1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/ppc/xics.h" 59 #include "hw/pci/msi.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/scsi/scsi.h" 63 #include "hw/virtio/virtio-scsi.h" 64 #include "hw/virtio/vhost-scsi-common.h" 65 66 #include "exec/address-spaces.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "hw/compat.h" 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 #include "hw/mem/memory-device.h" 78 79 #include <libfdt.h> 80 81 /* SLOF memory layout: 82 * 83 * SLOF raw image loaded at 0, copies its romfs right below the flat 84 * device-tree, then position SLOF itself 31M below that 85 * 86 * So we set FW_OVERHEAD to 40MB which should account for all of that 87 * and more 88 * 89 * We load our kernel at 4M, leaving space for SLOF initial image 90 */ 91 #define FDT_MAX_SIZE 0x100000 92 #define RTAS_MAX_SIZE 0x10000 93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 94 #define FW_MAX_SIZE 0x400000 95 #define FW_FILE_NAME "slof.bin" 96 #define FW_OVERHEAD 0x2800000 97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 98 99 #define MIN_RMA_SLOF 128UL 100 101 #define PHANDLE_XICP 0x00001111 102 103 /* These two functions implement the VCPU id numbering: one to compute them 104 * all and one to identify thread 0 of a VCORE. Any change to the first one 105 * is likely to have an impact on the second one, so let's keep them close. 106 */ 107 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 108 { 109 assert(spapr->vsmt); 110 return 111 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 112 } 113 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 114 PowerPCCPU *cpu) 115 { 116 assert(spapr->vsmt); 117 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 118 } 119 120 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 121 const char *type_ics, 122 int nr_irqs, Error **errp) 123 { 124 Error *local_err = NULL; 125 Object *obj; 126 127 obj = object_new(type_ics); 128 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 129 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 130 &error_abort); 131 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 132 if (local_err) { 133 goto error; 134 } 135 object_property_set_bool(obj, true, "realized", &local_err); 136 if (local_err) { 137 goto error; 138 } 139 140 return ICS_SIMPLE(obj); 141 142 error: 143 error_propagate(errp, local_err); 144 return NULL; 145 } 146 147 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 148 { 149 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 150 * and newer QEMUs don't even have them. In both cases, we don't want 151 * to send anything on the wire. 152 */ 153 return false; 154 } 155 156 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 157 .name = "icp/server", 158 .version_id = 1, 159 .minimum_version_id = 1, 160 .needed = pre_2_10_vmstate_dummy_icp_needed, 161 .fields = (VMStateField[]) { 162 VMSTATE_UNUSED(4), /* uint32_t xirr */ 163 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 164 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 165 VMSTATE_END_OF_LIST() 166 }, 167 }; 168 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 176 { 177 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 178 (void *)(uintptr_t) i); 179 } 180 181 static int xics_max_server_number(sPAPRMachineState *spapr) 182 { 183 assert(spapr->vsmt); 184 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 185 } 186 187 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 188 { 189 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 190 191 if (kvm_enabled()) { 192 if (machine_kernel_irqchip_allowed(machine) && 193 !xics_kvm_init(spapr, errp)) { 194 spapr->icp_type = TYPE_KVM_ICP; 195 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 196 } 197 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 198 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 199 return; 200 } 201 } 202 203 if (!spapr->ics) { 204 xics_spapr_init(spapr); 205 spapr->icp_type = TYPE_ICP; 206 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 207 if (!spapr->ics) { 208 return; 209 } 210 } 211 } 212 213 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 214 int smt_threads) 215 { 216 int i, ret = 0; 217 uint32_t servers_prop[smt_threads]; 218 uint32_t gservers_prop[smt_threads * 2]; 219 int index = spapr_get_vcpu_id(cpu); 220 221 if (cpu->compat_pvr) { 222 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 223 if (ret < 0) { 224 return ret; 225 } 226 } 227 228 /* Build interrupt servers and gservers properties */ 229 for (i = 0; i < smt_threads; i++) { 230 servers_prop[i] = cpu_to_be32(index + i); 231 /* Hack, direct the group queues back to cpu 0 */ 232 gservers_prop[i*2] = cpu_to_be32(index + i); 233 gservers_prop[i*2 + 1] = 0; 234 } 235 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 236 servers_prop, sizeof(servers_prop)); 237 if (ret < 0) { 238 return ret; 239 } 240 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 241 gservers_prop, sizeof(gservers_prop)); 242 243 return ret; 244 } 245 246 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 247 { 248 int index = spapr_get_vcpu_id(cpu); 249 uint32_t associativity[] = {cpu_to_be32(0x5), 250 cpu_to_be32(0x0), 251 cpu_to_be32(0x0), 252 cpu_to_be32(0x0), 253 cpu_to_be32(cpu->node_id), 254 cpu_to_be32(index)}; 255 256 /* Advertise NUMA via ibm,associativity */ 257 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 258 sizeof(associativity)); 259 } 260 261 /* Populate the "ibm,pa-features" property */ 262 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 263 PowerPCCPU *cpu, 264 void *fdt, int offset, 265 bool legacy_guest) 266 { 267 uint8_t pa_features_206[] = { 6, 0, 268 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 269 uint8_t pa_features_207[] = { 24, 0, 270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 274 uint8_t pa_features_300[] = { 66, 0, 275 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 276 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 277 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 278 /* 6: DS207 */ 279 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 280 /* 16: Vector */ 281 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 282 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 283 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 284 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 286 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 287 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 288 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 289 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 290 /* 42: PM, 44: PC RA, 46: SC vec'd */ 291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 292 /* 48: SIMD, 50: QP BFP, 52: String */ 293 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 294 /* 54: DecFP, 56: DecI, 58: SHA */ 295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 296 /* 60: NM atomic, 62: RNG */ 297 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 298 }; 299 uint8_t *pa_features = NULL; 300 size_t pa_size; 301 302 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 303 pa_features = pa_features_206; 304 pa_size = sizeof(pa_features_206); 305 } 306 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 307 pa_features = pa_features_207; 308 pa_size = sizeof(pa_features_207); 309 } 310 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 311 pa_features = pa_features_300; 312 pa_size = sizeof(pa_features_300); 313 } 314 if (!pa_features) { 315 return; 316 } 317 318 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 319 /* 320 * Note: we keep CI large pages off by default because a 64K capable 321 * guest provisioned with large pages might otherwise try to map a qemu 322 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 323 * even if that qemu runs on a 4k host. 324 * We dd this bit back here if we are confident this is not an issue 325 */ 326 pa_features[3] |= 0x20; 327 } 328 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 329 pa_features[24] |= 0x80; /* Transactional memory support */ 330 } 331 if (legacy_guest && pa_size > 40) { 332 /* Workaround for broken kernels that attempt (guest) radix 333 * mode when they can't handle it, if they see the radix bit set 334 * in pa-features. So hide it from them. */ 335 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 336 } 337 338 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 339 } 340 341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 342 { 343 int ret = 0, offset, cpus_offset; 344 CPUState *cs; 345 char cpu_model[32]; 346 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 347 348 CPU_FOREACH(cs) { 349 PowerPCCPU *cpu = POWERPC_CPU(cs); 350 DeviceClass *dc = DEVICE_GET_CLASS(cs); 351 int index = spapr_get_vcpu_id(cpu); 352 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 353 354 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 355 continue; 356 } 357 358 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 359 360 cpus_offset = fdt_path_offset(fdt, "/cpus"); 361 if (cpus_offset < 0) { 362 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 363 if (cpus_offset < 0) { 364 return cpus_offset; 365 } 366 } 367 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 368 if (offset < 0) { 369 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 370 if (offset < 0) { 371 return offset; 372 } 373 } 374 375 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 376 pft_size_prop, sizeof(pft_size_prop)); 377 if (ret < 0) { 378 return ret; 379 } 380 381 if (nb_numa_nodes > 1) { 382 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 383 if (ret < 0) { 384 return ret; 385 } 386 } 387 388 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 389 if (ret < 0) { 390 return ret; 391 } 392 393 spapr_populate_pa_features(spapr, cpu, fdt, offset, 394 spapr->cas_legacy_guest_workaround); 395 } 396 return ret; 397 } 398 399 static hwaddr spapr_node0_size(MachineState *machine) 400 { 401 if (nb_numa_nodes) { 402 int i; 403 for (i = 0; i < nb_numa_nodes; ++i) { 404 if (numa_info[i].node_mem) { 405 return MIN(pow2floor(numa_info[i].node_mem), 406 machine->ram_size); 407 } 408 } 409 } 410 return machine->ram_size; 