1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include <libfdt.h> 85 86 /* SLOF memory layout: 87 * 88 * SLOF raw image loaded at 0, copies its romfs right below the flat 89 * device-tree, then position SLOF itself 31M below that 90 * 91 * So we set FW_OVERHEAD to 40MB which should account for all of that 92 * and more 93 * 94 * We load our kernel at 4M, leaving space for SLOF initial image 95 */ 96 #define FDT_MAX_SIZE 0x100000 97 #define RTAS_MAX_SIZE 0x10000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset, 222 bool legacy_guest) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (legacy_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 299 { 300 MachineState *ms = MACHINE(spapr); 301 int ret = 0, offset, cpus_offset; 302 CPUState *cs; 303 char cpu_model[32]; 304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 305 306 CPU_FOREACH(cs) { 307 PowerPCCPU *cpu = POWERPC_CPU(cs); 308 DeviceClass *dc = DEVICE_GET_CLASS(cs); 309 int index = spapr_get_vcpu_id(cpu); 310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 311 312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 313 continue; 314 } 315 316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 317 318 cpus_offset = fdt_path_offset(fdt, "/cpus"); 319 if (cpus_offset < 0) { 320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 321 if (cpus_offset < 0) { 322 return cpus_offset; 323 } 324 } 325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 326 if (offset < 0) { 327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 328 if (offset < 0) { 329 return offset; 330 } 331 } 332 333 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 334 pft_size_prop, sizeof(pft_size_prop)); 335 if (ret < 0) { 336 return ret; 337 } 338 339 if (ms->numa_state->num_nodes > 1) { 340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 341 if (ret < 0) { 342 return ret; 343 } 344 } 345 346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 347 if (ret < 0) { 348 return ret; 349 } 350 351 spapr_populate_pa_features(spapr, cpu, fdt, offset, 352 spapr->cas_legacy_guest_workaround); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (machine->numa_state->num_nodes) { 360 int i; 361 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 362 if (machine->numa_state->nodes[i].node_mem) { 363 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = machine->numa_state->num_nodes; 407 NodeInfo *nodes = machine->numa_state->nodes; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (ms->numa_state->num_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int nb_numa_nodes = machine->numa_state->num_nodes; 870 int ret, i, offset; 871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 873 uint32_t *int_buf, *cur_index, buf_len; 874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 875 MemoryDeviceInfoList *dimms = NULL; 876 877 /* 878 * Don't create the node if there is no device memory 879 */ 880 if (machine->ram_size == machine->maxram_size) { 881 return 0; 882 } 883 884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 885 886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 887 sizeof(prop_lmb_size)); 888 if (ret < 0) { 889 return ret; 890 } 891 892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 893 if (ret < 0) { 894 return ret; 895 } 896 897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 898 if (ret < 0) { 899 return ret; 900 } 901 902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 903 dimms = qmp_memory_device_list(); 904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 906 } else { 907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 908 } 909 qapi_free_MemoryDeviceInfoList(dimms); 910 911 if (ret < 0) { 912 return ret; 913 } 914 915 /* ibm,associativity-lookup-arrays */ 916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 917 cur_index = int_buf = g_malloc0(buf_len); 918 int_buf[0] = cpu_to_be32(nr_nodes); 919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 920 cur_index += 2; 921 for (i = 0; i < nr_nodes; i++) { 922 uint32_t associativity[] = { 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(0x0), 926 cpu_to_be32(i) 927 }; 928 memcpy(cur_index, associativity, sizeof(associativity)); 929 cur_index += 4; 930 } 931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 932 (cur_index - int_buf) * sizeof(uint32_t)); 933 g_free(int_buf); 934 935 return ret; 936 } 937 938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 939 SpaprOptionVector *ov5_updates) 940 { 941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 942 int ret = 0, offset; 943 944 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 946 g_assert(smc->dr_lmb_enabled); 947 ret = spapr_populate_drconf_memory(spapr, fdt); 948 if (ret) { 949 goto out; 950 } 951 } 952 953 offset = fdt_path_offset(fdt, "/chosen"); 954 if (offset < 0) { 955 offset = fdt_add_subnode(fdt, 0, "chosen"); 956 if (offset < 0) { 957 return offset; 958 } 959 } 960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 961 "ibm,architecture-vec-5"); 962 963 out: 964 return ret; 965 } 966 967 static bool spapr_hotplugged_dev_before_cas(void) 968 { 969 Object *drc_container, *obj; 970 ObjectProperty *prop; 971 ObjectPropertyIterator iter; 972 973 drc_container = container_get(object_get_root(), "/dr-connector"); 974 object_property_iter_init(&iter, drc_container); 975 while ((prop = object_property_iter_next(&iter))) { 976 if (!strstart(prop->type, "link<", NULL)) { 977 continue; 978 } 979 obj = object_property_get_link(drc_container, prop->name, NULL); 980 if (spapr_drc_needed(obj)) { 981 return true; 982 } 983 } 984 return false; 985 } 986 987 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 988 target_ulong addr, target_ulong size, 989 SpaprOptionVector *ov5_updates) 990 { 991 void *fdt, *fdt_skel; 992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 993 994 if (spapr_hotplugged_dev_before_cas()) { 995 return 1; 996 } 997 998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 999 error_report("SLOF provided an unexpected CAS buffer size " 1000 TARGET_FMT_lu " (min: %zu, max: %u)", 1001 size, sizeof(hdr), FW_MAX_SIZE); 1002 exit(EXIT_FAILURE); 1003 } 1004 1005 size -= sizeof(hdr); 1006 1007 /* Create skeleton */ 1008 fdt_skel = g_malloc0(size); 1009 _FDT((fdt_create(fdt_skel, size))); 1010 _FDT((fdt_finish_reservemap(fdt_skel))); 1011 _FDT((fdt_begin_node(fdt_skel, ""))); 1012 _FDT((fdt_end_node(fdt_skel))); 1013 _FDT((fdt_finish(fdt_skel))); 1014 fdt = g_malloc0(size); 1015 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1016 g_free(fdt_skel); 1017 1018 /* Fixup cpu nodes */ 1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1020 1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1022 return -1; 1023 } 1024 1025 /* Pack resulting tree */ 1026 _FDT((fdt_pack(fdt))); 1027 1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1029 trace_spapr_cas_failed(size); 1030 return -1; 1031 } 1032 1033 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1034 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1035 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1036 g_free(fdt); 1037 1038 return 0; 1039 } 1040 1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1042 { 1043 MachineState *ms = MACHINE(spapr); 1044 int rtas; 1045 GString *hypertas = g_string_sized_new(256); 1046 GString *qemu_hypertas = g_string_sized_new(256); 1047 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1048 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1049 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1050 uint32_t lrdr_capacity[] = { 1051 cpu_to_be32(max_device_addr >> 32), 1052 cpu_to_be32(max_device_addr & 0xffffffff), 1053 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1054 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1055 }; 1056 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1057 uint32_t maxdomains[] = { 1058 cpu_to_be32(4), 1059 maxdomain, 1060 maxdomain, 1061 maxdomain, 1062 cpu_to_be32(spapr->gpu_numa_id), 1063 }; 1064 1065 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1066 1067 /* hypertas */ 1068 add_str(hypertas, "hcall-pft"); 1069 add_str(hypertas, "hcall-term"); 1070 add_str(hypertas, "hcall-dabr"); 1071 add_str(hypertas, "hcall-interrupt"); 1072 add_str(hypertas, "hcall-tce"); 1073 add_str(hypertas, "hcall-vio"); 1074 add_str(hypertas, "hcall-splpar"); 1075 add_str(hypertas, "hcall-join"); 1076 add_str(hypertas, "hcall-bulk"); 1077 add_str(hypertas, "hcall-set-mode"); 1078 add_str(hypertas, "hcall-sprg0"); 1079 add_str(hypertas, "hcall-copy"); 1080 add_str(hypertas, "hcall-debug"); 1081 add_str(hypertas, "hcall-vphn"); 1082 add_str(qemu_hypertas, "hcall-memop1"); 1083 1084 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1085 add_str(hypertas, "hcall-multi-tce"); 1086 } 1087 1088 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1089 add_str(hypertas, "hcall-hpt-resize"); 1090 } 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1093 hypertas->str, hypertas->len)); 1094 g_string_free(hypertas, TRUE); 1095 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1096 qemu_hypertas->str, qemu_hypertas->len)); 1097 g_string_free(qemu_hypertas, TRUE); 1098 1099 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1100 refpoints, sizeof(refpoints))); 1101 1102 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1103 maxdomains, sizeof(maxdomains))); 1104 1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1106 RTAS_ERROR_LOG_MAX)); 1107 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1108 RTAS_EVENT_SCAN_RATE)); 1109 1110 g_assert(msi_nonbroken); 1111 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1112 1113 /* 1114 * According to PAPR, rtas ibm,os-term does not guarantee a return 1115 * back to the guest cpu. 1116 * 1117 * While an additional ibm,extended-os-term property indicates 1118 * that rtas call return will always occur. Set this property. 1119 */ 1120 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1121 1122 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1123 lrdr_capacity, sizeof(lrdr_capacity))); 1124 1125 spapr_dt_rtas_tokens(fdt, rtas); 1126 } 1127 1128 /* 1129 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1130 * and the XIVE features that the guest may request and thus the valid 1131 * values for bytes 23..26 of option vector 5: 1132 */ 1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1134 int chosen) 1135 { 1136 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1137 1138 char val[2 * 4] = { 1139 23, spapr->irq->ov5, /* Xive mode. */ 1140 24, 0x00, /* Hash/Radix, filled in below. */ 1141 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1142 26, 0x40, /* Radix options: GTSE == yes. */ 1143 }; 1144 1145 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1146 first_ppc_cpu->compat_pvr)) { 1147 /* 1148 * If we're in a pre POWER9 compat mode then the guest should 1149 * do hash and use the legacy interrupt mode 1150 */ 1151 val[1] = 0x00; /* XICS */ 1152 val[3] = 0x00; /* Hash */ 1153 } else if (kvm_enabled()) { 1154 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1155 val[3] = 0x80; /* OV5_MMU_BOTH */ 1156 } else if (kvmppc_has_cap_mmu_radix()) { 1157 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1158 } else { 1159 val[3] = 0x00; /* Hash */ 1160 } 1161 } else { 1162 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1163 val[3] = 0xC0; 1164 } 1165 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1166 val, sizeof(val))); 1167 } 1168 1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1170 { 1171 MachineState *machine = MACHINE(spapr); 1172 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1173 int chosen; 1174 const char *boot_device = machine->boot_order; 1175 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1176 size_t cb = 0; 1177 char *bootlist = get_boot_devices_list(&cb); 1178 1179 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1180 1181 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1182 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1183 spapr->initrd_base)); 1184 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1185 spapr->initrd_base + spapr->initrd_size)); 1186 1187 if (spapr->kernel_size) { 1188 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1189 cpu_to_be64(spapr->kernel_size) }; 1190 1191 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1192 &kprop, sizeof(kprop))); 1193 if (spapr->kernel_le) { 1194 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1195 } 1196 } 1197 if (boot_menu) { 1198 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1199 } 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1202 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1203 1204 if (cb && bootlist) { 1205 int i; 1206 1207 for (i = 0; i < cb; i++) { 1208 if (bootlist[i] == '\n') { 1209 bootlist[i] = ' '; 1210 } 1211 } 1212 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1213 } 1214 1215 if (boot_device && strlen(boot_device)) { 1216 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1217 } 1218 1219 if (!spapr->has_graphics && stdout_path) { 1220 /* 1221 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1222 * kernel. New platforms should only use the "stdout-path" property. Set 1223 * the new property and continue using older property to remain 1224 * compatible with the existing firmware. 