1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 /* 147 * Hack ahead. We can't have two devices with the same name and 148 * instance id. So I rename this to pass make check. 149 * Real help from people who knows the hardware is needed. 150 */ 151 .name = "icp/server", 152 .version_id = 1, 153 .minimum_version_id = 1, 154 .needed = pre_2_10_vmstate_dummy_icp_needed, 155 .fields = (const VMStateField[]) { 156 VMSTATE_UNUSED(4), /* uint32_t xirr */ 157 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 158 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 159 VMSTATE_END_OF_LIST() 160 }, 161 }; 162 163 /* 164 * See comment in hw/intc/xics.c:icp_realize() 165 * 166 * You have to remove vmstate_replace_hack_for_ppc() when you remove 167 * the machine types that need the following function. 168 */ 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 /* 176 * See comment in hw/intc/xics.c:icp_realize() 177 * 178 * You have to remove vmstate_replace_hack_for_ppc() when you remove 179 * the machine types that need the following function. 180 */ 181 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 182 { 183 /* 184 * This used to be: 185 * 186 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 187 * (void *)(uintptr_t) i); 188 */ 189 } 190 191 int spapr_max_server_number(SpaprMachineState *spapr) 192 { 193 MachineState *ms = MACHINE(spapr); 194 195 assert(spapr->vsmt); 196 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 197 } 198 199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 200 int smt_threads) 201 { 202 int i, ret = 0; 203 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 204 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 205 int index = spapr_get_vcpu_id(cpu); 206 207 if (cpu->compat_pvr) { 208 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 209 if (ret < 0) { 210 return ret; 211 } 212 } 213 214 /* Build interrupt servers and gservers properties */ 215 for (i = 0; i < smt_threads; i++) { 216 servers_prop[i] = cpu_to_be32(index + i); 217 /* Hack, direct the group queues back to cpu 0 */ 218 gservers_prop[i*2] = cpu_to_be32(index + i); 219 gservers_prop[i*2 + 1] = 0; 220 } 221 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 222 servers_prop, sizeof(*servers_prop) * smt_threads); 223 if (ret < 0) { 224 return ret; 225 } 226 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 227 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 228 229 return ret; 230 } 231 232 static void spapr_dt_pa_features(SpaprMachineState *spapr, 233 PowerPCCPU *cpu, 234 void *fdt, int offset) 235 { 236 /* 237 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 238 * but not MTTCG, so disable it. To advertise it, a cap would have 239 * to be added, or support implemented for MTTCG. 240 */ 241 242 uint8_t pa_features_206[] = { 6, 0, 243 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 244 uint8_t pa_features_207[] = { 24, 0, 245 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 246 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 247 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 248 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 249 uint8_t pa_features_300[] = { 66, 0, 250 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 251 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 252 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 253 /* 6: DS207 */ 254 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 255 /* 16: Vector */ 256 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 257 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 258 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 259 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 260 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 261 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 262 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 263 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 264 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 265 /* 42: PM, 44: PC RA, 46: SC vec'd */ 266 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 267 /* 48: SIMD, 50: QP BFP, 52: String */ 268 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 269 /* 54: DecFP, 56: DecI, 58: SHA */ 270 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 271 /* 60: NM atomic, 62: RNG */ 272 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 273 }; 274 uint8_t *pa_features = NULL; 275 size_t pa_size; 276 277 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 278 pa_features = pa_features_206; 279 pa_size = sizeof(pa_features_206); 280 } 281 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 282 pa_features = pa_features_207; 283 pa_size = sizeof(pa_features_207); 284 } 285 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 286 pa_features = pa_features_300; 287 pa_size = sizeof(pa_features_300); 288 } 289 if (!pa_features) { 290 return; 291 } 292 293 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 294 /* 295 * Note: we keep CI large pages off by default because a 64K capable 296 * guest provisioned with large pages might otherwise try to map a qemu 297 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 298 * even if that qemu runs on a 4k host. 299 * We dd this bit back here if we are confident this is not an issue 300 */ 301 pa_features[3] |= 0x20; 302 } 303 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 304 pa_features[24] |= 0x80; /* Transactional memory support */ 305 } 306 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 307 /* Workaround for broken kernels that attempt (guest) radix 308 * mode when they can't handle it, if they see the radix bit set 309 * in pa-features. So hide it from them. */ 310 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 311 } 312 313 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 314 } 315 316 static hwaddr spapr_node0_size(MachineState *machine) 317 { 318 if (machine->numa_state->num_nodes) { 319 int i; 320 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 321 if (machine->numa_state->nodes[i].node_mem) { 322 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 323 machine->ram_size); 324 } 325 } 326 } 327 return machine->ram_size; 328 } 329 330 static void add_str(GString *s, const gchar *s1) 331 { 332 g_string_append_len(s, s1, strlen(s1) + 1); 333 } 334 335 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 336 hwaddr start, hwaddr size) 337 { 338 char mem_name[32]; 339 uint64_t mem_reg_property[2]; 340 int off; 341 342 mem_reg_property[0] = cpu_to_be64(start); 343 mem_reg_property[1] = cpu_to_be64(size); 344 345 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 346 off = fdt_add_subnode(fdt, 0, mem_name); 347 _FDT(off); 348 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 349 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 350 sizeof(mem_reg_property)))); 351 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 352 return off; 353 } 354 355 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 356 { 357 MemoryDeviceInfoList *info; 358 359 for (info = list; info; info = info->next) { 360 MemoryDeviceInfo *value = info->value; 361 362 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 363 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 364 365 if (addr >= pcdimm_info->addr && 366 addr < (pcdimm_info->addr + pcdimm_info->size)) { 367 return pcdimm_info->node; 368 } 369 } 370 } 371 372 return -1; 373 } 374 375 struct sPAPRDrconfCellV2 { 376 uint32_t seq_lmbs; 377 uint64_t base_addr; 378 uint32_t drc_index; 379 uint32_t aa_index; 380 uint32_t flags; 381 } QEMU_PACKED; 382 383 typedef struct DrconfCellQueue { 384 struct sPAPRDrconfCellV2 cell; 385 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 386 } DrconfCellQueue; 387 388 static DrconfCellQueue * 389 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 390 uint32_t drc_index, uint32_t aa_index, 391 uint32_t flags) 392 { 393 DrconfCellQueue *elem; 394 395 elem = g_malloc0(sizeof(*elem)); 396 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 397 elem->cell.base_addr = cpu_to_be64(base_addr); 398 elem->cell.drc_index = cpu_to_be32(drc_index); 399 elem->cell.aa_index = cpu_to_be32(aa_index); 400 elem->cell.flags = cpu_to_be32(flags); 401 402 return elem; 403 } 404 405 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 406 int offset, MemoryDeviceInfoList *dimms) 407 { 408 MachineState *machine = MACHINE(spapr); 409 uint8_t *int_buf, *cur_index; 410 int ret; 411 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 412 uint64_t addr, cur_addr, size; 413 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 414 uint64_t mem_end = machine->device_memory->base + 415 memory_region_size(&machine->device_memory->mr); 416 uint32_t node, buf_len, nr_entries = 0; 417 SpaprDrc *drc; 418 DrconfCellQueue *elem, *next; 419 MemoryDeviceInfoList *info; 420 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 421 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 422 423 /* Entry to cover RAM and the gap area */ 424 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 425 SPAPR_LMB_FLAGS_RESERVED | 426 SPAPR_LMB_FLAGS_DRC_INVALID); 427 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 428 nr_entries++; 429 430 cur_addr = machine->device_memory->base; 431 for (info = dimms; info; info = info->next) { 432 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 433 434 addr = di->addr; 435 size = di->size; 436 node = di->node; 437 438 /* 439 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 440 * area is marked hotpluggable in the next iteration for the bigger 441 * chunk including the NVDIMM occupied area. 442 */ 443 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 444 continue; 445 446 /* Entry for hot-pluggable area */ 447 if (cur_addr < addr) { 448 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 449 g_assert(drc); 450 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 451 cur_addr, spapr_drc_index(drc), -1, 0); 452 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 453 nr_entries++; 454 } 455 456 /* Entry for DIMM */ 457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 458 g_assert(drc); 459 elem = spapr_get_drconf_cell(size / lmb_size, addr, 460 spapr_drc_index(drc), node, 461 (SPAPR_LMB_FLAGS_ASSIGNED | 462 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 463 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 464 nr_entries++; 465 cur_addr = addr + size; 466 } 467 468 /* Entry for remaining hotpluggable area */ 469 if (cur_addr < mem_end) { 470 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 471 g_assert(drc); 472 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 473 cur_addr, spapr_drc_index(drc), -1, 0); 474 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 475 nr_entries++; 476 } 477 478 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 479 int_buf = cur_index = g_malloc0(buf_len); 480 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 481 cur_index += sizeof(nr_entries); 482 483 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 484 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 485 cur_index += sizeof(elem->cell); 486 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 487 g_free(elem); 488 } 489 490 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 491 g_free(int_buf); 492 if (ret < 0) { 493 return -1; 494 } 495 return 0; 496 } 497 498 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 499 int offset, MemoryDeviceInfoList *dimms) 500 { 501 MachineState *machine = MACHINE(spapr); 502 int i, ret; 503 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 504 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 505 uint32_t nr_lmbs = (machine->device_memory->base + 506 memory_region_size(&machine->device_memory->mr)) / 507 lmb_size; 508 uint32_t *int_buf, *cur_index, buf_len; 509 510 /* 511 * Allocate enough buffer size to fit in ibm,dynamic-memory 512 */ 513 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 514 cur_index = int_buf = g_malloc0(buf_len); 515 int_buf[0] = cpu_to_be32(nr_lmbs); 516 cur_index++; 517 for (i = 0; i < nr_lmbs; i++) { 518 uint64_t addr = i * lmb_size; 519 uint32_t *dynamic_memory = cur_index; 520 521 if (i >= device_lmb_start) { 522 SpaprDrc *drc; 523 524 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 525 g_assert(drc); 526 527 dynamic_memory[0] = cpu_to_be32(addr >> 32); 528 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 529 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 530 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 531 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 532 if (memory_region_present(get_system_memory(), addr)) { 533 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 534 } else { 535 dynamic_memory[5] = cpu_to_be32(0); 536 } 537 } else { 538 /* 539 * LMB information for RMA, boot time RAM and gap b/n RAM and 540 * device memory region -- all these are marked as reserved 541 * and as having no valid DRC. 542 */ 543 dynamic_memory[0] = cpu_to_be32(addr >> 32); 544 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 545 dynamic_memory[2] = cpu_to_be32(0); 546 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 547 dynamic_memory[4] = cpu_to_be32(-1); 548 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 549 SPAPR_LMB_FLAGS_DRC_INVALID); 550 } 551 552 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 553 } 554 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 555 g_free(int_buf); 556 if (ret < 0) { 557 return -1; 558 } 559 return 0; 560 } 561 562 /* 563 * Adds ibm,dynamic-reconfiguration-memory node. 564 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 565 * of this device tree node. 566 */ 567 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 568 void *fdt) 569 { 570 MachineState *machine = MACHINE(spapr); 571 int ret, offset; 572 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 573 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 574 cpu_to_be32(lmb_size & 0xffffffff)}; 575 MemoryDeviceInfoList *dimms = NULL; 576 577 /* Don't create the node if there is no device memory. */ 578 if (!machine->device_memory) { 579 return 0; 580 } 581 582 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 583 584 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 585 sizeof(prop_lmb_size)); 586 if (ret < 0) { 587 return ret; 588 } 589 590 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 591 if (ret < 0) { 592 return ret; 593 } 594 595 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 596 if (ret < 0) { 597 return ret; 598 } 599 600 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 601 dimms = qmp_memory_device_list(); 602 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 603 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 604 } else { 605 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 606 } 607 qapi_free_MemoryDeviceInfoList(dimms); 608 609 if (ret < 0) { 610 return ret; 611 } 612 613 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 614 615 return ret; 616 } 617 618 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 619 { 620 MachineState *machine = MACHINE(spapr); 621 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 622 hwaddr mem_start, node_size; 623 int i, nb_nodes = machine->numa_state->num_nodes; 624 NodeInfo *nodes = machine->numa_state->nodes; 625 626 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 627 if (!nodes[i].node_mem) { 628 continue; 629 } 630 if (mem_start >= machine->ram_size) { 631 node_size = 0; 632 } else { 633 node_size = nodes[i].node_mem; 634 if (node_size > machine->ram_size - mem_start) { 635 node_size = machine->ram_size - mem_start; 636 } 637 } 638 if (!mem_start) { 639 /* spapr_machine_init() checks for rma_size <= node0_size 640 * already */ 641 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 642 mem_start += spapr->rma_size; 643 node_size -= spapr->rma_size; 644 } 645 for ( ; node_size; ) { 646 hwaddr sizetmp = pow2floor(node_size); 647 648 /* mem_start != 0 here */ 649 if (ctzl(mem_start) < ctzl(sizetmp)) { 650 sizetmp = 1ULL << ctzl(mem_start); 651 } 652 653 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 654 node_size -= sizetmp; 655 mem_start += sizetmp; 656 } 657 } 658 659 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 660 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 661 int ret; 662 663 g_assert(smc->dr_lmb_enabled); 664 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 665 if (ret) { 666 return ret; 667 } 668 } 669 670 return 0; 671 } 672 673 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 674 SpaprMachineState *spapr) 675 { 676 MachineState *ms = MACHINE(spapr); 677 PowerPCCPU *cpu = POWERPC_CPU(cs); 678 CPUPPCState *env = &cpu->env; 679 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 680 int index = spapr_get_vcpu_id(cpu); 681 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 682 0xffffffff, 0xffffffff}; 683 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 684 : SPAPR_TIMEBASE_FREQ; 685 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 686 uint32_t page_sizes_prop[64]; 687 size_t page_sizes_prop_size; 688 unsigned int smp_threads = ms->smp.threads; 689 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 690 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 691 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 692 SpaprDrc *drc; 693 int drc_index; 694 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 695 int i; 696 697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 698 if (drc) { 699 drc_index = spapr_drc_index(drc); 700 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 701 } 702 703 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 704 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 705 706 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 707 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 708 env->dcache_line_size))); 709 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 710 env->dcache_line_size))); 711 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 712 env->icache_line_size))); 713 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 714 env->icache_line_size))); 715 716 if (pcc->l1_dcache_size) { 717 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 718 pcc->l1_dcache_size))); 719 } else { 720 warn_report("Unknown L1 dcache size for cpu"); 721 } 722 if (pcc->l1_icache_size) { 723 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 724 pcc->l1_icache_size))); 725 } else { 726 warn_report("Unknown L1 icache size for cpu"); 727 } 728 729 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 730 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 731 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 732 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 733 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 734 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 735 736 if (ppc_has_spr(cpu, SPR_PURR)) { 737 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 738 } 739 if (ppc_has_spr(cpu, SPR_PURR)) { 740 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 741 } 742 743 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 744 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 745 segs, sizeof(segs)))); 746 } 747 748 /* Advertise VSX (vector extensions) if available 749 * 1 == VMX / Altivec available 750 * 2 == VSX available 751 * 752 * Only CPUs for which we create core types in spapr_cpu_core.c 753 * are possible, and all of those have VMX */ 754 if (env->insns_flags & PPC_ALTIVEC) { 755 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 756 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 757 } else { 758 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 759 } 760 } 761 762 /* Advertise DFP (Decimal Floating Point) if available 763 * 0 / no property == no DFP 764 * 1 == DFP available */ 765 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 766 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 767 } 768 769 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 770 sizeof(page_sizes_prop)); 771 if (page_sizes_prop_size) { 772 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 773 page_sizes_prop, page_sizes_prop_size))); 774 } 775 776 spapr_dt_pa_features(spapr, cpu, fdt, offset); 777 778 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 779 cs->cpu_index / vcpus_per_socket))); 780 781 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 782 pft_size_prop, sizeof(pft_size_prop)))); 783 784 if (ms->numa_state->num_nodes > 1) { 785 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 786 } 787 788 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 789 790 if (pcc->radix_page_info) { 791 for (i = 0; i < pcc->radix_page_info->count; i++) { 792 radix_AP_encodings[i] = 793 cpu_to_be32(pcc->radix_page_info->entries[i]); 794 } 795 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 796 radix_AP_encodings, 797 pcc->radix_page_info->count * 798 sizeof(radix_AP_encodings[0])))); 799 } 800 801 /* 802 * We set this property to let the guest know that it can use the large 803 * decrementer and its width in bits. 804 */ 805 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 806 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 807 pcc->lrg_decr_bits))); 808 } 809 810 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 811 int cpus_offset) 812 { 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 return; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 830 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 831 { 832 CPUState **rev; 833 CPUState *cs; 834 int n_cpus; 835 int cpus_offset; 836 int i; 837 838 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 839 _FDT(cpus_offset); 840 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 841 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 842 843 /* 844 * We walk the CPUs in reverse order to ensure that CPU DT nodes 845 * created by fdt_add_subnode() end up in the right order in FDT 846 * for the guest kernel the enumerate the CPUs correctly. 