xref: /openbmc/qemu/hw/ppc/spapr.c (revision a8d25326)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/numa.h"
33 #include "sysemu/qtest.h"
34 #include "hw/hw.h"
35 #include "qemu/log.h"
36 #include "hw/fw-path-provider.h"
37 #include "elf.h"
38 #include "net/net.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/cpus.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_ppc.h"
43 #include "migration/misc.h"
44 #include "migration/global_state.h"
45 #include "migration/register.h"
46 #include "mmu-hash64.h"
47 #include "mmu-book3s-v3.h"
48 #include "cpu-models.h"
49 #include "qom/cpu.h"
50 
51 #include "hw/boards.h"
52 #include "hw/ppc/ppc.h"
53 #include "hw/loader.h"
54 
55 #include "hw/ppc/fdt.h"
56 #include "hw/ppc/spapr.h"
57 #include "hw/ppc/spapr_vio.h"
58 #include "hw/pci-host/spapr.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "exec/ram_addr.h"
68 #include "hw/usb.h"
69 #include "qemu/config-file.h"
70 #include "qemu/error-report.h"
71 #include "trace.h"
72 #include "hw/nmi.h"
73 #include "hw/intc/intc.h"
74 
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
78 
79 #include <libfdt.h>
80 
81 /* SLOF memory layout:
82  *
83  * SLOF raw image loaded at 0, copies its romfs right below the flat
84  * device-tree, then position SLOF itself 31M below that
85  *
86  * So we set FW_OVERHEAD to 40MB which should account for all of that
87  * and more
88  *
89  * We load our kernel at 4M, leaving space for SLOF initial image
90  */
91 #define FDT_MAX_SIZE            0x100000
92 #define RTAS_MAX_SIZE           0x10000
93 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE             0x400000
95 #define FW_FILE_NAME            "slof.bin"
96 #define FW_OVERHEAD             0x2800000
97 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
98 
99 #define MIN_RMA_SLOF            128UL
100 
101 #define PHANDLE_INTC            0x00001111
102 
103 /* These two functions implement the VCPU id numbering: one to compute them
104  * all and one to identify thread 0 of a VCORE. Any change to the first one
105  * is likely to have an impact on the second one, so let's keep them close.
106  */
107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
108 {
109     assert(spapr->vsmt);
110     return
111         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 }
113 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
114                                       PowerPCCPU *cpu)
115 {
116     assert(spapr->vsmt);
117     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
118 }
119 
120 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 {
122     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
123      * and newer QEMUs don't even have them. In both cases, we don't want
124      * to send anything on the wire.
125      */
126     return false;
127 }
128 
129 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
130     .name = "icp/server",
131     .version_id = 1,
132     .minimum_version_id = 1,
133     .needed = pre_2_10_vmstate_dummy_icp_needed,
134     .fields = (VMStateField[]) {
135         VMSTATE_UNUSED(4), /* uint32_t xirr */
136         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
137         VMSTATE_UNUSED(1), /* uint8_t mfrr */
138         VMSTATE_END_OF_LIST()
139     },
140 };
141 
142 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 {
144     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
145                      (void *)(uintptr_t) i);
146 }
147 
148 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 {
150     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
151                        (void *)(uintptr_t) i);
152 }
153 
154 int spapr_max_server_number(SpaprMachineState *spapr)
155 {
156     assert(spapr->vsmt);
157     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
158 }
159 
160 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
161                                   int smt_threads)
162 {
163     int i, ret = 0;
164     uint32_t servers_prop[smt_threads];
165     uint32_t gservers_prop[smt_threads * 2];
166     int index = spapr_get_vcpu_id(cpu);
167 
168     if (cpu->compat_pvr) {
169         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
170         if (ret < 0) {
171             return ret;
172         }
173     }
174 
175     /* Build interrupt servers and gservers properties */
176     for (i = 0; i < smt_threads; i++) {
177         servers_prop[i] = cpu_to_be32(index + i);
178         /* Hack, direct the group queues back to cpu 0 */
179         gservers_prop[i*2] = cpu_to_be32(index + i);
180         gservers_prop[i*2 + 1] = 0;
181     }
182     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
183                       servers_prop, sizeof(servers_prop));
184     if (ret < 0) {
185         return ret;
186     }
187     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
188                       gservers_prop, sizeof(gservers_prop));
189 
190     return ret;
191 }
192 
193 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 {
195     int index = spapr_get_vcpu_id(cpu);
196     uint32_t associativity[] = {cpu_to_be32(0x5),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(0x0),
199                                 cpu_to_be32(0x0),
200                                 cpu_to_be32(cpu->node_id),
201                                 cpu_to_be32(index)};
202 
203     /* Advertise NUMA via ibm,associativity */
204     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
205                           sizeof(associativity));
206 }
207 
208 /* Populate the "ibm,pa-features" property */
209 static void spapr_populate_pa_features(SpaprMachineState *spapr,
210                                        PowerPCCPU *cpu,
211                                        void *fdt, int offset,
212                                        bool legacy_guest)
213 {
214     uint8_t pa_features_206[] = { 6, 0,
215         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
216     uint8_t pa_features_207[] = { 24, 0,
217         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
218         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
219         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
220         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
221     uint8_t pa_features_300[] = { 66, 0,
222         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
223         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
224         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225         /* 6: DS207 */
226         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227         /* 16: Vector */
228         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
229         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
231         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
232         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
233         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
234         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
235         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
237         /* 42: PM, 44: PC RA, 46: SC vec'd */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
239         /* 48: SIMD, 50: QP BFP, 52: String */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
241         /* 54: DecFP, 56: DecI, 58: SHA */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
243         /* 60: NM atomic, 62: RNG */
244         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245     };
246     uint8_t *pa_features = NULL;
247     size_t pa_size;
248 
249     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
250         pa_features = pa_features_206;
251         pa_size = sizeof(pa_features_206);
252     }
253     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
254         pa_features = pa_features_207;
255         pa_size = sizeof(pa_features_207);
256     }
257     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
258         pa_features = pa_features_300;
259         pa_size = sizeof(pa_features_300);
260     }
261     if (!pa_features) {
262         return;
263     }
264 
265     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266         /*
267          * Note: we keep CI large pages off by default because a 64K capable
268          * guest provisioned with large pages might otherwise try to map a qemu
269          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
270          * even if that qemu runs on a 4k host.
271          * We dd this bit back here if we are confident this is not an issue
272          */
273         pa_features[3] |= 0x20;
274     }
275     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
276         pa_features[24] |= 0x80;    /* Transactional memory support */
277     }
278     if (legacy_guest && pa_size > 40) {
279         /* Workaround for broken kernels that attempt (guest) radix
280          * mode when they can't handle it, if they see the radix bit set
281          * in pa-features. So hide it from them. */
282         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
283     }
284 
285     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
286 }
287 
288 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
289 {
290     int ret = 0, offset, cpus_offset;
291     CPUState *cs;
292     char cpu_model[32];
293     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 
295     CPU_FOREACH(cs) {
296         PowerPCCPU *cpu = POWERPC_CPU(cs);
297         DeviceClass *dc = DEVICE_GET_CLASS(cs);
298         int index = spapr_get_vcpu_id(cpu);
299         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 
301         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
302             continue;
303         }
304 
305         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 
307         cpus_offset = fdt_path_offset(fdt, "/cpus");
308         if (cpus_offset < 0) {
309             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
310             if (cpus_offset < 0) {
311                 return cpus_offset;
312             }
313         }
314         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
315         if (offset < 0) {
316             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
317             if (offset < 0) {
318                 return offset;
319             }
320         }
321 
322         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
323                           pft_size_prop, sizeof(pft_size_prop));
324         if (ret < 0) {
325             return ret;
326         }
327 
328         if (nb_numa_nodes > 1) {
329             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
330             if (ret < 0) {
331                 return ret;
332             }
333         }
334 
335         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
336         if (ret < 0) {
337             return ret;
338         }
339 
340         spapr_populate_pa_features(spapr, cpu, fdt, offset,
341                                    spapr->cas_legacy_guest_workaround);
342     }
343     return ret;
344 }
345 
346 static hwaddr spapr_node0_size(MachineState *machine)
347 {
348     if (nb_numa_nodes) {
349         int i;
350         for (i = 0; i < nb_numa_nodes; ++i) {
351             if (numa_info[i].node_mem) {
352                 return MIN(pow2floor(numa_info[i].node_mem),
353                            machine->ram_size);
354             }
355         }
356     }
357     return machine->ram_size;
358 }
359 
360 static void add_str(GString *s, const gchar *s1)
361 {
362     g_string_append_len(s, s1, strlen(s1) + 1);
363 }
364 
365 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
366                                        hwaddr size)
367 {
368     uint32_t associativity[] = {
369         cpu_to_be32(0x4), /* length */
370         cpu_to_be32(0x0), cpu_to_be32(0x0),
371         cpu_to_be32(0x0), cpu_to_be32(nodeid)
372     };
373     char mem_name[32];
374     uint64_t mem_reg_property[2];
375     int off;
376 
377     mem_reg_property[0] = cpu_to_be64(start);
378     mem_reg_property[1] = cpu_to_be64(size);
379 
380     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
381     off = fdt_add_subnode(fdt, 0, mem_name);
382     _FDT(off);
383     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
384     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
385                       sizeof(mem_reg_property))));
386     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
387                       sizeof(associativity))));
388     return off;
389 }
390 
391 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
392 {
393     MachineState *machine = MACHINE(spapr);
394     hwaddr mem_start, node_size;
395     int i, nb_nodes = nb_numa_nodes;
396     NodeInfo *nodes = numa_info;
397     NodeInfo ramnode;
398 
399     /* No NUMA nodes, assume there is just one node with whole RAM */
400     if (!nb_numa_nodes) {
401         nb_nodes = 1;
402         ramnode.node_mem = machine->ram_size;
403         nodes = &ramnode;
404     }
405 
406     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
407         if (!nodes[i].node_mem) {
408             continue;
409         }
410         if (mem_start >= machine->ram_size) {
411             node_size = 0;
412         } else {
413             node_size = nodes[i].node_mem;
414             if (node_size > machine->ram_size - mem_start) {
415                 node_size = machine->ram_size - mem_start;
416             }
417         }
418         if (!mem_start) {
419             /* spapr_machine_init() checks for rma_size <= node0_size
420              * already */
421             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
422             mem_start += spapr->rma_size;
423             node_size -= spapr->rma_size;
424         }
425         for ( ; node_size; ) {
426             hwaddr sizetmp = pow2floor(node_size);
427 
428             /* mem_start != 0 here */
429             if (ctzl(mem_start) < ctzl(sizetmp)) {
430                 sizetmp = 1ULL << ctzl(mem_start);
431             }
432 
433             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
434             node_size -= sizetmp;
435             mem_start += sizetmp;
436         }
437     }
438 
439     return 0;
440 }
441 
442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443                                   SpaprMachineState *spapr)
444 {
445     PowerPCCPU *cpu = POWERPC_CPU(cs);
446     CPUPPCState *env = &cpu->env;
447     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448     int index = spapr_get_vcpu_id(cpu);
449     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450                        0xffffffff, 0xffffffff};
451     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452         : SPAPR_TIMEBASE_FREQ;
453     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454     uint32_t page_sizes_prop[64];
455     size_t page_sizes_prop_size;
456     uint32_t vcpus_per_socket = smp_threads * smp_cores;
457     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
459     SpaprDrc *drc;
460     int drc_index;
461     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
462     int i;
463 
464     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
465     if (drc) {
466         drc_index = spapr_drc_index(drc);
467         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
468     }
469 
470     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
471     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 
473     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
474     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
475                            env->dcache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
477                            env->dcache_line_size)));
478     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
479                            env->icache_line_size)));
480     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
481                            env->icache_line_size)));
482 
483     if (pcc->l1_dcache_size) {
484         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
485                                pcc->l1_dcache_size)));
486     } else {
487         warn_report("Unknown L1 dcache size for cpu");
488     }
489     if (pcc->l1_icache_size) {
490         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
491                                pcc->l1_icache_size)));
492     } else {
493         warn_report("Unknown L1 icache size for cpu");
494     }
495 
496     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
497     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
498     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
499     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
500     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
501     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 
503     if (env->spr_cb[SPR_PURR].oea_read) {
504         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
505     }
506     if (env->spr_cb[SPR_SPURR].oea_read) {
507         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
508     }
509 
510     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
511         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
512                           segs, sizeof(segs))));
513     }
514 
515     /* Advertise VSX (vector extensions) if available
516      *   1               == VMX / Altivec available
517      *   2               == VSX available
518      *
519      * Only CPUs for which we create core types in spapr_cpu_core.c
520      * are possible, and all of those have VMX */
521     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
522         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
523     } else {
524         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
525     }
526 
527     /* Advertise DFP (Decimal Floating Point) if available
528      *   0 / no property == no DFP
529      *   1               == DFP available */
530     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
531         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
532     }
533 
534     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
535                                                       sizeof(page_sizes_prop));
536     if (page_sizes_prop_size) {
537         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
538                           page_sizes_prop, page_sizes_prop_size)));
539     }
540 
541     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
542 
543     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
544                            cs->cpu_index / vcpus_per_socket)));
545 
546     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
547                       pft_size_prop, sizeof(pft_size_prop))));
548 
549     if (nb_numa_nodes > 1) {
550         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
551     }
552 
553     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
554 
555     if (pcc->radix_page_info) {
556         for (i = 0; i < pcc->radix_page_info->count; i++) {
557             radix_AP_encodings[i] =
558                 cpu_to_be32(pcc->radix_page_info->entries[i]);
559         }
560         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
561                           radix_AP_encodings,
562                           pcc->radix_page_info->count *
563                           sizeof(radix_AP_encodings[0]))));
564     }
565 
566     /*
567      * We set this property to let the guest know that it can use the large
568      * decrementer and its width in bits.
569      */
570     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
571         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
572                               pcc->lrg_decr_bits)));
573 }
574 
575 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
576 {
577     CPUState **rev;
578     CPUState *cs;
579     int n_cpus;
580     int cpus_offset;
581     char *nodename;
582     int i;
583 
584     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
585     _FDT(cpus_offset);
586     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
587     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
588 
589     /*
590      * We walk the CPUs in reverse order to ensure that CPU DT nodes
591      * created by fdt_add_subnode() end up in the right order in FDT
592      * for the guest kernel the enumerate the CPUs correctly.
593      *
594      * The CPU list cannot be traversed in reverse order, so we need
595      * to do extra work.
