offset */ 2063 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2064 2065 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2066 VMSTATE_END_OF_LIST() 2067 }, 2068 .subsections = (const VMStateDescription*[]) { 2069 &vmstate_spapr_ov5_cas, 2070 &vmstate_spapr_patb_entry, 2071 &vmstate_spapr_pending_events, 2072 &vmstate_spapr_cap_htm, 2073 &vmstate_spapr_cap_vsx, 2074 &vmstate_spapr_cap_dfp, 2075 &vmstate_spapr_cap_cfpc, 2076 &vmstate_spapr_cap_sbbc, 2077 &vmstate_spapr_cap_ibs, 2078 &vmstate_spapr_cap_hpt_maxpagesize, 2079 &vmstate_spapr_irq_map, 2080 &vmstate_spapr_cap_nested_kvm_hv, 2081 &vmstate_spapr_dtb, 2082 &vmstate_spapr_cap_large_decr, 2083 &vmstate_spapr_cap_ccf_assist, 2084 &vmstate_spapr_cap_fwnmi, 2085 &vmstate_spapr_fwnmi, 2086 &vmstate_spapr_cap_rpt_invalidate, 2087 NULL 2088 } 2089 }; 2090 2091 static int htab_save_setup(QEMUFile *f, void *opaque) 2092 { 2093 SpaprMachineState *spapr = opaque; 2094 2095 /* "Iteration" header */ 2096 if (!spapr->htab_shift) { 2097 qemu_put_be32(f, -1); 2098 } else { 2099 qemu_put_be32(f, spapr->htab_shift); 2100 } 2101 2102 if (spapr->htab) { 2103 spapr->htab_save_index = 0; 2104 spapr->htab_first_pass = true; 2105 } else { 2106 if (spapr->htab_shift) { 2107 assert(kvm_enabled()); 2108 } 2109 } 2110 2111 2112 return 0; 2113 } 2114 2115 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2116 int chunkstart, int n_valid, int n_invalid) 2117 { 2118 qemu_put_be32(f, chunkstart); 2119 qemu_put_be16(f, n_valid); 2120 qemu_put_be16(f, n_invalid); 2121 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2122 HASH_PTE_SIZE_64 * n_valid); 2123 } 2124 2125 static void htab_save_end_marker(QEMUFile *f) 2126 { 2127 qemu_put_be32(f, 0); 2128 qemu_put_be16(f, 0); 2129 qemu_put_be16(f, 0); 2130 } 2131 2132 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2133 int64_t max_ns) 2134 { 2135 bool has_timeout = max_ns != -1; 2136 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2137 int index = spapr->htab_save_index; 2138 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2139 2140 assert(spapr->htab_first_pass); 2141 2142 do { 2143 int chunkstart; 2144 2145 /* Consume invalid HPTEs */ 2146 while ((index < htabslots) 2147 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2148 CLEAN_HPTE(HPTE(spapr->htab, index)); 2149 index++; 2150 } 2151 2152 /* Consume valid HPTEs */ 2153 chunkstart = index; 2154 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2155 && HPTE_VALID(HPTE(spapr->htab, index))) { 2156 CLEAN_HPTE(HPTE(spapr->htab, index)); 2157 index++; 2158 } 2159 2160 if (index > chunkstart) { 2161 int n_valid = index - chunkstart; 2162 2163 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2164 2165 if (has_timeout && 2166 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2167 break; 2168 } 2169 } 2170 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2171 2172 if (index >= htabslots) { 2173 assert(index == htabslots); 2174 index = 0; 2175 spapr->htab_first_pass = false; 2176 } 2177 spapr->htab_save_index = index; 2178 } 2179 2180 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2181 int64_t max_ns) 2182 { 2183 bool final = max_ns < 0; 2184 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2185 int examined = 0, sent = 0; 2186 int index = spapr->htab_save_index; 2187 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2188 2189 assert(!spapr->htab_first_pass); 2190 2191 do { 2192 int chunkstart, invalidstart; 2193 2194 /* Consume non-dirty HPTEs */ 2195 while ((index < htabslots) 2196 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2197 index++; 2198 examined++; 2199 } 2200 2201 chunkstart = index; 2202 /* Consume valid dirty HPTEs */ 2203 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2204 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2205 && HPTE_VALID(HPTE(spapr->htab, index))) { 2206 CLEAN_HPTE(HPTE(spapr->htab, index)); 2207 index++; 2208 examined++; 2209 } 2210 2211 invalidstart = index; 2212 /* Consume invalid dirty HPTEs */ 2213 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2214 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2215 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2216 CLEAN_HPTE(HPTE(spapr->htab, index)); 2217 index++; 2218 examined++; 2219 } 2220 2221 if (index > chunkstart) { 2222 int n_valid = invalidstart - chunkstart; 2223 int n_invalid = index - invalidstart; 2224 2225 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2226 sent += index - chunkstart; 2227 2228 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2229 break; 2230 } 2231 } 2232 2233 if (examined >= htabslots) { 2234 break; 2235 } 2236 2237 if (index >= htabslots) { 2238 assert(index == htabslots); 2239 index = 0; 2240 } 2241 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2242 2243 if (index >= htabslots) { 2244 assert(index == htabslots); 2245 index = 0; 2246 } 2247 2248 spapr->htab_save_index = index; 2249 2250 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2251 } 2252 2253 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2254 #define MAX_KVM_BUF_SIZE 2048 2255 2256 static int htab_save_iterate(QEMUFile *f, void *opaque) 2257 { 2258 SpaprMachineState *spapr = opaque; 2259 int fd; 2260 int rc = 0; 2261 2262 /* Iteration header */ 2263 if (!spapr->htab_shift) { 2264 qemu_put_be32(f, -1); 2265 return 1; 2266 } else { 2267 qemu_put_be32(f, 0); 2268 } 2269 2270 if (!spapr->htab) { 2271 assert(kvm_enabled()); 2272 2273 fd = get_htab_fd(spapr); 2274 if (fd < 0) { 2275 return fd; 2276 } 2277 2278 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2279 if (rc < 0) { 2280 return rc; 2281 } 2282 } else if (spapr->htab_first_pass) { 2283 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2284 } else { 2285 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2286 } 2287 2288 htab_save_end_marker(f); 2289 2290 return rc; 2291 } 2292 2293 static int htab_save_complete(QEMUFile *f, void *opaque) 2294 { 2295 SpaprMachineState *spapr = opaque; 2296 int fd; 2297 2298 /* Iteration header */ 2299 if (!spapr->htab_shift) { 2300 qemu_put_be32(f, -1); 2301 return 0; 2302 } else { 2303 qemu_put_be32(f, 0); 2304 } 2305 2306 if (!spapr->htab) { 2307 int rc; 2308 2309 assert(kvm_enabled()); 2310 2311 fd = get_htab_fd(spapr); 2312 if (fd < 0) { 2313 return fd; 2314 } 2315 2316 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2317 if (rc < 0) { 2318 return rc; 2319 } 2320 } else { 2321 if (spapr->htab_first_pass) { 2322 htab_save_first_pass(f, spapr, -1); 2323 } 2324 htab_save_later_pass(f, spapr, -1); 2325 } 2326 2327 /* End marker */ 2328 htab_save_end_marker(f); 2329 2330 return 0; 2331 } 2332 2333 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2334 { 2335 SpaprMachineState *spapr = opaque; 2336 uint32_t section_hdr; 2337 int fd = -1; 2338 Error *local_err = NULL; 2339 2340 if (version_id < 1 || version_id > 1) { 2341 error_report("htab_load() bad version"); 2342 return -EINVAL; 2343 } 2344 2345 section_hdr = qemu_get_be32(f); 2346 2347 if (section_hdr == -1) { 2348 spapr_free_hpt(spapr); 2349 return 0; 2350 } 2351 2352 if (section_hdr) { 2353 int ret; 2354 2355 /* First section gives the htab size */ 2356 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2357 if (ret < 0) { 2358 error_report_err(local_err); 2359 return ret; 2360 } 2361 return 0; 2362 } 2363 2364 if (!spapr->htab) { 2365 assert(kvm_enabled()); 2366 2367 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2368 if (fd < 0) { 2369 error_report_err(local_err); 2370 return fd; 2371 } 2372 } 2373 2374 while (true) { 2375 uint32_t index; 2376 uint16_t n_valid, n_invalid; 2377 2378 index = qemu_get_be32(f); 2379 n_valid = qemu_get_be16(f); 2380 n_invalid = qemu_get_be16(f); 2381 2382 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2383 /* End of Stream */ 2384 break; 2385 } 2386 2387 if ((index + n_valid + n_invalid) > 2388 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2389 /* Bad index in stream */ 2390 error_report( 2391 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2392 index, n_valid, n_invalid, spapr->htab_shift); 2393 return -EINVAL; 2394 } 2395 2396 if (spapr->htab) { 2397 if (n_valid) { 2398 qemu_get_buffer(f, HPTE(spapr->htab, index), 2399 HASH_PTE_SIZE_64 * n_valid); 2400 } 2401 if (n_invalid) { 2402 memset(HPTE(spapr->htab, index + n_valid), 0, 2403 HASH_PTE_SIZE_64 * n_invalid); 2404 } 2405 } else { 2406 int rc; 2407 2408 assert(fd >= 0); 2409 2410 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2411 &local_err); 2412 if (rc < 0) { 2413 error_report_err(local_err); 2414 return rc; 2415 } 2416 } 2417 } 2418 2419 if (!spapr->htab) { 2420 assert(fd >= 0); 2421 close(fd); 2422 } 2423 2424 return 0; 2425 } 2426 2427 static void htab_save_cleanup(void *opaque) 2428 { 2429 SpaprMachineState *spapr = opaque; 2430 2431 close_htab_fd(spapr); 2432 } 2433 2434 static SaveVMHandlers savevm_htab_handlers = { 2435 .save_setup = htab_save_setup, 2436 .save_live_iterate = htab_save_iterate, 2437 .save_live_complete_precopy = htab_save_complete, 2438 .save_cleanup = htab_save_cleanup, 2439 .load_state = htab_load, 2440 }; 2441 2442 static void spapr_boot_set(void *opaque, const char *boot_device, 2443 Error **errp) 2444 { 2445 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2446 2447 g_free(spapr->boot_device); 2448 spapr->boot_device = g_strdup(boot_device); 2449 } 2450 2451 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2452 { 2453 MachineState *machine = MACHINE(spapr); 2454 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2455 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2456 int i; 2457 2458 for (i = 0; i < nr_lmbs; i++) { 2459 uint64_t addr; 2460 2461 addr = i * lmb_size + machine->device_memory->base; 2462 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2463 addr / lmb_size); 2464 } 2465 } 2466 2467 /* 2468 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2469 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2470 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2471 */ 2472 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2473 { 2474 int i; 2475 2476 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2477 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2478 " is not aligned to %" PRIu64 " MiB", 2479 machine->ram_size, 2480 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2481 return; 2482 } 2483 2484 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2485 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2486 " is not aligned to %" PRIu64 " MiB", 2487 machine->ram_size, 2488 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2489 return; 2490 } 2491 2492 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2493 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2494 error_setg(errp, 2495 "Node %d memory size 0x%" PRIx64 2496 " is not aligned to %" PRIu64 " MiB", 2497 i, machine->numa_state->nodes[i].node_mem, 2498 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2499 return; 2500 } 2501 } 2502 } 2503 2504 /* find cpu slot in machine->possible_cpus by core_id */ 2505 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2506 { 2507 int index = id / ms->smp.threads; 2508 2509 if (index >= ms->possible_cpus->len) { 2510 return NULL; 2511 } 2512 if (idx) { 2513 *idx = index; 2514 } 2515 return &ms->possible_cpus->cpus[index]; 2516 } 2517 2518 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2519 { 2520 MachineState *ms = MACHINE(spapr); 2521 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2522 Error *local_err = NULL; 2523 bool vsmt_user = !!spapr->vsmt; 2524 int kvm_smt = kvmppc_smt_threads(); 2525 int ret; 2526 unsigned int smp_threads = ms->smp.threads; 2527 2528 if (tcg_enabled()) { 2529 if (smp_threads > 1 && 2530 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2531 spapr->max_compat_pvr)) { 2532 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2533 return; 2534 } 2535 2536 if (smp_threads > 8) { 2537 error_setg(errp, "TCG cannot support more than 8 threads/core " 2538 "on a pseries machine"); 2539 return; 2540 } 2541 } 2542 if (!is_power_of_2(smp_threads)) { 2543 error_setg(errp, "Cannot support %d threads/core on a pseries " 2544 "machine because it must be a power of 2", smp_threads); 2545 return; 2546 } 2547 2548 /* Detemine the VSMT mode to use: */ 2549 if (vsmt_user) { 2550 if (spapr->vsmt < smp_threads) { 2551 error_setg(errp, "Cannot support VSMT mode %d" 2552 " because it must be >= threads/core (%d)", 2553 spapr->vsmt, smp_threads); 2554 return; 2555 } 2556 /* In this case, spapr->vsmt has been set by the command line */ 2557 } else if (!smc->smp_threads_vsmt) { 2558 /* 2559 * Default VSMT value is tricky, because we need it to be as 2560 * consistent as possible (for migration), but this requires 2561 * changing it for at least some existing cases. We pick 8 as 2562 * the value that we'd get with KVM on POWER8, the 2563 * overwhelmingly common case in production systems. 