847 * 848 * The CPU list cannot be traversed in reverse order, so we need 849 * to do extra work. 850 */ 851 n_cpus = 0; 852 rev = NULL; 853 CPU_FOREACH(cs) { 854 rev = g_renew(CPUState *, rev, n_cpus + 1); 855 rev[n_cpus++] = cs; 856 } 857 858 for (i = n_cpus - 1; i >= 0; i--) { 859 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 860 } 861 862 g_free(rev); 863 } 864 865 static int spapr_dt_rng(void *fdt) 866 { 867 int node; 868 int ret; 869 870 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 871 if (node <= 0) { 872 return -1; 873 } 874 ret = fdt_setprop_string(fdt, node, "device_type", 875 "ibm,platform-facilities"); 876 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 877 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 878 879 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 880 if (node <= 0) { 881 return -1; 882 } 883 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 884 885 return ret ? -1 : 0; 886 } 887 888 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 889 { 890 MachineState *ms = MACHINE(spapr); 891 int rtas; 892 GString *hypertas = g_string_sized_new(256); 893 GString *qemu_hypertas = g_string_sized_new(256); 894 uint32_t lrdr_capacity[] = { 895 0, 896 0, 897 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 898 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 899 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 900 }; 901 902 /* Do we have device memory? */ 903 if (MACHINE(spapr)->device_memory) { 904 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 905 memory_region_size(&MACHINE(spapr)->device_memory->mr); 906 907 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 908 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 909 } 910 911 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 912 913 /* hypertas */ 914 add_str(hypertas, "hcall-pft"); 915 add_str(hypertas, "hcall-term"); 916 add_str(hypertas, "hcall-dabr"); 917 add_str(hypertas, "hcall-interrupt"); 918 add_str(hypertas, "hcall-tce"); 919 add_str(hypertas, "hcall-vio"); 920 add_str(hypertas, "hcall-splpar"); 921 add_str(hypertas, "hcall-join"); 922 add_str(hypertas, "hcall-bulk"); 923 add_str(hypertas, "hcall-set-mode"); 924 add_str(hypertas, "hcall-sprg0"); 925 add_str(hypertas, "hcall-copy"); 926 add_str(hypertas, "hcall-debug"); 927 add_str(hypertas, "hcall-vphn"); 928 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 929 add_str(hypertas, "hcall-rpt-invalidate"); 930 } 931 932 add_str(qemu_hypertas, "hcall-memop1"); 933 934 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 935 add_str(hypertas, "hcall-multi-tce"); 936 } 937 938 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 939 add_str(hypertas, "hcall-hpt-resize"); 940 } 941 942 add_str(hypertas, "hcall-watchdog"); 943 944 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 945 hypertas->str, hypertas->len)); 946 g_string_free(hypertas, TRUE); 947 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 948 qemu_hypertas->str, qemu_hypertas->len)); 949 g_string_free(qemu_hypertas, TRUE); 950 951 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 952 953 /* 954 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 955 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 956 * 957 * The system reset requirements are driven by existing Linux and PowerVM 958 * implementation which (contrary to PAPR) saves r3 in the error log 959 * structure like machine check, so Linux expects to find the saved r3 960 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 961 * does not look at the error value). 962 * 963 * System reset interrupts are not subject to interlock like machine 964 * check, so this memory area could be corrupted if the sreset is 965 * interrupted by a machine check (or vice versa) if it was shared. To 966 * prevent this, system reset uses per-CPU areas for the sreset save 967 * area. A system reset that interrupts a system reset handler could 968 * still overwrite this area, but Linux doesn't try to recover in that 969 * case anyway. 970 * 971 * The extra 8 bytes is required because Linux's FWNMI error log check 972 * is off-by-one. 973 * 974 * RTAS_MIN_SIZE is required for the RTAS blob itself. 975 */ 976 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 977 RTAS_ERROR_LOG_MAX + 978 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 979 sizeof(uint64_t))); 980 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 981 RTAS_ERROR_LOG_MAX)); 982 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 983 RTAS_EVENT_SCAN_RATE)); 984 985 g_assert(msi_nonbroken); 986 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 987 988 /* 989 * According to PAPR, rtas ibm,os-term does not guarantee a return 990 * back to the guest cpu. 991 * 992 * While an additional ibm,extended-os-term property indicates 993 * that rtas call return will always occur. Set this property. 994 */ 995 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 996 997 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 998 lrdr_capacity, sizeof(lrdr_capacity))); 999 1000 spapr_dt_rtas_tokens(fdt, rtas); 1001 } 1002 1003 /* 1004 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1005 * and the XIVE features that the guest may request and thus the valid 1006 * values for bytes 23..26 of option vector 5: 1007 */ 1008 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1009 int chosen) 1010 { 1011 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1012 1013 char val[2 * 4] = { 1014 23, 0x00, /* XICS / XIVE mode */ 1015 24, 0x00, /* Hash/Radix, filled in below. */ 1016 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1017 26, 0x40, /* Radix options: GTSE == yes. */ 1018 }; 1019 1020 if (spapr->irq->xics && spapr->irq->xive) { 1021 val[1] = SPAPR_OV5_XIVE_BOTH; 1022 } else if (spapr->irq->xive) { 1023 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1024 } else { 1025 assert(spapr->irq->xics); 1026 val[1] = SPAPR_OV5_XIVE_LEGACY; 1027 } 1028 1029 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1030 first_ppc_cpu->compat_pvr)) { 1031 /* 1032 * If we're in a pre POWER9 compat mode then the guest should 1033 * do hash and use the legacy interrupt mode 1034 */ 1035 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1036 val[3] = 0x00; /* Hash */ 1037 spapr_check_mmu_mode(false); 1038 } else if (kvm_enabled()) { 1039 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1040 val[3] = 0x80; /* OV5_MMU_BOTH */ 1041 } else if (kvmppc_has_cap_mmu_radix()) { 1042 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1043 } else { 1044 val[3] = 0x00; /* Hash */ 1045 } 1046 } else { 1047 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1048 val[3] = 0xC0; 1049 } 1050 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1051 val, sizeof(val))); 1052 } 1053 1054 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1055 { 1056 MachineState *machine = MACHINE(spapr); 1057 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1058 int chosen; 1059 1060 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1061 1062 if (reset) { 1063 const char *boot_device = spapr->boot_device; 1064 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1065 size_t cb = 0; 1066 g_autofree char *bootlist = get_boot_devices_list(&cb); 1067 1068 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1069 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1070 machine->kernel_cmdline)); 1071 } 1072 1073 if (spapr->initrd_size) { 1074 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1075 spapr->initrd_base)); 1076 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1077 spapr->initrd_base + spapr->initrd_size)); 1078 } 1079 1080 if (spapr->kernel_size) { 1081 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1082 cpu_to_be64(spapr->kernel_size) }; 1083 1084 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1085 &kprop, sizeof(kprop))); 1086 if (spapr->kernel_le) { 1087 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1088 } 1089 } 1090 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1091 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1092 } 1093 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1094 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1095 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1096 1097 if (cb && bootlist) { 1098 int i; 1099 1100 for (i = 0; i < cb; i++) { 1101 if (bootlist[i] == '\n') { 1102 bootlist[i] = ' '; 1103 } 1104 } 1105 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1106 } 1107 1108 if (boot_device && strlen(boot_device)) { 1109 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1110 } 1111 1112 if (spapr->want_stdout_path && stdout_path) { 1113 /* 1114 * "linux,stdout-path" and "stdout" properties are 1115 * deprecated by linux kernel. New platforms should only 1116 * use the "stdout-path" property. Set the new property 1117 * and continue using older property to remain compatible 1118 * with the existing firmware. 1119 */ 1120 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1121 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1122 } 1123 1124 /* 1125 * We can deal with BAR reallocation just fine, advertise it 1126 * to the guest 1127 */ 1128 if (smc->linux_pci_probe) { 1129 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1130 } 1131 1132 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1133 } 1134 1135 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1136 1137 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1138 } 1139 1140 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1141 { 1142 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1143 * KVM to work under pHyp with some guest co-operation */ 1144 int hypervisor; 1145 uint8_t hypercall[16]; 1146 1147 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1148 /* indicate KVM hypercall interface */ 1149 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1150 if (kvmppc_has_cap_fixup_hcalls()) { 1151 /* 1152 * Older KVM versions with older guest kernels were broken 1153 * with the magic page, don't allow the guest to map it. 1154 */ 1155 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1156 sizeof(hypercall))) { 1157 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1158 hypercall, sizeof(hypercall))); 1159 } 1160 } 1161 } 1162 1163 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1164 { 1165 MachineState *machine = MACHINE(spapr); 1166 MachineClass *mc = MACHINE_GET_CLASS(machine); 1167 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1168 uint32_t root_drc_type_mask = 0; 1169 int ret; 1170 void *fdt; 1171 SpaprPhbState *phb; 1172 char *buf; 1173 1174 fdt = g_malloc0(space); 1175 _FDT((fdt_create_empty_tree(fdt, space))); 1176 1177 /* Root node */ 1178 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1179 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1180 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1181 1182 /* Guest UUID & Name*/ 1183 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1184 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1185 if (qemu_uuid_set) { 1186 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1187 } 1188 g_free(buf); 1189 1190 if (qemu_get_vm_name()) { 1191 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1192 qemu_get_vm_name())); 1193 } 1194 1195 /* Host Model & Serial Number */ 1196 if (spapr->host_model) { 1197 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1198 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1199 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1200 g_free(buf); 1201 } 1202 1203 if (spapr->host_serial) { 1204 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1205 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1206 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1207 g_free(buf); 1208 } 1209 1210 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1211 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1212 1213 /* /interrupt controller */ 1214 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1215 1216 ret = spapr_dt_memory(spapr, fdt); 1217 if (ret < 0) { 1218 error_report("couldn't setup memory nodes in fdt"); 1219 exit(1); 1220 } 1221 1222 /* /vdevice */ 1223 spapr_dt_vdevice(spapr->vio_bus, fdt); 1224 1225 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1226 ret = spapr_dt_rng(fdt); 1227 if (ret < 0) { 1228 error_report("could not set up rng device in the fdt"); 1229 exit(1); 1230 } 1231 } 1232 1233 QLIST_FOREACH(phb, &spapr->phbs, list) { 1234 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1235 if (ret < 0) { 1236 error_report("couldn't setup PCI devices in fdt"); 1237 exit(1); 1238 } 1239 } 1240 1241 spapr_dt_cpus(fdt, spapr); 1242 1243 /* ibm,drc-indexes and friends */ 1244 if (smc->dr_lmb_enabled) { 1245 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1246 } 1247 if (smc->dr_phb_enabled) { 1248 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1249 } 1250 if (mc->nvdimm_supported) { 1251 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1252 } 1253 if (root_drc_type_mask) { 1254 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1255 } 1256 1257 if (mc->has_hotpluggable_cpus) { 1258 int offset = fdt_path_offset(fdt, "/cpus"); 1259 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1260 if (ret < 0) { 1261 error_report("Couldn't set up CPU DR device tree properties"); 1262 exit(1); 1263 } 1264 } 1265 1266 /* /event-sources */ 1267 spapr_dt_events(spapr, fdt); 1268 1269 /* /rtas */ 1270 spapr_dt_rtas(spapr, fdt); 1271 1272 /* /chosen */ 1273 spapr_dt_chosen(spapr, fdt, reset); 1274 1275 /* /hypervisor */ 1276 if (kvm_enabled()) { 1277 spapr_dt_hypervisor(spapr, fdt); 1278 } 1279 1280 /* Build memory reserve map */ 1281 if (reset) { 1282 if (spapr->kernel_size) { 1283 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1284 spapr->kernel_size))); 1285 } 1286 if (spapr->initrd_size) { 1287 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1288 spapr->initrd_size))); 1289 } 1290 } 1291 1292 /* NVDIMM devices */ 1293 if (mc->nvdimm_supported) { 1294 spapr_dt_persistent_memory(spapr, fdt); 1295 } 1296 1297 return fdt; 1298 } 1299 1300 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1301 { 1302 SpaprMachineState *spapr = opaque; 1303 1304 return (addr & 0x0fffffff) + spapr->kernel_addr; 1305 } 1306 1307 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1308 PowerPCCPU *cpu) 1309 { 1310 CPUPPCState *env = &cpu->env; 1311 1312 /* The TCG path should also be holding the BQL at this point */ 1313 g_assert(bql_locked()); 1314 1315 g_assert(!vhyp_cpu_in_nested(cpu)); 1316 1317 if (FIELD_EX64(env->msr, MSR, PR)) { 1318 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1319 env->gpr[3] = H_PRIVILEGE; 1320 } else { 1321 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1322 } 1323 } 1324 1325 struct LPCRSyncState { 1326 target_ulong value; 1327 target_ulong mask; 1328 }; 1329 1330 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1331 { 1332 struct LPCRSyncState *s = arg.host_ptr; 1333 PowerPCCPU *cpu = POWERPC_CPU(cs); 1334 CPUPPCState *env = &cpu->env; 1335 target_ulong lpcr; 1336 1337 cpu_synchronize_state(cs); 1338 lpcr = env->spr[SPR_LPCR]; 1339 lpcr &= ~s->mask; 1340 lpcr |= s->value; 1341 ppc_store_lpcr(cpu, lpcr); 1342 } 1343 1344 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1345 { 1346 CPUState *cs; 1347 struct LPCRSyncState s = { 1348 .value = value, 1349 .mask = mask 1350 }; 1351 CPU_FOREACH(cs) { 1352 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1353 } 1354 } 1355 1356 /* May be used when the machine is not running */ 1357 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1358 { 1359 CPUState *cs; 1360 CPU_FOREACH(cs) { 1361 PowerPCCPU *cpu = POWERPC_CPU(cs); 1362 CPUPPCState *env = &cpu->env; 1363 target_ulong lpcr; 1364 1365 lpcr = env->spr[SPR_LPCR]; 1366 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1367 ppc_store_lpcr(cpu, lpcr); 1368 } 1369 } 1370 1371 1372 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1373 target_ulong lpid, ppc_v3_pate_t *entry) 1374 { 1375 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1376 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1377 1378 if (!spapr_cpu->in_nested) { 1379 assert(lpid == 0); 1380 1381 /* Copy PATE1:GR into PATE0:HR */ 1382 entry->dw0 = spapr->patb_entry & PATE0_HR; 1383 entry->dw1 = spapr->patb_entry; 1384 1385 } else { 1386 uint64_t patb, pats; 1387 1388 assert(lpid != 0); 1389 1390 patb = spapr->nested_ptcr & PTCR_PATB; 1391 pats = spapr->nested_ptcr & PTCR_PATS; 1392 1393 /* Check if partition table is properly aligned */ 1394 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1395 return false; 1396 } 1397 1398 /* Calculate number of entries */ 1399 pats = 1ull << (pats + 12 - 4); 1400 if (pats <= lpid) { 1401 return false; 1402 } 1403 1404 /* Grab entry */ 1405 patb += 16 * lpid; 1406 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1407 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1408 } 1409 1410 return true; 1411 } 1412 1413 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1414 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1415 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1416 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1417 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1418 1419 /* 1420 * Get the fd to access the kernel htab, re-opening it if necessary 1421 */ 1422 static int get_htab_fd(SpaprMachineState *spapr) 1423 { 1424 Error *local_err = NULL; 1425 1426 if (spapr->htab_fd >= 0) { 1427 return spapr->htab_fd; 1428 } 1429 1430 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1431 if (spapr->htab_fd < 0) { 1432 error_report_err(local_err); 1433 } 1434 1435 return spapr->htab_fd; 1436 } 1437 1438 void close_htab_fd(SpaprMachineState *spapr) 1439 { 1440 if (spapr->htab_fd >= 0) { 1441 close(spapr->htab_fd); 1442 } 1443 spapr->htab_fd = -1; 1444 } 1445 1446 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1447 { 1448 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1449 1450 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1451 } 1452 1453 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1454 { 1455 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1456 1457 assert(kvm_enabled()); 1458 1459 if (!spapr->htab) { 1460 return 0; 1461 } 1462 1463 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1464 } 1465 1466 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1467 hwaddr ptex, int n) 1468 { 1469 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1470 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1471 1472 if (!spapr->htab) { 1473 /* 1474 * HTAB is controlled by KVM. Fetch into temporary buffer 1475 */ 1476 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1477 kvmppc_read_hptes(hptes, ptex, n); 1478 return hptes; 1479 } 1480 1481 /* 1482 * HTAB is controlled by QEMU. Just point to the internally 1483 * accessible PTEG. 1484 */ 1485 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1486 } 1487 1488 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1489 const ppc_hash_pte64_t *hptes, 1490 hwaddr ptex, int n) 1491 { 1492 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1493 1494 if (!spapr->htab) { 1495 g_free((void *)hptes); 1496 } 1497 1498 /* Nothing to do for qemu managed HPT */ 1499 } 1500 1501 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1502 uint64_t pte0, uint64_t pte1) 1503 { 1504 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1505 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1506 1507 if (!spapr->htab) { 1508 kvmppc_write_hpte(ptex, pte0, pte1); 1509 } else { 1510 if (pte0 & HPTE64_V_VALID) { 1511 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1512 /* 1513 * When setting valid, we write PTE1 first. This ensures 1514 * proper synchronization with the reading code in 1515 * ppc_hash64_pteg_search() 1516 */ 1517 smp_wmb(); 1518 stq_p(spapr->htab + offset, pte0); 1519 } else { 1520 stq_p(spapr->htab + offset, pte0); 1521 /* 1522 * When clearing it we set PTE0 first. This ensures proper 1523 * synchronization with the reading code in 1524 * ppc_hash64_pteg_search() 1525 */ 1526 smp_wmb(); 1527 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1528 } 1529 } 1530 } 1531 1532 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1533 uint64_t pte1) 1534 { 1535 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1536 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1537 1538 if (!spapr->htab) { 1539 /* There should always be a hash table when this is called */ 1540 error_report("spapr_hpte_set_c called with no hash table !"); 1541 return; 1542 } 1543 1544 /* The HW performs a non-atomic byte update */ 1545 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1546 } 1547 1548 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1549 uint64_t pte1) 1550 { 1551 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1552 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1553 1554 if (!spapr->htab) { 1555 /* There should always be a hash table when this is called */ 1556 error_report("spapr_hpte_set_r called with no hash table !"); 1557 return; 1558 } 1559 1560 /* The HW performs a non-atomic byte update */ 1561 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1562 } 1563 1564 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1565 { 1566 int shift; 1567 1568 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1569 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1570 * that's much more than is needed for Linux guests */ 1571 shift = ctz64(pow2ceil(ramsize)) - 7; 1572 shift = MAX(shift, 18); /* Minimum architected size */ 1573 shift = MIN(shift, 46); /* Maximum architected size */ 1574 return shift; 1575 } 1576 1577 void spapr_free_hpt(SpaprMachineState *spapr) 1578 { 1579 qemu_vfree(spapr->htab); 1580 spapr->htab = NULL; 1581 spapr->htab_shift = 0; 1582 close_htab_fd(spapr); 1583 } 1584 1585 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1586 { 1587 ERRP_GUARD(); 1588 long rc; 1589 1590 /* Clean up any HPT info from a previous boot */ 1591 spapr_free_hpt(spapr); 1592 1593 rc = kvmppc_reset_htab(shift); 1594 1595 if (rc == -EOPNOTSUPP) { 1596 error_setg(errp, "HPT not supported in nested guests"); 1597 return -EOPNOTSUPP; 1598 } 1599 1600 if (rc < 0) { 1601 /* kernel-side HPT needed, but couldn't allocate one */ 1602 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1603 shift); 1604 error_append_hint(errp, "Try smaller maxmem?\n"); 1605 return -errno; 1606 } else if (rc > 0) { 1607 /* kernel-side HPT allocated */ 1608 if (rc != shift) { 1609 error_setg(errp, 1610 "Requested order %d HPT, but kernel allocated order %ld", 1611 shift, rc); 1612 error_append_hint(errp, "Try smaller maxmem?\n"); 1613 return -ENOSPC; 1614 } 1615 1616 spapr->htab_shift = shift; 1617 spapr->htab = NULL; 1618 } else { 1619 /* kernel-side HPT not needed, allocate in userspace instead */ 1620 size_t size = 1ULL << shift; 1621 int i; 1622 1623 spapr->htab = qemu_memalign(size, size); 1624 memset(spapr->htab, 0, size); 1625 spapr->htab_shift = shift; 1626 1627 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1628 DIRTY_HPTE(HPTE(spapr->htab, i)); 1629 } 1630 } 1631 /* We're setting up a hash table, so that means we're not radix */ 1632 spapr->patb_entry = 0; 1633 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1634 return 0; 1635 } 1636 1637 void spapr_setup_hpt(SpaprMachineState *spapr) 1638 { 1639 int hpt_shift; 1640 1641 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1642 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1643 } else { 1644 uint64_t current_ram_size; 1645 1646 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1647 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1648 } 1649 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1650 1651 if (kvm_enabled()) { 1652 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1653 1654 /* Check our RMA fits in the possible VRMA */ 1655 if (vrma_limit < spapr->rma_size) { 1656 error_report("Unable to create %" HWADDR_PRIu 1657 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1658 spapr->rma_size / MiB, vrma_limit / MiB); 1659 exit(EXIT_FAILURE); 1660 } 1661 } 1662 } 1663 1664 void spapr_check_mmu_mode(bool guest_radix) 1665 { 1666 if (guest_radix) { 1667 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1668 error_report("Guest requested unavailable MMU mode (radix)."); 1669 exit(EXIT_FAILURE); 1670 } 1671 } else { 1672 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1673 && !kvmppc_has_cap_mmu_hash_v3()) { 1674 error_report("Guest requested unavailable MMU mode (hash)."); 1675 exit(EXIT_FAILURE); 1676 } 1677 } 1678 } 1679 1680 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1681 { 1682 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1683 PowerPCCPU *first_ppc_cpu; 1684 hwaddr fdt_addr; 1685 void *fdt; 1686 int rc; 1687 1688 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1689 /* 1690 * Record-replay snapshot load must not consume random, this was 1691 * already replayed from initial machine reset. 1692 */ 1693 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1694 } 1695 1696 pef_kvm_reset(machine->cgs, &error_fatal); 1697 spapr_caps_apply(spapr); 1698 1699 first_ppc_cpu = POWERPC_CPU(first_cpu); 1700 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1701 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1702 spapr->max_compat_pvr)) { 1703 /* 1704 * If using KVM with radix mode available, VCPUs can be started 1705 * without a HPT because KVM will start them in radix mode. 1706 * Set the GR bit in PATE so that we know there is no HPT. 1707 */ 1708 spapr->patb_entry = PATE1_GR; 1709 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1710 } else { 1711 spapr_setup_hpt(spapr); 1712 } 1713 1714 qemu_devices_reset(reason); 1715 1716 spapr_ovec_cleanup(spapr->ov5_cas); 1717 spapr->ov5_cas = spapr_ovec_new(); 1718 1719 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1720 1721 /* 1722 * This is fixing some of the default configuration of the XIVE 1723 * devices. To be called after the reset of the machine devices. 1724 */ 1725 spapr_irq_reset(spapr, &error_fatal); 1726 1727 /* 1728 * There is no CAS under qtest. Simulate one to please the code that 1729 * depends on spapr->ov5_cas. This is especially needed to test device 1730 * unplug, so we do that before resetting the DRCs. 1731 */ 1732 if (qtest_enabled()) { 1733 spapr_ovec_cleanup(spapr->ov5_cas); 1734 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1735 } 1736 1737 spapr_nvdimm_finish_flushes(); 1738 1739 /* DRC reset may cause a device to be unplugged. This will cause troubles 1740 * if this device is used by another device (eg, a running vhost backend 1741 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1742 * situations, we reset DRCs after all devices have been reset. 1743 */ 1744 spapr_drc_reset_all(spapr); 1745 1746 spapr_clear_pending_events(spapr); 1747 1748 /* 1749 * We place the device tree just below either the top of the RMA, 1750 * or just below 2GB, whichever is lower, so that it can be 1751 * processed with 32-bit real mode code if necessary 1752 */ 1753 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1754 1755 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1756 if (spapr->vof) { 1757 spapr_vof_reset(spapr, fdt, &error_fatal); 1758 /* 1759 * Do not pack the FDT as the client may change properties. 1760 * VOF client does not expect the FDT so we do not load it to the VM. 1761 */ 1762 } else { 1763 rc = fdt_pack(fdt); 1764 /* Should only fail if we've built a corrupted tree */ 1765 assert(rc == 0); 1766 1767 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1768 0, fdt_addr, 0); 1769 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1770 } 1771 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1772 1773 g_free(spapr->fdt_blob); 1774 spapr->fdt_size = fdt_totalsize(fdt); 1775 spapr->fdt_initial_size = spapr->fdt_size; 1776 spapr->fdt_blob = fdt; 1777 1778 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1779 machine->fdt = fdt; 1780 1781 /* Set up the entry state */ 1782 first_ppc_cpu->env.gpr[5] = 0; 1783 1784 spapr->fwnmi_system_reset_addr = -1; 1785 spapr->fwnmi_machine_check_addr = -1; 1786 spapr->fwnmi_machine_check_interlock = -1; 1787 1788 /* Signal all vCPUs waiting on this condition */ 1789 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1790 1791 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1792 } 1793 1794 static void spapr_create_nvram(SpaprMachineState *spapr) 1795 { 1796 DeviceState *dev = qdev_new("spapr-nvram"); 1797 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1798 1799 if (dinfo) { 1800 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1801 &error_fatal); 1802 } 1803 1804 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1805 1806 spapr->nvram = (struct SpaprNvram *)dev; 1807 } 1808 1809 static void spapr_rtc_create(SpaprMachineState *spapr) 1810 { 1811 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1812 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1813 &error_fatal, NULL); 1814 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1815 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1816 "date"); 1817 } 1818 1819 /* Returns whether we want to use VGA or not */ 1820 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1821 { 1822 vga_interface_created = true; 1823 switch (vga_interface_type) { 1824 case VGA_NONE: 1825 return false; 1826 case VGA_DEVICE: 1827 return true; 1828 case VGA_STD: 1829 case VGA_VIRTIO: 1830 case VGA_CIRRUS: 1831 return pci_vga_init(pci_bus) != NULL; 1832 default: 1833 error_setg(errp, 1834 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1835 return false; 1836 } 1837 } 1838 1839 static int spapr_pre_load(void *opaque) 1840 { 1841 int rc; 1842 1843 rc = spapr_caps_pre_load(opaque); 1844 if (rc) { 1845 return rc; 1846 } 1847 1848 return 0; 1849 } 1850 1851 static int spapr_post_load(void *opaque, int version_id) 1852 { 1853 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1854 int err = 0; 1855 1856 err = spapr_caps_post_migration(spapr); 1857 if (err) { 1858 return err; 1859 } 1860 1861 /* 1862 * In earlier versions, there was no separate qdev for the PAPR 1863 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1864 * So when migrating from those versions, poke the incoming offset 1865 * value into the RTC device 1866 */ 1867 if (version_id < 3) { 1868 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1869 if (err) { 1870 return err; 1871 } 1872 } 1873 1874 if (kvm_enabled() && spapr->patb_entry) { 1875 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1876 bool radix = !!(spapr->patb_entry & PATE1_GR); 1877 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1878 1879 /* 1880 * Update LPCR:HR and UPRT as they may not be set properly in 1881 * the stream 1882 */ 1883 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1884 LPCR_HR | LPCR_UPRT); 1885 1886 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1887 if (err) { 1888 error_report("Process table config unsupported by the host"); 1889 return -EINVAL; 1890 } 1891 } 1892 1893 err = spapr_irq_post_load(spapr, version_id); 1894 if (err) { 1895 return err; 1896 } 1897 1898 return err; 1899 } 1900 1901 static int spapr_pre_save(void *opaque) 1902 { 1903 int rc; 1904 1905 rc = spapr_caps_pre_save(opaque); 1906 if (rc) { 1907 return rc; 1908 } 1909 1910 return 0; 1911 } 1912 1913 static bool version_before_3(void *opaque, int version_id) 1914 { 1915 return version_id < 3; 1916 } 1917 1918 static bool spapr_pending_events_needed(void *opaque) 1919 { 1920 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1921 return !QTAILQ_EMPTY(&spapr->pending_events); 1922 } 1923 1924 static const VMStateDescription vmstate_spapr_event_entry = { 1925 .name = "spapr_event_log_entry", 1926 .version_id = 1, 1927 .minimum_version_id = 1, 1928 .fields = (const VMStateField[]) { 1929 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1930 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1931 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1932 NULL, extended_length), 1933 VMSTATE_END_OF_LIST() 1934 }, 1935 }; 1936 1937 static const VMStateDescription vmstate_spapr_pending_events = { 1938 .name = "spapr_pending_events", 1939 .version_id = 1, 1940 .minimum_version_id = 1, 1941 .needed = spapr_pending_events_needed, 1942 .fields = (const VMStateField[]) { 1943 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1944 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1945 VMSTATE_END_OF_LIST() 1946 }, 1947 }; 1948 1949 static bool spapr_ov5_cas_needed(void *opaque) 1950 { 1951 SpaprMachineState *spapr = opaque; 1952 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1953 bool cas_needed; 1954 1955 /* Prior to the introduction of SpaprOptionVector, we had two option 1956 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1957 * Both of these options encode machine topology into the device-tree 1958 * in such a way that the now-booted OS should still be able to interact 1959 * appropriately with QEMU regardless of what options were actually 1960 * negotiatied on the source side. 1961 * 1962 * As such, we can avoid migrating the CAS-negotiated options if these 1963 * are the only options available on the current machine/platform. 1964 * Since these are the only options available for pseries-2.7 and 1965 * earlier, this allows us to maintain old->new/new->old migration 1966 * compatibility. 1967 * 1968 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1969 * via default pseries-2.8 machines and explicit command-line parameters. 1970 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1971 * of the actual CAS-negotiated values to continue working properly. For 1972 * example, availability of memory unplug depends on knowing whether 1973 * OV5_HP_EVT was negotiated via CAS. 1974 * 1975 * Thus, for any cases where the set of available CAS-negotiatable 1976 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1977 * include the CAS-negotiated options in the migration stream, unless 1978 * if they affect boot time behaviour only. 1979 */ 1980 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1981 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1982 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1983 1984 /* We need extra information if we have any bits outside the mask 1985 * defined above */ 1986 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1987 1988 spapr_ovec_cleanup(ov5_mask); 1989 1990 return cas_needed; 1991 } 1992 1993 static const VMStateDescription vmstate_spapr_ov5_cas = { 1994 .name = "spapr_option_vector_ov5_cas", 1995 .version_id = 1, 1996 .minimum_version_id = 1, 1997 .needed = spapr_ov5_cas_needed, 1998 .fields = (const VMStateField[]) { 1999 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2000 vmstate_spapr_ovec, SpaprOptionVector), 2001 VMSTATE_END_OF_LIST() 2002 }, 2003 }; 2004 2005 static bool spapr_patb_entry_needed(void *opaque) 2006 { 2007 SpaprMachineState *spapr = opaque; 2008 2009 return !!spapr->patb_entry; 2010 } 2011 2012 static const VMStateDescription vmstate_spapr_patb_entry = { 2013 .name = "spapr_patb_entry", 2014 .version_id = 1, 2015 .minimum_version_id = 1, 2016 .needed = spapr_patb_entry_needed, 2017 .fields = (const VMStateField[]) { 2018 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2019 VMSTATE_END_OF_LIST() 2020 }, 2021 }; 2022 2023 static bool spapr_irq_map_needed(void *opaque) 2024 { 2025 SpaprMachineState *spapr = opaque; 2026 2027 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2028 } 2029 2030 static const VMStateDescription vmstate_spapr_irq_map = { 2031 .name = "spapr_irq_map", 2032 .version_id = 1, 2033 .minimum_version_id = 1, 2034 .needed = spapr_irq_map_needed, 2035 .fields = (const VMStateField[]) { 2036 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2037 VMSTATE_END_OF_LIST() 2038 }, 2039 }; 2040 2041 static bool spapr_dtb_needed(void *opaque) 2042 { 2043 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2044 2045 return smc->update_dt_enabled; 2046 } 2047 2048 static int spapr_dtb_pre_load(void *opaque) 2049 { 2050 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2051 2052 g_free(spapr->fdt_blob); 2053 spapr->fdt_blob = NULL; 2054 spapr->fdt_size = 0; 2055 2056 return 0; 2057 } 2058 2059 static const VMStateDescription vmstate_spapr_dtb = { 2060 .name = "spapr_dtb", 2061 .version_id = 1, 2062 .minimum_version_id = 1, 2063 .needed = spapr_dtb_needed, 2064 .pre_load = spapr_dtb_pre_load, 2065 .fields = (const VMStateField[]) { 2066 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2067 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2068 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2069 fdt_size), 2070 VMSTATE_END_OF_LIST() 2071 }, 2072 }; 2073 2074 static bool spapr_fwnmi_needed(void *opaque) 2075 { 2076 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2077 2078 return spapr->fwnmi_machine_check_addr != -1; 2079 } 2080 2081 static int spapr_fwnmi_pre_save(void *opaque) 2082 { 2083 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2084 2085 /* 2086 * Check if machine check handling is in progress and print a 2087 * warning message. 