596      */
597     n_cpus = 0;
598     rev = NULL;
599     CPU_FOREACH(cs) {
600         rev = g_renew(CPUState *, rev, n_cpus + 1);
601         rev[n_cpus++] = cs;
602     }
603 
604     for (i = n_cpus - 1; i >= 0; i--) {
605         CPUState *cs = rev[i];
606         PowerPCCPU *cpu = POWERPC_CPU(cs);
607         int index = spapr_get_vcpu_id(cpu);
608         DeviceClass *dc = DEVICE_GET_CLASS(cs);
609         int offset;
610 
611         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
612             continue;
613         }
614 
615         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
616         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
617         g_free(nodename);
618         _FDT(offset);
619         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
620     }
621 
622     g_free(rev);
623 }
624 
625 static int spapr_rng_populate_dt(void *fdt)
626 {
627     int node;
628     int ret;
629 
630     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
631     if (node <= 0) {
632         return -1;
633     }
634     ret = fdt_setprop_string(fdt, node, "device_type",
635                              "ibm,platform-facilities");
636     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
637     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
638 
639     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
640     if (node <= 0) {
641         return -1;
642     }
643     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
644 
645     return ret ? -1 : 0;
646 }
647 
648 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
649 {
650     MemoryDeviceInfoList *info;
651 
652     for (info = list; info; info = info->next) {
653         MemoryDeviceInfo *value = info->value;
654 
655         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
656             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
657 
658             if (addr >= pcdimm_info->addr &&
659                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
660                 return pcdimm_info->node;
661             }
662         }
663     }
664 
665     return -1;
666 }
667 
668 struct sPAPRDrconfCellV2 {
669      uint32_t seq_lmbs;
670      uint64_t base_addr;
671      uint32_t drc_index;
672      uint32_t aa_index;
673      uint32_t flags;
674 } QEMU_PACKED;
675 
676 typedef struct DrconfCellQueue {
677     struct sPAPRDrconfCellV2 cell;
678     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
679 } DrconfCellQueue;
680 
681 static DrconfCellQueue *
682 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
683                       uint32_t drc_index, uint32_t aa_index,
684                       uint32_t flags)
685 {
686     DrconfCellQueue *elem;
687 
688     elem = g_malloc0(sizeof(*elem));
689     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
690     elem->cell.base_addr = cpu_to_be64(base_addr);
691     elem->cell.drc_index = cpu_to_be32(drc_index);
692     elem->cell.aa_index = cpu_to_be32(aa_index);
693     elem->cell.flags = cpu_to_be32(flags);
694 
695     return elem;
696 }
697 
698 /* ibm,dynamic-memory-v2 */
699 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
700                                    int offset, MemoryDeviceInfoList *dimms)
701 {
702     MachineState *machine = MACHINE(spapr);
703     uint8_t *int_buf, *cur_index;
704     int ret;
705     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
706     uint64_t addr, cur_addr, size;
707     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
708     uint64_t mem_end = machine->device_memory->base +
709                        memory_region_size(&machine->device_memory->mr);
710     uint32_t node, buf_len, nr_entries = 0;
711     SpaprDrc *drc;
712     DrconfCellQueue *elem, *next;
713     MemoryDeviceInfoList *info;
714     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
715         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
716 
717     /* Entry to cover RAM and the gap area */
718     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
719                                  SPAPR_LMB_FLAGS_RESERVED |
720                                  SPAPR_LMB_FLAGS_DRC_INVALID);
721     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
722     nr_entries++;
723 
724     cur_addr = machine->device_memory->base;
725     for (info = dimms; info; info = info->next) {
726         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
727 
728         addr = di->addr;
729         size = di->size;
730         node = di->node;
731 
732         /* Entry for hot-pluggable area */
733         if (cur_addr < addr) {
734             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
735             g_assert(drc);
736             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
737                                          cur_addr, spapr_drc_index(drc), -1, 0);
738             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
739             nr_entries++;
740         }
741 
742         /* Entry for DIMM */
743         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
744         g_assert(drc);
745         elem = spapr_get_drconf_cell(size / lmb_size, addr,
746                                      spapr_drc_index(drc), node,
747                                      SPAPR_LMB_FLAGS_ASSIGNED);
748         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
749         nr_entries++;
750         cur_addr = addr + size;
751     }
752 
753     /* Entry for remaining hotpluggable area */
754     if (cur_addr < mem_end) {
755         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
756         g_assert(drc);
757         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
758                                      cur_addr, spapr_drc_index(drc), -1, 0);
759         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
760         nr_entries++;
761     }
762 
763     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
764     int_buf = cur_index = g_malloc0(buf_len);
765     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
766     cur_index += sizeof(nr_entries);
767 
768     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
769         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
770         cur_index += sizeof(elem->cell);
771         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
772         g_free(elem);
773     }
774 
775     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
776     g_free(int_buf);
777     if (ret < 0) {
778         return -1;
779     }
780     return 0;
781 }
782 
783 /* ibm,dynamic-memory */
784 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
785                                    int offset, MemoryDeviceInfoList *dimms)
786 {
787     MachineState *machine = MACHINE(spapr);
788     int i, ret;
789     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
790     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
791     uint32_t nr_lmbs = (machine->device_memory->base +
792                        memory_region_size(&machine->device_memory->mr)) /
793                        lmb_size;
794     uint32_t *int_buf, *cur_index, buf_len;
795 
796     /*
797      * Allocate enough buffer size to fit in ibm,dynamic-memory
798      */
799     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
800     cur_index = int_buf = g_malloc0(buf_len);
801     int_buf[0] = cpu_to_be32(nr_lmbs);
802     cur_index++;
803     for (i = 0; i < nr_lmbs; i++) {
804         uint64_t addr = i * lmb_size;
805         uint32_t *dynamic_memory = cur_index;
806 
807         if (i >= device_lmb_start) {
808             SpaprDrc *drc;
809 
810             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
811             g_assert(drc);
812 
813             dynamic_memory[0] = cpu_to_be32(addr >> 32);
814             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
815             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
816             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
817             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
818             if (memory_region_present(get_system_memory(), addr)) {
819                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
820             } else {
821                 dynamic_memory[5] = cpu_to_be32(0);
822             }
823         } else {
824             /*
825              * LMB information for RMA, boot time RAM and gap b/n RAM and
826              * device memory region -- all these are marked as reserved
827              * and as having no valid DRC.
828              */
829             dynamic_memory[0] = cpu_to_be32(addr >> 32);
830             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
831             dynamic_memory[2] = cpu_to_be32(0);
832             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
833             dynamic_memory[4] = cpu_to_be32(-1);
834             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
835                                             SPAPR_LMB_FLAGS_DRC_INVALID);
836         }
837 
838         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
839     }
840     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
841     g_free(int_buf);
842     if (ret < 0) {
843         return -1;
844     }
845     return 0;
846 }
847 
848 /*
849  * Adds ibm,dynamic-reconfiguration-memory node.
850  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
851  * of this device tree node.
852  */
853 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
854 {
855     MachineState *machine = MACHINE(spapr);
856     int ret, i, offset;
857     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
858     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
859     uint32_t *int_buf, *cur_index, buf_len;
860     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
861     MemoryDeviceInfoList *dimms = NULL;
862 
863     /*
864      * Don't create the node if there is no device memory
865      */
866     if (machine->ram_size == machine->maxram_size) {
867         return 0;
868     }
869 
870     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
871 
872     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
873                     sizeof(prop_lmb_size));
874     if (ret < 0) {
875         return ret;
876     }
877 
878     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
879     if (ret < 0) {
880         return ret;
881     }
882 
883     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
884     if (ret < 0) {
885         return ret;
886     }
887 
888     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
889     dimms = qmp_memory_device_list();
890     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
891         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
892     } else {
893         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
894     }
895     qapi_free_MemoryDeviceInfoList(dimms);
896 
897     if (ret < 0) {
898         return ret;
899     }
900 
901     /* ibm,associativity-lookup-arrays */
902     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
903     cur_index = int_buf = g_malloc0(buf_len);
904     int_buf[0] = cpu_to_be32(nr_nodes);
905     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
906     cur_index += 2;
907     for (i = 0; i < nr_nodes; i++) {
908         uint32_t associativity[] = {
909             cpu_to_be32(0x0),
910             cpu_to_be32(0x0),
911             cpu_to_be32(0x0),
912             cpu_to_be32(i)
913         };
914         memcpy(cur_index, associativity, sizeof(associativity));
915         cur_index += 4;
916     }
917     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
918             (cur_index - int_buf) * sizeof(uint32_t));
919     g_free(int_buf);
920 
921     return ret;
922 }
923 
924 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
925                                 SpaprOptionVector *ov5_updates)
926 {
927     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
928     int ret = 0, offset;
929 
930     /* Generate ibm,dynamic-reconfiguration-memory node if required */
931     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
932         g_assert(smc->dr_lmb_enabled);
933         ret = spapr_populate_drconf_memory(spapr, fdt);
934         if (ret) {
935             goto out;
936         }
937     }
938 
939     offset = fdt_path_offset(fdt, "/chosen");
940     if (offset < 0) {
941         offset = fdt_add_subnode(fdt, 0, "chosen");
942         if (offset < 0) {
943             return offset;
944         }
945     }
946     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
947                                  "ibm,architecture-vec-5");
948 
949 out:
950     return ret;
951 }
952 
953 static bool spapr_hotplugged_dev_before_cas(void)
954 {
955     Object *drc_container, *obj;
956     ObjectProperty *prop;
957     ObjectPropertyIterator iter;
958 
959     drc_container = container_get(object_get_root(), "/dr-connector");
960     object_property_iter_init(&iter, drc_container);
961     while ((prop = object_property_iter_next(&iter))) {
962         if (!strstart(prop->type, "link<", NULL)) {
963             continue;
964         }
965         obj = object_property_get_link(drc_container, prop->name, NULL);
966         if (spapr_drc_needed(obj)) {
967             return true;
968         }
969     }
970     return false;
971 }
972 
973 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
974                                  target_ulong addr, target_ulong size,
975                                  SpaprOptionVector *ov5_updates)
976 {
977     void *fdt, *fdt_skel;
978     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
979 
980     if (spapr_hotplugged_dev_before_cas()) {
981         return 1;
982     }
983 
984     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
985         error_report("SLOF provided an unexpected CAS buffer size "
986                      TARGET_FMT_lu " (min: %zu, max: %u)",
987                      size, sizeof(hdr), FW_MAX_SIZE);
988         exit(EXIT_FAILURE);
989     }
990 
991     size -= sizeof(hdr);
992 
993     /* Create skeleton */
994     fdt_skel = g_malloc0(size);
995     _FDT((fdt_create(fdt_skel, size)));
996     _FDT((fdt_finish_reservemap(fdt_skel)));
997     _FDT((fdt_begin_node(fdt_skel, "")));
998     _FDT((fdt_end_node(fdt_skel)));
999     _FDT((fdt_finish(fdt_skel)));
1000     fdt = g_malloc0(size);
1001     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1002     g_free(fdt_skel);
1003 
1004     /* Fixup cpu nodes */
1005     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1006 
1007     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1008         return -1;
1009     }
1010 
1011     /* Pack resulting tree */
1012     _FDT((fdt_pack(fdt)));
1013 
1014     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1015         trace_spapr_cas_failed(size);
1016         return -1;
1017     }
1018 
1019     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1020     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1021     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1022     g_free(fdt);
1023 
1024     return 0;
1025 }
1026 
1027 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1028 {
1029     int rtas;
1030     GString *hypertas = g_string_sized_new(256);
1031     GString *qemu_hypertas = g_string_sized_new(256);
1032     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1033     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1034         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1035     uint32_t lrdr_capacity[] = {
1036         cpu_to_be32(max_device_addr >> 32),
1037         cpu_to_be32(max_device_addr & 0xffffffff),
1038         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1039         cpu_to_be32(max_cpus / smp_threads),
1040     };
1041     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1042     uint32_t maxdomains[] = {
1043         cpu_to_be32(4),
1044         maxdomain,
1045         maxdomain,
1046         maxdomain,
1047         cpu_to_be32(spapr->gpu_numa_id),
1048     };
1049 
1050     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1051 
1052     /* hypertas */
1053     add_str(hypertas, "hcall-pft");
1054     add_str(hypertas, "hcall-term");
1055     add_str(hypertas, "hcall-dabr");
1056     add_str(hypertas, "hcall-interrupt");
1057     add_str(hypertas, "hcall-tce");
1058     add_str(hypertas, "hcall-vio");
1059     add_str(hypertas, "hcall-splpar");
1060     add_str(hypertas, "hcall-bulk");
1061     add_str(hypertas, "hcall-set-mode");
1062     add_str(hypertas, "hcall-sprg0");
1063     add_str(hypertas, "hcall-copy");
1064     add_str(hypertas, "hcall-debug");
1065     add_str(hypertas, "hcall-vphn");
1066     add_str(qemu_hypertas, "hcall-memop1");
1067 
1068     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1069         add_str(hypertas, "hcall-multi-tce");
1070     }
1071 
1072     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1073         add_str(hypertas, "hcall-hpt-resize");
1074     }
1075 
1076     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1077                      hypertas->str, hypertas->len));
1078     g_string_free(hypertas, TRUE);
1079     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1080                      qemu_hypertas->str, qemu_hypertas->len));
1081     g_string_free(qemu_hypertas, TRUE);
1082 
1083     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1084                      refpoints, sizeof(refpoints)));
1085 
1086     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1087                      maxdomains, sizeof(maxdomains)));
1088 
1089     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1090                           RTAS_ERROR_LOG_MAX));
1091     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1092                           RTAS_EVENT_SCAN_RATE));
1093 
1094     g_assert(msi_nonbroken);
1095     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1096 
1097     /*
1098      * According to PAPR, rtas ibm,os-term does not guarantee a return
1099      * back to the guest cpu.
1100      *
1101      * While an additional ibm,extended-os-term property indicates
1102      * that rtas call return will always occur. Set this property.
1103      */
1104     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1105 
1106     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1107                      lrdr_capacity, sizeof(lrdr_capacity)));
1108 
1109     spapr_dt_rtas_tokens(fdt, rtas);
1110 }
1111 
1112 /*
1113  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1114  * and the XIVE features that the guest may request and thus the valid
1115  * values for bytes 23..26 of option vector 5:
1116  */
1117 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1118                                           int chosen)
1119 {
1120     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1121 
1122     char val[2 * 4] = {
1123         23, spapr->irq->ov5, /* Xive mode. */
1124         24, 0x00, /* Hash/Radix, filled in below. */
1125         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1126         26, 0x40, /* Radix options: GTSE == yes. */
1127     };
1128 
1129     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1130                           first_ppc_cpu->compat_pvr)) {
1131         /*
1132          * If we're in a pre POWER9 compat mode then the guest should
1133          * do hash and use the legacy interrupt mode
1134          */
1135         val[1] = 0x00; /* XICS */
1136         val[3] = 0x00; /* Hash */
1137     } else if (kvm_enabled()) {
1138         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1139             val[3] = 0x80; /* OV5_MMU_BOTH */
1140         } else if (kvmppc_has_cap_mmu_radix()) {
1141             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1142         } else {
1143             val[3] = 0x00; /* Hash */
1144         }
1145     } else {
1146         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1147         val[3] = 0xC0;
1148     }
1149     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1150                      val, sizeof(val)));
1151 }
1152 
1153 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1154 {
1155     MachineState *machine = MACHINE(spapr);
1156     int chosen;
1157     const char *boot_device = machine->boot_order;
1158     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1159     size_t cb = 0;
1160     char *bootlist = get_boot_devices_list(&cb);
1161 
1162     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1163 
1164     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1165     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1166                           spapr->initrd_base));
1167     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1168                           spapr->initrd_base + spapr->initrd_size));
1169 
1170     if (spapr->kernel_size) {
1171         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1172                               cpu_to_be64(spapr->kernel_size) };
1173 
1174         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1175                          &kprop, sizeof(kprop)));
1176         if (spapr->kernel_le) {
1177             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1178         }
1179     }
1180     if (boot_menu) {
1181         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1182     }
1183     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1184     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1185     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1186 
1187     if (cb && bootlist) {
1188         int i;
1189 
1190         for (i = 0; i < cb; i++) {
1191             if (bootlist[i] == '\n') {
1192                 bootlist[i] = ' ';
1193             }
1194         }
1195         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1196     }
1197 
1198     if (boot_device && strlen(boot_device)) {
1199         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1200     }
1201 
1202     if (!spapr->has_graphics && stdout_path) {
1203         /*
1204          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1205          * kernel. New platforms should only use the "stdout-path" property. Set
1206          * the new property and continue using older property to remain
1207          * compatible with the existing firmware.
1208          */
1209         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1210         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1211     }
1212 
1213     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1214 
1215     g_free(stdout_path);
1216     g_free(bootlist);
1217 }
1218 
1219 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1220 {
1221     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1222      * KVM to work under pHyp with some guest co-operation */
1223     int hypervisor;
1224     uint8_t hypercall[16];
1225 
1226     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1227     /* indicate KVM hypercall interface */
1228     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1229     if (kvmppc_has_cap_fixup_hcalls()) {
1230         /*
1231          * Older KVM versions with older guest kernels were broken
1232          * with the magic page, don't allow the guest to map it.
