xref: /openbmc/qemu/hw/ppc/spapr.c (revision ad5d1add86b9560c22c3fb8718d6a99eabaaed6a)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "mmu-book3s-v3.h"
44 #include "qom/cpu.h"
45 
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49 
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
56 
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
60 
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
67 #include "hw/intc/intc.h"
68 
69 #include "hw/compat.h"
70 #include "qemu/cutils.h"
71 #include "hw/ppc/spapr_cpu_core.h"
72 #include "qmp-commands.h"
73 
74 #include <libfdt.h>
75 
76 /* SLOF memory layout:
77  *
78  * SLOF raw image loaded at 0, copies its romfs right below the flat
79  * device-tree, then position SLOF itself 31M below that
80  *
81  * So we set FW_OVERHEAD to 40MB which should account for all of that
82  * and more
83  *
84  * We load our kernel at 4M, leaving space for SLOF initial image
85  */
86 #define FDT_MAX_SIZE            0x100000
87 #define RTAS_MAX_SIZE           0x10000
88 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
89 #define FW_MAX_SIZE             0x400000
90 #define FW_FILE_NAME            "slof.bin"
91 #define FW_OVERHEAD             0x2800000
92 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
93 
94 #define MIN_RMA_SLOF            128UL
95 
96 #define PHANDLE_XICP            0x00001111
97 
98 #define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
99 
100 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
101                            const char *type_icp, int nr_servers,
102                            int nr_irqs, Error **errp)
103 {
104     XICSFabric *xi = XICS_FABRIC(spapr);
105     Error *err = NULL, *local_err = NULL;
106     ICSState *ics = NULL;
107     int i;
108 
109     ics = ICS_SIMPLE(object_new(type_ics));
110     object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
111     object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
112     object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
113     object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
114     error_propagate(&err, local_err);
115     if (err) {
116         goto error;
117     }
118 
119     spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
120     spapr->nr_servers = nr_servers;
121 
122     for (i = 0; i < nr_servers; i++) {
123         ICPState *icp = &spapr->icps[i];
124 
125         object_initialize(icp, sizeof(*icp), type_icp);
126         object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
127         object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
128         object_property_set_bool(OBJECT(icp), true, "realized", &err);
129         if (err) {
130             goto error;
131         }
132         object_unref(OBJECT(icp));
133     }
134 
135     spapr->ics = ics;
136     return 0;
137 
138 error:
139     error_propagate(errp, err);
140     if (ics) {
141         object_unparent(OBJECT(ics));
142     }
143     return -1;
144 }
145 
146 static int xics_system_init(MachineState *machine,
147                             int nr_servers, int nr_irqs, Error **errp)
148 {
149     int rc = -1;
150 
151     if (kvm_enabled()) {
152         Error *err = NULL;
153 
154         if (machine_kernel_irqchip_allowed(machine) &&
155             !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
156             rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
157                                  TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
158         }
159         if (machine_kernel_irqchip_required(machine) && rc < 0) {
160             error_reportf_err(err,
161                               "kernel_irqchip requested but unavailable: ");
162         } else {
163             error_free(err);
164         }
165     }
166 
167     if (rc < 0) {
168         xics_spapr_init(SPAPR_MACHINE(machine), errp);
169         rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
170                                TYPE_ICP, nr_servers, nr_irqs, errp);
171     }
172 
173     return rc;
174 }
175 
176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177                                   int smt_threads)
178 {
179     int i, ret = 0;
180     uint32_t servers_prop[smt_threads];
181     uint32_t gservers_prop[smt_threads * 2];
182     int index = ppc_get_vcpu_dt_id(cpu);
183 
184     if (cpu->compat_pvr) {
185         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
186         if (ret < 0) {
187             return ret;
188         }
189     }
190 
191     /* Build interrupt servers and gservers properties */
192     for (i = 0; i < smt_threads; i++) {
193         servers_prop[i] = cpu_to_be32(index + i);
194         /* Hack, direct the group queues back to cpu 0 */
195         gservers_prop[i*2] = cpu_to_be32(index + i);
196         gservers_prop[i*2 + 1] = 0;
197     }
198     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199                       servers_prop, sizeof(servers_prop));
200     if (ret < 0) {
201         return ret;
202     }
203     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204                       gservers_prop, sizeof(gservers_prop));
205 
206     return ret;
207 }
208 
209 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
210 {
211     int ret = 0;
212     PowerPCCPU *cpu = POWERPC_CPU(cs);
213     int index = ppc_get_vcpu_dt_id(cpu);
214     uint32_t associativity[] = {cpu_to_be32(0x5),
215                                 cpu_to_be32(0x0),
216                                 cpu_to_be32(0x0),
217                                 cpu_to_be32(0x0),
218                                 cpu_to_be32(cs->numa_node),
219                                 cpu_to_be32(index)};
220 
221     /* Advertise NUMA via ibm,associativity */
222     if (nb_numa_nodes > 1) {
223         ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
224                           sizeof(associativity));
225     }
226 
227     return ret;
228 }
229 
230 /* Populate the "ibm,pa-features" property */
231 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
232                                       bool legacy_guest)
233 {
234     uint8_t pa_features_206[] = { 6, 0,
235         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
236     uint8_t pa_features_207[] = { 24, 0,
237         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
238         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
239         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
241     uint8_t pa_features_300[] = { 66, 0,
242         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
243         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
244         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
245         /* 6: DS207 */
246         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
247         /* 16: Vector */
248         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
249         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
251         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
253         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
254         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
255         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
256         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
257         /* 42: PM, 44: PC RA, 46: SC vec'd */
258         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
259         /* 48: SIMD, 50: QP BFP, 52: String */
260         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
261         /* 54: DecFP, 56: DecI, 58: SHA */
262         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
263         /* 60: NM atomic, 62: RNG */
264         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
265     };
266     uint8_t *pa_features;
267     size_t pa_size;
268 
269     switch (POWERPC_MMU_VER(env->mmu_model)) {
270     case POWERPC_MMU_VER_2_06:
271         pa_features = pa_features_206;
272         pa_size = sizeof(pa_features_206);
273         break;
274     case POWERPC_MMU_VER_2_07:
275         pa_features = pa_features_207;
276         pa_size = sizeof(pa_features_207);
277         break;
278     case POWERPC_MMU_VER_3_00:
279         pa_features = pa_features_300;
280         pa_size = sizeof(pa_features_300);
281         break;
282     default:
283         return;
284     }
285 
286     if (env->ci_large_pages) {
287         /*
288          * Note: we keep CI large pages off by default because a 64K capable
289          * guest provisioned with large pages might otherwise try to map a qemu
290          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
291          * even if that qemu runs on a 4k host.
292          * We dd this bit back here if we are confident this is not an issue
293          */
294         pa_features[3] |= 0x20;
295     }
296     if (kvmppc_has_cap_htm() && pa_size > 24) {
297         pa_features[24] |= 0x80;    /* Transactional memory support */
298     }
299     if (legacy_guest && pa_size > 40) {
300         /* Workaround for broken kernels that attempt (guest) radix
301          * mode when they can't handle it, if they see the radix bit set
302          * in pa-features. So hide it from them. */
303         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
304     }
305 
306     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
307 }
308 
309 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
310 {
311     int ret = 0, offset, cpus_offset;
312     CPUState *cs;
313     char cpu_model[32];
314     int smt = kvmppc_smt_threads();
315     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
316 
317     CPU_FOREACH(cs) {
318         PowerPCCPU *cpu = POWERPC_CPU(cs);
319         CPUPPCState *env = &cpu->env;
320         DeviceClass *dc = DEVICE_GET_CLASS(cs);
321         int index = ppc_get_vcpu_dt_id(cpu);
322         int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
323 
324         if ((index % smt) != 0) {
325             continue;
326         }
327 
328         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
329 
330         cpus_offset = fdt_path_offset(fdt, "/cpus");
331         if (cpus_offset < 0) {
332             cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
333                                           "cpus");
334             if (cpus_offset < 0) {
335                 return cpus_offset;
336             }
337         }
338         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
339         if (offset < 0) {
340             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
341             if (offset < 0) {
342                 return offset;
343             }
344         }
345 
346         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
347                           pft_size_prop, sizeof(pft_size_prop));
348         if (ret < 0) {
349             return ret;
350         }
351 
352         ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
353         if (ret < 0) {
354             return ret;
355         }
356 
357         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
358         if (ret < 0) {
359             return ret;
360         }
361 
362         spapr_populate_pa_features(env, fdt, offset,
363                                          spapr->cas_legacy_guest_workaround);
364     }
365     return ret;
366 }
367 
368 static hwaddr spapr_node0_size(void)
369 {
370     MachineState *machine = MACHINE(qdev_get_machine());
371 
372     if (nb_numa_nodes) {
373         int i;
374         for (i = 0; i < nb_numa_nodes; ++i) {
375             if (numa_info[i].node_mem) {
376                 return MIN(pow2floor(numa_info[i].node_mem),
377                            machine->ram_size);
378             }
379         }
380     }
381     return machine->ram_size;
382 }
383 
384 static void add_str(GString *s, const gchar *s1)
385 {
386     g_string_append_len(s, s1, strlen(s1) + 1);
387 }
388 
389 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
390                                        hwaddr size)
391 {
392     uint32_t associativity[] = {
393         cpu_to_be32(0x4), /* length */
394         cpu_to_be32(0x0), cpu_to_be32(0x0),
395         cpu_to_be32(0x0), cpu_to_be32(nodeid)
396     };
397     char mem_name[32];
398     uint64_t mem_reg_property[2];
399     int off;
400 
401     mem_reg_property[0] = cpu_to_be64(start);
402     mem_reg_property[1] = cpu_to_be64(size);
403 
404     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
405     off = fdt_add_subnode(fdt, 0, mem_name);
406     _FDT(off);
407     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
408     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
409                       sizeof(mem_reg_property))));
410     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
411                       sizeof(associativity))));
412     return off;
413 }
414 
415 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
416 {
417     MachineState *machine = MACHINE(spapr);
418     hwaddr mem_start, node_size;
419     int i, nb_nodes = nb_numa_nodes;
420     NodeInfo *nodes = numa_info;
421     NodeInfo ramnode;
422 
423     /* No NUMA nodes, assume there is just one node with whole RAM */
424     if (!nb_numa_nodes) {
425         nb_nodes = 1;
426         ramnode.node_mem = machine->ram_size;
427         nodes = &ramnode;
428     }
429 
430     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
431         if (!nodes[i].node_mem) {
432             continue;
433         }
434         if (mem_start >= machine->ram_size) {
435             node_size = 0;
436         } else {
437             node_size = nodes[i].node_mem;
438             if (node_size > machine->ram_size - mem_start) {
439                 node_size = machine->ram_size - mem_start;
440             }
441         }
442         if (!mem_start) {
443             /* ppc_spapr_init() checks for rma_size <= node0_size already */
444             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
445             mem_start += spapr->rma_size;
446             node_size -= spapr->rma_size;
447         }
448         for ( ; node_size; ) {
449             hwaddr sizetmp = pow2floor(node_size);
450 
451             /* mem_start != 0 here */
452             if (ctzl(mem_start) < ctzl(sizetmp)) {
453                 sizetmp = 1ULL << ctzl(mem_start);
454             }
455 
456             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
457             node_size -= sizetmp;
458             mem_start += sizetmp;
459         }
460     }
461 
462     return 0;
463 }
464 
465 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
466                                   sPAPRMachineState *spapr)
467 {
468     PowerPCCPU *cpu = POWERPC_CPU(cs);
469     CPUPPCState *env = &cpu->env;
470     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
471     int index = ppc_get_vcpu_dt_id(cpu);
472     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
473                        0xffffffff, 0xffffffff};
474     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
475         : SPAPR_TIMEBASE_FREQ;
476     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
477     uint32_t page_sizes_prop[64];
478     size_t page_sizes_prop_size;
479     uint32_t vcpus_per_socket = smp_threads * smp_cores;
480     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
481     int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
482     sPAPRDRConnector *drc;
483     sPAPRDRConnectorClass *drck;
484     int drc_index;
485     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
486     int i;
487 
488     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
489     if (drc) {
490         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
491         drc_index = drck->get_index(drc);
492         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
493     }
494 
495     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
496     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
497 
498     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
499     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
500                            env->dcache_line_size)));
501     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
502                            env->dcache_line_size)));
503     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
504                            env->icache_line_size)));
505     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
506                            env->icache_line_size)));
507 
508     if (pcc->l1_dcache_size) {
509         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
510                                pcc->l1_dcache_size)));
511     } else {
512         error_report("Warning: Unknown L1 dcache size for cpu");
513     }
514     if (pcc->l1_icache_size) {
515         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
516                                pcc->l1_icache_size)));
517     } else {
518         error_report("Warning: Unknown L1 icache size for cpu");
519     }
520 
521     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
522     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
523     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
524     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
525     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
526     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
527 
528     if (env->spr_cb[SPR_PURR].oea_read) {
529         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
530     }
531 
532     if (env->mmu_model & POWERPC_MMU_1TSEG) {
533         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
534                           segs, sizeof(segs))));
535     }
536 
537     /* Advertise VMX/VSX (vector extensions) if available
538      *   0 / no property == no vector extensions
539      *   1               == VMX / Altivec available
540      *   2               == VSX available */
541     if (env->insns_flags & PPC_ALTIVEC) {
542         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
543 
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
545     }
546 
547     /* Advertise DFP (Decimal Floating Point) if available
548      *   0 / no property == no DFP
549      *   1               == DFP available */
550     if (env->insns_flags2 & PPC2_DFP) {
551         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
552     }
553 
554     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
555                                                   sizeof(page_sizes_prop));
556     if (page_sizes_prop_size) {
557         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
558                           page_sizes_prop, page_sizes_prop_size)));
559     }
560 
561     spapr_populate_pa_features(env, fdt, offset, false);
562 
563     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
564                            cs->cpu_index / vcpus_per_socket)));
565 
566     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
567                       pft_size_prop, sizeof(pft_size_prop))));
568 
569     _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
570 
571     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
572 
573     if (pcc->radix_page_info) {
574         for (i = 0; i < pcc->radix_page_info->count; i++) {
575             radix_AP_encodings[i] =
576                 cpu_to_be32(pcc->radix_page_info->entries[i]);
577         }
578         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
579                           radix_AP_encodings,
580                           pcc->radix_page_info->count *
581                           sizeof(radix_AP_encodings[0]))));
582     }
583 }
584 
585 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
586 {
587     CPUState *cs;
588     int cpus_offset;
589     char *nodename;
590     int smt = kvmppc_smt_threads();
591 
592     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
593     _FDT(cpus_offset);
594     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
595     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
596 
597     /*
598      * We walk the CPUs in reverse order to ensure that CPU DT nodes
599      * created by fdt_add_subnode() end up in the right order in FDT
600      * for the guest kernel the enumerate the CPUs correctly.