2088 */ 2089 if (spapr->fwnmi_machine_check_interlock != -1) { 2090 warn_report("A machine check is being handled during migration. The" 2091 "handler may run and log hardware error on the destination"); 2092 } 2093 2094 return 0; 2095 } 2096 2097 static const VMStateDescription vmstate_spapr_fwnmi = { 2098 .name = "spapr_fwnmi", 2099 .version_id = 1, 2100 .minimum_version_id = 1, 2101 .needed = spapr_fwnmi_needed, 2102 .pre_save = spapr_fwnmi_pre_save, 2103 .fields = (const VMStateField[]) { 2104 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2105 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2106 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2107 VMSTATE_END_OF_LIST() 2108 }, 2109 }; 2110 2111 static const VMStateDescription vmstate_spapr = { 2112 .name = "spapr", 2113 .version_id = 3, 2114 .minimum_version_id = 1, 2115 .pre_load = spapr_pre_load, 2116 .post_load = spapr_post_load, 2117 .pre_save = spapr_pre_save, 2118 .fields = (const VMStateField[]) { 2119 /* used to be @next_irq */ 2120 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2121 2122 /* RTC offset */ 2123 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2124 2125 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2126 VMSTATE_END_OF_LIST() 2127 }, 2128 .subsections = (const VMStateDescription * const []) { 2129 &vmstate_spapr_ov5_cas, 2130 &vmstate_spapr_patb_entry, 2131 &vmstate_spapr_pending_events, 2132 &vmstate_spapr_cap_htm, 2133 &vmstate_spapr_cap_vsx, 2134 &vmstate_spapr_cap_dfp, 2135 &vmstate_spapr_cap_cfpc, 2136 &vmstate_spapr_cap_sbbc, 2137 &vmstate_spapr_cap_ibs, 2138 &vmstate_spapr_cap_hpt_maxpagesize, 2139 &vmstate_spapr_irq_map, 2140 &vmstate_spapr_cap_nested_kvm_hv, 2141 &vmstate_spapr_dtb, 2142 &vmstate_spapr_cap_large_decr, 2143 &vmstate_spapr_cap_ccf_assist, 2144 &vmstate_spapr_cap_fwnmi, 2145 &vmstate_spapr_fwnmi, 2146 &vmstate_spapr_cap_rpt_invalidate, 2147 NULL 2148 } 2149 }; 2150 2151 static int htab_save_setup(QEMUFile *f, void *opaque) 2152 { 2153 SpaprMachineState *spapr = opaque; 2154 2155 /* "Iteration" header */ 2156 if (!spapr->htab_shift) { 2157 qemu_put_be32(f, -1); 2158 } else { 2159 qemu_put_be32(f, spapr->htab_shift); 2160 } 2161 2162 if (spapr->htab) { 2163 spapr->htab_save_index = 0; 2164 spapr->htab_first_pass = true; 2165 } else { 2166 if (spapr->htab_shift) { 2167 assert(kvm_enabled()); 2168 } 2169 } 2170 2171 2172 return 0; 2173 } 2174 2175 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2176 int chunkstart, int n_valid, int n_invalid) 2177 { 2178 qemu_put_be32(f, chunkstart); 2179 qemu_put_be16(f, n_valid); 2180 qemu_put_be16(f, n_invalid); 2181 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2182 HASH_PTE_SIZE_64 * n_valid); 2183 } 2184 2185 static void htab_save_end_marker(QEMUFile *f) 2186 { 2187 qemu_put_be32(f, 0); 2188 qemu_put_be16(f, 0); 2189 qemu_put_be16(f, 0); 2190 } 2191 2192 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2193 int64_t max_ns) 2194 { 2195 bool has_timeout = max_ns != -1; 2196 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2197 int index = spapr->htab_save_index; 2198 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2199 2200 assert(spapr->htab_first_pass); 2201 2202 do { 2203 int chunkstart; 2204 2205 /* Consume invalid HPTEs */ 2206 while ((index < htabslots) 2207 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2208 CLEAN_HPTE(HPTE(spapr->htab, index)); 2209 index++; 2210 } 2211 2212 /* Consume valid HPTEs */ 2213 chunkstart = index; 2214 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2215 && HPTE_VALID(HPTE(spapr->htab, index))) { 2216 CLEAN_HPTE(HPTE(spapr->htab, index)); 2217 index++; 2218 } 2219 2220 if (index > chunkstart) { 2221 int n_valid = index - chunkstart; 2222 2223 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2224 2225 if (has_timeout && 2226 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2227 break; 2228 } 2229 } 2230 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2231 2232 if (index >= htabslots) { 2233 assert(index == htabslots); 2234 index = 0; 2235 spapr->htab_first_pass = false; 2236 } 2237 spapr->htab_save_index = index; 2238 } 2239 2240 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2241 int64_t max_ns) 2242 { 2243 bool final = max_ns < 0; 2244 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2245 int examined = 0, sent = 0; 2246 int index = spapr->htab_save_index; 2247 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2248 2249 assert(!spapr->htab_first_pass); 2250 2251 do { 2252 int chunkstart, invalidstart; 2253 2254 /* Consume non-dirty HPTEs */ 2255 while ((index < htabslots) 2256 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2257 index++; 2258 examined++; 2259 } 2260 2261 chunkstart = index; 2262 /* Consume valid dirty HPTEs */ 2263 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2264 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2265 && HPTE_VALID(HPTE(spapr->htab, index))) { 2266 CLEAN_HPTE(HPTE(spapr->htab, index)); 2267 index++; 2268 examined++; 2269 } 2270 2271 invalidstart = index; 2272 /* Consume invalid dirty HPTEs */ 2273 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2274 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2275 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2276 CLEAN_HPTE(HPTE(spapr->htab, index)); 2277 index++; 2278 examined++; 2279 } 2280 2281 if (index > chunkstart) { 2282 int n_valid = invalidstart - chunkstart; 2283 int n_invalid = index - invalidstart; 2284 2285 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2286 sent += index - chunkstart; 2287 2288 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2289 break; 2290 } 2291 } 2292 2293 if (examined >= htabslots) { 2294 break; 2295 } 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2302 2303 if (index >= htabslots) { 2304 assert(index == htabslots); 2305 index = 0; 2306 } 2307 2308 spapr->htab_save_index = index; 2309 2310 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2311 } 2312 2313 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2314 #define MAX_KVM_BUF_SIZE 2048 2315 2316 static int htab_save_iterate(QEMUFile *f, void *opaque) 2317 { 2318 SpaprMachineState *spapr = opaque; 2319 int fd; 2320 int rc = 0; 2321 2322 /* Iteration header */ 2323 if (!spapr->htab_shift) { 2324 qemu_put_be32(f, -1); 2325 return 1; 2326 } else { 2327 qemu_put_be32(f, 0); 2328 } 2329 2330 if (!spapr->htab) { 2331 assert(kvm_enabled()); 2332 2333 fd = get_htab_fd(spapr); 2334 if (fd < 0) { 2335 return fd; 2336 } 2337 2338 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2339 if (rc < 0) { 2340 return rc; 2341 } 2342 } else if (spapr->htab_first_pass) { 2343 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2344 } else { 2345 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2346 } 2347 2348 htab_save_end_marker(f); 2349 2350 return rc; 2351 } 2352 2353 static int htab_save_complete(QEMUFile *f, void *opaque) 2354 { 2355 SpaprMachineState *spapr = opaque; 2356 int fd; 2357 2358 /* Iteration header */ 2359 if (!spapr->htab_shift) { 2360 qemu_put_be32(f, -1); 2361 return 0; 2362 } else { 2363 qemu_put_be32(f, 0); 2364 } 2365 2366 if (!spapr->htab) { 2367 int rc; 2368 2369 assert(kvm_enabled()); 2370 2371 fd = get_htab_fd(spapr); 2372 if (fd < 0) { 2373 return fd; 2374 } 2375 2376 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2377 if (rc < 0) { 2378 return rc; 2379 } 2380 } else { 2381 if (spapr->htab_first_pass) { 2382 htab_save_first_pass(f, spapr, -1); 2383 } 2384 htab_save_later_pass(f, spapr, -1); 2385 } 2386 2387 /* End marker */ 2388 htab_save_end_marker(f); 2389 2390 return 0; 2391 } 2392 2393 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2394 { 2395 SpaprMachineState *spapr = opaque; 2396 uint32_t section_hdr; 2397 int fd = -1; 2398 Error *local_err = NULL; 2399 2400 if (version_id < 1 || version_id > 1) { 2401 error_report("htab_load() bad version"); 2402 return -EINVAL; 2403 } 2404 2405 section_hdr = qemu_get_be32(f); 2406 2407 if (section_hdr == -1) { 2408 spapr_free_hpt(spapr); 2409 return 0; 2410 } 2411 2412 if (section_hdr) { 2413 int ret; 2414 2415 /* First section gives the htab size */ 2416 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2417 if (ret < 0) { 2418 error_report_err(local_err); 2419 return ret; 2420 } 2421 return 0; 2422 } 2423 2424 if (!spapr->htab) { 2425 assert(kvm_enabled()); 2426 2427 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2428 if (fd < 0) { 2429 error_report_err(local_err); 2430 return fd; 2431 } 2432 } 2433 2434 while (true) { 2435 uint32_t index; 2436 uint16_t n_valid, n_invalid; 2437 2438 index = qemu_get_be32(f); 2439 n_valid = qemu_get_be16(f); 2440 n_invalid = qemu_get_be16(f); 2441 2442 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2443 /* End of Stream */ 2444 break; 2445 } 2446 2447 if ((index + n_valid + n_invalid) > 2448 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2449 /* Bad index in stream */ 2450 error_report( 2451 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2452 index, n_valid, n_invalid, spapr->htab_shift); 2453 return -EINVAL; 2454 } 2455 2456 if (spapr->htab) { 2457 if (n_valid) { 2458 qemu_get_buffer(f, HPTE(spapr->htab, index), 2459 HASH_PTE_SIZE_64 * n_valid); 2460 } 2461 if (n_invalid) { 2462 memset(HPTE(spapr->htab, index + n_valid), 0, 2463 HASH_PTE_SIZE_64 * n_invalid); 2464 } 2465 } else { 2466 int rc; 2467 2468 assert(fd >= 0); 2469 2470 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2471 &local_err); 2472 if (rc < 0) { 2473 error_report_err(local_err); 2474 return rc; 2475 } 2476 } 2477 } 2478 2479 if (!spapr->htab) { 2480 assert(fd >= 0); 2481 close(fd); 2482 } 2483 2484 return 0; 2485 } 2486 2487 static void htab_save_cleanup(void *opaque) 2488 { 2489 SpaprMachineState *spapr = opaque; 2490 2491 close_htab_fd(spapr); 2492 } 2493 2494 static SaveVMHandlers savevm_htab_handlers = { 2495 .save_setup = htab_save_setup, 2496 .save_live_iterate = htab_save_iterate, 2497 .save_live_complete_precopy = htab_save_complete, 2498 .save_cleanup = htab_save_cleanup, 2499 .load_state = htab_load, 2500 }; 2501 2502 static void spapr_boot_set(void *opaque, const char *boot_device, 2503 Error **errp) 2504 { 2505 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2506 2507 g_free(spapr->boot_device); 2508 spapr->boot_device = g_strdup(boot_device); 2509 } 2510 2511 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2512 { 2513 MachineState *machine = MACHINE(spapr); 2514 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2515 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2516 int i; 2517 2518 g_assert(!nr_lmbs || machine->device_memory); 2519 for (i = 0; i < nr_lmbs; i++) { 2520 uint64_t addr; 2521 2522 addr = i * lmb_size + machine->device_memory->base; 2523 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2524 addr / lmb_size); 2525 } 2526 } 2527 2528 /* 2529 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2530 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2531 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2532 */ 2533 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2534 { 2535 int i; 2536 2537 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2538 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2539 " is not aligned to %" PRIu64 " MiB", 2540 machine->ram_size, 2541 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2542 return; 2543 } 2544 2545 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2546 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2547 " is not aligned to %" PRIu64 " MiB", 2548 machine->ram_size, 2549 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2550 return; 2551 } 2552 2553 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2554 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2555 error_setg(errp, 2556 "Node %d memory size 0x%" PRIx64 2557 " is not aligned to %" PRIu64 " MiB", 2558 i, machine->numa_state->nodes[i].node_mem, 2559 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2560 return; 2561 } 2562 } 2563 } 2564 2565 /* find cpu slot in machine->possible_cpus by core_id */ 2566 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2567 { 2568 int index = id / ms->smp.threads; 2569 2570 if (index >= ms->possible_cpus->len) { 2571 return NULL; 2572 } 2573 if (idx) { 2574 *idx = index; 2575 } 2576 return &ms->possible_cpus->cpus[index]; 2577 } 2578 2579 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2580 { 2581 MachineState *ms = MACHINE(spapr); 2582 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2583 Error *local_err = NULL; 2584 bool vsmt_user = !!spapr->vsmt; 2585 int kvm_smt = kvmppc_smt_threads(); 2586 int ret; 2587 unsigned int smp_threads = ms->smp.threads; 2588 2589 if (tcg_enabled()) { 2590 if (smp_threads > 1 && 2591 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2592 spapr->max_compat_pvr)) { 2593 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2594 return; 2595 } 2596 2597 if (smp_threads > 8) { 2598 error_setg(errp, "TCG cannot support more than 8 threads/core " 2599 "on a pseries machine"); 2600 return; 2601 } 2602 } 2603 if (!is_power_of_2(smp_threads)) { 2604 error_setg(errp, "Cannot support %d threads/core on a pseries " 2605 "machine because it must be a power of 2", smp_threads); 2606 return; 2607 } 2608 2609 /* Determine the VSMT mode to use: */ 2610 if (vsmt_user) { 2611 if (spapr->vsmt < smp_threads) { 2612 error_setg(errp, "Cannot support VSMT mode %d" 2613 " because it must be >= threads/core (%d)", 2614 spapr->vsmt, smp_threads); 2615 return; 2616 } 2617 /* In this case, spapr->vsmt has been set by the command line */ 2618 } else if (!smc->smp_threads_vsmt) { 2619 /* 2620 * Default VSMT value is tricky, because we need it to be as 2621 * consistent as possible (for migration), but this requires 2622 * changing it for at least some existing cases. We pick 8 as 2623 * the value that we'd get with KVM on POWER8, the 2624 * overwhelmingly common case in production systems. 2625 */ 2626 spapr->vsmt = MAX(8, smp_threads); 2627 } else { 2628 spapr->vsmt = smp_threads; 2629 } 2630 2631 /* KVM: If necessary, set the SMT mode: */ 2632 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2633 ret = kvmppc_set_smt_threads(spapr->vsmt); 2634 if (ret) { 2635 /* Looks like KVM isn't able to change VSMT mode */ 2636 error_setg(&local_err, 2637 "Failed to set KVM's VSMT mode to %d (errno %d)", 2638 spapr->vsmt, ret); 2639 /* We can live with that if the default one is big enough 2640 * for the number of threads, and a submultiple of the one 2641 * we want. In this case we'll waste some vcpu ids, but 2642 * behaviour will be correct */ 2643 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2644 warn_report_err(local_err); 2645 } else { 2646 if (!vsmt_user) { 2647 error_append_hint(&local_err, 2648 "On PPC, a VM with %d threads/core" 2649 " on a host with %d threads/core" 2650 " requires the use of VSMT mode %d.\n", 2651 smp_threads, kvm_smt, spapr->vsmt); 2652 } 2653 kvmppc_error_append_smt_possible_hint(&local_err); 2654 error_propagate(errp, local_err); 2655 } 2656 } 2657 } 2658 /* else TCG: nothing to do currently */ 2659 } 2660 2661 static void spapr_init_cpus(SpaprMachineState *spapr) 2662 { 2663 MachineState *machine = MACHINE(spapr); 2664 MachineClass *mc = MACHINE_GET_CLASS(machine); 2665 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2666 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2667 const CPUArchIdList *possible_cpus; 2668 unsigned int smp_cpus = machine->smp.cpus; 2669 unsigned int smp_threads = machine->smp.threads; 2670 unsigned int max_cpus = machine->smp.max_cpus; 2671 int boot_cores_nr = smp_cpus / smp_threads; 2672 int i; 2673 2674 possible_cpus = mc->possible_cpu_arch_ids(machine); 2675 if (mc->has_hotpluggable_cpus) { 2676 if (smp_cpus % smp_threads) { 2677 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2678 smp_cpus, smp_threads); 2679 exit(1); 2680 } 2681 if (max_cpus % smp_threads) { 2682 error_report("max_cpus (%u) must be multiple of threads (%u)", 2683 max_cpus, smp_threads); 2684 exit(1); 2685 } 2686 } else { 2687 if (max_cpus != smp_cpus) { 2688 error_report("This machine version does not support CPU hotplug"); 2689 exit(1); 2690 } 2691 boot_cores_nr = possible_cpus->len; 2692 } 2693 2694 if (smc->pre_2_10_has_unused_icps) { 2695 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2696 /* Dummy entries get deregistered when real ICPState objects 2697 * are registered during CPU core hotplug. 2698 */ 2699 pre_2_10_vmstate_register_dummy_icp(i); 2700 } 2701 } 2702 2703 for (i = 0; i < possible_cpus->len; i++) { 2704 int core_id = i * smp_threads; 2705 2706 if (mc->has_hotpluggable_cpus) { 2707 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2708 spapr_vcpu_id(spapr, core_id)); 2709 } 2710 2711 if (i < boot_cores_nr) { 2712 Object *core = object_new(type); 2713 int nr_threads = smp_threads; 2714 2715 /* Handle the partially filled core for older machine types */ 2716 if ((i + 1) * smp_threads >= smp_cpus) { 2717 nr_threads = smp_cpus - i * smp_threads; 2718 } 2719 2720 object_property_set_int(core, "nr-threads", nr_threads, 2721 &error_fatal); 2722 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2723 &error_fatal); 2724 qdev_realize(DEVICE(core), NULL, &error_fatal); 2725 2726 object_unref(core); 2727 } 2728 } 2729 } 2730 2731 static PCIHostState *spapr_create_default_phb(void) 2732 { 2733 DeviceState *dev; 2734 2735 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2736 qdev_prop_set_uint32(dev, "index", 0); 2737 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2738 2739 return PCI_HOST_BRIDGE(dev); 2740 } 2741 2742 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2743 { 2744 MachineState *machine = MACHINE(spapr); 2745 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2746 hwaddr rma_size = machine->ram_size; 2747 hwaddr node0_size = spapr_node0_size(machine); 2748 2749 /* RMA has to fit in the first NUMA node */ 2750 rma_size = MIN(rma_size, node0_size); 2751 2752 /* 2753 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2754 * never exceed that 2755 */ 2756 rma_size = MIN(rma_size, 1 * TiB); 2757 2758 /* 2759 * Clamp the RMA size based on machine type. This is for 2760 * migration compatibility with older qemu versions, which limited 2761 * the RMA size for complicated and mostly bad reasons. 