2564 */ 2565 spapr->vsmt = MAX(8, smp_threads); 2566 } else { 2567 spapr->vsmt = smp_threads; 2568 } 2569 2570 /* KVM: If necessary, set the SMT mode: */ 2571 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2572 ret = kvmppc_set_smt_threads(spapr->vsmt); 2573 if (ret) { 2574 /* Looks like KVM isn't able to change VSMT mode */ 2575 error_setg(&local_err, 2576 "Failed to set KVM's VSMT mode to %d (errno %d)", 2577 spapr->vsmt, ret); 2578 /* We can live with that if the default one is big enough 2579 * for the number of threads, and a submultiple of the one 2580 * we want. In this case we'll waste some vcpu ids, but 2581 * behaviour will be correct */ 2582 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2583 warn_report_err(local_err); 2584 } else { 2585 if (!vsmt_user) { 2586 error_append_hint(&local_err, 2587 "On PPC, a VM with %d threads/core" 2588 " on a host with %d threads/core" 2589 " requires the use of VSMT mode %d.\n", 2590 smp_threads, kvm_smt, spapr->vsmt); 2591 } 2592 kvmppc_error_append_smt_possible_hint(&local_err); 2593 error_propagate(errp, local_err); 2594 } 2595 } 2596 } 2597 /* else TCG: nothing to do currently */ 2598 } 2599 2600 static void spapr_init_cpus(SpaprMachineState *spapr) 2601 { 2602 MachineState *machine = MACHINE(spapr); 2603 MachineClass *mc = MACHINE_GET_CLASS(machine); 2604 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2605 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2606 const CPUArchIdList *possible_cpus; 2607 unsigned int smp_cpus = machine->smp.cpus; 2608 unsigned int smp_threads = machine->smp.threads; 2609 unsigned int max_cpus = machine->smp.max_cpus; 2610 int boot_cores_nr = smp_cpus / smp_threads; 2611 int i; 2612 2613 possible_cpus = mc->possible_cpu_arch_ids(machine); 2614 if (mc->has_hotpluggable_cpus) { 2615 if (smp_cpus % smp_threads) { 2616 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2617 smp_cpus, smp_threads); 2618 exit(1); 2619 } 2620 if (max_cpus % smp_threads) { 2621 error_report("max_cpus (%u) must be multiple of threads (%u)", 2622 max_cpus, smp_threads); 2623 exit(1); 2624 } 2625 } else { 2626 if (max_cpus != smp_cpus) { 2627 error_report("This machine version does not support CPU hotplug"); 2628 exit(1); 2629 } 2630 boot_cores_nr = possible_cpus->len; 2631 } 2632 2633 if (smc->pre_2_10_has_unused_icps) { 2634 int i; 2635 2636 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2637 /* Dummy entries get deregistered when real ICPState objects 2638 * are registered during CPU core hotplug. 2639 */ 2640 pre_2_10_vmstate_register_dummy_icp(i); 2641 } 2642 } 2643 2644 for (i = 0; i < possible_cpus->len; i++) { 2645 int core_id = i * smp_threads; 2646 2647 if (mc->has_hotpluggable_cpus) { 2648 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2649 spapr_vcpu_id(spapr, core_id)); 2650 } 2651 2652 if (i < boot_cores_nr) { 2653 Object *core = object_new(type); 2654 int nr_threads = smp_threads; 2655 2656 /* Handle the partially filled core for older machine types */ 2657 if ((i + 1) * smp_threads >= smp_cpus) { 2658 nr_threads = smp_cpus - i * smp_threads; 2659 } 2660 2661 object_property_set_int(core, "nr-threads", nr_threads, 2662 &error_fatal); 2663 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2664 &error_fatal); 2665 qdev_realize(DEVICE(core), NULL, &error_fatal); 2666 2667 object_unref(core); 2668 } 2669 } 2670 } 2671 2672 static PCIHostState *spapr_create_default_phb(void) 2673 { 2674 DeviceState *dev; 2675 2676 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2677 qdev_prop_set_uint32(dev, "index", 0); 2678 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2679 2680 return PCI_HOST_BRIDGE(dev); 2681 } 2682 2683 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2684 { 2685 MachineState *machine = MACHINE(spapr); 2686 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2687 hwaddr rma_size = machine->ram_size; 2688 hwaddr node0_size = spapr_node0_size(machine); 2689 2690 /* RMA has to fit in the first NUMA node */ 2691 rma_size = MIN(rma_size, node0_size); 2692 2693 /* 2694 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2695 * never exceed that 2696 */ 2697 rma_size = MIN(rma_size, 1 * TiB); 2698 2699 /* 2700 * Clamp the RMA size based on machine type. This is for 2701 * migration compatibility with older qemu versions, which limited 2702 * the RMA size for complicated and mostly bad reasons. 2703 */ 2704 if (smc->rma_limit) { 2705 rma_size = MIN(rma_size, smc->rma_limit); 2706 } 2707 2708 if (rma_size < MIN_RMA_SLOF) { 2709 error_setg(errp, 2710 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2711 "ldMiB guest RMA (Real Mode Area memory)", 2712 MIN_RMA_SLOF / MiB); 2713 return 0; 2714 } 2715 2716 return rma_size; 2717 } 2718 2719 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2720 { 2721 MachineState *machine = MACHINE(spapr); 2722 int i; 2723 2724 for (i = 0; i < machine->ram_slots; i++) { 2725 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2726 } 2727 } 2728 2729 /* pSeries LPAR / sPAPR hardware init */ 2730 static void spapr_machine_init(MachineState *machine) 2731 { 2732 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2733 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2734 MachineClass *mc = MACHINE_GET_CLASS(machine); 2735 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2736 const char *bios_name = machine->firmware ?: bios_default; 2737 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2738 const char *kernel_filename = machine->kernel_filename; 2739 const char *initrd_filename = machine->initrd_filename; 2740 PCIHostState *phb; 2741 bool has_vga; 2742 int i; 2743 MemoryRegion *sysmem = get_system_memory(); 2744 long load_limit, fw_size; 2745 Error *resize_hpt_err = NULL; 2746 2747 if (!filename) { 2748 error_report("Could not find LPAR firmware '%s'", bios_name); 2749 exit(1); 2750 } 2751 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2752 if (fw_size <= 0) { 2753 error_report("Could not load LPAR firmware '%s'", filename); 2754 exit(1); 2755 } 2756 2757 /* 2758 * if Secure VM (PEF) support is configured, then initialize it 2759 */ 2760 pef_kvm_init(machine->cgs, &error_fatal); 2761 2762 msi_nonbroken = true; 2763 2764 QLIST_INIT(&spapr->phbs); 2765 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2766 2767 /* Determine capabilities to run with */ 2768 spapr_caps_init(spapr); 2769 2770 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2771 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2772 /* 2773 * If the user explicitly requested a mode we should either 2774 * supply it, or fail completely (which we do below). But if 2775 * it's not set explicitly, we reset our mode to something 2776 * that works 2777 */ 2778 if (resize_hpt_err) { 2779 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2780 error_free(resize_hpt_err); 2781 resize_hpt_err = NULL; 2782 } else { 2783 spapr->resize_hpt = smc->resize_hpt_default; 2784 } 2785 } 2786 2787 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2788 2789 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2790 /* 2791 * User requested HPT resize, but this host can't supply it. Bail out 2792 */ 2793 error_report_err(resize_hpt_err); 2794 exit(1); 2795 } 2796 error_free(resize_hpt_err); 2797 2798 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2799 2800 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2801 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2802 2803 /* 2804 * VSMT must be set in order to be able to compute VCPU ids, ie to 2805 * call spapr_max_server_number() or spapr_vcpu_id(). 2806 */ 2807 spapr_set_vsmt_mode(spapr, &error_fatal); 2808 2809 /* Set up Interrupt Controller before we create the VCPUs */ 2810 spapr_irq_init(spapr, &error_fatal); 2811 2812 /* Set up containers for ibm,client-architecture-support negotiated options 2813 */ 2814 spapr->ov5 = spapr_ovec_new(); 2815 spapr->ov5_cas = spapr_ovec_new(); 2816 2817 if (smc->dr_lmb_enabled) { 2818 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2819 spapr_validate_node_memory(machine, &error_fatal); 2820 } 2821 2822 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2823 2824 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2825 if (!smc->pre_6_2_numa_affinity) { 2826 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2827 } 2828 2829 /* advertise support for dedicated HP event source to guests */ 2830 if (spapr->use_hotplug_event_source) { 2831 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2832 } 2833 2834 /* advertise support for HPT resizing */ 2835 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2836 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2837 } 2838 2839 /* advertise support for ibm,dyamic-memory-v2 */ 2840 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2841 2842 /* advertise XIVE on POWER9 machines */ 2843 if (spapr->irq->xive) { 2844 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2845 } 2846 2847 /* init CPUs */ 2848 spapr_init_cpus(spapr); 2849 2850 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2851 2852 /* Init numa_assoc_array */ 2853 spapr_numa_associativity_init(spapr, machine); 2854 2855 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2856 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2857 spapr->max_compat_pvr)) { 2858 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2859 /* KVM and TCG always allow GTSE with radix... */ 2860 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2861 } 2862 /* ... but not with hash (currently). */ 2863 2864 if (kvm_enabled()) { 2865 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2866 kvmppc_enable_logical_ci_hcalls(); 2867 kvmppc_enable_set_mode_hcall(); 2868 2869 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2870 kvmppc_enable_clear_ref_mod_hcalls(); 2871 2872 /* Enable H_PAGE_INIT */ 2873 kvmppc_enable_h_page_init(); 2874 } 2875 2876 /* map RAM */ 2877 memory_region_add_subregion(sysmem, 0, machine->ram); 2878 2879 /* always allocate the device memory information */ 2880 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2881 2882 /* initialize hotplug memory address space */ 2883 if (machine->ram_size < machine->maxram_size) { 2884 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2885 /* 2886 * Limit the number of hotpluggable memory slots to half the number 2887 * slots that KVM supports, leaving the other half for PCI and other 2888 * devices. However ensure that number of slots doesn't drop below 32. 2889 */ 2890 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2891 SPAPR_MAX_RAM_SLOTS; 2892 2893 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2894 max_memslots = SPAPR_MAX_RAM_SLOTS; 2895 } 2896 if (machine->ram_slots > max_memslots) { 2897 error_report("Specified number of memory slots %" 2898 PRIu64" exceeds max supported %d", 2899 machine->ram_slots, max_memslots); 2900 exit(1); 2901 } 2902 2903 machine->device_memory->base = ROUND_UP(machine->ram_size, 2904 SPAPR_DEVICE_MEM_ALIGN); 2905 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2906 "device-memory", device_mem_size); 2907 memory_region_add_subregion(sysmem, machine->device_memory->base, 2908 &machine->device_memory->mr); 2909 } 2910 2911 if (smc->dr_lmb_enabled) { 2912 spapr_create_lmb_dr_connectors(spapr); 2913 } 2914 2915 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2916 /* Create the error string for live migration blocker */ 2917 error_setg(&spapr->fwnmi_migration_blocker, 2918 "A machine check is being handled during migration. The handler" 2919 "may run and log hardware error on the destination"); 2920 } 2921 2922 if (mc->nvdimm_supported) { 2923 spapr_create_nvdimm_dr_connectors(spapr); 2924 } 2925 2926 /* Set up RTAS event infrastructure */ 2927 spapr_events_init(spapr); 2928 2929 /* Set up the RTC RTAS interfaces */ 2930 spapr_rtc_create(spapr); 2931 2932 /* Set up VIO bus */ 2933 spapr->vio_bus = spapr_vio_bus_init(); 2934 2935 for (i = 0; serial_hd(i); i++) { 2936 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2937 } 2938 2939 /* We always have at least the nvram device on VIO */ 2940 spapr_create_nvram(spapr); 2941 2942 /* 2943 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2944 * connectors (described in root DT node's "ibm,drc-types" property) 2945 * are pre-initialized here. additional child connectors (such as 2946 * connectors for a PHBs PCI slots) are added as needed during their 2947 * parent's realization. 