601      */
602     CPU_FOREACH_REVERSE(cs) {
603         PowerPCCPU *cpu = POWERPC_CPU(cs);
604         int index = ppc_get_vcpu_dt_id(cpu);
605         DeviceClass *dc = DEVICE_GET_CLASS(cs);
606         int offset;
607 
608         if ((index % smt) != 0) {
609             continue;
610         }
611 
612         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
613         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
614         g_free(nodename);
615         _FDT(offset);
616         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
617     }
618 
619 }
620 
621 /*
622  * Adds ibm,dynamic-reconfiguration-memory node.
623  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
624  * of this device tree node.
625  */
626 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
627 {
628     MachineState *machine = MACHINE(spapr);
629     int ret, i, offset;
630     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
631     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
632     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
633     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
634                        memory_region_size(&spapr->hotplug_memory.mr)) /
635                        lmb_size;
636     uint32_t *int_buf, *cur_index, buf_len;
637     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
638 
639     /*
640      * Don't create the node if there is no hotpluggable memory
641      */
642     if (machine->ram_size == machine->maxram_size) {
643         return 0;
644     }
645 
646     /*
647      * Allocate enough buffer size to fit in ibm,dynamic-memory
648      * or ibm,associativity-lookup-arrays
649      */
650     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
651               * sizeof(uint32_t);
652     cur_index = int_buf = g_malloc0(buf_len);
653 
654     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
655 
656     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
657                     sizeof(prop_lmb_size));
658     if (ret < 0) {
659         goto out;
660     }
661 
662     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
663     if (ret < 0) {
664         goto out;
665     }
666 
667     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
668     if (ret < 0) {
669         goto out;
670     }
671 
672     /* ibm,dynamic-memory */
673     int_buf[0] = cpu_to_be32(nr_lmbs);
674     cur_index++;
675     for (i = 0; i < nr_lmbs; i++) {
676         uint64_t addr = i * lmb_size;
677         uint32_t *dynamic_memory = cur_index;
678 
679         if (i >= hotplug_lmb_start) {
680             sPAPRDRConnector *drc;
681             sPAPRDRConnectorClass *drck;
682 
683             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
684             g_assert(drc);
685             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
686 
687             dynamic_memory[0] = cpu_to_be32(addr >> 32);
688             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
689             dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
690             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
691             dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
692             if (memory_region_present(get_system_memory(), addr)) {
693                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
694             } else {
695                 dynamic_memory[5] = cpu_to_be32(0);
696             }
697         } else {
698             /*
699              * LMB information for RMA, boot time RAM and gap b/n RAM and
700              * hotplug memory region -- all these are marked as reserved
701              * and as having no valid DRC.
702              */
703             dynamic_memory[0] = cpu_to_be32(addr >> 32);
704             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
705             dynamic_memory[2] = cpu_to_be32(0);
706             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
707             dynamic_memory[4] = cpu_to_be32(-1);
708             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
709                                             SPAPR_LMB_FLAGS_DRC_INVALID);
710         }
711 
712         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
713     }
714     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
715     if (ret < 0) {
716         goto out;
717     }
718 
719     /* ibm,associativity-lookup-arrays */
720     cur_index = int_buf;
721     int_buf[0] = cpu_to_be32(nr_nodes);
722     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
723     cur_index += 2;
724     for (i = 0; i < nr_nodes; i++) {
725         uint32_t associativity[] = {
726             cpu_to_be32(0x0),
727             cpu_to_be32(0x0),
728             cpu_to_be32(0x0),
729             cpu_to_be32(i)
730         };
731         memcpy(cur_index, associativity, sizeof(associativity));
732         cur_index += 4;
733     }
734     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
735             (cur_index - int_buf) * sizeof(uint32_t));
736 out:
737     g_free(int_buf);
738     return ret;
739 }
740 
741 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
742                                 sPAPROptionVector *ov5_updates)
743 {
744     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
745     int ret = 0, offset;
746 
747     /* Generate ibm,dynamic-reconfiguration-memory node if required */
748     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
749         g_assert(smc->dr_lmb_enabled);
750         ret = spapr_populate_drconf_memory(spapr, fdt);
751         if (ret) {
752             goto out;
753         }
754     }
755 
756     offset = fdt_path_offset(fdt, "/chosen");
757     if (offset < 0) {
758         offset = fdt_add_subnode(fdt, 0, "chosen");
759         if (offset < 0) {
760             return offset;
761         }
762     }
763     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
764                                  "ibm,architecture-vec-5");
765 
766 out:
767     return ret;
768 }
769 
770 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
771                                  target_ulong addr, target_ulong size,
772                                  sPAPROptionVector *ov5_updates)
773 {
774     void *fdt, *fdt_skel;
775     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
776 
777     size -= sizeof(hdr);
778 
779     /* Create sceleton */
780     fdt_skel = g_malloc0(size);
781     _FDT((fdt_create(fdt_skel, size)));
782     _FDT((fdt_begin_node(fdt_skel, "")));
783     _FDT((fdt_end_node(fdt_skel)));
784     _FDT((fdt_finish(fdt_skel)));
785     fdt = g_malloc0(size);
786     _FDT((fdt_open_into(fdt_skel, fdt, size)));
787     g_free(fdt_skel);
788 
789     /* Fixup cpu nodes */
790     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
791 
792     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
793         return -1;
794     }
795 
796     /* Pack resulting tree */
797     _FDT((fdt_pack(fdt)));
798 
799     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
800         trace_spapr_cas_failed(size);
801         return -1;
802     }
803 
804     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
805     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
806     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
807     g_free(fdt);
808 
809     return 0;
810 }
811 
812 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
813 {
814     int rtas;
815     GString *hypertas = g_string_sized_new(256);
816     GString *qemu_hypertas = g_string_sized_new(256);
817     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
818     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
819         memory_region_size(&spapr->hotplug_memory.mr);
820     uint32_t lrdr_capacity[] = {
821         cpu_to_be32(max_hotplug_addr >> 32),
822         cpu_to_be32(max_hotplug_addr & 0xffffffff),
823         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
824         cpu_to_be32(max_cpus / smp_threads),
825     };
826 
827     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
828 
829     /* hypertas */
830     add_str(hypertas, "hcall-pft");
831     add_str(hypertas, "hcall-term");
832     add_str(hypertas, "hcall-dabr");
833     add_str(hypertas, "hcall-interrupt");
834     add_str(hypertas, "hcall-tce");
835     add_str(hypertas, "hcall-vio");
836     add_str(hypertas, "hcall-splpar");
837     add_str(hypertas, "hcall-bulk");
838     add_str(hypertas, "hcall-set-mode");
839     add_str(hypertas, "hcall-sprg0");
840     add_str(hypertas, "hcall-copy");
841     add_str(hypertas, "hcall-debug");
842     add_str(qemu_hypertas, "hcall-memop1");
843 
844     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
845         add_str(hypertas, "hcall-multi-tce");
846     }
847     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
848                      hypertas->str, hypertas->len));
849     g_string_free(hypertas, TRUE);
850     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
851                      qemu_hypertas->str, qemu_hypertas->len));
852     g_string_free(qemu_hypertas, TRUE);
853 
854     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
855                      refpoints, sizeof(refpoints)));
856 
857     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
858                           RTAS_ERROR_LOG_MAX));
859     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
860                           RTAS_EVENT_SCAN_RATE));
861 
862     if (msi_nonbroken) {
863         _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
864     }
865 
866     /*
867      * According to PAPR, rtas ibm,os-term does not guarantee a return
868      * back to the guest cpu.
869      *
870      * While an additional ibm,extended-os-term property indicates
871      * that rtas call return will always occur. Set this property.
872      */
873     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
874 
875     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
876                      lrdr_capacity, sizeof(lrdr_capacity)));
877 
878     spapr_dt_rtas_tokens(fdt, rtas);
879 }
880 
881 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
882  * that the guest may request and thus the valid values for bytes 24..26 of
883  * option vector 5: */
884 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
885 {
886     char val[2 * 3] = {
887         24, 0x00, /* Hash/Radix, filled in below. */
888         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
889         26, 0x40, /* Radix options: GTSE == yes. */
890     };
891 
892     if (kvm_enabled()) {
893         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
894             val[1] = 0x80; /* OV5_MMU_BOTH */
895         } else if (kvmppc_has_cap_mmu_radix()) {
896             val[1] = 0x40; /* OV5_MMU_RADIX_300 */
897         } else {
898             val[1] = 0x00; /* Hash */
899         }
900     } else {
901         /* TODO: TCG case, hash */
902         val[1] = 0x00;
903     }
904     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
905                      val, sizeof(val)));
906 }
907 
908 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
909 {
910     MachineState *machine = MACHINE(spapr);
911     int chosen;
912     const char *boot_device = machine->boot_order;
913     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
914     size_t cb = 0;
915     char *bootlist = get_boot_devices_list(&cb, true);
916 
917     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
918 
919     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
920     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
921                           spapr->initrd_base));
922     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
923                           spapr->initrd_base + spapr->initrd_size));
924 
925     if (spapr->kernel_size) {
926         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
927                               cpu_to_be64(spapr->kernel_size) };
928 
929         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
930                          &kprop, sizeof(kprop)));
931         if (spapr->kernel_le) {
932             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
933         }
934     }
935     if (boot_menu) {
936         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
937     }
938     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
939     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
940     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
941 
942     if (cb && bootlist) {
943         int i;
944 
945         for (i = 0; i < cb; i++) {
946             if (bootlist[i] == '\n') {
947                 bootlist[i] = ' ';
948             }
949         }
950         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
951     }
952 
953     if (boot_device && strlen(boot_device)) {
954         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
955     }
956 
957     if (!spapr->has_graphics && stdout_path) {
958         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
959     }
960 
961     spapr_dt_ov5_platform_support(fdt, chosen);
962 
963     g_free(stdout_path);
964     g_free(bootlist);
965 }
966 
967 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
968 {
969     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
970      * KVM to work under pHyp with some guest co-operation */
971     int hypervisor;
972     uint8_t hypercall[16];
973 
974     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
975     /* indicate KVM hypercall interface */
976     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
977     if (kvmppc_has_cap_fixup_hcalls()) {
978         /*
979          * Older KVM versions with older guest kernels were broken
980          * with the magic page, don't allow the guest to map it.