1233          */
1234         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1235                                   sizeof(hypercall))) {
1236             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1237                              hypercall, sizeof(hypercall)));
1238         }
1239     }
1240 }
1241 
1242 static void *spapr_build_fdt(SpaprMachineState *spapr)
1243 {
1244     MachineState *machine = MACHINE(spapr);
1245     MachineClass *mc = MACHINE_GET_CLASS(machine);
1246     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1247     int ret;
1248     void *fdt;
1249     SpaprPhbState *phb;
1250     char *buf;
1251 
1252     fdt = g_malloc0(FDT_MAX_SIZE);
1253     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1254 
1255     /* Root node */
1256     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1257     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1258     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1259 
1260     /* Guest UUID & Name*/
1261     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1262     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1263     if (qemu_uuid_set) {
1264         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1265     }
1266     g_free(buf);
1267 
1268     if (qemu_get_vm_name()) {
1269         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1270                                 qemu_get_vm_name()));
1271     }
1272 
1273     /* Host Model & Serial Number */
1274     if (spapr->host_model) {
1275         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1276     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1277         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1278         g_free(buf);
1279     }
1280 
1281     if (spapr->host_serial) {
1282         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1283     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1284         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1285         g_free(buf);
1286     }
1287 
1288     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1289     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1290 
1291     /* /interrupt controller */
1292     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1293                           PHANDLE_INTC);
1294 
1295     ret = spapr_populate_memory(spapr, fdt);
1296     if (ret < 0) {
1297         error_report("couldn't setup memory nodes in fdt");
1298         exit(1);
1299     }
1300 
1301     /* /vdevice */
1302     spapr_dt_vdevice(spapr->vio_bus, fdt);
1303 
1304     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1305         ret = spapr_rng_populate_dt(fdt);
1306         if (ret < 0) {
1307             error_report("could not set up rng device in the fdt");
1308             exit(1);
1309         }
1310     }
1311 
1312     QLIST_FOREACH(phb, &spapr->phbs, list) {
1313         ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1314                                     spapr->irq->nr_msis, NULL);
1315         if (ret < 0) {
1316             error_report("couldn't setup PCI devices in fdt");
1317             exit(1);
1318         }
1319     }
1320 
1321     /* cpus */
1322     spapr_populate_cpus_dt_node(fdt, spapr);
1323 
1324     if (smc->dr_lmb_enabled) {
1325         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1326     }
1327 
1328     if (mc->has_hotpluggable_cpus) {
1329         int offset = fdt_path_offset(fdt, "/cpus");
1330         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1331                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1332         if (ret < 0) {
1333             error_report("Couldn't set up CPU DR device tree properties");
1334             exit(1);
1335         }
1336     }
1337 
1338     /* /event-sources */
1339     spapr_dt_events(spapr, fdt);
1340 
1341     /* /rtas */
1342     spapr_dt_rtas(spapr, fdt);
1343 
1344     /* /chosen */
1345     spapr_dt_chosen(spapr, fdt);
1346 
1347     /* /hypervisor */
1348     if (kvm_enabled()) {
1349         spapr_dt_hypervisor(spapr, fdt);
1350     }
1351 
1352     /* Build memory reserve map */
1353     if (spapr->kernel_size) {
1354         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1355     }
1356     if (spapr->initrd_size) {
1357         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1358     }
1359 
1360     /* ibm,client-architecture-support updates */
1361     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1362     if (ret < 0) {
1363         error_report("couldn't setup CAS properties fdt");
1364         exit(1);
1365     }
1366 
1367     if (smc->dr_phb_enabled) {
1368         ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1369         if (ret < 0) {
1370             error_report("Couldn't set up PHB DR device tree properties");
1371             exit(1);
1372         }
1373     }
1374 
1375     return fdt;
1376 }
1377 
1378 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1379 {
1380     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1381 }
1382 
1383 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1384                                     PowerPCCPU *cpu)
1385 {
1386     CPUPPCState *env = &cpu->env;
1387 
1388     /* The TCG path should also be holding the BQL at this point */
1389     g_assert(qemu_mutex_iothread_locked());
1390 
1391     if (msr_pr) {
1392         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1393         env->gpr[3] = H_PRIVILEGE;
1394     } else {
1395         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1396     }
1397 }
1398 
1399 struct LPCRSyncState {
1400     target_ulong value;
1401     target_ulong mask;
1402 };
1403 
1404 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1405 {
1406     struct LPCRSyncState *s = arg.host_ptr;
1407     PowerPCCPU *cpu = POWERPC_CPU(cs);
1408     CPUPPCState *env = &cpu->env;
1409     target_ulong lpcr;
1410 
1411     cpu_synchronize_state(cs);
1412     lpcr = env->spr[SPR_LPCR];
1413     lpcr &= ~s->mask;
1414     lpcr |= s->value;
1415     ppc_store_lpcr(cpu, lpcr);
1416 }
1417 
1418 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1419 {
1420     CPUState *cs;
1421     struct LPCRSyncState s = {
1422         .value = value,
1423         .mask = mask
1424     };
1425     CPU_FOREACH(cs) {
1426         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1427     }
1428 }
1429 
1430 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1431 {
1432     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1433 
1434     /* Copy PATE1:GR into PATE0:HR */
1435     entry->dw0 = spapr->patb_entry & PATE0_HR;
1436     entry->dw1 = spapr->patb_entry;
1437 }
1438 
1439 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1440 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1441 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1442 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1443 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1444 
1445 /*
1446  * Get the fd to access the kernel htab, re-opening it if necessary
1447  */
1448 static int get_htab_fd(SpaprMachineState *spapr)
1449 {
1450     Error *local_err = NULL;
1451 
1452     if (spapr->htab_fd >= 0) {
1453         return spapr->htab_fd;
1454     }
1455 
1456     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1457     if (spapr->htab_fd < 0) {
1458         error_report_err(local_err);
1459     }
1460 
1461     return spapr->htab_fd;
1462 }
1463 
1464 void close_htab_fd(SpaprMachineState *spapr)
1465 {
1466     if (spapr->htab_fd >= 0) {
1467         close(spapr->htab_fd);
1468     }
1469     spapr->htab_fd = -1;
1470 }
1471 
1472 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1473 {
1474     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 
1476     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1477 }
1478 
1479 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1480 {
1481     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1482 
1483     assert(kvm_enabled());
1484 
1485     if (!spapr->htab) {
1486         return 0;
1487     }
1488 
1489     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1490 }
1491 
1492 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1493                                                 hwaddr ptex, int n)
1494 {
1495     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1497 
1498     if (!spapr->htab) {
1499         /*
1500          * HTAB is controlled by KVM. Fetch into temporary buffer
1501          */
1502         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1503         kvmppc_read_hptes(hptes, ptex, n);
1504         return hptes;
1505     }
1506 
1507     /*
1508      * HTAB is controlled by QEMU. Just point to the internally
1509      * accessible PTEG.
1510      */
1511     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1512 }
1513 
1514 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1515                               const ppc_hash_pte64_t *hptes,
1516                               hwaddr ptex, int n)
1517 {
1518     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1519 
1520     if (!spapr->htab) {
1521         g_free((void *)hptes);
1522     }
1523 
1524     /* Nothing to do for qemu managed HPT */
1525 }
1526 
1527 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1528                       uint64_t pte0, uint64_t pte1)
1529 {
1530     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1531     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1532 
1533     if (!spapr->htab) {
1534         kvmppc_write_hpte(ptex, pte0, pte1);
1535     } else {
1536         if (pte0 & HPTE64_V_VALID) {
1537             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1538             /*
1539              * When setting valid, we write PTE1 first. This ensures
1540              * proper synchronization with the reading code in
1541              * ppc_hash64_pteg_search()
1542              */
1543             smp_wmb();
1544             stq_p(spapr->htab + offset, pte0);
1545         } else {
1546             stq_p(spapr->htab + offset, pte0);
1547             /*
1548              * When clearing it we set PTE0 first. This ensures proper
1549              * synchronization with the reading code in
1550              * ppc_hash64_pteg_search()
1551              */
1552             smp_wmb();
1553             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1554         }
1555     }
1556 }
1557 
1558 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1559                              uint64_t pte1)
1560 {
1561     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1562     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1563 
1564     if (!spapr->htab) {
1565         /* There should always be a hash table when this is called */
1566         error_report("spapr_hpte_set_c called with no hash table !");
1567         return;
1568     }
1569 
1570     /* The HW performs a non-atomic byte update */
1571     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1572 }
1573 
1574 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1575                              uint64_t pte1)
1576 {
1577     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1578     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1579 
1580     if (!spapr->htab) {
1581         /* There should always be a hash table when this is called */
1582         error_report("spapr_hpte_set_r called with no hash table !");
1583         return;
1584     }
1585 
1586     /* The HW performs a non-atomic byte update */
1587     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1588 }
1589 
1590 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1591 {
1592     int shift;
1593 
1594     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1595      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1596      * that's much more than is needed for Linux guests */
1597     shift = ctz64(pow2ceil(ramsize)) - 7;
1598     shift = MAX(shift, 18); /* Minimum architected size */
1599     shift = MIN(shift, 46); /* Maximum architected size */
1600     return shift;
1601 }
1602 
1603 void spapr_free_hpt(SpaprMachineState *spapr)
1604 {
1605     g_free(spapr->htab);
1606     spapr->htab = NULL;
1607     spapr->htab_shift = 0;
1608     close_htab_fd(spapr);
1609 }
1610 
1611 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1612                           Error **errp)
1613 {
1614     long rc;
1615 
1616     /* Clean up any HPT info from a previous boot */
1617     spapr_free_hpt(spapr);
1618 
1619     rc = kvmppc_reset_htab(shift);
1620     if (rc < 0) {
1621         /* kernel-side HPT needed, but couldn't allocate one */
1622         error_setg_errno(errp, errno,
1623                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1624                          shift);
1625         /* This is almost certainly fatal, but if the caller really
1626          * wants to carry on with shift == 0, it's welcome to try */
1627     } else if (rc > 0) {
1628         /* kernel-side HPT allocated */
1629         if (rc != shift) {
1630             error_setg(errp,
1631                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1632                        shift, rc);
1633         }
1634 
1635         spapr->htab_shift = shift;
1636         spapr->htab = NULL;
1637     } else {
1638         /* kernel-side HPT not needed, allocate in userspace instead */
1639         size_t size = 1ULL << shift;
1640         int i;
1641 
1642         spapr->htab = qemu_memalign(size, size);
1643         if (!spapr->htab) {
1644             error_setg_errno(errp, errno,
1645                              "Could not allocate HPT of order %d", shift);
1646             return;
1647         }
1648 
1649         memset(spapr->htab, 0, size);
1650         spapr->htab_shift = shift;
1651 
1652         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1653             DIRTY_HPTE(HPTE(spapr->htab, i));
1654         }
1655     }
1656     /* We're setting up a hash table, so that means we're not radix */
1657     spapr->patb_entry = 0;
1658     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1659 }
1660 
1661 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1662 {
1663     int hpt_shift;
1664 
1665     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1666         || (spapr->cas_reboot
1667             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1668         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1669     } else {
1670         uint64_t current_ram_size;
1671 
1672         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1673         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1674     }
1675     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1676 
1677     if (spapr->vrma_adjust) {
1678         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1679                                           spapr->htab_shift);
1680     }
1681 }
1682 
1683 static int spapr_reset_drcs(Object *child, void *opaque)
1684 {
1685     SpaprDrc *drc =
1686         (SpaprDrc *) object_dynamic_cast(child,
1687                                                  TYPE_SPAPR_DR_CONNECTOR);
1688 
1689     if (drc) {
1690         spapr_drc_reset(drc);
1691     }
1692 
1693     return 0;
1694 }
1695 
1696 static void spapr_machine_reset(void)
1697 {
1698     MachineState *machine = MACHINE(qdev_get_machine());
1699     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1700     PowerPCCPU *first_ppc_cpu;
1701     uint32_t rtas_limit;
1702     hwaddr rtas_addr, fdt_addr;
1703     void *fdt;
1704     int rc;
1705 
1706     spapr_caps_apply(spapr);
1707 
1708     first_ppc_cpu = POWERPC_CPU(first_cpu);
1709     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1710         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1711                               spapr->max_compat_pvr)) {
1712         /*
1713          * If using KVM with radix mode available, VCPUs can be started
1714          * without a HPT because KVM will start them in radix mode.
1715          * Set the GR bit in PATE so that we know there is no HPT.
1716          */
1717         spapr->patb_entry = PATE1_GR;
1718         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1719     } else {
1720         spapr_setup_hpt_and_vrma(spapr);
1721     }
1722 
1723     /*
1724      * If this reset wasn't generated by CAS, we should reset our
1725      * negotiated options and start from scratch
1726      */
1727     if (!spapr->cas_reboot) {
1728         spapr_ovec_cleanup(spapr->ov5_cas);
1729         spapr->ov5_cas = spapr_ovec_new();
1730 
1731         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1732     }
1733 
1734     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1735         spapr_irq_msi_reset(spapr);
1736     }
1737 
1738     /*
1739      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1740      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1741      * called from vPHB reset handler so we initialize the counter here.
1742      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1743      * must be equally distant from any other node.
1744      * The final value of spapr->gpu_numa_id is going to be written to
1745      * max-associativity-domains in spapr_build_fdt().
1746      */
1747     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1748     qemu_devices_reset();
1749 
1750     /*
1751      * This is fixing some of the default configuration of the XIVE
1752      * devices. To be called after the reset of the machine devices.
1753      */
1754     spapr_irq_reset(spapr, &error_fatal);
1755 
1756     /*
1757      * There is no CAS under qtest. Simulate one to please the code that
1758      * depends on spapr->ov5_cas. This is especially needed to test device
1759      * unplug, so we do that before resetting the DRCs.
1760      */
1761     if (qtest_enabled()) {
1762         spapr_ovec_cleanup(spapr->ov5_cas);
1763         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1764     }
1765 
1766     /* DRC reset may cause a device to be unplugged. This will cause troubles
1767      * if this device is used by another device (eg, a running vhost backend
1768      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1769      * situations, we reset DRCs after all devices have been reset.