2948 */ 2949 if (smc->dr_phb_enabled) { 2950 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2951 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2952 } 2953 } 2954 2955 /* Set up PCI */ 2956 spapr_pci_rtas_init(); 2957 2958 phb = spapr_create_default_phb(); 2959 2960 for (i = 0; i < nb_nics; i++) { 2961 NICInfo *nd = &nd_table[i]; 2962 2963 if (!nd->model) { 2964 nd->model = g_strdup("spapr-vlan"); 2965 } 2966 2967 if (g_str_equal(nd->model, "spapr-vlan") || 2968 g_str_equal(nd->model, "ibmveth")) { 2969 spapr_vlan_create(spapr->vio_bus, nd); 2970 } else { 2971 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2972 } 2973 } 2974 2975 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2976 spapr_vscsi_create(spapr->vio_bus); 2977 } 2978 2979 /* Graphics */ 2980 has_vga = spapr_vga_init(phb->bus, &error_fatal); 2981 if (has_vga) { 2982 spapr->want_stdout_path = !machine->enable_graphics; 2983 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2984 } else { 2985 spapr->want_stdout_path = true; 2986 } 2987 2988 if (machine->usb) { 2989 if (smc->use_ohci_by_default) { 2990 pci_create_simple(phb->bus, -1, "pci-ohci"); 2991 } else { 2992 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2993 } 2994 2995 if (has_vga) { 2996 USBBus *usb_bus = usb_bus_find(-1); 2997 2998 usb_create_simple(usb_bus, "usb-kbd"); 2999 usb_create_simple(usb_bus, "usb-mouse"); 3000 } 3001 } 3002 3003 if (kernel_filename) { 3004 uint64_t loaded_addr = 0; 3005 3006 spapr->kernel_size = load_elf(kernel_filename, NULL, 3007 translate_kernel_address, spapr, 3008 NULL, &loaded_addr, NULL, NULL, 1, 3009 PPC_ELF_MACHINE, 0, 0); 3010 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3011 spapr->kernel_size = load_elf(kernel_filename, NULL, 3012 translate_kernel_address, spapr, 3013 NULL, &loaded_addr, NULL, NULL, 0, 3014 PPC_ELF_MACHINE, 0, 0); 3015 spapr->kernel_le = spapr->kernel_size > 0; 3016 } 3017 if (spapr->kernel_size < 0) { 3018 error_report("error loading %s: %s", kernel_filename, 3019 load_elf_strerror(spapr->kernel_size)); 3020 exit(1); 3021 } 3022 3023 if (spapr->kernel_addr != loaded_addr) { 3024 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3025 " to 0x%"PRIx64, 3026 spapr->kernel_addr, loaded_addr); 3027 spapr->kernel_addr = loaded_addr; 3028 } 3029 3030 /* load initrd */ 3031 if (initrd_filename) { 3032 /* Try to locate the initrd in the gap between the kernel 3033 * and the firmware. Add a bit of space just in case 3034 */ 3035 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3036 + 0x1ffff) & ~0xffff; 3037 spapr->initrd_size = load_image_targphys(initrd_filename, 3038 spapr->initrd_base, 3039 load_limit 3040 - spapr->initrd_base); 3041 if (spapr->initrd_size < 0) { 3042 error_report("could not load initial ram disk '%s'", 3043 initrd_filename); 3044 exit(1); 3045 } 3046 } 3047 } 3048 3049 /* FIXME: Should register things through the MachineState's qdev 3050 * interface, this is a legacy from the sPAPREnvironment structure 3051 * which predated MachineState but had a similar function */ 3052 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3053 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3054 &savevm_htab_handlers, spapr); 3055 3056 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3057 3058 qemu_register_boot_set(spapr_boot_set, spapr); 3059 3060 /* 3061 * Nothing needs to be done to resume a suspended guest because 3062 * suspending does not change the machine state, so no need for 3063 * a ->wakeup method. 3064 */ 3065 qemu_register_wakeup_support(); 3066 3067 if (kvm_enabled()) { 3068 /* to stop and start vmclock */ 3069 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3070 &spapr->tb); 3071 3072 kvmppc_spapr_enable_inkernel_multitce(); 3073 } 3074 3075 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3076 if (spapr->vof) { 3077 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3078 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3079 } 3080 3081 spapr_watchdog_init(spapr); 3082 } 3083 3084 #define DEFAULT_KVM_TYPE "auto" 3085 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3086 { 3087 /* 3088 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3089 * accomodate the 'HV' and 'PV' formats that exists in the 3090 * wild. The 'auto' mode is being introduced already as 3091 * lower-case, thus we don't need to bother checking for 3092 * "AUTO". 3093 */ 3094 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3095 return 0; 3096 } 3097 3098 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3099 return 1; 3100 } 3101 3102 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3103 return 2; 3104 } 3105 3106 error_report("Unknown kvm-type specified '%s'", vm_type); 3107 exit(1); 3108 } 3109 3110 /* 3111 * Implementation of an interface to adjust firmware path 3112 * for the bootindex property handling. 3113 */ 3114 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3115 DeviceState *dev) 3116 { 3117 #define CAST(type, obj, name) \ 3118 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3119 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3120 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3121 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3122 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3123 3124 if (d && bus) { 3125 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3126 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3127 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3128 3129 if (spapr) { 3130 /* 3131 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3132 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3133 * 0x8000 | (target << 8) | (bus << 5) | lun 3134 * (see the "Logical unit addressing format" table in SAM5) 3135 */ 3136 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3137 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3138 (uint64_t)id << 48); 3139 } else if (virtio) { 3140 /* 3141 * We use SRP luns of the form 01000000 | (target << 8) | lun 3142 * in the top 32 bits of the 64-bit LUN 3143 * Note: the quote above is from SLOF and it is wrong, 3144 * the actual binding is: 3145 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3146 */ 3147 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3148 if (d->lun >= 256) { 3149 /* Use the LUN "flat space addressing method" */ 3150 id |= 0x4000; 3151 } 3152 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3153 (uint64_t)id << 32); 3154 } else if (usb) { 3155 /* 3156 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3157 * in the top 32 bits of the 64-bit LUN 3158 */ 3159 unsigned usb_port = atoi(usb->port->path); 3160 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3161 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3162 (uint64_t)id << 32); 3163 } 3164 } 3165 3166 /* 3167 * SLOF probes the USB devices, and if it recognizes that the device is a 3168 * storage device, it changes its name to "storage" instead of "usb-host", 3169 * and additionally adds a child node for the SCSI LUN, so the correct 3170 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3171 */ 3172 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3173 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3174 if (usb_device_is_scsi_storage(usbdev)) { 3175 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3176 } 3177 } 3178 3179 if (phb) { 3180 /* Replace "pci" with "pci@800000020000000" */ 3181 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3182 } 3183 3184 if (vsc) { 3185 /* Same logic as virtio above */ 3186 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3187 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3188 } 3189 3190 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3191 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3192 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3193 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3194 } 3195 3196 if (pcidev) { 3197 return spapr_pci_fw_dev_name(pcidev); 3198 } 3199 3200 return NULL; 3201 } 3202 3203 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3204 { 3205 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3206 3207 return g_strdup(spapr->kvm_type); 3208 } 3209 3210 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3211 { 3212 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3213 3214 g_free(spapr->kvm_type); 3215 spapr->kvm_type = g_strdup(value); 3216 } 3217 3218 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3219 { 3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3221 3222 return spapr->use_hotplug_event_source; 3223 } 3224 3225 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3226 Error **errp) 3227 { 3228 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3229 3230 spapr->use_hotplug_event_source = value; 3231 } 3232 3233 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3234 { 3235 return true; 3236 } 3237 3238 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3239 { 3240 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3241 3242 switch (spapr->resize_hpt) { 3243 case SPAPR_RESIZE_HPT_DEFAULT: 3244 return g_strdup("default"); 3245 case SPAPR_RESIZE_HPT_DISABLED: 3246 return g_strdup("disabled"); 3247 case SPAPR_RESIZE_HPT_ENABLED: 3248 return g_strdup("enabled"); 3249 case SPAPR_RESIZE_HPT_REQUIRED: 3250 return g_strdup("required"); 3251 } 3252 g_assert_not_reached(); 3253 } 3254 3255 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3256 { 3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3258 3259 if (strcmp(value, "default") == 0) { 3260 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3261 } else if (strcmp(value, "disabled") == 0) { 3262 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3263 } else if (strcmp(value, "enabled") == 0) { 3264 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3265 } else if (strcmp(value, "required") == 0) { 3266 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3267 } else { 3268 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3269 } 3270 } 3271 3272 static bool spapr_get_vof(Object *obj, Error **errp) 3273 { 3274 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3275 3276 return spapr->vof != NULL; 3277 } 3278 3279 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3280 { 3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3282 3283 if (spapr->vof) { 3284 vof_cleanup(spapr->vof); 3285 g_free(spapr->vof); 3286 spapr->vof = NULL; 3287 } 3288 if (!value) { 3289 return; 3290 } 3291 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3292 } 3293 3294 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3295 { 3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3297 3298 if (spapr->irq == &spapr_irq_xics_legacy) { 3299 return g_strdup("legacy"); 3300 } else if (spapr->irq == &spapr_irq_xics) { 3301 return g_strdup("xics"); 3302 } else if (spapr->irq == &spapr_irq_xive) { 3303 return g_strdup("xive"); 3304 } else if (spapr->irq == &spapr_irq_dual) { 3305 return g_strdup("dual"); 3306 } 3307 g_assert_not_reached(); 3308 } 3309 3310 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3311 { 3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3313 3314 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3315 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3316 return; 3317 } 3318 3319 /* The legacy IRQ backend can not be set */ 3320 if (strcmp(value, "xics") == 0) { 3321 spapr->irq = &spapr_irq_xics; 3322 } else if (strcmp(value, "xive") == 0) { 3323 spapr->irq = &spapr_irq_xive; 3324 } else if (strcmp(value, "dual") == 0) { 3325 spapr->irq = &spapr_irq_dual; 3326 } else { 3327 error_setg(errp, "Bad value for \"ic-mode\" property"); 3328 } 3329 } 3330 3331 static char *spapr_get_host_model(Object *obj, Error **errp) 3332 { 3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3334 3335 return g_strdup(spapr->host_model); 3336 } 3337 3338 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3339 { 3340 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3341 3342 g_free(spapr->host_model); 3343 spapr->host_model = g_strdup(value); 3344 } 3345 3346 static char *spapr_get_host_serial(Object *obj, Error **errp) 3347 { 3348 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3349 3350 return g_strdup(spapr->host_serial); 3351 } 3352 3353 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3354 { 3355 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3356 3357 g_free(spapr->host_serial); 3358 spapr->host_serial = g_strdup(value); 3359 } 3360 3361 static void spapr_instance_init(Object *obj) 3362 { 3363 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3364 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3365 MachineState *ms = MACHINE(spapr); 3366 MachineClass *mc = MACHINE_GET_CLASS(ms); 3367 3368 /* 3369 * NVDIMM support went live in 5.1 without considering that, in 3370 * other archs, the user needs to enable NVDIMM support with the 3371 * 'nvdimm' machine option and the default behavior is NVDIMM 3372 * support disabled. It is too late to roll back to the standard 3373 * behavior without breaking 5.1 guests. 