981          */
982         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
983                                   sizeof(hypercall))) {
984             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
985                              hypercall, sizeof(hypercall)));
986         }
987     }
988 }
989 
990 static void *spapr_build_fdt(sPAPRMachineState *spapr,
991                              hwaddr rtas_addr,
992                              hwaddr rtas_size)
993 {
994     MachineState *machine = MACHINE(qdev_get_machine());
995     MachineClass *mc = MACHINE_GET_CLASS(machine);
996     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
997     int ret;
998     void *fdt;
999     sPAPRPHBState *phb;
1000     char *buf;
1001 
1002     fdt = g_malloc0(FDT_MAX_SIZE);
1003     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1004 
1005     /* Root node */
1006     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1007     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1008     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1009 
1010     /*
1011      * Add info to guest to indentify which host is it being run on
1012      * and what is the uuid of the guest
1013      */
1014     if (kvmppc_get_host_model(&buf)) {
1015         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1016         g_free(buf);
1017     }
1018     if (kvmppc_get_host_serial(&buf)) {
1019         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1020         g_free(buf);
1021     }
1022 
1023     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1024 
1025     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1026     if (qemu_uuid_set) {
1027         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1028     }
1029     g_free(buf);
1030 
1031     if (qemu_get_vm_name()) {
1032         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1033                                 qemu_get_vm_name()));
1034     }
1035 
1036     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1037     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1038 
1039     /* /interrupt controller */
1040     spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
1041 
1042     ret = spapr_populate_memory(spapr, fdt);
1043     if (ret < 0) {
1044         error_report("couldn't setup memory nodes in fdt");
1045         exit(1);
1046     }
1047 
1048     /* /vdevice */
1049     spapr_dt_vdevice(spapr->vio_bus, fdt);
1050 
1051     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1052         ret = spapr_rng_populate_dt(fdt);
1053         if (ret < 0) {
1054             error_report("could not set up rng device in the fdt");
1055             exit(1);
1056         }
1057     }
1058 
1059     QLIST_FOREACH(phb, &spapr->phbs, list) {
1060         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1061         if (ret < 0) {
1062             error_report("couldn't setup PCI devices in fdt");
1063             exit(1);
1064         }
1065     }
1066 
1067     /* cpus */
1068     spapr_populate_cpus_dt_node(fdt, spapr);
1069 
1070     if (smc->dr_lmb_enabled) {
1071         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1072     }
1073 
1074     if (mc->has_hotpluggable_cpus) {
1075         int offset = fdt_path_offset(fdt, "/cpus");
1076         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1077                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1078         if (ret < 0) {
1079             error_report("Couldn't set up CPU DR device tree properties");
1080             exit(1);
1081         }
1082     }
1083 
1084     /* /event-sources */
1085     spapr_dt_events(spapr, fdt);
1086 
1087     /* /rtas */
1088     spapr_dt_rtas(spapr, fdt);
1089 
1090     /* /chosen */
1091     spapr_dt_chosen(spapr, fdt);
1092 
1093     /* /hypervisor */
1094     if (kvm_enabled()) {
1095         spapr_dt_hypervisor(spapr, fdt);
1096     }
1097 
1098     /* Build memory reserve map */
1099     if (spapr->kernel_size) {
1100         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1101     }
1102     if (spapr->initrd_size) {
1103         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1104     }
1105 
1106     /* ibm,client-architecture-support updates */
1107     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1108     if (ret < 0) {
1109         error_report("couldn't setup CAS properties fdt");
1110         exit(1);
1111     }
1112 
1113     return fdt;
1114 }
1115 
1116 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1117 {
1118     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1119 }
1120 
1121 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1122                                     PowerPCCPU *cpu)
1123 {
1124     CPUPPCState *env = &cpu->env;
1125 
1126     /* The TCG path should also be holding the BQL at this point */
1127     g_assert(qemu_mutex_iothread_locked());
1128 
1129     if (msr_pr) {
1130         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1131         env->gpr[3] = H_PRIVILEGE;
1132     } else {
1133         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1134     }
1135 }
1136 
1137 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1138 {
1139     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1140 
1141     return spapr->patb_entry;
1142 }
1143 
1144 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1145 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1146 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1147 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1148 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1149 
1150 /*
1151  * Get the fd to access the kernel htab, re-opening it if necessary
1152  */
1153 static int get_htab_fd(sPAPRMachineState *spapr)
1154 {
1155     if (spapr->htab_fd >= 0) {
1156         return spapr->htab_fd;
1157     }
1158 
1159     spapr->htab_fd = kvmppc_get_htab_fd(false);
1160     if (spapr->htab_fd < 0) {
1161         error_report("Unable to open fd for reading hash table from KVM: %s",
1162                      strerror(errno));
1163     }
1164 
1165     return spapr->htab_fd;
1166 }
1167 
1168 void close_htab_fd(sPAPRMachineState *spapr)
1169 {
1170     if (spapr->htab_fd >= 0) {
1171         close(spapr->htab_fd);
1172     }
1173     spapr->htab_fd = -1;
1174 }
1175 
1176 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1177 {
1178     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1179 
1180     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1181 }
1182 
1183 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1184                                                 hwaddr ptex, int n)
1185 {
1186     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1187     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1188 
1189     if (!spapr->htab) {
1190         /*
1191          * HTAB is controlled by KVM. Fetch into temporary buffer
1192          */
1193         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1194         kvmppc_read_hptes(hptes, ptex, n);
1195         return hptes;
1196     }
1197 
1198     /*
1199      * HTAB is controlled by QEMU. Just point to the internally
1200      * accessible PTEG.
1201      */
1202     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1203 }
1204 
1205 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1206                               const ppc_hash_pte64_t *hptes,
1207                               hwaddr ptex, int n)
1208 {
1209     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1210 
1211     if (!spapr->htab) {
1212         g_free((void *)hptes);
1213     }
1214 
1215     /* Nothing to do for qemu managed HPT */
1216 }
1217 
1218 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1219                              uint64_t pte0, uint64_t pte1)
1220 {
1221     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1222     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1223 
1224     if (!spapr->htab) {
1225         kvmppc_write_hpte(ptex, pte0, pte1);
1226     } else {
1227         stq_p(spapr->htab + offset, pte0);
1228         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1229     }
1230 }
1231 
1232 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1233 {
1234     int shift;
1235 
1236     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1237      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1238      * that's much more than is needed for Linux guests */
1239     shift = ctz64(pow2ceil(ramsize)) - 7;
1240     shift = MAX(shift, 18); /* Minimum architected size */
1241     shift = MIN(shift, 46); /* Maximum architected size */
1242     return shift;
1243 }
1244 
1245 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1246                                  Error **errp)
1247 {
1248     long rc;
1249 
1250     /* Clean up any HPT info from a previous boot */
1251     g_free(spapr->htab);
1252     spapr->htab = NULL;
1253     spapr->htab_shift = 0;
1254     close_htab_fd(spapr);
1255 
1256     rc = kvmppc_reset_htab(shift);
1257     if (rc < 0) {
1258         /* kernel-side HPT needed, but couldn't allocate one */
1259         error_setg_errno(errp, errno,
1260                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1261                          shift);
1262         /* This is almost certainly fatal, but if the caller really
1263          * wants to carry on with shift == 0, it's welcome to try */
1264     } else if (rc > 0) {
1265         /* kernel-side HPT allocated */
1266         if (rc != shift) {
1267             error_setg(errp,
1268                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1269                        shift, rc);
1270         }
1271 
1272         spapr->htab_shift = shift;
1273         spapr->htab = NULL;
1274     } else {
1275         /* kernel-side HPT not needed, allocate in userspace instead */
1276         size_t size = 1ULL << shift;
1277         int i;
1278 
1279         spapr->htab = qemu_memalign(size, size);
1280         if (!spapr->htab) {
1281             error_setg_errno(errp, errno,
1282                              "Could not allocate HPT of order %d", shift);
1283             return;
1284         }
1285 
1286         memset(spapr->htab, 0, size);
1287         spapr->htab_shift = shift;
1288 
1289         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1290             DIRTY_HPTE(HPTE(spapr->htab, i));
1291         }
1292     }
1293 }
1294 
1295 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1296 {
1297     spapr_reallocate_hpt(spapr,
1298                      spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1299                      &error_fatal);
1300     if (spapr->vrma_adjust) {
1301         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1302                                           spapr->htab_shift);
1303     }
1304     /* We're setting up a hash table, so that means we're not radix */
1305     spapr->patb_entry = 0;
1306 }
1307 
1308 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1309 {
1310     bool matched = false;
1311 
1312     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1313         matched = true;
1314     }
1315 
1316     if (!matched) {
1317         error_report("Device %s is not supported by this machine yet.",
1318                      qdev_fw_name(DEVICE(sbdev)));
1319         exit(1);
1320     }
1321 }
1322 
1323 static void ppc_spapr_reset(void)
1324 {
1325     MachineState *machine = MACHINE(qdev_get_machine());
1326     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1327     PowerPCCPU *first_ppc_cpu;
1328     uint32_t rtas_limit;
1329     hwaddr rtas_addr, fdt_addr;
1330     void *fdt;
1331     int rc;
1332 
1333     /* Check for unknown sysbus devices */
1334     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1335 
1336     if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1337         /* If using KVM with radix mode available, VCPUs can be started
1338          * without a HPT because KVM will start them in radix mode.
1339          * Set the GR bit in PATB so that we know there is no HPT. */
1340         spapr->patb_entry = PATBE1_GR;
1341     } else {
1342         spapr->patb_entry = 0;
1343         spapr_setup_hpt_and_vrma(spapr);
1344     }
1345 
1346     qemu_devices_reset();
1347 
1348     /*
1349      * We place the device tree and RTAS just below either the top of the RMA,
1350      * or just below 2GB, whichever is lowere, so that it can be
1351      * processed with 32-bit real mode code if necessary
1352      */
1353     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1354     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1355     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1356 
1357     /* if this reset wasn't generated by CAS, we should reset our
1358      * negotiated options and start from scratch */
1359     if (!spapr->cas_reboot) {
1360         spapr_ovec_cleanup(spapr->ov5_cas);
1361         spapr->ov5_cas = spapr_ovec_new();
1362     }
1363 
1364     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1365 
1366     spapr_load_rtas(spapr, fdt, rtas_addr);
1367 
1368     rc = fdt_pack(fdt);
1369 
1370     /* Should only fail if we've built a corrupted tree */
1371     assert(rc == 0);
1372 
1373     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1374         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1375                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1376         exit(1);
1377     }
1378 
1379     /* Load the fdt */
1380     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1381     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1382     g_free(fdt);
1383 
1384     /* Set up the entry state */
1385     first_ppc_cpu = POWERPC_CPU(first_cpu);
1386     first_ppc_cpu->env.gpr[3] = fdt_addr;
1387     first_ppc_cpu->env.gpr[5] = 0;
1388     first_cpu->halted = 0;
1389     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1390 
1391     spapr->cas_reboot = false;
1392 }
1393 
1394 static void spapr_create_nvram(sPAPRMachineState *spapr)
1395 {
1396     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1397     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1398 
1399     if (dinfo) {
1400         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1401                             &error_fatal);
1402     }
1403 
1404     qdev_init_nofail(dev);
1405 
1406     spapr->nvram = (struct sPAPRNVRAM *)dev;
1407 }
1408 
1409 static void spapr_rtc_create(sPAPRMachineState *spapr)
1410 {
1411     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1412     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1413                               &error_fatal);
1414     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1415                               &error_fatal);
1416     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1417                               "date", &error_fatal);
1418 }
1419 
1420 /* Returns whether we want to use VGA or not */
1421 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1422 {
1423     switch (vga_interface_type) {
1424     case VGA_NONE:
1425         return false;
1426     case VGA_DEVICE:
1427         return true;
1428     case VGA_STD:
1429     case VGA_VIRTIO:
1430         return pci_vga_init(pci_bus) != NULL;
1431     default:
1432         error_setg(errp,
1433                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1434         return false;
1435     }
1436 }
1437 
1438 static int spapr_post_load(void *opaque, int version_id)
1439 {
1440     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1441     int err = 0;
1442 
1443     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1444         int i;
1445         for (i = 0; i < spapr->nr_servers; i++) {
1446             icp_resend(&spapr->icps[i]);
1447         }
1448     }
1449 
1450     /* In earlier versions, there was no separate qdev for the PAPR
1451      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1452      * So when migrating from those versions, poke the incoming offset
1453      * value into the RTC device */
1454     if (version_id < 3) {
1455         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1456     }
1457 
1458     return err;
1459 }
1460 
1461 static bool version_before_3(void *opaque, int version_id)
1462 {
1463     return version_id < 3;
1464 }
1465 
1466 static bool spapr_ov5_cas_needed(void *opaque)
1467 {
1468     sPAPRMachineState *spapr = opaque;
1469     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1470     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1471     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1472     bool cas_needed;
1473 
1474     /* Prior to the introduction of sPAPROptionVector, we had two option
1475      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1476      * Both of these options encode machine topology into the device-tree
1477      * in such a way that the now-booted OS should still be able to interact
1478      * appropriately with QEMU regardless of what options were actually
1479      * negotiatied on the source side.
