xref: /openbmc/qemu/hw/ppc/spapr.c (revision a324d6f166970f8f6a82c61ffd2356fbda81c8f4)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_XICP            0x00001111
101 
102 /* These two functions implement the VCPU id numbering: one to compute them
103  * all and one to identify thread 0 of a VCORE. Any change to the first one
104  * is likely to have an impact on the second one, so let's keep them close.
105  */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108     assert(spapr->vsmt);
109     return
110         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113                                       PowerPCCPU *cpu)
114 {
115     assert(spapr->vsmt);
116     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118 
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120                                   const char *type_ics,
121                                   int nr_irqs, Error **errp)
122 {
123     Error *local_err = NULL;
124     Object *obj;
125 
126     obj = object_new(type_ics);
127     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
129                                    &error_abort);
130     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
131     if (local_err) {
132         goto error;
133     }
134     object_property_set_bool(obj, true, "realized", &local_err);
135     if (local_err) {
136         goto error;
137     }
138 
139     return ICS_SIMPLE(obj);
140 
141 error:
142     error_propagate(errp, local_err);
143     return NULL;
144 }
145 
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
147 {
148     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149      * and newer QEMUs don't even have them. In both cases, we don't want
150      * to send anything on the wire.
151      */
152     return false;
153 }
154 
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156     .name = "icp/server",
157     .version_id = 1,
158     .minimum_version_id = 1,
159     .needed = pre_2_10_vmstate_dummy_icp_needed,
160     .fields = (VMStateField[]) {
161         VMSTATE_UNUSED(4), /* uint32_t xirr */
162         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163         VMSTATE_UNUSED(1), /* uint8_t mfrr */
164         VMSTATE_END_OF_LIST()
165     },
166 };
167 
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
169 {
170     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171                      (void *)(uintptr_t) i);
172 }
173 
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
175 {
176     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177                        (void *)(uintptr_t) i);
178 }
179 
180 static int xics_max_server_number(sPAPRMachineState *spapr)
181 {
182     assert(spapr->vsmt);
183     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
184 }
185 
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
187 {
188     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
189 
190     if (kvm_enabled()) {
191         if (machine_kernel_irqchip_allowed(machine) &&
192             !xics_kvm_init(spapr, errp)) {
193             spapr->icp_type = TYPE_KVM_ICP;
194             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
195         }
196         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
197             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
198             return;
199         }
200     }
201 
202     if (!spapr->ics) {
203         xics_spapr_init(spapr);
204         spapr->icp_type = TYPE_ICP;
205         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
206         if (!spapr->ics) {
207             return;
208         }
209     }
210 }
211 
212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
213                                   int smt_threads)
214 {
215     int i, ret = 0;
216     uint32_t servers_prop[smt_threads];
217     uint32_t gservers_prop[smt_threads * 2];
218     int index = spapr_get_vcpu_id(cpu);
219 
220     if (cpu->compat_pvr) {
221         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
222         if (ret < 0) {
223             return ret;
224         }
225     }
226 
227     /* Build interrupt servers and gservers properties */
228     for (i = 0; i < smt_threads; i++) {
229         servers_prop[i] = cpu_to_be32(index + i);
230         /* Hack, direct the group queues back to cpu 0 */
231         gservers_prop[i*2] = cpu_to_be32(index + i);
232         gservers_prop[i*2 + 1] = 0;
233     }
234     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235                       servers_prop, sizeof(servers_prop));
236     if (ret < 0) {
237         return ret;
238     }
239     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
240                       gservers_prop, sizeof(gservers_prop));
241 
242     return ret;
243 }
244 
245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
246 {
247     int index = spapr_get_vcpu_id(cpu);
248     uint32_t associativity[] = {cpu_to_be32(0x5),
249                                 cpu_to_be32(0x0),
250                                 cpu_to_be32(0x0),
251                                 cpu_to_be32(0x0),
252                                 cpu_to_be32(cpu->node_id),
253                                 cpu_to_be32(index)};
254 
255     /* Advertise NUMA via ibm,associativity */
256     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
257                           sizeof(associativity));
258 }
259 
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
262                                        PowerPCCPU *cpu,
263                                        void *fdt, int offset,
264                                        bool legacy_guest)
265 {
266     uint8_t pa_features_206[] = { 6, 0,
267         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
268     uint8_t pa_features_207[] = { 24, 0,
269         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
270         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
271         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
272         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
273     uint8_t pa_features_300[] = { 66, 0,
274         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
275         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
276         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
277         /* 6: DS207 */
278         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
279         /* 16: Vector */
280         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
281         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
282         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
283         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
284         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
285         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
286         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
287         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
288         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
289         /* 42: PM, 44: PC RA, 46: SC vec'd */
290         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
291         /* 48: SIMD, 50: QP BFP, 52: String */
292         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
293         /* 54: DecFP, 56: DecI, 58: SHA */
294         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
295         /* 60: NM atomic, 62: RNG */
296         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
297     };
298     uint8_t *pa_features = NULL;
299     size_t pa_size;
300 
301     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
302         pa_features = pa_features_206;
303         pa_size = sizeof(pa_features_206);
304     }
305     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
306         pa_features = pa_features_207;
307         pa_size = sizeof(pa_features_207);
308     }
309     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
310         pa_features = pa_features_300;
311         pa_size = sizeof(pa_features_300);
312     }
313     if (!pa_features) {
314         return;
315     }
316 
317     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
318         /*
319          * Note: we keep CI large pages off by default because a 64K capable
320          * guest provisioned with large pages might otherwise try to map a qemu
321          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
322          * even if that qemu runs on a 4k host.
323          * We dd this bit back here if we are confident this is not an issue
324          */
325         pa_features[3] |= 0x20;
326     }
327     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
328         pa_features[24] |= 0x80;    /* Transactional memory support */
329     }
330     if (legacy_guest && pa_size > 40) {
331         /* Workaround for broken kernels that attempt (guest) radix
332          * mode when they can't handle it, if they see the radix bit set
333          * in pa-features. So hide it from them. */
334         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
335     }
336 
337     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
338 }
339 
340 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
341 {
342     int ret = 0, offset, cpus_offset;
343     CPUState *cs;
344     char cpu_model[32];
345     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
346 
347     CPU_FOREACH(cs) {
348         PowerPCCPU *cpu = POWERPC_CPU(cs);
349         DeviceClass *dc = DEVICE_GET_CLASS(cs);
350         int index = spapr_get_vcpu_id(cpu);
351         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
352 
353         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
354             continue;
355         }
356 
357         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
358 
359         cpus_offset = fdt_path_offset(fdt, "/cpus");
360         if (cpus_offset < 0) {
361             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
362             if (cpus_offset < 0) {
363                 return cpus_offset;
364             }
365         }
366         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
367         if (offset < 0) {
368             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
369             if (offset < 0) {
370                 return offset;
371             }
372         }
373 
374         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
375                           pft_size_prop, sizeof(pft_size_prop));
376         if (ret < 0) {
377             return ret;
378         }
379 
380         if (nb_numa_nodes > 1) {
381             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
382             if (ret < 0) {
383                 return ret;
384             }
385         }
386 
387         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
388         if (ret < 0) {
389             return ret;
390         }
391 
392         spapr_populate_pa_features(spapr, cpu, fdt, offset,
393                                    spapr->cas_legacy_guest_workaround);
394     }
395     return ret;
396 }
397 
398 static hwaddr spapr_node0_size(MachineState *machine)
399 {
400     if (nb_numa_nodes) {
401         int i;
402         for (i = 0; i < nb_numa_nodes; ++i) {
403             if (numa_info[i].node_mem) {
404                 return MIN(pow2floor(numa_info[i].node_mem),
405                            machine->ram_size);
406             }
407         }
408     }
409     return machine->ram_size;
410 }
411 
412 static void add_str(GString *s, const gchar *s1)
413 {
414     g_string_append_len(s, s1, strlen(s1) + 1);
415 }
416 
417 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
418                                        hwaddr size)
419 {
420     uint32_t associativity[] = {
421         cpu_to_be32(0x4), /* length */
422         cpu_to_be32(0x0), cpu_to_be32(0x0),
423         cpu_to_be32(0x0), cpu_to_be32(nodeid)
424     };
425     char mem_name[32];
426     uint64_t mem_reg_property[2];
427     int off;
428 
429     mem_reg_property[0] = cpu_to_be64(start);
430     mem_reg_property[1] = cpu_to_be64(size);
431 
432     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
433     off = fdt_add_subnode(fdt, 0, mem_name);
434     _FDT(off);
435     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
436     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
437                       sizeof(mem_reg_property))));
438     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
439                       sizeof(associativity))));
440     return off;
441 }
442 
443 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
444 {
445     MachineState *machine = MACHINE(spapr);
446     hwaddr mem_start, node_size;
447     int i, nb_nodes = nb_numa_nodes;
448     NodeInfo *nodes = numa_info;
449     NodeInfo ramnode;
450 
451     /* No NUMA nodes, assume there is just one node with whole RAM */
452     if (!nb_numa_nodes) {
453         nb_nodes = 1;
454         ramnode.node_mem = machine->ram_size;
455         nodes = &ramnode;
456     }
457 
458     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
459         if (!nodes[i].node_mem) {
460             continue;
461         }
462         if (mem_start >= machine->ram_size) {
463             node_size = 0;
464         } else {
465             node_size = nodes[i].node_mem;
466             if (node_size > machine->ram_size - mem_start) {
467                 node_size = machine->ram_size - mem_start;
468             }
469         }
470         if (!mem_start) {
471             /* spapr_machine_init() checks for rma_size <= node0_size
472              * already */
473             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
474             mem_start += spapr->rma_size;
475             node_size -= spapr->rma_size;
476         }
477         for ( ; node_size; ) {
478             hwaddr sizetmp = pow2floor(node_size);
479 
480             /* mem_start != 0 here */
481             if (ctzl(mem_start) < ctzl(sizetmp)) {
482                 sizetmp = 1ULL << ctzl(mem_start);
483             }
484 
485             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
486             node_size -= sizetmp;
487             mem_start += sizetmp;
488         }
489     }
490 
491     return 0;
492 }
493 
494 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
495                                   sPAPRMachineState *spapr)
496 {
497     PowerPCCPU *cpu = POWERPC_CPU(cs);
498     CPUPPCState *env = &cpu->env;
499     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
500     int index = spapr_get_vcpu_id(cpu);
501     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
502                        0xffffffff, 0xffffffff};
503     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
504         : SPAPR_TIMEBASE_FREQ;
505     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
506     uint32_t page_sizes_prop[64];
507     size_t page_sizes_prop_size;
508     uint32_t vcpus_per_socket = smp_threads * smp_cores;
509     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
510     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
511     sPAPRDRConnector *drc;
512     int drc_index;
513     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
514     int i;
515 
516     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
517     if (drc) {
518         drc_index = spapr_drc_index(drc);
519         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
520     }
521 
522     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
523     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
524 
525     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
526     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
527                            env->dcache_line_size)));
528     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
529                            env->dcache_line_size)));
530     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
531                            env->icache_line_size)));
532     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
533                            env->icache_line_size)));
534 
535     if (pcc->l1_dcache_size) {
536         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
537                                pcc->l1_dcache_size)));
538     } else {
539         warn_report("Unknown L1 dcache size for cpu");
540     }
541     if (pcc->l1_icache_size) {
542         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
543                                pcc->l1_icache_size)));
544     } else {
545         warn_report("Unknown L1 icache size for cpu");
546     }
547 
548     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
549     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
550     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
551     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
552     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
553     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
554 
555     if (env->spr_cb[SPR_PURR].oea_read) {
556         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
557     }
558 
559     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
560         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
561                           segs, sizeof(segs))));
562     }
563 
564     /* Advertise VSX (vector extensions) if available
565      *   1               == VMX / Altivec available
566      *   2               == VSX available
567      *
568      * Only CPUs for which we create core types in spapr_cpu_core.c
569      * are possible, and all of those have VMX */
570     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
571         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
572     } else {
573         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
574     }
575 
576     /* Advertise DFP (Decimal Floating Point) if available
577      *   0 / no property == no DFP
578      *   1               == DFP available */
579     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
580         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
581     }
582 
583     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
584                                                       sizeof(page_sizes_prop));
585     if (page_sizes_prop_size) {
586         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
587                           page_sizes_prop, page_sizes_prop_size)));
588     }
589 
590     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
591 
592     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
593                            cs->cpu_index / vcpus_per_socket)));
594 
595     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
596                       pft_size_prop, sizeof(pft_size_prop))));
597 
598     if (nb_numa_nodes > 1) {
599         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
600     }
601 
602     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
603 
604     if (pcc->radix_page_info) {
605         for (i = 0; i < pcc->radix_page_info->count; i++) {
606             radix_AP_encodings[i] =
607                 cpu_to_be32(pcc->radix_page_info->entries[i]);
608         }
609         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
610                           radix_AP_encodings,
611                           pcc->radix_page_info->count *
612                           sizeof(radix_AP_encodings[0]))));
613     }
614 }
615 
616 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
617 {
618     CPUState *cs;
619     int cpus_offset;
620     char *nodename;
621 
622     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
623     _FDT(cpus_offset);
624     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
625     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
626 
627     /*
628      * We walk the CPUs in reverse order to ensure that CPU DT nodes
629      * created by fdt_add_subnode() end up in the right order in FDT
630      * for the guest kernel the enumerate the CPUs correctly.