3374 */ 3375 if (mc->nvdimm_supported) { 3376 ms->nvdimms_state->is_enabled = true; 3377 } 3378 3379 spapr->htab_fd = -1; 3380 spapr->use_hotplug_event_source = true; 3381 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3382 object_property_add_str(obj, "kvm-type", 3383 spapr_get_kvm_type, spapr_set_kvm_type); 3384 object_property_set_description(obj, "kvm-type", 3385 "Specifies the KVM virtualization mode (auto," 3386 " hv, pr). Defaults to 'auto'. This mode will use" 3387 " any available KVM module loaded in the host," 3388 " where kvm_hv takes precedence if both kvm_hv and" 3389 " kvm_pr are loaded."); 3390 object_property_add_bool(obj, "modern-hotplug-events", 3391 spapr_get_modern_hotplug_events, 3392 spapr_set_modern_hotplug_events); 3393 object_property_set_description(obj, "modern-hotplug-events", 3394 "Use dedicated hotplug event mechanism in" 3395 " place of standard EPOW events when possible" 3396 " (required for memory hot-unplug support)"); 3397 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3398 "Maximum permitted CPU compatibility mode"); 3399 3400 object_property_add_str(obj, "resize-hpt", 3401 spapr_get_resize_hpt, spapr_set_resize_hpt); 3402 object_property_set_description(obj, "resize-hpt", 3403 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3404 object_property_add_uint32_ptr(obj, "vsmt", 3405 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3406 object_property_set_description(obj, "vsmt", 3407 "Virtual SMT: KVM behaves as if this were" 3408 " the host's SMT mode"); 3409 3410 object_property_add_bool(obj, "vfio-no-msix-emulation", 3411 spapr_get_msix_emulation, NULL); 3412 3413 object_property_add_uint64_ptr(obj, "kernel-addr", 3414 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3415 object_property_set_description(obj, "kernel-addr", 3416 stringify(KERNEL_LOAD_ADDR) 3417 " for -kernel is the default"); 3418 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3419 3420 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3421 object_property_set_description(obj, "x-vof", 3422 "Enable Virtual Open Firmware (experimental)"); 3423 3424 /* The machine class defines the default interrupt controller mode */ 3425 spapr->irq = smc->irq; 3426 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3427 spapr_set_ic_mode); 3428 object_property_set_description(obj, "ic-mode", 3429 "Specifies the interrupt controller mode (xics, xive, dual)"); 3430 3431 object_property_add_str(obj, "host-model", 3432 spapr_get_host_model, spapr_set_host_model); 3433 object_property_set_description(obj, "host-model", 3434 "Host model to advertise in guest device tree"); 3435 object_property_add_str(obj, "host-serial", 3436 spapr_get_host_serial, spapr_set_host_serial); 3437 object_property_set_description(obj, "host-serial", 3438 "Host serial number to advertise in guest device tree"); 3439 } 3440 3441 static void spapr_machine_finalizefn(Object *obj) 3442 { 3443 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3444 3445 g_free(spapr->kvm_type); 3446 } 3447 3448 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3449 { 3450 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3451 PowerPCCPU *cpu = POWERPC_CPU(cs); 3452 CPUPPCState *env = &cpu->env; 3453 3454 cpu_synchronize_state(cs); 3455 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3456 if (spapr->fwnmi_system_reset_addr != -1) { 3457 uint64_t rtas_addr, addr; 3458 3459 /* get rtas addr from fdt */ 3460 rtas_addr = spapr_get_rtas_addr(); 3461 if (!rtas_addr) { 3462 qemu_system_guest_panicked(NULL); 3463 return; 3464 } 3465 3466 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3467 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3468 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3469 env->gpr[3] = addr; 3470 } 3471 ppc_cpu_do_system_reset(cs); 3472 if (spapr->fwnmi_system_reset_addr != -1) { 3473 env->nip = spapr->fwnmi_system_reset_addr; 3474 } 3475 } 3476 3477 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3478 { 3479 CPUState *cs; 3480 3481 CPU_FOREACH(cs) { 3482 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3483 } 3484 } 3485 3486 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3487 void *fdt, int *fdt_start_offset, Error **errp) 3488 { 3489 uint64_t addr; 3490 uint32_t node; 3491 3492 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3493 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3494 &error_abort); 3495 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3496 SPAPR_MEMORY_BLOCK_SIZE); 3497 return 0; 3498 } 3499 3500 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3501 bool dedicated_hp_event_source) 3502 { 3503 SpaprDrc *drc; 3504 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3505 int i; 3506 uint64_t addr = addr_start; 3507 bool hotplugged = spapr_drc_hotplugged(dev); 3508 3509 for (i = 0; i < nr_lmbs; i++) { 3510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3511 addr / SPAPR_MEMORY_BLOCK_SIZE); 3512 g_assert(drc); 3513 3514 /* 3515 * memory_device_get_free_addr() provided a range of free addresses 3516 * that doesn't overlap with any existing mapping at pre-plug. The 3517 * corresponding LMB DRCs are thus assumed to be all attachable. 3518 */ 3519 spapr_drc_attach(drc, dev); 3520 if (!hotplugged) { 3521 spapr_drc_reset(drc); 3522 } 3523 addr += SPAPR_MEMORY_BLOCK_SIZE; 3524 } 3525 /* send hotplug notification to the 3526 * guest only in case of hotplugged memory 3527 */ 3528 if (hotplugged) { 3529 if (dedicated_hp_event_source) { 3530 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3531 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3532 g_assert(drc); 3533 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3534 nr_lmbs, 3535 spapr_drc_index(drc)); 3536 } else { 3537 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3538 nr_lmbs); 3539 } 3540 } 3541 } 3542 3543 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3544 { 3545 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3546 PCDIMMDevice *dimm = PC_DIMM(dev); 3547 uint64_t size, addr; 3548 int64_t slot; 3549 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3550 3551 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3552 3553 pc_dimm_plug(dimm, MACHINE(ms)); 3554 3555 if (!is_nvdimm) { 3556 addr = object_property_get_uint(OBJECT(dimm), 3557 PC_DIMM_ADDR_PROP, &error_abort); 3558 spapr_add_lmbs(dev, addr, size, 3559 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3560 } else { 3561 slot = object_property_get_int(OBJECT(dimm), 3562 PC_DIMM_SLOT_PROP, &error_abort); 3563 /* We should have valid slot number at this point */ 3564 g_assert(slot >= 0); 3565 spapr_add_nvdimm(dev, slot); 3566 } 3567 } 3568 3569 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3570 Error **errp) 3571 { 3572 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3573 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3574 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3575 PCDIMMDevice *dimm = PC_DIMM(dev); 3576 Error *local_err = NULL; 3577 uint64_t size; 3578 Object *memdev; 3579 hwaddr pagesize; 3580 3581 if (!smc->dr_lmb_enabled) { 3582 error_setg(errp, "Memory hotplug not supported for this machine"); 3583 return; 3584 } 3585 3586 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3587 if (local_err) { 3588 error_propagate(errp, local_err); 3589 return; 3590 } 3591 3592 if (is_nvdimm) { 3593 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3594 return; 3595 } 3596 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3597 error_setg(errp, "Hotplugged memory size must be a multiple of " 3598 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3599 return; 3600 } 3601 3602 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3603 &error_abort); 3604 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3605 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3606 return; 3607 } 3608 3609 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3610 } 3611 3612 struct SpaprDimmState { 3613 PCDIMMDevice *dimm; 3614 uint32_t nr_lmbs; 3615 QTAILQ_ENTRY(SpaprDimmState) next; 3616 }; 3617 3618 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3619 PCDIMMDevice *dimm) 3620 { 3621 SpaprDimmState *dimm_state = NULL; 3622 3623 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3624 if (dimm_state->dimm == dimm) { 3625 break; 3626 } 3627 } 3628 return dimm_state; 3629 } 3630 3631 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3632 uint32_t nr_lmbs, 3633 PCDIMMDevice *dimm) 3634 { 3635 SpaprDimmState *ds = NULL; 3636 3637 /* 3638 * If this request is for a DIMM whose removal had failed earlier 3639 * (due to guest's refusal to remove the LMBs), we would have this 3640 * dimm already in the pending_dimm_unplugs list. In that 3641 * case don't add again. 3642 */ 3643 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3644 if (!ds) { 3645 ds = g_new0(SpaprDimmState, 1); 3646 ds->nr_lmbs = nr_lmbs; 3647 ds->dimm = dimm; 3648 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3649 } 3650 return ds; 3651 } 3652 3653 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3654 SpaprDimmState *dimm_state) 3655 { 3656 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3657 g_free(dimm_state); 3658 } 3659 3660 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3661 PCDIMMDevice *dimm) 3662 { 3663 SpaprDrc *drc; 3664 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3665 &error_abort); 3666 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3667 uint32_t avail_lmbs = 0; 3668 uint64_t addr_start, addr; 3669 int i; 3670 3671 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3672 &error_abort); 3673 3674 addr = addr_start; 3675 for (i = 0; i < nr_lmbs; i++) { 3676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3677 addr / SPAPR_MEMORY_BLOCK_SIZE); 3678 g_assert(drc); 3679 if (drc->dev) { 3680 avail_lmbs++; 3681 } 3682 addr += SPAPR_MEMORY_BLOCK_SIZE; 3683 } 3684 3685 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3686 } 3687 3688 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3689 { 3690 SpaprDimmState *ds; 3691 PCDIMMDevice *dimm; 3692 SpaprDrc *drc; 3693 uint32_t nr_lmbs; 3694 uint64_t size, addr_start, addr; 3695 g_autofree char *qapi_error = NULL; 3696 int i; 3697 3698 if (!dev) { 3699 return; 3700 } 3701 3702 dimm = PC_DIMM(dev); 3703 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3704 3705 /* 3706 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3707 * unplug state, but one of its DRC is marked as unplug_requested. 