1225 */ 1226 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1227 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1228 } 1229 1230 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1231 if (smc->linux_pci_probe) { 1232 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1233 } 1234 1235 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1236 1237 g_free(stdout_path); 1238 g_free(bootlist); 1239 } 1240 1241 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1242 { 1243 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1244 * KVM to work under pHyp with some guest co-operation */ 1245 int hypervisor; 1246 uint8_t hypercall[16]; 1247 1248 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1249 /* indicate KVM hypercall interface */ 1250 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1251 if (kvmppc_has_cap_fixup_hcalls()) { 1252 /* 1253 * Older KVM versions with older guest kernels were broken 1254 * with the magic page, don't allow the guest to map it. 1255 */ 1256 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1257 sizeof(hypercall))) { 1258 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1259 hypercall, sizeof(hypercall))); 1260 } 1261 } 1262 } 1263 1264 static void *spapr_build_fdt(SpaprMachineState *spapr) 1265 { 1266 MachineState *machine = MACHINE(spapr); 1267 MachineClass *mc = MACHINE_GET_CLASS(machine); 1268 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1269 int ret; 1270 void *fdt; 1271 SpaprPhbState *phb; 1272 char *buf; 1273 1274 fdt = g_malloc0(FDT_MAX_SIZE); 1275 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1276 1277 /* Root node */ 1278 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1279 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1280 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1281 1282 /* Guest UUID & Name*/ 1283 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1284 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1285 if (qemu_uuid_set) { 1286 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1287 } 1288 g_free(buf); 1289 1290 if (qemu_get_vm_name()) { 1291 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1292 qemu_get_vm_name())); 1293 } 1294 1295 /* Host Model & Serial Number */ 1296 if (spapr->host_model) { 1297 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1298 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1299 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1300 g_free(buf); 1301 } 1302 1303 if (spapr->host_serial) { 1304 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1305 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1306 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1307 g_free(buf); 1308 } 1309 1310 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1311 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1312 1313 /* /interrupt controller */ 1314 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1315 PHANDLE_INTC); 1316 1317 ret = spapr_populate_memory(spapr, fdt); 1318 if (ret < 0) { 1319 error_report("couldn't setup memory nodes in fdt"); 1320 exit(1); 1321 } 1322 1323 /* /vdevice */ 1324 spapr_dt_vdevice(spapr->vio_bus, fdt); 1325 1326 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1327 ret = spapr_rng_populate_dt(fdt); 1328 if (ret < 0) { 1329 error_report("could not set up rng device in the fdt"); 1330 exit(1); 1331 } 1332 } 1333 1334 QLIST_FOREACH(phb, &spapr->phbs, list) { 1335 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1336 if (ret < 0) { 1337 error_report("couldn't setup PCI devices in fdt"); 1338 exit(1); 1339 } 1340 } 1341 1342 /* cpus */ 1343 spapr_populate_cpus_dt_node(fdt, spapr); 1344 1345 if (smc->dr_lmb_enabled) { 1346 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1347 } 1348 1349 if (mc->has_hotpluggable_cpus) { 1350 int offset = fdt_path_offset(fdt, "/cpus"); 1351 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1352 if (ret < 0) { 1353 error_report("Couldn't set up CPU DR device tree properties"); 1354 exit(1); 1355 } 1356 } 1357 1358 /* /event-sources */ 1359 spapr_dt_events(spapr, fdt); 1360 1361 /* /rtas */ 1362 spapr_dt_rtas(spapr, fdt); 1363 1364 /* /chosen */ 1365 spapr_dt_chosen(spapr, fdt); 1366 1367 /* /hypervisor */ 1368 if (kvm_enabled()) { 1369 spapr_dt_hypervisor(spapr, fdt); 1370 } 1371 1372 /* Build memory reserve map */ 1373 if (spapr->kernel_size) { 1374 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1375 } 1376 if (spapr->initrd_size) { 1377 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1378 } 1379 1380 /* ibm,client-architecture-support updates */ 1381 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1382 if (ret < 0) { 1383 error_report("couldn't setup CAS properties fdt"); 1384 exit(1); 1385 } 1386 1387 if (smc->dr_phb_enabled) { 1388 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1389 if (ret < 0) { 1390 error_report("Couldn't set up PHB DR device tree properties"); 1391 exit(1); 1392 } 1393 } 1394 1395 return fdt; 1396 } 1397 1398 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1399 { 1400 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1401 } 1402 1403 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1404 PowerPCCPU *cpu) 1405 { 1406 CPUPPCState *env = &cpu->env; 1407 1408 /* The TCG path should also be holding the BQL at this point */ 1409 g_assert(qemu_mutex_iothread_locked()); 1410 1411 if (msr_pr) { 1412 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1413 env->gpr[3] = H_PRIVILEGE; 1414 } else { 1415 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1416 } 1417 } 1418 1419 struct LPCRSyncState { 1420 target_ulong value; 1421 target_ulong mask; 1422 }; 1423 1424 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1425 { 1426 struct LPCRSyncState *s = arg.host_ptr; 1427 PowerPCCPU *cpu = POWERPC_CPU(cs); 1428 CPUPPCState *env = &cpu->env; 1429 target_ulong lpcr; 1430 1431 cpu_synchronize_state(cs); 1432 lpcr = env->spr[SPR_LPCR]; 1433 lpcr &= ~s->mask; 1434 lpcr |= s->value; 1435 ppc_store_lpcr(cpu, lpcr); 1436 } 1437 1438 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1439 { 1440 CPUState *cs; 1441 struct LPCRSyncState s = { 1442 .value = value, 1443 .mask = mask 1444 }; 1445 CPU_FOREACH(cs) { 1446 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1447 } 1448 } 1449 1450 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1451 { 1452 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1453 1454 /* Copy PATE1:GR into PATE0:HR */ 1455 entry->dw0 = spapr->patb_entry & PATE0_HR; 1456 entry->dw1 = spapr->patb_entry; 1457 } 1458 1459 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1460 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1461 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1462 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1463 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1464 1465 /* 1466 * Get the fd to access the kernel htab, re-opening it if necessary 1467 */ 1468 static int get_htab_fd(SpaprMachineState *spapr) 1469 { 1470 Error *local_err = NULL; 1471 1472 if (spapr->htab_fd >= 0) { 1473 return spapr->htab_fd; 1474 } 1475 1476 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1477 if (spapr->htab_fd < 0) { 1478 error_report_err(local_err); 1479 } 1480 1481 return spapr->htab_fd; 1482 } 1483 1484 void close_htab_fd(SpaprMachineState *spapr) 1485 { 1486 if (spapr->htab_fd >= 0) { 1487 close(spapr->htab_fd); 1488 } 1489 spapr->htab_fd = -1; 1490 } 1491 1492 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1493 { 1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1495 1496 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1497 } 1498 1499 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1500 { 1501 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1502 1503 assert(kvm_enabled()); 1504 1505 if (!spapr->htab) { 1506 return 0; 1507 } 1508 1509 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1510 } 1511 1512 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1513 hwaddr ptex, int n) 1514 { 1515 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1516 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1517 1518 if (!spapr->htab) { 1519 /* 1520 * HTAB is controlled by KVM. Fetch into temporary buffer 1521 */ 1522 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1523 kvmppc_read_hptes(hptes, ptex, n); 1524 return hptes; 1525 } 1526 1527 /* 1528 * HTAB is controlled by QEMU. Just point to the internally 1529 * accessible PTEG. 1530 */ 1531 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1532 } 1533 1534 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1535 const ppc_hash_pte64_t *hptes, 1536 hwaddr ptex, int n) 1537 { 1538 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1539 1540 if (!spapr->htab) { 1541 g_free((void *)hptes); 1542 } 1543 1544 /* Nothing to do for qemu managed HPT */ 1545 } 1546 1547 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1548 uint64_t pte0, uint64_t pte1) 1549 { 1550 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1551 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1552 1553 if (!spapr->htab) { 1554 kvmppc_write_hpte(ptex, pte0, pte1); 1555 } else { 1556 if (pte0 & HPTE64_V_VALID) { 1557 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1558 /* 1559 * When setting valid, we write PTE1 first. This ensures 1560 * proper synchronization with the reading code in 1561 * ppc_hash64_pteg_search() 1562 */ 1563 smp_wmb(); 1564 stq_p(spapr->htab + offset, pte0); 1565 } else { 1566 stq_p(spapr->htab + offset, pte0); 1567 /* 1568 * When clearing it we set PTE0 first. This ensures proper 1569 * synchronization with the reading code in 1570 * ppc_hash64_pteg_search() 1571 */ 1572 smp_wmb(); 1573 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1574 } 1575 } 1576 } 1577 1578 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1579 uint64_t pte1) 1580 { 1581 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1582 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1583 1584 if (!spapr->htab) { 1585 /* There should always be a hash table when this is called */ 1586 error_report("spapr_hpte_set_c called with no hash table !"); 1587 return; 1588 } 1589 1590 /* The HW performs a non-atomic byte update */ 1591 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1592 } 1593 1594 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1595 uint64_t pte1) 1596 { 1597 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1598 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1599 1600 if (!spapr->htab) { 1601 /* There should always be a hash table when this is called */ 1602 error_report("spapr_hpte_set_r called with no hash table !"); 1603 return; 1604 } 1605 1606 /* The HW performs a non-atomic byte update */ 1607 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1608 } 1609 1610 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1611 { 1612 int shift; 1613 1614 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1615 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1616 * that's much more than is needed for Linux guests */ 1617 shift = ctz64(pow2ceil(ramsize)) - 7; 1618 shift = MAX(shift, 18); /* Minimum architected size */ 1619 shift = MIN(shift, 46); /* Maximum architected size */ 1620 return shift; 1621 } 1622 1623 void spapr_free_hpt(SpaprMachineState *spapr) 1624 { 1625 g_free(spapr->htab); 1626 spapr->htab = NULL; 1627 spapr->htab_shift = 0; 1628 close_htab_fd(spapr); 1629 } 1630 1631 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1632 Error **errp) 1633 { 1634 long rc; 1635 1636 /* Clean up any HPT info from a previous boot */ 1637 spapr_free_hpt(spapr); 1638 1639 rc = kvmppc_reset_htab(shift); 1640 if (rc < 0) { 1641 /* kernel-side HPT needed, but couldn't allocate one */ 1642 error_setg_errno(errp, errno, 1643 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1644 shift); 1645 /* This is almost certainly fatal, but if the caller really 1646 * wants to carry on with shift == 0, it's welcome to try */ 1647 } else if (rc > 0) { 1648 /* kernel-side HPT allocated */ 1649 if (rc != shift) { 1650 error_setg(errp, 1651 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1652 shift, rc); 1653 } 1654 1655 spapr->htab_shift = shift; 1656 spapr->htab = NULL; 1657 } else { 1658 /* kernel-side HPT not needed, allocate in userspace instead */ 1659 size_t size = 1ULL << shift; 1660 int i; 1661 1662 spapr->htab = qemu_memalign(size, size); 1663 if (!spapr->htab) { 1664 error_setg_errno(errp, errno, 1665 "Could not allocate HPT of order %d", shift); 1666 return; 1667 } 1668 1669 memset(spapr->htab, 0, size); 1670 spapr->htab_shift = shift; 1671 1672 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1673 DIRTY_HPTE(HPTE(spapr->htab, i)); 1674 } 1675 } 1676 /* We're setting up a hash table, so that means we're not radix */ 1677 spapr->patb_entry = 0; 1678 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1679 } 1680 1681 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1682 { 1683 int hpt_shift; 1684 1685 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1686 || (spapr->cas_reboot 1687 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1688 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1689 } else { 1690 uint64_t current_ram_size; 1691 1692 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1693 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1694 } 1695 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1696 1697 if (spapr->vrma_adjust) { 1698 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1699 spapr->htab_shift); 1700 } 1701 } 1702 1703 static int spapr_reset_drcs(Object *child, void *opaque) 1704 { 1705 SpaprDrc *drc = 1706 (SpaprDrc *) object_dynamic_cast(child, 1707 TYPE_SPAPR_DR_CONNECTOR); 1708 1709 if (drc) { 1710 spapr_drc_reset(drc); 1711 } 1712 1713 return 0; 1714 } 1715 1716 static void spapr_machine_reset(MachineState *machine) 1717 { 1718 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1719 PowerPCCPU *first_ppc_cpu; 1720 uint32_t rtas_limit; 1721 hwaddr rtas_addr, fdt_addr; 1722 void *fdt; 1723 int rc; 1724 1725 spapr_caps_apply(spapr); 1726 1727 first_ppc_cpu = POWERPC_CPU(first_cpu); 1728 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1729 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1730 spapr->max_compat_pvr)) { 1731 /* 1732 * If using KVM with radix mode available, VCPUs can be started 1733 * without a HPT because KVM will start them in radix mode. 1734 * Set the GR bit in PATE so that we know there is no HPT. 1735 */ 1736 spapr->patb_entry = PATE1_GR; 1737 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1738 } else { 1739 spapr_setup_hpt_and_vrma(spapr); 1740 } 1741 1742 /* 1743 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1744 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1745 * called from vPHB reset handler so we initialize the counter here. 1746 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1747 * must be equally distant from any other node. 1748 * The final value of spapr->gpu_numa_id is going to be written to 1749 * max-associativity-domains in spapr_build_fdt(). 1750 */ 1751 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 1752 qemu_devices_reset(); 1753 1754 /* 1755 * If this reset wasn't generated by CAS, we should reset our 1756 * negotiated options and start from scratch 1757 */ 1758 if (!spapr->cas_reboot) { 1759 spapr_ovec_cleanup(spapr->ov5_cas); 1760 spapr->ov5_cas = spapr_ovec_new(); 1761 1762 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1763 } 1764 1765 /* 1766 * This is fixing some of the default configuration of the XIVE 1767 * devices. To be called after the reset of the machine devices. 1768 */ 1769 spapr_irq_reset(spapr, &error_fatal); 1770 1771 /* 1772 * There is no CAS under qtest. Simulate one to please the code that 1773 * depends on spapr->ov5_cas. This is especially needed to test device 1774 * unplug, so we do that before resetting the DRCs. 1775 */ 1776 if (qtest_enabled()) { 1777 spapr_ovec_cleanup(spapr->ov5_cas); 1778 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1779 } 1780 1781 /* DRC reset may cause a device to be unplugged. This will cause troubles 1782 * if this device is used by another device (eg, a running vhost backend 1783 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1784 * situations, we reset DRCs after all devices have been reset. 