1480      *
1481      * As such, we can avoid migrating the CAS-negotiated options if these
1482      * are the only options available on the current machine/platform.
1483      * Since these are the only options available for pseries-2.7 and
1484      * earlier, this allows us to maintain old->new/new->old migration
1485      * compatibility.
1486      *
1487      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1488      * via default pseries-2.8 machines and explicit command-line parameters.
1489      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1490      * of the actual CAS-negotiated values to continue working properly. For
1491      * example, availability of memory unplug depends on knowing whether
1492      * OV5_HP_EVT was negotiated via CAS.
1493      *
1494      * Thus, for any cases where the set of available CAS-negotiatable
1495      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1496      * include the CAS-negotiated options in the migration stream.
1497      */
1498     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1499     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1500 
1501     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1502      * the mask itself since in the future it's possible "legacy" bits may be
1503      * removed via machine options, which could generate a false positive
1504      * that breaks migration.
1505      */
1506     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1507     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1508 
1509     spapr_ovec_cleanup(ov5_mask);
1510     spapr_ovec_cleanup(ov5_legacy);
1511     spapr_ovec_cleanup(ov5_removed);
1512 
1513     return cas_needed;
1514 }
1515 
1516 static const VMStateDescription vmstate_spapr_ov5_cas = {
1517     .name = "spapr_option_vector_ov5_cas",
1518     .version_id = 1,
1519     .minimum_version_id = 1,
1520     .needed = spapr_ov5_cas_needed,
1521     .fields = (VMStateField[]) {
1522         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1523                                  vmstate_spapr_ovec, sPAPROptionVector),
1524         VMSTATE_END_OF_LIST()
1525     },
1526 };
1527 
1528 static bool spapr_patb_entry_needed(void *opaque)
1529 {
1530     sPAPRMachineState *spapr = opaque;
1531 
1532     return !!spapr->patb_entry;
1533 }
1534 
1535 static const VMStateDescription vmstate_spapr_patb_entry = {
1536     .name = "spapr_patb_entry",
1537     .version_id = 1,
1538     .minimum_version_id = 1,
1539     .needed = spapr_patb_entry_needed,
1540     .fields = (VMStateField[]) {
1541         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1542         VMSTATE_END_OF_LIST()
1543     },
1544 };
1545 
1546 static const VMStateDescription vmstate_spapr = {
1547     .name = "spapr",
1548     .version_id = 3,
1549     .minimum_version_id = 1,
1550     .post_load = spapr_post_load,
1551     .fields = (VMStateField[]) {
1552         /* used to be @next_irq */
1553         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1554 
1555         /* RTC offset */
1556         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1557 
1558         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1559         VMSTATE_END_OF_LIST()
1560     },
1561     .subsections = (const VMStateDescription*[]) {
1562         &vmstate_spapr_ov5_cas,
1563         &vmstate_spapr_patb_entry,
1564         NULL
1565     }
1566 };
1567 
1568 static int htab_save_setup(QEMUFile *f, void *opaque)
1569 {
1570     sPAPRMachineState *spapr = opaque;
1571 
1572     /* "Iteration" header */
1573     qemu_put_be32(f, spapr->htab_shift);
1574 
1575     if (spapr->htab) {
1576         spapr->htab_save_index = 0;
1577         spapr->htab_first_pass = true;
1578     } else {
1579         assert(kvm_enabled());
1580     }
1581 
1582 
1583     return 0;
1584 }
1585 
1586 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1587                                  int64_t max_ns)
1588 {
1589     bool has_timeout = max_ns != -1;
1590     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1591     int index = spapr->htab_save_index;
1592     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1593 
1594     assert(spapr->htab_first_pass);
1595 
1596     do {
1597         int chunkstart;
1598 
1599         /* Consume invalid HPTEs */
1600         while ((index < htabslots)
1601                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1602             CLEAN_HPTE(HPTE(spapr->htab, index));
1603             index++;
1604         }
1605 
1606         /* Consume valid HPTEs */
1607         chunkstart = index;
1608         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1609                && HPTE_VALID(HPTE(spapr->htab, index))) {
1610             CLEAN_HPTE(HPTE(spapr->htab, index));
1611             index++;
1612         }
1613 
1614         if (index > chunkstart) {
1615             int n_valid = index - chunkstart;
1616 
1617             qemu_put_be32(f, chunkstart);
1618             qemu_put_be16(f, n_valid);
1619             qemu_put_be16(f, 0);
1620             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1621                             HASH_PTE_SIZE_64 * n_valid);
1622 
1623             if (has_timeout &&
1624                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1625                 break;
1626             }
1627         }
1628     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1629 
1630     if (index >= htabslots) {
1631         assert(index == htabslots);
1632         index = 0;
1633         spapr->htab_first_pass = false;
1634     }
1635     spapr->htab_save_index = index;
1636 }
1637 
1638 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1639                                 int64_t max_ns)
1640 {
1641     bool final = max_ns < 0;
1642     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1643     int examined = 0, sent = 0;
1644     int index = spapr->htab_save_index;
1645     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1646 
1647     assert(!spapr->htab_first_pass);
1648 
1649     do {
1650         int chunkstart, invalidstart;
1651 
1652         /* Consume non-dirty HPTEs */
1653         while ((index < htabslots)
1654                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1655             index++;
1656             examined++;
1657         }
1658 
1659         chunkstart = index;
1660         /* Consume valid dirty HPTEs */
1661         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1662                && HPTE_DIRTY(HPTE(spapr->htab, index))
1663                && HPTE_VALID(HPTE(spapr->htab, index))) {
1664             CLEAN_HPTE(HPTE(spapr->htab, index));
1665             index++;
1666             examined++;
1667         }
1668 
1669         invalidstart = index;
1670         /* Consume invalid dirty HPTEs */
1671         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1672                && HPTE_DIRTY(HPTE(spapr->htab, index))
1673                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1674             CLEAN_HPTE(HPTE(spapr->htab, index));
1675             index++;
1676             examined++;
1677         }
1678 
1679         if (index > chunkstart) {
1680             int n_valid = invalidstart - chunkstart;
1681             int n_invalid = index - invalidstart;
1682 
1683             qemu_put_be32(f, chunkstart);
1684             qemu_put_be16(f, n_valid);
1685             qemu_put_be16(f, n_invalid);
1686             qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1687                             HASH_PTE_SIZE_64 * n_valid);
1688             sent += index - chunkstart;
1689 
1690             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1691                 break;
1692             }
1693         }
1694 
1695         if (examined >= htabslots) {
1696             break;
1697         }
1698 
1699         if (index >= htabslots) {
1700             assert(index == htabslots);
1701             index = 0;
1702         }
1703     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1704 
1705     if (index >= htabslots) {
1706         assert(index == htabslots);
1707         index = 0;
1708     }
1709 
1710     spapr->htab_save_index = index;
1711 
1712     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1713 }
1714 
1715 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1716 #define MAX_KVM_BUF_SIZE    2048
1717 
1718 static int htab_save_iterate(QEMUFile *f, void *opaque)
1719 {
1720     sPAPRMachineState *spapr = opaque;
1721     int fd;
1722     int rc = 0;
1723 
1724     /* Iteration header */
1725     qemu_put_be32(f, 0);
1726 
1727     if (!spapr->htab) {
1728         assert(kvm_enabled());
1729 
1730         fd = get_htab_fd(spapr);
1731         if (fd < 0) {
1732             return fd;
1733         }
1734 
1735         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1736         if (rc < 0) {
1737             return rc;
1738         }
1739     } else  if (spapr->htab_first_pass) {
1740         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1741     } else {
1742         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1743     }
1744 
1745     /* End marker */
1746     qemu_put_be32(f, 0);
1747     qemu_put_be16(f, 0);
1748     qemu_put_be16(f, 0);
1749 
1750     return rc;
1751 }
1752 
1753 static int htab_save_complete(QEMUFile *f, void *opaque)
1754 {
1755     sPAPRMachineState *spapr = opaque;
1756     int fd;
1757 
1758     /* Iteration header */
1759     qemu_put_be32(f, 0);
1760 
1761     if (!spapr->htab) {
1762         int rc;
1763 
1764         assert(kvm_enabled());
1765 
1766         fd = get_htab_fd(spapr);
1767         if (fd < 0) {
1768             return fd;
1769         }
1770 
1771         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1772         if (rc < 0) {
1773             return rc;
1774         }
1775     } else {
1776         if (spapr->htab_first_pass) {
1777             htab_save_first_pass(f, spapr, -1);
1778         }
1779         htab_save_later_pass(f, spapr, -1);
1780     }
1781 
1782     /* End marker */
1783     qemu_put_be32(f, 0);
1784     qemu_put_be16(f, 0);
1785     qemu_put_be16(f, 0);
1786 
1787     return 0;
1788 }
1789 
1790 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1791 {
1792     sPAPRMachineState *spapr = opaque;
1793     uint32_t section_hdr;
1794     int fd = -1;
1795 
1796     if (version_id < 1 || version_id > 1) {
1797         error_report("htab_load() bad version");
1798         return -EINVAL;
1799     }
1800 
1801     section_hdr = qemu_get_be32(f);
1802 
1803     if (section_hdr) {
1804         Error *local_err = NULL;
1805 
1806         /* First section gives the htab size */
1807         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1808         if (local_err) {
1809             error_report_err(local_err);
1810             return -EINVAL;
1811         }
1812         return 0;
1813     }
1814 
1815     if (!spapr->htab) {
1816         assert(kvm_enabled());
1817 
1818         fd = kvmppc_get_htab_fd(true);
1819         if (fd < 0) {
1820             error_report("Unable to open fd to restore KVM hash table: %s",
1821                          strerror(errno));
1822         }
1823     }
1824 
1825     while (true) {
1826         uint32_t index;
1827         uint16_t n_valid, n_invalid;
1828 
1829         index = qemu_get_be32(f);
1830         n_valid = qemu_get_be16(f);
1831         n_invalid = qemu_get_be16(f);
1832 
1833         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1834             /* End of Stream */
1835             break;
1836         }
1837 
1838         if ((index + n_valid + n_invalid) >
1839             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1840             /* Bad index in stream */
1841             error_report(
1842                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1843                 index, n_valid, n_invalid, spapr->htab_shift);
1844             return -EINVAL;
1845         }
1846 
1847         if (spapr->htab) {
1848             if (n_valid) {
1849                 qemu_get_buffer(f, HPTE(spapr->htab, index),
1850                                 HASH_PTE_SIZE_64 * n_valid);
1851             }
1852             if (n_invalid) {
1853                 memset(HPTE(spapr->htab, index + n_valid), 0,
1854                        HASH_PTE_SIZE_64 * n_invalid);
1855             }
1856         } else {
1857             int rc;
1858 
1859             assert(fd >= 0);
1860 
1861             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1862             if (rc < 0) {
1863                 return rc;
1864             }
1865         }
1866     }
1867 
1868     if (!spapr->htab) {
1869         assert(fd >= 0);
1870         close(fd);
1871     }
1872 
1873     return 0;
1874 }
1875 
1876 static void htab_cleanup(void *opaque)
1877 {
1878     sPAPRMachineState *spapr = opaque;
1879 
1880     close_htab_fd(spapr);
1881 }
1882 
1883 static SaveVMHandlers savevm_htab_handlers = {
1884     .save_live_setup = htab_save_setup,
1885     .save_live_iterate = htab_save_iterate,
1886     .save_live_complete_precopy = htab_save_complete,
1887     .cleanup = htab_cleanup,
1888     .load_state = htab_load,
1889 };
1890 
1891 static void spapr_boot_set(void *opaque, const char *boot_device,
1892                            Error **errp)
1893 {
1894     MachineState *machine = MACHINE(qdev_get_machine());
1895     machine->boot_order = g_strdup(boot_device);
1896 }
1897 
1898 /*
1899  * Reset routine for LMB DR devices.