1770      */
1771     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1772 
1773     spapr_clear_pending_events(spapr);
1774 
1775     /*
1776      * We place the device tree and RTAS just below either the top of the RMA,
1777      * or just below 2GB, whichever is lower, so that it can be
1778      * processed with 32-bit real mode code if necessary
1779      */
1780     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1781     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1782     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1783 
1784     fdt = spapr_build_fdt(spapr);
1785 
1786     spapr_load_rtas(spapr, fdt, rtas_addr);
1787 
1788     rc = fdt_pack(fdt);
1789 
1790     /* Should only fail if we've built a corrupted tree */
1791     assert(rc == 0);
1792 
1793     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1794         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1795                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1796         exit(1);
1797     }
1798 
1799     /* Load the fdt */
1800     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1801     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1802     g_free(spapr->fdt_blob);
1803     spapr->fdt_size = fdt_totalsize(fdt);
1804     spapr->fdt_initial_size = spapr->fdt_size;
1805     spapr->fdt_blob = fdt;
1806 
1807     /* Set up the entry state */
1808     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1809     first_ppc_cpu->env.gpr[5] = 0;
1810 
1811     spapr->cas_reboot = false;
1812 }
1813 
1814 static void spapr_create_nvram(SpaprMachineState *spapr)
1815 {
1816     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1817     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1818 
1819     if (dinfo) {
1820         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1821                             &error_fatal);
1822     }
1823 
1824     qdev_init_nofail(dev);
1825 
1826     spapr->nvram = (struct SpaprNvram *)dev;
1827 }
1828 
1829 static void spapr_rtc_create(SpaprMachineState *spapr)
1830 {
1831     object_initialize_child(OBJECT(spapr), "rtc",
1832                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1833                             &error_fatal, NULL);
1834     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1835                               &error_fatal);
1836     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1837                               "date", &error_fatal);
1838 }
1839 
1840 /* Returns whether we want to use VGA or not */
1841 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1842 {
1843     switch (vga_interface_type) {
1844     case VGA_NONE:
1845         return false;
1846     case VGA_DEVICE:
1847         return true;
1848     case VGA_STD:
1849     case VGA_VIRTIO:
1850     case VGA_CIRRUS:
1851         return pci_vga_init(pci_bus) != NULL;
1852     default:
1853         error_setg(errp,
1854                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1855         return false;
1856     }
1857 }
1858 
1859 static int spapr_pre_load(void *opaque)
1860 {
1861     int rc;
1862 
1863     rc = spapr_caps_pre_load(opaque);
1864     if (rc) {
1865         return rc;
1866     }
1867 
1868     return 0;
1869 }
1870 
1871 static int spapr_post_load(void *opaque, int version_id)
1872 {
1873     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1874     int err = 0;
1875 
1876     err = spapr_caps_post_migration(spapr);
1877     if (err) {
1878         return err;
1879     }
1880 
1881     /*
1882      * In earlier versions, there was no separate qdev for the PAPR
1883      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1884      * So when migrating from those versions, poke the incoming offset
1885      * value into the RTC device
1886      */
1887     if (version_id < 3) {
1888         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1889         if (err) {
1890             return err;
1891         }
1892     }
1893 
1894     if (kvm_enabled() && spapr->patb_entry) {
1895         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1896         bool radix = !!(spapr->patb_entry & PATE1_GR);
1897         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1898 
1899         /*
1900          * Update LPCR:HR and UPRT as they may not be set properly in
1901          * the stream
1902          */
1903         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1904                             LPCR_HR | LPCR_UPRT);
1905 
1906         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1907         if (err) {
1908             error_report("Process table config unsupported by the host");
1909             return -EINVAL;
1910         }
1911     }
1912 
1913     err = spapr_irq_post_load(spapr, version_id);
1914     if (err) {
1915         return err;
1916     }
1917 
1918     return err;
1919 }
1920 
1921 static int spapr_pre_save(void *opaque)
1922 {
1923     int rc;
1924 
1925     rc = spapr_caps_pre_save(opaque);
1926     if (rc) {
1927         return rc;
1928     }
1929 
1930     return 0;
1931 }
1932 
1933 static bool version_before_3(void *opaque, int version_id)
1934 {
1935     return version_id < 3;
1936 }
1937 
1938 static bool spapr_pending_events_needed(void *opaque)
1939 {
1940     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1941     return !QTAILQ_EMPTY(&spapr->pending_events);
1942 }
1943 
1944 static const VMStateDescription vmstate_spapr_event_entry = {
1945     .name = "spapr_event_log_entry",
1946     .version_id = 1,
1947     .minimum_version_id = 1,
1948     .fields = (VMStateField[]) {
1949         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1950         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1951         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1952                                      NULL, extended_length),
1953         VMSTATE_END_OF_LIST()
1954     },
1955 };
1956 
1957 static const VMStateDescription vmstate_spapr_pending_events = {
1958     .name = "spapr_pending_events",
1959     .version_id = 1,
1960     .minimum_version_id = 1,
1961     .needed = spapr_pending_events_needed,
1962     .fields = (VMStateField[]) {
1963         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1964                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1965         VMSTATE_END_OF_LIST()
1966     },
1967 };
1968 
1969 static bool spapr_ov5_cas_needed(void *opaque)
1970 {
1971     SpaprMachineState *spapr = opaque;
1972     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1973     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1974     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1975     bool cas_needed;
1976 
1977     /* Prior to the introduction of SpaprOptionVector, we had two option
1978      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1979      * Both of these options encode machine topology into the device-tree
1980      * in such a way that the now-booted OS should still be able to interact
1981      * appropriately with QEMU regardless of what options were actually
1982      * negotiatied on the source side.
1983      *
1984      * As such, we can avoid migrating the CAS-negotiated options if these
1985      * are the only options available on the current machine/platform.
1986      * Since these are the only options available for pseries-2.7 and
1987      * earlier, this allows us to maintain old->new/new->old migration
1988      * compatibility.
1989      *
1990      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1991      * via default pseries-2.8 machines and explicit command-line parameters.
1992      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1993      * of the actual CAS-negotiated values to continue working properly. For
1994      * example, availability of memory unplug depends on knowing whether
1995      * OV5_HP_EVT was negotiated via CAS.
1996      *
1997      * Thus, for any cases where the set of available CAS-negotiatable
1998      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1999      * include the CAS-negotiated options in the migration stream, unless
2000      * if they affect boot time behaviour only.
2001      */
2002     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2003     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2004     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2005 
2006     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2007      * the mask itself since in the future it's possible "legacy" bits may be
2008      * removed via machine options, which could generate a false positive
2009      * that breaks migration.
2010      */
2011     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2012     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2013 
2014     spapr_ovec_cleanup(ov5_mask);
2015     spapr_ovec_cleanup(ov5_legacy);
2016     spapr_ovec_cleanup(ov5_removed);
2017 
2018     return cas_needed;
2019 }
2020 
2021 static const VMStateDescription vmstate_spapr_ov5_cas = {
2022     .name = "spapr_option_vector_ov5_cas",
2023     .version_id = 1,
2024     .minimum_version_id = 1,
2025     .needed = spapr_ov5_cas_needed,
2026     .fields = (VMStateField[]) {
2027         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2028                                  vmstate_spapr_ovec, SpaprOptionVector),
2029         VMSTATE_END_OF_LIST()
2030     },
2031 };
2032 
2033 static bool spapr_patb_entry_needed(void *opaque)
2034 {
2035     SpaprMachineState *spapr = opaque;
2036 
2037     return !!spapr->patb_entry;
2038 }
2039 
2040 static const VMStateDescription vmstate_spapr_patb_entry = {
2041     .name = "spapr_patb_entry",
2042     .version_id = 1,
2043     .minimum_version_id = 1,
2044     .needed = spapr_patb_entry_needed,
2045     .fields = (VMStateField[]) {
2046         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2047         VMSTATE_END_OF_LIST()
2048     },
2049 };
2050 
2051 static bool spapr_irq_map_needed(void *opaque)
2052 {
2053     SpaprMachineState *spapr = opaque;
2054 
2055     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2056 }
2057 
2058 static const VMStateDescription vmstate_spapr_irq_map = {
2059     .name = "spapr_irq_map",
2060     .version_id = 1,
2061     .minimum_version_id = 1,
2062     .needed = spapr_irq_map_needed,
2063     .fields = (VMStateField[]) {
2064         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2065         VMSTATE_END_OF_LIST()
2066     },
2067 };
2068 
2069 static bool spapr_dtb_needed(void *opaque)
2070 {
2071     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2072 
2073     return smc->update_dt_enabled;
2074 }
2075 
2076 static int spapr_dtb_pre_load(void *opaque)
2077 {
2078     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2079 
2080     g_free(spapr->fdt_blob);
2081     spapr->fdt_blob = NULL;
2082     spapr->fdt_size = 0;
2083 
2084     return 0;
2085 }
2086 
2087 static const VMStateDescription vmstate_spapr_dtb = {
2088     .name = "spapr_dtb",
2089     .version_id = 1,
2090     .minimum_version_id = 1,
2091     .needed = spapr_dtb_needed,
2092     .pre_load = spapr_dtb_pre_load,
2093     .fields = (VMStateField[]) {
2094         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2095         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2096         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2097                                      fdt_size),
2098         VMSTATE_END_OF_LIST()
2099     },
2100 };
2101 
2102 static const VMStateDescription vmstate_spapr = {
2103     .name = "spapr",
2104     .version_id = 3,
2105     .minimum_version_id = 1,
2106     .pre_load = spapr_pre_load,
2107     .post_load = spapr_post_load,
2108     .pre_save = spapr_pre_save,
2109     .fields = (VMStateField[]) {
2110         /* used to be @next_irq */
2111         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2112 
2113         /* RTC offset */
2114         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2115 
2116         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2117         VMSTATE_END_OF_LIST()
2118     },
2119     .subsections = (const VMStateDescription*[]) {
2120         &vmstate_spapr_ov5_cas,
2121         &vmstate_spapr_patb_entry,
2122         &vmstate_spapr_pending_events,
2123         &vmstate_spapr_cap_htm,
2124         &vmstate_spapr_cap_vsx,
2125         &vmstate_spapr_cap_dfp,
2126         &vmstate_spapr_cap_cfpc,
2127         &vmstate_spapr_cap_sbbc,
2128         &vmstate_spapr_cap_ibs,
2129         &vmstate_spapr_cap_hpt_maxpagesize,
2130         &vmstate_spapr_irq_map,
2131         &vmstate_spapr_cap_nested_kvm_hv,
2132         &vmstate_spapr_dtb,
2133         &vmstate_spapr_cap_large_decr,
2134         &vmstate_spapr_cap_ccf_assist,
2135         NULL
2136     }
2137 };
2138 
2139 static int htab_save_setup(QEMUFile *f, void *opaque)
2140 {
2141     SpaprMachineState *spapr = opaque;
2142 
2143     /* "Iteration" header */
2144     if (!spapr->htab_shift) {
2145         qemu_put_be32(f, -1);
2146     } else {
2147         qemu_put_be32(f, spapr->htab_shift);
2148     }
2149 
2150     if (spapr->htab) {
2151         spapr->htab_save_index = 0;
2152         spapr->htab_first_pass = true;
2153     } else {
2154         if (spapr->htab_shift) {
2155             assert(kvm_enabled());
2156         }
2157     }
2158 
2159 
2160     return 0;
2161 }
2162 
2163 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2164                             int chunkstart, int n_valid, int n_invalid)
2165 {
2166     qemu_put_be32(f, chunkstart);
2167     qemu_put_be16(f, n_valid);
2168     qemu_put_be16(f, n_invalid);
2169     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2170                     HASH_PTE_SIZE_64 * n_valid);
2171 }
2172 
2173 static void htab_save_end_marker(QEMUFile *f)
2174 {
2175     qemu_put_be32(f, 0);
2176     qemu_put_be16(f, 0);
2177     qemu_put_be16(f, 0);
2178 }
2179 
2180 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2181                                  int64_t max_ns)
2182 {
2183     bool has_timeout = max_ns != -1;
2184     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2185     int index = spapr->htab_save_index;
2186     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2187 
2188     assert(spapr->htab_first_pass);
2189 
2190     do {
2191         int chunkstart;
2192 
2193         /* Consume invalid HPTEs */
2194         while ((index < htabslots)
2195                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2196             CLEAN_HPTE(HPTE(spapr->htab, index));
2197             index++;
2198         }
2199 
2200         /* Consume valid HPTEs */
2201         chunkstart = index;
2202         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2203                && HPTE_VALID(HPTE(spapr->htab, index))) {
2204             CLEAN_HPTE(HPTE(spapr->htab, index));
2205             index++;
2206         }
2207 
2208         if (index > chunkstart) {
2209             int n_valid = index - chunkstart;
2210 
2211             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2212 
2213             if (has_timeout &&
2214                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2215                 break;
2216             }
2217         }
2218     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2219 
2220     if (index >= htabslots) {
2221         assert(index == htabslots);
2222         index = 0;
2223         spapr->htab_first_pass = false;
2224     }
2225     spapr->htab_save_index = index;
2226 }
2227 
2228 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2229                                 int64_t max_ns)
2230 {
2231     bool final = max_ns < 0;
2232     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2233     int examined = 0, sent = 0;
2234     int index = spapr->htab_save_index;
2235     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2236 
2237     assert(!spapr->htab_first_pass);
2238 
2239     do {
2240         int chunkstart, invalidstart;
2241 
2242         /* Consume non-dirty HPTEs */
2243         while ((index < htabslots)
2244                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2245             index++;
2246             examined++;
2247         }
2248 
2249         chunkstart = index;
2250         /* Consume valid dirty HPTEs */
2251         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2252                && HPTE_DIRTY(HPTE(spapr->htab, index))
2253                && HPTE_VALID(HPTE(spapr->htab, index))) {
2254             CLEAN_HPTE(HPTE(spapr->htab, index));
2255             index++;
2256             examined++;
2257         }
2258 
2259         invalidstart = index;
2260         /* Consume invalid dirty HPTEs */
2261         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2262                && HPTE_DIRTY(HPTE(spapr->htab, index))
2263                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2264             CLEAN_HPTE(HPTE(spapr->htab, index));
2265             index++;
2266             examined++;
2267         }
2268 
2269         if (index > chunkstart) {
2270             int n_valid = invalidstart - chunkstart;
2271             int n_invalid = index - invalidstart;
2272 
2273             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2274             sent += index - chunkstart;
2275 
2276             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2277                 break;
2278             }
2279         }
2280 
2281         if (examined >= htabslots) {
2282             break;
2283         }
2284 
2285         if (index >= htabslots) {
2286             assert(index == htabslots);
2287             index = 0;
2288         }
2289     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2290 
2291     if (index >= htabslots) {
2292         assert(index == htabslots);
2293         index = 0;
2294     }
2295 
2296     spapr->htab_save_index = index;
2297 
2298     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2299 }
2300 
2301 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2302 #define MAX_KVM_BUF_SIZE    2048
2303 
2304 static int htab_save_iterate(QEMUFile *f, void *opaque)
2305 {
2306     SpaprMachineState *spapr = opaque;
2307     int fd;
2308     int rc = 0;
2309 
2310     /* Iteration header */
2311     if (!spapr->htab_shift) {
2312         qemu_put_be32(f, -1);
2313         return 1;
2314     } else {
2315         qemu_put_be32(f, 0);
2316     }
2317 
2318     if (!spapr->htab) {
2319         assert(kvm_enabled());
2320 
2321         fd = get_htab_fd(spapr);
2322         if (fd < 0) {
2323             return fd;
2324         }
2325 
2326         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2327         if (rc < 0) {
2328             return rc;
2329         }
2330     } else  if (spapr->htab_first_pass) {
2331         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2332     } else {
2333         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2334     }
2335 
2336     htab_save_end_marker(f);
2337 
2338     return rc;
2339 }
2340 
2341 static int htab_save_complete(QEMUFile *f, void *opaque)
2342 {
2343     SpaprMachineState *spapr = opaque;
2344     int fd;
2345 
2346     /* Iteration header */
2347     if (!spapr->htab_shift) {
2348         qemu_put_be32(f, -1);
2349         return 0;
2350     } else {
2351         qemu_put_be32(f, 0);
2352     }
2353 
2354     if (!spapr->htab) {
2355         int rc;
2356 
2357         assert(kvm_enabled());
2358 
2359         fd = get_htab_fd(spapr);
2360         if (fd < 0) {
2361             return fd;
2362         }
2363 
2364         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2365         if (rc < 0) {
2366             return rc;
2367         }
2368     } else {
2369         if (spapr->htab_first_pass) {
2370             htab_save_first_pass(f, spapr, -1);
2371         }
2372         htab_save_later_pass(f, spapr, -1);
2373     }
2374 
2375     /* End marker */
2376     htab_save_end_marker(f);
2377 
2378     return 0;
2379 }
2380 
2381 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2382 {
2383     SpaprMachineState *spapr = opaque;
2384     uint32_t section_hdr;
2385     int fd = -1;
2386     Error *local_err = NULL;
2387 
2388     if (version_id < 1 || version_id > 1) {
2389         error_report("htab_load() bad version");
2390         return -EINVAL;
2391     }
2392 
2393     section_hdr = qemu_get_be32(f);
2394 
2395     if (section_hdr == -1) {
2396         spapr_free_hpt(spapr);
2397         return 0;
2398     }
2399 
2400     if (section_hdr) {