2762 */ 2763 if (smc->rma_limit) { 2764 rma_size = MIN(rma_size, smc->rma_limit); 2765 } 2766 2767 if (rma_size < MIN_RMA_SLOF) { 2768 error_setg(errp, 2769 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2770 "ldMiB guest RMA (Real Mode Area memory)", 2771 MIN_RMA_SLOF / MiB); 2772 return 0; 2773 } 2774 2775 return rma_size; 2776 } 2777 2778 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2779 { 2780 MachineState *machine = MACHINE(spapr); 2781 int i; 2782 2783 for (i = 0; i < machine->ram_slots; i++) { 2784 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2785 } 2786 } 2787 2788 /* pSeries LPAR / sPAPR hardware init */ 2789 static void spapr_machine_init(MachineState *machine) 2790 { 2791 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2792 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2793 MachineClass *mc = MACHINE_GET_CLASS(machine); 2794 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2795 const char *bios_name = machine->firmware ?: bios_default; 2796 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2797 const char *kernel_filename = machine->kernel_filename; 2798 const char *initrd_filename = machine->initrd_filename; 2799 PCIHostState *phb; 2800 bool has_vga; 2801 int i; 2802 MemoryRegion *sysmem = get_system_memory(); 2803 long load_limit, fw_size; 2804 Error *resize_hpt_err = NULL; 2805 NICInfo *nd; 2806 2807 if (!filename) { 2808 error_report("Could not find LPAR firmware '%s'", bios_name); 2809 exit(1); 2810 } 2811 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2812 if (fw_size <= 0) { 2813 error_report("Could not load LPAR firmware '%s'", filename); 2814 exit(1); 2815 } 2816 2817 /* 2818 * if Secure VM (PEF) support is configured, then initialize it 2819 */ 2820 pef_kvm_init(machine->cgs, &error_fatal); 2821 2822 msi_nonbroken = true; 2823 2824 QLIST_INIT(&spapr->phbs); 2825 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2826 2827 /* Determine capabilities to run with */ 2828 spapr_caps_init(spapr); 2829 2830 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2831 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2832 /* 2833 * If the user explicitly requested a mode we should either 2834 * supply it, or fail completely (which we do below). But if 2835 * it's not set explicitly, we reset our mode to something 2836 * that works 2837 */ 2838 if (resize_hpt_err) { 2839 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2840 error_free(resize_hpt_err); 2841 resize_hpt_err = NULL; 2842 } else { 2843 spapr->resize_hpt = smc->resize_hpt_default; 2844 } 2845 } 2846 2847 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2848 2849 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2850 /* 2851 * User requested HPT resize, but this host can't supply it. Bail out 2852 */ 2853 error_report_err(resize_hpt_err); 2854 exit(1); 2855 } 2856 error_free(resize_hpt_err); 2857 2858 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2859 2860 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2861 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2862 2863 /* 2864 * VSMT must be set in order to be able to compute VCPU ids, ie to 2865 * call spapr_max_server_number() or spapr_vcpu_id(). 2866 */ 2867 spapr_set_vsmt_mode(spapr, &error_fatal); 2868 2869 /* Set up Interrupt Controller before we create the VCPUs */ 2870 spapr_irq_init(spapr, &error_fatal); 2871 2872 /* Set up containers for ibm,client-architecture-support negotiated options 2873 */ 2874 spapr->ov5 = spapr_ovec_new(); 2875 spapr->ov5_cas = spapr_ovec_new(); 2876 2877 if (smc->dr_lmb_enabled) { 2878 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2879 spapr_validate_node_memory(machine, &error_fatal); 2880 } 2881 2882 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2883 2884 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2885 if (!smc->pre_6_2_numa_affinity) { 2886 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2887 } 2888 2889 /* advertise support for dedicated HP event source to guests */ 2890 if (spapr->use_hotplug_event_source) { 2891 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2892 } 2893 2894 /* advertise support for HPT resizing */ 2895 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2896 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2897 } 2898 2899 /* advertise support for ibm,dyamic-memory-v2 */ 2900 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2901 2902 /* advertise XIVE on POWER9 machines */ 2903 if (spapr->irq->xive) { 2904 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2905 } 2906 2907 /* init CPUs */ 2908 spapr_init_cpus(spapr); 2909 2910 /* Init numa_assoc_array */ 2911 spapr_numa_associativity_init(spapr, machine); 2912 2913 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2914 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2915 spapr->max_compat_pvr)) { 2916 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2917 /* KVM and TCG always allow GTSE with radix... */ 2918 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2919 } 2920 /* ... but not with hash (currently). */ 2921 2922 if (kvm_enabled()) { 2923 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2924 kvmppc_enable_logical_ci_hcalls(); 2925 kvmppc_enable_set_mode_hcall(); 2926 2927 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2928 kvmppc_enable_clear_ref_mod_hcalls(); 2929 2930 /* Enable H_PAGE_INIT */ 2931 kvmppc_enable_h_page_init(); 2932 } 2933 2934 /* map RAM */ 2935 memory_region_add_subregion(sysmem, 0, machine->ram); 2936 2937 /* initialize hotplug memory address space */ 2938 if (machine->ram_size < machine->maxram_size) { 2939 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2940 hwaddr device_mem_base; 2941 2942 /* 2943 * Limit the number of hotpluggable memory slots to half the number 2944 * slots that KVM supports, leaving the other half for PCI and other 2945 * devices. However ensure that number of slots doesn't drop below 32. 2946 */ 2947 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2948 SPAPR_MAX_RAM_SLOTS; 2949 2950 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2951 max_memslots = SPAPR_MAX_RAM_SLOTS; 2952 } 2953 if (machine->ram_slots > max_memslots) { 2954 error_report("Specified number of memory slots %" 2955 PRIu64" exceeds max supported %d", 2956 machine->ram_slots, max_memslots); 2957 exit(1); 2958 } 2959 2960 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2961 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2962 } 2963 2964 if (smc->dr_lmb_enabled) { 2965 spapr_create_lmb_dr_connectors(spapr); 2966 } 2967 2968 if (mc->nvdimm_supported) { 2969 spapr_create_nvdimm_dr_connectors(spapr); 2970 } 2971 2972 /* Set up RTAS event infrastructure */ 2973 spapr_events_init(spapr); 2974 2975 /* Set up the RTC RTAS interfaces */ 2976 spapr_rtc_create(spapr); 2977 2978 /* Set up VIO bus */ 2979 spapr->vio_bus = spapr_vio_bus_init(); 2980 2981 for (i = 0; serial_hd(i); i++) { 2982 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2983 } 2984 2985 /* We always have at least the nvram device on VIO */ 2986 spapr_create_nvram(spapr); 2987 2988 /* 2989 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2990 * connectors (described in root DT node's "ibm,drc-types" property) 2991 * are pre-initialized here. additional child connectors (such as 2992 * connectors for a PHBs PCI slots) are added as needed during their 2993 * parent's realization. 2994 */ 2995 if (smc->dr_phb_enabled) { 2996 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2997 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2998 } 2999 } 3000 3001 /* Set up PCI */ 3002 spapr_pci_rtas_init(); 3003 3004 phb = spapr_create_default_phb(); 3005 3006 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3007 spapr_vlan_create(spapr->vio_bus, nd); 3008 } 3009 3010 pci_init_nic_devices(phb->bus, NULL); 3011 3012 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3013 spapr_vscsi_create(spapr->vio_bus); 3014 } 3015 3016 /* Graphics */ 3017 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3018 if (has_vga) { 3019 spapr->want_stdout_path = !machine->enable_graphics; 3020 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3021 } else { 3022 spapr->want_stdout_path = true; 3023 } 3024 3025 if (machine->usb) { 3026 if (smc->use_ohci_by_default) { 3027 pci_create_simple(phb->bus, -1, "pci-ohci"); 3028 } else { 3029 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3030 } 3031 3032 if (has_vga) { 3033 USBBus *usb_bus; 3034 3035 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3036 &error_abort)); 3037 usb_create_simple(usb_bus, "usb-kbd"); 3038 usb_create_simple(usb_bus, "usb-mouse"); 3039 } 3040 } 3041 3042 if (kernel_filename) { 3043 uint64_t loaded_addr = 0; 3044 3045 spapr->kernel_size = load_elf(kernel_filename, NULL, 3046 translate_kernel_address, spapr, 3047 NULL, &loaded_addr, NULL, NULL, 1, 3048 PPC_ELF_MACHINE, 0, 0); 3049 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3050 spapr->kernel_size = load_elf(kernel_filename, NULL, 3051 translate_kernel_address, spapr, 3052 NULL, &loaded_addr, NULL, NULL, 0, 3053 PPC_ELF_MACHINE, 0, 0); 3054 spapr->kernel_le = spapr->kernel_size > 0; 3055 } 3056 if (spapr->kernel_size < 0) { 3057 error_report("error loading %s: %s", kernel_filename, 3058 load_elf_strerror(spapr->kernel_size)); 3059 exit(1); 3060 } 3061 3062 if (spapr->kernel_addr != loaded_addr) { 3063 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3064 " to 0x%"PRIx64, 3065 spapr->kernel_addr, loaded_addr); 3066 spapr->kernel_addr = loaded_addr; 3067 } 3068 3069 /* load initrd */ 3070 if (initrd_filename) { 3071 /* Try to locate the initrd in the gap between the kernel 3072 * and the firmware. Add a bit of space just in case 3073 */ 3074 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3075 + 0x1ffff) & ~0xffff; 3076 spapr->initrd_size = load_image_targphys(initrd_filename, 3077 spapr->initrd_base, 3078 load_limit 3079 - spapr->initrd_base); 3080 if (spapr->initrd_size < 0) { 3081 error_report("could not load initial ram disk '%s'", 3082 initrd_filename); 3083 exit(1); 3084 } 3085 } 3086 } 3087 3088 /* FIXME: Should register things through the MachineState's qdev 3089 * interface, this is a legacy from the sPAPREnvironment structure 3090 * which predated MachineState but had a similar function */ 3091 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3092 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3093 &savevm_htab_handlers, spapr); 3094 3095 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3096 3097 qemu_register_boot_set(spapr_boot_set, spapr); 3098 3099 /* 3100 * Nothing needs to be done to resume a suspended guest because 3101 * suspending does not change the machine state, so no need for 3102 * a ->wakeup method. 3103 */ 3104 qemu_register_wakeup_support(); 3105 3106 if (kvm_enabled()) { 3107 /* to stop and start vmclock */ 3108 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3109 &spapr->tb); 3110 3111 kvmppc_spapr_enable_inkernel_multitce(); 3112 } 3113 3114 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3115 if (spapr->vof) { 3116 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3117 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3118 } 3119 3120 spapr_watchdog_init(spapr); 3121 } 3122 3123 #define DEFAULT_KVM_TYPE "auto" 3124 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3125 { 3126 /* 3127 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3128 * accommodate the 'HV' and 'PV' formats that exists in the 3129 * wild. The 'auto' mode is being introduced already as 3130 * lower-case, thus we don't need to bother checking for 3131 * "AUTO". 3132 */ 3133 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3134 return 0; 3135 } 3136 3137 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3138 return 1; 3139 } 3140 3141 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3142 return 2; 3143 } 3144 3145 error_report("Unknown kvm-type specified '%s'", vm_type); 3146 return -1; 3147 } 3148 3149 /* 3150 * Implementation of an interface to adjust firmware path 3151 * for the bootindex property handling. 3152 */ 3153 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3154 DeviceState *dev) 3155 { 3156 #define CAST(type, obj, name) \ 3157 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3158 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3159 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3160 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3161 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3162 3163 if (d && bus) { 3164 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3165 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3166 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3167 3168 if (spapr) { 3169 /* 3170 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3171 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3172 * 0x8000 | (target << 8) | (bus << 5) | lun 3173 * (see the "Logical unit addressing format" table in SAM5) 3174 */ 3175 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3176 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3177 (uint64_t)id << 48); 3178 } else if (virtio) { 3179 /* 3180 * We use SRP luns of the form 01000000 | (target << 8) | lun 3181 * in the top 32 bits of the 64-bit LUN 3182 * Note: the quote above is from SLOF and it is wrong, 3183 * the actual binding is: 3184 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3185 */ 3186 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3187 if (d->lun >= 256) { 3188 /* Use the LUN "flat space addressing method" */ 3189 id |= 0x4000; 3190 } 3191 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3192 (uint64_t)id << 32); 3193 } else if (usb) { 3194 /* 3195 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3196 * in the top 32 bits of the 64-bit LUN 3197 */ 3198 unsigned usb_port = atoi(usb->port->path); 3199 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3200 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3201 (uint64_t)id << 32); 3202 } 3203 } 3204 3205 /* 3206 * SLOF probes the USB devices, and if it recognizes that the device is a 3207 * storage device, it changes its name to "storage" instead of "usb-host", 3208 * and additionally adds a child node for the SCSI LUN, so the correct 3209 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3210 */ 3211 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3212 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3213 if (usb_device_is_scsi_storage(usbdev)) { 3214 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3215 } 3216 } 3217 3218 if (phb) { 3219 /* Replace "pci" with "pci@800000020000000" */ 3220 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3221 } 3222 3223 if (vsc) { 3224 /* Same logic as virtio above */ 3225 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3226 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3227 } 3228 3229 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3230 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3231 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3232 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3233 } 3234 3235 if (pcidev) { 3236 return spapr_pci_fw_dev_name(pcidev); 3237 } 3238 3239 return NULL; 3240 } 3241 3242 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3243 { 3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3245 3246 return g_strdup(spapr->kvm_type); 3247 } 3248 3249 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3250 { 3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3252 3253 g_free(spapr->kvm_type); 3254 spapr->kvm_type = g_strdup(value); 3255 } 3256 3257 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3258 { 3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3260 3261 return spapr->use_hotplug_event_source; 3262 } 3263 3264 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3265 Error **errp) 3266 { 3267 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3268 3269 spapr->use_hotplug_event_source = value; 3270 } 3271 3272 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3273 { 3274 return true; 3275 } 3276 3277 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3278 { 3279 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3280 3281 switch (spapr->resize_hpt) { 3282 case SPAPR_RESIZE_HPT_DEFAULT: 3283 return g_strdup("default"); 3284 case SPAPR_RESIZE_HPT_DISABLED: 3285 return g_strdup("disabled"); 3286 case SPAPR_RESIZE_HPT_ENABLED: 3287 return g_strdup("enabled"); 3288 case SPAPR_RESIZE_HPT_REQUIRED: 3289 return g_strdup("required"); 3290 } 3291 g_assert_not_reached(); 3292 } 3293 3294 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3295 { 3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3297 3298 if (strcmp(value, "default") == 0) { 3299 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3300 } else if (strcmp(value, "disabled") == 0) { 3301 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3302 } else if (strcmp(value, "enabled") == 0) { 3303 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3304 } else if (strcmp(value, "required") == 0) { 3305 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3306 } else { 3307 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3308 } 3309 } 3310 3311 static bool spapr_get_vof(Object *obj, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 return spapr->vof != NULL; 3316 } 3317 3318 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3319 { 3320 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3321 3322 if (spapr->vof) { 3323 vof_cleanup(spapr->vof); 3324 g_free(spapr->vof); 3325 spapr->vof = NULL; 3326 } 3327 if (!value) { 3328 return; 3329 } 3330 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3331 } 3332 3333 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3334 { 3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3336 3337 if (spapr->irq == &spapr_irq_xics_legacy) { 3338 return g_strdup("legacy"); 3339 } else if (spapr->irq == &spapr_irq_xics) { 3340 return g_strdup("xics"); 3341 } else if (spapr->irq == &spapr_irq_xive) { 3342 return g_strdup("xive"); 3343 } else if (spapr->irq == &spapr_irq_dual) { 3344 return g_strdup("dual"); 3345 } 3346 g_assert_not_reached(); 3347 } 3348 3349 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3350 { 3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3352 3353 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3354 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3355 return; 3356 } 3357 3358 /* The legacy IRQ backend can not be set */ 3359 if (strcmp(value, "xics") == 0) { 3360 spapr->irq = &spapr_irq_xics; 3361 } else if (strcmp(value, "xive") == 0) { 3362 spapr->irq = &spapr_irq_xive; 3363 } else if (strcmp(value, "dual") == 0) { 3364 spapr->irq = &spapr_irq_dual; 3365 } else { 3366 error_setg(errp, "Bad value for \"ic-mode\" property"); 3367 } 3368 } 3369 3370 static char *spapr_get_host_model(Object *obj, Error **errp) 3371 { 3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3373 3374 return g_strdup(spapr->host_model); 3375 } 3376 3377 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3378 { 3379 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3380 3381 g_free(spapr->host_model); 3382 spapr->host_model = g_strdup(value); 3383 } 3384 3385 static char *spapr_get_host_serial(Object *obj, Error **errp) 3386 { 3387 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3388 3389 return g_strdup(spapr->host_serial); 3390 } 3391 3392 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3393 { 3394 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3395 3396 g_free(spapr->host_serial); 3397 spapr->host_serial = g_strdup(value); 3398 } 3399 3400 static void spapr_instance_init(Object *obj) 3401 { 3402 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3403 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3404 MachineState *ms = MACHINE(spapr); 3405 MachineClass *mc = MACHINE_GET_CLASS(ms); 3406 3407 /* 3408 * NVDIMM support went live in 5.1 without considering that, in 3409 * other archs, the user needs to enable NVDIMM support with the 3410 * 'nvdimm' machine option and the default behavior is NVDIMM 3411 * support disabled. It is too late to roll back to the standard 3412 * behavior without breaking 5.1 guests. 