3708 * This is bad and weird enough to g_assert() out. 3709 */ 3710 g_assert(ds); 3711 3712 spapr_pending_dimm_unplugs_remove(spapr, ds); 3713 3714 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3715 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3716 3717 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3718 &error_abort); 3719 3720 addr = addr_start; 3721 for (i = 0; i < nr_lmbs; i++) { 3722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3723 addr / SPAPR_MEMORY_BLOCK_SIZE); 3724 g_assert(drc); 3725 3726 drc->unplug_requested = false; 3727 addr += SPAPR_MEMORY_BLOCK_SIZE; 3728 } 3729 3730 /* 3731 * Tell QAPI that something happened and the memory 3732 * hotunplug wasn't successful. Keep sending 3733 * MEM_UNPLUG_ERROR even while sending 3734 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3735 * MEM_UNPLUG_ERROR is due. 3736 */ 3737 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3738 "for device %s", dev->id); 3739 3740 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3741 3742 qapi_event_send_device_unplug_guest_error(dev->id, 3743 dev->canonical_path); 3744 } 3745 3746 /* Callback to be called during DRC release. */ 3747 void spapr_lmb_release(DeviceState *dev) 3748 { 3749 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3750 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3751 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3752 3753 /* This information will get lost if a migration occurs 3754 * during the unplug process. In this case recover it. */ 3755 if (ds == NULL) { 3756 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3757 g_assert(ds); 3758 /* The DRC being examined by the caller at least must be counted */ 3759 g_assert(ds->nr_lmbs); 3760 } 3761 3762 if (--ds->nr_lmbs) { 3763 return; 3764 } 3765 3766 /* 3767 * Now that all the LMBs have been removed by the guest, call the 3768 * unplug handler chain. This can never fail. 3769 */ 3770 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3771 object_unparent(OBJECT(dev)); 3772 } 3773 3774 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3775 { 3776 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3777 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3778 3779 /* We really shouldn't get this far without anything to unplug */ 3780 g_assert(ds); 3781 3782 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3783 qdev_unrealize(dev); 3784 spapr_pending_dimm_unplugs_remove(spapr, ds); 3785 } 3786 3787 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3788 DeviceState *dev, Error **errp) 3789 { 3790 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3791 PCDIMMDevice *dimm = PC_DIMM(dev); 3792 uint32_t nr_lmbs; 3793 uint64_t size, addr_start, addr; 3794 int i; 3795 SpaprDrc *drc; 3796 3797 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3798 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3799 return; 3800 } 3801 3802 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3803 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3804 3805 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3806 &error_abort); 3807 3808 /* 3809 * An existing pending dimm state for this DIMM means that there is an 3810 * unplug operation in progress, waiting for the spapr_lmb_release 3811 * callback to complete the job (BQL can't cover that far). In this case, 3812 * bail out to avoid detaching DRCs that were already released. 3813 */ 3814 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3815 error_setg(errp, "Memory unplug already in progress for device %s", 3816 dev->id); 3817 return; 3818 } 3819 3820 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3821 3822 addr = addr_start; 3823 for (i = 0; i < nr_lmbs; i++) { 3824 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3825 addr / SPAPR_MEMORY_BLOCK_SIZE); 3826 g_assert(drc); 3827 3828 spapr_drc_unplug_request(drc); 3829 addr += SPAPR_MEMORY_BLOCK_SIZE; 3830 } 3831 3832 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3833 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3834 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3835 nr_lmbs, spapr_drc_index(drc)); 3836 } 3837 3838 /* Callback to be called during DRC release. */ 3839 void spapr_core_release(DeviceState *dev) 3840 { 3841 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3842 3843 /* Call the unplug handler chain. This can never fail. */ 3844 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3845 object_unparent(OBJECT(dev)); 3846 } 3847 3848 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3849 { 3850 MachineState *ms = MACHINE(hotplug_dev); 3851 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3852 CPUCore *cc = CPU_CORE(dev); 3853 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3854 3855 if (smc->pre_2_10_has_unused_icps) { 3856 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3857 int i; 3858 3859 for (i = 0; i < cc->nr_threads; i++) { 3860 CPUState *cs = CPU(sc->threads[i]); 3861 3862 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3863 } 3864 } 3865 3866 assert(core_slot); 3867 core_slot->cpu = NULL; 3868 qdev_unrealize(dev); 3869 } 3870 3871 static 3872 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3873 Error **errp) 3874 { 3875 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3876 int index; 3877 SpaprDrc *drc; 3878 CPUCore *cc = CPU_CORE(dev); 3879 3880 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3881 error_setg(errp, "Unable to find CPU core with core-id: %d", 3882 cc->core_id); 3883 return; 3884 } 3885 if (index == 0) { 3886 error_setg(errp, "Boot CPU core may not be unplugged"); 3887 return; 3888 } 3889 3890 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3891 spapr_vcpu_id(spapr, cc->core_id)); 3892 g_assert(drc); 3893 3894 if (!spapr_drc_unplug_requested(drc)) { 3895 spapr_drc_unplug_request(drc); 3896 } 3897 3898 /* 3899 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3900 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3901 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3902 * attempt (e.g. the kernel will refuse to remove the last online 3903 * CPU), we will never attempt it again because unplug_requested 3904 * will still be 'true' in that case. 3905 */ 3906 spapr_hotplug_req_remove_by_index(drc); 3907 } 3908 3909 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3910 void *fdt, int *fdt_start_offset, Error **errp) 3911 { 3912 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3913 CPUState *cs = CPU(core->threads[0]); 3914 PowerPCCPU *cpu = POWERPC_CPU(cs); 3915 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3916 int id = spapr_get_vcpu_id(cpu); 3917 g_autofree char *nodename = NULL; 3918 int offset; 3919 3920 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3921 offset = fdt_add_subnode(fdt, 0, nodename); 3922 3923 spapr_dt_cpu(cs, fdt, offset, spapr); 3924 3925 /* 3926 * spapr_dt_cpu() does not fill the 'name' property in the 3927 * CPU node. The function is called during boot process, before 3928 * and after CAS, and overwriting the 'name' property written 3929 * by SLOF is not allowed. 3930 * 3931 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3932 * CPUs more compatible with the coldplugged ones, which have 3933 * the 'name' property. Linux Kernel also relies on this 3934 * property to identify CPU nodes. 3935 */ 3936 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3937 3938 *fdt_start_offset = offset; 3939 return 0; 3940 } 3941 3942 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3943 { 3944 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3945 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3946 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3947 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3948 CPUCore *cc = CPU_CORE(dev); 3949 CPUState *cs; 3950 SpaprDrc *drc; 3951 CPUArchId *core_slot; 3952 int index; 3953 bool hotplugged = spapr_drc_hotplugged(dev); 3954 int i; 3955 3956 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3957 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3958 3959 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3960 spapr_vcpu_id(spapr, cc->core_id)); 3961 3962 g_assert(drc || !mc->has_hotpluggable_cpus); 3963 3964 if (drc) { 3965 /* 3966 * spapr_core_pre_plug() already buys us this is a brand new 3967 * core being plugged into a free slot. Nothing should already 3968 * be attached to the corresponding DRC. 3969 */ 3970 spapr_drc_attach(drc, dev); 3971 3972 if (hotplugged) { 3973 /* 3974 * Send hotplug notification interrupt to the guest only 3975 * in case of hotplugged CPUs. 3976 */ 3977 spapr_hotplug_req_add_by_index(drc); 3978 } else { 3979 spapr_drc_reset(drc); 3980 } 3981 } 3982 3983 core_slot->cpu = OBJECT(dev); 3984 3985 /* 3986 * Set compatibility mode to match the boot CPU, which was either set 3987 * by the machine reset code or by CAS. This really shouldn't fail at 3988 * this point. 3989 */ 3990 if (hotplugged) { 3991 for (i = 0; i < cc->nr_threads; i++) { 3992 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3993 &error_abort); 3994 } 3995 } 3996 3997 if (smc->pre_2_10_has_unused_icps) { 3998 for (i = 0; i < cc->nr_threads; i++) { 3999 cs = CPU(core->threads[i]); 4000 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4001 } 4002 } 4003 } 4004 4005 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4006 Error **errp) 4007 { 4008 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4009 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4010 CPUCore *cc = CPU_CORE(dev); 4011 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4012 const char *type = object_get_typename(OBJECT(dev)); 4013 CPUArchId *core_slot; 4014 int index; 4015 unsigned int smp_threads = machine->smp.threads; 4016 4017 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4018 error_setg(errp, "CPU hotplug not supported for this machine"); 4019 return; 4020 } 4021 4022 if (strcmp(base_core_type, type)) { 4023 error_setg(errp, "CPU core type should be %s", base_core_type); 4024 return; 4025 } 4026 4027 if (cc->core_id % smp_threads) { 4028 error_setg(errp, "invalid core id %d", cc->core_id); 4029 return; 4030 } 4031 4032 /* 4033 * In general we should have homogeneous threads-per-core, but old 4034 * (pre hotplug support) machine types allow the last core to have 4035 * reduced threads as a compatibility hack for when we allowed 4036 * total vcpus not a multiple of threads-per-core. 4037 */ 4038 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4039 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4040 smp_threads); 4041 return; 4042 } 4043 4044 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4045 if (!core_slot) { 4046 error_setg(errp, "core id %d out of range", cc->core_id); 4047 return; 4048 } 4049 4050 if (core_slot->cpu) { 4051 error_setg(errp, "core %d already populated", cc->core_id); 4052 return; 4053 } 4054 4055 numa_cpu_pre_plug(core_slot, dev, errp); 4056 } 4057 4058 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4059 void *fdt, int *fdt_start_offset, Error **errp) 4060 { 4061 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4062 int intc_phandle; 4063 4064 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4065 if (intc_phandle <= 0) { 4066 return -1; 4067 } 4068 4069 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4070 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4071 return -1; 4072 } 4073 4074 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4075 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4076 4077 return 0; 4078 } 4079 4080 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4081 Error **errp) 4082 { 4083 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4084 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4085 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4086 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4087 SpaprDrc *drc; 4088 4089 if (dev->hotplugged && !smc->dr_phb_enabled) { 4090 error_setg(errp, "PHB hotplug not supported for this machine"); 4091 return false; 4092 } 4093 4094 if (sphb->index == (uint32_t)-1) { 4095 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4096 return false; 4097 } 4098 4099 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4100 if (drc && drc->dev) { 4101 error_setg(errp, "PHB %d already attached", sphb->index); 4102 return false; 4103 } 4104 4105 /* 4106 * This will check that sphb->index doesn't exceed the maximum number of 4107 * PHBs for the current machine type. 4108 */ 4109 return 4110 smc->phb_placement(spapr, sphb->index, 4111 &sphb->buid, &sphb->io_win_addr, 