631      */
632     CPU_FOREACH_REVERSE(cs) {
633         PowerPCCPU *cpu = POWERPC_CPU(cs);
634         int index = spapr_get_vcpu_id(cpu);
635         DeviceClass *dc = DEVICE_GET_CLASS(cs);
636         int offset;
637 
638         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
639             continue;
640         }
641 
642         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
643         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
644         g_free(nodename);
645         _FDT(offset);
646         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
647     }
648 
649 }
650 
651 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
652 {
653     MemoryDeviceInfoList *info;
654 
655     for (info = list; info; info = info->next) {
656         MemoryDeviceInfo *value = info->value;
657 
658         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
659             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
660 
661             if (pcdimm_info->addr >= addr &&
662                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
663                 return pcdimm_info->node;
664             }
665         }
666     }
667 
668     return -1;
669 }
670 
671 struct sPAPRDrconfCellV2 {
672      uint32_t seq_lmbs;
673      uint64_t base_addr;
674      uint32_t drc_index;
675      uint32_t aa_index;
676      uint32_t flags;
677 } QEMU_PACKED;
678 
679 typedef struct DrconfCellQueue {
680     struct sPAPRDrconfCellV2 cell;
681     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
682 } DrconfCellQueue;
683 
684 static DrconfCellQueue *
685 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
686                       uint32_t drc_index, uint32_t aa_index,
687                       uint32_t flags)
688 {
689     DrconfCellQueue *elem;
690 
691     elem = g_malloc0(sizeof(*elem));
692     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
693     elem->cell.base_addr = cpu_to_be64(base_addr);
694     elem->cell.drc_index = cpu_to_be32(drc_index);
695     elem->cell.aa_index = cpu_to_be32(aa_index);
696     elem->cell.flags = cpu_to_be32(flags);
697 
698     return elem;
699 }
700 
701 /* ibm,dynamic-memory-v2 */
702 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
703                                    int offset, MemoryDeviceInfoList *dimms)
704 {
705     uint8_t *int_buf, *cur_index, buf_len;
706     int ret;
707     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
708     uint64_t addr, cur_addr, size;
709     uint32_t nr_boot_lmbs = (spapr->hotplug_memory.base / lmb_size);
710     uint64_t mem_end = spapr->hotplug_memory.base +
711                        memory_region_size(&spapr->hotplug_memory.mr);
712     uint32_t node, nr_entries = 0;
713     sPAPRDRConnector *drc;
714     DrconfCellQueue *elem, *next;
715     MemoryDeviceInfoList *info;
716     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
717         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
718 
719     /* Entry to cover RAM and the gap area */
720     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
721                                  SPAPR_LMB_FLAGS_RESERVED |
722                                  SPAPR_LMB_FLAGS_DRC_INVALID);
723     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
724     nr_entries++;
725 
726     cur_addr = spapr->hotplug_memory.base;
727     for (info = dimms; info; info = info->next) {
728         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
729 
730         addr = di->addr;
731         size = di->size;
732         node = di->node;
733 
734         /* Entry for hot-pluggable area */
735         if (cur_addr < addr) {
736             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
737             g_assert(drc);
738             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
739                                          cur_addr, spapr_drc_index(drc), -1, 0);
740             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
741             nr_entries++;
742         }
743 
744         /* Entry for DIMM */
745         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
746         g_assert(drc);
747         elem = spapr_get_drconf_cell(size / lmb_size, addr,
748                                      spapr_drc_index(drc), node,
749                                      SPAPR_LMB_FLAGS_ASSIGNED);
750         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
751         nr_entries++;
752         cur_addr = addr + size;
753     }
754 
755     /* Entry for remaining hotpluggable area */
756     if (cur_addr < mem_end) {
757         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
758         g_assert(drc);
759         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
760                                      cur_addr, spapr_drc_index(drc), -1, 0);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763     }
764 
765     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
766     int_buf = cur_index = g_malloc0(buf_len);
767     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
768     cur_index += sizeof(nr_entries);
769 
770     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
771         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
772         cur_index += sizeof(elem->cell);
773         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
774         g_free(elem);
775     }
776 
777     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
778     g_free(int_buf);
779     if (ret < 0) {
780         return -1;
781     }
782     return 0;
783 }
784 
785 /* ibm,dynamic-memory */
786 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
787                                    int offset, MemoryDeviceInfoList *dimms)
788 {
789     int i, ret;
790     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
791     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
792     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
793                        memory_region_size(&spapr->hotplug_memory.mr)) /
794                        lmb_size;
795     uint32_t *int_buf, *cur_index, buf_len;
796 
797     /*
798      * Allocate enough buffer size to fit in ibm,dynamic-memory
799      */
800     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
801     cur_index = int_buf = g_malloc0(buf_len);
802     int_buf[0] = cpu_to_be32(nr_lmbs);
803     cur_index++;
804     for (i = 0; i < nr_lmbs; i++) {
805         uint64_t addr = i * lmb_size;
806         uint32_t *dynamic_memory = cur_index;
807 
808         if (i >= hotplug_lmb_start) {
809             sPAPRDRConnector *drc;
810 
811             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
812             g_assert(drc);
813 
814             dynamic_memory[0] = cpu_to_be32(addr >> 32);
815             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
816             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
817             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
818             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
819             if (memory_region_present(get_system_memory(), addr)) {
820                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
821             } else {
822                 dynamic_memory[5] = cpu_to_be32(0);
823             }
824         } else {
825             /*
826              * LMB information for RMA, boot time RAM and gap b/n RAM and
827              * hotplug memory region -- all these are marked as reserved
828              * and as having no valid DRC.
829              */
830             dynamic_memory[0] = cpu_to_be32(addr >> 32);
831             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
832             dynamic_memory[2] = cpu_to_be32(0);
833             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
834             dynamic_memory[4] = cpu_to_be32(-1);
835             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
836                                             SPAPR_LMB_FLAGS_DRC_INVALID);
837         }
838 
839         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
840     }
841     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
842     g_free(int_buf);
843     if (ret < 0) {
844         return -1;
845     }
846     return 0;
847 }
848 
849 /*
850  * Adds ibm,dynamic-reconfiguration-memory node.
851  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
852  * of this device tree node.
853  */
854 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
855 {
856     MachineState *machine = MACHINE(spapr);
857     int ret, i, offset;
858     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
859     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
860     uint32_t *int_buf, *cur_index, buf_len;
861     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
862     MemoryDeviceInfoList *dimms = NULL;
863 
864     /*
865      * Don't create the node if there is no hotpluggable memory
866      */
867     if (machine->ram_size == machine->maxram_size) {
868         return 0;
869     }
870 
871     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
872 
873     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
874                     sizeof(prop_lmb_size));
875     if (ret < 0) {
876         return ret;
877     }
878 
879     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
880     if (ret < 0) {
881         return ret;
882     }
883 
884     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
885     if (ret < 0) {
886         return ret;
887     }
888 
889     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
890     dimms = qmp_pc_dimm_device_list();
891     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
892         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
893     } else {
894         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
895     }
896     qapi_free_MemoryDeviceInfoList(dimms);
897 
898     if (ret < 0) {
899         return ret;
900     }
901 
902     /* ibm,associativity-lookup-arrays */
903     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
904     cur_index = int_buf = g_malloc0(buf_len);
905 
906     cur_index = int_buf;
907     int_buf[0] = cpu_to_be32(nr_nodes);
908     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
909     cur_index += 2;
910     for (i = 0; i < nr_nodes; i++) {
911         uint32_t associativity[] = {
912             cpu_to_be32(0x0),
913             cpu_to_be32(0x0),
914             cpu_to_be32(0x0),
915             cpu_to_be32(i)
916         };
917         memcpy(cur_index, associativity, sizeof(associativity));
918         cur_index += 4;
919     }
920     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
921             (cur_index - int_buf) * sizeof(uint32_t));
922     g_free(int_buf);
923 
924     return ret;
925 }
926 
927 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
928                                 sPAPROptionVector *ov5_updates)
929 {
930     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
931     int ret = 0, offset;
932 
933     /* Generate ibm,dynamic-reconfiguration-memory node if required */
934     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
935         g_assert(smc->dr_lmb_enabled);
936         ret = spapr_populate_drconf_memory(spapr, fdt);
937         if (ret) {
938             goto out;
939         }
940     }
941 
942     offset = fdt_path_offset(fdt, "/chosen");
943     if (offset < 0) {
944         offset = fdt_add_subnode(fdt, 0, "chosen");
945         if (offset < 0) {
946             return offset;
947         }
948     }
949     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
950                                  "ibm,architecture-vec-5");
951 
952 out:
953     return ret;
954 }
955 
956 static bool spapr_hotplugged_dev_before_cas(void)
957 {
958     Object *drc_container, *obj;
959     ObjectProperty *prop;
960     ObjectPropertyIterator iter;
961 
962     drc_container = container_get(object_get_root(), "/dr-connector");
963     object_property_iter_init(&iter, drc_container);
964     while ((prop = object_property_iter_next(&iter))) {
965         if (!strstart(prop->type, "link<", NULL)) {
966             continue;
967         }
968         obj = object_property_get_link(drc_container, prop->name, NULL);
969         if (spapr_drc_needed(obj)) {
970             return true;
971         }
972     }
973     return false;
974 }
975 
976 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
977                                  target_ulong addr, target_ulong size,
978                                  sPAPROptionVector *ov5_updates)
979 {
980     void *fdt, *fdt_skel;
981     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
982 
983     if (spapr_hotplugged_dev_before_cas()) {
984         return 1;
985     }
986 
987     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
988         error_report("SLOF provided an unexpected CAS buffer size "
989                      TARGET_FMT_lu " (min: %zu, max: %u)",
990                      size, sizeof(hdr), FW_MAX_SIZE);
991         exit(EXIT_FAILURE);
992     }
993 
994     size -= sizeof(hdr);
995 
996     /* Create skeleton */
997     fdt_skel = g_malloc0(size);
998     _FDT((fdt_create(fdt_skel, size)));
999     _FDT((fdt_finish_reservemap(fdt_skel)));
1000     _FDT((fdt_begin_node(fdt_skel, "")));
1001     _FDT((fdt_end_node(fdt_skel)));
1002     _FDT((fdt_finish(fdt_skel)));
1003     fdt = g_malloc0(size);
1004     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1005     g_free(fdt_skel);
1006 
1007     /* Fixup cpu nodes */
1008     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1009 
1010     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1011         return -1;
1012     }
1013 
1014     /* Pack resulting tree */
1015     _FDT((fdt_pack(fdt)));
1016 
1017     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1018         trace_spapr_cas_failed(size);
1019         return -1;
1020     }
1021 
1022     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1023     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1024     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1025     g_free(fdt);
1026 
1027     return 0;
1028 }
1029 
1030 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1031 {
1032     int rtas;
1033     GString *hypertas = g_string_sized_new(256);
1034     GString *qemu_hypertas = g_string_sized_new(256);
1035     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1036     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
1037         memory_region_size(&spapr->hotplug_memory.mr);
1038     uint32_t lrdr_capacity[] = {
1039         cpu_to_be32(max_hotplug_addr >> 32),
1040         cpu_to_be32(max_hotplug_addr & 0xffffffff),
1041         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1042         cpu_to_be32(max_cpus / smp_threads),
1043     };
1044     uint32_t maxdomains[] = {
1045         cpu_to_be32(4),
1046         cpu_to_be32(0),
1047         cpu_to_be32(0),
1048         cpu_to_be32(0),
1049         cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1050     };
1051 
1052     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1053 
1054     /* hypertas */
1055     add_str(hypertas, "hcall-pft");
1056     add_str(hypertas, "hcall-term");
1057     add_str(hypertas, "hcall-dabr");
1058     add_str(hypertas, "hcall-interrupt");
1059     add_str(hypertas, "hcall-tce");
1060     add_str(hypertas, "hcall-vio");
1061     add_str(hypertas, "hcall-splpar");
1062     add_str(hypertas, "hcall-bulk");
1063     add_str(hypertas, "hcall-set-mode");
1064     add_str(hypertas, "hcall-sprg0");
1065     add_str(hypertas, "hcall-copy");
1066     add_str(hypertas, "hcall-debug");
1067     add_str(qemu_hypertas, "hcall-memop1");
1068 
1069     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1070         add_str(hypertas, "hcall-multi-tce");
1071     }
1072 
1073     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1074         add_str(hypertas, "hcall-hpt-resize");
1075     }
1076 
1077     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1078                      hypertas->str, hypertas->len));
1079     g_string_free(hypertas, TRUE);
1080     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1081                      qemu_hypertas->str, qemu_hypertas->len));
1082     g_string_free(qemu_hypertas, TRUE);
1083 
1084     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1085                      refpoints, sizeof(refpoints)));
1086 
1087     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1088                      maxdomains, sizeof(maxdomains)));
1089 
1090     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1091                           RTAS_ERROR_LOG_MAX));
1092     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1093                           RTAS_EVENT_SCAN_RATE));
1094 
1095     g_assert(msi_nonbroken);
1096     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1097 
1098     /*
1099      * According to PAPR, rtas ibm,os-term does not guarantee a return
1100      * back to the guest cpu.
1101      *
1102      * While an additional ibm,extended-os-term property indicates
1103      * that rtas call return will always occur. Set this property.
1104      */
1105     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1106 
1107     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1108                      lrdr_capacity, sizeof(lrdr_capacity)));
1109 
1110     spapr_dt_rtas_tokens(fdt, rtas);
1111 }
1112 
1113 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1114  * that the guest may request and thus the valid values for bytes 24..26 of
1115  * option vector 5: */
1116 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1117 {
1118     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1119 
1120     char val[2 * 4] = {
1121         23, 0x00, /* Xive mode, filled in below. */
1122         24, 0x00, /* Hash/Radix, filled in below. */
1123         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1124         26, 0x40, /* Radix options: GTSE == yes. */
1125     };
1126 
1127     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1128                           first_ppc_cpu->compat_pvr)) {
1129         /* If we're in a pre POWER9 compat mode then the guest should do hash */
1130         val[3] = 0x00; /* Hash */
1131     } else if (kvm_enabled()) {
1132         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1133             val[3] = 0x80; /* OV5_MMU_BOTH */
1134         } else if (kvmppc_has_cap_mmu_radix()) {
1135             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1136         } else {
1137             val[3] = 0x00; /* Hash */
1138         }
1139     } else {
1140         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1141         val[3] = 0xC0;
1142     }
1143     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1144                      val, sizeof(val)));
1145 }
1146 
1147 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1148 {
1149     MachineState *machine = MACHINE(spapr);
1150     int chosen;
1151     const char *boot_device = machine->boot_order;
1152     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1153     size_t cb = 0;
1154     char *bootlist = get_boot_devices_list(&cb, true);
1155 
1156     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1157 
1158     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1159     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1160                           spapr->initrd_base));
1161     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1162                           spapr->initrd_base + spapr->initrd_size));
1163 
1164     if (spapr->kernel_size) {
1165         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1166                               cpu_to_be64(spapr->kernel_size) };
1167 
1168         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1169                          &kprop, sizeof(kprop)));
1170         if (spapr->kernel_le) {
1171             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1172         }
1173     }
1174     if (boot_menu) {
1175         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1176     }
1177     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1178     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1179     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1180 
1181     if (cb && bootlist) {
1182         int i;
1183 
1184         for (i = 0; i < cb; i++) {
1185             if (bootlist[i] == '\n') {
1186                 bootlist[i] = ' ';
1187             }
1188         }
1189         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1190     }
1191 
1192     if (boot_device && strlen(boot_device)) {
1193         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1194     }
1195 
1196     if (!spapr->has_graphics && stdout_path) {
1197         /*
1198          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1199          * kernel. New platforms should only use the "stdout-path" property. Set
1200          * the new property and continue using older property to remain
1201          * compatible with the existing firmware.
1202          */
1203         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1204         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1205     }
1206 
1207     spapr_dt_ov5_platform_support(fdt, chosen);
1208 
1209     g_free(stdout_path);
1210     g_free(bootlist);
1211 }
1212 
1213 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1214 {
1215     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1216      * KVM to work under pHyp with some guest co-operation */
1217     int hypervisor;
1218     uint8_t hypercall[16];
1219 
1220     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1221     /* indicate KVM hypercall interface */
1222     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1223     if (kvmppc_has_cap_fixup_hcalls()) {
1224         /*
1225          * Older KVM versions with older guest kernels were broken
1226          * with the magic page, don't allow the guest to map it.