411 } 412 413 static void add_str(GString *s, const gchar *s1) 414 { 415 g_string_append_len(s, s1, strlen(s1) + 1); 416 } 417 418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 419 hwaddr size) 420 { 421 uint32_t associativity[] = { 422 cpu_to_be32(0x4), /* length */ 423 cpu_to_be32(0x0), cpu_to_be32(0x0), 424 cpu_to_be32(0x0), cpu_to_be32(nodeid) 425 }; 426 char mem_name[32]; 427 uint64_t mem_reg_property[2]; 428 int off; 429 430 mem_reg_property[0] = cpu_to_be64(start); 431 mem_reg_property[1] = cpu_to_be64(size); 432 433 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 434 off = fdt_add_subnode(fdt, 0, mem_name); 435 _FDT(off); 436 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 437 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 438 sizeof(mem_reg_property)))); 439 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 440 sizeof(associativity)))); 441 return off; 442 } 443 444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 445 { 446 MachineState *machine = MACHINE(spapr); 447 hwaddr mem_start, node_size; 448 int i, nb_nodes = nb_numa_nodes; 449 NodeInfo *nodes = numa_info; 450 NodeInfo ramnode; 451 452 /* No NUMA nodes, assume there is just one node with whole RAM */ 453 if (!nb_numa_nodes) { 454 nb_nodes = 1; 455 ramnode.node_mem = machine->ram_size; 456 nodes = &ramnode; 457 } 458 459 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 460 if (!nodes[i].node_mem) { 461 continue; 462 } 463 if (mem_start >= machine->ram_size) { 464 node_size = 0; 465 } else { 466 node_size = nodes[i].node_mem; 467 if (node_size > machine->ram_size - mem_start) { 468 node_size = machine->ram_size - mem_start; 469 } 470 } 471 if (!mem_start) { 472 /* spapr_machine_init() checks for rma_size <= node0_size 473 * already */ 474 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 475 mem_start += spapr->rma_size; 476 node_size -= spapr->rma_size; 477 } 478 for ( ; node_size; ) { 479 hwaddr sizetmp = pow2floor(node_size); 480 481 /* mem_start != 0 here */ 482 if (ctzl(mem_start) < ctzl(sizetmp)) { 483 sizetmp = 1ULL << ctzl(mem_start); 484 } 485 486 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 487 node_size -= sizetmp; 488 mem_start += sizetmp; 489 } 490 } 491 492 return 0; 493 } 494 495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 496 sPAPRMachineState *spapr) 497 { 498 PowerPCCPU *cpu = POWERPC_CPU(cs); 499 CPUPPCState *env = &cpu->env; 500 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 501 int index = spapr_get_vcpu_id(cpu); 502 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 503 0xffffffff, 0xffffffff}; 504 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 505 : SPAPR_TIMEBASE_FREQ; 506 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 507 uint32_t page_sizes_prop[64]; 508 size_t page_sizes_prop_size; 509 uint32_t vcpus_per_socket = smp_threads * smp_cores; 510 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 511 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 512 sPAPRDRConnector *drc; 513 int drc_index; 514 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 515 int i; 516 517 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 518 if (drc) { 519 drc_index = spapr_drc_index(drc); 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 521 } 522 523 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 524 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 525 526 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 527 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 528 env->dcache_line_size))); 529 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 530 env->dcache_line_size))); 531 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 532 env->icache_line_size))); 533 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 534 env->icache_line_size))); 535 536 if (pcc->l1_dcache_size) { 537 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 538 pcc->l1_dcache_size))); 539 } else { 540 warn_report("Unknown L1 dcache size for cpu"); 541 } 542 if (pcc->l1_icache_size) { 543 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 544 pcc->l1_icache_size))); 545 } else { 546 warn_report("Unknown L1 icache size for cpu"); 547 } 548 549 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 550 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 551 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 552 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 553 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 554 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 555 556 if (env->spr_cb[SPR_PURR].oea_read) { 557 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 558 } 559 560 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 561 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 562 segs, sizeof(segs)))); 563 } 564 565 /* Advertise VSX (vector extensions) if available 566 * 1 == VMX / Altivec available 567 * 2 == VSX available 568 * 569 * Only CPUs for which we create core types in spapr_cpu_core.c 570 * are possible, and all of those have VMX */ 571 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 