2401         /* First section gives the htab size */
2402         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2403         if (local_err) {
2404             error_report_err(local_err);
2405             return -EINVAL;
2406         }
2407         return 0;
2408     }
2409 
2410     if (!spapr->htab) {
2411         assert(kvm_enabled());
2412 
2413         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2414         if (fd < 0) {
2415             error_report_err(local_err);
2416             return fd;
2417         }
2418     }
2419 
2420     while (true) {
2421         uint32_t index;
2422         uint16_t n_valid, n_invalid;
2423 
2424         index = qemu_get_be32(f);
2425         n_valid = qemu_get_be16(f);
2426         n_invalid = qemu_get_be16(f);
2427 
2428         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2429             /* End of Stream */
2430             break;
2431         }
2432 
2433         if ((index + n_valid + n_invalid) >
2434             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2435             /* Bad index in stream */
2436             error_report(
2437                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2438                 index, n_valid, n_invalid, spapr->htab_shift);
2439             return -EINVAL;
2440         }
2441 
2442         if (spapr->htab) {
2443             if (n_valid) {
2444                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2445                                 HASH_PTE_SIZE_64 * n_valid);
2446             }
2447             if (n_invalid) {
2448                 memset(HPTE(spapr->htab, index + n_valid), 0,
2449                        HASH_PTE_SIZE_64 * n_invalid);
2450             }
2451         } else {
2452             int rc;
2453 
2454             assert(fd >= 0);
2455 
2456             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2457             if (rc < 0) {
2458                 return rc;
2459             }
2460         }
2461     }
2462 
2463     if (!spapr->htab) {
2464         assert(fd >= 0);
2465         close(fd);
2466     }
2467 
2468     return 0;
2469 }
2470 
2471 static void htab_save_cleanup(void *opaque)
2472 {
2473     SpaprMachineState *spapr = opaque;
2474 
2475     close_htab_fd(spapr);
2476 }
2477 
2478 static SaveVMHandlers savevm_htab_handlers = {
2479     .save_setup = htab_save_setup,
2480     .save_live_iterate = htab_save_iterate,
2481     .save_live_complete_precopy = htab_save_complete,
2482     .save_cleanup = htab_save_cleanup,
2483     .load_state = htab_load,
2484 };
2485 
2486 static void spapr_boot_set(void *opaque, const char *boot_device,
2487                            Error **errp)
2488 {
2489     MachineState *machine = MACHINE(opaque);
2490     machine->boot_order = g_strdup(boot_device);
2491 }
2492 
2493 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2494 {
2495     MachineState *machine = MACHINE(spapr);
2496     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2497     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2498     int i;
2499 
2500     for (i = 0; i < nr_lmbs; i++) {
2501         uint64_t addr;
2502 
2503         addr = i * lmb_size + machine->device_memory->base;
2504         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2505                                addr / lmb_size);
2506     }
2507 }
2508 
2509 /*
2510  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2511  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2512  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2513  */
2514 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2515 {
2516     int i;
2517 
2518     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2519         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2520                    " is not aligned to %" PRIu64 " MiB",
2521                    machine->ram_size,
2522                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2523         return;
2524     }
2525 
2526     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2527         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2528                    " is not aligned to %" PRIu64 " MiB",
2529                    machine->ram_size,
2530                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2531         return;
2532     }
2533 
2534     for (i = 0; i < nb_numa_nodes; i++) {
2535         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2536             error_setg(errp,
2537                        "Node %d memory size 0x%" PRIx64
2538                        " is not aligned to %" PRIu64 " MiB",
2539                        i, numa_info[i].node_mem,
2540                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2541             return;
2542         }
2543     }
2544 }
2545 
2546 /* find cpu slot in machine->possible_cpus by core_id */
2547 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2548 {
2549     int index = id / smp_threads;
2550 
2551     if (index >= ms->possible_cpus->len) {
2552         return NULL;
2553     }
2554     if (idx) {
2555         *idx = index;
2556     }
2557     return &ms->possible_cpus->cpus[index];
2558 }
2559 
2560 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2561 {
2562     Error *local_err = NULL;
2563     bool vsmt_user = !!spapr->vsmt;
2564     int kvm_smt = kvmppc_smt_threads();
2565     int ret;
2566 
2567     if (!kvm_enabled() && (smp_threads > 1)) {
2568         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2569                      "on a pseries machine");
2570         goto out;
2571     }
2572     if (!is_power_of_2(smp_threads)) {
2573         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2574                      "machine because it must be a power of 2", smp_threads);
2575         goto out;
2576     }
2577 
2578     /* Detemine the VSMT mode to use: */
2579     if (vsmt_user) {
2580         if (spapr->vsmt < smp_threads) {
2581             error_setg(&local_err, "Cannot support VSMT mode %d"
2582                          " because it must be >= threads/core (%d)",
2583                          spapr->vsmt, smp_threads);
2584             goto out;
2585         }
2586         /* In this case, spapr->vsmt has been set by the command line */
2587     } else {
2588         /*
2589          * Default VSMT value is tricky, because we need it to be as
2590          * consistent as possible (for migration), but this requires
2591          * changing it for at least some existing cases.  We pick 8 as
2592          * the value that we'd get with KVM on POWER8, the
2593          * overwhelmingly common case in production systems.
2594          */
2595         spapr->vsmt = MAX(8, smp_threads);
2596     }
2597 
2598     /* KVM: If necessary, set the SMT mode: */
2599     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2600         ret = kvmppc_set_smt_threads(spapr->vsmt);
2601         if (ret) {
2602             /* Looks like KVM isn't able to change VSMT mode */
2603             error_setg(&local_err,
2604                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2605                        spapr->vsmt, ret);
2606             /* We can live with that if the default one is big enough
2607              * for the number of threads, and a submultiple of the one
2608              * we want.  In this case we'll waste some vcpu ids, but
2609              * behaviour will be correct */
2610             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2611                 warn_report_err(local_err);
2612                 local_err = NULL;
2613                 goto out;
2614             } else {
2615                 if (!vsmt_user) {
2616                     error_append_hint(&local_err,
2617                                       "On PPC, a VM with %d threads/core"
2618                                       " on a host with %d threads/core"
2619                                       " requires the use of VSMT mode %d.\n",
2620                                       smp_threads, kvm_smt, spapr->vsmt);
2621                 }
2622                 kvmppc_hint_smt_possible(&local_err);
2623                 goto out;
2624             }
2625         }
2626     }
2627     /* else TCG: nothing to do currently */
2628 out:
2629     error_propagate(errp, local_err);
2630 }
2631 
2632 static void spapr_init_cpus(SpaprMachineState *spapr)
2633 {
2634     MachineState *machine = MACHINE(spapr);
2635     MachineClass *mc = MACHINE_GET_CLASS(machine);
2636     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2637     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2638     const CPUArchIdList *possible_cpus;
2639     int boot_cores_nr = smp_cpus / smp_threads;
2640     int i;
2641 
2642     possible_cpus = mc->possible_cpu_arch_ids(machine);
2643     if (mc->has_hotpluggable_cpus) {
2644         if (smp_cpus % smp_threads) {
2645             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2646                          smp_cpus, smp_threads);
2647             exit(1);
2648         }
2649         if (max_cpus % smp_threads) {
2650             error_report("max_cpus (%u) must be multiple of threads (%u)",
2651                          max_cpus, smp_threads);
2652             exit(1);
2653         }
2654     } else {
2655         if (max_cpus != smp_cpus) {
2656             error_report("This machine version does not support CPU hotplug");
2657             exit(1);
2658         }
2659         boot_cores_nr = possible_cpus->len;
2660     }
2661 
2662     if (smc->pre_2_10_has_unused_icps) {
2663         int i;
2664 
2665         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2666             /* Dummy entries get deregistered when real ICPState objects
2667              * are registered during CPU core hotplug.
2668              */
2669             pre_2_10_vmstate_register_dummy_icp(i);
2670         }
2671     }
2672 
2673     for (i = 0; i < possible_cpus->len; i++) {
2674         int core_id = i * smp_threads;
2675 
2676         if (mc->has_hotpluggable_cpus) {
2677             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2678                                    spapr_vcpu_id(spapr, core_id));
2679         }
2680 
2681         if (i < boot_cores_nr) {
2682             Object *core  = object_new(type);
2683             int nr_threads = smp_threads;
2684 
2685             /* Handle the partially filled core for older machine types */
2686             if ((i + 1) * smp_threads >= smp_cpus) {
2687                 nr_threads = smp_cpus - i * smp_threads;
2688             }
2689 
2690             object_property_set_int(core, nr_threads, "nr-threads",
2691                                     &error_fatal);
2692             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2693                                     &error_fatal);
2694             object_property_set_bool(core, true, "realized", &error_fatal);
2695 
2696             object_unref(core);
2697         }
2698     }
2699 }
2700 
2701 static PCIHostState *spapr_create_default_phb(void)
2702 {
2703     DeviceState *dev;
2704 
2705     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2706     qdev_prop_set_uint32(dev, "index", 0);
2707     qdev_init_nofail(dev);
2708 
2709     return PCI_HOST_BRIDGE(dev);
2710 }
2711 
2712 /* pSeries LPAR / sPAPR hardware init */
2713 static void spapr_machine_init(MachineState *machine)
2714 {
2715     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2716     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2717     const char *kernel_filename = machine->kernel_filename;
2718     const char *initrd_filename = machine->initrd_filename;
2719     PCIHostState *phb;
2720     int i;
2721     MemoryRegion *sysmem = get_system_memory();
2722     MemoryRegion *ram = g_new(MemoryRegion, 1);
2723     hwaddr node0_size = spapr_node0_size(machine);
2724     long load_limit, fw_size;
2725     char *filename;
2726     Error *resize_hpt_err = NULL;
2727 
2728     msi_nonbroken = true;
2729 
2730     QLIST_INIT(&spapr->phbs);
2731     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2732 
2733     /* Determine capabilities to run with */
2734     spapr_caps_init(spapr);
2735 
2736     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2737     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2738         /*
2739          * If the user explicitly requested a mode we should either
2740          * supply it, or fail completely (which we do below).  But if
2741          * it's not set explicitly, we reset our mode to something
2742          * that works
2743          */
2744         if (resize_hpt_err) {
2745             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2746             error_free(resize_hpt_err);
2747             resize_hpt_err = NULL;
2748         } else {
2749             spapr->resize_hpt = smc->resize_hpt_default;
2750         }
2751     }
2752 
2753     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2754 
2755     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2756         /*
2757          * User requested HPT resize, but this host can't supply it.  Bail out
2758          */
2759         error_report_err(resize_hpt_err);
2760         exit(1);
2761     }
2762 
2763     spapr->rma_size = node0_size;
2764 
2765     /* With KVM, we don't actually know whether KVM supports an
2766      * unbounded RMA (PR KVM) or is limited by the hash table size
2767      * (HV KVM using VRMA), so we always assume the latter
2768      *
2769      * In that case, we also limit the initial allocations for RTAS
2770      * etc... to 256M since we have no way to know what the VRMA size
2771      * is going to be as it depends on the size of the hash table
2772      * which isn't determined yet.
2773      */
2774     if (kvm_enabled()) {
2775         spapr->vrma_adjust = 1;
2776         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2777     }
2778 
2779     /* Actually we don't support unbounded RMA anymore since we added
2780      * proper emulation of HV mode. The max we can get is 16G which
2781      * also happens to be what we configure for PAPR mode so make sure
2782      * we don't do anything bigger than that
2783      */
2784     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2785 
2786     if (spapr->rma_size > node0_size) {
2787         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2788                      spapr->rma_size);
2789         exit(1);
2790     }
2791 
2792     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2793     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2794 
2795     /*
2796      * VSMT must be set in order to be able to compute VCPU ids, ie to
2797      * call spapr_max_server_number() or spapr_vcpu_id().
2798      */
2799     spapr_set_vsmt_mode(spapr, &error_fatal);
2800 
2801     /* Set up Interrupt Controller before we create the VCPUs */
2802     spapr_irq_init(spapr, &error_fatal);
2803 
2804     /* Set up containers for ibm,client-architecture-support negotiated options
2805      */
2806     spapr->ov5 = spapr_ovec_new();
2807     spapr->ov5_cas = spapr_ovec_new();
2808 
2809     if (smc->dr_lmb_enabled) {
2810         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2811         spapr_validate_node_memory(machine, &error_fatal);
2812     }
2813 
2814     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2815 
2816     /* advertise support for dedicated HP event source to guests */
2817     if (spapr->use_hotplug_event_source) {
2818         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2819     }
2820 
2821     /* advertise support for HPT resizing */
2822     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2823         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2824     }
2825 
2826     /* advertise support for ibm,dyamic-memory-v2 */
2827     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2828 
2829     /* advertise XIVE on POWER9 machines */
2830     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2831         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2832     }
2833 
2834     /* init CPUs */
2835     spapr_init_cpus(spapr);
2836 
2837     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2838         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2839                               spapr->max_compat_pvr)) {
2840         /* KVM and TCG always allow GTSE with radix... */
2841         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2842     }
2843     /* ... but not with hash (currently). */
2844 
2845     if (kvm_enabled()) {
2846         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2847         kvmppc_enable_logical_ci_hcalls();
2848         kvmppc_enable_set_mode_hcall();
2849 
2850         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2851         kvmppc_enable_clear_ref_mod_hcalls();
2852 
2853         /* Enable H_PAGE_INIT */
2854         kvmppc_enable_h_page_init();
2855     }
2856 
2857     /* allocate RAM */
2858     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2859                                          machine->ram_size);
2860     memory_region_add_subregion(sysmem, 0, ram);
2861 
2862     /* always allocate the device memory information */
2863     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2864 
2865     /* initialize hotplug memory address space */
2866     if (machine->ram_size < machine->maxram_size) {
2867         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2868         /*
2869          * Limit the number of hotpluggable memory slots to half the number
2870          * slots that KVM supports, leaving the other half for PCI and other
2871          * devices. However ensure that number of slots doesn't drop below 32.
2872          */
2873         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2874                            SPAPR_MAX_RAM_SLOTS;
2875 
2876         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2877             max_memslots = SPAPR_MAX_RAM_SLOTS;
2878         }
2879         if (machine->ram_slots > max_memslots) {
2880             error_report("Specified number of memory slots %"
2881                          PRIu64" exceeds max supported %d",
2882                          machine->ram_slots, max_memslots);
2883             exit(1);
2884         }
2885 
2886         machine->device_memory->base = ROUND_UP(machine->ram_size,
2887                                                 SPAPR_DEVICE_MEM_ALIGN);
2888         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2889                            "device-memory", device_mem_size);
2890         memory_region_add_subregion(sysmem, machine->device_memory->base,
2891                                     &machine->device_memory->mr);
2892     }
2893 
2894     if (smc->dr_lmb_enabled) {
2895         spapr_create_lmb_dr_connectors(spapr);
2896     }
2897 
2898     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2899     if (!filename) {
2900         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2901         exit(1);
2902     }
2903     spapr->rtas_size = get_image_size(filename);
2904     if (spapr->rtas_size < 0) {
2905         error_report("Could not get size of LPAR rtas '%s'", filename);
2906         exit(1);
2907     }
2908     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2909     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2910         error_report("Could not load LPAR rtas '%s'", filename);
2911         exit(1);
2912     }
2913     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2914         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2915                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2916         exit(1);
2917     }
2918     g_free(filename);
2919 
2920     /* Set up RTAS event infrastructure */
2921     spapr_events_init(spapr);
2922 
2923     /* Set up the RTC RTAS interfaces */
2924     spapr_rtc_create(spapr);
2925 
2926     /* Set up VIO bus */
2927     spapr->vio_bus = spapr_vio_bus_init();
2928 
2929     for (i = 0; i < serial_max_hds(); i++) {
2930         if (serial_hd(i)) {
2931             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2932         }
2933     }
2934 
2935     /* We always have at least the nvram device on VIO */
2936     spapr_create_nvram(spapr);
2937 
2938     /*
2939      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2940      * connectors (described in root DT node's "ibm,drc-types" property)
2941      * are pre-initialized here. additional child connectors (such as
2942      * connectors for a PHBs PCI slots) are added as needed during their
2943      * parent's realization.