4112 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4113 windows_supported, sphb->dma_liobn, 4114 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4115 errp); 4116 } 4117 4118 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4119 { 4120 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4121 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4122 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4123 SpaprDrc *drc; 4124 bool hotplugged = spapr_drc_hotplugged(dev); 4125 4126 if (!smc->dr_phb_enabled) { 4127 return; 4128 } 4129 4130 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4131 /* hotplug hooks should check it's enabled before getting this far */ 4132 assert(drc); 4133 4134 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4135 spapr_drc_attach(drc, dev); 4136 4137 if (hotplugged) { 4138 spapr_hotplug_req_add_by_index(drc); 4139 } else { 4140 spapr_drc_reset(drc); 4141 } 4142 } 4143 4144 void spapr_phb_release(DeviceState *dev) 4145 { 4146 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4147 4148 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4149 object_unparent(OBJECT(dev)); 4150 } 4151 4152 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4153 { 4154 qdev_unrealize(dev); 4155 } 4156 4157 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4158 DeviceState *dev, Error **errp) 4159 { 4160 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4161 SpaprDrc *drc; 4162 4163 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4164 assert(drc); 4165 4166 if (!spapr_drc_unplug_requested(drc)) { 4167 spapr_drc_unplug_request(drc); 4168 spapr_hotplug_req_remove_by_index(drc); 4169 } else { 4170 error_setg(errp, 4171 "PCI Host Bridge unplug already in progress for device %s", 4172 dev->id); 4173 } 4174 } 4175 4176 static 4177 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4178 Error **errp) 4179 { 4180 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4181 4182 if (spapr->tpm_proxy != NULL) { 4183 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4184 return false; 4185 } 4186 4187 return true; 4188 } 4189 4190 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4191 { 4192 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4193 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4194 4195 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4196 g_assert(spapr->tpm_proxy == NULL); 4197 4198 spapr->tpm_proxy = tpm_proxy; 4199 } 4200 4201 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4202 { 4203 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4204 4205 qdev_unrealize(dev); 4206 object_unparent(OBJECT(dev)); 4207 spapr->tpm_proxy = NULL; 4208 } 4209 4210 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4211 DeviceState *dev, Error **errp) 4212 { 4213 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4214 spapr_memory_plug(hotplug_dev, dev); 4215 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4216 spapr_core_plug(hotplug_dev, dev); 4217 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4218 spapr_phb_plug(hotplug_dev, dev); 4219 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4220 spapr_tpm_proxy_plug(hotplug_dev, dev); 4221 } 4222 } 4223 4224 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4225 DeviceState *dev, Error **errp) 4226 { 4227 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4228 spapr_memory_unplug(hotplug_dev, dev); 4229 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4230 spapr_core_unplug(hotplug_dev, dev); 4231 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4232 spapr_phb_unplug(hotplug_dev, dev); 4233 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4234 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4235 } 4236 } 4237 4238 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4239 { 4240 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4241 /* 4242 * CAS will process all pending unplug requests. 4243 * 4244 * HACK: a guest could theoretically have cleared all bits in OV5, 4245 * but none of the guests we care for do. 4246 */ 4247 spapr_ovec_empty(spapr->ov5_cas); 4248 } 4249 4250 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4251 DeviceState *dev, Error **errp) 4252 { 4253 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4254 MachineClass *mc = MACHINE_GET_CLASS(sms); 4255 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4256 4257 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4258 if (spapr_memory_hot_unplug_supported(sms)) { 4259 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4260 } else { 4261 error_setg(errp, "Memory hot unplug not supported for this guest"); 4262 } 4263 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4264 if (!mc->has_hotpluggable_cpus) { 4265 error_setg(errp, "CPU hot unplug not supported on this machine"); 4266 return; 4267 } 4268 spapr_core_unplug_request(hotplug_dev, dev, errp); 4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4270 if (!smc->dr_phb_enabled) { 4271 error_setg(errp, "PHB hot unplug not supported on this machine"); 4272 return; 4273 } 4274 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4276 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4277 } 4278 } 4279 4280 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4281 DeviceState *dev, Error **errp) 4282 { 4283 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4284 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4285 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4286 spapr_core_pre_plug(hotplug_dev, dev, errp); 4287 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4288 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4290 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4291 } 4292 } 4293 4294 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4295 DeviceState *dev) 4296 { 4297 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4298 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4299 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4300 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4301 return HOTPLUG_HANDLER(machine); 4302 } 4303 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4304 PCIDevice *pcidev = PCI_DEVICE(dev); 4305 PCIBus *root = pci_device_root_bus(pcidev); 4306 SpaprPhbState *phb = 4307 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4308 TYPE_SPAPR_PCI_HOST_BRIDGE); 4309 4310 if (phb) { 4311 return HOTPLUG_HANDLER(phb); 4312 } 4313 } 4314 return NULL; 4315 } 4316 4317 static CpuInstanceProperties 4318 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4319 { 4320 CPUArchId *core_slot; 4321 MachineClass *mc = MACHINE_GET_CLASS(machine); 4322 4323 /* make sure possible_cpu are intialized */ 4324 mc->possible_cpu_arch_ids(machine); 4325 /* get CPU core slot containing thread that matches cpu_index */ 4326 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4327 assert(core_slot); 4328 return core_slot->props; 4329 } 4330 4331 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4332 { 4333 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4334 } 4335 4336 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4337 { 4338 int i; 4339 unsigned int smp_threads = machine->smp.threads; 4340 unsigned int smp_cpus = machine->smp.cpus; 4341 const char *core_type; 4342 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4343 MachineClass *mc = MACHINE_GET_CLASS(machine); 4344 4345 if (!mc->has_hotpluggable_cpus) { 4346 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4347 } 4348 if (machine->possible_cpus) { 4349 assert(machine->possible_cpus->len == spapr_max_cores); 4350 return machine->possible_cpus; 4351 } 4352 4353 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4354 if (!core_type) { 4355 error_report("Unable to find sPAPR CPU Core definition"); 4356 exit(1); 4357 } 4358 4359 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4360 sizeof(CPUArchId) * spapr_max_cores); 4361 machine->possible_cpus->len = spapr_max_cores; 4362 for (i = 0; i < machine->possible_cpus->len; i++) { 4363 int core_id = i * smp_threads; 4364 4365 machine->possible_cpus->cpus[i].type = core_type; 4366 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4367 machine->possible_cpus->cpus[i].arch_id = core_id; 4368 machine->possible_cpus->cpus[i].props.has_core_id = true; 4369 machine->possible_cpus->cpus[i].props.core_id = core_id; 4370 } 4371 return machine->possible_cpus; 4372 } 4373 4374 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4375 uint64_t *buid, hwaddr *pio, 4376 hwaddr *mmio32, hwaddr *mmio64, 4377 unsigned n_dma, uint32_t *liobns, 4378 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4379 { 4380 /* 4381 * New-style PHB window placement. 4382 * 4383 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4384 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4385 * windows. 4386 * 4387 * Some guest kernels can't work with MMIO windows above 1<<46 4388 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4389 * 4390 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4391 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4392 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4393 * 1TiB 64-bit MMIO windows for each PHB. 4394 */ 4395 const uint64_t base_buid = 0x800000020000000ULL; 4396 int i; 4397 4398 /* Sanity check natural alignments */ 4399 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4400 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4401 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4402 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4403 /* Sanity check bounds */ 4404 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4405 SPAPR_PCI_MEM32_WIN_SIZE); 4406 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4407 SPAPR_PCI_MEM64_WIN_SIZE); 4408 4409 if (index >= SPAPR_MAX_PHBS) { 4410 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4411 SPAPR_MAX_PHBS - 1); 4412 return false; 4413 } 4414 4415 *buid = base_buid + index; 4416 for (i = 0; i < n_dma; ++i) { 4417 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4418 } 4419 4420 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4421 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4422 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4423 4424 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4425 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4426 return true; 4427 } 4428 4429 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4430 { 4431 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4432 4433 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4434 } 4435 4436 static void spapr_ics_resend(XICSFabric *dev) 4437 { 4438 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4439 4440 ics_resend(spapr->ics); 4441 } 4442 4443 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4444 { 4445 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4446 4447 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4448 } 4449 4450 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4451 Monitor *mon) 4452 { 4453 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4454 4455 spapr_irq_print_info(spapr, mon); 4456 monitor_printf(mon, "irqchip: %s\n", 4457 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4458 } 4459 4460 /* 4461 * This is a XIVE only operation 4462 */ 4463 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4464 uint8_t nvt_blk, uint32_t nvt_idx, 4465 bool cam_ignore, uint8_t priority, 4466 uint32_t logic_serv, XiveTCTXMatch *match) 4467 { 4468 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4469 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4470 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4471 int count; 4472 4473 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4474 priority, logic_serv, match); 4475 if (count < 0) { 4476 return count; 4477 } 4478 4479 /* 4480 * When we implement the save and restore of the thread interrupt 4481 * contexts in the enter/exit CPU handlers of the machine and the 4482 * escalations in QEMU, we should be able to handle non dispatched 4483 * vCPUs. 4484 * 4485 * Until this is done, the sPAPR machine should find at least one 4486 * matching context always. 