1785 */ 1786 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1787 1788 spapr_clear_pending_events(spapr); 1789 1790 /* 1791 * We place the device tree and RTAS just below either the top of the RMA, 1792 * or just below 2GB, whichever is lower, so that it can be 1793 * processed with 32-bit real mode code if necessary 1794 */ 1795 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1796 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1797 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1798 1799 fdt = spapr_build_fdt(spapr); 1800 1801 spapr_load_rtas(spapr, fdt, rtas_addr); 1802 1803 rc = fdt_pack(fdt); 1804 1805 /* Should only fail if we've built a corrupted tree */ 1806 assert(rc == 0); 1807 1808 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1809 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1810 fdt_totalsize(fdt), FDT_MAX_SIZE); 1811 exit(1); 1812 } 1813 1814 /* Load the fdt */ 1815 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1816 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1817 g_free(spapr->fdt_blob); 1818 spapr->fdt_size = fdt_totalsize(fdt); 1819 spapr->fdt_initial_size = spapr->fdt_size; 1820 spapr->fdt_blob = fdt; 1821 1822 /* Set up the entry state */ 1823 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1824 first_ppc_cpu->env.gpr[5] = 0; 1825 1826 spapr->cas_reboot = false; 1827 } 1828 1829 static void spapr_create_nvram(SpaprMachineState *spapr) 1830 { 1831 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1832 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1833 1834 if (dinfo) { 1835 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1836 &error_fatal); 1837 } 1838 1839 qdev_init_nofail(dev); 1840 1841 spapr->nvram = (struct SpaprNvram *)dev; 1842 } 1843 1844 static void spapr_rtc_create(SpaprMachineState *spapr) 1845 { 1846 object_initialize_child(OBJECT(spapr), "rtc", 1847 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1848 &error_fatal, NULL); 1849 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1850 &error_fatal); 1851 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1852 "date", &error_fatal); 1853 } 1854 1855 /* Returns whether we want to use VGA or not */ 1856 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1857 { 1858 switch (vga_interface_type) { 1859 case VGA_NONE: 1860 return false; 1861 case VGA_DEVICE: 1862 return true; 1863 case VGA_STD: 1864 case VGA_VIRTIO: 1865 case VGA_CIRRUS: 1866 return pci_vga_init(pci_bus) != NULL; 1867 default: 1868 error_setg(errp, 1869 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1870 return false; 1871 } 1872 } 1873 1874 static int spapr_pre_load(void *opaque) 1875 { 1876 int rc; 1877 1878 rc = spapr_caps_pre_load(opaque); 1879 if (rc) { 1880 return rc; 1881 } 1882 1883 return 0; 1884 } 1885 1886 static int spapr_post_load(void *opaque, int version_id) 1887 { 1888 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1889 int err = 0; 1890 1891 err = spapr_caps_post_migration(spapr); 1892 if (err) { 1893 return err; 1894 } 1895 1896 /* 1897 * In earlier versions, there was no separate qdev for the PAPR 1898 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1899 * So when migrating from those versions, poke the incoming offset 1900 * value into the RTC device 1901 */ 1902 if (version_id < 3) { 1903 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1904 if (err) { 1905 return err; 1906 } 1907 } 1908 1909 if (kvm_enabled() && spapr->patb_entry) { 1910 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1911 bool radix = !!(spapr->patb_entry & PATE1_GR); 1912 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1913 1914 /* 1915 * Update LPCR:HR and UPRT as they may not be set properly in 1916 * the stream 1917 */ 1918 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1919 LPCR_HR | LPCR_UPRT); 1920 1921 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1922 if (err) { 1923 error_report("Process table config unsupported by the host"); 1924 return -EINVAL; 1925 } 1926 } 1927 1928 err = spapr_irq_post_load(spapr, version_id); 1929 if (err) { 1930 return err; 1931 } 1932 1933 return err; 1934 } 1935 1936 static int spapr_pre_save(void *opaque) 1937 { 1938 int rc; 1939 1940 rc = spapr_caps_pre_save(opaque); 1941 if (rc) { 1942 return rc; 1943 } 1944 1945 return 0; 1946 } 1947 1948 static bool version_before_3(void *opaque, int version_id) 1949 { 1950 return version_id < 3; 1951 } 1952 1953 static bool spapr_pending_events_needed(void *opaque) 1954 { 1955 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1956 return !QTAILQ_EMPTY(&spapr->pending_events); 1957 } 1958 1959 static const VMStateDescription vmstate_spapr_event_entry = { 1960 .name = "spapr_event_log_entry", 1961 .version_id = 1, 1962 .minimum_version_id = 1, 1963 .fields = (VMStateField[]) { 1964 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1965 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1966 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1967 NULL, extended_length), 1968 VMSTATE_END_OF_LIST() 1969 }, 1970 }; 1971 1972 static const VMStateDescription vmstate_spapr_pending_events = { 1973 .name = "spapr_pending_events", 1974 .version_id = 1, 1975 .minimum_version_id = 1, 1976 .needed = spapr_pending_events_needed, 1977 .fields = (VMStateField[]) { 1978 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1979 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1980 VMSTATE_END_OF_LIST() 1981 }, 1982 }; 1983 1984 static bool spapr_ov5_cas_needed(void *opaque) 1985 { 1986 SpaprMachineState *spapr = opaque; 1987 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1988 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1989 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1990 bool cas_needed; 1991 1992 /* Prior to the introduction of SpaprOptionVector, we had two option 1993 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1994 * Both of these options encode machine topology into the device-tree 1995 * in such a way that the now-booted OS should still be able to interact 1996 * appropriately with QEMU regardless of what options were actually 1997 * negotiatied on the source side. 1998 * 1999 * As such, we can avoid migrating the CAS-negotiated options if these 2000 * are the only options available on the current machine/platform. 2001 * Since these are the only options available for pseries-2.7 and 2002 * earlier, this allows us to maintain old->new/new->old migration 2003 * compatibility. 2004 * 2005 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2006 * via default pseries-2.8 machines and explicit command-line parameters. 2007 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2008 * of the actual CAS-negotiated values to continue working properly. For 2009 * example, availability of memory unplug depends on knowing whether 2010 * OV5_HP_EVT was negotiated via CAS. 2011 * 2012 * Thus, for any cases where the set of available CAS-negotiatable 2013 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2014 * include the CAS-negotiated options in the migration stream, unless 2015 * if they affect boot time behaviour only. 2016 */ 2017 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2018 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2019 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2020 2021 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2022 * the mask itself since in the future it's possible "legacy" bits may be 2023 * removed via machine options, which could generate a false positive 2024 * that breaks migration. 2025 */ 2026 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2027 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2028 2029 spapr_ovec_cleanup(ov5_mask); 2030 spapr_ovec_cleanup(ov5_legacy); 2031 spapr_ovec_cleanup(ov5_removed); 2032 2033 return cas_needed; 2034 } 2035 2036 static const VMStateDescription vmstate_spapr_ov5_cas = { 2037 .name = "spapr_option_vector_ov5_cas", 2038 .version_id = 1, 2039 .minimum_version_id = 1, 2040 .needed = spapr_ov5_cas_needed, 2041 .fields = (VMStateField[]) { 2042 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2043 vmstate_spapr_ovec, SpaprOptionVector), 2044 VMSTATE_END_OF_LIST() 2045 }, 2046 }; 2047 2048 static bool spapr_patb_entry_needed(void *opaque) 2049 { 2050 SpaprMachineState *spapr = opaque; 2051 2052 return !!spapr->patb_entry; 2053 } 2054 2055 static const VMStateDescription vmstate_spapr_patb_entry = { 2056 .name = "spapr_patb_entry", 2057 .version_id = 1, 2058 .minimum_version_id = 1, 2059 .needed = spapr_patb_entry_needed, 2060 .fields = (VMStateField[]) { 2061 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2062 VMSTATE_END_OF_LIST() 2063 }, 2064 }; 2065 2066 static bool spapr_irq_map_needed(void *opaque) 2067 { 2068 SpaprMachineState *spapr = opaque; 2069 2070 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2071 } 2072 2073 static const VMStateDescription vmstate_spapr_irq_map = { 2074 .name = "spapr_irq_map", 2075 .version_id = 1, 2076 .minimum_version_id = 1, 2077 .needed = spapr_irq_map_needed, 2078 .fields = (VMStateField[]) { 2079 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2080 VMSTATE_END_OF_LIST() 2081 }, 2082 }; 2083 2084 static bool spapr_dtb_needed(void *opaque) 2085 { 2086 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2087 2088 return smc->update_dt_enabled; 2089 } 2090 2091 static int spapr_dtb_pre_load(void *opaque) 2092 { 2093 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2094 2095 g_free(spapr->fdt_blob); 2096 spapr->fdt_blob = NULL; 2097 spapr->fdt_size = 0; 2098 2099 return 0; 2100 } 2101 2102 static const VMStateDescription vmstate_spapr_dtb = { 2103 .name = "spapr_dtb", 2104 .version_id = 1, 2105 .minimum_version_id = 1, 2106 .needed = spapr_dtb_needed, 2107 .pre_load = spapr_dtb_pre_load, 2108 .fields = (VMStateField[]) { 2109 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2110 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2111 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2112 fdt_size), 2113 VMSTATE_END_OF_LIST() 2114 }, 2115 }; 2116 2117 static const VMStateDescription vmstate_spapr = { 2118 .name = "spapr", 2119 .version_id = 3, 2120 .minimum_version_id = 1, 2121 .pre_load = spapr_pre_load, 2122 .post_load = spapr_post_load, 2123 .pre_save = spapr_pre_save, 2124 .fields = (VMStateField[]) { 2125 /* used to be @next_irq */ 2126 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2127 2128 /* RTC offset */ 2129 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2130 2131 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2132 VMSTATE_END_OF_LIST() 2133 }, 2134 .subsections = (const VMStateDescription*[]) { 2135 &vmstate_spapr_ov5_cas, 2136 &vmstate_spapr_patb_entry, 2137 &vmstate_spapr_pending_events, 2138 &vmstate_spapr_cap_htm, 2139 &vmstate_spapr_cap_vsx, 2140 &vmstate_spapr_cap_dfp, 2141 &vmstate_spapr_cap_cfpc, 2142 &vmstate_spapr_cap_sbbc, 2143 &vmstate_spapr_cap_ibs, 2144 &vmstate_spapr_cap_hpt_maxpagesize, 2145 &vmstate_spapr_irq_map, 2146 &vmstate_spapr_cap_nested_kvm_hv, 2147 &vmstate_spapr_dtb, 2148 &vmstate_spapr_cap_large_decr, 2149 &vmstate_spapr_cap_ccf_assist, 2150 NULL 2151 } 2152 }; 2153 2154 static int htab_save_setup(QEMUFile *f, void *opaque) 2155 { 2156 SpaprMachineState *spapr = opaque; 2157 2158 /* "Iteration" header */ 2159 if (!spapr->htab_shift) { 2160 qemu_put_be32(f, -1); 2161 } else { 2162 qemu_put_be32(f, spapr->htab_shift); 2163 } 2164 2165 if (spapr->htab) { 2166 spapr->htab_save_index = 0; 2167 spapr->htab_first_pass = true; 2168 } else { 2169 if (spapr->htab_shift) { 2170 assert(kvm_enabled()); 2171 } 2172 } 2173 2174 2175 return 0; 2176 } 2177 2178 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2179 int chunkstart, int n_valid, int n_invalid) 2180 { 2181 qemu_put_be32(f, chunkstart); 2182 qemu_put_be16(f, n_valid); 2183 qemu_put_be16(f, n_invalid); 2184 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2185 HASH_PTE_SIZE_64 * n_valid); 2186 } 2187 2188 static void htab_save_end_marker(QEMUFile *f) 2189 { 2190 qemu_put_be32(f, 0); 2191 qemu_put_be16(f, 0); 2192 qemu_put_be16(f, 0); 2193 } 2194 2195 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2196 int64_t max_ns) 2197 { 2198 bool has_timeout = max_ns != -1; 2199 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2200 int index = spapr->htab_save_index; 2201 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2202 2203 assert(spapr->htab_first_pass); 2204 2205 do { 2206 int chunkstart; 2207 2208 /* Consume invalid HPTEs */ 2209 while ((index < htabslots) 2210 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2211 CLEAN_HPTE(HPTE(spapr->htab, index)); 2212 index++; 2213 } 2214 2215 /* Consume valid HPTEs */ 2216 chunkstart = index; 2217 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2218 && HPTE_VALID(HPTE(spapr->htab, index))) { 2219 CLEAN_HPTE(HPTE(spapr->htab, index)); 2220 index++; 2221 } 2222 2223 if (index > chunkstart) { 2224 int n_valid = index - chunkstart; 2225 2226 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2227 2228 if (has_timeout && 2229 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2230 break; 2231 } 2232 } 2233 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2234 2235 if (index >= htabslots) { 2236 assert(index == htabslots); 2237 index = 0; 2238 spapr->htab_first_pass = false; 2239 } 2240 spapr->htab_save_index = index; 2241 } 2242 2243 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2244 int64_t max_ns) 2245 { 2246 bool final = max_ns < 0; 2247 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2248 int examined = 0, sent = 0; 2249 int index = spapr->htab_save_index; 2250 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2251 2252 assert(!spapr->htab_first_pass); 2253 2254 do { 2255 int chunkstart, invalidstart; 2256 2257 /* Consume non-dirty HPTEs */ 2258 while ((index < htabslots) 2259 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2260 index++; 2261 examined++; 2262 } 2263 2264 chunkstart = index; 2265 /* Consume valid dirty HPTEs */ 2266 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2267 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2268 && HPTE_VALID(HPTE(spapr->htab, index))) { 2269 CLEAN_HPTE(HPTE(spapr->htab, index)); 2270 index++; 2271 examined++; 2272 } 2273 2274 invalidstart = index; 2275 /* Consume invalid dirty HPTEs */ 2276 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2277 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2278 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2279 CLEAN_HPTE(HPTE(spapr->htab, index)); 2280 index++; 2281 examined++; 2282 } 2283 2284 if (index > chunkstart) { 2285 int n_valid = invalidstart - chunkstart; 2286 int n_invalid = index - invalidstart; 2287 2288 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2289 sent += index - chunkstart; 2290 2291 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2292 break; 2293 } 2294 } 2295 2296 if (examined >= htabslots) { 2297 break; 2298 } 2299 2300 if (index >= htabslots) { 2301 assert(index == htabslots); 2302 index = 0; 2303 } 2304 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2305 2306 if (index >= htabslots) { 2307 assert(index == htabslots); 2308 index = 0; 2309 } 2310 2311 spapr->htab_save_index = index; 2312 2313 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2314 } 2315 2316 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2317 #define MAX_KVM_BUF_SIZE 2048 2318 2319 static int htab_save_iterate(QEMUFile *f, void *opaque) 2320 { 2321 SpaprMachineState *spapr = opaque; 2322 int fd; 2323 int rc = 0; 2324 2325 /* Iteration header */ 2326 if (!spapr->htab_shift) { 2327 qemu_put_be32(f, -1); 2328 return 1; 2329 } else { 2330 qemu_put_be32(f, 0); 2331 } 2332 2333 if (!spapr->htab) { 2334 assert(kvm_enabled()); 2335 2336 fd = get_htab_fd(spapr); 2337 if (fd < 0) { 2338 return fd; 2339 } 2340 2341 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2342 if (rc < 0) { 2343 return rc; 2344 } 2345 } else if (spapr->htab_first_pass) { 2346 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2347 } else { 2348 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2349 } 2350 2351 htab_save_end_marker(f); 2352 2353 return rc; 2354 } 2355 2356 static int htab_save_complete(QEMUFile *f, void *opaque) 2357 { 2358 SpaprMachineState *spapr = opaque; 2359 int fd; 2360 2361 /* Iteration header */ 2362 if (!spapr->htab_shift) { 2363 qemu_put_be32(f, -1); 2364 return 0; 2365 } else { 2366 qemu_put_be32(f, 0); 2367 } 2368 2369 if (!spapr->htab) { 2370 int rc; 2371 2372 assert(kvm_enabled()); 2373 2374 fd = get_htab_fd(spapr); 2375 if (fd < 0) { 2376 return fd; 2377 } 2378 2379 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2380 if (rc < 0) { 2381 return rc; 2382 } 2383 } else { 2384 if (spapr->htab_first_pass) { 2385 htab_save_first_pass(f, spapr, -1); 2386 } 2387 htab_save_later_pass(f, spapr, -1); 2388 } 2389 2390 /* End marker */ 2391 htab_save_end_marker(f); 2392 2393 return 0; 2394 } 2395 2396 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2397 { 2398 SpaprMachineState *spapr = opaque; 2399 uint32_t section_hdr; 2400 int fd = -1; 2401 Error *local_err = NULL; 2402 2403 if (version_id < 1 || version_id > 1) { 2404 error_report("htab_load() bad