573 } else { 574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 575 } 576 577 /* Advertise DFP (Decimal Floating Point) if available 578 * 0 / no property == no DFP 579 * 1 == DFP available */ 580 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 581 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 582 } 583 584 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 585 sizeof(page_sizes_prop)); 586 if (page_sizes_prop_size) { 587 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 588 page_sizes_prop, page_sizes_prop_size))); 589 } 590 591 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 592 593 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 594 cs->cpu_index / vcpus_per_socket))); 595 596 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 597 pft_size_prop, sizeof(pft_size_prop)))); 598 599 if (nb_numa_nodes > 1) { 600 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 601 } 602 603 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 604 605 if (pcc->radix_page_info) { 606 for (i = 0; i < pcc->radix_page_info->count; i++) { 607 radix_AP_encodings[i] = 608 cpu_to_be32(pcc->radix_page_info->entries[i]); 609 } 610 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 611 radix_AP_encodings, 612 pcc->radix_page_info->count * 613 sizeof(radix_AP_encodings[0])))); 614 } 615 } 616 617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 618 { 619 CPUState *cs; 620 int cpus_offset; 621 char *nodename; 622 623 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 624 _FDT(cpus_offset); 625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 626 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 627 628 /* 629 * We walk the CPUs in reverse order to ensure that CPU DT nodes 630 * created by fdt_add_subnode() end up in the right order in FDT 631 * for the guest kernel the enumerate the CPUs correctly. 632 */ 633 CPU_FOREACH_REVERSE(cs) { 634 PowerPCCPU *cpu = POWERPC_CPU(cs); 635 int index = spapr_get_vcpu_id(cpu); 636 DeviceClass *dc = DEVICE_GET_CLASS(cs); 637 int offset; 638 639 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 640 continue; 641 } 642 643 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 644 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 645 g_free(nodename); 646 _FDT(offset); 647 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 648 } 649 650 } 651 652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 653 { 654 MemoryDeviceInfoList *info; 655 656 for (info = list; info; info = info->next) { 657 MemoryDeviceInfo *value = info->value; 658 659 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 660 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 661 662 if (pcdimm_info->addr >= addr && 663 addr < (pcdimm_info->addr + pcdimm_info->size)) { 664 return pcdimm_info->node; 665 } 666 } 667 } 668 669 return -1; 670 } 671 672 struct sPAPRDrconfCellV2 { 673 uint32_t seq_lmbs; 674 uint64_t base_addr; 675 uint32_t drc_index; 676 uint32_t aa_index; 677 uint32_t flags; 678 } QEMU_PACKED; 679 680 typedef struct DrconfCellQueue { 681 struct sPAPRDrconfCellV2 cell; 682 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 683 } DrconfCellQueue; 684 685 static DrconfCellQueue * 686 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 687 uint32_t drc_index, uint32_t aa_index, 688 uint32_t flags) 689 { 690 DrconfCellQueue *elem; 691 692 elem = g_malloc0(sizeof(*elem)); 693 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 694 elem->cell.base_addr = cpu_to_be64(base_addr); 695 elem->cell.drc_index = cpu_to_be32(drc_index); 696 elem->cell.aa_index = cpu_to_be32(aa_index); 697 elem->cell.flags = cpu_to_be32(flags); 698 699 return elem; 700 } 701 702 /* ibm,dynamic-memory-v2 */ 703 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 704 int offset, MemoryDeviceInfoList *dimms) 705 { 706 MachineState *machine = MACHINE(spapr); 707 uint8_t *int_buf, *cur_index, buf_len; 708 int ret; 709 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 710 uint64_t addr, cur_addr, size; 711 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 712 uint64_t mem_end = machine->device_memory->base + 713 memory_region_size(&machine->device_memory->mr); 714 uint32_t node, nr_entries = 0; 715 sPAPRDRConnector *drc; 716 DrconfCellQueue *elem, *next; 717 MemoryDeviceInfoList *info; 718 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 719 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 720 721 /* Entry to cover RAM and the gap area */ 722 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 723 SPAPR_LMB_FLAGS_RESERVED | 724 SPAPR_LMB_FLAGS_DRC_INVALID); 725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 726 nr_entries++; 727 728 cur_addr = machine->device_memory->base; 729 for (info = dimms; info; info = info->next) { 730 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 731 732 addr = di->addr; 733 size = di->size; 734 node = di->node; 735 736 /* Entry for hot-pluggable area */ 737 if (cur_addr < addr) { 738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 739 g_assert(drc); 740 