1900  *
1901  * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1902  * routine. Reset for PCI DR devices will be handled by PHB reset routine
1903  * when it walks all its children devices. LMB devices reset occurs
1904  * as part of spapr_ppc_reset().
1905  */
1906 static void spapr_drc_reset(void *opaque)
1907 {
1908     sPAPRDRConnector *drc = opaque;
1909     DeviceState *d = DEVICE(drc);
1910 
1911     if (d) {
1912         device_reset(d);
1913     }
1914 }
1915 
1916 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1917 {
1918     MachineState *machine = MACHINE(spapr);
1919     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1920     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1921     int i;
1922 
1923     for (i = 0; i < nr_lmbs; i++) {
1924         sPAPRDRConnector *drc;
1925         uint64_t addr;
1926 
1927         addr = i * lmb_size + spapr->hotplug_memory.base;
1928         drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1929                                      addr/lmb_size);
1930         qemu_register_reset(spapr_drc_reset, drc);
1931     }
1932 }
1933 
1934 /*
1935  * If RAM size, maxmem size and individual node mem sizes aren't aligned
1936  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1937  * since we can't support such unaligned sizes with DRCONF_MEMORY.
1938  */
1939 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1940 {
1941     int i;
1942 
1943     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1944         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1945                    " is not aligned to %llu MiB",
1946                    machine->ram_size,
1947                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1948         return;
1949     }
1950 
1951     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1952         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1953                    " is not aligned to %llu MiB",
1954                    machine->ram_size,
1955                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1956         return;
1957     }
1958 
1959     for (i = 0; i < nb_numa_nodes; i++) {
1960         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1961             error_setg(errp,
1962                        "Node %d memory size 0x%" PRIx64
1963                        " is not aligned to %llu MiB",
1964                        i, numa_info[i].node_mem,
1965                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1966             return;
1967         }
1968     }
1969 }
1970 
1971 /* find cpu slot in machine->possible_cpus by core_id */
1972 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1973 {
1974     int index = id / smp_threads;
1975 
1976     if (index >= ms->possible_cpus->len) {
1977         return NULL;
1978     }
1979     if (idx) {
1980         *idx = index;
1981     }
1982     return &ms->possible_cpus->cpus[index];
1983 }
1984 
1985 static void spapr_init_cpus(sPAPRMachineState *spapr)
1986 {
1987     MachineState *machine = MACHINE(spapr);
1988     MachineClass *mc = MACHINE_GET_CLASS(machine);
1989     char *type = spapr_get_cpu_core_type(machine->cpu_model);
1990     int smt = kvmppc_smt_threads();
1991     const CPUArchIdList *possible_cpus;
1992     int boot_cores_nr = smp_cpus / smp_threads;
1993     int i;
1994 
1995     if (!type) {
1996         error_report("Unable to find sPAPR CPU Core definition");
1997         exit(1);
1998     }
1999 
2000     possible_cpus = mc->possible_cpu_arch_ids(machine);
2001     if (mc->has_hotpluggable_cpus) {
2002         if (smp_cpus % smp_threads) {
2003             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2004                          smp_cpus, smp_threads);
2005             exit(1);
2006         }
2007         if (max_cpus % smp_threads) {
2008             error_report("max_cpus (%u) must be multiple of threads (%u)",
2009                          max_cpus, smp_threads);
2010             exit(1);
2011         }
2012     } else {
2013         if (max_cpus != smp_cpus) {
2014             error_report("This machine version does not support CPU hotplug");
2015             exit(1);
2016         }
2017         boot_cores_nr = possible_cpus->len;
2018     }
2019 
2020     for (i = 0; i < possible_cpus->len; i++) {
2021         int core_id = i * smp_threads;
2022 
2023         if (mc->has_hotpluggable_cpus) {
2024             sPAPRDRConnector *drc =
2025                 spapr_dr_connector_new(OBJECT(spapr),
2026                                        SPAPR_DR_CONNECTOR_TYPE_CPU,
2027                                        (core_id / smp_threads) * smt);
2028 
2029             qemu_register_reset(spapr_drc_reset, drc);
2030         }
2031 
2032         if (i < boot_cores_nr) {
2033             Object *core  = object_new(type);
2034             int nr_threads = smp_threads;
2035 
2036             /* Handle the partially filled core for older machine types */
2037             if ((i + 1) * smp_threads >= smp_cpus) {
2038                 nr_threads = smp_cpus - i * smp_threads;
2039             }
2040 
2041             object_property_set_int(core, nr_threads, "nr-threads",
2042                                     &error_fatal);
2043             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2044                                     &error_fatal);
2045             object_property_set_bool(core, true, "realized", &error_fatal);
2046         }
2047     }
2048     g_free(type);
2049 }
2050 
2051 /* pSeries LPAR / sPAPR hardware init */
2052 static void ppc_spapr_init(MachineState *machine)
2053 {
2054     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2055     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2056     const char *kernel_filename = machine->kernel_filename;
2057     const char *initrd_filename = machine->initrd_filename;
2058     PCIHostState *phb;
2059     int i;
2060     MemoryRegion *sysmem = get_system_memory();
2061     MemoryRegion *ram = g_new(MemoryRegion, 1);
2062     MemoryRegion *rma_region;
2063     void *rma = NULL;
2064     hwaddr rma_alloc_size;
2065     hwaddr node0_size = spapr_node0_size();
2066     long load_limit, fw_size;
2067     char *filename;
2068     int smt = kvmppc_smt_threads();
2069 
2070     msi_nonbroken = true;
2071 
2072     QLIST_INIT(&spapr->phbs);
2073 
2074     /* Allocate RMA if necessary */
2075     rma_alloc_size = kvmppc_alloc_rma(&rma);
2076 
2077     if (rma_alloc_size == -1) {
2078         error_report("Unable to create RMA");
2079         exit(1);
2080     }
2081 
2082     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2083         spapr->rma_size = rma_alloc_size;
2084     } else {
2085         spapr->rma_size = node0_size;
2086 
2087         /* With KVM, we don't actually know whether KVM supports an
2088          * unbounded RMA (PR KVM) or is limited by the hash table size
2089          * (HV KVM using VRMA), so we always assume the latter
2090          *
2091          * In that case, we also limit the initial allocations for RTAS
2092          * etc... to 256M since we have no way to know what the VRMA size
2093          * is going to be as it depends on the size of the hash table
2094          * isn't determined yet.
2095          */
2096         if (kvm_enabled()) {
2097             spapr->vrma_adjust = 1;
2098             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2099         }
2100 
2101         /* Actually we don't support unbounded RMA anymore since we
2102          * added proper emulation of HV mode. The max we can get is
2103          * 16G which also happens to be what we configure for PAPR
2104          * mode so make sure we don't do anything bigger than that
2105          */
2106         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2107     }
2108 
2109     if (spapr->rma_size > node0_size) {
2110         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2111                      spapr->rma_size);
2112         exit(1);
2113     }
2114 
2115     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2116     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2117 
2118     /* Set up Interrupt Controller before we create the VCPUs */
2119     xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2120                      XICS_IRQS_SPAPR, &error_fatal);
2121 
2122     /* Set up containers for ibm,client-set-architecture negotiated options */
2123     spapr->ov5 = spapr_ovec_new();
2124     spapr->ov5_cas = spapr_ovec_new();
2125 
2126     if (smc->dr_lmb_enabled) {
2127         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2128         spapr_validate_node_memory(machine, &error_fatal);
2129     }
2130 
2131     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2132     if (kvmppc_has_cap_mmu_radix()) {
2133         /* KVM always allows GTSE with radix... */
2134         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2135     }
2136     /* ... but not with hash (currently). */
2137 
2138     /* advertise support for dedicated HP event source to guests */
2139     if (spapr->use_hotplug_event_source) {
2140         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2141     }
2142 
2143     /* init CPUs */
2144     if (machine->cpu_model == NULL) {
2145         machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2146     }
2147 
2148     ppc_cpu_parse_features(machine->cpu_model);
2149 
2150     spapr_init_cpus(spapr);
2151 
2152     if (kvm_enabled()) {
2153         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2154         kvmppc_enable_logical_ci_hcalls();
2155         kvmppc_enable_set_mode_hcall();
2156 
2157         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2158         kvmppc_enable_clear_ref_mod_hcalls();
2159     }
2160 
2161     /* allocate RAM */
2162     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2163                                          machine->ram_size);
2164     memory_region_add_subregion(sysmem, 0, ram);
2165 
2166     if (rma_alloc_size && rma) {
2167         rma_region = g_new(MemoryRegion, 1);
2168         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2169                                    rma_alloc_size, rma);
2170         vmstate_register_ram_global(rma_region);
2171         memory_region_add_subregion(sysmem, 0, rma_region);
2172     }
2173 
2174     /* initialize hotplug memory address space */
2175     if (machine->ram_size < machine->maxram_size) {
2176         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2177         /*
2178          * Limit the number of hotpluggable memory slots to half the number
2179          * slots that KVM supports, leaving the other half for PCI and other
2180          * devices. However ensure that number of slots doesn't drop below 32.