version"); 2405 return -EINVAL; 2406 } 2407 2408 section_hdr = qemu_get_be32(f); 2409 2410 if (section_hdr == -1) { 2411 spapr_free_hpt(spapr); 2412 return 0; 2413 } 2414 2415 if (section_hdr) { 2416 /* First section gives the htab size */ 2417 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2418 if (local_err) { 2419 error_report_err(local_err); 2420 return -EINVAL; 2421 } 2422 return 0; 2423 } 2424 2425 if (!spapr->htab) { 2426 assert(kvm_enabled()); 2427 2428 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2429 if (fd < 0) { 2430 error_report_err(local_err); 2431 return fd; 2432 } 2433 } 2434 2435 while (true) { 2436 uint32_t index; 2437 uint16_t n_valid, n_invalid; 2438 2439 index = qemu_get_be32(f); 2440 n_valid = qemu_get_be16(f); 2441 n_invalid = qemu_get_be16(f); 2442 2443 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2444 /* End of Stream */ 2445 break; 2446 } 2447 2448 if ((index + n_valid + n_invalid) > 2449 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2450 /* Bad index in stream */ 2451 error_report( 2452 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2453 index, n_valid, n_invalid, spapr->htab_shift); 2454 return -EINVAL; 2455 } 2456 2457 if (spapr->htab) { 2458 if (n_valid) { 2459 qemu_get_buffer(f, HPTE(spapr->htab, index), 2460 HASH_PTE_SIZE_64 * n_valid); 2461 } 2462 if (n_invalid) { 2463 memset(HPTE(spapr->htab, index + n_valid), 0, 2464 HASH_PTE_SIZE_64 * n_invalid); 2465 } 2466 } else { 2467 int rc; 2468 2469 assert(fd >= 0); 2470 2471 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2472 if (rc < 0) { 2473 return rc; 2474 } 2475 } 2476 } 2477 2478 if (!spapr->htab) { 2479 assert(fd >= 0); 2480 close(fd); 2481 } 2482 2483 return 0; 2484 } 2485 2486 static void htab_save_cleanup(void *opaque) 2487 { 2488 SpaprMachineState *spapr = opaque; 2489 2490 close_htab_fd(spapr); 2491 } 2492 2493 static SaveVMHandlers savevm_htab_handlers = { 2494 .save_setup = htab_save_setup, 2495 .save_live_iterate = htab_save_iterate, 2496 .save_live_complete_precopy = htab_save_complete, 2497 .save_cleanup = htab_save_cleanup, 2498 .load_state = htab_load, 2499 }; 2500 2501 static void spapr_boot_set(void *opaque, const char *boot_device, 2502 Error **errp) 2503 { 2504 MachineState *machine = MACHINE(opaque); 2505 machine->boot_order = g_strdup(boot_device); 2506 } 2507 2508 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2509 { 2510 MachineState *machine = MACHINE(spapr); 2511 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2512 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2513 int i; 2514 2515 for (i = 0; i < nr_lmbs; i++) { 2516 uint64_t addr; 2517 2518 addr = i * lmb_size + machine->device_memory->base; 2519 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2520 addr / lmb_size); 2521 } 2522 } 2523 2524 /* 2525 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2526 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2527 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2528 */ 2529 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2530 { 2531 int i; 2532 2533 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2534 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2535 " is not aligned to %" PRIu64 " MiB", 2536 machine->ram_size, 2537 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2538 return; 2539 } 2540 2541 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2542 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2543 " is not aligned to %" PRIu64 " MiB", 2544 machine->ram_size, 2545 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2546 return; 2547 } 2548 2549 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2550 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2551 error_setg(errp, 2552 "Node %d memory size 0x%" PRIx64 2553 " is not aligned to %" PRIu64 " MiB", 2554 i, machine->numa_state->nodes[i].node_mem, 2555 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2556 return; 2557 } 2558 } 2559 } 2560 2561 /* find cpu slot in machine->possible_cpus by core_id */ 2562 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2563 { 2564 int index = id / ms->smp.threads; 2565 2566 if (index >= ms->possible_cpus->len) { 2567 return NULL; 2568 } 2569 if (idx) { 2570 *idx = index; 2571 } 2572 return &ms->possible_cpus->cpus[index]; 2573 } 2574 2575 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2576 { 2577 MachineState *ms = MACHINE(spapr); 2578 Error *local_err = NULL; 2579 bool vsmt_user = !!spapr->vsmt; 2580 int kvm_smt = kvmppc_smt_threads(); 2581 int ret; 2582 unsigned int smp_threads = ms->smp.threads; 2583 2584 if (!kvm_enabled() && (smp_threads > 1)) { 2585 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2586 "on a pseries machine"); 2587 goto out; 2588 } 2589 if (!is_power_of_2(smp_threads)) { 2590 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2591 "machine because it must be a power of 2", smp_threads); 2592 goto out; 2593 } 2594 2595 /* Detemine the VSMT mode to use: */ 2596 if (vsmt_user) { 2597 if (spapr->vsmt < smp_threads) { 2598 error_setg(&local_err, "Cannot support VSMT mode %d" 2599 " because it must be >= threads/core (%d)", 2600 spapr->vsmt, smp_threads); 2601 goto out; 2602 } 2603 /* In this case, spapr->vsmt has been set by the command line */ 2604 } else { 2605 /* 2606 * Default VSMT value is tricky, because we need it to be as 2607 * consistent as possible (for migration), but this requires 2608 * changing it for at least some existing cases. We pick 8 as 2609 * the value that we'd get with KVM on POWER8, the 2610 * overwhelmingly common case in production systems. 2611 */ 2612 spapr->vsmt = MAX(8, smp_threads); 2613 } 2614 2615 /* KVM: If necessary, set the SMT mode: */ 2616 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2617 ret = kvmppc_set_smt_threads(spapr->vsmt); 2618 if (ret) { 2619 /* Looks like KVM isn't able to change VSMT mode */ 2620 error_setg(&local_err, 2621 "Failed to set KVM's VSMT mode to %d (errno %d)", 2622 spapr->vsmt, ret); 2623 /* We can live with that if the default one is big enough 2624 * for the number of threads, and a submultiple of the one 2625 * we want. In this case we'll waste some vcpu ids, but 2626 * behaviour will be correct */ 2627 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2628 warn_report_err(local_err); 2629 local_err = NULL; 2630 goto out; 2631 } else { 2632 if (!vsmt_user) { 2633 error_append_hint(&local_err, 2634 "On PPC, a VM with %d threads/core" 2635 " on a host with %d threads/core" 2636 " requires the use of VSMT mode %d.\n", 2637 smp_threads, kvm_smt, spapr->vsmt); 2638 } 2639 kvmppc_hint_smt_possible(&local_err); 2640 goto out; 2641 } 2642 } 2643 } 2644 /* else TCG: nothing to do currently */ 2645 out: 2646 error_propagate(errp, local_err); 2647 } 2648 2649 static void spapr_init_cpus(SpaprMachineState *spapr) 2650 { 2651 MachineState *machine = MACHINE(spapr); 2652 MachineClass *mc = MACHINE_GET_CLASS(machine); 2653 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2654 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2655 const CPUArchIdList *possible_cpus; 2656 unsigned int smp_cpus = machine->smp.cpus; 2657 unsigned int smp_threads = machine->smp.threads; 2658 unsigned int max_cpus = machine->smp.max_cpus; 2659 int boot_cores_nr = smp_cpus / smp_threads; 2660 int i; 2661 2662 possible_cpus = mc->possible_cpu_arch_ids(machine); 2663 if (mc->has_hotpluggable_cpus) { 2664 if (smp_cpus % smp_threads) { 2665 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2666 smp_cpus, smp_threads); 2667 exit(1); 2668 } 2669 if (max_cpus % smp_threads) { 2670 error_report("max_cpus (%u) must be multiple of threads (%u)", 2671 max_cpus, smp_threads); 2672 exit(1); 2673 } 2674 } else { 2675 if (max_cpus != smp_cpus) { 2676 error_report("This machine version does not support CPU hotplug"); 2677 exit(1); 2678 } 2679 boot_cores_nr = possible_cpus->len; 2680 } 2681 2682 if (smc->pre_2_10_has_unused_icps) { 2683 int i; 2684 2685 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2686 /* Dummy entries get deregistered when real ICPState objects 2687 * are registered during CPU core hotplug. 2688 */ 2689 pre_2_10_vmstate_register_dummy_icp(i); 2690 } 2691 } 2692 2693 for (i = 0; i < possible_cpus->len; i++) { 2694 int core_id = i * smp_threads; 2695 2696 if (mc->has_hotpluggable_cpus) { 2697 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2698 spapr_vcpu_id(spapr, core_id)); 2699 } 2700 2701 if (i < boot_cores_nr) { 2702 Object *core = object_new(type); 2703 int nr_threads = smp_threads; 2704 2705 /* Handle the partially filled core for older machine types */ 2706 if ((i + 1) * smp_threads >= smp_cpus) { 2707 nr_threads = smp_cpus - i * smp_threads; 2708 } 2709 2710 object_property_set_int(core, nr_threads, "nr-threads", 2711 &error_fatal); 2712 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2713 &error_fatal); 2714 object_property_set_bool(core, true, "realized", &error_fatal); 2715 2716 object_unref(core); 2717 } 2718 } 2719 } 2720 2721 static PCIHostState *spapr_create_default_phb(void) 2722 { 2723 DeviceState *dev; 2724 2725 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2726 qdev_prop_set_uint32(dev, "index", 0); 2727 qdev_init_nofail(dev); 2728 2729 return PCI_HOST_BRIDGE(dev); 2730 } 2731 2732 /* pSeries LPAR / sPAPR hardware init */ 2733 static void spapr_machine_init(MachineState *machine) 2734 { 2735 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2736 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2737 const char *kernel_filename = machine->kernel_filename; 2738 const char *initrd_filename = machine->initrd_filename; 2739 PCIHostState *phb; 2740 int i; 2741 MemoryRegion *sysmem = get_system_memory(); 2742 MemoryRegion *ram = g_new(MemoryRegion, 1); 2743 hwaddr node0_size = spapr_node0_size(machine); 2744 long load_limit, fw_size; 2745 char *filename; 2746 Error *resize_hpt_err = NULL; 2747 2748 msi_nonbroken = true; 2749 2750 QLIST_INIT(&spapr->phbs); 2751 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2752 2753 /* Determine capabilities to run with */ 2754 spapr_caps_init(spapr); 2755 2756 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2757 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2758 /* 2759 * If the user explicitly requested a mode we should either 2760 * supply it, or fail completely (which we do below). But if 2761 * it's not set explicitly, we reset our mode to something 2762 * that works 2763 */ 2764 if (resize_hpt_err) { 2765 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2766 error_free(resize_hpt_err); 2767 resize_hpt_err = NULL; 2768 } else { 2769 spapr->resize_hpt = smc->resize_hpt_default; 2770 } 2771 } 2772 2773 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2774 2775 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2776 /* 2777 * User requested HPT resize, but this host can't supply it. Bail out 2778 */ 2779 error_report_err(resize_hpt_err); 2780 exit(1); 2781 } 2782 2783 spapr->rma_size = node0_size; 2784 2785 /* With KVM, we don't actually know whether KVM supports an 2786 * unbounded RMA (PR KVM) or is limited by the hash table size 2787 * (HV KVM using VRMA), so we always assume the latter 2788 * 2789 * In that case, we also limit the initial allocations for RTAS 2790 * etc... to 256M since we have no way to know what the VRMA size 2791 * is going to be as it depends on the size of the hash table 2792 * which isn't determined yet. 2793 */ 2794 if (kvm_enabled()) { 2795 spapr->vrma_adjust = 1; 2796 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2797 } 2798 2799 /* Actually we don't support unbounded RMA anymore since we added 2800 * proper emulation of HV mode. The max we can get is 16G which 2801 * also happens to be what we configure for PAPR mode so make sure 2802 * we don't do anything bigger than that 2803 */ 2804 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2805 2806 if (spapr->rma_size > node0_size) { 2807 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2808 spapr->rma_size); 2809 exit(1); 2810 } 2811 2812 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2813 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2814 2815 /* 2816 * VSMT must be set in order to be able to compute VCPU ids, ie to 2817 * call spapr_max_server_number() or spapr_vcpu_id(). 2818 */ 2819 spapr_set_vsmt_mode(spapr, &error_fatal); 2820 2821 /* Set up Interrupt Controller before we create the VCPUs */ 2822 spapr_irq_init(spapr, &error_fatal); 2823 2824 /* Set up containers for ibm,client-architecture-support negotiated options 2825 */ 2826 spapr->ov5 = spapr_ovec_new(); 2827 spapr->ov5_cas = spapr_ovec_new(); 2828 2829 if (smc->dr_lmb_enabled) { 2830 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2831 spapr_validate_node_memory(machine, &error_fatal); 2832 } 2833 2834 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2835 2836 /* advertise support for dedicated HP event source to guests */ 2837 if (spapr->use_hotplug_event_source) { 2838 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2839 } 2840 2841 /* advertise support for HPT resizing */ 2842 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2843 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2844 } 2845 2846 /* advertise support for ibm,dyamic-memory-v2 */ 2847 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2848 2849 /* advertise XIVE on POWER9 machines */ 2850 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2851 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2852 } 2853 2854 /* init CPUs */ 2855 spapr_init_cpus(spapr); 2856 2857 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2858 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2859 spapr->max_compat_pvr)) { 2860 /* KVM and TCG always allow GTSE with radix... */ 2861 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2862 } 2863 /* ... but not with hash (currently). */ 2864 2865 if (kvm_enabled()) { 2866 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2867 kvmppc_enable_logical_ci_hcalls(); 2868 kvmppc_enable_set_mode_hcall(); 2869 2870 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2871 kvmppc_enable_clear_ref_mod_hcalls(); 2872 2873 /* Enable H_PAGE_INIT */ 2874 kvmppc_enable_h_page_init(); 2875 } 2876 2877 /* allocate RAM */ 2878 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2879 machine->ram_size); 2880 memory_region_add_subregion(sysmem, 0, ram); 2881 2882 /* always allocate the device memory information */ 2883 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2884 2885 /* initialize hotplug memory address space */ 2886 if (machine->ram_size < machine->maxram_size) { 2887 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2888 /* 2889 * Limit the number of hotpluggable memory slots to half the number 2890 * slots that KVM supports, leaving the other half for PCI and other 2891 * devices. However ensure that number of slots doesn't drop below 32. 