2944      */
2945     if (smc->dr_phb_enabled) {
2946         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2947             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2948         }
2949     }
2950 
2951     /* Set up PCI */
2952     spapr_pci_rtas_init();
2953 
2954     phb = spapr_create_default_phb();
2955 
2956     for (i = 0; i < nb_nics; i++) {
2957         NICInfo *nd = &nd_table[i];
2958 
2959         if (!nd->model) {
2960             nd->model = g_strdup("spapr-vlan");
2961         }
2962 
2963         if (g_str_equal(nd->model, "spapr-vlan") ||
2964             g_str_equal(nd->model, "ibmveth")) {
2965             spapr_vlan_create(spapr->vio_bus, nd);
2966         } else {
2967             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2968         }
2969     }
2970 
2971     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2972         spapr_vscsi_create(spapr->vio_bus);
2973     }
2974 
2975     /* Graphics */
2976     if (spapr_vga_init(phb->bus, &error_fatal)) {
2977         spapr->has_graphics = true;
2978         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2979     }
2980 
2981     if (machine->usb) {
2982         if (smc->use_ohci_by_default) {
2983             pci_create_simple(phb->bus, -1, "pci-ohci");
2984         } else {
2985             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2986         }
2987 
2988         if (spapr->has_graphics) {
2989             USBBus *usb_bus = usb_bus_find(-1);
2990 
2991             usb_create_simple(usb_bus, "usb-kbd");
2992             usb_create_simple(usb_bus, "usb-mouse");
2993         }
2994     }
2995 
2996     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2997         error_report(
2998             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2999             MIN_RMA_SLOF);
3000         exit(1);
3001     }
3002 
3003     if (kernel_filename) {
3004         uint64_t lowaddr = 0;
3005 
3006         spapr->kernel_size = load_elf(kernel_filename, NULL,
3007                                       translate_kernel_address, NULL,
3008                                       NULL, &lowaddr, NULL, 1,
3009                                       PPC_ELF_MACHINE, 0, 0);
3010         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3011             spapr->kernel_size = load_elf(kernel_filename, NULL,
3012                                           translate_kernel_address, NULL, NULL,
3013                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3014                                           0, 0);
3015             spapr->kernel_le = spapr->kernel_size > 0;
3016         }
3017         if (spapr->kernel_size < 0) {
3018             error_report("error loading %s: %s", kernel_filename,
3019                          load_elf_strerror(spapr->kernel_size));
3020             exit(1);
3021         }
3022 
3023         /* load initrd */
3024         if (initrd_filename) {
3025             /* Try to locate the initrd in the gap between the kernel
3026              * and the firmware. Add a bit of space just in case
3027              */
3028             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3029                                   + 0x1ffff) & ~0xffff;
3030             spapr->initrd_size = load_image_targphys(initrd_filename,
3031                                                      spapr->initrd_base,
3032                                                      load_limit
3033                                                      - spapr->initrd_base);
3034             if (spapr->initrd_size < 0) {
3035                 error_report("could not load initial ram disk '%s'",
3036                              initrd_filename);
3037                 exit(1);
3038             }
3039         }
3040     }
3041 
3042     if (bios_name == NULL) {
3043         bios_name = FW_FILE_NAME;
3044     }
3045     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3046     if (!filename) {
3047         error_report("Could not find LPAR firmware '%s'", bios_name);
3048         exit(1);
3049     }
3050     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3051     if (fw_size <= 0) {
3052         error_report("Could not load LPAR firmware '%s'", filename);
3053         exit(1);
3054     }
3055     g_free(filename);
3056 
3057     /* FIXME: Should register things through the MachineState's qdev
3058      * interface, this is a legacy from the sPAPREnvironment structure
3059      * which predated MachineState but had a similar function */
3060     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3061     register_savevm_live(NULL, "spapr/htab", -1, 1,
3062                          &savevm_htab_handlers, spapr);
3063 
3064     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3065                              &error_fatal);
3066 
3067     qemu_register_boot_set(spapr_boot_set, spapr);
3068 
3069     if (kvm_enabled()) {
3070         /* to stop and start vmclock */
3071         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3072                                          &spapr->tb);
3073 
3074         kvmppc_spapr_enable_inkernel_multitce();
3075     }
3076 }
3077 
3078 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3079 {
3080     if (!vm_type) {
3081         return 0;
3082     }
3083 
3084     if (!strcmp(vm_type, "HV")) {
3085         return 1;
3086     }
3087 
3088     if (!strcmp(vm_type, "PR")) {
3089         return 2;
3090     }
3091 
3092     error_report("Unknown kvm-type specified '%s'", vm_type);
3093     exit(1);
3094 }
3095 
3096 /*
3097  * Implementation of an interface to adjust firmware path
3098  * for the bootindex property handling.
3099  */
3100 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3101                                    DeviceState *dev)
3102 {
3103 #define CAST(type, obj, name) \
3104     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3105     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3106     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3107     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3108 
3109     if (d) {
3110         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3111         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3112         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3113 
3114         if (spapr) {
3115             /*
3116              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3117              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3118              * 0x8000 | (target << 8) | (bus << 5) | lun
3119              * (see the "Logical unit addressing format" table in SAM5)
3120              */
3121             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3122             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3123                                    (uint64_t)id << 48);
3124         } else if (virtio) {
3125             /*
3126              * We use SRP luns of the form 01000000 | (target << 8) | lun
3127              * in the top 32 bits of the 64-bit LUN
3128              * Note: the quote above is from SLOF and it is wrong,
3129              * the actual binding is:
3130              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3131              */
3132             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3133             if (d->lun >= 256) {
3134                 /* Use the LUN "flat space addressing method" */
3135                 id |= 0x4000;
3136             }
3137             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3138                                    (uint64_t)id << 32);
3139         } else if (usb) {
3140             /*
3141              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3142              * in the top 32 bits of the 64-bit LUN
3143              */
3144             unsigned usb_port = atoi(usb->port->path);
3145             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3146             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3147                                    (uint64_t)id << 32);
3148         }
3149     }
3150 
3151     /*
3152      * SLOF probes the USB devices, and if it recognizes that the device is a
3153      * storage device, it changes its name to "storage" instead of "usb-host",
3154      * and additionally adds a child node for the SCSI LUN, so the correct
3155      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3156      */
3157     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3158         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3159         if (usb_host_dev_is_scsi_storage(usbdev)) {
3160             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3161         }
3162     }
3163 
3164     if (phb) {
3165         /* Replace "pci" with "pci@800000020000000" */
3166         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3167     }
3168 
3169     if (vsc) {
3170         /* Same logic as virtio above */
3171         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3172         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3173     }
3174 
3175     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3176         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3177         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3178         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3179     }
3180 
3181     return NULL;
3182 }
3183 
3184 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3185 {
3186     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3187 
3188     return g_strdup(spapr->kvm_type);
3189 }
3190 
3191 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3192 {
3193     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3194 
3195     g_free(spapr->kvm_type);
3196     spapr->kvm_type = g_strdup(value);
3197 }
3198 
3199 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3200 {
3201     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 
3203     return spapr->use_hotplug_event_source;
3204 }
3205 
3206 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3207                                             Error **errp)
3208 {
3209     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210 
3211     spapr->use_hotplug_event_source = value;
3212 }
3213 
3214 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3215 {
3216     return true;
3217 }
3218 
3219 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3220 {
3221     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3222 
3223     switch (spapr->resize_hpt) {
3224     case SPAPR_RESIZE_HPT_DEFAULT:
3225         return g_strdup("default");
3226     case SPAPR_RESIZE_HPT_DISABLED:
3227         return g_strdup("disabled");
3228     case SPAPR_RESIZE_HPT_ENABLED:
3229         return g_strdup("enabled");
3230     case SPAPR_RESIZE_HPT_REQUIRED:
3231         return g_strdup("required");
3232     }
3233     g_assert_not_reached();
3234 }
3235 
3236 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3237 {
3238     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 
3240     if (strcmp(value, "default") == 0) {
3241         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3242     } else if (strcmp(value, "disabled") == 0) {
3243         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3244     } else if (strcmp(value, "enabled") == 0) {
3245         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3246     } else if (strcmp(value, "required") == 0) {
3247         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3248     } else {
3249         error_setg(errp, "Bad value for \"resize-hpt\" property");
3250     }
3251 }
3252 
3253 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3254                                    void *opaque, Error **errp)
3255 {
3256     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3257 }
3258 
3259 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3260                                    void *opaque, Error **errp)
3261 {
3262     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3263 }
3264 
3265 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3266 {
3267     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268 
3269     if (spapr->irq == &spapr_irq_xics_legacy) {
3270         return g_strdup("legacy");
3271     } else if (spapr->irq == &spapr_irq_xics) {
3272         return g_strdup("xics");
3273     } else if (spapr->irq == &spapr_irq_xive) {
3274         return g_strdup("xive");
3275     } else if (spapr->irq == &spapr_irq_dual) {
3276         return g_strdup("dual");
3277     }
3278     g_assert_not_reached();
3279 }
3280 
3281 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3282 {
3283     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 
3285     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3286         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3287         return;
3288     }
3289 
3290     /* The legacy IRQ backend can not be set */
3291     if (strcmp(value, "xics") == 0) {
3292         spapr->irq = &spapr_irq_xics;
3293     } else if (strcmp(value, "xive") == 0) {
3294         spapr->irq = &spapr_irq_xive;
3295     } else if (strcmp(value, "dual") == 0) {
3296         spapr->irq = &spapr_irq_dual;
3297     } else {
3298         error_setg(errp, "Bad value for \"ic-mode\" property");
3299     }
3300 }
3301 
3302 static char *spapr_get_host_model(Object *obj, Error **errp)
3303 {
3304     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305 
3306     return g_strdup(spapr->host_model);
3307 }
3308 
3309 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3310 {
3311     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3312 
3313     g_free(spapr->host_model);
3314     spapr->host_model = g_strdup(value);
3315 }
3316 
3317 static char *spapr_get_host_serial(Object *obj, Error **errp)
3318 {
3319     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3320 
3321     return g_strdup(spapr->host_serial);
3322 }
3323 
3324 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3325 {
3326     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3327 
3328     g_free(spapr->host_serial);
3329     spapr->host_serial = g_strdup(value);
3330 }
3331 
3332 static void spapr_instance_init(Object *obj)
3333 {
3334     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3336 
3337     spapr->htab_fd = -1;
3338     spapr->use_hotplug_event_source = true;
3339     object_property_add_str(obj, "kvm-type",
3340                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3341     object_property_set_description(obj, "kvm-type",
3342                                     "Specifies the KVM virtualization mode (HV, PR)",
3343                                     NULL);
3344     object_property_add_bool(obj, "modern-hotplug-events",
3345                             spapr_get_modern_hotplug_events,
3346                             spapr_set_modern_hotplug_events,
3347                             NULL);
3348     object_property_set_description(obj, "modern-hotplug-events",
3349                                     "Use dedicated hotplug event mechanism in"
3350                                     " place of standard EPOW events when possible"
3351                                     " (required for memory hot-unplug support)",
3352                                     NULL);
3353     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3354                             "Maximum permitted CPU compatibility mode",
3355                             &error_fatal);
3356 
3357     object_property_add_str(obj, "resize-hpt",
3358                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3359     object_property_set_description(obj, "resize-hpt",
3360                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3361                                     NULL);
3362     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3363                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3364     object_property_set_description(obj, "vsmt",
3365                                     "Virtual SMT: KVM behaves as if this were"
3366                                     " the host's SMT mode", &error_abort);
3367     object_property_add_bool(obj, "vfio-no-msix-emulation",
3368                              spapr_get_msix_emulation, NULL, NULL);
3369 
3370     /* The machine class defines the default interrupt controller mode */
3371     spapr->irq = smc->irq;
3372     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3373                             spapr_set_ic_mode, NULL);
3374     object_property_set_description(obj, "ic-mode",
3375                  "Specifies the interrupt controller mode (xics, xive, dual)",
3376                  NULL);
3377 
3378     object_property_add_str(obj, "host-model",
3379         spapr_get_host_model, spapr_set_host_model,
3380         &error_abort);
3381     object_property_set_description(obj, "host-model",
3382         "Host model to advertise in guest device tree", &error_abort);
3383     object_property_add_str(obj, "host-serial",
3384         spapr_get_host_serial, spapr_set_host_serial,
3385         &error_abort);
3386     object_property_set_description(obj, "host-serial",
3387         "Host serial number to advertise in guest device tree", &error_abort);
3388 }
3389 
3390 static void spapr_machine_finalizefn(Object *obj)
3391 {
3392     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3393 
3394     g_free(spapr->kvm_type);
3395 }
3396 
3397 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3398 {
3399     cpu_synchronize_state(cs);
3400     ppc_cpu_do_system_reset(cs);
3401 }
3402 
3403 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3404 {
3405     CPUState *cs;
3406 
3407     CPU_FOREACH(cs) {
3408         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3409     }
3410 }
3411 
3412 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3413                           void *fdt, int *fdt_start_offset, Error **errp)
3414 {
3415     uint64_t addr;
3416     uint32_t node;
3417 
3418     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3419     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3420                                     &error_abort);
3421     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3422                                                    SPAPR_MEMORY_BLOCK_SIZE);
3423     return 0;
3424 }
3425 
3426 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3427                            bool dedicated_hp_event_source, Error **errp)
3428 {
3429     SpaprDrc *drc;
3430     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3431     int i;
3432     uint64_t addr = addr_start;
3433     bool hotplugged = spapr_drc_hotplugged(dev);
3434     Error *local_err = NULL;
3435 
3436     for (i = 0; i < nr_lmbs; i++) {
3437         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3438                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3439         g_assert(drc);
3440 
3441         spapr_drc_attach(drc, dev, &local_err);
3442         if (local_err) {
3443             while (addr > addr_start) {
3444                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3445                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3446                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3447                 spapr_drc_detach(drc);
3448             }
3449             error_propagate(errp, local_err);
3450             return;
3451         }
3452         if (!hotplugged) {
3453             spapr_drc_reset(drc);
3454         }
3455         addr += SPAPR_MEMORY_BLOCK_SIZE;
3456     }
3457     /* send hotplug notification to the
3458      * guest only in case of hotplugged memory
3459      */
3460     if (hotplugged) {
3461         if (dedicated_hp_event_source) {
3462             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3463                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3464             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3465                                                    nr_lmbs,
3466                                                    spapr_drc_index(drc));
3467         } else {
3468             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3469                                            nr_lmbs);
3470         }
3471     }
3472 }
3473 
3474 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3475                               Error **errp)
3476 {
3477     Error *local_err = NULL;
3478     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3479     PCDIMMDevice *dimm = PC_DIMM(dev);
3480     uint64_t size, addr;
3481 
3482     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3483 
3484     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3485     if (local_err) {
3486         goto out;
3487     }
3488 
3489     addr = object_property_get_uint(OBJECT(dimm),
3490                                     PC_DIMM_ADDR_PROP, &local_err);
3491     if (local_err) {
3492         goto out_unplug;
3493     }
3494 
3495     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3496                    &local_err);
3497     if (local_err) {
3498         goto out_unplug;
3499     }
3500 
3501     return;
3502 
3503 out_unplug:
3504     pc_dimm_unplug(dimm, MACHINE(ms));
3505 out:
3506     error_propagate(errp, local_err);
3507 }
3508 
3509 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3510                                   Error **errp)
3511 {
3512     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3513     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3514     PCDIMMDevice *dimm = PC_DIMM(dev);
3515     Error *local_err = NULL;
3516     uint64_t size;
3517     Object *memdev;
3518     hwaddr pagesize;
3519 
3520     if (!smc->dr_lmb_enabled) {
3521         error_setg(errp, "Memory hotplug not supported for this machine");
3522         return;
3523     }
3524 
3525     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3526     if (local_err) {
3527         error_propagate(errp, local_err);
3528         return;
3529     }
3530 
3531     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3532         error_setg(errp, "Hotplugged memory size must be a multiple of "
3533                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3534         return;
3535     }
3536 
3537     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3538                                       &error_abort);
3539     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3540     spapr_check_pagesize(spapr, pagesize, &local_err);
3541     if (local_err) {
3542         error_propagate(errp, local_err);
3543         return;
3544     }
3545 
3546     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3547 }
3548 
3549 struct SpaprDimmState {
3550     PCDIMMDevice *dimm;
3551     uint32_t nr_lmbs;
3552     QTAILQ_ENTRY(SpaprDimmState) next;
3553 };
3554 
3555 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3556                                                        PCDIMMDevice *dimm)
3557 {
3558     SpaprDimmState *dimm_state = NULL;
3559 
3560     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3561         if (dimm_state->dimm == dimm) {
3562             break;
3563         }
3564     }
3565     return dimm_state;
3566 }
3567 
3568 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3569                                                       uint32_t nr_lmbs,
3570                                                       PCDIMMDevice *dimm)
3571 {
3572     SpaprDimmState *ds = NULL;
3573 
3574     /*
3575      * If this request is for a DIMM whose removal had failed earlier
3576      * (due to guest's refusal to remove the LMBs), we would have this
3577      * dimm already in the pending_dimm_unplugs list. In that
3578      * case don't add again.