2181          */
2182         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2183                            SPAPR_MAX_RAM_SLOTS;
2184 
2185         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2186             max_memslots = SPAPR_MAX_RAM_SLOTS;
2187         }
2188         if (machine->ram_slots > max_memslots) {
2189             error_report("Specified number of memory slots %"
2190                          PRIu64" exceeds max supported %d",
2191                          machine->ram_slots, max_memslots);
2192             exit(1);
2193         }
2194 
2195         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2196                                               SPAPR_HOTPLUG_MEM_ALIGN);
2197         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2198                            "hotplug-memory", hotplug_mem_size);
2199         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2200                                     &spapr->hotplug_memory.mr);
2201     }
2202 
2203     if (smc->dr_lmb_enabled) {
2204         spapr_create_lmb_dr_connectors(spapr);
2205     }
2206 
2207     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2208     if (!filename) {
2209         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2210         exit(1);
2211     }
2212     spapr->rtas_size = get_image_size(filename);
2213     if (spapr->rtas_size < 0) {
2214         error_report("Could not get size of LPAR rtas '%s'", filename);
2215         exit(1);
2216     }
2217     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2218     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2219         error_report("Could not load LPAR rtas '%s'", filename);
2220         exit(1);
2221     }
2222     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2223         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2224                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2225         exit(1);
2226     }
2227     g_free(filename);
2228 
2229     /* Set up RTAS event infrastructure */
2230     spapr_events_init(spapr);
2231 
2232     /* Set up the RTC RTAS interfaces */
2233     spapr_rtc_create(spapr);
2234 
2235     /* Set up VIO bus */
2236     spapr->vio_bus = spapr_vio_bus_init();
2237 
2238     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2239         if (serial_hds[i]) {
2240             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2241         }
2242     }
2243 
2244     /* We always have at least the nvram device on VIO */
2245     spapr_create_nvram(spapr);
2246 
2247     /* Set up PCI */
2248     spapr_pci_rtas_init();
2249 
2250     phb = spapr_create_phb(spapr, 0);
2251 
2252     for (i = 0; i < nb_nics; i++) {
2253         NICInfo *nd = &nd_table[i];
2254 
2255         if (!nd->model) {
2256             nd->model = g_strdup("ibmveth");
2257         }
2258 
2259         if (strcmp(nd->model, "ibmveth") == 0) {
2260             spapr_vlan_create(spapr->vio_bus, nd);
2261         } else {
2262             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2263         }
2264     }
2265 
2266     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2267         spapr_vscsi_create(spapr->vio_bus);
2268     }
2269 
2270     /* Graphics */
2271     if (spapr_vga_init(phb->bus, &error_fatal)) {
2272         spapr->has_graphics = true;
2273         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2274     }
2275 
2276     if (machine->usb) {
2277         if (smc->use_ohci_by_default) {
2278             pci_create_simple(phb->bus, -1, "pci-ohci");
2279         } else {
2280             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2281         }
2282 
2283         if (spapr->has_graphics) {
2284             USBBus *usb_bus = usb_bus_find(-1);
2285 
2286             usb_create_simple(usb_bus, "usb-kbd");
2287             usb_create_simple(usb_bus, "usb-mouse");
2288         }
2289     }
2290 
2291     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2292         error_report(
2293             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2294             MIN_RMA_SLOF);
2295         exit(1);
2296     }
2297 
2298     if (kernel_filename) {
2299         uint64_t lowaddr = 0;
2300 
2301         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2302                                       NULL, NULL, &lowaddr, NULL, 1,
2303                                       PPC_ELF_MACHINE, 0, 0);
2304         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2305             spapr->kernel_size = load_elf(kernel_filename,
2306                                           translate_kernel_address, NULL, NULL,
2307                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2308                                           0, 0);
2309             spapr->kernel_le = spapr->kernel_size > 0;
2310         }
2311         if (spapr->kernel_size < 0) {
2312             error_report("error loading %s: %s", kernel_filename,
2313                          load_elf_strerror(spapr->kernel_size));
2314             exit(1);
2315         }
2316 
2317         /* load initrd */
2318         if (initrd_filename) {
2319             /* Try to locate the initrd in the gap between the kernel
2320              * and the firmware. Add a bit of space just in case
2321              */
2322             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2323                                   + 0x1ffff) & ~0xffff;
2324             spapr->initrd_size = load_image_targphys(initrd_filename,
2325                                                      spapr->initrd_base,
2326                                                      load_limit
2327                                                      - spapr->initrd_base);
2328             if (spapr->initrd_size < 0) {
2329                 error_report("could not load initial ram disk '%s'",
2330                              initrd_filename);
2331                 exit(1);
2332             }
2333         }
2334     }
2335 
2336     if (bios_name == NULL) {
2337         bios_name = FW_FILE_NAME;
2338     }
2339     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2340     if (!filename) {
2341         error_report("Could not find LPAR firmware '%s'", bios_name);
2342         exit(1);
2343     }
2344     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2345     if (fw_size <= 0) {
2346         error_report("Could not load LPAR firmware '%s'", filename);
2347         exit(1);
2348     }
2349     g_free(filename);
2350 
2351     /* FIXME: Should register things through the MachineState's qdev
2352      * interface, this is a legacy from the sPAPREnvironment structure
2353      * which predated MachineState but had a similar function */
2354     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2355     register_savevm_live(NULL, "spapr/htab", -1, 1,
2356                          &savevm_htab_handlers, spapr);
2357 
2358     /* used by RTAS */
2359     QTAILQ_INIT(&spapr->ccs_list);
2360     qemu_register_reset(spapr_ccs_reset_hook, spapr);
2361 
2362     qemu_register_boot_set(spapr_boot_set, spapr);
2363 
2364     if (kvm_enabled()) {
2365         /* to stop and start vmclock */
2366         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2367                                          &spapr->tb);
2368 
2369         kvmppc_spapr_enable_inkernel_multitce();
2370     }
2371 }
2372 
2373 static int spapr_kvm_type(const char *vm_type)
2374 {
2375     if (!vm_type) {
2376         return 0;
2377     }
2378 
2379     if (!strcmp(vm_type, "HV")) {
2380         return 1;
2381     }
2382 
2383     if (!strcmp(vm_type, "PR")) {
2384         return 2;
2385     }
2386 
2387     error_report("Unknown kvm-type specified '%s'", vm_type);
2388     exit(1);
2389 }
2390 
2391 /*
2392  * Implementation of an interface to adjust firmware path
2393  * for the bootindex property handling.
2394  */
2395 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2396                                    DeviceState *dev)
2397 {
2398 #define CAST(type, obj, name) \
2399     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2400     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2401     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2402 
2403     if (d) {
2404         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2405         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2406         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2407 
2408         if (spapr) {
2409             /*
2410              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2411              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2412              * in the top 16 bits of the 64-bit LUN
2413              */
2414             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2415             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2416                                    (uint64_t)id << 48);
2417         } else if (virtio) {
2418             /*
2419              * We use SRP luns of the form 01000000 | (target << 8) | lun
2420              * in the top 32 bits of the 64-bit LUN
2421              * Note: the quote above is from SLOF and it is wrong,
2422              * the actual binding is:
2423              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2424              */
2425             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2426             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2427                                    (uint64_t)id << 32);
2428         } else if (usb) {
2429             /*
2430              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2431              * in the top 32 bits of the 64-bit LUN
2432              */
2433             unsigned usb_port = atoi(usb->port->path);
2434             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2435             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2436                                    (uint64_t)id << 32);
2437         }
2438     }
2439 
2440     /*
2441      * SLOF probes the USB devices, and if it recognizes that the device is a
2442      * storage device, it changes its name to "storage" instead of "usb-host",
2443      * and additionally adds a child node for the SCSI LUN, so the correct
2444      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2445      */
2446     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2447         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2448         if (usb_host_dev_is_scsi_storage(usbdev)) {
2449             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2450         }
2451     }
2452 
2453     if (phb) {
2454         /* Replace "pci" with "pci@800000020000000" */
2455         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2456     }
2457 
2458     return NULL;
2459 }
2460 
2461 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2462 {
2463     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2464 
2465     return g_strdup(spapr->kvm_type);
2466 }
2467 
2468 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2469 {
2470     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2471 
2472     g_free(spapr->kvm_type);
2473     spapr->kvm_type = g_strdup(value);
2474 }
2475 
2476 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2477 {
2478     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2479 
2480     return spapr->use_hotplug_event_source;
2481 }
2482 
2483 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2484                                             Error **errp)
2485 {
2486     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2487 
2488     spapr->use_hotplug_event_source = value;
2489 }
2490 
2491 static void spapr_machine_initfn(Object *obj)
2492 {
2493     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2494 
2495     spapr->htab_fd = -1;
2496     spapr->use_hotplug_event_source = true;
2497     object_property_add_str(obj, "kvm-type",
2498                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2499     object_property_set_description(obj, "kvm-type",
2500                                     "Specifies the KVM virtualization mode (HV, PR)",
2501                                     NULL);
2502     object_property_add_bool(obj, "modern-hotplug-events",
2503                             spapr_get_modern_hotplug_events,
2504                             spapr_set_modern_hotplug_events,
2505                             NULL);
2506     object_property_set_description(obj, "modern-hotplug-events",
2507                                     "Use dedicated hotplug event mechanism in"
2508                                     " place of standard EPOW events when possible"
2509                                     " (required for memory hot-unplug support)",
2510                                     NULL);
2511 }
2512 
2513 static void spapr_machine_finalizefn(Object *obj)
2514 {
2515     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2516 
2517     g_free(spapr->kvm_type);
2518 }
2519 
2520 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2521 {
2522     cpu_synchronize_state(cs);
2523     ppc_cpu_do_system_reset(cs);
2524 }
2525 
2526 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2527 {
2528     CPUState *cs;
2529 
2530     CPU_FOREACH(cs) {
2531         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2532     }
2533 }
2534 
2535 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2536                            uint32_t node, bool dedicated_hp_event_source,
2537                            Error **errp)
2538 {
2539     sPAPRDRConnector *drc;
2540     sPAPRDRConnectorClass *drck;
2541     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2542     int i, fdt_offset, fdt_size;
2543     void *fdt;
2544     uint64_t addr = addr_start;
2545 
2546     for (i = 0; i < nr_lmbs; i++) {
2547         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2548                 addr/SPAPR_MEMORY_BLOCK_SIZE);
2549         g_assert(drc);
2550 
2551         fdt = create_device_tree(&fdt_size);
2552         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2553                                                 SPAPR_MEMORY_BLOCK_SIZE);
2554 
2555         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2556         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2557         addr += SPAPR_MEMORY_BLOCK_SIZE;
2558         if (!dev->hotplugged) {
2559             /* guests expect coldplugged LMBs to be pre-allocated */
2560             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2561             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2562         }
2563     }
2564     /* send hotplug notification to the
2565      * guest only in case of hotplugged memory
2566      */
2567     if (dev->hotplugged) {
2568         if (dedicated_hp_event_source) {
2569             drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2570                     addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2571             drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2572             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2573                                                    nr_lmbs,
2574                                                    drck->get_index(drc));
2575         } else {
2576             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2577                                            nr_lmbs);
2578         }
2579     }
2580 }
2581 
2582 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2583                               uint32_t node, Error **errp)
2584 {
2585     Error *local_err = NULL;
2586     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2587     PCDIMMDevice *dimm = PC_DIMM(dev);
2588     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2589     MemoryRegion *mr = ddc->get_memory_region(dimm);
2590     uint64_t align = memory_region_get_alignment(mr);
2591     uint64_t size = memory_region_size(mr);
2592     uint64_t addr;
2593     char *mem_dev;
2594 
2595     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2596         error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2597                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2598         goto out;
2599     }
2600 
2601     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2602     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2603         error_setg(&local_err, "Memory backend has bad page size. "
2604                    "Use 'memory-backend-file' with correct mem-path.");
2605         goto out;
2606     }
2607 
2608     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2609     if (local_err) {
2610         goto out;
2611     }
2612 
2613     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2614     if (local_err) {
2615         pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2616         goto out;
2617     }
2618 
2619     spapr_add_lmbs(dev, addr, size, node,
2620                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2621                    &error_abort);
2622 
2623 out:
2624     error_propagate(errp, local_err);
2625 }
2626 
2627 typedef struct sPAPRDIMMState {
2628     uint32_t nr_lmbs;
2629 } sPAPRDIMMState;
2630 
2631 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2632 {
2633     sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2634     HotplugHandler *hotplug_ctrl;
2635 
2636     if (--ds->nr_lmbs) {
2637         return;
2638     }
2639 
2640     g_free(ds);
2641 
2642     /*
2643      * Now that all the LMBs have been removed by the guest, call the
2644      * pc-dimm unplug handler to cleanup up the pc-dimm device.