1227          */
1228         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1229                                   sizeof(hypercall))) {
1230             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1231                              hypercall, sizeof(hypercall)));
1232         }
1233     }
1234 }
1235 
1236 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1237                              hwaddr rtas_addr,
1238                              hwaddr rtas_size)
1239 {
1240     MachineState *machine = MACHINE(spapr);
1241     MachineClass *mc = MACHINE_GET_CLASS(machine);
1242     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1243     int ret;
1244     void *fdt;
1245     sPAPRPHBState *phb;
1246     char *buf;
1247 
1248     fdt = g_malloc0(FDT_MAX_SIZE);
1249     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1250 
1251     /* Root node */
1252     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1253     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1254     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1255 
1256     /*
1257      * Add info to guest to indentify which host is it being run on
1258      * and what is the uuid of the guest
1259      */
1260     if (kvmppc_get_host_model(&buf)) {
1261         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1262         g_free(buf);
1263     }
1264     if (kvmppc_get_host_serial(&buf)) {
1265         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1266         g_free(buf);
1267     }
1268 
1269     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1270 
1271     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1272     if (qemu_uuid_set) {
1273         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1274     }
1275     g_free(buf);
1276 
1277     if (qemu_get_vm_name()) {
1278         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1279                                 qemu_get_vm_name()));
1280     }
1281 
1282     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1283     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1284 
1285     /* /interrupt controller */
1286     spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1287 
1288     ret = spapr_populate_memory(spapr, fdt);
1289     if (ret < 0) {
1290         error_report("couldn't setup memory nodes in fdt");
1291         exit(1);
1292     }
1293 
1294     /* /vdevice */
1295     spapr_dt_vdevice(spapr->vio_bus, fdt);
1296 
1297     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1298         ret = spapr_rng_populate_dt(fdt);
1299         if (ret < 0) {
1300             error_report("could not set up rng device in the fdt");
1301             exit(1);
1302         }
1303     }
1304 
1305     QLIST_FOREACH(phb, &spapr->phbs, list) {
1306         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1307         if (ret < 0) {
1308             error_report("couldn't setup PCI devices in fdt");
1309             exit(1);
1310         }
1311     }
1312 
1313     /* cpus */
1314     spapr_populate_cpus_dt_node(fdt, spapr);
1315 
1316     if (smc->dr_lmb_enabled) {
1317         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1318     }
1319 
1320     if (mc->has_hotpluggable_cpus) {
1321         int offset = fdt_path_offset(fdt, "/cpus");
1322         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1323                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1324         if (ret < 0) {
1325             error_report("Couldn't set up CPU DR device tree properties");
1326             exit(1);
1327         }
1328     }
1329 
1330     /* /event-sources */
1331     spapr_dt_events(spapr, fdt);
1332 
1333     /* /rtas */
1334     spapr_dt_rtas(spapr, fdt);
1335 
1336     /* /chosen */
1337     spapr_dt_chosen(spapr, fdt);
1338 
1339     /* /hypervisor */
1340     if (kvm_enabled()) {
1341         spapr_dt_hypervisor(spapr, fdt);
1342     }
1343 
1344     /* Build memory reserve map */
1345     if (spapr->kernel_size) {
1346         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1347     }
1348     if (spapr->initrd_size) {
1349         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1350     }
1351 
1352     /* ibm,client-architecture-support updates */
1353     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1354     if (ret < 0) {
1355         error_report("couldn't setup CAS properties fdt");
1356         exit(1);
1357     }
1358 
1359     return fdt;
1360 }
1361 
1362 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1363 {
1364     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1365 }
1366 
1367 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1368                                     PowerPCCPU *cpu)
1369 {
1370     CPUPPCState *env = &cpu->env;
1371 
1372     /* The TCG path should also be holding the BQL at this point */
1373     g_assert(qemu_mutex_iothread_locked());
1374 
1375     if (msr_pr) {
1376         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1377         env->gpr[3] = H_PRIVILEGE;
1378     } else {
1379         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1380     }
1381 }
1382 
1383 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1384 {
1385     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1386 
1387     return spapr->patb_entry;
1388 }
1389 
1390 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1391 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1392 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1393 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1394 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1395 
1396 /*
1397  * Get the fd to access the kernel htab, re-opening it if necessary
1398  */
1399 static int get_htab_fd(sPAPRMachineState *spapr)
1400 {
1401     Error *local_err = NULL;
1402 
1403     if (spapr->htab_fd >= 0) {
1404         return spapr->htab_fd;
1405     }
1406 
1407     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1408     if (spapr->htab_fd < 0) {
1409         error_report_err(local_err);
1410     }
1411 
1412     return spapr->htab_fd;
1413 }
1414 
1415 void close_htab_fd(sPAPRMachineState *spapr)
1416 {
1417     if (spapr->htab_fd >= 0) {
1418         close(spapr->htab_fd);
1419     }
1420     spapr->htab_fd = -1;
1421 }
1422 
1423 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1424 {
1425     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1426 
1427     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1428 }
1429 
1430 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1431 {
1432     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1433 
1434     assert(kvm_enabled());
1435 
1436     if (!spapr->htab) {
1437         return 0;
1438     }
1439 
1440     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1441 }
1442 
1443 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1444                                                 hwaddr ptex, int n)
1445 {
1446     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1447     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1448 
1449     if (!spapr->htab) {
1450         /*
1451          * HTAB is controlled by KVM. Fetch into temporary buffer
1452          */
1453         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1454         kvmppc_read_hptes(hptes, ptex, n);
1455         return hptes;
1456     }
1457 
1458     /*
1459      * HTAB is controlled by QEMU. Just point to the internally
1460      * accessible PTEG.
1461      */
1462     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1463 }
1464 
1465 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1466                               const ppc_hash_pte64_t *hptes,
1467                               hwaddr ptex, int n)
1468 {
1469     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1470 
1471     if (!spapr->htab) {
1472         g_free((void *)hptes);
1473     }
1474 
1475     /* Nothing to do for qemu managed HPT */
1476 }
1477 
1478 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1479                              uint64_t pte0, uint64_t pte1)
1480 {
1481     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1482     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1483 
1484     if (!spapr->htab) {
1485         kvmppc_write_hpte(ptex, pte0, pte1);
1486     } else {
1487         stq_p(spapr->htab + offset, pte0);
1488         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1489     }
1490 }
1491 
1492 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1493 {
1494     int shift;
1495 
1496     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1497      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1498      * that's much more than is needed for Linux guests */
1499     shift = ctz64(pow2ceil(ramsize)) - 7;
1500     shift = MAX(shift, 18); /* Minimum architected size */
1501     shift = MIN(shift, 46); /* Maximum architected size */
1502     return shift;
1503 }
1504 
1505 void spapr_free_hpt(sPAPRMachineState *spapr)
1506 {
1507     g_free(spapr->htab);
1508     spapr->htab = NULL;
1509     spapr->htab_shift = 0;
1510     close_htab_fd(spapr);
1511 }
1512 
1513 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1514                           Error **errp)
1515 {
1516     long rc;
1517 
1518     /* Clean up any HPT info from a previous boot */
1519     spapr_free_hpt(spapr);
1520 
1521     rc = kvmppc_reset_htab(shift);
1522     if (rc < 0) {
1523         /* kernel-side HPT needed, but couldn't allocate one */
1524         error_setg_errno(errp, errno,
1525                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1526                          shift);
1527         /* This is almost certainly fatal, but if the caller really
1528          * wants to carry on with shift == 0, it's welcome to try */
1529     } else if (rc > 0) {
1530         /* kernel-side HPT allocated */
1531         if (rc != shift) {
1532             error_setg(errp,
1533                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1534                        shift, rc);
1535         }
1536 
1537         spapr->htab_shift = shift;
1538         spapr->htab = NULL;
1539     } else {
1540         /* kernel-side HPT not needed, allocate in userspace instead */
1541         size_t size = 1ULL << shift;
1542         int i;
1543 
1544         spapr->htab = qemu_memalign(size, size);
1545         if (!spapr->htab) {
1546             error_setg_errno(errp, errno,
1547                              "Could not allocate HPT of order %d", shift);
1548             return;
1549         }
1550 
1551         memset(spapr->htab, 0, size);
1552         spapr->htab_shift = shift;
1553 
1554         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1555             DIRTY_HPTE(HPTE(spapr->htab, i));
1556         }
1557     }
1558     /* We're setting up a hash table, so that means we're not radix */
1559     spapr->patb_entry = 0;
1560 }
1561 
1562 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1563 {
1564     int hpt_shift;
1565 
1566     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1567         || (spapr->cas_reboot
1568             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1569         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1570     } else {
1571         uint64_t current_ram_size;
1572 
1573         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1574         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1575     }
1576     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1577 
1578     if (spapr->vrma_adjust) {
1579         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1580                                           spapr->htab_shift);
1581     }
1582 }
1583 
1584 static int spapr_reset_drcs(Object *child, void *opaque)
1585 {
1586     sPAPRDRConnector *drc =
1587         (sPAPRDRConnector *) object_dynamic_cast(child,
1588                                                  TYPE_SPAPR_DR_CONNECTOR);
1589 
1590     if (drc) {
1591         spapr_drc_reset(drc);
1592     }
1593 
1594     return 0;
1595 }
1596 
1597 static void spapr_machine_reset(void)
1598 {
1599     MachineState *machine = MACHINE(qdev_get_machine());
1600     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1601     PowerPCCPU *first_ppc_cpu;
1602     uint32_t rtas_limit;
1603     hwaddr rtas_addr, fdt_addr;
1604     void *fdt;
1605     int rc;
1606 
1607     spapr_caps_reset(spapr);
1608 
1609     first_ppc_cpu = POWERPC_CPU(first_cpu);
1610     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1611         ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1612                          spapr->max_compat_pvr)) {
1613         /* If using KVM with radix mode available, VCPUs can be started
1614          * without a HPT because KVM will start them in radix mode.
1615          * Set the GR bit in PATB so that we know there is no HPT. */
1616         spapr->patb_entry = PATBE1_GR;
1617     } else {
1618         spapr_setup_hpt_and_vrma(spapr);
1619     }
1620 
1621     /* if this reset wasn't generated by CAS, we should reset our
1622      * negotiated options and start from scratch */
1623     if (!spapr->cas_reboot) {
1624         spapr_ovec_cleanup(spapr->ov5_cas);
1625         spapr->ov5_cas = spapr_ovec_new();
1626 
1627         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1628     }
1629 
1630     qemu_devices_reset();
1631 
1632     /* DRC reset may cause a device to be unplugged. This will cause troubles
1633      * if this device is used by another device (eg, a running vhost backend
1634      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1635      * situations, we reset DRCs after all devices have been reset.
1636      */
1637     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1638 
1639     spapr_clear_pending_events(spapr);
1640 
1641     /*
1642      * We place the device tree and RTAS just below either the top of the RMA,
1643      * or just below 2GB, whichever is lowere, so that it can be
1644      * processed with 32-bit real mode code if necessary
1645      */
1646     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1647     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1648     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1649 
1650     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1651 
1652     spapr_load_rtas(spapr, fdt, rtas_addr);
1653 
1654     rc = fdt_pack(fdt);
1655 
1656     /* Should only fail if we've built a corrupted tree */
1657     assert(rc == 0);
1658 
1659     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1660         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1661                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1662         exit(1);
1663     }
1664 
1665     /* Load the fdt */
1666     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1667     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1668     g_free(fdt);
1669 
1670     /* Set up the entry state */
1671     first_ppc_cpu->env.gpr[3] = fdt_addr;
1672     first_ppc_cpu->env.gpr[5] = 0;
1673     first_cpu->halted = 0;
1674     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1675 
1676     spapr->cas_reboot = false;
1677 }
1678 
1679 static void spapr_create_nvram(sPAPRMachineState *spapr)
1680 {
1681     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1682     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1683 
1684     if (dinfo) {
1685         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1686                             &error_fatal);
1687     }
1688 
1689     qdev_init_nofail(dev);
1690 
1691     spapr->nvram = (struct sPAPRNVRAM *)dev;
1692 }
1693 
1694 static void spapr_rtc_create(sPAPRMachineState *spapr)
1695 {
1696     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1697     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1698                               &error_fatal);
1699     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1700                               &error_fatal);
1701     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1702                               "date", &error_fatal);
1703 }
1704 
1705 /* Returns whether we want to use VGA or not */
1706 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1707 {
1708     switch (vga_interface_type) {
1709     case VGA_NONE:
1710         return false;
1711     case VGA_DEVICE:
1712         return true;
1713     case VGA_STD:
1714     case VGA_VIRTIO:
1715         return pci_vga_init(pci_bus) != NULL;
1716     default:
1717         error_setg(errp,
1718                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1719         return false;
1720     }
1721 }
1722 
1723 static int spapr_pre_load(void *opaque)
1724 {
1725     int rc;
1726 
1727     rc = spapr_caps_pre_load(opaque);
1728     if (rc) {
1729         return rc;
1730     }
1731 
1732     return 0;
1733 }
1734 
1735 static int spapr_post_load(void *opaque, int version_id)
1736 {
1737     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1738     int err = 0;
1739 
1740     err = spapr_caps_post_migration(spapr);
1741     if (err) {
1742         return err;
1743     }
1744 
1745     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1746         CPUState *cs;
1747         CPU_FOREACH(cs) {
1748             PowerPCCPU *cpu = POWERPC_CPU(cs);
1749             icp_resend(ICP(cpu->intc));
1750         }
1751     }
1752 
1753     /* In earlier versions, there was no separate qdev for the PAPR
1754      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1755      * So when migrating from those versions, poke the incoming offset
1756      * value into the RTC device */
1757     if (version_id < 3) {
1758         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1759     }
1760 
1761     if (kvm_enabled() && spapr->patb_entry) {
1762         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1763         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1764         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1765 
1766         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1767         if (err) {
1768             error_report("Process table config unsupported by the host");
1769             return -EINVAL;
1770         }
1771     }
1772 
1773     return err;
1774 }
1775 
1776 static int spapr_pre_save(void *opaque)
1777 {
1778     int rc;
1779 
1780     rc = spapr_caps_pre_save(opaque);
1781     if (rc) {
1782         return rc;
1783     }
1784 
1785     return 0;
1786 }
1787 
1788 static bool version_before_3(void *opaque, int version_id)
1789 {
1790     return version_id < 3;
1791 }
1792 
1793 static bool spapr_pending_events_needed(void *opaque)
1794 {
1795     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1796     return !QTAILQ_EMPTY(&spapr->pending_events);
1797 }
1798 
1799 static const VMStateDescription vmstate_spapr_event_entry = {
1800     .name = "spapr_event_log_entry",
1801     .version_id = 1,
1802     .minimum_version_id = 1,
1803     .fields = (VMStateField[]) {
1804         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1805         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1806         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1807                                      NULL, extended_length),
1808         VMSTATE_END_OF_LIST()
1809     },
1810 };
1811 
1812 static const VMStateDescription vmstate_spapr_pending_events = {
1813     .name = "spapr_pending_events",
1814     .version_id = 1,
1815     .minimum_version_id = 1,
1816     .needed = spapr_pending_events_needed,
1817     .fields = (VMStateField[]) {
1818         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1819                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1820         VMSTATE_END_OF_LIST()
1821     },
1822 };
1823 
1824 static bool spapr_ov5_cas_needed(void *opaque)
1825 {
1826     sPAPRMachineState *spapr = opaque;
1827     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1828     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1829     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1830     bool cas_needed;
1831 
1832     /* Prior to the introduction of sPAPROptionVector, we had two option
1833      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1834      * Both of these options encode machine topology into the device-tree
1835      * in such a way that the now-booted OS should still be able to interact
1836      * appropriately with QEMU regardless of what options were actually
1837      * negotiatied on the source side.