3413 */ 3414 if (mc->nvdimm_supported) { 3415 ms->nvdimms_state->is_enabled = true; 3416 } 3417 3418 spapr->htab_fd = -1; 3419 spapr->use_hotplug_event_source = true; 3420 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3421 object_property_add_str(obj, "kvm-type", 3422 spapr_get_kvm_type, spapr_set_kvm_type); 3423 object_property_set_description(obj, "kvm-type", 3424 "Specifies the KVM virtualization mode (auto," 3425 " hv, pr). Defaults to 'auto'. This mode will use" 3426 " any available KVM module loaded in the host," 3427 " where kvm_hv takes precedence if both kvm_hv and" 3428 " kvm_pr are loaded."); 3429 object_property_add_bool(obj, "modern-hotplug-events", 3430 spapr_get_modern_hotplug_events, 3431 spapr_set_modern_hotplug_events); 3432 object_property_set_description(obj, "modern-hotplug-events", 3433 "Use dedicated hotplug event mechanism in" 3434 " place of standard EPOW events when possible" 3435 " (required for memory hot-unplug support)"); 3436 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3437 "Maximum permitted CPU compatibility mode"); 3438 3439 object_property_add_str(obj, "resize-hpt", 3440 spapr_get_resize_hpt, spapr_set_resize_hpt); 3441 object_property_set_description(obj, "resize-hpt", 3442 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3443 object_property_add_uint32_ptr(obj, "vsmt", 3444 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3445 object_property_set_description(obj, "vsmt", 3446 "Virtual SMT: KVM behaves as if this were" 3447 " the host's SMT mode"); 3448 3449 object_property_add_bool(obj, "vfio-no-msix-emulation", 3450 spapr_get_msix_emulation, NULL); 3451 3452 object_property_add_uint64_ptr(obj, "kernel-addr", 3453 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3454 object_property_set_description(obj, "kernel-addr", 3455 stringify(KERNEL_LOAD_ADDR) 3456 " for -kernel is the default"); 3457 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3458 3459 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3460 object_property_set_description(obj, "x-vof", 3461 "Enable Virtual Open Firmware (experimental)"); 3462 3463 /* The machine class defines the default interrupt controller mode */ 3464 spapr->irq = smc->irq; 3465 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3466 spapr_set_ic_mode); 3467 object_property_set_description(obj, "ic-mode", 3468 "Specifies the interrupt controller mode (xics, xive, dual)"); 3469 3470 object_property_add_str(obj, "host-model", 3471 spapr_get_host_model, spapr_set_host_model); 3472 object_property_set_description(obj, "host-model", 3473 "Host model to advertise in guest device tree"); 3474 object_property_add_str(obj, "host-serial", 3475 spapr_get_host_serial, spapr_set_host_serial); 3476 object_property_set_description(obj, "host-serial", 3477 "Host serial number to advertise in guest device tree"); 3478 } 3479 3480 static void spapr_machine_finalizefn(Object *obj) 3481 { 3482 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3483 3484 g_free(spapr->kvm_type); 3485 } 3486 3487 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3488 { 3489 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3490 PowerPCCPU *cpu = POWERPC_CPU(cs); 3491 CPUPPCState *env = &cpu->env; 3492 3493 cpu_synchronize_state(cs); 3494 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3495 if (spapr->fwnmi_system_reset_addr != -1) { 3496 uint64_t rtas_addr, addr; 3497 3498 /* get rtas addr from fdt */ 3499 rtas_addr = spapr_get_rtas_addr(); 3500 if (!rtas_addr) { 3501 qemu_system_guest_panicked(NULL); 3502 return; 3503 } 3504 3505 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3506 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3507 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3508 env->gpr[3] = addr; 3509 } 3510 ppc_cpu_do_system_reset(cs); 3511 if (spapr->fwnmi_system_reset_addr != -1) { 3512 env->nip = spapr->fwnmi_system_reset_addr; 3513 } 3514 } 3515 3516 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3517 { 3518 CPUState *cs; 3519 3520 CPU_FOREACH(cs) { 3521 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3522 } 3523 } 3524 3525 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3526 void *fdt, int *fdt_start_offset, Error **errp) 3527 { 3528 uint64_t addr; 3529 uint32_t node; 3530 3531 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3532 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3533 &error_abort); 3534 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3535 SPAPR_MEMORY_BLOCK_SIZE); 3536 return 0; 3537 } 3538 3539 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3540 bool dedicated_hp_event_source) 3541 { 3542 SpaprDrc *drc; 3543 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3544 int i; 3545 uint64_t addr = addr_start; 3546 bool hotplugged = spapr_drc_hotplugged(dev); 3547 3548 for (i = 0; i < nr_lmbs; i++) { 3549 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3550 addr / SPAPR_MEMORY_BLOCK_SIZE); 3551 g_assert(drc); 3552 3553 /* 3554 * memory_device_get_free_addr() provided a range of free addresses 3555 * that doesn't overlap with any existing mapping at pre-plug. The 3556 * corresponding LMB DRCs are thus assumed to be all attachable. 3557 */ 3558 spapr_drc_attach(drc, dev); 3559 if (!hotplugged) { 3560 spapr_drc_reset(drc); 3561 } 3562 addr += SPAPR_MEMORY_BLOCK_SIZE; 3563 } 3564 /* send hotplug notification to the 3565 * guest only in case of hotplugged memory 3566 */ 3567 if (hotplugged) { 3568 if (dedicated_hp_event_source) { 3569 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3570 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3571 g_assert(drc); 3572 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3573 nr_lmbs, 3574 spapr_drc_index(drc)); 3575 } else { 3576 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3577 nr_lmbs); 3578 } 3579 } 3580 } 3581 3582 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3583 { 3584 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3585 PCDIMMDevice *dimm = PC_DIMM(dev); 3586 uint64_t size, addr; 3587 int64_t slot; 3588 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3589 3590 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3591 3592 pc_dimm_plug(dimm, MACHINE(ms)); 3593 3594 if (!is_nvdimm) { 3595 addr = object_property_get_uint(OBJECT(dimm), 3596 PC_DIMM_ADDR_PROP, &error_abort); 3597 spapr_add_lmbs(dev, addr, size, 3598 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3599 } else { 3600 slot = object_property_get_int(OBJECT(dimm), 3601 PC_DIMM_SLOT_PROP, &error_abort); 3602 /* We should have valid slot number at this point */ 3603 g_assert(slot >= 0); 3604 spapr_add_nvdimm(dev, slot); 3605 } 3606 } 3607 3608 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3609 Error **errp) 3610 { 3611 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3612 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3613 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3614 PCDIMMDevice *dimm = PC_DIMM(dev); 3615 Error *local_err = NULL; 3616 uint64_t size; 3617 Object *memdev; 3618 hwaddr pagesize; 3619 3620 if (!smc->dr_lmb_enabled) { 3621 error_setg(errp, "Memory hotplug not supported for this machine"); 3622 return; 3623 } 3624 3625 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3626 if (local_err) { 3627 error_propagate(errp, local_err); 3628 return; 3629 } 3630 3631 if (is_nvdimm) { 3632 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3633 return; 3634 } 3635 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3636 error_setg(errp, "Hotplugged memory size must be a multiple of " 3637 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3638 return; 3639 } 3640 3641 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3642 &error_abort); 3643 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3644 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3645 return; 3646 } 3647 3648 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3649 } 3650 3651 struct SpaprDimmState { 3652 PCDIMMDevice *dimm; 3653 uint32_t nr_lmbs; 3654 QTAILQ_ENTRY(SpaprDimmState) next; 3655 }; 3656 3657 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3658 PCDIMMDevice *dimm) 3659 { 3660 SpaprDimmState *dimm_state = NULL; 3661 3662 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3663 if (dimm_state->dimm == dimm) { 3664 break; 3665 } 3666 } 3667 return dimm_state; 3668 } 3669 3670 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3671 uint32_t nr_lmbs, 3672 PCDIMMDevice *dimm) 3673 { 3674 SpaprDimmState *ds = NULL; 3675 3676 /* 3677 * If this request is for a DIMM whose removal had failed earlier 3678 * (due to guest's refusal to remove the LMBs), we would have this 3679 * dimm already in the pending_dimm_unplugs list. In that 3680 * case don't add again. 3681 */ 3682 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3683 if (!ds) { 3684 ds = g_new0(SpaprDimmState, 1); 3685 ds->nr_lmbs = nr_lmbs; 3686 ds->dimm = dimm; 3687 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3688 } 3689 return ds; 3690 } 3691 3692 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3693 SpaprDimmState *dimm_state) 3694 { 3695 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3696 g_free(dimm_state); 3697 } 3698 3699 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3700 PCDIMMDevice *dimm) 3701 { 3702 SpaprDrc *drc; 3703 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3704 &error_abort); 3705 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3706 uint32_t avail_lmbs = 0; 3707 uint64_t addr_start, addr; 3708 int i; 3709 3710 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3711 &error_abort); 3712 3713 addr = addr_start; 3714 for (i = 0; i < nr_lmbs; i++) { 3715 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3716 addr / SPAPR_MEMORY_BLOCK_SIZE); 3717 g_assert(drc); 3718 if (drc->dev) { 3719 avail_lmbs++; 3720 } 3721 addr += SPAPR_MEMORY_BLOCK_SIZE; 3722 } 3723 3724 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3725 } 3726 3727 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3728 { 3729 SpaprDimmState *ds; 3730 PCDIMMDevice *dimm; 3731 SpaprDrc *drc; 3732 uint32_t nr_lmbs; 3733 uint64_t size, addr_start, addr; 3734 g_autofree char *qapi_error = NULL; 3735 int i; 3736 3737 if (!dev) { 3738 return; 3739 } 3740 3741 dimm = PC_DIMM(dev); 3742 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3743 3744 /* 3745 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3746 * unplug state, but one of its DRC is marked as unplug_requested. 3747 * This is bad and weird enough to g_assert() out. 3748 */ 3749 g_assert(ds); 3750 3751 spapr_pending_dimm_unplugs_remove(spapr, ds); 3752 3753 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3754 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3755 3756 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3757 &error_abort); 3758 3759 addr = addr_start; 3760 for (i = 0; i < nr_lmbs; i++) { 3761 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3762 addr / SPAPR_MEMORY_BLOCK_SIZE); 3763 g_assert(drc); 3764 3765 drc->unplug_requested = false; 3766 addr += SPAPR_MEMORY_BLOCK_SIZE; 3767 } 3768 3769 /* 3770 * Tell QAPI that something happened and the memory 3771 * hotunplug wasn't successful. Keep sending 3772 * MEM_UNPLUG_ERROR even while sending 3773 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3774 * MEM_UNPLUG_ERROR is due. 3775 */ 3776 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3777 "for device %s", dev->id); 3778 3779 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3780 3781 qapi_event_send_device_unplug_guest_error(dev->id, 3782 dev->canonical_path); 3783 } 3784 3785 /* Callback to be called during DRC release. */ 3786 void spapr_lmb_release(DeviceState *dev) 3787 { 3788 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3789 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3790 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3791 3792 /* This information will get lost if a migration occurs 3793 * during the unplug process. In this case recover it. */ 3794 if (ds == NULL) { 3795 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3796 g_assert(ds); 3797 /* The DRC being examined by the caller at least must be counted */ 3798 g_assert(ds->nr_lmbs); 3799 } 3800 3801 if (--ds->nr_lmbs) { 3802 return; 3803 } 3804 3805 /* 3806 * Now that all the LMBs have been removed by the guest, call the 3807 * unplug handler chain. This can never fail. 3808 */ 3809 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3810 object_unparent(OBJECT(dev)); 3811 } 3812 3813 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3814 { 3815 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3816 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3817 3818 /* We really shouldn't get this far without anything to unplug */ 3819 g_assert(ds); 3820 3821 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3822 qdev_unrealize(dev); 3823 spapr_pending_dimm_unplugs_remove(spapr, ds); 3824 } 3825 3826 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3827 DeviceState *dev, Error **errp) 3828 { 3829 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3830 PCDIMMDevice *dimm = PC_DIMM(dev); 3831 uint32_t nr_lmbs; 3832 uint64_t size, addr_start, addr; 3833 int i; 3834 SpaprDrc *drc; 3835 3836 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3837 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3838 return; 3839 } 3840 3841 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3842 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3843 3844 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3845 &error_abort); 3846 3847 /* 3848 * An existing pending dimm state for this DIMM means that there is an 3849 * unplug operation in progress, waiting for the spapr_lmb_release 3850 * callback to complete the job (BQL can't cover that far). In this case, 3851 * bail out to avoid detaching DRCs that were already released. 3852 */ 3853 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3854 error_setg(errp, "Memory unplug already in progress for device %s", 3855 dev->id); 3856 return; 3857 } 3858 3859 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3860 3861 addr = addr_start; 3862 for (i = 0; i < nr_lmbs; i++) { 3863 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3864 addr / SPAPR_MEMORY_BLOCK_SIZE); 3865 g_assert(drc); 3866 3867 spapr_drc_unplug_request(drc); 3868 addr += SPAPR_MEMORY_BLOCK_SIZE; 3869 } 3870 3871 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3872 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3873 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3874 nr_lmbs, spapr_drc_index(drc)); 3875 } 3876 3877 /* Callback to be called during DRC release. */ 3878 void spapr_core_release(DeviceState *dev) 3879 { 3880 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3881 3882 /* Call the unplug handler chain. This can never fail. */ 3883 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3884 object_unparent(OBJECT(dev)); 3885 } 3886 3887 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3888 { 3889 MachineState *ms = MACHINE(hotplug_dev); 3890 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3891 CPUCore *cc = CPU_CORE(dev); 3892 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3893 3894 if (smc->pre_2_10_has_unused_icps) { 3895 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3896 int i; 3897 3898 for (i = 0; i < cc->nr_threads; i++) { 3899 CPUState *cs = CPU(sc->threads[i]); 3900 3901 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3902 } 3903 } 3904 3905 assert(core_slot); 3906 core_slot->cpu = NULL; 3907 qdev_unrealize(dev); 3908 } 3909 3910 static 3911 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3912 Error **errp) 3913 { 3914 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3915 int index; 3916 SpaprDrc *drc; 3917 CPUCore *cc = CPU_CORE(dev); 3918 3919 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3920 error_setg(errp, "Unable to find CPU core with core-id: %d", 3921 cc->core_id); 3922 return; 3923 } 3924 if (index == 0) { 3925 error_setg(errp, "Boot CPU core may not be unplugged"); 3926 return; 3927 } 3928 3929 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3930 spapr_vcpu_id(spapr, cc->core_id)); 3931 g_assert(drc); 3932 3933 if (!spapr_drc_unplug_requested(drc)) { 3934 spapr_drc_unplug_request(drc); 3935 } 3936 3937 /* 3938 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3939 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3940 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3941 * attempt (e.g. the kernel will refuse to remove the last online 3942 * CPU), we will never attempt it again because unplug_requested 3943 * will still be 'true' in that case. 3944 */ 3945 spapr_hotplug_req_remove_by_index(drc); 3946 } 3947 3948 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3949 void *fdt, int *fdt_start_offset, Error **errp) 3950 { 3951 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3952 CPUState *cs = CPU(core->threads[0]); 3953 PowerPCCPU *cpu = POWERPC_CPU(cs); 3954 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3955 int id = spapr_get_vcpu_id(cpu); 3956 g_autofree char *nodename = NULL; 3957 int offset; 3958 3959 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3960 offset = fdt_add_subnode(fdt, 0, nodename); 3961 3962 spapr_dt_cpu(cs, fdt, offset, spapr); 3963 3964 /* 3965 * spapr_dt_cpu() does not fill the 'name' property in the 3966 * CPU node. The function is called during boot process, before 3967 * and after CAS, and overwriting the 'name' property written 3968 * by SLOF is not allowed. 3969 * 3970 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3971 * CPUs more compatible with the coldplugged ones, which have 3972 * the 'name' property. Linux Kernel also relies on this 3973 * property to identify CPU nodes. 3974 */ 3975 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3976 3977 *fdt_start_offset = offset; 3978 return 0; 3979 } 3980 3981 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3982 { 3983 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3984 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3986 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3987 CPUCore *cc = CPU_CORE(dev); 3988 CPUState *cs; 3989 SpaprDrc *drc; 3990 CPUArchId *core_slot; 3991 int index; 3992 bool hotplugged = spapr_drc_hotplugged(dev); 3993 int i; 3994 3995 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3996 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3997 3998 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3999 spapr_vcpu_id(spapr, cc->core_id)); 4000 4001 g_assert(drc || !mc->has_hotpluggable_cpus); 4002 4003 if (drc) { 4004 /* 4005 * spapr_core_pre_plug() already buys us this is a brand new 4006 * core being plugged into a free slot. Nothing should already 4007 * be attached to the corresponding DRC. 4008 */ 4009 spapr_drc_attach(drc, dev); 4010 4011 if (hotplugged) { 4012 /* 4013 * Send hotplug notification interrupt to the guest only 4014 * in case of hotplugged CPUs. 4015 */ 4016 spapr_hotplug_req_add_by_index(drc); 4017 } else { 4018 spapr_drc_reset(drc); 4019 } 4020 } 4021 4022 core_slot->cpu = OBJECT(dev); 4023 4024 /* 4025 * Set compatibility mode to match the boot CPU, which was either set 4026 * by the machine reset code or by CAS. This really shouldn't fail at 4027 * this point. 