4487 */ 4488 if (count == 0) { 4489 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4490 nvt_blk, nvt_idx); 4491 } 4492 4493 return count; 4494 } 4495 4496 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4497 { 4498 return cpu->vcpu_id; 4499 } 4500 4501 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4502 { 4503 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4504 MachineState *ms = MACHINE(spapr); 4505 int vcpu_id; 4506 4507 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4508 4509 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4510 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4511 error_append_hint(errp, "Adjust the number of cpus to %d " 4512 "or try to raise the number of threads per core\n", 4513 vcpu_id * ms->smp.threads / spapr->vsmt); 4514 return false; 4515 } 4516 4517 cpu->vcpu_id = vcpu_id; 4518 return true; 4519 } 4520 4521 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4522 { 4523 CPUState *cs; 4524 4525 CPU_FOREACH(cs) { 4526 PowerPCCPU *cpu = POWERPC_CPU(cs); 4527 4528 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4529 return cpu; 4530 } 4531 } 4532 4533 return NULL; 4534 } 4535 4536 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4537 { 4538 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4539 4540 return spapr_cpu->in_nested; 4541 } 4542 4543 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4544 { 4545 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4546 4547 /* These are only called by TCG, KVM maintains dispatch state */ 4548 4549 spapr_cpu->prod = false; 4550 if (spapr_cpu->vpa_addr) { 4551 CPUState *cs = CPU(cpu); 4552 uint32_t dispatch; 4553 4554 dispatch = ldl_be_phys(cs->as, 4555 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4556 dispatch++; 4557 if ((dispatch & 1) != 0) { 4558 qemu_log_mask(LOG_GUEST_ERROR, 4559 "VPA: incorrect dispatch counter value for " 4560 "dispatched partition %u, correcting.\n", dispatch); 4561 dispatch++; 4562 } 4563 stl_be_phys(cs->as, 4564 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4565 } 4566 } 4567 4568 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4569 { 4570 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4571 4572 if (spapr_cpu->vpa_addr) { 4573 CPUState *cs = CPU(cpu); 4574 uint32_t dispatch; 4575 4576 dispatch = ldl_be_phys(cs->as, 4577 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4578 dispatch++; 4579 if ((dispatch & 1) != 1) { 4580 qemu_log_mask(LOG_GUEST_ERROR, 4581 "VPA: incorrect dispatch counter value for " 4582 "preempted partition %u, correcting.\n", dispatch); 4583 dispatch++; 4584 } 4585 stl_be_phys(cs->as, 4586 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4587 } 4588 } 4589 4590 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4591 { 4592 MachineClass *mc = MACHINE_CLASS(oc); 4593 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4594 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4595 NMIClass *nc = NMI_CLASS(oc); 4596 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4597 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4598 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4599 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4600 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4601 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4602 4603 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4604 mc->ignore_boot_device_suffixes = true; 4605 4606 /* 4607 * We set up the default / latest behaviour here. The class_init 4608 * functions for the specific versioned machine types can override 4609 * these details for backwards compatibility 4610 */ 4611 mc->init = spapr_machine_init; 4612 mc->reset = spapr_machine_reset; 4613 mc->block_default_type = IF_SCSI; 4614 4615 /* 4616 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4617 * should be limited by the host capability instead of hardcoded. 4618 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4619 * guests are welcome to have as many CPUs as the host are capable 4620 * of emulate. 4621 */ 4622 mc->max_cpus = INT32_MAX; 4623 4624 mc->no_parallel = 1; 4625 mc->default_boot_order = ""; 4626 mc->default_ram_size = 512 * MiB; 4627 mc->default_ram_id = "ppc_spapr.ram"; 4628 mc->default_display = "std"; 4629 mc->kvm_type = spapr_kvm_type; 4630 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4631 mc->pci_allow_0_address = true; 4632 assert(!mc->get_hotplug_handler); 4633 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4634 hc->pre_plug = spapr_machine_device_pre_plug; 4635 hc->plug = spapr_machine_device_plug; 4636 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4637 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4638 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4639 hc->unplug_request = spapr_machine_device_unplug_request; 4640 hc->unplug = spapr_machine_device_unplug; 4641 4642 smc->dr_lmb_enabled = true; 4643 smc->update_dt_enabled = true; 4644 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4645 mc->has_hotpluggable_cpus = true; 4646 mc->nvdimm_supported = true; 4647 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4648 fwc->get_dev_path = spapr_get_fw_dev_path; 4649 nc->nmi_monitor_handler = spapr_nmi; 4650 smc->phb_placement = spapr_phb_placement; 4651 vhc->cpu_in_nested = spapr_cpu_in_nested; 4652 vhc->deliver_hv_excp = spapr_exit_nested; 4653 vhc->hypercall = emulate_spapr_hypercall; 4654 vhc->hpt_mask = spapr_hpt_mask; 4655 vhc->map_hptes = spapr_map_hptes; 4656 vhc->unmap_hptes = spapr_unmap_hptes; 4657 vhc->hpte_set_c = spapr_hpte_set_c; 4658 vhc->hpte_set_r = spapr_hpte_set_r; 4659 vhc->get_pate = spapr_get_pate; 4660 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4661 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4662 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4663 xic->ics_get = spapr_ics_get; 4664 xic->ics_resend = spapr_ics_resend; 4665 xic->icp_get = spapr_icp_get; 4666 ispc->print_info = spapr_pic_print_info; 4667 /* Force NUMA node memory size to be a multiple of 4668 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4669 * in which LMBs are represented and hot-added 4670 */ 4671 mc->numa_mem_align_shift = 28; 4672 mc->auto_enable_numa = true; 4673 4674 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4675 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4676 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4677 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4678 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4679 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4680 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4681 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4682 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4683 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4684 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4685 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4686 4687 /* 4688 * This cap specifies whether the AIL 3 mode for 4689 * H_SET_RESOURCE is supported. The default is modified 4690 * by default_caps_with_cpu(). 4691 */ 4692 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4693 spapr_caps_add_properties(smc); 4694 smc->irq = &spapr_irq_dual; 4695 smc->dr_phb_enabled = true; 4696 smc->linux_pci_probe = true; 4697 smc->smp_threads_vsmt = true; 4698 smc->nr_xirqs = SPAPR_NR_XIRQS; 4699 xfc->match_nvt = spapr_match_nvt; 4700 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4701 vmc->quiesce = spapr_vof_quiesce; 4702 vmc->setprop = spapr_vof_setprop; 4703 } 4704 4705 static const TypeInfo spapr_machine_info = { 4706 .name = TYPE_SPAPR_MACHINE, 4707 .parent = TYPE_MACHINE, 4708 .abstract = true, 4709 .instance_size = sizeof(SpaprMachineState), 4710 .instance_init = spapr_instance_init, 4711 .instance_finalize = spapr_machine_finalizefn, 4712 .class_size = sizeof(SpaprMachineClass), 4713 .class_init = spapr_machine_class_init, 4714 .interfaces = (InterfaceInfo[]) { 4715 { TYPE_FW_PATH_PROVIDER }, 4716 { TYPE_NMI }, 4717 { TYPE_HOTPLUG_HANDLER }, 4718 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4719 { TYPE_XICS_FABRIC }, 4720 { TYPE_INTERRUPT_STATS_PROVIDER }, 4721 { TYPE_XIVE_FABRIC }, 4722 { TYPE_VOF_MACHINE_IF }, 4723 { } 4724 }, 4725 }; 4726 4727 static void spapr_machine_latest_class_options(MachineClass *mc) 4728 { 4729 mc->alias = "pseries"; 4730 mc->is_default = true; 4731 } 4732 4733 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4734 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4735 void *data) \ 4736 { \ 4737 MachineClass *mc = MACHINE_CLASS(oc); \ 4738 spapr_machine_##suffix##_class_options(mc); \ 4739 if (latest) { \ 4740 spapr_machine_latest_class_options(mc); \ 4741 } \ 4742 } \ 4743 static const TypeInfo spapr_machine_##suffix##_info = { \ 4744 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4745 .parent = TYPE_SPAPR_MACHINE, \ 4746 .class_init = spapr_machine_##suffix##_class_init, \ 4747 }; \ 4748 static void spapr_machine_register_##suffix(void) \ 4749 { \ 4750 type_register(&spapr_machine_##suffix##_info); \ 4751 } \ 4752 type_init(spapr_machine_register_##suffix) 4753 4754 /* 4755 * pseries-8.1 4756 */ 4757 static void spapr_machine_8_1_class_options(MachineClass *mc) 4758 { 4759 /* Defaults for the latest behaviour inherited from the base class */ 4760 } 4761 4762 DEFINE_SPAPR_MACHINE(8_1, "8.1", true); 4763 4764 /* 4765 * pseries-8.0 4766 */ 4767 static void spapr_machine_8_0_class_options(MachineClass *mc) 4768 { 4769 spapr_machine_8_1_class_options(mc); 4770 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4771 } 4772 4773 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4774 4775 /* 4776 * pseries-7.2 4777 */ 4778 static void spapr_machine_7_2_class_options(MachineClass *mc) 4779 { 4780 spapr_machine_8_0_class_options(mc); 4781 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4782 } 4783 4784 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4785 4786 /* 4787 * pseries-7.1 4788 */ 4789 static void spapr_machine_7_1_class_options(MachineClass *mc) 4790 { 4791 spapr_machine_7_2_class_options(mc); 4792 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4793 } 4794 4795 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4796 4797 /* 4798 * pseries-7.0 4799 */ 4800 static void spapr_machine_7_0_class_options(MachineClass *mc) 4801 { 4802 spapr_machine_7_1_class_options(mc); 4803 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4804 } 4805 4806 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4807 4808 /* 4809 * pseries-6.2 4810 */ 4811 static void spapr_machine_6_2_class_options(MachineClass *mc) 4812 { 4813 spapr_machine_7_0_class_options(mc); 4814 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4815 } 4816 4817 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4818 4819 /* 4820 * pseries-6.1 4821 */ 4822 static void spapr_machine_6_1_class_options(MachineClass *mc) 4823 { 4824 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4825 4826 spapr_machine_6_2_class_options(mc); 4827 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4828 smc->pre_6_2_numa_affinity = true; 4829 mc->smp_props.prefer_sockets = true; 4830 } 4831 4832 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4833 4834 /* 4835 * pseries-6.0 4836 */ 4837 static void spapr_machine_6_0_class_options(MachineClass *mc) 4838 { 4839 spapr_machine_6_1_class_options(mc); 4840 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4841 } 4842 4843 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4844 4845 /* 4846 * pseries-5.2 4847 */ 4848 static void spapr_machine_5_2_class_options(MachineClass *mc) 4849 { 4850 spapr_machine_6_0_class_options(mc); 4851 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4852 } 4853 4854 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4855 4856 /* 4857 * pseries-5.1 4858 */ 4859 static void spapr_machine_5_1_class_options(MachineClass *mc) 4860 { 4861 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4862 4863 spapr_machine_5_2_class_options(mc); 4864 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4865 smc->pre_5_2_numa_associativity = true; 4866 } 4867 4868 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4869 4870 /* 4871 * pseries-5.0 4872 */ 4873 static void spapr_machine_5_0_class_options(MachineClass *mc) 4874 { 4875 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4876 static GlobalProperty compat[] = { 4877 