1838      *
1839      * As such, we can avoid migrating the CAS-negotiated options if these
1840      * are the only options available on the current machine/platform.
1841      * Since these are the only options available for pseries-2.7 and
1842      * earlier, this allows us to maintain old->new/new->old migration
1843      * compatibility.
1844      *
1845      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1846      * via default pseries-2.8 machines and explicit command-line parameters.
1847      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1848      * of the actual CAS-negotiated values to continue working properly. For
1849      * example, availability of memory unplug depends on knowing whether
1850      * OV5_HP_EVT was negotiated via CAS.
1851      *
1852      * Thus, for any cases where the set of available CAS-negotiatable
1853      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1854      * include the CAS-negotiated options in the migration stream.
1855      */
1856     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1857     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1858 
1859     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1860      * the mask itself since in the future it's possible "legacy" bits may be
1861      * removed via machine options, which could generate a false positive
1862      * that breaks migration.
1863      */
1864     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1865     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1866 
1867     spapr_ovec_cleanup(ov5_mask);
1868     spapr_ovec_cleanup(ov5_legacy);
1869     spapr_ovec_cleanup(ov5_removed);
1870 
1871     return cas_needed;
1872 }
1873 
1874 static const VMStateDescription vmstate_spapr_ov5_cas = {
1875     .name = "spapr_option_vector_ov5_cas",
1876     .version_id = 1,
1877     .minimum_version_id = 1,
1878     .needed = spapr_ov5_cas_needed,
1879     .fields = (VMStateField[]) {
1880         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1881                                  vmstate_spapr_ovec, sPAPROptionVector),
1882         VMSTATE_END_OF_LIST()
1883     },
1884 };
1885 
1886 static bool spapr_patb_entry_needed(void *opaque)
1887 {
1888     sPAPRMachineState *spapr = opaque;
1889 
1890     return !!spapr->patb_entry;
1891 }
1892 
1893 static const VMStateDescription vmstate_spapr_patb_entry = {
1894     .name = "spapr_patb_entry",
1895     .version_id = 1,
1896     .minimum_version_id = 1,
1897     .needed = spapr_patb_entry_needed,
1898     .fields = (VMStateField[]) {
1899         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1900         VMSTATE_END_OF_LIST()
1901     },
1902 };
1903 
1904 static const VMStateDescription vmstate_spapr = {
1905     .name = "spapr",
1906     .version_id = 3,
1907     .minimum_version_id = 1,
1908     .pre_load = spapr_pre_load,
1909     .post_load = spapr_post_load,
1910     .pre_save = spapr_pre_save,
1911     .fields = (VMStateField[]) {
1912         /* used to be @next_irq */
1913         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1914 
1915         /* RTC offset */
1916         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1917 
1918         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1919         VMSTATE_END_OF_LIST()
1920     },
1921     .subsections = (const VMStateDescription*[]) {
1922         &vmstate_spapr_ov5_cas,
1923         &vmstate_spapr_patb_entry,
1924         &vmstate_spapr_pending_events,
1925         &vmstate_spapr_cap_htm,
1926         &vmstate_spapr_cap_vsx,
1927         &vmstate_spapr_cap_dfp,
1928         &vmstate_spapr_cap_cfpc,
1929         &vmstate_spapr_cap_sbbc,
1930         &vmstate_spapr_cap_ibs,
1931         NULL
1932     }
1933 };
1934 
1935 static int htab_save_setup(QEMUFile *f, void *opaque)
1936 {
1937     sPAPRMachineState *spapr = opaque;
1938 
1939     /* "Iteration" header */
1940     if (!spapr->htab_shift) {
1941         qemu_put_be32(f, -1);
1942     } else {
1943         qemu_put_be32(f, spapr->htab_shift);
1944     }
1945 
1946     if (spapr->htab) {
1947         spapr->htab_save_index = 0;
1948         spapr->htab_first_pass = true;
1949     } else {
1950         if (spapr->htab_shift) {
1951             assert(kvm_enabled());
1952         }
1953     }
1954 
1955 
1956     return 0;
1957 }
1958 
1959 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1960                             int chunkstart, int n_valid, int n_invalid)
1961 {
1962     qemu_put_be32(f, chunkstart);
1963     qemu_put_be16(f, n_valid);
1964     qemu_put_be16(f, n_invalid);
1965     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1966                     HASH_PTE_SIZE_64 * n_valid);
1967 }
1968 
1969 static void htab_save_end_marker(QEMUFile *f)
1970 {
1971     qemu_put_be32(f, 0);
1972     qemu_put_be16(f, 0);
1973     qemu_put_be16(f, 0);
1974 }
1975 
1976 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1977                                  int64_t max_ns)
1978 {
1979     bool has_timeout = max_ns != -1;
1980     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1981     int index = spapr->htab_save_index;
1982     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1983 
1984     assert(spapr->htab_first_pass);
1985 
1986     do {
1987         int chunkstart;
1988 
1989         /* Consume invalid HPTEs */
1990         while ((index < htabslots)
1991                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1992             CLEAN_HPTE(HPTE(spapr->htab, index));
1993             index++;
1994         }
1995 
1996         /* Consume valid HPTEs */
1997         chunkstart = index;
1998         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1999                && HPTE_VALID(HPTE(spapr->htab, index))) {
2000             CLEAN_HPTE(HPTE(spapr->htab, index));
2001             index++;
2002         }
2003 
2004         if (index > chunkstart) {
2005             int n_valid = index - chunkstart;
2006 
2007             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2008 
2009             if (has_timeout &&
2010                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2011                 break;
2012             }
2013         }
2014     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2015 
2016     if (index >= htabslots) {
2017         assert(index == htabslots);
2018         index = 0;
2019         spapr->htab_first_pass = false;
2020     }
2021     spapr->htab_save_index = index;
2022 }
2023 
2024 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2025                                 int64_t max_ns)
2026 {
2027     bool final = max_ns < 0;
2028     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2029     int examined = 0, sent = 0;
2030     int index = spapr->htab_save_index;
2031     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2032 
2033     assert(!spapr->htab_first_pass);
2034 
2035     do {
2036         int chunkstart, invalidstart;
2037 
2038         /* Consume non-dirty HPTEs */
2039         while ((index < htabslots)
2040                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2041             index++;
2042             examined++;
2043         }
2044 
2045         chunkstart = index;
2046         /* Consume valid dirty HPTEs */
2047         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2048                && HPTE_DIRTY(HPTE(spapr->htab, index))
2049                && HPTE_VALID(HPTE(spapr->htab, index))) {
2050             CLEAN_HPTE(HPTE(spapr->htab, index));
2051             index++;
2052             examined++;
2053         }
2054 
2055         invalidstart = index;
2056         /* Consume invalid dirty HPTEs */
2057         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2058                && HPTE_DIRTY(HPTE(spapr->htab, index))
2059                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2060             CLEAN_HPTE(HPTE(spapr->htab, index));
2061             index++;
2062             examined++;
2063         }
2064 
2065         if (index > chunkstart) {
2066             int n_valid = invalidstart - chunkstart;
2067             int n_invalid = index - invalidstart;
2068 
2069             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2070             sent += index - chunkstart;
2071 
2072             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2073                 break;
2074             }
2075         }
2076 
2077         if (examined >= htabslots) {
2078             break;
2079         }
2080 
2081         if (index >= htabslots) {
2082             assert(index == htabslots);
2083             index = 0;
2084         }
2085     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2086 
2087     if (index >= htabslots) {
2088         assert(index == htabslots);
2089         index = 0;
2090     }
2091 
2092     spapr->htab_save_index = index;
2093 
2094     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2095 }
2096 
2097 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2098 #define MAX_KVM_BUF_SIZE    2048
2099 
2100 static int htab_save_iterate(QEMUFile *f, void *opaque)
2101 {
2102     sPAPRMachineState *spapr = opaque;
2103     int fd;
2104     int rc = 0;
2105 
2106     /* Iteration header */
2107     if (!spapr->htab_shift) {
2108         qemu_put_be32(f, -1);
2109         return 1;
2110     } else {
2111         qemu_put_be32(f, 0);
2112     }
2113 
2114     if (!spapr->htab) {
2115         assert(kvm_enabled());
2116 
2117         fd = get_htab_fd(spapr);
2118         if (fd < 0) {
2119             return fd;
2120         }
2121 
2122         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2123         if (rc < 0) {
2124             return rc;
2125         }
2126     } else  if (spapr->htab_first_pass) {
2127         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2128     } else {
2129         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2130     }
2131 
2132     htab_save_end_marker(f);
2133 
2134     return rc;
2135 }
2136 
2137 static int htab_save_complete(QEMUFile *f, void *opaque)
2138 {
2139     sPAPRMachineState *spapr = opaque;
2140     int fd;
2141 
2142     /* Iteration header */
2143     if (!spapr->htab_shift) {
2144         qemu_put_be32(f, -1);
2145         return 0;
2146     } else {
2147         qemu_put_be32(f, 0);
2148     }
2149 
2150     if (!spapr->htab) {
2151         int rc;
2152 
2153         assert(kvm_enabled());
2154 
2155         fd = get_htab_fd(spapr);
2156         if (fd < 0) {
2157             return fd;
2158         }
2159 
2160         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2161         if (rc < 0) {
2162             return rc;
2163         }
2164     } else {
2165         if (spapr->htab_first_pass) {
2166             htab_save_first_pass(f, spapr, -1);
2167         }
2168         htab_save_later_pass(f, spapr, -1);
2169     }
2170 
2171     /* End marker */
2172     htab_save_end_marker(f);
2173 
2174     return 0;
2175 }
2176 
2177 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2178 {
2179     sPAPRMachineState *spapr = opaque;
2180     uint32_t section_hdr;
2181     int fd = -1;
2182     Error *local_err = NULL;
2183 
2184     if (version_id < 1 || version_id > 1) {
2185         error_report("htab_load() bad version");
2186         return -EINVAL;
2187     }
2188 
2189     section_hdr = qemu_get_be32(f);
2190 
2191     if (section_hdr == -1) {
2192         spapr_free_hpt(spapr);
2193         return 0;
2194     }
2195 
2196     if (section_hdr) {
2197         /* First section gives the htab size */
2198         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2199         if (local_err) {
2200             error_report_err(local_err);
2201             return -EINVAL;
2202         }
2203         return 0;
2204     }
2205 
2206     if (!spapr->htab) {
2207         assert(kvm_enabled());
2208 
2209         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2210         if (fd < 0) {
2211             error_report_err(local_err);
2212             return fd;
2213         }
2214     }
2215 
2216     while (true) {
2217         uint32_t index;
2218         uint16_t n_valid, n_invalid;
2219 
2220         index = qemu_get_be32(f);
2221         n_valid = qemu_get_be16(f);
2222         n_invalid = qemu_get_be16(f);
2223 
2224         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2225             /* End of Stream */
2226             break;
2227         }
2228 
2229         if ((index + n_valid + n_invalid) >
2230             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2231             /* Bad index in stream */
2232             error_report(
2233                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2234                 index, n_valid, n_invalid, spapr->htab_shift);
2235             return -EINVAL;
2236         }
2237 
2238         if (spapr->htab) {
2239             if (n_valid) {
2240                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2241                                 HASH_PTE_SIZE_64 * n_valid);
2242             }
2243             if (n_invalid) {
2244                 memset(HPTE(spapr->htab, index + n_valid), 0,
2245                        HASH_PTE_SIZE_64 * n_invalid);
2246             }
2247         } else {
2248             int rc;
2249 
2250             assert(fd >= 0);
2251 
2252             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2253             if (rc < 0) {
2254                 return rc;
2255             }
2256         }
2257     }
2258 
2259     if (!spapr->htab) {
2260         assert(fd >= 0);
2261         close(fd);
2262     }
2263 
2264     return 0;
2265 }
2266 
2267 static void htab_save_cleanup(void *opaque)
2268 {
2269     sPAPRMachineState *spapr = opaque;
2270 
2271     close_htab_fd(spapr);
2272 }
2273 
2274 static SaveVMHandlers savevm_htab_handlers = {
2275     .save_setup = htab_save_setup,
2276     .save_live_iterate = htab_save_iterate,
2277     .save_live_complete_precopy = htab_save_complete,
2278     .save_cleanup = htab_save_cleanup,
2279     .load_state = htab_load,
2280 };
2281 
2282 static void spapr_boot_set(void *opaque, const char *boot_device,
2283                            Error **errp)
2284 {
2285     MachineState *machine = MACHINE(opaque);
2286     machine->boot_order = g_strdup(boot_device);
2287 }
2288 
2289 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2290 {
2291     MachineState *machine = MACHINE(spapr);
2292     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2293     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2294     int i;
2295 
2296     for (i = 0; i < nr_lmbs; i++) {
2297         uint64_t addr;
2298 
2299         addr = i * lmb_size + spapr->hotplug_memory.base;
2300         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2301                                addr / lmb_size);
2302     }
2303 }
2304 
2305 /*
2306  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2307  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2308  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2309  */
2310 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2311 {
2312     int i;
2313 
2314     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2315         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2316                    " is not aligned to %llu MiB",
2317                    machine->ram_size,
2318                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2319         return;
2320     }
2321 
2322     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2323         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2324                    " is not aligned to %llu MiB",
2325                    machine->ram_size,
2326                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2327         return;
2328     }
2329 
2330     for (i = 0; i < nb_numa_nodes; i++) {
2331         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2332             error_setg(errp,
2333                        "Node %d memory size 0x%" PRIx64
2334                        " is not aligned to %llu MiB",
2335                        i, numa_info[i].node_mem,
2336                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2337             return;
2338         }
2339     }
2340 }
2341 
2342 /* find cpu slot in machine->possible_cpus by core_id */
2343 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2344 {
2345     int index = id / smp_threads;
2346 
2347     if (index >= ms->possible_cpus->len) {
2348         return NULL;
2349     }
2350     if (idx) {
2351         *idx = index;
2352     }
2353     return &ms->possible_cpus->cpus[index];
2354 }
2355 
2356 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2357 {
2358     Error *local_err = NULL;
2359     bool vsmt_user = !!spapr->vsmt;
2360     int kvm_smt = kvmppc_smt_threads();
2361     int ret;
2362 
2363     if (!kvm_enabled() && (smp_threads > 1)) {
2364         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2365                      "on a pseries machine");
2366         goto out;
2367     }
2368     if (!is_power_of_2(smp_threads)) {
2369         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2370                      "machine because it must be a power of 2", smp_threads);
2371         goto out;
2372     }
2373 
2374     /* Detemine the VSMT mode to use: */
2375     if (vsmt_user) {
2376         if (spapr->vsmt < smp_threads) {
2377             error_setg(&local_err, "Cannot support VSMT mode %d"
2378                          " because it must be >= threads/core (%d)",
2379                          spapr->vsmt, smp_threads);
2380             goto out;
2381         }
2382         /* In this case, spapr->vsmt has been set by the command line */
2383     } else {
2384         /*
2385          * Default VSMT value is tricky, because we need it to be as
2386          * consistent as possible (for migration), but this requires
2387          * changing it for at least some existing cases.  We pick 8 as
2388          * the value that we'd get with KVM on POWER8, the
2389          * overwhelmingly common case in production systems.