2892 */ 2893 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2894 SPAPR_MAX_RAM_SLOTS; 2895 2896 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2897 max_memslots = SPAPR_MAX_RAM_SLOTS; 2898 } 2899 if (machine->ram_slots > max_memslots) { 2900 error_report("Specified number of memory slots %" 2901 PRIu64" exceeds max supported %d", 2902 machine->ram_slots, max_memslots); 2903 exit(1); 2904 } 2905 2906 machine->device_memory->base = ROUND_UP(machine->ram_size, 2907 SPAPR_DEVICE_MEM_ALIGN); 2908 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2909 "device-memory", device_mem_size); 2910 memory_region_add_subregion(sysmem, machine->device_memory->base, 2911 &machine->device_memory->mr); 2912 } 2913 2914 if (smc->dr_lmb_enabled) { 2915 spapr_create_lmb_dr_connectors(spapr); 2916 } 2917 2918 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2919 if (!filename) { 2920 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2921 exit(1); 2922 } 2923 spapr->rtas_size = get_image_size(filename); 2924 if (spapr->rtas_size < 0) { 2925 error_report("Could not get size of LPAR rtas '%s'", filename); 2926 exit(1); 2927 } 2928 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2929 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2930 error_report("Could not load LPAR rtas '%s'", filename); 2931 exit(1); 2932 } 2933 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2934 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2935 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2936 exit(1); 2937 } 2938 g_free(filename); 2939 2940 /* Set up RTAS event infrastructure */ 2941 spapr_events_init(spapr); 2942 2943 /* Set up the RTC RTAS interfaces */ 2944 spapr_rtc_create(spapr); 2945 2946 /* Set up VIO bus */ 2947 spapr->vio_bus = spapr_vio_bus_init(); 2948 2949 for (i = 0; i < serial_max_hds(); i++) { 2950 if (serial_hd(i)) { 2951 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2952 } 2953 } 2954 2955 /* We always have at least the nvram device on VIO */ 2956 spapr_create_nvram(spapr); 2957 2958 /* 2959 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2960 * connectors (described in root DT node's "ibm,drc-types" property) 2961 * are pre-initialized here. additional child connectors (such as 2962 * connectors for a PHBs PCI slots) are added as needed during their 2963 * parent's realization. 2964 */ 2965 if (smc->dr_phb_enabled) { 2966 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2967 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2968 } 2969 } 2970 2971 /* Set up PCI */ 2972 spapr_pci_rtas_init(); 2973 2974 phb = spapr_create_default_phb(); 2975 2976 for (i = 0; i < nb_nics; i++) { 2977 NICInfo *nd = &nd_table[i]; 2978 2979 if (!nd->model) { 2980 nd->model = g_strdup("spapr-vlan"); 2981 } 2982 2983 if (g_str_equal(nd->model, "spapr-vlan") || 2984 g_str_equal(nd->model, "ibmveth")) { 2985 spapr_vlan_create(spapr->vio_bus, nd); 2986 } else { 2987 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2988 } 2989 } 2990 2991 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2992 spapr_vscsi_create(spapr->vio_bus); 2993 } 2994 2995 /* Graphics */ 2996 if (spapr_vga_init(phb->bus, &error_fatal)) { 2997 spapr->has_graphics = true; 2998 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2999 } 3000 3001 if (machine->usb) { 3002 if (smc->use_ohci_by_default) { 3003 pci_create_simple(phb->bus, -1, "pci-ohci"); 3004 } else { 3005 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3006 } 3007 3008 if (spapr->has_graphics) { 3009 USBBus *usb_bus = usb_bus_find(-1); 3010 3011 usb_create_simple(usb_bus, "usb-kbd"); 3012 usb_create_simple(usb_bus, "usb-mouse"); 3013 } 3014 } 3015 3016 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3017 error_report( 3018 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3019 MIN_RMA_SLOF); 3020 exit(1); 3021 } 3022 3023 if (kernel_filename) { 3024 uint64_t lowaddr = 0; 3025 3026 spapr->kernel_size = load_elf(kernel_filename, NULL, 3027 translate_kernel_address, NULL, 3028 NULL, &lowaddr, NULL, 1, 3029 PPC_ELF_MACHINE, 0, 0); 3030 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3031 spapr->kernel_size = load_elf(kernel_filename, NULL, 3032 translate_kernel_address, NULL, NULL, 3033 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3034 0, 0); 3035 spapr->kernel_le = spapr->kernel_size > 0; 3036 } 3037 if (spapr->kernel_size < 0) { 3038 error_report("error loading %s: %s", kernel_filename, 3039 load_elf_strerror(spapr->kernel_size)); 3040 exit(1); 3041 } 3042 3043 /* load initrd */ 3044 if (initrd_filename) { 3045 /* Try to locate the initrd in the gap between the kernel 3046 * and the firmware. Add a bit of space just in case 3047 */ 3048 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3049 + 0x1ffff) & ~0xffff; 3050 spapr->initrd_size = load_image_targphys(initrd_filename, 3051 spapr->initrd_base, 3052 load_limit 3053 - spapr->initrd_base); 3054 if (spapr->initrd_size < 0) { 3055 error_report("could not load initial ram disk '%s'", 3056 initrd_filename); 3057 exit(1); 3058 } 3059 } 3060 } 3061 3062 if (bios_name == NULL) { 3063 bios_name = FW_FILE_NAME; 3064 } 3065 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3066 if (!filename) { 3067 error_report("Could not find LPAR firmware '%s'", bios_name); 3068 exit(1); 3069 } 3070 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3071 if (fw_size <= 0) { 3072 error_report("Could not load LPAR firmware '%s'", filename); 3073 exit(1); 3074 } 3075 g_free(filename); 3076 3077 /* FIXME: Should register things through the MachineState's qdev 3078 * interface, this is a legacy from the sPAPREnvironment structure 3079 * which predated MachineState but had a similar function */ 3080 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3081 register_savevm_live(NULL, "spapr/htab", -1, 1, 3082 &savevm_htab_handlers, spapr); 3083 3084 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3085 &error_fatal); 3086 3087 qemu_register_boot_set(spapr_boot_set, spapr); 3088 3089 /* 3090 * Nothing needs to be done to resume a suspended guest because 3091 * suspending does not change the machine state, so no need for 3092 * a ->wakeup method. 3093 */ 3094 qemu_register_wakeup_support(); 3095 3096 if (kvm_enabled()) { 3097 /* to stop and start vmclock */ 3098 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3099 &spapr->tb); 3100 3101 kvmppc_spapr_enable_inkernel_multitce(); 3102 } 3103 } 3104 3105 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3106 { 3107 if (!vm_type) { 3108 return 0; 3109 } 3110 3111 if (!strcmp(vm_type, "HV")) { 3112 return 1; 3113 } 3114 3115 if (!strcmp(vm_type, "PR")) { 3116 return 2; 3117 } 3118 3119 error_report("Unknown kvm-type specified '%s'", vm_type); 3120 exit(1); 3121 } 3122 3123 /* 3124 * Implementation of an interface to adjust firmware path 3125 * for the bootindex property handling. 3126 */ 3127 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3128 DeviceState *dev) 3129 { 3130 #define CAST(type, obj, name) \ 3131 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3132 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3133 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3134 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3135 3136 if (d) { 3137 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3138 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3139 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3140 3141 if (spapr) { 3142 /* 3143 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3144 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3145 * 0x8000 | (target << 8) | (bus << 5) | lun 3146 * (see the "Logical unit addressing format" table in SAM5) 3147 */ 3148 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3149 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3150 (uint64_t)id << 48); 3151 } else if (virtio) { 3152 /* 3153 * We use SRP luns of the form 01000000 | (target << 8) | lun 3154 * in the top 32 bits of the 64-bit LUN 3155 * Note: the quote above is from SLOF and it is wrong, 3156 * the actual binding is: 3157 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3158 */ 3159 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3160 if (d->lun >= 256) { 3161 /* Use the LUN "flat space addressing method" */ 3162 id |= 0x4000; 3163 } 3164 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3165 (uint64_t)id << 32); 3166 } else if (usb) { 3167 /* 3168 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3169 * in the top 32 bits of the 64-bit LUN 3170 */ 3171 unsigned usb_port = atoi(usb->port->path); 3172 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3173 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3174 (uint64_t)id << 32); 3175 } 3176 } 3177 3178 /* 3179 * SLOF probes the USB devices, and if it recognizes that the device is a 3180 * storage device, it changes its name to "storage" instead of "usb-host", 3181 * and additionally adds a child node for the SCSI LUN, so the correct 3182 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3183 */ 3184 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3185 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3186 if (usb_host_dev_is_scsi_storage(usbdev)) { 3187 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3188 } 3189 } 3190 3191 if (phb) { 3192 /* Replace "pci" with "pci@800000020000000" */ 3193 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3194 } 3195 3196 if (vsc) { 3197 /* Same logic as virtio above */ 3198 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3199 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3200 } 3201 3202 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3203 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3204 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3205 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3206 } 3207 3208 return NULL; 3209 } 3210 3211 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3212 { 3213 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3214 3215 return g_strdup(spapr->kvm_type); 3216 } 3217 3218 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3219 { 3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3221 3222 g_free(spapr->kvm_type); 3223 spapr->kvm_type = g_strdup(value); 3224 } 3225 3226 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3227 { 3228 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3229 3230 return spapr->use_hotplug_event_source; 3231 } 3232 3233 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3234 Error **errp) 3235 { 3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3237 3238 spapr->use_hotplug_event_source = value; 3239 } 3240 3241 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3242 { 3243 return true; 3244 } 3245 3246 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3247 { 3248 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3249 3250 switch (spapr->resize_hpt) { 3251 case SPAPR_RESIZE_HPT_DEFAULT: 3252 return g_strdup("default"); 3253 case SPAPR_RESIZE_HPT_DISABLED: 3254 return g_strdup("disabled"); 3255 case SPAPR_RESIZE_HPT_ENABLED: 3256 return g_strdup("enabled"); 3257 case SPAPR_RESIZE_HPT_REQUIRED: 3258 return g_strdup("required"); 3259 } 3260 g_assert_not_reached(); 3261 } 3262 3263 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3264 { 3265 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3266 3267 if (strcmp(value, "default") == 0) { 3268 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3269 } else if (strcmp(value, "disabled") == 0) { 3270 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3271 } else if (strcmp(value, "enabled") == 0) { 3272 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3273 } else if (strcmp(value, "required") == 0) { 3274 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3275 } else { 3276 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3277 } 3278 } 3279 3280 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3281 void *opaque, Error **errp) 3282 { 3283 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3284 } 3285 3286 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3287 void *opaque, Error **errp) 3288 { 3289 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3290 } 3291 3292 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3293 { 3294 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3295 3296 if (spapr->irq == &spapr_irq_xics_legacy) { 3297 return g_strdup("legacy"); 3298 } else if (spapr->irq == &spapr_irq_xics) { 3299 return g_strdup("xics"); 3300 } else if (spapr->irq == &spapr_irq_xive) { 3301 return g_strdup("xive"); 3302 } else if (spapr->irq == &spapr_irq_dual) { 3303 return g_strdup("dual"); 3304 } 3305 g_assert_not_reached(); 3306 } 3307 3308 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3309 { 3310 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3311 3312 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3313 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3314 return; 3315 } 3316 3317 /* The legacy IRQ backend can not be set */ 3318 if (strcmp(value, "xics") == 0) { 3319 spapr->irq = &spapr_irq_xics; 3320 } else if (strcmp(value, "xive") == 0) { 3321 spapr->irq = &spapr_irq_xive; 3322 } else if (strcmp(value, "dual") == 0) { 3323 spapr->irq = &spapr_irq_dual; 3324 } else { 3325 error_setg(errp, "Bad value for \"ic-mode\" property"); 3326 } 3327 } 3328 3329 static char *spapr_get_host_model(Object *obj, Error **errp) 3330 { 3331 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3332 3333 return g_strdup(spapr->host_model); 3334 } 3335 3336 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3337 { 3338 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3339 3340 g_free(spapr->host_model); 3341 spapr->host_model = g_strdup(value); 3342 } 3343 3344 static char *spapr_get_host_serial(Object *obj, Error **errp) 3345 { 3346 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3347 3348 return g_strdup(spapr->host_serial); 3349 } 3350 3351 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3352 { 3353 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3354 3355 g_free(spapr->host_serial); 3356 spapr->host_serial = g_strdup(value); 3357 } 3358 3359 static void spapr_instance_init(Object *obj) 3360 { 3361 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3362 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3363 3364 spapr->htab_fd = -1; 3365 spapr->use_hotplug_event_source = true; 3366 object_property_add_str(obj, "kvm-type", 3367 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3368 object_property_set_description(obj, "kvm-type", 3369 "Specifies the KVM virtualization mode (HV, PR)", 3370 NULL); 3371 object_property_add_bool(obj, "modern-hotplug-events", 3372 spapr_get_modern_hotplug_events, 3373 spapr_set_modern_hotplug_events, 3374 NULL); 3375 object_property_set_description(obj, "modern-hotplug-events", 3376 "Use dedicated hotplug event mechanism in" 3377 " place of standard EPOW events when possible" 3378 " (required for memory hot-unplug support)", 3379 NULL); 3380 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3381 "Maximum permitted CPU compatibility mode", 3382 &error_fatal); 3383 3384 object_property_add_str(obj, "resize-hpt", 3385 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3386 object_property_set_description(obj, "resize-hpt", 3387 "Resizing of the Hash Page Table (enabled, disabled, required)", 3388 NULL); 3389 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3390 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3391 object_property_set_description(obj, "vsmt", 3392 "Virtual SMT: KVM behaves as if this were" 3393 " the host's SMT mode", &error_abort); 3394 object_property_add_bool(obj, "vfio-no-msix-emulation", 3395 spapr_get_msix_emulation, NULL, NULL); 3396 3397 /* The machine class defines the default interrupt controller mode */ 3398 spapr->irq = smc->irq; 3399 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3400 spapr_set_ic_mode, NULL); 3401 object_property_set_description(obj, "ic-mode", 3402 "Specifies the interrupt controller mode (xics, xive, dual)", 3403 NULL); 3404 3405 object_property_add_str(obj, "host-model", 3406 spapr_get_host_model, spapr_set_host_model, 3407 &error_abort); 3408 object_property_set_description(obj, "host-model", 3409 "Host model to advertise in