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 741 cur_addr, spapr_drc_index(drc), -1, 0); 742 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 743 nr_entries++; 744 } 745 746 /* Entry for DIMM */ 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell(size / lmb_size, addr, 750 spapr_drc_index(drc), node, 751 SPAPR_LMB_FLAGS_ASSIGNED); 752 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 753 nr_entries++; 754 cur_addr = addr + size; 755 } 756 757 /* Entry for remaining hotpluggable area */ 758 if (cur_addr < mem_end) { 759 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 760 g_assert(drc); 761 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 762 cur_addr, spapr_drc_index(drc), -1, 0); 763 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 764 nr_entries++; 765 } 766 767 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 768 int_buf = cur_index = g_malloc0(buf_len); 769 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 770 cur_index += sizeof(nr_entries); 771 772 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 773 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 774 cur_index += sizeof(elem->cell); 775 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 776 g_free(elem); 777 } 778 779 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 780 g_free(int_buf); 781 if (ret < 0) { 782 return -1; 783 } 784 return 0; 785 } 786 787 /* ibm,dynamic-memory */ 788 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 789 int offset, MemoryDeviceInfoList *dimms) 790 { 791 MachineState *machine = MACHINE(spapr); 792 int i, ret; 793 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 794 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 795 uint32_t nr_lmbs = (machine->device_memory->base + 796 memory_region_size(&machine->device_memory->mr)) / 797 lmb_size; 798 uint32_t *int_buf, *cur_index, buf_len; 799 800 /* 801 * Allocate enough buffer size to fit in ibm,dynamic-memory 802 */ 803 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 804 cur_index = int_buf = g_malloc0(buf_len); 805 int_buf[0] = cpu_to_be32(nr_lmbs); 806 cur_index++; 807 for (i = 0; i < nr_lmbs; i++) { 808 uint64_t addr = i * lmb_size; 809 uint32_t *dynamic_memory = cur_index; 810 811 if (i >= device_lmb_start) { 812 sPAPRDRConnector *drc; 813 814 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 815 g_assert(drc); 816 817 dynamic_memory[0] = cpu_to_be32(addr >> 32); 818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 819 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 821 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 822 if (memory_region_present(get_system_memory(), addr)) { 823 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 824 } else { 825 dynamic_memory[5] = cpu_to_be32(0); 826 } 827 } else { 828 /* 829 * LMB information for RMA, boot time RAM and gap b/n RAM and 830 * device memory region -- all these are marked as reserved 831 * and as having no valid DRC. 832 */ 833 dynamic_memory[0] = cpu_to_be32(addr >> 32); 834 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 835 dynamic_memory[2] = cpu_to_be32(0); 836 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 837 dynamic_memory[4] = cpu_to_be32(-1); 838 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 839 SPAPR_LMB_FLAGS_DRC_INVALID); 840 } 841 842 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 843 } 844 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 845 g_free(int_buf); 846 if (ret < 0) { 847 return -1; 848 } 849 return 0; 850 } 851 852 /* 853 * Adds ibm,dynamic-reconfiguration-memory node. 854 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 855 * of this device tree node. 856 */ 857 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 858 { 859 MachineState *machine = MACHINE(spapr); 860 int ret, i, offset; 861 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 862 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 863 uint32_t *int_buf, *cur_index, buf_len; 864 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 865 MemoryDeviceInfoList *dimms = NULL; 866 867 /* 868 * Don't create the node if there is no device memory 869 */ 870 if (machine->ram_size == machine->maxram_size) { 871 return 0; 872 } 873 874 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 875 876 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 877 sizeof(prop_lmb_size)); 878 if (ret < 0) { 879 return ret; 880 } 881 882 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 883 if (ret < 0) { 884 return ret; 885 } 886 887 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 888 if (ret < 0) { 889 return ret; 890 } 891 892 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 893 dimms = qmp_memory_device_list(); 894 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 895 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 896 } else { 897 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 898 } 899 qapi_free_MemoryDeviceInfoList(dimms); 900 901 if (ret < 0) { 902 return ret; 903 } 904 905 /* ibm,associativity-lookup-arrays */ 906 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 907 