2390          */
2391         spapr->vsmt = MAX(8, smp_threads);
2392     }
2393 
2394     /* KVM: If necessary, set the SMT mode: */
2395     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2396         ret = kvmppc_set_smt_threads(spapr->vsmt);
2397         if (ret) {
2398             /* Looks like KVM isn't able to change VSMT mode */
2399             error_setg(&local_err,
2400                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2401                        spapr->vsmt, ret);
2402             /* We can live with that if the default one is big enough
2403              * for the number of threads, and a submultiple of the one
2404              * we want.  In this case we'll waste some vcpu ids, but
2405              * behaviour will be correct */
2406             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2407                 warn_report_err(local_err);
2408                 local_err = NULL;
2409                 goto out;
2410             } else {
2411                 if (!vsmt_user) {
2412                     error_append_hint(&local_err,
2413                                       "On PPC, a VM with %d threads/core"
2414                                       " on a host with %d threads/core"
2415                                       " requires the use of VSMT mode %d.\n",
2416                                       smp_threads, kvm_smt, spapr->vsmt);
2417                 }
2418                 kvmppc_hint_smt_possible(&local_err);
2419                 goto out;
2420             }
2421         }
2422     }
2423     /* else TCG: nothing to do currently */
2424 out:
2425     error_propagate(errp, local_err);
2426 }
2427 
2428 static void spapr_init_cpus(sPAPRMachineState *spapr)
2429 {
2430     MachineState *machine = MACHINE(spapr);
2431     MachineClass *mc = MACHINE_GET_CLASS(machine);
2432     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2433     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2434     const CPUArchIdList *possible_cpus;
2435     int boot_cores_nr = smp_cpus / smp_threads;
2436     int i;
2437 
2438     possible_cpus = mc->possible_cpu_arch_ids(machine);
2439     if (mc->has_hotpluggable_cpus) {
2440         if (smp_cpus % smp_threads) {
2441             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2442                          smp_cpus, smp_threads);
2443             exit(1);
2444         }
2445         if (max_cpus % smp_threads) {
2446             error_report("max_cpus (%u) must be multiple of threads (%u)",
2447                          max_cpus, smp_threads);
2448             exit(1);
2449         }
2450     } else {
2451         if (max_cpus != smp_cpus) {
2452             error_report("This machine version does not support CPU hotplug");
2453             exit(1);
2454         }
2455         boot_cores_nr = possible_cpus->len;
2456     }
2457 
2458     /* VSMT must be set in order to be able to compute VCPU ids, ie to
2459      * call xics_max_server_number() or spapr_vcpu_id().
2460      */
2461     spapr_set_vsmt_mode(spapr, &error_fatal);
2462 
2463     if (smc->pre_2_10_has_unused_icps) {
2464         int i;
2465 
2466         for (i = 0; i < xics_max_server_number(spapr); i++) {
2467             /* Dummy entries get deregistered when real ICPState objects
2468              * are registered during CPU core hotplug.
2469              */
2470             pre_2_10_vmstate_register_dummy_icp(i);
2471         }
2472     }
2473 
2474     for (i = 0; i < possible_cpus->len; i++) {
2475         int core_id = i * smp_threads;
2476 
2477         if (mc->has_hotpluggable_cpus) {
2478             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2479                                    spapr_vcpu_id(spapr, core_id));
2480         }
2481 
2482         if (i < boot_cores_nr) {
2483             Object *core  = object_new(type);
2484             int nr_threads = smp_threads;
2485 
2486             /* Handle the partially filled core for older machine types */
2487             if ((i + 1) * smp_threads >= smp_cpus) {
2488                 nr_threads = smp_cpus - i * smp_threads;
2489             }
2490 
2491             object_property_set_int(core, nr_threads, "nr-threads",
2492                                     &error_fatal);
2493             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2494                                     &error_fatal);
2495             object_property_set_bool(core, true, "realized", &error_fatal);
2496         }
2497     }
2498 }
2499 
2500 /* pSeries LPAR / sPAPR hardware init */
2501 static void spapr_machine_init(MachineState *machine)
2502 {
2503     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2504     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2505     const char *kernel_filename = machine->kernel_filename;
2506     const char *initrd_filename = machine->initrd_filename;
2507     PCIHostState *phb;
2508     int i;
2509     MemoryRegion *sysmem = get_system_memory();
2510     MemoryRegion *ram = g_new(MemoryRegion, 1);
2511     MemoryRegion *rma_region;
2512     void *rma = NULL;
2513     hwaddr rma_alloc_size;
2514     hwaddr node0_size = spapr_node0_size(machine);
2515     long load_limit, fw_size;
2516     char *filename;
2517     Error *resize_hpt_err = NULL;
2518 
2519     msi_nonbroken = true;
2520 
2521     QLIST_INIT(&spapr->phbs);
2522     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2523 
2524     /* Check HPT resizing availability */
2525     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2526     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2527         /*
2528          * If the user explicitly requested a mode we should either
2529          * supply it, or fail completely (which we do below).  But if
2530          * it's not set explicitly, we reset our mode to something
2531          * that works
2532          */
2533         if (resize_hpt_err) {
2534             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2535             error_free(resize_hpt_err);
2536             resize_hpt_err = NULL;
2537         } else {
2538             spapr->resize_hpt = smc->resize_hpt_default;
2539         }
2540     }
2541 
2542     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2543 
2544     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2545         /*
2546          * User requested HPT resize, but this host can't supply it.  Bail out
2547          */
2548         error_report_err(resize_hpt_err);
2549         exit(1);
2550     }
2551 
2552     /* Allocate RMA if necessary */
2553     rma_alloc_size = kvmppc_alloc_rma(&rma);
2554 
2555     if (rma_alloc_size == -1) {
2556         error_report("Unable to create RMA");
2557         exit(1);
2558     }
2559 
2560     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2561         spapr->rma_size = rma_alloc_size;
2562     } else {
2563         spapr->rma_size = node0_size;
2564 
2565         /* With KVM, we don't actually know whether KVM supports an
2566          * unbounded RMA (PR KVM) or is limited by the hash table size
2567          * (HV KVM using VRMA), so we always assume the latter
2568          *
2569          * In that case, we also limit the initial allocations for RTAS
2570          * etc... to 256M since we have no way to know what the VRMA size
2571          * is going to be as it depends on the size of the hash table
2572          * isn't determined yet.
2573          */
2574         if (kvm_enabled()) {
2575             spapr->vrma_adjust = 1;
2576             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2577         }
2578 
2579         /* Actually we don't support unbounded RMA anymore since we
2580          * added proper emulation of HV mode. The max we can get is
2581          * 16G which also happens to be what we configure for PAPR
2582          * mode so make sure we don't do anything bigger than that
2583          */
2584         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2585     }
2586 
2587     if (spapr->rma_size > node0_size) {
2588         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2589                      spapr->rma_size);
2590         exit(1);
2591     }
2592 
2593     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2594     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2595 
2596     /* Set up Interrupt Controller before we create the VCPUs */
2597     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2598 
2599     /* Set up containers for ibm,client-architecture-support negotiated options
2600      */
2601     spapr->ov5 = spapr_ovec_new();
2602     spapr->ov5_cas = spapr_ovec_new();
2603 
2604     if (smc->dr_lmb_enabled) {
2605         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2606         spapr_validate_node_memory(machine, &error_fatal);
2607     }
2608 
2609     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2610     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2611         /* KVM and TCG always allow GTSE with radix... */
2612         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2613     }
2614     /* ... but not with hash (currently). */
2615 
2616     /* advertise support for dedicated HP event source to guests */
2617     if (spapr->use_hotplug_event_source) {
2618         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2619     }
2620 
2621     /* advertise support for HPT resizing */
2622     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2623         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2624     }
2625 
2626     /* advertise support for ibm,dyamic-memory-v2 */
2627     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2628 
2629     /* init CPUs */
2630     spapr_init_cpus(spapr);
2631 
2632     if (kvm_enabled()) {
2633         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2634         kvmppc_enable_logical_ci_hcalls();
2635         kvmppc_enable_set_mode_hcall();
2636 
2637         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2638         kvmppc_enable_clear_ref_mod_hcalls();
2639     }
2640 
2641     /* allocate RAM */
2642     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2643                                          machine->ram_size);
2644     memory_region_add_subregion(sysmem, 0, ram);
2645 
2646     if (rma_alloc_size && rma) {
2647         rma_region = g_new(MemoryRegion, 1);
2648         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2649                                    rma_alloc_size, rma);
2650         vmstate_register_ram_global(rma_region);
2651         memory_region_add_subregion(sysmem, 0, rma_region);
2652     }
2653 
2654     /* initialize hotplug memory address space */
2655     if (machine->ram_size < machine->maxram_size) {
2656         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2657         /*
2658          * Limit the number of hotpluggable memory slots to half the number
2659          * slots that KVM supports, leaving the other half for PCI and other
2660          * devices. However ensure that number of slots doesn't drop below 32.
2661          */
2662         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2663                            SPAPR_MAX_RAM_SLOTS;
2664 
2665         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2666             max_memslots = SPAPR_MAX_RAM_SLOTS;
2667         }
2668         if (machine->ram_slots > max_memslots) {
2669             error_report("Specified number of memory slots %"
2670                          PRIu64" exceeds max supported %d",
2671                          machine->ram_slots, max_memslots);
2672             exit(1);
2673         }
2674 
2675         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2676                                               SPAPR_HOTPLUG_MEM_ALIGN);
2677         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2678                            "hotplug-memory", hotplug_mem_size);
2679         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2680                                     &spapr->hotplug_memory.mr);
2681     }
2682 
2683     if (smc->dr_lmb_enabled) {
2684         spapr_create_lmb_dr_connectors(spapr);
2685     }
2686 
2687     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2688     if (!filename) {
2689         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2690         exit(1);
2691     }
2692     spapr->rtas_size = get_image_size(filename);
2693     if (spapr->rtas_size < 0) {
2694         error_report("Could not get size of LPAR rtas '%s'", filename);
2695         exit(1);
2696     }
2697     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2698     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2699         error_report("Could not load LPAR rtas '%s'", filename);
2700         exit(1);
2701     }
2702     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2703         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2704                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2705         exit(1);
2706     }
2707     g_free(filename);
2708 
2709     /* Set up RTAS event infrastructure */
2710     spapr_events_init(spapr);
2711 
2712     /* Set up the RTC RTAS interfaces */
2713     spapr_rtc_create(spapr);
2714 
2715     /* Set up VIO bus */
2716     spapr->vio_bus = spapr_vio_bus_init();
2717 
2718     for (i = 0; i < serial_max_hds(); i++) {
2719         if (serial_hd(i)) {
2720             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2721         }
2722     }
2723 
2724     /* We always have at least the nvram device on VIO */
2725     spapr_create_nvram(spapr);
2726 
2727     /* Set up PCI */
2728     spapr_pci_rtas_init();
2729 
2730     phb = spapr_create_phb(spapr, 0);
2731 
2732     for (i = 0; i < nb_nics; i++) {
2733         NICInfo *nd = &nd_table[i];
2734 
2735         if (!nd->model) {
2736             nd->model = g_strdup("spapr-vlan");
2737         }
2738 
2739         if (g_str_equal(nd->model, "spapr-vlan") ||
2740             g_str_equal(nd->model, "ibmveth")) {
2741             spapr_vlan_create(spapr->vio_bus, nd);
2742         } else {
2743             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2744         }
2745     }
2746 
2747     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2748         spapr_vscsi_create(spapr->vio_bus);
2749     }
2750 
2751     /* Graphics */
2752     if (spapr_vga_init(phb->bus, &error_fatal)) {
2753         spapr->has_graphics = true;
2754         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2755     }
2756 
2757     if (machine->usb) {
2758         if (smc->use_ohci_by_default) {
2759             pci_create_simple(phb->bus, -1, "pci-ohci");
2760         } else {
2761             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2762         }
2763 
2764         if (spapr->has_graphics) {
2765             USBBus *usb_bus = usb_bus_find(-1);
2766 
2767             usb_create_simple(usb_bus, "usb-kbd");
2768             usb_create_simple(usb_bus, "usb-mouse");
2769         }
2770     }
2771 
2772     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2773         error_report(
2774             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2775             MIN_RMA_SLOF);
2776         exit(1);
2777     }
2778 
2779     if (kernel_filename) {
2780         uint64_t lowaddr = 0;
2781 
2782         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2783                                       NULL, NULL, &lowaddr, NULL, 1,
2784                                       PPC_ELF_MACHINE, 0, 0);
2785         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2786             spapr->kernel_size = load_elf(kernel_filename,
2787                                           translate_kernel_address, NULL, NULL,
2788                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2789                                           0, 0);
2790             spapr->kernel_le = spapr->kernel_size > 0;
2791         }
2792         if (spapr->kernel_size < 0) {
2793             error_report("error loading %s: %s", kernel_filename,
2794                          load_elf_strerror(spapr->kernel_size));
2795             exit(1);
2796         }
2797 
2798         /* load initrd */
2799         if (initrd_filename) {
2800             /* Try to locate the initrd in the gap between the kernel
2801              * and the firmware. Add a bit of space just in case
2802              */
2803             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2804                                   + 0x1ffff) & ~0xffff;
2805             spapr->initrd_size = load_image_targphys(initrd_filename,
2806                                                      spapr->initrd_base,
2807                                                      load_limit
2808                                                      - spapr->initrd_base);
2809             if (spapr->initrd_size < 0) {
2810                 error_report("could not load initial ram disk '%s'",
2811                              initrd_filename);
2812                 exit(1);
2813             }
2814         }
2815     }
2816 
2817     if (bios_name == NULL) {
2818         bios_name = FW_FILE_NAME;
2819     }
2820     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2821     if (!filename) {
2822         error_report("Could not find LPAR firmware '%s'", bios_name);
2823         exit(1);
2824     }
2825     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2826     if (fw_size <= 0) {
2827         error_report("Could not load LPAR firmware '%s'", filename);
2828         exit(1);
2829     }
2830     g_free(filename);
2831 
2832     /* FIXME: Should register things through the MachineState's qdev
2833      * interface, this is a legacy from the sPAPREnvironment structure
2834      * which predated MachineState but had a similar function */
2835     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2836     register_savevm_live(NULL, "spapr/htab", -1, 1,
2837                          &savevm_htab_handlers, spapr);
2838 
2839     qemu_register_boot_set(spapr_boot_set, spapr);
2840 
2841     if (kvm_enabled()) {
2842         /* to stop and start vmclock */
2843         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2844                                          &spapr->tb);
2845 
2846         kvmppc_spapr_enable_inkernel_multitce();
2847     }
2848 }
2849 
2850 static int spapr_kvm_type(const char *vm_type)
2851 {
2852     if (!vm_type) {
2853         return 0;
2854     }
2855 
2856     if (!strcmp(vm_type, "HV")) {
2857         return 1;
2858     }
2859 
2860     if (!strcmp(vm_type, "PR")) {
2861         return 2;
2862     }
2863 
2864     error_report("Unknown kvm-type specified '%s'", vm_type);
2865     exit(1);
2866 }
2867 
2868 /*
2869  * Implementation of an interface to adjust firmware path
2870  * for the bootindex property handling.