3579      */
3580     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3581     if (!ds) {
3582         ds = g_malloc0(sizeof(SpaprDimmState));
3583         ds->nr_lmbs = nr_lmbs;
3584         ds->dimm = dimm;
3585         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3586     }
3587     return ds;
3588 }
3589 
3590 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3591                                               SpaprDimmState *dimm_state)
3592 {
3593     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3594     g_free(dimm_state);
3595 }
3596 
3597 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3598                                                         PCDIMMDevice *dimm)
3599 {
3600     SpaprDrc *drc;
3601     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3602                                                   &error_abort);
3603     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3604     uint32_t avail_lmbs = 0;
3605     uint64_t addr_start, addr;
3606     int i;
3607 
3608     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3609                                          &error_abort);
3610 
3611     addr = addr_start;
3612     for (i = 0; i < nr_lmbs; i++) {
3613         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3614                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3615         g_assert(drc);
3616         if (drc->dev) {
3617             avail_lmbs++;
3618         }
3619         addr += SPAPR_MEMORY_BLOCK_SIZE;
3620     }
3621 
3622     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3623 }
3624 
3625 /* Callback to be called during DRC release. */
3626 void spapr_lmb_release(DeviceState *dev)
3627 {
3628     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3629     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3630     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3631 
3632     /* This information will get lost if a migration occurs
3633      * during the unplug process. In this case recover it. */
3634     if (ds == NULL) {
3635         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3636         g_assert(ds);
3637         /* The DRC being examined by the caller at least must be counted */
3638         g_assert(ds->nr_lmbs);
3639     }
3640 
3641     if (--ds->nr_lmbs) {
3642         return;
3643     }
3644 
3645     /*
3646      * Now that all the LMBs have been removed by the guest, call the
3647      * unplug handler chain. This can never fail.
3648      */
3649     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3650     object_unparent(OBJECT(dev));
3651 }
3652 
3653 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3654 {
3655     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3656     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3657 
3658     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3659     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3660     spapr_pending_dimm_unplugs_remove(spapr, ds);
3661 }
3662 
3663 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3664                                         DeviceState *dev, Error **errp)
3665 {
3666     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3667     Error *local_err = NULL;
3668     PCDIMMDevice *dimm = PC_DIMM(dev);
3669     uint32_t nr_lmbs;
3670     uint64_t size, addr_start, addr;
3671     int i;
3672     SpaprDrc *drc;
3673 
3674     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3675     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3676 
3677     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3678                                          &local_err);
3679     if (local_err) {
3680         goto out;
3681     }
3682 
3683     /*
3684      * An existing pending dimm state for this DIMM means that there is an
3685      * unplug operation in progress, waiting for the spapr_lmb_release
3686      * callback to complete the job (BQL can't cover that far). In this case,
3687      * bail out to avoid detaching DRCs that were already released.
3688      */
3689     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3690         error_setg(&local_err,
3691                    "Memory unplug already in progress for device %s",
3692                    dev->id);
3693         goto out;
3694     }
3695 
3696     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3697 
3698     addr = addr_start;
3699     for (i = 0; i < nr_lmbs; i++) {
3700         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3701                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3702         g_assert(drc);
3703 
3704         spapr_drc_detach(drc);
3705         addr += SPAPR_MEMORY_BLOCK_SIZE;
3706     }
3707 
3708     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3709                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3710     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3711                                               nr_lmbs, spapr_drc_index(drc));
3712 out:
3713     error_propagate(errp, local_err);
3714 }
3715 
3716 /* Callback to be called during DRC release. */
3717 void spapr_core_release(DeviceState *dev)
3718 {
3719     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3720 
3721     /* Call the unplug handler chain. This can never fail. */
3722     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3723     object_unparent(OBJECT(dev));
3724 }
3725 
3726 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3727 {
3728     MachineState *ms = MACHINE(hotplug_dev);
3729     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3730     CPUCore *cc = CPU_CORE(dev);
3731     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3732 
3733     if (smc->pre_2_10_has_unused_icps) {
3734         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3735         int i;
3736 
3737         for (i = 0; i < cc->nr_threads; i++) {
3738             CPUState *cs = CPU(sc->threads[i]);
3739 
3740             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3741         }
3742     }
3743 
3744     assert(core_slot);
3745     core_slot->cpu = NULL;
3746     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3747 }
3748 
3749 static
3750 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3751                                Error **errp)
3752 {
3753     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3754     int index;
3755     SpaprDrc *drc;
3756     CPUCore *cc = CPU_CORE(dev);
3757 
3758     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3759         error_setg(errp, "Unable to find CPU core with core-id: %d",
3760                    cc->core_id);
3761         return;
3762     }
3763     if (index == 0) {
3764         error_setg(errp, "Boot CPU core may not be unplugged");
3765         return;
3766     }
3767 
3768     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3769                           spapr_vcpu_id(spapr, cc->core_id));
3770     g_assert(drc);
3771 
3772     spapr_drc_detach(drc);
3773 
3774     spapr_hotplug_req_remove_by_index(drc);
3775 }
3776 
3777 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3778                            void *fdt, int *fdt_start_offset, Error **errp)
3779 {
3780     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3781     CPUState *cs = CPU(core->threads[0]);
3782     PowerPCCPU *cpu = POWERPC_CPU(cs);
3783     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3784     int id = spapr_get_vcpu_id(cpu);
3785     char *nodename;
3786     int offset;
3787 
3788     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3789     offset = fdt_add_subnode(fdt, 0, nodename);
3790     g_free(nodename);
3791 
3792     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3793 
3794     *fdt_start_offset = offset;
3795     return 0;
3796 }
3797 
3798 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3799                             Error **errp)
3800 {
3801     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3802     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3803     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3804     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3805     CPUCore *cc = CPU_CORE(dev);
3806     CPUState *cs;
3807     SpaprDrc *drc;
3808     Error *local_err = NULL;
3809     CPUArchId *core_slot;
3810     int index;
3811     bool hotplugged = spapr_drc_hotplugged(dev);
3812 
3813     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3814     if (!core_slot) {
3815         error_setg(errp, "Unable to find CPU core with core-id: %d",
3816                    cc->core_id);
3817         return;
3818     }
3819     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3820                           spapr_vcpu_id(spapr, cc->core_id));
3821 
3822     g_assert(drc || !mc->has_hotpluggable_cpus);
3823 
3824     if (drc) {
3825         spapr_drc_attach(drc, dev, &local_err);
3826         if (local_err) {
3827             error_propagate(errp, local_err);
3828             return;
3829         }
3830 
3831         if (hotplugged) {
3832             /*
3833              * Send hotplug notification interrupt to the guest only
3834              * in case of hotplugged CPUs.
3835              */
3836             spapr_hotplug_req_add_by_index(drc);
3837         } else {
3838             spapr_drc_reset(drc);
3839         }
3840     }
3841 
3842     core_slot->cpu = OBJECT(dev);
3843 
3844     if (smc->pre_2_10_has_unused_icps) {
3845         int i;
3846 
3847         for (i = 0; i < cc->nr_threads; i++) {
3848             cs = CPU(core->threads[i]);
3849             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3850         }
3851     }
3852 }
3853 
3854 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3855                                 Error **errp)
3856 {
3857     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3858     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3859     Error *local_err = NULL;
3860     CPUCore *cc = CPU_CORE(dev);
3861     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3862     const char *type = object_get_typename(OBJECT(dev));
3863     CPUArchId *core_slot;
3864     int index;
3865 
3866     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3867         error_setg(&local_err, "CPU hotplug not supported for this machine");
3868         goto out;
3869     }
3870 
3871     if (strcmp(base_core_type, type)) {
3872         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3873         goto out;
3874     }
3875 
3876     if (cc->core_id % smp_threads) {
3877         error_setg(&local_err, "invalid core id %d", cc->core_id);
3878         goto out;
3879     }
3880 
3881     /*
3882      * In general we should have homogeneous threads-per-core, but old
3883      * (pre hotplug support) machine types allow the last core to have
3884      * reduced threads as a compatibility hack for when we allowed
3885      * total vcpus not a multiple of threads-per-core.
3886      */
3887     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3888         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3889                    cc->nr_threads, smp_threads);
3890         goto out;
3891     }
3892 
3893     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3894     if (!core_slot) {
3895         error_setg(&local_err, "core id %d out of range", cc->core_id);
3896         goto out;
3897     }
3898 
3899     if (core_slot->cpu) {
3900         error_setg(&local_err, "core %d already populated", cc->core_id);
3901         goto out;
3902     }
3903 
3904     numa_cpu_pre_plug(core_slot, dev, &local_err);
3905 
3906 out:
3907     error_propagate(errp, local_err);
3908 }
3909 
3910 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3911                           void *fdt, int *fdt_start_offset, Error **errp)
3912 {
3913     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3914     int intc_phandle;
3915 
3916     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3917     if (intc_phandle <= 0) {
3918         return -1;
3919     }
3920 
3921     if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3922                               fdt_start_offset)) {
3923         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3924         return -1;
3925     }
3926 
3927     /* generally SLOF creates these, for hotplug it's up to QEMU */
3928     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3929 
3930     return 0;
3931 }
3932 
3933 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3934                                Error **errp)
3935 {
3936     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3937     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3938     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3939     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3940 
3941     if (dev->hotplugged && !smc->dr_phb_enabled) {
3942         error_setg(errp, "PHB hotplug not supported for this machine");
3943         return;
3944     }
3945 
3946     if (sphb->index == (uint32_t)-1) {
3947         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3948         return;
3949     }
3950 
3951     /*
3952      * This will check that sphb->index doesn't exceed the maximum number of
3953      * PHBs for the current machine type.
3954      */
3955     smc->phb_placement(spapr, sphb->index,
3956                        &sphb->buid, &sphb->io_win_addr,
3957                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3958                        windows_supported, sphb->dma_liobn,
3959                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3960                        errp);
3961 }
3962 
3963 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3964                            Error **errp)
3965 {
3966     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3967     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3968     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3969     SpaprDrc *drc;
3970     bool hotplugged = spapr_drc_hotplugged(dev);
3971     Error *local_err = NULL;
3972 
3973     if (!smc->dr_phb_enabled) {
3974         return;
3975     }
3976 
3977     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3978     /* hotplug hooks should check it's enabled before getting this far */
3979     assert(drc);
3980 
3981     spapr_drc_attach(drc, DEVICE(dev), &local_err);
3982     if (local_err) {
3983         error_propagate(errp, local_err);
3984         return;
3985     }
3986 
3987     if (hotplugged) {
3988         spapr_hotplug_req_add_by_index(drc);
3989     } else {
3990         spapr_drc_reset(drc);
3991     }
3992 }
3993 
3994 void spapr_phb_release(DeviceState *dev)
3995 {
3996     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3997 
3998     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3999     object_unparent(OBJECT(dev));
4000 }
4001 
4002 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4003 {
4004     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4005 }
4006 
4007 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4008                                      DeviceState *dev, Error **errp)
4009 {
4010     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4011     SpaprDrc *drc;
4012 
4013     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4014     assert(drc);
4015 
4016     if (!spapr_drc_unplug_requested(drc)) {
4017         spapr_drc_detach(drc);
4018         spapr_hotplug_req_remove_by_index(drc);
4019     }
4020 }
4021 
4022 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4023                                       DeviceState *dev, Error **errp)
4024 {
4025     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4026         spapr_memory_plug(hotplug_dev, dev, errp);
4027     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4028         spapr_core_plug(hotplug_dev, dev, errp);
4029     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4030         spapr_phb_plug(hotplug_dev, dev, errp);
4031     }
4032 }
4033 
4034 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4035                                         DeviceState *dev, Error **errp)
4036 {
4037     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4038         spapr_memory_unplug(hotplug_dev, dev);
4039     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4040         spapr_core_unplug(hotplug_dev, dev);
4041     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4042         spapr_phb_unplug(hotplug_dev, dev);
4043     }
4044 }
4045 
4046 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4047                                                 DeviceState *dev, Error **errp)
4048 {
4049     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4050     MachineClass *mc = MACHINE_GET_CLASS(sms);
4051     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4052 
4053     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4054         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4055             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4056         } else {
4057             /* NOTE: this means there is a window after guest reset, prior to
4058              * CAS negotiation, where unplug requests will fail due to the
4059              * capability not being detected yet. This is a bit different than
4060              * the case with PCI unplug, where the events will be queued and
4061              * eventually handled by the guest after boot
4062              */
4063             error_setg(errp, "Memory hot unplug not supported for this guest");
4064         }
4065     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4066         if (!mc->has_hotpluggable_cpus) {
4067             error_setg(errp, "CPU hot unplug not supported on this machine");
4068             return;
4069         }
4070         spapr_core_unplug_request(hotplug_dev, dev, errp);
4071     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4072         if (!smc->dr_phb_enabled) {
4073             error_setg(errp, "PHB hot unplug not supported on this machine");
4074             return;
4075         }
4076         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4077     }
4078 }
4079 
4080 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4081                                           DeviceState *dev, Error **errp)
4082 {
4083     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4084         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4086         spapr_core_pre_plug(hotplug_dev, dev, errp);
4087     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4088         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4089     }
4090 }
4091 
4092 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4093                                                  DeviceState *dev)
4094 {
4095     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4096         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4097         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4098         return HOTPLUG_HANDLER(machine);
4099     }
4100     return NULL;
4101 }
4102 
4103 static CpuInstanceProperties
4104 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4105 {
4106     CPUArchId *core_slot;
4107     MachineClass *mc = MACHINE_GET_CLASS(machine);
4108 
4109     /* make sure possible_cpu are intialized */
4110     mc->possible_cpu_arch_ids(machine);
4111     /* get CPU core slot containing thread that matches cpu_index */
4112     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4113     assert(core_slot);
4114     return core_slot->props;
4115 }
4116 
4117 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4118 {
4119     return idx / smp_cores % nb_numa_nodes;
4120 }
4121 
4122 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4123 {
4124     int i;
4125     const char *core_type;
4126     int spapr_max_cores = max_cpus / smp_threads;
4127     MachineClass *mc = MACHINE_GET_CLASS(machine);
4128 
4129     if (!mc->has_hotpluggable_cpus) {
4130         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4131     }
4132     if (machine->possible_cpus) {
4133         assert(machine->possible_cpus->len == spapr_max_cores);
4134         return machine->possible_cpus;
4135     }
4136 
4137     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4138     if (!core_type) {
4139         error_report("Unable to find sPAPR CPU Core definition");
4140         exit(1);
4141     }
4142 
4143     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4144                              sizeof(CPUArchId) * spapr_max_cores);
4145     machine->possible_cpus->len = spapr_max_cores;
4146     for (i = 0; i < machine->possible_cpus->len; i++) {
4147         int core_id = i * smp_threads;
4148 
4149         machine->possible_cpus->cpus[i].type = core_type;
4150         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4151         machine->possible_cpus->cpus[i].arch_id = core_id;
4152         machine->possible_cpus->cpus[i].props.has_core_id = true;
4153         machine->possible_cpus->cpus[i].props.core_id = core_id;
4154     }
4155     return machine->possible_cpus;
4156 }
4157 
4158 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4159                                 uint64_t *buid, hwaddr *pio,
4160                                 hwaddr *mmio32, hwaddr *mmio64,
4161                                 unsigned n_dma, uint32_t *liobns,
4162                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4163 {
4164     /*
4165      * New-style PHB window placement.