2645      */
2646     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2647     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2648 }
2649 
2650 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2651                            Error **errp)
2652 {
2653     sPAPRDRConnector *drc;
2654     sPAPRDRConnectorClass *drck;
2655     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2656     int i;
2657     sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2658     uint64_t addr = addr_start;
2659 
2660     ds->nr_lmbs = nr_lmbs;
2661     for (i = 0; i < nr_lmbs; i++) {
2662         drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2663                 addr / SPAPR_MEMORY_BLOCK_SIZE);
2664         g_assert(drc);
2665 
2666         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2667         drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2668         addr += SPAPR_MEMORY_BLOCK_SIZE;
2669     }
2670 
2671     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2672                                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2673     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2674     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2675                                               nr_lmbs,
2676                                               drck->get_index(drc));
2677 }
2678 
2679 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2680                                 Error **errp)
2681 {
2682     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2683     PCDIMMDevice *dimm = PC_DIMM(dev);
2684     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2685     MemoryRegion *mr = ddc->get_memory_region(dimm);
2686 
2687     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2688     object_unparent(OBJECT(dev));
2689 }
2690 
2691 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2692                                         DeviceState *dev, Error **errp)
2693 {
2694     Error *local_err = NULL;
2695     PCDIMMDevice *dimm = PC_DIMM(dev);
2696     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2697     MemoryRegion *mr = ddc->get_memory_region(dimm);
2698     uint64_t size = memory_region_size(mr);
2699     uint64_t addr;
2700 
2701     addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2702     if (local_err) {
2703         goto out;
2704     }
2705 
2706     spapr_del_lmbs(dev, addr, size, &error_abort);
2707 out:
2708     error_propagate(errp, local_err);
2709 }
2710 
2711 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2712                                     sPAPRMachineState *spapr)
2713 {
2714     PowerPCCPU *cpu = POWERPC_CPU(cs);
2715     DeviceClass *dc = DEVICE_GET_CLASS(cs);
2716     int id = ppc_get_vcpu_dt_id(cpu);
2717     void *fdt;
2718     int offset, fdt_size;
2719     char *nodename;
2720 
2721     fdt = create_device_tree(&fdt_size);
2722     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2723     offset = fdt_add_subnode(fdt, 0, nodename);
2724 
2725     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2726     g_free(nodename);
2727 
2728     *fdt_offset = offset;
2729     return fdt;
2730 }
2731 
2732 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2733                               Error **errp)
2734 {
2735     MachineState *ms = MACHINE(qdev_get_machine());
2736     CPUCore *cc = CPU_CORE(dev);
2737     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2738 
2739     core_slot->cpu = NULL;
2740     object_unparent(OBJECT(dev));
2741 }
2742 
2743 static void spapr_core_release(DeviceState *dev, void *opaque)
2744 {
2745     HotplugHandler *hotplug_ctrl;
2746 
2747     hotplug_ctrl = qdev_get_hotplug_handler(dev);
2748     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2749 }
2750 
2751 static
2752 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2753                                Error **errp)
2754 {
2755     int index;
2756     sPAPRDRConnector *drc;
2757     sPAPRDRConnectorClass *drck;
2758     Error *local_err = NULL;
2759     CPUCore *cc = CPU_CORE(dev);
2760     int smt = kvmppc_smt_threads();
2761 
2762     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2763         error_setg(errp, "Unable to find CPU core with core-id: %d",
2764                    cc->core_id);
2765         return;
2766     }
2767     if (index == 0) {
2768         error_setg(errp, "Boot CPU core may not be unplugged");
2769         return;
2770     }
2771 
2772     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2773     g_assert(drc);
2774 
2775     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2776     drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2777     if (local_err) {
2778         error_propagate(errp, local_err);
2779         return;
2780     }
2781 
2782     spapr_hotplug_req_remove_by_index(drc);
2783 }
2784 
2785 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2786                             Error **errp)
2787 {
2788     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2789     MachineClass *mc = MACHINE_GET_CLASS(spapr);
2790     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2791     CPUCore *cc = CPU_CORE(dev);
2792     CPUState *cs = CPU(core->threads);
2793     sPAPRDRConnector *drc;
2794     Error *local_err = NULL;
2795     void *fdt = NULL;
2796     int fdt_offset = 0;
2797     int smt = kvmppc_smt_threads();
2798     CPUArchId *core_slot;
2799     int index;
2800 
2801     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2802     if (!core_slot) {
2803         error_setg(errp, "Unable to find CPU core with core-id: %d",
2804                    cc->core_id);
2805         return;
2806     }
2807     drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2808 
2809     g_assert(drc || !mc->has_hotpluggable_cpus);
2810 
2811     /*
2812      * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2813      * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2814      */
2815     if (dev->hotplugged) {
2816         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2817     }
2818 
2819     if (drc) {
2820         sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2821         drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2822         if (local_err) {
2823             g_free(fdt);
2824             error_propagate(errp, local_err);
2825             return;
2826         }
2827     }
2828 
2829     if (dev->hotplugged) {
2830         /*
2831          * Send hotplug notification interrupt to the guest only in case
2832          * of hotplugged CPUs.
2833          */
2834         spapr_hotplug_req_add_by_index(drc);
2835     } else {
2836         /*
2837          * Set the right DRC states for cold plugged CPU.
2838          */
2839         if (drc) {
2840             sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2841             drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2842             drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2843         }
2844     }
2845     core_slot->cpu = OBJECT(dev);
2846 }
2847 
2848 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2849                                 Error **errp)
2850 {
2851     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2852     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2853     Error *local_err = NULL;
2854     CPUCore *cc = CPU_CORE(dev);
2855     char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2856     const char *type = object_get_typename(OBJECT(dev));
2857     CPUArchId *core_slot;
2858     int index;
2859 
2860     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2861         error_setg(&local_err, "CPU hotplug not supported for this machine");
2862         goto out;
2863     }
2864 
2865     if (strcmp(base_core_type, type)) {
2866         error_setg(&local_err, "CPU core type should be %s", base_core_type);
2867         goto out;
2868     }
2869 
2870     if (cc->core_id % smp_threads) {
2871         error_setg(&local_err, "invalid core id %d", cc->core_id);
2872         goto out;
2873     }
2874 
2875     if (cc->nr_threads != smp_threads) {
2876         error_setg(errp, "invalid nr-threads %d, must be %d",
2877                    cc->nr_threads, smp_threads);
2878         return;
2879     }
2880 
2881     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2882     if (!core_slot) {
2883         error_setg(&local_err, "core id %d out of range", cc->core_id);
2884         goto out;
2885     }
2886 
2887     if (core_slot->cpu) {
2888         error_setg(&local_err, "core %d already populated", cc->core_id);
2889         goto out;
2890     }
2891 
2892 out:
2893     g_free(base_core_type);
2894     error_propagate(errp, local_err);
2895 }
2896 
2897 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2898                                       DeviceState *dev, Error **errp)
2899 {
2900     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2901 
2902     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2903         int node;
2904 
2905         if (!smc->dr_lmb_enabled) {
2906             error_setg(errp, "Memory hotplug not supported for this machine");
2907             return;
2908         }
2909         node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2910         if (*errp) {
2911             return;
2912         }
2913         if (node < 0 || node >= MAX_NODES) {
2914             error_setg(errp, "Invaild node %d", node);
2915             return;
2916         }
2917 
2918         /*
2919          * Currently PowerPC kernel doesn't allow hot-adding memory to
2920          * memory-less node, but instead will silently add the memory
2921          * to the first node that has some memory. This causes two
2922          * unexpected behaviours for the user.
2923          *
2924          * - Memory gets hotplugged to a different node than what the user
2925          *   specified.
2926          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2927          *   to memory-less node, a reboot will set things accordingly
2928          *   and the previously hotplugged memory now ends in the right node.
2929          *   This appears as if some memory moved from one node to another.
2930          *
2931          * So until kernel starts supporting memory hotplug to memory-less
2932          * nodes, just prevent such attempts upfront in QEMU.
2933          */
2934         if (nb_numa_nodes && !numa_info[node].node_mem) {
2935             error_setg(errp, "Can't hotplug memory to memory-less node %d",
2936                        node);
2937             return;
2938         }
2939 
2940         spapr_memory_plug(hotplug_dev, dev, node, errp);
2941     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2942         spapr_core_plug(hotplug_dev, dev, errp);
2943     }
2944 }
2945 
2946 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2947                                       DeviceState *dev, Error **errp)
2948 {
2949     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2950     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2951 
2952     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2953         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2954             spapr_memory_unplug(hotplug_dev, dev, errp);
2955         } else {
2956             error_setg(errp, "Memory hot unplug not supported for this guest");
2957         }
2958     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2959         if (!mc->has_hotpluggable_cpus) {
2960             error_setg(errp, "CPU hot unplug not supported on this machine");
2961             return;
2962         }
2963         spapr_core_unplug(hotplug_dev, dev, errp);
2964     }
2965 }
2966 
2967 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2968                                                 DeviceState *dev, Error **errp)
2969 {
2970     sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2971     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2972 
2973     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2974         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2975             spapr_memory_unplug_request(hotplug_dev, dev, errp);
2976         } else {
2977             /* NOTE: this means there is a window after guest reset, prior to
2978              * CAS negotiation, where unplug requests will fail due to the
2979              * capability not being detected yet. This is a bit different than
2980              * the case with PCI unplug, where the events will be queued and
2981              * eventually handled by the guest after boot
2982              */
2983             error_setg(errp, "Memory hot unplug not supported for this guest");
2984         }
2985     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2986         if (!mc->has_hotpluggable_cpus) {
2987             error_setg(errp, "CPU hot unplug not supported on this machine");
2988             return;
2989         }
2990         spapr_core_unplug_request(hotplug_dev, dev, errp);
2991     }
2992 }
2993 
2994 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2995                                           DeviceState *dev, Error **errp)
2996 {
2997     if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2998         spapr_core_pre_plug(hotplug_dev, dev, errp);
2999     }
3000 }
3001 
3002 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3003                                                  DeviceState *dev)
3004 {
3005     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3006         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3007         return HOTPLUG_HANDLER(machine);
3008     }
3009     return NULL;
3010 }
3011 
3012 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
3013 {
3014     /* Allocate to NUMA nodes on a "socket" basis (not that concept of
3015      * socket means much for the paravirtualized PAPR platform) */
3016     return cpu_index / smp_threads / smp_cores;
3017 }
3018 
3019 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3020 {
3021     int i;
3022     int spapr_max_cores = max_cpus / smp_threads;
3023     MachineClass *mc = MACHINE_GET_CLASS(machine);
3024 
3025     if (!mc->has_hotpluggable_cpus) {
3026         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3027     }
3028     if (machine->possible_cpus) {
3029         assert(machine->possible_cpus->len == spapr_max_cores);
3030         return machine->possible_cpus;
3031     }
3032 
3033     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3034                              sizeof(CPUArchId) * spapr_max_cores);
3035     machine->possible_cpus->len = spapr_max_cores;
3036     for (i = 0; i < machine->possible_cpus->len; i++) {
3037         int core_id = i * smp_threads;
3038 
3039         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3040         machine->possible_cpus->cpus[i].arch_id = core_id;
3041         machine->possible_cpus->cpus[i].props.has_core_id = true;
3042         machine->possible_cpus->cpus[i].props.core_id = core_id;
3043         /* TODO: add 'has_node/node' here to describe
3044            to which node core belongs */
3045     }
3046     return machine->possible_cpus;
3047 }
3048 
3049 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3050                                 uint64_t *buid, hwaddr *pio,
3051                                 hwaddr *mmio32, hwaddr *mmio64,
3052                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3053 {
3054     /*
3055      * New-style PHB window placement.
3056      *
3057      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3058      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3059      * windows.
3060      *
3061      * Some guest kernels can't work with MMIO windows above 1<<46
3062      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3063      *
3064      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3065      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3066      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3067      * 1TiB 64-bit MMIO windows for each PHB.