2871  */
2872 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2873                                    DeviceState *dev)
2874 {
2875 #define CAST(type, obj, name) \
2876     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2877     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2878     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2879     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2880 
2881     if (d) {
2882         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2883         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2884         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2885 
2886         if (spapr) {
2887             /*
2888              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2889              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2890              * in the top 16 bits of the 64-bit LUN
2891              */
2892             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2893             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2894                                    (uint64_t)id << 48);
2895         } else if (virtio) {
2896             /*
2897              * We use SRP luns of the form 01000000 | (target << 8) | lun
2898              * in the top 32 bits of the 64-bit LUN
2899              * Note: the quote above is from SLOF and it is wrong,
2900              * the actual binding is:
2901              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2902              */
2903             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2904             if (d->lun >= 256) {
2905                 /* Use the LUN "flat space addressing method" */
2906                 id |= 0x4000;
2907             }
2908             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2909                                    (uint64_t)id << 32);
2910         } else if (usb) {
2911             /*
2912              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2913              * in the top 32 bits of the 64-bit LUN
2914              */
2915             unsigned usb_port = atoi(usb->port->path);
2916             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2917             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2918                                    (uint64_t)id << 32);
2919         }
2920     }
2921 
2922     /*
2923      * SLOF probes the USB devices, and if it recognizes that the device is a
2924      * storage device, it changes its name to "storage" instead of "usb-host",
2925      * and additionally adds a child node for the SCSI LUN, so the correct
2926      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2927      */
2928     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2929         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2930         if (usb_host_dev_is_scsi_storage(usbdev)) {
2931             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2932         }
2933     }
2934 
2935     if (phb) {
2936         /* Replace "pci" with "pci@800000020000000" */
2937         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2938     }
2939 
2940     if (vsc) {
2941         /* Same logic as virtio above */
2942         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2943         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2944     }
2945 
2946     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2947         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2948         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2949         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2950     }
2951 
2952     return NULL;
2953 }
2954 
2955 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2956 {
2957     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2958 
2959     return g_strdup(spapr->kvm_type);
2960 }
2961 
2962 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2963 {
2964     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2965 
2966     g_free(spapr->kvm_type);
2967     spapr->kvm_type = g_strdup(value);
2968 }
2969 
2970 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2971 {
2972     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2973 
2974     return spapr->use_hotplug_event_source;
2975 }
2976 
2977 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2978                                             Error **errp)
2979 {
2980     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2981 
2982     spapr->use_hotplug_event_source = value;
2983 }
2984 
2985 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2986 {
2987     return true;
2988 }
2989 
2990 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2991 {
2992     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2993 
2994     switch (spapr->resize_hpt) {
2995     case SPAPR_RESIZE_HPT_DEFAULT:
2996         return g_strdup("default");
2997     case SPAPR_RESIZE_HPT_DISABLED:
2998         return g_strdup("disabled");
2999     case SPAPR_RESIZE_HPT_ENABLED:
3000         return g_strdup("enabled");
3001     case SPAPR_RESIZE_HPT_REQUIRED:
3002         return g_strdup("required");
3003     }
3004     g_assert_not_reached();
3005 }
3006 
3007 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3008 {
3009     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3010 
3011     if (strcmp(value, "default") == 0) {
3012         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3013     } else if (strcmp(value, "disabled") == 0) {
3014         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3015     } else if (strcmp(value, "enabled") == 0) {
3016         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3017     } else if (strcmp(value, "required") == 0) {
3018         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3019     } else {
3020         error_setg(errp, "Bad value for \"resize-hpt\" property");
3021     }
3022 }
3023 
3024 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3025                                    void *opaque, Error **errp)
3026 {
3027     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3028 }
3029 
3030 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3031                                    void *opaque, Error **errp)
3032 {
3033     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3034 }
3035 
3036 static void spapr_instance_init(Object *obj)
3037 {
3038     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3039 
3040     spapr->htab_fd = -1;
3041     spapr->use_hotplug_event_source = true;
3042     object_property_add_str(obj, "kvm-type",
3043                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3044     object_property_set_description(obj, "kvm-type",
3045                                     "Specifies the KVM virtualization mode (HV, PR)",
3046                                     NULL);
3047     object_property_add_bool(obj, "modern-hotplug-events",
3048                             spapr_get_modern_hotplug_events,
3049                             spapr_set_modern_hotplug_events,
3050                             NULL);
3051     object_property_set_description(obj, "modern-hotplug-events",
3052                                     "Use dedicated hotplug event mechanism in"
3053                                     " place of standard EPOW events when possible"
3054                                     " (required for memory hot-unplug support)",
3055                                     NULL);
3056     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3057                             "Maximum permitted CPU compatibility mode",
3058                             &error_fatal);
3059 
3060     object_property_add_str(obj, "resize-hpt",
3061                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3062     object_property_set_description(obj, "resize-hpt",
3063                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3064                                     NULL);
3065     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3066                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3067     object_property_set_description(obj, "vsmt",
3068                                     "Virtual SMT: KVM behaves as if this were"
3069                                     " the host's SMT mode", &error_abort);
3070     object_property_add_bool(obj, "vfio-no-msix-emulation",
3071                              spapr_get_msix_emulation, NULL, NULL);
3072 }
3073 
3074 static void spapr_machine_finalizefn(Object *obj)
3075 {
3076     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3077 
3078     g_free(spapr->kvm_type);
3079 }
3080 
3081 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3082 {
3083     cpu_synchronize_state(cs);
3084     ppc_cpu_do_system_reset(cs);
3085 }
3086 
3087 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3088 {
3089     CPUState *cs;
3090 
3091     CPU_FOREACH(cs) {
3092         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3093     }
3094 }
3095 
3096 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3097                            uint32_t node, bool dedicated_hp_event_source,
3098                            Error **errp)
3099 {
3100     sPAPRDRConnector *drc;
3101     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3102     int i, fdt_offset, fdt_size;
3103     void *fdt;
3104     uint64_t addr = addr_start;
3105     bool hotplugged = spapr_drc_hotplugged(dev);
3106     Error *local_err = NULL;
3107 
3108     for (i = 0; i < nr_lmbs; i++) {
3109         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3110                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3111         g_assert(drc);
3112 
3113         fdt = create_device_tree(&fdt_size);
3114         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3115                                                 SPAPR_MEMORY_BLOCK_SIZE);
3116 
3117         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3118         if (local_err) {
3119             while (addr > addr_start) {
3120                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3121                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3122                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3123                 spapr_drc_detach(drc);
3124             }
3125             g_free(fdt);
3126             error_propagate(errp, local_err);
3127             return;
3128         }
3129         if (!hotplugged) {
3130             spapr_drc_reset(drc);
3131         }
3132         addr += SPAPR_MEMORY_BLOCK_SIZE;
3133     }
3134     /* send hotplug notification to the
3135      * guest only in case of hotplugged memory
3136      */
3137     if (hotplugged) {
3138         if (dedicated_hp_event_source) {
3139             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3140                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3141             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3142                                                    nr_lmbs,
3143                                                    spapr_drc_index(drc));
3144         } else {
3145             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3146                                            nr_lmbs);
3147         }
3148     }
3149 }
3150 
3151 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3152                               uint32_t node, Error **errp)
3153 {
3154     Error *local_err = NULL;
3155     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3156     PCDIMMDevice *dimm = PC_DIMM(dev);
3157     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3158     MemoryRegion *mr;
3159     uint64_t align, size, addr;
3160 
3161     mr = ddc->get_memory_region(dimm, &local_err);
3162     if (local_err) {
3163         goto out;
3164     }
3165     align = memory_region_get_alignment(mr);
3166     size = memory_region_size(mr);
3167 
3168     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3169     if (local_err) {
3170         goto out;
3171     }
3172 
3173     addr = object_property_get_uint(OBJECT(dimm),
3174                                     PC_DIMM_ADDR_PROP, &local_err);
3175     if (local_err) {
3176         goto out_unplug;
3177     }
3178 
3179     spapr_add_lmbs(dev, addr, size, node,
3180                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3181                    &local_err);
3182     if (local_err) {
3183         goto out_unplug;
3184     }
3185 
3186     return;
3187 
3188 out_unplug:
3189     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3190 out:
3191     error_propagate(errp, local_err);
3192 }
3193 
3194 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3195                                   Error **errp)
3196 {
3197     PCDIMMDevice *dimm = PC_DIMM(dev);
3198     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3199     MemoryRegion *mr;
3200     uint64_t size;
3201     char *mem_dev;
3202 
3203     mr = ddc->get_memory_region(dimm, errp);
3204     if (!mr) {
3205         return;
3206     }
3207     size = memory_region_size(mr);
3208 
3209     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3210         error_setg(errp, "Hotplugged memory size must be a multiple of "
3211                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3212         return;
3213     }
3214 
3215     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3216     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3217         error_setg(errp, "Memory backend has bad page size. "
3218                    "Use 'memory-backend-file' with correct mem-path.");
3219         goto out;
3220     }
3221 
3222 out:
3223     g_free(mem_dev);
3224 }
3225 
3226 struct sPAPRDIMMState {
3227     PCDIMMDevice *dimm;
3228     uint32_t nr_lmbs;
3229     QTAILQ_ENTRY(sPAPRDIMMState) next;
3230 };
3231 
3232 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3233                                                        PCDIMMDevice *dimm)
3234 {
3235     sPAPRDIMMState *dimm_state = NULL;
3236 
3237     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3238         if (dimm_state->dimm == dimm) {
3239             break;
3240         }
3241     }
3242     return dimm_state;
3243 }
3244 
3245 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3246                                                       uint32_t nr_lmbs,
3247                                                       PCDIMMDevice *dimm)
3248 {
3249     sPAPRDIMMState *ds = NULL;
3250 
3251     /*
3252      * If this request is for a DIMM whose removal had failed earlier
3253      * (due to guest's refusal to remove the LMBs), we would have this
3254      * dimm already in the pending_dimm_unplugs list. In that
3255      * case don't add again.
3256      */
3257     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3258     if (!ds) {
3259         ds = g_malloc0(sizeof(sPAPRDIMMState));
3260         ds->nr_lmbs = nr_lmbs;
3261         ds->dimm = dimm;
3262         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3263     }
3264     return ds;
3265 }
3266 
3267 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3268                                               sPAPRDIMMState *dimm_state)
3269 {
3270     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3271     g_free(dimm_state);
3272 }
3273 
3274 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3275                                                         PCDIMMDevice *dimm)
3276 {
3277     sPAPRDRConnector *drc;
3278     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3279     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3280     uint64_t size = memory_region_size(mr);
3281     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3282     uint32_t avail_lmbs = 0;
3283     uint64_t addr_start, addr;
3284     int i;
3285 
3286     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3287                                          &error_abort);
3288 
3289     addr = addr_start;
3290     for (i = 0; i < nr_lmbs; i++) {
3291         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3292                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3293         g_assert(drc);
3294         if (drc->dev) {
3295             avail_lmbs++;
3296         }
3297         addr += SPAPR_MEMORY_BLOCK_SIZE;
3298     }
3299 
3300     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3301 }
3302 
3303 /* Callback to be called during DRC release. */
3304 void spapr_lmb_release(DeviceState *dev)
3305 {
3306     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3307     PCDIMMDevice *dimm = PC_DIMM(dev);
3308     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3309     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3310     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3311 
3312     /* This information will get lost if a migration occurs
3313      * during the unplug process. In this case recover it. */
3314     if (ds == NULL) {
3315         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3316         g_assert(ds);
3317         /* The DRC being examined by the caller at least must be counted */
3318         g_assert(ds->nr_lmbs);
3319     }
3320 
3321     if (--ds->nr_lmbs) {
3322         return;
3323     }
3324 
3325     /*
3326      * Now that all the LMBs have been removed by the guest, call the
3327      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3328      */
3329     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3330     object_unparent(OBJECT(dev));
3331     spapr_pending_dimm_unplugs_remove(spapr, ds);
3332 }
3333 
3334 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3335                                         DeviceState *dev, Error **errp)
3336 {
3337     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3338     Error *local_err = NULL;
3339     PCDIMMDevice *dimm = PC_DIMM(dev);
3340     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3341     MemoryRegion *mr;
3342     uint32_t nr_lmbs;
3343     uint64_t size, addr_start, addr;
3344     int i;
3345     sPAPRDRConnector *drc;
3346 
3347     mr = ddc->get_memory_region(dimm, &local_err);
3348     if (local_err) {
3349         goto out;
3350     }
3351     size = memory_region_size(mr);
3352     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3353 
3354     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3355                                          &local_err);
3356     if (local_err) {
3357         goto out;
3358     }
3359 
3360     /*
3361      * An existing pending dimm state for this DIMM means that there is an
3362      * unplug operation in progress, waiting for the spapr_lmb_release
3363      * callback to complete the job (BQL can't cover that far). In this case,
3364      * bail out to avoid detaching DRCs that were already released.