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4878 }; 4879 4880 spapr_machine_5_1_class_options(mc); 4881 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4882 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4883 mc->numa_mem_supported = true; 4884 smc->pre_5_1_assoc_refpoints = true; 4885 } 4886 4887 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4888 4889 /* 4890 * pseries-4.2 4891 */ 4892 static void spapr_machine_4_2_class_options(MachineClass *mc) 4893 { 4894 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4895 4896 spapr_machine_5_0_class_options(mc); 4897 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4898 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4899 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4900 smc->rma_limit = 16 * GiB; 4901 mc->nvdimm_supported = false; 4902 } 4903 4904 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4905 4906 /* 4907 * pseries-4.1 4908 */ 4909 static void spapr_machine_4_1_class_options(MachineClass *mc) 4910 { 4911 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4912 static GlobalProperty compat[] = { 4913 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4914 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4915 }; 4916 4917 spapr_machine_4_2_class_options(mc); 4918 smc->linux_pci_probe = false; 4919 smc->smp_threads_vsmt = false; 4920 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4921 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4922 } 4923 4924 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4925 4926 /* 4927 * pseries-4.0 4928 */ 4929 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4930 uint64_t *buid, hwaddr *pio, 4931 hwaddr *mmio32, hwaddr *mmio64, 4932 unsigned n_dma, uint32_t *liobns, 4933 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4934 { 4935 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4936 liobns, nv2gpa, nv2atsd, errp)) { 4937 return false; 4938 } 4939 4940 *nv2gpa = 0; 4941 *nv2atsd = 0; 4942 return true; 4943 } 4944 static void spapr_machine_4_0_class_options(MachineClass *mc) 4945 { 4946 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4947 4948 spapr_machine_4_1_class_options(mc); 4949 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4950 smc->phb_placement = phb_placement_4_0; 4951 smc->irq = &spapr_irq_xics; 4952 smc->pre_4_1_migration = true; 4953 } 4954 4955 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4956 4957 /* 4958 * pseries-3.1 4959 */ 4960 static void spapr_machine_3_1_class_options(MachineClass *mc) 4961 { 4962 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4963 4964 spapr_machine_4_0_class_options(mc); 4965 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4966 4967 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4968 smc->update_dt_enabled = false; 4969 smc->dr_phb_enabled = false; 4970 smc->broken_host_serial_model = true; 4971 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4972 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4973 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4974 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4975 } 4976 4977 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4978 4979 /* 4980 * pseries-3.0 4981 */ 4982 4983 static void spapr_machine_3_0_class_options(MachineClass *mc) 4984 { 4985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4986 4987 spapr_machine_3_1_class_options(mc); 4988 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4989 4990 smc->legacy_irq_allocation = true; 4991 smc->nr_xirqs = 0x400; 4992 smc->irq = &spapr_irq_xics_legacy; 4993 } 4994 4995 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4996 4997 /* 4998 * pseries-2.12 4999 */ 5000 static void spapr_machine_2_12_class_options(MachineClass *mc) 5001 { 5002 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5003 static GlobalProperty compat[] = { 5004 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5005 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5006 }; 5007 5008 spapr_machine_3_0_class_options(mc); 5009 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5010 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5011 5012 /* We depend on kvm_enabled() to choose a default value for the 5013 * hpt-max-page-size capability. Of course we can't do it here 5014 * because this is too early and the HW accelerator isn't initialzed 5015 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5016 */ 5017 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5018 } 5019 5020 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5021 5022 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5023 { 5024 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5025 5026 spapr_machine_2_12_class_options(mc); 5027 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5028 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5029 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5030 } 5031 5032 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5033 5034 /* 5035 * pseries-2.11 5036 */ 5037 5038 static void spapr_machine_2_11_class_options(MachineClass *mc) 5039 { 5040 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5041 5042 spapr_machine_2_12_class_options(mc); 5043 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5044 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5045 } 5046 5047 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5048 5049 /* 5050 * pseries-2.10 5051 */ 5052 5053 static void spapr_machine_2_10_class_options(MachineClass *mc) 5054 { 5055 spapr_machine_2_11_class_options(mc); 5056 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5057 } 5058 5059 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5060 5061 /* 5062 * pseries-2.9 5063 */ 5064 5065 static void spapr_machine_2_9_class_options(MachineClass *mc) 5066 { 5067 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5068 static GlobalProperty compat[] = { 5069 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5070 }; 5071 5072 spapr_machine_2_10_class_options(mc); 5073 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5074 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5075 smc->pre_2_10_has_unused_icps = true; 5076 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5077 } 5078 5079 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5080 5081 /* 5082 * pseries-2.8 5083 */ 5084 5085 static void spapr_machine_2_8_class_options(MachineClass *mc) 5086 { 5087 static GlobalProperty compat[] = { 5088 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5089 }; 5090 5091 spapr_machine_2_9_class_options(mc); 5092 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5093 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5094 mc->numa_mem_align_shift = 23; 5095 } 5096 5097 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5098 5099 /* 5100 * pseries-2.7 5101 */ 5102 5103 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5104 uint64_t *buid, hwaddr *pio, 5105 hwaddr *mmio32, hwaddr *mmio64, 5106 unsigned n_dma, uint32_t *liobns, 5107 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5108 { 5109 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5110 const uint64_t base_buid = 0x800000020000000ULL; 5111 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5112 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5113 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5114 const uint32_t max_index = 255; 5115 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5116 5117 uint64_t ram_top = MACHINE(spapr)->ram_size; 5118 hwaddr phb0_base, phb_base; 5119 int i; 5120 5121 /* Do we have device memory? */ 5122 if (MACHINE(spapr)->maxram_size > ram_top) { 5123 /* Can't just use maxram_size, because there may be an 5124 * alignment gap between normal and device memory regions 5125 */ 5126 ram_top = MACHINE(spapr)->device_memory->base + 5127 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5128 } 5129 5130 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5131 5132 if (index > max_index) { 5133 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5134 max_index); 5135 return false; 5136 } 5137 5138 *buid = base_buid + index; 5139 for (i = 0; i < n_dma; ++i) { 5140 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5141 } 5142 5143 phb_base = phb0_base + index * phb_spacing; 5144 *pio = phb_base + pio_offset; 5145 *mmio32 = phb_base + mmio_offset; 5146 /* 5147 * We don't set the 64-bit MMIO window, relying on the PHB's 5148 * fallback behaviour of automatically splitting a large "32-bit" 5149 * window into contiguous 32-bit and 64-bit windows 5150 */ 5151 5152 *nv2gpa = 0; 5153 *nv2atsd = 0; 5154 return true; 5155 } 5156 5157 static void spapr_machine_2_7_class_options(MachineClass *mc) 5158 { 5159 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5160 static GlobalProperty compat[] = { 5161 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5162 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5163 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5164 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5165 }; 5166 5167 spapr_machine_2_8_class_options(mc); 5168 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5169 mc->default_machine_opts = "modern-hotplug-events=off"; 5170 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5171 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5172 smc->phb_placement = phb_placement_2_7; 5173 } 5174 5175 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5176 5177 /* 5178 * pseries-2.6 5179 */ 5180 5181 static void spapr_machine_2_6_class_options(MachineClass *mc) 5182 { 5183 static GlobalProperty compat[] = { 5184 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5185 }; 5186 5187 spapr_machine_2_7_class_options(mc); 5188 mc->has_hotpluggable_cpus = false; 5189 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5190 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5191 } 5192 5193 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5194 5195 /* 5196 * pseries-2.5 5197 */ 5198 5199 static void spapr_machine_2_5_class_options(MachineClass *mc) 5200 { 5201 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5202 static GlobalProperty compat[] = { 5203 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5204 }; 5205 5206 spapr_machine_2_6_class_options(mc); 5207 smc->use_ohci_by_default = true; 5208 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5209 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5210 } 5211 5212 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5213 5214 /* 5215 * pseries-2.4 5216 */ 5217 5218 static void spapr_machine_2_4_class_options(MachineClass *mc) 5219 { 5220 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5221 5222 spapr_machine_2_5_class_options(mc); 5223 smc->dr_lmb_enabled = false; 5224 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5225 } 5226 5227 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5228 5229 /* 5230 * pseries-2.3 5231 */ 5232 5233 static void spapr_machine_2_3_class_options(MachineClass *mc) 5234 { 5235 static GlobalProperty compat[] = { 5236 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5237 }; 5238 spapr_machine_2_4_class_options(mc); 5239 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5240 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5241 } 5242 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5243 5244 /* 5245 * pseries-2.2 5246 */ 5247 5248 static void spapr_machine_2_2_class_options(MachineClass *mc) 5249 { 5250 static GlobalProperty compat[] = { 5251 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5252 }; 5253 5254 spapr_machine_2_3_class_options(mc); 5255 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5256 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5257 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5258 } 5259 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5260 5261 /* 5262 * pseries-2.1 5263 */ 5264 5265 static void spapr_machine_2_1_class_options(MachineClass *mc) 5266 { 5267 spapr_machine_2_2_class_options(mc); 5268 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5269 } 5270 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5271 5272 static void spapr_machine_register_types(void) 5273 { 5274 type_register_static(&spapr_machine_info); 5275 } 5276 5277 type_init(spapr_machine_register_types) 5278