guest device tree", &error_abort); 3410 object_property_add_str(obj, "host-serial", 3411 spapr_get_host_serial, spapr_set_host_serial, 3412 &error_abort); 3413 object_property_set_description(obj, "host-serial", 3414 "Host serial number to advertise in guest device tree", &error_abort); 3415 } 3416 3417 static void spapr_machine_finalizefn(Object *obj) 3418 { 3419 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3420 3421 g_free(spapr->kvm_type); 3422 } 3423 3424 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3425 { 3426 cpu_synchronize_state(cs); 3427 ppc_cpu_do_system_reset(cs); 3428 } 3429 3430 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3431 { 3432 CPUState *cs; 3433 3434 CPU_FOREACH(cs) { 3435 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3436 } 3437 } 3438 3439 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3440 void *fdt, int *fdt_start_offset, Error **errp) 3441 { 3442 uint64_t addr; 3443 uint32_t node; 3444 3445 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3446 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3447 &error_abort); 3448 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3449 SPAPR_MEMORY_BLOCK_SIZE); 3450 return 0; 3451 } 3452 3453 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3454 bool dedicated_hp_event_source, Error **errp) 3455 { 3456 SpaprDrc *drc; 3457 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3458 int i; 3459 uint64_t addr = addr_start; 3460 bool hotplugged = spapr_drc_hotplugged(dev); 3461 Error *local_err = NULL; 3462 3463 for (i = 0; i < nr_lmbs; i++) { 3464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3465 addr / SPAPR_MEMORY_BLOCK_SIZE); 3466 g_assert(drc); 3467 3468 spapr_drc_attach(drc, dev, &local_err); 3469 if (local_err) { 3470 while (addr > addr_start) { 3471 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3473 addr / SPAPR_MEMORY_BLOCK_SIZE); 3474 spapr_drc_detach(drc); 3475 } 3476 error_propagate(errp, local_err); 3477 return; 3478 } 3479 if (!hotplugged) { 3480 spapr_drc_reset(drc); 3481 } 3482 addr += SPAPR_MEMORY_BLOCK_SIZE; 3483 } 3484 /* send hotplug notification to the 3485 * guest only in case of hotplugged memory 3486 */ 3487 if (hotplugged) { 3488 if (dedicated_hp_event_source) { 3489 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3490 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3491 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3492 nr_lmbs, 3493 spapr_drc_index(drc)); 3494 } else { 3495 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3496 nr_lmbs); 3497 } 3498 } 3499 } 3500 3501 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3502 Error **errp) 3503 { 3504 Error *local_err = NULL; 3505 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3506 PCDIMMDevice *dimm = PC_DIMM(dev); 3507 uint64_t size, addr; 3508 3509 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3510 3511 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3512 if (local_err) { 3513 goto out; 3514 } 3515 3516 addr = object_property_get_uint(OBJECT(dimm), 3517 PC_DIMM_ADDR_PROP, &local_err); 3518 if (local_err) { 3519 goto out_unplug; 3520 } 3521 3522 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3523 &local_err); 3524 if (local_err) { 3525 goto out_unplug; 3526 } 3527 3528 return; 3529 3530 out_unplug: 3531 pc_dimm_unplug(dimm, MACHINE(ms)); 3532 out: 3533 error_propagate(errp, local_err); 3534 } 3535 3536 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3537 Error **errp) 3538 { 3539 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3540 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3541 PCDIMMDevice *dimm = PC_DIMM(dev); 3542 Error *local_err = NULL; 3543 uint64_t size; 3544 Object *memdev; 3545 hwaddr pagesize; 3546 3547 if (!smc->dr_lmb_enabled) { 3548 error_setg(errp, "Memory hotplug not supported for this machine"); 3549 return; 3550 } 3551 3552 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3553 if (local_err) { 3554 error_propagate(errp, local_err); 3555 return; 3556 } 3557 3558 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3559 error_setg(errp, "Hotplugged memory size must be a multiple of " 3560 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3561 return; 3562 } 3563 3564 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3565 &error_abort); 3566 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3567 spapr_check_pagesize(spapr, pagesize, &local_err); 3568 if (local_err) { 3569 error_propagate(errp, local_err); 3570 return; 3571 } 3572 3573 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3574 } 3575 3576 struct SpaprDimmState { 3577 PCDIMMDevice *dimm; 3578 uint32_t nr_lmbs; 3579 QTAILQ_ENTRY(SpaprDimmState) next; 3580 }; 3581 3582 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3583 PCDIMMDevice *dimm) 3584 { 3585 SpaprDimmState *dimm_state = NULL; 3586 3587 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3588 if (dimm_state->dimm == dimm) { 3589 break; 3590 } 3591 } 3592 return dimm_state; 3593 } 3594 3595 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3596 uint32_t nr_lmbs, 3597 PCDIMMDevice *dimm) 3598 { 3599 SpaprDimmState *ds = NULL; 3600 3601 /* 3602 * If this request is for a DIMM whose removal had failed earlier 3603 * (due to guest's refusal to remove the LMBs), we would have this 3604 * dimm already in the pending_dimm_unplugs list. In that 3605 * case don't add again. 3606 */ 3607 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3608 if (!ds) { 3609 ds = g_malloc0(sizeof(SpaprDimmState)); 3610 ds->nr_lmbs = nr_lmbs; 3611 ds->dimm = dimm; 3612 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3613 } 3614 return ds; 3615 } 3616 3617 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3618 SpaprDimmState *dimm_state) 3619 { 3620 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3621 g_free(dimm_state); 3622 } 3623 3624 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3625 PCDIMMDevice *dimm) 3626 { 3627 SpaprDrc *drc; 3628 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3629 &error_abort); 3630 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3631 uint32_t avail_lmbs = 0; 3632 uint64_t addr_start, addr; 3633 int i; 3634 3635 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3636 &error_abort); 3637 3638 addr = addr_start; 3639 for (i = 0; i < nr_lmbs; i++) { 3640 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3641 addr / SPAPR_MEMORY_BLOCK_SIZE); 3642 g_assert(drc); 3643 if (drc->dev) { 3644 avail_lmbs++; 3645 } 3646 addr += SPAPR_MEMORY_BLOCK_SIZE; 3647 } 3648 3649 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3650 } 3651 3652 /* Callback to be called during DRC release. */ 3653 void spapr_lmb_release(DeviceState *dev) 3654 { 3655 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3656 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3657 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3658 3659 /* This information will get lost if a migration occurs 3660 * during the unplug process. In this case recover it. */ 3661 if (ds == NULL) { 3662 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3663 g_assert(ds); 3664 /* The DRC being examined by the caller at least must be counted */ 3665 g_assert(ds->nr_lmbs); 3666 } 3667 3668 if (--ds->nr_lmbs) { 3669 return; 3670 } 3671 3672 /* 3673 * Now that all the LMBs have been removed by the guest, call the 3674 * unplug handler chain. This can never fail. 3675 */ 3676 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3677 object_unparent(OBJECT(dev)); 3678 } 3679 3680 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3681 { 3682 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3683 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3684 3685 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3686 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3687 spapr_pending_dimm_unplugs_remove(spapr, ds); 3688 } 3689 3690 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3691 DeviceState *dev, Error **errp) 3692 { 3693 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3694 Error *local_err = NULL; 3695 PCDIMMDevice *dimm = PC_DIMM(dev); 3696 uint32_t nr_lmbs; 3697 uint64_t size, addr_start, addr; 3698 int i; 3699 SpaprDrc *drc; 3700 3701 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3702 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3703 3704 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3705 &local_err); 3706 if (local_err) { 3707 goto out; 3708 } 3709 3710 /* 3711 * An existing pending dimm state for this DIMM means that there is an 3712 * unplug operation in progress, waiting for the spapr_lmb_release 3713 * callback to complete the job (BQL can't cover that far). In this case, 3714 * bail out to avoid detaching DRCs that were already released. 3715 */ 3716 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3717 error_setg(&local_err, 3718 "Memory unplug already in progress for device %s", 3719 dev->id); 3720 goto out; 3721 } 3722 3723 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3724 3725 addr = addr_start; 3726 for (i = 0; i < nr_lmbs; i++) { 3727 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3728 addr / SPAPR_MEMORY_BLOCK_SIZE); 3729 g_assert(drc); 3730 3731 spapr_drc_detach(drc); 3732 addr += SPAPR_MEMORY_BLOCK_SIZE; 3733 } 3734 3735 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3736 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3737 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3738 nr_lmbs, spapr_drc_index(drc)); 3739 out: 3740 error_propagate(errp, local_err); 3741 } 3742 3743 /* Callback to be called during DRC release. */ 3744 void spapr_core_release(DeviceState *dev) 3745 { 3746 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3747 3748 /* Call the unplug handler chain. This can never fail. */ 3749 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3750 object_unparent(OBJECT(dev)); 3751 } 3752 3753 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3754 { 3755 MachineState *ms = MACHINE(hotplug_dev); 3756 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3757 CPUCore *cc = CPU_CORE(dev); 3758 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3759 3760 if (smc->pre_2_10_has_unused_icps) { 3761 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3762 int i; 3763 3764 for (i = 0; i < cc->nr_threads; i++) { 3765 CPUState *cs = CPU(sc->threads[i]); 3766 3767 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3768 } 3769 } 3770 3771 assert(core_slot); 3772 core_slot->cpu = NULL; 3773 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3774 } 3775 3776 static 3777 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3778 Error **errp) 3779 { 3780 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3781 int index; 3782 SpaprDrc *drc; 3783 CPUCore *cc = CPU_CORE(dev); 3784 3785 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3786 error_setg(errp, "Unable to find CPU core with core-id: %d", 3787 cc->core_id); 3788 return; 3789 } 3790 if (index == 0) { 3791 error_setg(errp, "Boot CPU core may not be unplugged"); 3792 return; 3793 } 3794 3795 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3796 spapr_vcpu_id(spapr, cc->core_id)); 3797 g_assert(drc); 3798 3799 spapr_drc_detach(drc); 3800 3801 spapr_hotplug_req_remove_by_index(drc); 3802 } 3803 3804 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3805 void *fdt, int *fdt_start_offset, Error **errp) 3806 { 3807 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3808 CPUState *cs = CPU(core->threads[0]); 3809 PowerPCCPU *cpu = POWERPC_CPU(cs); 3810 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3811 int id = spapr_get_vcpu_id(cpu); 3812 char *nodename; 3813 int offset; 3814 3815 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3816 offset = fdt_add_subnode(fdt, 0, nodename); 3817 g_free(nodename); 3818 3819 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3820 3821 *fdt_start_offset = offset; 3822 return 0; 3823 } 3824 3825 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3826 Error **errp) 3827 { 3828 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3829 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3830 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3831 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3832 CPUCore *cc = CPU_CORE(dev); 3833 CPUState *cs; 3834 SpaprDrc *drc; 3835 Error *local_err = NULL; 3836 CPUArchId *core_slot; 3837 int index; 3838 bool hotplugged = spapr_drc_hotplugged(dev); 3839 int i; 3840 3841 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3842 if (!core_slot) { 3843 error_setg(errp, "Unable to find CPU core with core-id: %d", 3844 cc->core_id); 3845 return; 3846 } 3847 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3848 spapr_vcpu_id(spapr, cc->core_id)); 3849 3850 g_assert(drc || !mc->has_hotpluggable_cpus); 3851 3852 if (drc) { 3853 spapr_drc_attach(drc, dev, &local_err); 3854 if (local_err) { 3855 error_propagate(errp, local_err); 3856 return; 3857 } 3858 3859 if (hotplugged) { 3860 /* 3861 * Send hotplug notification interrupt to the guest only 3862 * in case of hotplugged CPUs. 3863 */ 3864 spapr_hotplug_req_add_by_index(drc); 3865 } else { 3866 spapr_drc_reset(drc); 3867 } 3868 } 3869 3870 core_slot->cpu = OBJECT(dev); 3871 3872 if (smc->pre_2_10_has_unused_icps) { 3873 for (i = 0; i < cc->nr_threads; i++) { 3874 cs = CPU(core->threads[i]); 3875 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3876 } 3877 } 3878 3879 /* 3880 * Set compatibility mode to match the boot CPU, which was either set 3881 * by the machine reset code or by CAS. 3882 */ 3883 if (hotplugged) { 3884 for (i = 0; i < cc->nr_threads; i++) { 3885 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3886 &local_err); 3887 if (local_err) { 3888 error_propagate(errp, local_err); 3889 return; 3890 } 3891 } 3892 } 3893 } 3894 3895 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3896 Error **errp) 3897 { 3898 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3899 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3900 Error *local_err = NULL; 3901 CPUCore *cc = CPU_CORE(dev); 3902 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3903 const char *type = object_get_typename(OBJECT(dev)); 3904 CPUArchId *core_slot; 3905 int index; 3906 unsigned int smp_threads = machine->smp.threads; 3907 3908 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3909 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3910 goto out; 3911 } 3912 3913 if (strcmp(base_core_type, type)) { 3914 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3915 goto out; 3916 } 3917 3918 if (cc->core_id % smp_threads) { 3919 error_setg(&local_err, "invalid core id %d", cc->core_id); 3920 goto out; 3921 } 3922 3923 /* 3924 * In general we should have homogeneous threads-per-core, but old 3925 * (pre hotplug support) machine types allow the last core to have 3926 * reduced threads as a compatibility hack for when we allowed 3927 * total vcpus not a multiple of threads-per-core. 3928 */ 3929 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3930 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3931 cc->nr_threads, smp_threads); 3932 goto out; 3933 } 3934 3935 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3936 if (!core_slot) { 3937 error_setg(&local_err, "core id %d out of range", cc->core_id); 3938 goto out; 3939 } 3940 3941 if (core_slot->cpu) { 3942 error_setg(&local_err, "core %d already populated", cc->core_id); 3943 goto out; 3944 } 3945 3946 numa_cpu_pre_plug(core_slot, dev, &local_err); 3947 3948 out: 3949 error_propagate(errp, local_err); 3950 } 3951 3952 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3953 