3365      */
3366     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3367         error_setg(&local_err,
3368                    "Memory unplug already in progress for device %s",
3369                    dev->id);
3370         goto out;
3371     }
3372 
3373     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3374 
3375     addr = addr_start;
3376     for (i = 0; i < nr_lmbs; i++) {
3377         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3378                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3379         g_assert(drc);
3380 
3381         spapr_drc_detach(drc);
3382         addr += SPAPR_MEMORY_BLOCK_SIZE;
3383     }
3384 
3385     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3386                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3387     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3388                                               nr_lmbs, spapr_drc_index(drc));
3389 out:
3390     error_propagate(errp, local_err);
3391 }
3392 
3393 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3394                                            sPAPRMachineState *spapr)
3395 {
3396     PowerPCCPU *cpu = POWERPC_CPU(cs);
3397     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3398     int id = spapr_get_vcpu_id(cpu);
3399     void *fdt;
3400     int offset, fdt_size;
3401     char *nodename;
3402 
3403     fdt = create_device_tree(&fdt_size);
3404     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3405     offset = fdt_add_subnode(fdt, 0, nodename);
3406 
3407     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3408     g_free(nodename);
3409 
3410     *fdt_offset = offset;
3411     return fdt;
3412 }
3413 
3414 /* Callback to be called during DRC release. */
3415 void spapr_core_release(DeviceState *dev)
3416 {
3417     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3418     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3419     CPUCore *cc = CPU_CORE(dev);
3420     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3421 
3422     if (smc->pre_2_10_has_unused_icps) {
3423         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3424         int i;
3425 
3426         for (i = 0; i < cc->nr_threads; i++) {
3427             CPUState *cs = CPU(sc->threads[i]);
3428 
3429             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3430         }
3431     }
3432 
3433     assert(core_slot);
3434     core_slot->cpu = NULL;
3435     object_unparent(OBJECT(dev));
3436 }
3437 
3438 static
3439 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3440                                Error **errp)
3441 {
3442     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3443     int index;
3444     sPAPRDRConnector *drc;
3445     CPUCore *cc = CPU_CORE(dev);
3446 
3447     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3448         error_setg(errp, "Unable to find CPU core with core-id: %d",
3449                    cc->core_id);
3450         return;
3451     }
3452     if (index == 0) {
3453         error_setg(errp, "Boot CPU core may not be unplugged");
3454         return;
3455     }
3456 
3457     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3458                           spapr_vcpu_id(spapr, cc->core_id));
3459     g_assert(drc);
3460 
3461     spapr_drc_detach(drc);
3462 
3463     spapr_hotplug_req_remove_by_index(drc);
3464 }
3465 
3466 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3467                             Error **errp)
3468 {
3469     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3470     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3471     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3472     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3473     CPUCore *cc = CPU_CORE(dev);
3474     CPUState *cs = CPU(core->threads[0]);
3475     sPAPRDRConnector *drc;
3476     Error *local_err = NULL;
3477     CPUArchId *core_slot;
3478     int index;
3479     bool hotplugged = spapr_drc_hotplugged(dev);
3480 
3481     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3482     if (!core_slot) {
3483         error_setg(errp, "Unable to find CPU core with core-id: %d",
3484                    cc->core_id);
3485         return;
3486     }
3487     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3488                           spapr_vcpu_id(spapr, cc->core_id));
3489 
3490     g_assert(drc || !mc->has_hotpluggable_cpus);
3491 
3492     if (drc) {
3493         void *fdt;
3494         int fdt_offset;
3495 
3496         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3497 
3498         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3499         if (local_err) {
3500             g_free(fdt);
3501             error_propagate(errp, local_err);
3502             return;
3503         }
3504 
3505         if (hotplugged) {
3506             /*
3507              * Send hotplug notification interrupt to the guest only
3508              * in case of hotplugged CPUs.
3509              */
3510             spapr_hotplug_req_add_by_index(drc);
3511         } else {
3512             spapr_drc_reset(drc);
3513         }
3514     }
3515 
3516     core_slot->cpu = OBJECT(dev);
3517 
3518     if (smc->pre_2_10_has_unused_icps) {
3519         int i;
3520 
3521         for (i = 0; i < cc->nr_threads; i++) {
3522             cs = CPU(core->threads[i]);
3523             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3524         }
3525     }
3526 }
3527 
3528 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3529                                 Error **errp)
3530 {
3531     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3532     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3533     Error *local_err = NULL;
3534     CPUCore *cc = CPU_CORE(dev);
3535     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3536     const char *type = object_get_typename(OBJECT(dev));
3537     CPUArchId *core_slot;
3538     int index;
3539 
3540     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3541         error_setg(&local_err, "CPU hotplug not supported for this machine");
3542         goto out;
3543     }
3544 
3545     if (strcmp(base_core_type, type)) {
3546         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3547         goto out;
3548     }
3549 
3550     if (cc->core_id % smp_threads) {
3551         error_setg(&local_err, "invalid core id %d", cc->core_id);
3552         goto out;
3553     }
3554 
3555     /*
3556      * In general we should have homogeneous threads-per-core, but old
3557      * (pre hotplug support) machine types allow the last core to have
3558      * reduced threads as a compatibility hack for when we allowed
3559      * total vcpus not a multiple of threads-per-core.
3560      */
3561     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3562         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3563                    cc->nr_threads, smp_threads);
3564         goto out;
3565     }
3566 
3567     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3568     if (!core_slot) {
3569         error_setg(&local_err, "core id %d out of range", cc->core_id);
3570         goto out;
3571     }
3572 
3573     if (core_slot->cpu) {
3574         error_setg(&local_err, "core %d already populated", cc->core_id);
3575         goto out;
3576     }
3577 
3578     numa_cpu_pre_plug(core_slot, dev, &local_err);
3579 
3580 out:
3581     error_propagate(errp, local_err);
3582 }
3583 
3584 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3585                                       DeviceState *dev, Error **errp)
3586 {
3587     MachineState *ms = MACHINE(hotplug_dev);
3588     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3589 
3590     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3591         int node;
3592 
3593         if (!smc->dr_lmb_enabled) {
3594             error_setg(errp, "Memory hotplug not supported for this machine");
3595             return;
3596         }
3597         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3598         if (*errp) {
3599             return;
3600         }
3601         if (node < 0 || node >= MAX_NODES) {
3602             error_setg(errp, "Invaild node %d", node);
3603             return;
3604         }
3605 
3606         spapr_memory_plug(hotplug_dev, dev, node, errp);
3607     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3608         spapr_core_plug(hotplug_dev, dev, errp);
3609     }
3610 }
3611 
3612 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3613                                                 DeviceState *dev, Error **errp)
3614 {
3615     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3616     MachineClass *mc = MACHINE_GET_CLASS(sms);
3617 
3618     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3619         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3620             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3621         } else {
3622             /* NOTE: this means there is a window after guest reset, prior to
3623              * CAS negotiation, where unplug requests will fail due to the
3624              * capability not being detected yet. This is a bit different than
3625              * the case with PCI unplug, where the events will be queued and
3626              * eventually handled by the guest after boot
3627              */
3628             error_setg(errp, "Memory hot unplug not supported for this guest");
3629         }
3630     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3631         if (!mc->has_hotpluggable_cpus) {
3632             error_setg(errp, "CPU hot unplug not supported on this machine");
3633             return;
3634         }
3635         spapr_core_unplug_request(hotplug_dev, dev, errp);
3636     }
3637 }
3638 
3639 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3640                                           DeviceState *dev, Error **errp)
3641 {
3642     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3643         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3644     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3645         spapr_core_pre_plug(hotplug_dev, dev, errp);
3646     }
3647 }
3648 
3649 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3650                                                  DeviceState *dev)
3651 {
3652     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3653         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3654         return HOTPLUG_HANDLER(machine);
3655     }
3656     return NULL;
3657 }
3658 
3659 static CpuInstanceProperties
3660 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3661 {
3662     CPUArchId *core_slot;
3663     MachineClass *mc = MACHINE_GET_CLASS(machine);
3664 
3665     /* make sure possible_cpu are intialized */
3666     mc->possible_cpu_arch_ids(machine);
3667     /* get CPU core slot containing thread that matches cpu_index */
3668     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3669     assert(core_slot);
3670     return core_slot->props;
3671 }
3672 
3673 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3674 {
3675     return idx / smp_cores % nb_numa_nodes;
3676 }
3677 
3678 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3679 {
3680     int i;
3681     const char *core_type;
3682     int spapr_max_cores = max_cpus / smp_threads;
3683     MachineClass *mc = MACHINE_GET_CLASS(machine);
3684 
3685     if (!mc->has_hotpluggable_cpus) {
3686         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3687     }
3688     if (machine->possible_cpus) {
3689         assert(machine->possible_cpus->len == spapr_max_cores);
3690         return machine->possible_cpus;
3691     }
3692 
3693     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3694     if (!core_type) {
3695         error_report("Unable to find sPAPR CPU Core definition");
3696         exit(1);
3697     }
3698 
3699     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3700                              sizeof(CPUArchId) * spapr_max_cores);
3701     machine->possible_cpus->len = spapr_max_cores;
3702     for (i = 0; i < machine->possible_cpus->len; i++) {
3703         int core_id = i * smp_threads;
3704 
3705         machine->possible_cpus->cpus[i].type = core_type;
3706         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3707         machine->possible_cpus->cpus[i].arch_id = core_id;
3708         machine->possible_cpus->cpus[i].props.has_core_id = true;
3709         machine->possible_cpus->cpus[i].props.core_id = core_id;
3710     }
3711     return machine->possible_cpus;
3712 }
3713 
3714 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3715                                 uint64_t *buid, hwaddr *pio,
3716                                 hwaddr *mmio32, hwaddr *mmio64,
3717                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3718 {
3719     /*
3720      * New-style PHB window placement.
3721      *
3722      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3723      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3724      * windows.
3725      *
3726      * Some guest kernels can't work with MMIO windows above 1<<46
3727      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3728      *
3729      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3730      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3731      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3732      * 1TiB 64-bit MMIO windows for each PHB.
3733      */
3734     const uint64_t base_buid = 0x800000020000000ULL;
3735 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3736                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3737     int i;
3738 
3739     /* Sanity check natural alignments */
3740     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3741     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3742     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3743     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3744     /* Sanity check bounds */
3745     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3746                       SPAPR_PCI_MEM32_WIN_SIZE);
3747     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3748                       SPAPR_PCI_MEM64_WIN_SIZE);
3749 
3750     if (index >= SPAPR_MAX_PHBS) {
3751         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3752                    SPAPR_MAX_PHBS - 1);
3753         return;
3754     }
3755 
3756     *buid = base_buid + index;
3757     for (i = 0; i < n_dma; ++i) {
3758         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3759     }
3760 
3761     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3762     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3763     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3764 }
3765 
3766 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3767 {
3768     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3769 
3770     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3771 }
3772 
3773 static void spapr_ics_resend(XICSFabric *dev)
3774 {
3775     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3776 
3777     ics_resend(spapr->ics);
3778 }
3779 
3780 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3781 {
3782     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3783 
3784     return cpu ? ICP(cpu->intc) : NULL;
3785 }
3786 
3787 #define ICS_IRQ_FREE(ics, srcno)   \
3788     (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3789 
3790 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3791 {
3792     int first, i;
3793 
3794     for (first = 0; first < ics->nr_irqs; first += alignnum) {
3795         if (num > (ics->nr_irqs - first)) {
3796             return -1;
3797         }
3798         for (i = first; i < first + num; ++i) {
3799             if (!ICS_IRQ_FREE(ics, i)) {
3800                 break;
3801             }
3802         }
3803         if (i == (first + num)) {
3804             return first;
3805         }
3806     }
3807 
3808     return -1;
3809 }
3810 
3811 /*
3812  * Allocate the IRQ number and set the IRQ type, LSI or MSI
3813  */
3814 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3815 {
3816     ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3817 }
3818 
3819 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3820                     Error **errp)
3821 {
3822     ICSState *ics = spapr->ics;
3823     int irq;
3824 
3825     assert(ics);
3826 
3827     if (irq_hint) {
3828         if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3829             error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3830             return -1;
3831         }
3832         irq = irq_hint;
3833     } else {
3834         irq = ics_find_free_block(ics, 1, 1);
3835         if (irq < 0) {
3836             error_setg(errp, "can't allocate IRQ: no IRQ left");
3837             return -1;
3838         }
3839         irq += ics->offset;
3840     }
3841 
3842     spapr_irq_set_lsi(spapr, irq, lsi);
3843     trace_spapr_irq_alloc(irq);
3844 
3845     return irq;
3846 }
3847 
3848 /*
3849  * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3850  * the block. If align==true, aligns the first IRQ number to num.
3851  */
3852 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3853                           bool align, Error **errp)
3854 {
3855     ICSState *ics = spapr->ics;
3856     int i, first = -1;
3857 
3858     assert(ics);
3859 
3860     /*
3861      * MSIMesage::data is used for storing VIRQ so
3862      * it has to be aligned to num to support multiple
3863      * MSI vectors. MSI-X is not affected by this.
3864      * The hint is used for the first IRQ, the rest should
3865      * be allocated continuously.