4166      *
4167      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4168      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4169      * windows.
4170      *
4171      * Some guest kernels can't work with MMIO windows above 1<<46
4172      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4173      *
4174      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4175      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4176      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4177      * 1TiB 64-bit MMIO windows for each PHB.
4178      */
4179     const uint64_t base_buid = 0x800000020000000ULL;
4180     int i;
4181 
4182     /* Sanity check natural alignments */
4183     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4184     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4185     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4186     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4187     /* Sanity check bounds */
4188     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4189                       SPAPR_PCI_MEM32_WIN_SIZE);
4190     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4191                       SPAPR_PCI_MEM64_WIN_SIZE);
4192 
4193     if (index >= SPAPR_MAX_PHBS) {
4194         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4195                    SPAPR_MAX_PHBS - 1);
4196         return;
4197     }
4198 
4199     *buid = base_buid + index;
4200     for (i = 0; i < n_dma; ++i) {
4201         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4202     }
4203 
4204     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4205     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4206     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4207 
4208     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4209     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4210 }
4211 
4212 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4213 {
4214     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4215 
4216     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4217 }
4218 
4219 static void spapr_ics_resend(XICSFabric *dev)
4220 {
4221     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4222 
4223     ics_resend(spapr->ics);
4224 }
4225 
4226 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4227 {
4228     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4229 
4230     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4231 }
4232 
4233 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4234                                  Monitor *mon)
4235 {
4236     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4237 
4238     spapr->irq->print_info(spapr, mon);
4239 }
4240 
4241 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4242 {
4243     return cpu->vcpu_id;
4244 }
4245 
4246 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4247 {
4248     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4249     int vcpu_id;
4250 
4251     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4252 
4253     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4254         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4255         error_append_hint(errp, "Adjust the number of cpus to %d "
4256                           "or try to raise the number of threads per core\n",
4257                           vcpu_id * smp_threads / spapr->vsmt);
4258         return;
4259     }
4260 
4261     cpu->vcpu_id = vcpu_id;
4262 }
4263 
4264 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4265 {
4266     CPUState *cs;
4267 
4268     CPU_FOREACH(cs) {
4269         PowerPCCPU *cpu = POWERPC_CPU(cs);
4270 
4271         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4272             return cpu;
4273         }
4274     }
4275 
4276     return NULL;
4277 }
4278 
4279 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4280 {
4281     MachineClass *mc = MACHINE_CLASS(oc);
4282     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4283     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4284     NMIClass *nc = NMI_CLASS(oc);
4285     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4286     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4287     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4288     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4289 
4290     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4291     mc->ignore_boot_device_suffixes = true;
4292 
4293     /*
4294      * We set up the default / latest behaviour here.  The class_init
4295      * functions for the specific versioned machine types can override
4296      * these details for backwards compatibility
4297      */
4298     mc->init = spapr_machine_init;
4299     mc->reset = spapr_machine_reset;
4300     mc->block_default_type = IF_SCSI;
4301     mc->max_cpus = 1024;
4302     mc->no_parallel = 1;
4303     mc->default_boot_order = "";
4304     mc->default_ram_size = 512 * MiB;
4305     mc->default_display = "std";
4306     mc->kvm_type = spapr_kvm_type;
4307     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4308     mc->pci_allow_0_address = true;
4309     assert(!mc->get_hotplug_handler);
4310     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4311     hc->pre_plug = spapr_machine_device_pre_plug;
4312     hc->plug = spapr_machine_device_plug;
4313     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4314     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4315     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4316     hc->unplug_request = spapr_machine_device_unplug_request;
4317     hc->unplug = spapr_machine_device_unplug;
4318 
4319     smc->dr_lmb_enabled = true;
4320     smc->update_dt_enabled = true;
4321     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4322     mc->has_hotpluggable_cpus = true;
4323     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4324     fwc->get_dev_path = spapr_get_fw_dev_path;
4325     nc->nmi_monitor_handler = spapr_nmi;
4326     smc->phb_placement = spapr_phb_placement;
4327     vhc->hypercall = emulate_spapr_hypercall;
4328     vhc->hpt_mask = spapr_hpt_mask;
4329     vhc->map_hptes = spapr_map_hptes;
4330     vhc->unmap_hptes = spapr_unmap_hptes;
4331     vhc->hpte_set_c = spapr_hpte_set_c;
4332     vhc->hpte_set_r = spapr_hpte_set_r;
4333     vhc->get_pate = spapr_get_pate;
4334     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4335     xic->ics_get = spapr_ics_get;
4336     xic->ics_resend = spapr_ics_resend;
4337     xic->icp_get = spapr_icp_get;
4338     ispc->print_info = spapr_pic_print_info;
4339     /* Force NUMA node memory size to be a multiple of
4340      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4341      * in which LMBs are represented and hot-added
4342      */
4343     mc->numa_mem_align_shift = 28;
4344 
4345     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4346     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4347     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4348     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4349     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4350     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4351     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4352     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4353     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4354     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4355     spapr_caps_add_properties(smc, &error_abort);
4356     smc->irq = &spapr_irq_dual;
4357     smc->dr_phb_enabled = true;
4358 }
4359 
4360 static const TypeInfo spapr_machine_info = {
4361     .name          = TYPE_SPAPR_MACHINE,
4362     .parent        = TYPE_MACHINE,
4363     .abstract      = true,
4364     .instance_size = sizeof(SpaprMachineState),
4365     .instance_init = spapr_instance_init,
4366     .instance_finalize = spapr_machine_finalizefn,
4367     .class_size    = sizeof(SpaprMachineClass),
4368     .class_init    = spapr_machine_class_init,
4369     .interfaces = (InterfaceInfo[]) {
4370         { TYPE_FW_PATH_PROVIDER },
4371         { TYPE_NMI },
4372         { TYPE_HOTPLUG_HANDLER },
4373         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4374         { TYPE_XICS_FABRIC },
4375         { TYPE_INTERRUPT_STATS_PROVIDER },
4376         { }
4377     },
4378 };
4379 
4380 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4381     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4382                                                     void *data)      \
4383     {                                                                \
4384         MachineClass *mc = MACHINE_CLASS(oc);                        \
4385         spapr_machine_##suffix##_class_options(mc);                  \
4386         if (latest) {                                                \
4387             mc->alias = "pseries";                                   \
4388             mc->is_default = 1;                                      \
4389         }                                                            \
4390     }                                                                \
4391     static const TypeInfo spapr_machine_##suffix##_info = {          \
4392         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4393         .parent = TYPE_SPAPR_MACHINE,                                \
4394         .class_init = spapr_machine_##suffix##_class_init,           \
4395     };                                                               \
4396     static void spapr_machine_register_##suffix(void)                \
4397     {                                                                \
4398         type_register(&spapr_machine_##suffix##_info);               \
4399     }                                                                \
4400     type_init(spapr_machine_register_##suffix)
4401 
4402 /*
4403  * pseries-4.1
4404  */
4405 static void spapr_machine_4_1_class_options(MachineClass *mc)
4406 {
4407     /* Defaults for the latest behaviour inherited from the base class */
4408 }
4409 
4410 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4411 
4412 /*
4413  * pseries-4.0
4414  */
4415 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4416                               uint64_t *buid, hwaddr *pio,
4417                               hwaddr *mmio32, hwaddr *mmio64,
4418                               unsigned n_dma, uint32_t *liobns,
4419                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4420 {
4421     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4422                         nv2gpa, nv2atsd, errp);
4423     *nv2gpa = 0;
4424     *nv2atsd = 0;
4425 }
4426 
4427 static void spapr_machine_4_0_class_options(MachineClass *mc)
4428 {
4429     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4430 
4431     spapr_machine_4_1_class_options(mc);
4432     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4433     smc->phb_placement = phb_placement_4_0;
4434     smc->irq = &spapr_irq_xics;
4435     smc->pre_4_1_migration = true;
4436 }
4437 
4438 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4439 
4440 /*
4441  * pseries-3.1
4442  */
4443 static void spapr_machine_3_1_class_options(MachineClass *mc)
4444 {
4445     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4446 
4447     spapr_machine_4_0_class_options(mc);
4448     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4449 
4450     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4451     smc->update_dt_enabled = false;
4452     smc->dr_phb_enabled = false;
4453     smc->broken_host_serial_model = true;
4454     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4455     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4456     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4457     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4458 }
4459 
4460 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4461 
4462 /*
4463  * pseries-3.0
4464  */
4465 
4466 static void spapr_machine_3_0_class_options(MachineClass *mc)
4467 {
4468     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4469 
4470     spapr_machine_3_1_class_options(mc);
4471     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4472 
4473     smc->legacy_irq_allocation = true;
4474     smc->irq = &spapr_irq_xics_legacy;
4475 }
4476 
4477 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4478 
4479 /*
4480  * pseries-2.12
4481  */
4482 static void spapr_machine_2_12_class_options(MachineClass *mc)
4483 {
4484     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4485     static GlobalProperty compat[] = {
4486         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4487         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4488     };
4489 
4490     spapr_machine_3_0_class_options(mc);
4491     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4492     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4493 
4494     /* We depend on kvm_enabled() to choose a default value for the
4495      * hpt-max-page-size capability. Of course we can't do it here
4496      * because this is too early and the HW accelerator isn't initialzed
4497      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4498      */
4499     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4500 }
4501 
4502 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4503 
4504 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4505 {
4506     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4507 
4508     spapr_machine_2_12_class_options(mc);
4509     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4510     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4511     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4512 }
4513 
4514 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4515 
4516 /*
4517  * pseries-2.11
4518  */
4519 
4520 static void spapr_machine_2_11_class_options(MachineClass *mc)
4521 {
4522     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4523 
4524     spapr_machine_2_12_class_options(mc);
4525     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4526     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4527 }
4528 
4529 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4530 
4531 /*
4532  * pseries-2.10
4533  */
4534 
4535 static void spapr_machine_2_10_class_options(MachineClass *mc)
4536 {
4537     spapr_machine_2_11_class_options(mc);
4538     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4539 }
4540 
4541 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4542 
4543 /*
4544  * pseries-2.9
4545  */
4546 
4547 static void spapr_machine_2_9_class_options(MachineClass *mc)
4548 {
4549     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4550     static GlobalProperty compat[] = {
4551         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4552     };
4553 
4554     spapr_machine_2_10_class_options(mc);
4555     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4556     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4557     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4558     smc->pre_2_10_has_unused_icps = true;
4559     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4560 }
4561 
4562 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4563 
4564 /*
4565  * pseries-2.8
4566  */
4567 
4568 static void spapr_machine_2_8_class_options(MachineClass *mc)
4569 {
4570     static GlobalProperty compat[] = {
4571         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4572     };
4573 
4574     spapr_machine_2_9_class_options(mc);
4575     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4576     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4577     mc->numa_mem_align_shift = 23;
4578 }
4579 
4580 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4581 
4582 /*
4583  * pseries-2.7
4584  */
4585 
4586 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4587                               uint64_t *buid, hwaddr *pio,
4588                               hwaddr *mmio32, hwaddr *mmio64,
4589                               unsigned n_dma, uint32_t *liobns,
4590                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4591 {
4592     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4593     const uint64_t base_buid = 0x800000020000000ULL;
4594     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4595     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4596     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4597     const uint32_t max_index = 255;
4598     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4599 
4600     uint64_t ram_top = MACHINE(spapr)->ram_size;
4601     hwaddr phb0_base, phb_base;
4602     int i;
4603 
4604     /* Do we have device memory? */
4605     if (MACHINE(spapr)->maxram_size > ram_top) {
4606         /* Can't just use maxram_size, because there may be an
4607          * alignment gap between normal and device memory regions
4608          */
4609         ram_top = MACHINE(spapr)->device_memory->base +
4610             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4611     }
4612 
4613     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4614 
4615     if (index > max_index) {
4616         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4617                    max_index);
4618         return;
4619     }
4620 
4621     *buid = base_buid + index;
4622     for (i = 0; i < n_dma; ++i) {
4623         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4624     }
4625 
4626     phb_base = phb0_base + index * phb_spacing;
4627     *pio = phb_base + pio_offset;
4628     *mmio32 = phb_base + mmio_offset;
4629     /*
4630      * We don't set the 64-bit MMIO window, relying on the PHB's
4631      * fallback behaviour of automatically splitting a large "32-bit"
4632      * window into contiguous 32-bit and 64-bit windows
4633      */
4634 
4635     *nv2gpa = 0;
4636     *nv2atsd = 0;
4637 }
4638 
4639 static void spapr_machine_2_7_class_options(MachineClass *mc)
4640 {
4641     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4642     static GlobalProperty compat[] = {
4643         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4644         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4645         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4646         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4647     };
4648 
4649     spapr_machine_2_8_class_options(mc);
4650     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4651     mc->default_machine_opts = "modern-hotplug-events=off";
4652     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4653     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4654     smc->phb_placement = phb_placement_2_7;
4655 }
4656 
4657 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4658 
4659 /*
4660  * pseries-2.6
4661  */
4662 
4663 static void spapr_machine_2_6_class_options(MachineClass *mc)
4664 {
4665     static GlobalProperty compat[] = {
4666         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4667     };
4668 
4669     spapr_machine_2_7_class_options(mc);
4670     mc->has_hotpluggable_cpus = false;
4671     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4672     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4673 }
4674 
4675 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4676 
4677 /*
4678  * pseries-2.5
4679  */
4680 
4681 static void spapr_machine_2_5_class_options(MachineClass *mc)
4682 {
4683     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4684     static GlobalProperty compat[] = {
4685         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4686     };
4687 
4688     spapr_machine_2_6_class_options(mc);
4689     smc->use_ohci_by_default = true;
4690     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4691     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4692 }
4693 
4694 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4695 
4696 /*
4697  * pseries-2.4
4698  */
4699 
4700 static void spapr_machine_2_4_class_options(MachineClass *mc)
4701 {
4702     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4703 
4704     spapr_machine_2_5_class_options(mc);
4705     smc->dr_lmb_enabled = false;
4706     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4707 }
4708 
4709 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4710 
4711 /*
4712  * pseries-2.3
4713  */
4714 
4715 static void spapr_machine_2_3_class_options(MachineClass *mc)
4716 {
4717     static GlobalProperty compat[] = {
4718         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4719     };
4720     spapr_machine_2_4_class_options(mc);
4721     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4722     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4723 }
4724 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4725 
4726 /*
4727  * pseries-2.2
4728  */
4729 
4730 static void spapr_machine_2_2_class_options(MachineClass *mc)
4731 {
4732     static GlobalProperty compat[] = {
4733         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4734     };
4735 
4736     spapr_machine_2_3_class_options(mc);
4737     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4738     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4739     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4740 }
4741 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4742 
4743 /*
4744  * pseries-2.1
4745  */
4746 
4747 static void spapr_machine_2_1_class_options(MachineClass *mc)
4748 {
4749     spapr_machine_2_2_class_options(mc);
4750     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4751 }
4752 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4753 
4754 static void spapr_machine_register_types(void)
4755 {
4756     type_register_static(&spapr_machine_info);
4757 }
4758 
4759 type_init(spapr_machine_register_types)
4760