void *fdt, int *fdt_start_offset, Error **errp) 3954 { 3955 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3956 int intc_phandle; 3957 3958 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3959 if (intc_phandle <= 0) { 3960 return -1; 3961 } 3962 3963 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3964 fdt_start_offset)) { 3965 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3966 return -1; 3967 } 3968 3969 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3970 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3971 3972 return 0; 3973 } 3974 3975 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3976 Error **errp) 3977 { 3978 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3979 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3980 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3981 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3982 3983 if (dev->hotplugged && !smc->dr_phb_enabled) { 3984 error_setg(errp, "PHB hotplug not supported for this machine"); 3985 return; 3986 } 3987 3988 if (sphb->index == (uint32_t)-1) { 3989 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3990 return; 3991 } 3992 3993 /* 3994 * This will check that sphb->index doesn't exceed the maximum number of 3995 * PHBs for the current machine type. 3996 */ 3997 smc->phb_placement(spapr, sphb->index, 3998 &sphb->buid, &sphb->io_win_addr, 3999 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4000 windows_supported, sphb->dma_liobn, 4001 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4002 errp); 4003 } 4004 4005 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4006 Error **errp) 4007 { 4008 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4009 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4010 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4011 SpaprDrc *drc; 4012 bool hotplugged = spapr_drc_hotplugged(dev); 4013 Error *local_err = NULL; 4014 4015 if (!smc->dr_phb_enabled) { 4016 return; 4017 } 4018 4019 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4020 /* hotplug hooks should check it's enabled before getting this far */ 4021 assert(drc); 4022 4023 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4024 if (local_err) { 4025 error_propagate(errp, local_err); 4026 return; 4027 } 4028 4029 if (hotplugged) { 4030 spapr_hotplug_req_add_by_index(drc); 4031 } else { 4032 spapr_drc_reset(drc); 4033 } 4034 } 4035 4036 void spapr_phb_release(DeviceState *dev) 4037 { 4038 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4039 4040 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4041 object_unparent(OBJECT(dev)); 4042 } 4043 4044 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4045 { 4046 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4047 } 4048 4049 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4050 DeviceState *dev, Error **errp) 4051 { 4052 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4053 SpaprDrc *drc; 4054 4055 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4056 assert(drc); 4057 4058 if (!spapr_drc_unplug_requested(drc)) { 4059 spapr_drc_detach(drc); 4060 spapr_hotplug_req_remove_by_index(drc); 4061 } 4062 } 4063 4064 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4065 Error **errp) 4066 { 4067 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4068 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4069 4070 if (spapr->tpm_proxy != NULL) { 4071 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4072 return; 4073 } 4074 4075 spapr->tpm_proxy = tpm_proxy; 4076 } 4077 4078 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4079 { 4080 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4081 4082 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4083 object_unparent(OBJECT(dev)); 4084 spapr->tpm_proxy = NULL; 4085 } 4086 4087 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4088 DeviceState *dev, Error **errp) 4089 { 4090 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4091 spapr_memory_plug(hotplug_dev, dev, errp); 4092 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4093 spapr_core_plug(hotplug_dev, dev, errp); 4094 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4095 spapr_phb_plug(hotplug_dev, dev, errp); 4096 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4097 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4098 } 4099 } 4100 4101 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4102 DeviceState *dev, Error **errp) 4103 { 4104 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4105 spapr_memory_unplug(hotplug_dev, dev); 4106 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4107 spapr_core_unplug(hotplug_dev, dev); 4108 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4109 spapr_phb_unplug(hotplug_dev, dev); 4110 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4111 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4112 } 4113 } 4114 4115 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4116 DeviceState *dev, Error **errp) 4117 { 4118 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4119 MachineClass *mc = MACHINE_GET_CLASS(sms); 4120 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4121 4122 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4123 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4124 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4125 } else { 4126 /* NOTE: this means there is a window after guest reset, prior to 4127 * CAS negotiation, where unplug requests will fail due to the 4128 * capability not being detected yet. This is a bit different than 4129 * the case with PCI unplug, where the events will be queued and 4130 * eventually handled by the guest after boot 4131 */ 4132 error_setg(errp, "Memory hot unplug not supported for this guest"); 4133 } 4134 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4135 if (!mc->has_hotpluggable_cpus) { 4136 error_setg(errp, "CPU hot unplug not supported on this machine"); 4137 return; 4138 } 4139 spapr_core_unplug_request(hotplug_dev, dev, errp); 4140 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4141 if (!smc->dr_phb_enabled) { 4142 error_setg(errp, "PHB hot unplug not supported on this machine"); 4143 return; 4144 } 4145 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4146 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4147 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4148 } 4149 } 4150 4151 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4152 DeviceState *dev, Error **errp) 4153 { 4154 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4155 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4156 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4157 spapr_core_pre_plug(hotplug_dev, dev, errp); 4158 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4159 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4160 } 4161 } 4162 4163 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4164 DeviceState *dev) 4165 { 4166 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4167 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4168 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4169 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4170 return HOTPLUG_HANDLER(machine); 4171 } 4172 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4173 PCIDevice *pcidev = PCI_DEVICE(dev); 4174 PCIBus *root = pci_device_root_bus(pcidev); 4175 SpaprPhbState *phb = 4176 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4177 TYPE_SPAPR_PCI_HOST_BRIDGE); 4178 4179 if (phb) { 4180 return HOTPLUG_HANDLER(phb); 4181 } 4182 } 4183 return NULL; 4184 } 4185 4186 static CpuInstanceProperties 4187 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4188 { 4189 CPUArchId *core_slot; 4190 MachineClass *mc = MACHINE_GET_CLASS(machine); 4191 4192 /* make sure possible_cpu are intialized */ 4193 mc->possible_cpu_arch_ids(machine); 4194 /* get CPU core slot containing thread that matches cpu_index */ 4195 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4196 assert(core_slot); 4197 return core_slot->props; 4198 } 4199 4200 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4201 { 4202 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4203 } 4204 4205 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4206 { 4207 int i; 4208 unsigned int smp_threads = machine->smp.threads; 4209 unsigned int smp_cpus = machine->smp.cpus; 4210 const char *core_type; 4211 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4212 MachineClass *mc = MACHINE_GET_CLASS(machine); 4213 4214 if (!mc->has_hotpluggable_cpus) { 4215 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4216 } 4217 if (machine->possible_cpus) { 4218 assert(machine->possible_cpus->len == spapr_max_cores); 4219 return machine->possible_cpus; 4220 } 4221 4222 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4223 if (!core_type) { 4224 error_report("Unable to find sPAPR CPU Core definition"); 4225 exit(1); 4226 } 4227 4228 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4229 sizeof(CPUArchId) * spapr_max_cores); 4230 machine->possible_cpus->len = spapr_max_cores; 4231 for (i = 0; i < machine->possible_cpus->len; i++) { 4232 int core_id = i * smp_threads; 4233 4234 machine->possible_cpus->cpus[i].type = core_type; 4235 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4236 machine->possible_cpus->cpus[i].arch_id = core_id; 4237 machine->possible_cpus->cpus[i].props.has_core_id = true; 4238 machine->possible_cpus->cpus[i].props.core_id = core_id; 4239 } 4240 return machine->possible_cpus; 4241 } 4242 4243 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4244 uint64_t *buid, hwaddr *pio, 4245 hwaddr *mmio32, hwaddr *mmio64, 4246 unsigned n_dma, uint32_t *liobns, 4247 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4248 { 4249 /* 4250 * New-style PHB window placement. 4251 * 4252 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4253 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4254 * windows. 4255 * 4256 * Some guest kernels can't work with MMIO windows above 1<<46 4257 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4258 * 4259 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4260 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4261 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4262 * 1TiB 64-bit MMIO windows for each PHB. 4263 */ 4264 const uint64_t base_buid = 0x800000020000000ULL; 4265 int i; 4266 4267 /* Sanity check natural alignments */ 4268 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4269 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4270 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4271 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4272 /* Sanity check bounds */ 4273 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4274 SPAPR_PCI_MEM32_WIN_SIZE); 4275 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4276 SPAPR_PCI_MEM64_WIN_SIZE); 4277 4278 if (index >= SPAPR_MAX_PHBS) { 4279 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4280 SPAPR_MAX_PHBS - 1); 4281 return; 4282 } 4283 4284 *buid = base_buid + index; 4285 for (i = 0; i < n_dma; ++i) { 4286 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4287 } 4288 4289 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4290 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4291 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4292 4293 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4294 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4295 } 4296 4297 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4298 { 4299 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4300 4301 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4302 } 4303 4304 static void spapr_ics_resend(XICSFabric *dev) 4305 { 4306 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4307 4308 ics_resend(spapr->ics); 4309 } 4310 4311 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4312 { 4313 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4314 4315 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4316 } 4317 4318 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4319 Monitor *mon) 4320 { 4321 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4322 4323 spapr->irq->print_info(spapr, mon); 4324 } 4325 4326 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4327 { 4328 return cpu->vcpu_id; 4329 } 4330 4331 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4332 { 4333 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4334 MachineState *ms = MACHINE(spapr); 4335 int vcpu_id; 4336 4337 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4338 4339 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4340 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4341 error_append_hint(errp, "Adjust the number of cpus to %d " 4342 "or try to raise the number of threads per core\n", 4343 vcpu_id * ms->smp.threads / spapr->vsmt); 4344 return; 4345 } 4346 4347 cpu->vcpu_id = vcpu_id; 4348 } 4349 4350 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4351 { 4352 CPUState *cs; 4353 4354 CPU_FOREACH(cs) { 4355 PowerPCCPU *cpu = POWERPC_CPU(cs); 4356 4357 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4358 return cpu; 4359 } 4360 } 4361 4362 return NULL; 4363 } 4364 4365 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4366 { 4367 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4368 4369 /* These are only called by TCG, KVM maintains dispatch state */ 4370 4371 spapr_cpu->prod = false; 4372 if (spapr_cpu->vpa_addr) { 4373 CPUState *cs = CPU(cpu); 4374 uint32_t dispatch; 4375 4376 dispatch = ldl_be_phys(cs->as, 4377 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4378 dispatch++; 4379 if ((dispatch & 1) != 0) { 4380 qemu_log_mask(LOG_GUEST_ERROR, 4381 "VPA: incorrect dispatch counter value for " 4382 "dispatched partition %u, correcting.\n", dispatch); 4383 dispatch++; 4384 } 4385 stl_be_phys(cs->as, 4386 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4387 } 4388 } 4389 4390 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4391 { 4392 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4393 4394 if (spapr_cpu->vpa_addr) { 4395 CPUState *cs = CPU(cpu); 4396 uint32_t dispatch; 4397 4398 dispatch = ldl_be_phys(cs->as, 4399 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4400 dispatch++; 4401 if ((dispatch & 1) != 1) { 4402 qemu_log_mask(LOG_GUEST_ERROR, 4403 "VPA: incorrect dispatch counter value for " 4404 "preempted partition %u, correcting.