3866      */
3867     if (align) {
3868         assert((num == 1) || (num == 2) || (num == 4) ||
3869                (num == 8) || (num == 16) || (num == 32));
3870         first = ics_find_free_block(ics, num, num);
3871     } else {
3872         first = ics_find_free_block(ics, num, 1);
3873     }
3874     if (first < 0) {
3875         error_setg(errp, "can't find a free %d-IRQ block", num);
3876         return -1;
3877     }
3878 
3879     first += ics->offset;
3880     for (i = first; i < first + num; ++i) {
3881         spapr_irq_set_lsi(spapr, i, lsi);
3882     }
3883 
3884     trace_spapr_irq_alloc_block(first, num, lsi, align);
3885 
3886     return first;
3887 }
3888 
3889 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3890 {
3891     ICSState *ics = spapr->ics;
3892     int srcno = irq - ics->offset;
3893     int i;
3894 
3895     if (ics_valid_irq(ics, irq)) {
3896         trace_spapr_irq_free(0, irq, num);
3897         for (i = srcno; i < srcno + num; ++i) {
3898             if (ICS_IRQ_FREE(ics, i)) {
3899                 trace_spapr_irq_free_warn(0, i + ics->offset);
3900             }
3901             memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3902         }
3903     }
3904 }
3905 
3906 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3907 {
3908     ICSState *ics = spapr->ics;
3909 
3910     if (ics_valid_irq(ics, irq)) {
3911         return ics->qirqs[irq - ics->offset];
3912     }
3913 
3914     return NULL;
3915 }
3916 
3917 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3918                                  Monitor *mon)
3919 {
3920     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3921     CPUState *cs;
3922 
3923     CPU_FOREACH(cs) {
3924         PowerPCCPU *cpu = POWERPC_CPU(cs);
3925 
3926         icp_pic_print_info(ICP(cpu->intc), mon);
3927     }
3928 
3929     ics_pic_print_info(spapr->ics, mon);
3930 }
3931 
3932 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3933 {
3934     return cpu->vcpu_id;
3935 }
3936 
3937 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3938 {
3939     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3940     int vcpu_id;
3941 
3942     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3943 
3944     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3945         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3946         error_append_hint(errp, "Adjust the number of cpus to %d "
3947                           "or try to raise the number of threads per core\n",
3948                           vcpu_id * smp_threads / spapr->vsmt);
3949         return;
3950     }
3951 
3952     cpu->vcpu_id = vcpu_id;
3953 }
3954 
3955 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3956 {
3957     CPUState *cs;
3958 
3959     CPU_FOREACH(cs) {
3960         PowerPCCPU *cpu = POWERPC_CPU(cs);
3961 
3962         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3963             return cpu;
3964         }
3965     }
3966 
3967     return NULL;
3968 }
3969 
3970 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3971 {
3972     MachineClass *mc = MACHINE_CLASS(oc);
3973     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3974     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3975     NMIClass *nc = NMI_CLASS(oc);
3976     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3977     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3978     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3979     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3980 
3981     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3982 
3983     /*
3984      * We set up the default / latest behaviour here.  The class_init
3985      * functions for the specific versioned machine types can override
3986      * these details for backwards compatibility
3987      */
3988     mc->init = spapr_machine_init;
3989     mc->reset = spapr_machine_reset;
3990     mc->block_default_type = IF_SCSI;
3991     mc->max_cpus = 1024;
3992     mc->no_parallel = 1;
3993     mc->default_boot_order = "";
3994     mc->default_ram_size = 512 * M_BYTE;
3995     mc->kvm_type = spapr_kvm_type;
3996     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3997     mc->pci_allow_0_address = true;
3998     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3999     hc->pre_plug = spapr_machine_device_pre_plug;
4000     hc->plug = spapr_machine_device_plug;
4001     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4002     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4003     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4004     hc->unplug_request = spapr_machine_device_unplug_request;
4005 
4006     smc->dr_lmb_enabled = true;
4007     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4008     mc->has_hotpluggable_cpus = true;
4009     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4010     fwc->get_dev_path = spapr_get_fw_dev_path;
4011     nc->nmi_monitor_handler = spapr_nmi;
4012     smc->phb_placement = spapr_phb_placement;
4013     vhc->hypercall = emulate_spapr_hypercall;
4014     vhc->hpt_mask = spapr_hpt_mask;
4015     vhc->map_hptes = spapr_map_hptes;
4016     vhc->unmap_hptes = spapr_unmap_hptes;
4017     vhc->store_hpte = spapr_store_hpte;
4018     vhc->get_patbe = spapr_get_patbe;
4019     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4020     xic->ics_get = spapr_ics_get;
4021     xic->ics_resend = spapr_ics_resend;
4022     xic->icp_get = spapr_icp_get;
4023     ispc->print_info = spapr_pic_print_info;
4024     /* Force NUMA node memory size to be a multiple of
4025      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4026      * in which LMBs are represented and hot-added
4027      */
4028     mc->numa_mem_align_shift = 28;
4029 
4030     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4031     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4032     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4033     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4034     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4035     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4036     spapr_caps_add_properties(smc, &error_abort);
4037 }
4038 
4039 static const TypeInfo spapr_machine_info = {
4040     .name          = TYPE_SPAPR_MACHINE,
4041     .parent        = TYPE_MACHINE,
4042     .abstract      = true,
4043     .instance_size = sizeof(sPAPRMachineState),
4044     .instance_init = spapr_instance_init,
4045     .instance_finalize = spapr_machine_finalizefn,
4046     .class_size    = sizeof(sPAPRMachineClass),
4047     .class_init    = spapr_machine_class_init,
4048     .interfaces = (InterfaceInfo[]) {
4049         { TYPE_FW_PATH_PROVIDER },
4050         { TYPE_NMI },
4051         { TYPE_HOTPLUG_HANDLER },
4052         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4053         { TYPE_XICS_FABRIC },
4054         { TYPE_INTERRUPT_STATS_PROVIDER },
4055         { }
4056     },
4057 };
4058 
4059 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4060     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4061                                                     void *data)      \
4062     {                                                                \
4063         MachineClass *mc = MACHINE_CLASS(oc);                        \
4064         spapr_machine_##suffix##_class_options(mc);                  \
4065         if (latest) {                                                \
4066             mc->alias = "pseries";                                   \
4067             mc->is_default = 1;                                      \
4068         }                                                            \
4069     }                                                                \
4070     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
4071     {                                                                \
4072         MachineState *machine = MACHINE(obj);                        \
4073         spapr_machine_##suffix##_instance_options(machine);          \
4074     }                                                                \
4075     static const TypeInfo spapr_machine_##suffix##_info = {          \
4076         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4077         .parent = TYPE_SPAPR_MACHINE,                                \
4078         .class_init = spapr_machine_##suffix##_class_init,           \
4079         .instance_init = spapr_machine_##suffix##_instance_init,     \
4080     };                                                               \
4081     static void spapr_machine_register_##suffix(void)                \
4082     {                                                                \
4083         type_register(&spapr_machine_##suffix##_info);               \
4084     }                                                                \
4085     type_init(spapr_machine_register_##suffix)
4086 
4087 /*
4088  * pseries-2.13
4089  */
4090 static void spapr_machine_2_13_instance_options(MachineState *machine)
4091 {
4092 }
4093 
4094 static void spapr_machine_2_13_class_options(MachineClass *mc)
4095 {
4096     /* Defaults for the latest behaviour inherited from the base class */
4097 }
4098 
4099 DEFINE_SPAPR_MACHINE(2_13, "2.13", true);
4100 
4101 /*
4102  * pseries-2.12
4103  */
4104 #define SPAPR_COMPAT_2_12                                              \
4105     HW_COMPAT_2_12                                                     \
4106     {                                                                  \
4107         .driver = TYPE_POWERPC_CPU,                                    \
4108         .property = "pre-2.13-migration",                              \
4109         .value    = "on",                                              \
4110     },
4111 
4112 static void spapr_machine_2_12_instance_options(MachineState *machine)
4113 {
4114     spapr_machine_2_13_instance_options(machine);
4115 }
4116 
4117 static void spapr_machine_2_12_class_options(MachineClass *mc)
4118 {
4119     spapr_machine_2_13_class_options(mc);
4120     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4121 }
4122 
4123 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4124 
4125 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4126 {
4127     spapr_machine_2_12_instance_options(machine);
4128 }
4129 
4130 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4131 {
4132     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4133 
4134     spapr_machine_2_12_class_options(mc);
4135     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4136     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4137     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4138 }
4139 
4140 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4141 
4142 /*
4143  * pseries-2.11
4144  */
4145 #define SPAPR_COMPAT_2_11                                              \
4146     HW_COMPAT_2_11
4147 
4148 static void spapr_machine_2_11_instance_options(MachineState *machine)
4149 {
4150     spapr_machine_2_12_instance_options(machine);
4151 }
4152 
4153 static void spapr_machine_2_11_class_options(MachineClass *mc)
4154 {
4155     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4156 
4157     spapr_machine_2_12_class_options(mc);
4158     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4159     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4160 }
4161 
4162 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4163 
4164 /*
4165  * pseries-2.10
4166  */
4167 #define SPAPR_COMPAT_2_10                                              \
4168     HW_COMPAT_2_10
4169 
4170 static void spapr_machine_2_10_instance_options(MachineState *machine)
4171 {
4172     spapr_machine_2_11_instance_options(machine);
4173 }
4174 
4175 static void spapr_machine_2_10_class_options(MachineClass *mc)
4176 {
4177     spapr_machine_2_11_class_options(mc);
4178     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4179 }
4180 
4181 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4182 
4183 /*
4184  * pseries-2.9
4185  */
4186 #define SPAPR_COMPAT_2_9                                               \
4187     HW_COMPAT_2_9                                                      \
4188     {                                                                  \
4189         .driver = TYPE_POWERPC_CPU,                                    \
4190         .property = "pre-2.10-migration",                              \
4191         .value    = "on",                                              \
4192     },                                                                 \
4193 
4194 static void spapr_machine_2_9_instance_options(MachineState *machine)
4195 {
4196     spapr_machine_2_10_instance_options(machine);
4197 }
4198 
4199 static void spapr_machine_2_9_class_options(MachineClass *mc)
4200 {
4201     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4202 
4203     spapr_machine_2_10_class_options(mc);
4204     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4205     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4206     smc->pre_2_10_has_unused_icps = true;
4207     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4208 }
4209 
4210 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4211 
4212 /*
4213  * pseries-2.8
4214  */
4215 #define SPAPR_COMPAT_2_8                                        \
4216     HW_COMPAT_2_8                                               \
4217     {                                                           \
4218         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4219         .property = "pcie-extended-configuration-space",        \
4220         .value    = "off",                                      \
4221     },
4222 
4223 static void spapr_machine_2_8_instance_options(MachineState *machine)
4224 {
4225     spapr_machine_2_9_instance_options(machine);
4226 }
4227 
4228 static void spapr_machine_2_8_class_options(MachineClass *mc)
4229 {
4230     spapr_machine_2_9_class_options(mc);
4231     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4232     mc->numa_mem_align_shift = 23;
4233 }
4234 
4235 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4236 
4237 /*
4238  * pseries-2.7
4239  */
4240 #define SPAPR_COMPAT_2_7                            \
4241     HW_COMPAT_2_7                                   \
4242     {                                               \
4243         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4244         .property = "mem_win_size",                 \
4245         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4246     },                                              \
4247     {                                               \
4248         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4249         .property = "mem64_win_size",               \
4250         .value    = "0",                            \
4251     },                                              \
4252     {                                               \
4253         .driver = TYPE_POWERPC_CPU,                 \
4254         .property = "pre-2.8-migration",            \
4255         .value    = "on",                           \
4256     },                                              \
4257     {                                               \
4258         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4259         .property = "pre-2.8-migration",            \
4260         .value    = "on",                           \
4261     },
4262 
4263 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4264                               uint64_t *buid, hwaddr *pio,
4265                               hwaddr *mmio32, hwaddr *mmio64,
4266                               unsigned n_dma, uint32_t *liobns, Error **errp)
4267 {
4268     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4269     const uint64_t base_buid = 0x800000020000000ULL;
4270     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4271     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4272     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4273     const uint32_t max_index = 255;
4274     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4275 
4276     uint64_t ram_top = MACHINE(spapr)->ram_size;
4277     hwaddr phb0_base, phb_base;
4278     int i;
4279 
4280     /* Do we have hotpluggable memory? */
4281     if (MACHINE(spapr)->maxram_size > ram_top) {
4282         /* Can't just use maxram_size, because there may be an
4283          * alignment gap between normal and hotpluggable memory
4284          * regions */
4285         ram_top = spapr->hotplug_memory.base +
4286             memory_region_size(&spapr->hotplug_memory.mr);
4287     }
4288 
4289     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4290 
4291     if (index > max_index) {
4292         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4293                    max_index);
4294         return;
4295     }
4296 
4297     *buid = base_buid + index;
4298     for (i = 0; i < n_dma; ++i) {
4299         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4300     }
4301 
4302     phb_base = phb0_base + index * phb_spacing;
4303     *pio = phb_base + pio_offset;
4304     *mmio32 = phb_base + mmio_offset;
4305     /*
4306      * We don't set the 64-bit MMIO window, relying on the PHB's
4307      * fallback behaviour of automatically splitting a large "32-bit"
4308      * window into contiguous 32-bit and 64-bit windows
4309      */
4310 }
4311 
4312 static void spapr_machine_2_7_instance_options(MachineState *machine)
4313 {
4314     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4315 
4316     spapr_machine_2_8_instance_options(machine);
4317     spapr->use_hotplug_event_source = false;
4318 }
4319 
4320 static void spapr_machine_2_7_class_options(MachineClass *mc)
4321 {
4322     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4323 
4324     spapr_machine_2_8_class_options(mc);
4325     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4326     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4327     smc->phb_placement = phb_placement_2_7;
4328 }
4329 
4330 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4331 
4332 /*
4333  * pseries-2.6
4334  */
4335 #define SPAPR_COMPAT_2_6 \
4336     HW_COMPAT_2_6 \
4337     { \
4338         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4339         .property = "ddw",\
4340         .value    = stringify(off),\
4341     },
4342 
4343 static void spapr_machine_2_6_instance_options(MachineState *machine)
4344 {
4345     spapr_machine_2_7_instance_options(machine);
4346 }
4347 
4348 static void spapr_machine_2_6_class_options(MachineClass *mc)
4349 {
4350     spapr_machine_2_7_class_options(mc);
4351     mc->has_hotpluggable_cpus = false;
4352     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4353 }
4354 
4355 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4356 
4357 /*
4358  * pseries-2.5
4359  */
4360 #define SPAPR_COMPAT_2_5 \
4361     HW_COMPAT_2_5 \
4362     { \
4363         .driver   = "spapr-vlan", \
4364         .property = "use-rx-buffer-pools", \
4365         .value    = "off", \
4366     },
4367 
4368 static void spapr_machine_2_5_instance_options(MachineState *machine)
4369 {
4370     spapr_machine_2_6_instance_options(machine);
4371 }
4372 
4373 static void spapr_machine_2_5_class_options(MachineClass *mc)
4374 {
4375     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4376 
4377     spapr_machine_2_6_class_options(mc);
4378     smc->use_ohci_by_default = true;
4379     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4380 }
4381 
4382 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4383 
4384 /*
4385  * pseries-2.4
4386  */
4387 #define SPAPR_COMPAT_2_4 \
4388         HW_COMPAT_2_4
4389 
4390 static void spapr_machine_2_4_instance_options(MachineState *machine)
4391 {
4392     spapr_machine_2_5_instance_options(machine);
4393 }
4394 
4395 static void spapr_machine_2_4_class_options(MachineClass *mc)
4396 {
4397     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4398 
4399     spapr_machine_2_5_class_options(mc);
4400     smc->dr_lmb_enabled = false;
4401     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4402 }
4403 
4404 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4405 
4406 /*
4407  * pseries-2.3
4408  */
4409 #define SPAPR_COMPAT_2_3 \
4410         HW_COMPAT_2_3 \
4411         {\
4412             .driver   = "spapr-pci-host-bridge",\
4413             .property = "dynamic-reconfiguration",\
4414             .value    = "off",\
4415         },
4416 
4417 static void spapr_machine_2_3_instance_options(MachineState *machine)
4418 {
4419     spapr_machine_2_4_instance_options(machine);
4420 }
4421 
4422 static void spapr_machine_2_3_class_options(MachineClass *mc)
4423 {
4424     spapr_machine_2_4_class_options(mc);
4425     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4426 }
4427 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4428 
4429 /*
4430  * pseries-2.2
4431  */
4432 
4433 #define SPAPR_COMPAT_2_2 \
4434         HW_COMPAT_2_2 \
4435         {\
4436             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4437             .property = "mem_win_size",\
4438             .value    = "0x20000000",\
4439         },
4440 
4441 static void spapr_machine_2_2_instance_options(MachineState *machine)
4442 {
4443     spapr_machine_2_3_instance_options(machine);
4444     machine->suppress_vmdesc = true;
4445 }
4446 
4447 static void spapr_machine_2_2_class_options(MachineClass *mc)
4448 {
4449     spapr_machine_2_3_class_options(mc);
4450     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4451 }
4452 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4453 
4454 /*
4455  * pseries-2.1
4456  */
4457 #define SPAPR_COMPAT_2_1 \
4458         HW_COMPAT_2_1
4459 
4460 static void spapr_machine_2_1_instance_options(MachineState *machine)
4461 {
4462     spapr_machine_2_2_instance_options(machine);
4463 }
4464 
4465 static void spapr_machine_2_1_class_options(MachineClass *mc)
4466 {
4467     spapr_machine_2_2_class_options(mc);
4468     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4469 }
4470 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4471 
4472 static void spapr_machine_register_types(void)
4473 {
4474     type_register_static(&spapr_machine_info);
4475 }
4476 
4477 type_init(spapr_machine_register_types)
4478