3068      */
3069     const uint64_t base_buid = 0x800000020000000ULL;
3070 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3071                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3072     int i;
3073 
3074     /* Sanity check natural alignments */
3075     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3076     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3077     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3078     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3079     /* Sanity check bounds */
3080     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3081                       SPAPR_PCI_MEM32_WIN_SIZE);
3082     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3083                       SPAPR_PCI_MEM64_WIN_SIZE);
3084 
3085     if (index >= SPAPR_MAX_PHBS) {
3086         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3087                    SPAPR_MAX_PHBS - 1);
3088         return;
3089     }
3090 
3091     *buid = base_buid + index;
3092     for (i = 0; i < n_dma; ++i) {
3093         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3094     }
3095 
3096     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3097     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3098     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3099 }
3100 
3101 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3102 {
3103     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3104 
3105     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3106 }
3107 
3108 static void spapr_ics_resend(XICSFabric *dev)
3109 {
3110     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3111 
3112     ics_resend(spapr->ics);
3113 }
3114 
3115 static ICPState *spapr_icp_get(XICSFabric *xi, int server)
3116 {
3117     sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
3118 
3119     return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
3120 }
3121 
3122 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3123                                  Monitor *mon)
3124 {
3125     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3126     int i;
3127 
3128     for (i = 0; i < spapr->nr_servers; i++) {
3129         icp_pic_print_info(&spapr->icps[i], mon);
3130     }
3131 
3132     ics_pic_print_info(spapr->ics, mon);
3133 }
3134 
3135 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3136 {
3137     MachineClass *mc = MACHINE_CLASS(oc);
3138     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3139     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3140     NMIClass *nc = NMI_CLASS(oc);
3141     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3142     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3143     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3144     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3145 
3146     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3147 
3148     /*
3149      * We set up the default / latest behaviour here.  The class_init
3150      * functions for the specific versioned machine types can override
3151      * these details for backwards compatibility
3152      */
3153     mc->init = ppc_spapr_init;
3154     mc->reset = ppc_spapr_reset;
3155     mc->block_default_type = IF_SCSI;
3156     mc->max_cpus = 1024;
3157     mc->no_parallel = 1;
3158     mc->default_boot_order = "";
3159     mc->default_ram_size = 512 * M_BYTE;
3160     mc->kvm_type = spapr_kvm_type;
3161     mc->has_dynamic_sysbus = true;
3162     mc->pci_allow_0_address = true;
3163     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3164     hc->pre_plug = spapr_machine_device_pre_plug;
3165     hc->plug = spapr_machine_device_plug;
3166     hc->unplug = spapr_machine_device_unplug;
3167     mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3168     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3169     hc->unplug_request = spapr_machine_device_unplug_request;
3170 
3171     smc->dr_lmb_enabled = true;
3172     smc->tcg_default_cpu = "POWER8";
3173     mc->has_hotpluggable_cpus = true;
3174     fwc->get_dev_path = spapr_get_fw_dev_path;
3175     nc->nmi_monitor_handler = spapr_nmi;
3176     smc->phb_placement = spapr_phb_placement;
3177     vhc->hypercall = emulate_spapr_hypercall;
3178     vhc->hpt_mask = spapr_hpt_mask;
3179     vhc->map_hptes = spapr_map_hptes;
3180     vhc->unmap_hptes = spapr_unmap_hptes;
3181     vhc->store_hpte = spapr_store_hpte;
3182     vhc->get_patbe = spapr_get_patbe;
3183     xic->ics_get = spapr_ics_get;
3184     xic->ics_resend = spapr_ics_resend;
3185     xic->icp_get = spapr_icp_get;
3186     ispc->print_info = spapr_pic_print_info;
3187     /* Force NUMA node memory size to be a multiple of
3188      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3189      * in which LMBs are represented and hot-added
3190      */
3191     mc->numa_mem_align_shift = 28;
3192 }
3193 
3194 static const TypeInfo spapr_machine_info = {
3195     .name          = TYPE_SPAPR_MACHINE,
3196     .parent        = TYPE_MACHINE,
3197     .abstract      = true,
3198     .instance_size = sizeof(sPAPRMachineState),
3199     .instance_init = spapr_machine_initfn,
3200     .instance_finalize = spapr_machine_finalizefn,
3201     .class_size    = sizeof(sPAPRMachineClass),
3202     .class_init    = spapr_machine_class_init,
3203     .interfaces = (InterfaceInfo[]) {
3204         { TYPE_FW_PATH_PROVIDER },
3205         { TYPE_NMI },
3206         { TYPE_HOTPLUG_HANDLER },
3207         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3208         { TYPE_XICS_FABRIC },
3209         { TYPE_INTERRUPT_STATS_PROVIDER },
3210         { }
3211     },
3212 };
3213 
3214 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3215     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3216                                                     void *data)      \
3217     {                                                                \
3218         MachineClass *mc = MACHINE_CLASS(oc);                        \
3219         spapr_machine_##suffix##_class_options(mc);                  \
3220         if (latest) {                                                \
3221             mc->alias = "pseries";                                   \
3222             mc->is_default = 1;                                      \
3223         }                                                            \
3224     }                                                                \
3225     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3226     {                                                                \
3227         MachineState *machine = MACHINE(obj);                        \
3228         spapr_machine_##suffix##_instance_options(machine);          \
3229     }                                                                \
3230     static const TypeInfo spapr_machine_##suffix##_info = {          \
3231         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3232         .parent = TYPE_SPAPR_MACHINE,                                \
3233         .class_init = spapr_machine_##suffix##_class_init,           \
3234         .instance_init = spapr_machine_##suffix##_instance_init,     \
3235     };                                                               \
3236     static void spapr_machine_register_##suffix(void)                \
3237     {                                                                \
3238         type_register(&spapr_machine_##suffix##_info);               \
3239     }                                                                \
3240     type_init(spapr_machine_register_##suffix)
3241 
3242 /*
3243  * pseries-2.10
3244  */
3245 static void spapr_machine_2_10_instance_options(MachineState *machine)
3246 {
3247 }
3248 
3249 static void spapr_machine_2_10_class_options(MachineClass *mc)
3250 {
3251     /* Defaults for the latest behaviour inherited from the base class */
3252 }
3253 
3254 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3255 
3256 /*
3257  * pseries-2.9
3258  */
3259 #define SPAPR_COMPAT_2_9                                               \
3260     HW_COMPAT_2_9
3261 
3262 static void spapr_machine_2_9_instance_options(MachineState *machine)
3263 {
3264     spapr_machine_2_10_instance_options(machine);
3265 }
3266 
3267 static void spapr_machine_2_9_class_options(MachineClass *mc)
3268 {
3269     spapr_machine_2_10_class_options(mc);
3270     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3271 }
3272 
3273 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3274 
3275 /*
3276  * pseries-2.8
3277  */
3278 #define SPAPR_COMPAT_2_8                                        \
3279     HW_COMPAT_2_8                                               \
3280     {                                                           \
3281         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
3282         .property = "pcie-extended-configuration-space",        \
3283         .value    = "off",                                      \
3284     },
3285 
3286 static void spapr_machine_2_8_instance_options(MachineState *machine)
3287 {
3288     spapr_machine_2_9_instance_options(machine);
3289 }
3290 
3291 static void spapr_machine_2_8_class_options(MachineClass *mc)
3292 {
3293     spapr_machine_2_9_class_options(mc);
3294     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3295     mc->numa_mem_align_shift = 23;
3296 }
3297 
3298 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3299 
3300 /*
3301  * pseries-2.7
3302  */
3303 #define SPAPR_COMPAT_2_7                            \
3304     HW_COMPAT_2_7                                   \
3305     {                                               \
3306         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3307         .property = "mem_win_size",                 \
3308         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3309     },                                              \
3310     {                                               \
3311         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
3312         .property = "mem64_win_size",               \
3313         .value    = "0",                            \
3314     },                                              \
3315     {                                               \
3316         .driver = TYPE_POWERPC_CPU,                 \
3317         .property = "pre-2.8-migration",            \
3318         .value    = "on",                           \
3319     },                                              \
3320     {                                               \
3321         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
3322         .property = "pre-2.8-migration",            \
3323         .value    = "on",                           \
3324     },
3325 
3326 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3327                               uint64_t *buid, hwaddr *pio,
3328                               hwaddr *mmio32, hwaddr *mmio64,
3329                               unsigned n_dma, uint32_t *liobns, Error **errp)
3330 {
3331     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3332     const uint64_t base_buid = 0x800000020000000ULL;
3333     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3334     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3335     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3336     const uint32_t max_index = 255;
3337     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3338 
3339     uint64_t ram_top = MACHINE(spapr)->ram_size;
3340     hwaddr phb0_base, phb_base;
3341     int i;
3342 
3343     /* Do we have hotpluggable memory? */
3344     if (MACHINE(spapr)->maxram_size > ram_top) {
3345         /* Can't just use maxram_size, because there may be an
3346          * alignment gap between normal and hotpluggable memory
3347          * regions */
3348         ram_top = spapr->hotplug_memory.base +
3349             memory_region_size(&spapr->hotplug_memory.mr);
3350     }
3351 
3352     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3353 
3354     if (index > max_index) {
3355         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3356                    max_index);
3357         return;
3358     }
3359 
3360     *buid = base_buid + index;
3361     for (i = 0; i < n_dma; ++i) {
3362         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3363     }
3364 
3365     phb_base = phb0_base + index * phb_spacing;
3366     *pio = phb_base + pio_offset;
3367     *mmio32 = phb_base + mmio_offset;
3368     /*
3369      * We don't set the 64-bit MMIO window, relying on the PHB's
3370      * fallback behaviour of automatically splitting a large "32-bit"
3371      * window into contiguous 32-bit and 64-bit windows
3372      */
3373 }
3374 
3375 static void spapr_machine_2_7_instance_options(MachineState *machine)
3376 {
3377     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3378 
3379     spapr_machine_2_8_instance_options(machine);
3380     spapr->use_hotplug_event_source = false;
3381 }
3382 
3383 static void spapr_machine_2_7_class_options(MachineClass *mc)
3384 {
3385     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3386 
3387     spapr_machine_2_8_class_options(mc);
3388     smc->tcg_default_cpu = "POWER7";
3389     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3390     smc->phb_placement = phb_placement_2_7;
3391 }
3392 
3393 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3394 
3395 /*
3396  * pseries-2.6
3397  */
3398 #define SPAPR_COMPAT_2_6 \
3399     HW_COMPAT_2_6 \
3400     { \
3401         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3402         .property = "ddw",\
3403         .value    = stringify(off),\
3404     },
3405 
3406 static void spapr_machine_2_6_instance_options(MachineState *machine)
3407 {
3408     spapr_machine_2_7_instance_options(machine);
3409 }
3410 
3411 static void spapr_machine_2_6_class_options(MachineClass *mc)
3412 {
3413     spapr_machine_2_7_class_options(mc);
3414     mc->has_hotpluggable_cpus = false;
3415     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3416 }
3417 
3418 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3419 
3420 /*
3421  * pseries-2.5
3422  */
3423 #define SPAPR_COMPAT_2_5 \
3424     HW_COMPAT_2_5 \
3425     { \
3426         .driver   = "spapr-vlan", \
3427         .property = "use-rx-buffer-pools", \
3428         .value    = "off", \
3429     },
3430 
3431 static void spapr_machine_2_5_instance_options(MachineState *machine)
3432 {
3433     spapr_machine_2_6_instance_options(machine);
3434 }
3435 
3436 static void spapr_machine_2_5_class_options(MachineClass *mc)
3437 {
3438     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3439 
3440     spapr_machine_2_6_class_options(mc);
3441     smc->use_ohci_by_default = true;
3442     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3443 }
3444 
3445 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3446 
3447 /*
3448  * pseries-2.4
3449  */
3450 #define SPAPR_COMPAT_2_4 \
3451         HW_COMPAT_2_4
3452 
3453 static void spapr_machine_2_4_instance_options(MachineState *machine)
3454 {
3455     spapr_machine_2_5_instance_options(machine);
3456 }
3457 
3458 static void spapr_machine_2_4_class_options(MachineClass *mc)
3459 {
3460     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3461 
3462     spapr_machine_2_5_class_options(mc);
3463     smc->dr_lmb_enabled = false;
3464     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3465 }
3466 
3467 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3468 
3469 /*
3470  * pseries-2.3
3471  */
3472 #define SPAPR_COMPAT_2_3 \
3473         HW_COMPAT_2_3 \
3474         {\
3475             .driver   = "spapr-pci-host-bridge",\
3476             .property = "dynamic-reconfiguration",\
3477             .value    = "off",\
3478         },
3479 
3480 static void spapr_machine_2_3_instance_options(MachineState *machine)
3481 {
3482     spapr_machine_2_4_instance_options(machine);
3483     savevm_skip_section_footers();
3484     global_state_set_optional();
3485     savevm_skip_configuration();
3486 }
3487 
3488 static void spapr_machine_2_3_class_options(MachineClass *mc)
3489 {
3490     spapr_machine_2_4_class_options(mc);
3491     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3492 }
3493 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3494 
3495 /*
3496  * pseries-2.2
3497  */
3498 
3499 #define SPAPR_COMPAT_2_2 \
3500         HW_COMPAT_2_2 \
3501         {\
3502             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3503             .property = "mem_win_size",\
3504             .value    = "0x20000000",\
3505         },
3506 
3507 static void spapr_machine_2_2_instance_options(MachineState *machine)
3508 {
3509     spapr_machine_2_3_instance_options(machine);
3510     machine->suppress_vmdesc = true;
3511 }
3512 
3513 static void spapr_machine_2_2_class_options(MachineClass *mc)
3514 {
3515     spapr_machine_2_3_class_options(mc);
3516     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3517 }
3518 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3519 
3520 /*
3521  * pseries-2.1
3522  */
3523 #define SPAPR_COMPAT_2_1 \
3524         HW_COMPAT_2_1
3525 
3526 static void spapr_machine_2_1_instance_options(MachineState *machine)
3527 {
3528     spapr_machine_2_2_instance_options(machine);
3529 }
3530 
3531 static void spapr_machine_2_1_class_options(MachineClass *mc)
3532 {
3533     spapr_machine_2_2_class_options(mc);
3534     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3535 }
3536 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3537 
3538 static void spapr_machine_register_types(void)
3539 {
3540     type_register_static(&spapr_machine_info);
3541 }
3542 
3543 type_init(spapr_machine_register_types)
3544