4028 */ 4029 if (hotplugged) { 4030 for (i = 0; i < cc->nr_threads; i++) { 4031 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4032 &error_abort); 4033 } 4034 } 4035 4036 if (smc->pre_2_10_has_unused_icps) { 4037 for (i = 0; i < cc->nr_threads; i++) { 4038 cs = CPU(core->threads[i]); 4039 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4040 } 4041 } 4042 } 4043 4044 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4045 Error **errp) 4046 { 4047 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4048 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4049 CPUCore *cc = CPU_CORE(dev); 4050 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4051 const char *type = object_get_typename(OBJECT(dev)); 4052 CPUArchId *core_slot; 4053 int index; 4054 unsigned int smp_threads = machine->smp.threads; 4055 4056 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4057 error_setg(errp, "CPU hotplug not supported for this machine"); 4058 return; 4059 } 4060 4061 if (strcmp(base_core_type, type)) { 4062 error_setg(errp, "CPU core type should be %s", base_core_type); 4063 return; 4064 } 4065 4066 if (cc->core_id % smp_threads) { 4067 error_setg(errp, "invalid core id %d", cc->core_id); 4068 return; 4069 } 4070 4071 /* 4072 * In general we should have homogeneous threads-per-core, but old 4073 * (pre hotplug support) machine types allow the last core to have 4074 * reduced threads as a compatibility hack for when we allowed 4075 * total vcpus not a multiple of threads-per-core. 4076 */ 4077 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4078 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4079 smp_threads); 4080 return; 4081 } 4082 4083 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4084 if (!core_slot) { 4085 error_setg(errp, "core id %d out of range", cc->core_id); 4086 return; 4087 } 4088 4089 if (core_slot->cpu) { 4090 error_setg(errp, "core %d already populated", cc->core_id); 4091 return; 4092 } 4093 4094 numa_cpu_pre_plug(core_slot, dev, errp); 4095 } 4096 4097 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4098 void *fdt, int *fdt_start_offset, Error **errp) 4099 { 4100 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4101 int intc_phandle; 4102 4103 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4104 if (intc_phandle <= 0) { 4105 return -1; 4106 } 4107 4108 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4109 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4110 return -1; 4111 } 4112 4113 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4114 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4115 4116 return 0; 4117 } 4118 4119 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4120 Error **errp) 4121 { 4122 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4123 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4124 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4125 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4126 SpaprDrc *drc; 4127 4128 if (dev->hotplugged && !smc->dr_phb_enabled) { 4129 error_setg(errp, "PHB hotplug not supported for this machine"); 4130 return false; 4131 } 4132 4133 if (sphb->index == (uint32_t)-1) { 4134 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4135 return false; 4136 } 4137 4138 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4139 if (drc && drc->dev) { 4140 error_setg(errp, "PHB %d already attached", sphb->index); 4141 return false; 4142 } 4143 4144 /* 4145 * This will check that sphb->index doesn't exceed the maximum number of 4146 * PHBs for the current machine type. 4147 */ 4148 return 4149 smc->phb_placement(spapr, sphb->index, 4150 &sphb->buid, &sphb->io_win_addr, 4151 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4152 windows_supported, sphb->dma_liobn, 4153 errp); 4154 } 4155 4156 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4157 { 4158 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4159 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4160 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4161 SpaprDrc *drc; 4162 bool hotplugged = spapr_drc_hotplugged(dev); 4163 4164 if (!smc->dr_phb_enabled) { 4165 return; 4166 } 4167 4168 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4169 /* hotplug hooks should check it's enabled before getting this far */ 4170 assert(drc); 4171 4172 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4173 spapr_drc_attach(drc, dev); 4174 4175 if (hotplugged) { 4176 spapr_hotplug_req_add_by_index(drc); 4177 } else { 4178 spapr_drc_reset(drc); 4179 } 4180 } 4181 4182 void spapr_phb_release(DeviceState *dev) 4183 { 4184 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4185 4186 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4187 object_unparent(OBJECT(dev)); 4188 } 4189 4190 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4191 { 4192 qdev_unrealize(dev); 4193 } 4194 4195 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4196 DeviceState *dev, Error **errp) 4197 { 4198 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4199 SpaprDrc *drc; 4200 4201 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4202 assert(drc); 4203 4204 if (!spapr_drc_unplug_requested(drc)) { 4205 spapr_drc_unplug_request(drc); 4206 spapr_hotplug_req_remove_by_index(drc); 4207 } else { 4208 error_setg(errp, 4209 "PCI Host Bridge unplug already in progress for device %s", 4210 dev->id); 4211 } 4212 } 4213 4214 static 4215 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4216 Error **errp) 4217 { 4218 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4219 4220 if (spapr->tpm_proxy != NULL) { 4221 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4222 return false; 4223 } 4224 4225 return true; 4226 } 4227 4228 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4229 { 4230 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4231 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4232 4233 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4234 g_assert(spapr->tpm_proxy == NULL); 4235 4236 spapr->tpm_proxy = tpm_proxy; 4237 } 4238 4239 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4240 { 4241 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4242 4243 qdev_unrealize(dev); 4244 object_unparent(OBJECT(dev)); 4245 spapr->tpm_proxy = NULL; 4246 } 4247 4248 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4249 DeviceState *dev, Error **errp) 4250 { 4251 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4252 spapr_memory_plug(hotplug_dev, dev); 4253 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4254 spapr_core_plug(hotplug_dev, dev); 4255 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4256 spapr_phb_plug(hotplug_dev, dev); 4257 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4258 spapr_tpm_proxy_plug(hotplug_dev, dev); 4259 } 4260 } 4261 4262 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4263 DeviceState *dev, Error **errp) 4264 { 4265 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4266 spapr_memory_unplug(hotplug_dev, dev); 4267 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4268 spapr_core_unplug(hotplug_dev, dev); 4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4270 spapr_phb_unplug(hotplug_dev, dev); 4271 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4272 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4273 } 4274 } 4275 4276 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4277 { 4278 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4279 /* 4280 * CAS will process all pending unplug requests. 4281 * 4282 * HACK: a guest could theoretically have cleared all bits in OV5, 4283 * but none of the guests we care for do. 4284 */ 4285 spapr_ovec_empty(spapr->ov5_cas); 4286 } 4287 4288 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4289 DeviceState *dev, Error **errp) 4290 { 4291 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4292 MachineClass *mc = MACHINE_GET_CLASS(sms); 4293 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4294 4295 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4296 if (spapr_memory_hot_unplug_supported(sms)) { 4297 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4298 } else { 4299 error_setg(errp, "Memory hot unplug not supported for this guest"); 4300 } 4301 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4302 if (!mc->has_hotpluggable_cpus) { 4303 error_setg(errp, "CPU hot unplug not supported on this machine"); 4304 return; 4305 } 4306 spapr_core_unplug_request(hotplug_dev, dev, errp); 4307 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4308 if (!smc->dr_phb_enabled) { 4309 error_setg(errp, "PHB hot unplug not supported on this machine"); 4310 return; 4311 } 4312 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4313 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4314 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4315 } 4316 } 4317 4318 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4319 DeviceState *dev, Error **errp) 4320 { 4321 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4322 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4323 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4324 spapr_core_pre_plug(hotplug_dev, dev, errp); 4325 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4326 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4327 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4328 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4329 } 4330 } 4331 4332 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4333 DeviceState *dev) 4334 { 4335 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4336 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4337 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4338 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4339 return HOTPLUG_HANDLER(machine); 4340 } 4341 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4342 PCIDevice *pcidev = PCI_DEVICE(dev); 4343 PCIBus *root = pci_device_root_bus(pcidev); 4344 SpaprPhbState *phb = 4345 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4346 TYPE_SPAPR_PCI_HOST_BRIDGE); 4347 4348 if (phb) { 4349 return HOTPLUG_HANDLER(phb); 4350 } 4351 } 4352 return NULL; 4353 } 4354 4355 static CpuInstanceProperties 4356 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4357 { 4358 CPUArchId *core_slot; 4359 MachineClass *mc = MACHINE_GET_CLASS(machine); 4360 4361 /* make sure possible_cpu are initialized */ 4362 mc->possible_cpu_arch_ids(machine); 4363 /* get CPU core slot containing thread that matches cpu_index */ 4364 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4365 assert(core_slot); 4366 return core_slot->props; 4367 } 4368 4369 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4370 { 4371 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4372 } 4373 4374 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4375 { 4376 int i; 4377 unsigned int smp_threads = machine->smp.threads; 4378 unsigned int smp_cpus = machine->smp.cpus; 4379 const char *core_type; 4380 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4381 MachineClass *mc = MACHINE_GET_CLASS(machine); 4382 4383 if (!mc->has_hotpluggable_cpus) { 4384 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4385 } 4386 if (machine->possible_cpus) { 4387 assert(machine->possible_cpus->len == spapr_max_cores); 4388 return machine->possible_cpus; 4389 } 4390 4391 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4392 if (!core_type) { 4393 error_report("Unable to find sPAPR CPU Core definition"); 4394 exit(1); 4395 } 4396 4397 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4398 sizeof(CPUArchId) * spapr_max_cores); 4399 machine->possible_cpus->len = spapr_max_cores; 4400 for (i = 0; i < machine->possible_cpus->len; i++) { 4401 int core_id = i * smp_threads; 4402 4403 machine->possible_cpus->cpus[i].type = core_type; 4404 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4405 machine->possible_cpus->cpus[i].arch_id = core_id; 4406 machine->possible_cpus->cpus[i].props.has_core_id = true; 4407 machine->possible_cpus->cpus[i].props.core_id = core_id; 4408 } 4409 return machine->possible_cpus; 4410 } 4411 4412 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4413 uint64_t *buid, hwaddr *pio, 4414 hwaddr *mmio32, hwaddr *mmio64, 4415 unsigned n_dma, uint32_t *liobns, Error **errp) 4416 { 4417 /* 4418 * New-style PHB window placement. 4419 * 4420 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4421 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4422 * windows. 4423 * 4424 * Some guest kernels can't work with MMIO windows above 1<<46 4425 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4426 * 4427 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4428 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4429 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4430 * 1TiB 64-bit MMIO windows for each PHB. 4431 */ 4432 const uint64_t base_buid = 0x800000020000000ULL; 4433 int i; 4434 4435 /* Sanity check natural alignments */ 4436 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4437 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4438 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4439 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4440 /* Sanity check bounds */ 4441 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4442 SPAPR_PCI_MEM32_WIN_SIZE); 4443 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4444 SPAPR_PCI_MEM64_WIN_SIZE); 4445 4446 if (index >= SPAPR_MAX_PHBS) { 4447 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4448 SPAPR_MAX_PHBS - 1); 4449 return false; 4450 } 4451 4452 *buid = base_buid + index; 4453 for (i = 0; i < n_dma; ++i) { 4454 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4455 } 4456 4457 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4458 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4459 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4460 return true; 4461 } 4462 4463 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4464 { 4465 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4466 4467 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4468 } 4469 4470 static void spapr_ics_resend(XICSFabric *dev) 4471 { 4472 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4473 4474 ics_resend(spapr->ics); 4475 } 4476 4477 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4478 { 4479 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4480 4481 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4482 } 4483 4484 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4485 Monitor *mon) 4486 { 4487 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4488 4489 spapr_irq_print_info(spapr, mon); 4490 monitor_printf(mon, "irqchip: %s\n", 4491 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4492 } 4493 4494 /* 4495 * This is a XIVE only operation 4496 */ 4497 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4498 uint8_t nvt_blk, uint32_t nvt_idx, 4499 bool cam_ignore, uint8_t priority, 4500 uint32_t logic_serv, XiveTCTXMatch *match) 4501 { 4502 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4503 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4504 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4505 int count; 4506 4507 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4508 priority, logic_serv, match); 4509 if (count < 0) { 4510 return count; 4511 } 4512 4513 /* 4514 * When we implement the save and restore of the thread interrupt 4515 * contexts in the enter/exit CPU handlers of the machine and the 4516 * escalations in QEMU, we should be able to handle non dispatched 4517 * vCPUs. 4518 * 4519 * Until this is done, the sPAPR machine should find at least one 4520 * matching context always. 4521 */ 4522 if (count == 0) { 4523 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4524 nvt_blk, nvt_idx); 4525 } 4526 4527 return count; 4528 } 4529 4530 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4531 { 4532 return cpu->vcpu_id; 4533 } 4534 4535 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4536 { 4537 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4538 MachineState *ms = MACHINE(spapr); 4539 int vcpu_id; 4540 4541 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4542 4543 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4544 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4545 error_append_hint(errp, "Adjust the number of cpus to %d " 4546 "or try to raise the number of threads per core\n", 4547 vcpu_id * ms->smp.threads / spapr->vsmt); 4548 return false; 4549 } 4550 4551 cpu->vcpu_id = vcpu_id; 4552 return true; 4553 } 4554 4555 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4556 { 4557 CPUState *cs; 4558 4559 CPU_FOREACH(cs) { 4560 PowerPCCPU *cpu = POWERPC_CPU(cs); 4561 4562 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4563 return cpu; 4564 } 4565 } 4566 4567 return NULL; 4568 } 4569 4570 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4571 { 4572 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4573 4574 return spapr_cpu->in_nested; 4575 } 4576 4577 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4578 { 4579 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4580 4581 /* These are only called by TCG, KVM maintains dispatch state */ 4582 4583 spapr_cpu->prod = false; 4584 if (spapr_cpu->vpa_addr) { 4585 CPUState *cs = CPU(cpu); 4586 uint32_t dispatch; 4587 4588 dispatch = ldl_be_phys(cs->as, 4589 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4590 dispatch++; 4591 if ((dispatch & 1) != 0) { 4592 qemu_log_mask(LOG_GUEST_ERROR, 4593 "VPA: incorrect dispatch counter value for " 4594 "dispatched partition %u, correcting.\n", dispatch); 4595 dispatch++; 4596 } 4597 stl_be_phys(cs->as, 4598 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4599 } 4600 } 4601 4602 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4603 { 4604 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4605 4606 if (spapr_cpu->vpa_addr) { 4607 CPUState *cs = CPU(cpu); 4608 uint32_t dispatch; 4609 4610 dispatch = ldl_be_phys(cs->as, 4611 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4612 dispatch++; 4613 if ((dispatch & 1) != 1) { 4614 qemu_log_mask(LOG_GUEST_ERROR, 4615 "VPA: incorrect dispatch counter value for " 4616 "preempted partition %u, correcting.\n", dispatch); 4617 dispatch++; 4618 } 4619 stl_be_phys(cs->as, 4620 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4621 } 4622 } 4623 4624 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4625 { 4626 MachineClass *mc = MACHINE_CLASS(oc); 4627 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4628 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4629 NMIClass *nc = NMI_CLASS(oc); 4630 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4631 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4632 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4633 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4634 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4635 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4636 4637 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4638 mc->ignore_boot_device_suffixes = true; 4639 4640 /* 4641 * We set up the default / latest behaviour here. The class_init 4642 * functions for the specific versioned machine types can override 4643 * these details for backwards compatibility 4644 */ 4645 mc->init = spapr_machine_init; 4646 mc->reset = spapr_machine_reset; 4647 mc->block_default_type = IF_SCSI; 4648 4649 /* 4650 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4651 * In TCG the limit is restricted by the range of CPU IPIs available. 