\n", dispatch); 4405 dispatch++; 4406 } 4407 stl_be_phys(cs->as, 4408 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4409 } 4410 } 4411 4412 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4413 { 4414 MachineClass *mc = MACHINE_CLASS(oc); 4415 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4416 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4417 NMIClass *nc = NMI_CLASS(oc); 4418 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4419 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4420 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4421 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4422 4423 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4424 mc->ignore_boot_device_suffixes = true; 4425 4426 /* 4427 * We set up the default / latest behaviour here. The class_init 4428 * functions for the specific versioned machine types can override 4429 * these details for backwards compatibility 4430 */ 4431 mc->init = spapr_machine_init; 4432 mc->reset = spapr_machine_reset; 4433 mc->block_default_type = IF_SCSI; 4434 mc->max_cpus = 1024; 4435 mc->no_parallel = 1; 4436 mc->default_boot_order = ""; 4437 mc->default_ram_size = 512 * MiB; 4438 mc->default_display = "std"; 4439 mc->kvm_type = spapr_kvm_type; 4440 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4441 mc->pci_allow_0_address = true; 4442 assert(!mc->get_hotplug_handler); 4443 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4444 hc->pre_plug = spapr_machine_device_pre_plug; 4445 hc->plug = spapr_machine_device_plug; 4446 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4447 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4448 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4449 hc->unplug_request = spapr_machine_device_unplug_request; 4450 hc->unplug = spapr_machine_device_unplug; 4451 4452 smc->dr_lmb_enabled = true; 4453 smc->update_dt_enabled = true; 4454 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4455 mc->has_hotpluggable_cpus = true; 4456 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4457 fwc->get_dev_path = spapr_get_fw_dev_path; 4458 nc->nmi_monitor_handler = spapr_nmi; 4459 smc->phb_placement = spapr_phb_placement; 4460 vhc->hypercall = emulate_spapr_hypercall; 4461 vhc->hpt_mask = spapr_hpt_mask; 4462 vhc->map_hptes = spapr_map_hptes; 4463 vhc->unmap_hptes = spapr_unmap_hptes; 4464 vhc->hpte_set_c = spapr_hpte_set_c; 4465 vhc->hpte_set_r = spapr_hpte_set_r; 4466 vhc->get_pate = spapr_get_pate; 4467 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4468 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4469 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4470 xic->ics_get = spapr_ics_get; 4471 xic->ics_resend = spapr_ics_resend; 4472 xic->icp_get = spapr_icp_get; 4473 ispc->print_info = spapr_pic_print_info; 4474 /* Force NUMA node memory size to be a multiple of 4475 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4476 * in which LMBs are represented and hot-added 4477 */ 4478 mc->numa_mem_align_shift = 28; 4479 mc->numa_mem_supported = true; 4480 4481 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4482 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4483 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4484 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4485 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4486 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4487 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4488 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4489 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4490 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4491 spapr_caps_add_properties(smc, &error_abort); 4492 smc->irq = &spapr_irq_dual; 4493 smc->dr_phb_enabled = true; 4494 smc->linux_pci_probe = true; 4495 } 4496 4497 static const TypeInfo spapr_machine_info = { 4498 .name = TYPE_SPAPR_MACHINE, 4499 .parent = TYPE_MACHINE, 4500 .abstract = true, 4501 .instance_size = sizeof(SpaprMachineState), 4502 .instance_init = spapr_instance_init, 4503 .instance_finalize = spapr_machine_finalizefn, 4504 .class_size = sizeof(SpaprMachineClass), 4505 .class_init = spapr_machine_class_init, 4506 .interfaces = (InterfaceInfo[]) { 4507 { TYPE_FW_PATH_PROVIDER }, 4508 { TYPE_NMI }, 4509 { TYPE_HOTPLUG_HANDLER }, 4510 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4511 { TYPE_XICS_FABRIC }, 4512 { TYPE_INTERRUPT_STATS_PROVIDER }, 4513 { } 4514 }, 4515 }; 4516 4517 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4518 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4519 void *data) \ 4520 { \ 4521 MachineClass *mc = MACHINE_CLASS(oc); \ 4522 spapr_machine_##suffix##_class_options(mc); \ 4523 if (latest) { \ 4524 mc->alias = "pseries"; \ 4525 mc->is_default = 1; \ 4526 } \ 4527 } \ 4528 static const TypeInfo spapr_machine_##suffix##_info = { \ 4529 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4530 .parent = TYPE_SPAPR_MACHINE, \ 4531 .class_init = spapr_machine_##suffix##_class_init, \ 4532 }; \ 4533 static void spapr_machine_register_##suffix(void) \ 4534 { \ 4535 type_register(&spapr_machine_##suffix##_info); \ 4536 } \ 4537 type_init(spapr_machine_register_##suffix) 4538 4539 /* 4540 * pseries-4.2 4541 */ 4542 static void spapr_machine_4_2_class_options(MachineClass *mc) 4543 { 4544 /* Defaults for the latest behaviour inherited from the base class */ 4545 } 4546 4547 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4548 4549 /* 4550 * pseries-4.1 4551 */ 4552 static void spapr_machine_4_1_class_options(MachineClass *mc) 4553 { 4554 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4555 static GlobalProperty compat[] = { 4556 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4557 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4558 }; 4559 4560 spapr_machine_4_2_class_options(mc); 4561 smc->linux_pci_probe = false; 4562 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4563 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4564 } 4565 4566 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4567 4568 /* 4569 * pseries-4.0 4570 */ 4571 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4572 uint64_t *buid, hwaddr *pio, 4573 hwaddr *mmio32, hwaddr *mmio64, 4574 unsigned n_dma, uint32_t *liobns, 4575 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4576 { 4577 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4578 nv2gpa, nv2atsd, errp); 4579 *nv2gpa = 0; 4580 *nv2atsd = 0; 4581 } 4582 4583 static void spapr_machine_4_0_class_options(MachineClass *mc) 4584 { 4585 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4586 4587 spapr_machine_4_1_class_options(mc); 4588 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4589 smc->phb_placement = phb_placement_4_0; 4590 smc->irq = &spapr_irq_xics; 4591 smc->pre_4_1_migration = true; 4592 } 4593 4594 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4595 4596 /* 4597 * pseries-3.1 4598 */ 4599 static void spapr_machine_3_1_class_options(MachineClass *mc) 4600 { 4601 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4602 4603 spapr_machine_4_0_class_options(mc); 4604 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4605 4606 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4607 smc->update_dt_enabled = false; 4608 smc->dr_phb_enabled = false; 4609 smc->broken_host_serial_model = true; 4610 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4611 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4612 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4613 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4614 } 4615 4616 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4617 4618 /* 4619 * pseries-3.0 4620 */ 4621 4622 static void spapr_machine_3_0_class_options(MachineClass *mc) 4623 { 4624 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4625 4626 spapr_machine_3_1_class_options(mc); 4627 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4628 4629 smc->legacy_irq_allocation = true; 4630 smc->irq = &spapr_irq_xics_legacy; 4631 } 4632 4633 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4634 4635 /* 4636 * pseries-2.12 4637 */ 4638 static void spapr_machine_2_12_class_options(MachineClass *mc) 4639 { 4640 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4641 static GlobalProperty compat[] = { 4642 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4643 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4644 }; 4645 4646 spapr_machine_3_0_class_options(mc); 4647 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4648 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4649 4650 /* We depend on kvm_enabled() to choose a default value for the 4651 * hpt-max-page-size capability. Of course we can't do it here 4652 * because this is too early and the HW accelerator isn't initialzed 4653 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4654 */ 4655 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4656 } 4657 4658 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4659 4660 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4661 { 4662 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4663 4664 spapr_machine_2_12_class_options(mc); 4665 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4666 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4667 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4668 } 4669 4670 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4671 4672 /* 4673 * pseries-2.11 4674 */ 4675 4676 static void spapr_machine_2_11_class_options(MachineClass *mc) 4677 { 4678 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4679 4680 spapr_machine_2_12_class_options(mc); 4681 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4682 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4683 } 4684 4685 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4686 4687 /* 4688 * pseries-2.10 4689 */ 4690 4691 static void spapr_machine_2_10_class_options(MachineClass *mc) 4692 { 4693 spapr_machine_2_11_class_options(mc); 4694 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4695 } 4696 4697 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4698 4699 /* 4700 * pseries-2.9 4701 */ 4702 4703 static void spapr_machine_2_9_class_options(MachineClass *mc) 4704 { 4705 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4706 static GlobalProperty compat[] = { 4707 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4708 }; 4709 4710 spapr_machine_2_10_class_options(mc); 4711 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4712 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4713 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4714 smc->pre_2_10_has_unused_icps = true; 4715 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4716 } 4717 4718 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4719 4720 /* 4721 * pseries-2.8 4722 */ 4723 4724 static void spapr_machine_2_8_class_options(MachineClass *mc) 4725 { 4726 static GlobalProperty compat[] = { 4727 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4728 }; 4729 4730 spapr_machine_2_9_class_options(mc); 4731 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4732 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4733 mc->numa_mem_align_shift = 23; 4734 } 4735 4736 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4737 4738 /* 4739 * pseries-2.7 4740 */ 4741 4742 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4743 uint64_t *buid, hwaddr *pio, 4744 hwaddr *mmio32, hwaddr *mmio64, 4745 unsigned n_dma, uint32_t *liobns, 4746 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4747 { 4748 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4749 const uint64_t base_buid = 0x800000020000000ULL; 4750 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4751 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4752 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4753 const uint32_t max_index = 255; 4754 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4755 4756 uint64_t ram_top = MACHINE(spapr)->ram_size; 4757 hwaddr phb0_base, phb_base; 4758 int i; 4759 4760 /* Do we have device memory? */ 4761 if (MACHINE(spapr)->maxram_size > ram_top) { 4762 /* Can't just use maxram_size, because there may be an 4763 * alignment gap between normal and device memory regions 4764 */ 4765 ram_top = MACHINE(spapr)->device_memory->base + 4766 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4767 } 4768 4769 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4770 4771 if (index > max_index) { 4772 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4773 max_index); 4774 return; 4775 } 4776 4777 *buid = base_buid + index; 4778 for (i = 0; i < n_dma; ++i) { 4779 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4780 } 4781 4782 phb_base = phb0_base + index * phb_spacing; 4783 *pio = phb_base + pio_offset; 4784 *mmio32 = phb_base + mmio_offset; 4785 /* 4786 * We don't set the 64-bit MMIO window, relying on the PHB's 4787 * fallback behaviour of automatically splitting a large "32-bit" 4788 * window into contiguous 32-bit and 64-bit windows 4789 */ 4790 4791 *nv2gpa = 0; 4792 *nv2atsd = 0; 4793 } 4794 4795 static void spapr_machine_2_7_class_options(MachineClass *mc) 4796 { 4797 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4798 static GlobalProperty compat[] = { 4799 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4800 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4801 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4802 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4803 }; 4804 4805 spapr_machine_2_8_class_options(mc); 4806 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4807 mc->default_machine_opts = "modern-hotplug-events=off"; 4808 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4809 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4810 smc->phb_placement = phb_placement_2_7; 4811 } 4812 4813 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4814 4815 /* 4816 * pseries-2.6 4817 */ 4818 4819 static void spapr_machine_2_6_class_options(MachineClass *mc) 4820 { 4821 static GlobalProperty compat[] = { 4822 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4823 }; 4824 4825 spapr_machine_2_7_class_options(mc); 4826 mc->has_hotpluggable_cpus = false; 4827 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4828 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4829 } 4830 4831 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4832 4833 /* 4834 * pseries-2.5 4835 */ 4836 4837 static void spapr_machine_2_5_class_options(MachineClass *mc) 4838 { 4839 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4840 static GlobalProperty compat[] = { 4841 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4842 }; 4843 4844 spapr_machine_2_6_class_options(mc); 4845 smc->use_ohci_by_default = true; 4846 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4847 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4848 } 4849 4850 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4851 4852 /* 4853 * pseries-2.4 4854 */ 4855 4856 static void spapr_machine_2_4_class_options(MachineClass *mc) 4857 { 4858 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4859 4860 spapr_machine_2_5_class_options(mc); 4861 smc->dr_lmb_enabled = false; 4862 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4863 } 4864 4865 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4866 4867 /* 4868 * pseries-2.3 4869 */ 4870 4871 static void spapr_machine_2_3_class_options(MachineClass *mc) 4872 { 4873 static GlobalProperty compat[] = { 4874 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4875 }; 4876 spapr_machine_2_4_class_options(mc); 4877 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4878 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4879 } 4880 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4881 4882 /* 4883 * pseries-2.2 4884 */ 4885 4886 static void spapr_machine_2_2_class_options(MachineClass *mc) 4887 { 4888 static GlobalProperty compat[] = { 4889 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4890 }; 4891 4892 spapr_machine_2_3_class_options(mc); 4893 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4894 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4895 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4896 } 4897 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4898 4899 /* 4900 * pseries-2.1 4901 */ 4902 4903 static void spapr_machine_2_1_class_options(MachineClass *mc) 4904 { 4905 spapr_machine_2_2_class_options(mc); 4906 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4907 } 4908 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4909 4910 static void spapr_machine_register_types(void) 4911 { 4912 type_register_static(&spapr_machine_info); 4913 } 4914 4915 type_init(spapr_machine_register_types) 4916