4652 */ 4653 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4654 4655 mc->no_parallel = 1; 4656 mc->default_boot_order = ""; 4657 mc->default_ram_size = 512 * MiB; 4658 mc->default_ram_id = "ppc_spapr.ram"; 4659 mc->default_display = "std"; 4660 mc->kvm_type = spapr_kvm_type; 4661 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4662 mc->pci_allow_0_address = true; 4663 assert(!mc->get_hotplug_handler); 4664 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4665 hc->pre_plug = spapr_machine_device_pre_plug; 4666 hc->plug = spapr_machine_device_plug; 4667 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4668 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4669 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4670 hc->unplug_request = spapr_machine_device_unplug_request; 4671 hc->unplug = spapr_machine_device_unplug; 4672 4673 smc->dr_lmb_enabled = true; 4674 smc->update_dt_enabled = true; 4675 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4676 mc->has_hotpluggable_cpus = true; 4677 mc->nvdimm_supported = true; 4678 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4679 fwc->get_dev_path = spapr_get_fw_dev_path; 4680 nc->nmi_monitor_handler = spapr_nmi; 4681 smc->phb_placement = spapr_phb_placement; 4682 vhc->cpu_in_nested = spapr_cpu_in_nested; 4683 vhc->deliver_hv_excp = spapr_exit_nested; 4684 vhc->hypercall = emulate_spapr_hypercall; 4685 vhc->hpt_mask = spapr_hpt_mask; 4686 vhc->map_hptes = spapr_map_hptes; 4687 vhc->unmap_hptes = spapr_unmap_hptes; 4688 vhc->hpte_set_c = spapr_hpte_set_c; 4689 vhc->hpte_set_r = spapr_hpte_set_r; 4690 vhc->get_pate = spapr_get_pate; 4691 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4692 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4693 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4694 xic->ics_get = spapr_ics_get; 4695 xic->ics_resend = spapr_ics_resend; 4696 xic->icp_get = spapr_icp_get; 4697 ispc->print_info = spapr_pic_print_info; 4698 /* Force NUMA node memory size to be a multiple of 4699 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4700 * in which LMBs are represented and hot-added 4701 */ 4702 mc->numa_mem_align_shift = 28; 4703 mc->auto_enable_numa = true; 4704 4705 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4706 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4707 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4708 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4709 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4710 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4711 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4712 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4713 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4714 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4715 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4716 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4717 4718 /* 4719 * This cap specifies whether the AIL 3 mode for 4720 * H_SET_RESOURCE is supported. The default is modified 4721 * by default_caps_with_cpu(). 4722 */ 4723 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4724 spapr_caps_add_properties(smc); 4725 smc->irq = &spapr_irq_dual; 4726 smc->dr_phb_enabled = true; 4727 smc->linux_pci_probe = true; 4728 smc->smp_threads_vsmt = true; 4729 smc->nr_xirqs = SPAPR_NR_XIRQS; 4730 xfc->match_nvt = spapr_match_nvt; 4731 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4732 vmc->quiesce = spapr_vof_quiesce; 4733 vmc->setprop = spapr_vof_setprop; 4734 } 4735 4736 static const TypeInfo spapr_machine_info = { 4737 .name = TYPE_SPAPR_MACHINE, 4738 .parent = TYPE_MACHINE, 4739 .abstract = true, 4740 .instance_size = sizeof(SpaprMachineState), 4741 .instance_init = spapr_instance_init, 4742 .instance_finalize = spapr_machine_finalizefn, 4743 .class_size = sizeof(SpaprMachineClass), 4744 .class_init = spapr_machine_class_init, 4745 .interfaces = (InterfaceInfo[]) { 4746 { TYPE_FW_PATH_PROVIDER }, 4747 { TYPE_NMI }, 4748 { TYPE_HOTPLUG_HANDLER }, 4749 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4750 { TYPE_XICS_FABRIC }, 4751 { TYPE_INTERRUPT_STATS_PROVIDER }, 4752 { TYPE_XIVE_FABRIC }, 4753 { TYPE_VOF_MACHINE_IF }, 4754 { } 4755 }, 4756 }; 4757 4758 static void spapr_machine_latest_class_options(MachineClass *mc) 4759 { 4760 mc->alias = "pseries"; 4761 mc->is_default = true; 4762 } 4763 4764 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4765 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4766 void *data) \ 4767 { \ 4768 MachineClass *mc = MACHINE_CLASS(oc); \ 4769 spapr_machine_##suffix##_class_options(mc); \ 4770 if (latest) { \ 4771 spapr_machine_latest_class_options(mc); \ 4772 } \ 4773 } \ 4774 static const TypeInfo spapr_machine_##suffix##_info = { \ 4775 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4776 .parent = TYPE_SPAPR_MACHINE, \ 4777 .class_init = spapr_machine_##suffix##_class_init, \ 4778 }; \ 4779 static void spapr_machine_register_##suffix(void) \ 4780 { \ 4781 type_register(&spapr_machine_##suffix##_info); \ 4782 } \ 4783 type_init(spapr_machine_register_##suffix) 4784 4785 /* 4786 * pseries-9.0 4787 */ 4788 static void spapr_machine_9_0_class_options(MachineClass *mc) 4789 { 4790 /* Defaults for the latest behaviour inherited from the base class */ 4791 } 4792 4793 DEFINE_SPAPR_MACHINE(9_0, "9.0", true); 4794 4795 /* 4796 * pseries-8.2 4797 */ 4798 static void spapr_machine_8_2_class_options(MachineClass *mc) 4799 { 4800 spapr_machine_9_0_class_options(mc); 4801 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4802 } 4803 4804 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4805 4806 /* 4807 * pseries-8.1 4808 */ 4809 static void spapr_machine_8_1_class_options(MachineClass *mc) 4810 { 4811 spapr_machine_8_2_class_options(mc); 4812 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4813 } 4814 4815 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4816 4817 /* 4818 * pseries-8.0 4819 */ 4820 static void spapr_machine_8_0_class_options(MachineClass *mc) 4821 { 4822 spapr_machine_8_1_class_options(mc); 4823 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4824 } 4825 4826 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4827 4828 /* 4829 * pseries-7.2 4830 */ 4831 static void spapr_machine_7_2_class_options(MachineClass *mc) 4832 { 4833 spapr_machine_8_0_class_options(mc); 4834 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4835 } 4836 4837 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4838 4839 /* 4840 * pseries-7.1 4841 */ 4842 static void spapr_machine_7_1_class_options(MachineClass *mc) 4843 { 4844 spapr_machine_7_2_class_options(mc); 4845 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4846 } 4847 4848 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4849 4850 /* 4851 * pseries-7.0 4852 */ 4853 static void spapr_machine_7_0_class_options(MachineClass *mc) 4854 { 4855 spapr_machine_7_1_class_options(mc); 4856 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4857 } 4858 4859 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4860 4861 /* 4862 * pseries-6.2 4863 */ 4864 static void spapr_machine_6_2_class_options(MachineClass *mc) 4865 { 4866 spapr_machine_7_0_class_options(mc); 4867 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4868 } 4869 4870 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4871 4872 /* 4873 * pseries-6.1 4874 */ 4875 static void spapr_machine_6_1_class_options(MachineClass *mc) 4876 { 4877 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4878 4879 spapr_machine_6_2_class_options(mc); 4880 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4881 smc->pre_6_2_numa_affinity = true; 4882 mc->smp_props.prefer_sockets = true; 4883 } 4884 4885 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4886 4887 /* 4888 * pseries-6.0 4889 */ 4890 static void spapr_machine_6_0_class_options(MachineClass *mc) 4891 { 4892 spapr_machine_6_1_class_options(mc); 4893 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4894 } 4895 4896 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4897 4898 /* 4899 * pseries-5.2 4900 */ 4901 static void spapr_machine_5_2_class_options(MachineClass *mc) 4902 { 4903 spapr_machine_6_0_class_options(mc); 4904 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4905 } 4906 4907 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4908 4909 /* 4910 * pseries-5.1 4911 */ 4912 static void spapr_machine_5_1_class_options(MachineClass *mc) 4913 { 4914 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4915 4916 spapr_machine_5_2_class_options(mc); 4917 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4918 smc->pre_5_2_numa_associativity = true; 4919 } 4920 4921 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4922 4923 /* 4924 * pseries-5.0 4925 */ 4926 static void spapr_machine_5_0_class_options(MachineClass *mc) 4927 { 4928 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4929 static GlobalProperty compat[] = { 4930 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4931 }; 4932 4933 spapr_machine_5_1_class_options(mc); 4934 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4935 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4936 mc->numa_mem_supported = true; 4937 smc->pre_5_1_assoc_refpoints = true; 4938 } 4939 4940 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4941 4942 /* 4943 * pseries-4.2 4944 */ 4945 static void spapr_machine_4_2_class_options(MachineClass *mc) 4946 { 4947 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4948 4949 spapr_machine_5_0_class_options(mc); 4950 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4951 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4952 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4953 smc->rma_limit = 16 * GiB; 4954 mc->nvdimm_supported = false; 4955 } 4956 4957 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4958 4959 /* 4960 * pseries-4.1 4961 */ 4962 static void spapr_machine_4_1_class_options(MachineClass *mc) 4963 { 4964 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4965 static GlobalProperty compat[] = { 4966 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4967 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4968 }; 4969 4970 spapr_machine_4_2_class_options(mc); 4971 smc->linux_pci_probe = false; 4972 smc->smp_threads_vsmt = false; 4973 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4974 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4975 } 4976 4977 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4978 4979 /* 4980 * pseries-4.0 4981 */ 4982 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4983 uint64_t *buid, hwaddr *pio, 4984 hwaddr *mmio32, hwaddr *mmio64, 4985 unsigned n_dma, uint32_t *liobns, Error **errp) 4986 { 4987 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4988 liobns, errp)) { 4989 return false; 4990 } 4991 return true; 4992 } 4993 static void spapr_machine_4_0_class_options(MachineClass *mc) 4994 { 4995 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4996 4997 spapr_machine_4_1_class_options(mc); 4998 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4999 smc->phb_placement = phb_placement_4_0; 5000 smc->irq = &spapr_irq_xics; 5001 smc->pre_4_1_migration = true; 5002 } 5003 5004 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5005 5006 /* 5007 * pseries-3.1 5008 */ 5009 static void spapr_machine_3_1_class_options(MachineClass *mc) 5010 { 5011 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5012 5013 spapr_machine_4_0_class_options(mc); 5014 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5015 5016 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5017 smc->update_dt_enabled = false; 5018 smc->dr_phb_enabled = false; 5019 smc->broken_host_serial_model = true; 5020 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5021 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5022 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5023 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5024 } 5025 5026 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5027 5028 /* 5029 * pseries-3.0 5030 */ 5031 5032 static void spapr_machine_3_0_class_options(MachineClass *mc) 5033 { 5034 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5035 5036 spapr_machine_3_1_class_options(mc); 5037 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5038 5039 smc->legacy_irq_allocation = true; 5040 smc->nr_xirqs = 0x400; 5041 smc->irq = &spapr_irq_xics_legacy; 5042 } 5043 5044 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5045 5046 /* 5047 * pseries-2.12 5048 */ 5049 static void spapr_machine_2_12_class_options(MachineClass *mc) 5050 { 5051 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5052 static GlobalProperty compat[] = { 5053 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5054 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5055 }; 5056 5057 spapr_machine_3_0_class_options(mc); 5058 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5059 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5060 5061 /* We depend on kvm_enabled() to choose a default value for the 5062 * hpt-max-page-size capability. Of course we can't do it here 5063 * because this is too early and the HW accelerator isn't initialized 5064 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5065 */ 5066 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5067 } 5068 5069 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5070 5071 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5072 { 5073 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5074 5075 spapr_machine_2_12_class_options(mc); 5076 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5077 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5078 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5079 } 5080 5081 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5082 5083 /* 5084 * pseries-2.11 5085 */ 5086 5087 static void spapr_machine_2_11_class_options(MachineClass *mc) 5088 { 5089 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5090 5091 spapr_machine_2_12_class_options(mc); 5092 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5093 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5094 mc->deprecation_reason = "old and not maintained - use a 2.12+ version"; 5095 } 5096 5097 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5098 5099 /* 5100 * pseries-2.10 5101 */ 5102 5103 static void spapr_machine_2_10_class_options(MachineClass *mc) 5104 { 5105 spapr_machine_2_11_class_options(mc); 5106 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5107 } 5108 5109 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5110 5111 /* 5112 * pseries-2.9 5113 */ 5114 5115 static void spapr_machine_2_9_class_options(MachineClass *mc) 5116 { 5117 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5118 static GlobalProperty compat[] = { 5119 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5120 }; 5121 5122 spapr_machine_2_10_class_options(mc); 5123 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5124 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5125 smc->pre_2_10_has_unused_icps = true; 5126 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5127 } 5128 5129 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5130 5131 /* 5132 * pseries-2.8 5133 */ 5134 5135 static void spapr_machine_2_8_class_options(MachineClass *mc) 5136 { 5137 static GlobalProperty compat[] = { 5138 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5139 }; 5140 5141 spapr_machine_2_9_class_options(mc); 5142 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5143 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5144 mc->numa_mem_align_shift = 23; 5145 } 5146 5147 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5148 5149 /* 5150 * pseries-2.7 5151 */ 5152 5153 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5154 uint64_t *buid, hwaddr *pio, 5155 hwaddr *mmio32, hwaddr *mmio64, 5156 unsigned n_dma, uint32_t *liobns, Error **errp) 5157 { 5158 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5159 const uint64_t base_buid = 0x800000020000000ULL; 5160 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5161 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5162 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5163 const uint32_t max_index = 255; 5164 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5165 5166 uint64_t ram_top = MACHINE(spapr)->ram_size; 5167 hwaddr phb0_base, phb_base; 5168 int i; 5169 5170 /* Do we have device memory? */ 5171 if (MACHINE(spapr)->device_memory) { 5172 /* Can't just use maxram_size, because there may be an 5173 * alignment gap between normal and device memory regions 5174 */ 5175 ram_top = MACHINE(spapr)->device_memory->base + 5176 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5177 } 5178 5179 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5180 5181 if (index > max_index) { 5182 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5183 max_index); 5184 return false; 5185 } 5186 5187 *buid = base_buid + index; 5188 for (i = 0; i < n_dma; ++i) { 5189 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5190 } 5191 5192 phb_base = phb0_base + index * phb_spacing; 5193 *pio = phb_base + pio_offset; 5194 *mmio32 = phb_base + mmio_offset; 5195 /* 5196 * We don't set the 64-bit MMIO window, relying on the PHB's 5197 * fallback behaviour of automatically splitting a large "32-bit" 5198 * window into contiguous 32-bit and 64-bit windows 5199 */ 5200 5201 return true; 5202 } 5203 5204 static void spapr_machine_2_7_class_options(MachineClass *mc) 5205 { 5206 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5207 static GlobalProperty compat[] = { 5208 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5209 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5210 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5211 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5212 }; 5213 5214 spapr_machine_2_8_class_options(mc); 5215 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5216 mc->default_machine_opts = "modern-hotplug-events=off"; 5217 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5218 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5219 smc->phb_placement = phb_placement_2_7; 5220 } 5221 5222 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5223 5224 /* 5225 * pseries-2.6 5226 */ 5227 5228 static void spapr_machine_2_6_class_options(MachineClass *mc) 5229 { 5230 static GlobalProperty compat[] = { 5231 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5232 }; 5233 5234 spapr_machine_2_7_class_options(mc); 5235 mc->has_hotpluggable_cpus = false; 5236 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5237 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5238 } 5239 5240 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5241 5242 /* 5243 * pseries-2.5 5244 */ 5245 5246 static void spapr_machine_2_5_class_options(MachineClass *mc) 5247 { 5248 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5249 static GlobalProperty compat[] = { 5250 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5251 }; 5252 5253 spapr_machine_2_6_class_options(mc); 5254 smc->use_ohci_by_default = true; 5255 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5256 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5257 } 5258 5259 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5260 5261 /* 5262 * pseries-2.4 5263 */ 5264 5265 static void spapr_machine_2_4_class_options(MachineClass *mc) 5266 { 5267 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5268 5269 spapr_machine_2_5_class_options(mc); 5270 smc->dr_lmb_enabled = false; 5271 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5272 } 5273 5274 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5275 5276 /* 5277 * pseries-2.3 5278 */ 5279 5280 static void spapr_machine_2_3_class_options(MachineClass *mc) 5281 { 5282 static GlobalProperty compat[] = { 5283 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5284 }; 5285 spapr_machine_2_4_class_options(mc); 5286 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5287 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5288 } 5289 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5290 5291 /* 5292 * pseries-2.2 5293 */ 5294 5295 static void spapr_machine_2_2_class_options(MachineClass *mc) 5296 { 5297 static GlobalProperty compat[] = { 5298 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5299 }; 5300 5301 spapr_machine_2_3_class_options(mc); 5302 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5303 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5304 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5305 } 5306 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5307 5308 /* 5309 * pseries-2.1 5310 */ 5311 5312 static void spapr_machine_2_1_class_options(MachineClass *mc) 5313 { 5314 spapr_machine_2_2_class_options(mc); 5315 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5316 } 5317 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5318 5319 static void spapr_machine_register_types(void) 5320 { 5321 type_register_static(&spapr_machine_info); 5322 } 5323 5324 type_init(spapr_machine_register_types) 5325