cur_index = int_buf = g_malloc0(buf_len); 908 909 cur_index = int_buf; 910 int_buf[0] = cpu_to_be32(nr_nodes); 911 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 912 cur_index += 2; 913 for (i = 0; i < nr_nodes; i++) { 914 uint32_t associativity[] = { 915 cpu_to_be32(0x0), 916 cpu_to_be32(0x0), 917 cpu_to_be32(0x0), 918 cpu_to_be32(i) 919 }; 920 memcpy(cur_index, associativity, sizeof(associativity)); 921 cur_index += 4; 922 } 923 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 924 (cur_index - int_buf) * sizeof(uint32_t)); 925 g_free(int_buf); 926 927 return ret; 928 } 929 930 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 931 sPAPROptionVector *ov5_updates) 932 { 933 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 934 int ret = 0, offset; 935 936 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 937 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 938 g_assert(smc->dr_lmb_enabled); 939 ret = spapr_populate_drconf_memory(spapr, fdt); 940 if (ret) { 941 goto out; 942 } 943 } 944 945 offset = fdt_path_offset(fdt, "/chosen"); 946 if (offset < 0) { 947 offset = fdt_add_subnode(fdt, 0, "chosen"); 948 if (offset < 0) { 949 return offset; 950 } 951 } 952 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 953 "ibm,architecture-vec-5"); 954 955 out: 956 return ret; 957 } 958 959 static bool spapr_hotplugged_dev_before_cas(void) 960 { 961 Object *drc_container, *obj; 962 ObjectProperty *prop; 963 ObjectPropertyIterator iter; 964 965 drc_container = container_get(object_get_root(), "/dr-connector"); 966 object_property_iter_init(&iter, drc_container); 967 while ((prop = object_property_iter_next(&iter))) { 968 if (!strstart(prop->type, "link<", NULL)) { 969 continue; 970 } 971 obj = object_property_get_link(drc_container, prop->name, NULL); 972 if (spapr_drc_needed(obj)) { 973 return true; 974 } 975 } 976 return false; 977 } 978 979 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 980 target_ulong addr, target_ulong size, 981 sPAPROptionVector *ov5_updates) 982 { 983 void *fdt, *fdt_skel; 984 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 985 986 if (spapr_hotplugged_dev_before_cas()) { 987 return 1; 988 } 989 990 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 991 error_report("SLOF provided an unexpected CAS buffer size " 992 TARGET_FMT_lu " (min: %zu, max: %u)", 993 size, sizeof(hdr), FW_MAX_SIZE); 994 exit(EXIT_FAILURE); 995 } 996 997 size -= sizeof(hdr); 998 999 /* Create skeleton */ 1000 fdt_skel = g_malloc0(size); 1001 _FDT((fdt_create(fdt_skel, size))); 1002 _FDT((fdt_finish_reservemap(fdt_skel))); 1003 _FDT((fdt_begin_node(fdt_skel, ""))); 1004 _FDT((fdt_end_node(fdt_skel))); 1005 _FDT((fdt_finish(fdt_skel))); 1006 fdt = g_malloc0(size); 1007 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1008 g_free(fdt_skel); 1009 1010 /* Fixup cpu nodes */ 1011 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1012 1013 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1014 return -1; 1015 } 1016 1017 /* Pack resulting tree */ 1018 _FDT((fdt_pack(fdt))); 1019 1020 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1021 trace_spapr_cas_failed(size); 1022 return -1; 1023 } 1024 1025 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1026 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1027 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1028 g_free(fdt); 1029 1030 return 0; 1031 } 1032 1033 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1034 { 1035 int rtas; 1036 GString *hypertas = g_string_sized_new(256); 1037 GString *qemu_hypertas = g_string_sized_new(256); 1038 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1039 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1040 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1041 uint32_t lrdr_capacity[] = { 1042 cpu_to_be32(max_device_addr >> 32), 1043 cpu_to_be32(max_device_addr & 0xffffffff), 1044 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1045 cpu_to_be32(max_cpus / smp_threads), 1046 }; 1047 uint32_t maxdomains[] = { 1048 cpu_to_be32(4), 1049 cpu_to_be32(0), 1050 cpu_to_be32(0), 1051 cpu_to_be32(0), 1052 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0), 1053 }; 1054 1055 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1056 1057 /* hypertas */ 1058 add_str(hypertas, "hcall-pft"); 1059 add_str(hypertas, "hcall-term"); 1060 add_str(hypertas, "hcall-dabr"); 1061 add_str(hypertas, "hcall-interrupt"); 1062 add_str(hypertas, "hcall-tce"); 1063 add_str(hypertas, "hcall-vio"); 1064 add_str(hypertas, "hcall-splpar"); 1065 add_str(hypertas, "hcall-bulk"); 1066 add_str(hypertas, "hcall-set-mode"); 1067 add_str(hypertas, "hcall-sprg0"); 1068 add_str(hypertas, "hcall-copy"); 1069 add_str(hypertas, "hcall-debug"); 1070 add_str(qemu_hypertas, "hcall-memop1"); 1071 1072 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1073 add_str(hypertas, "hcall-multi-tce"); 1074 } 1075 1076 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1077 add_str(hypertas, "hcall-hpt-resize"); 1078 } 1079 1080 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1081 hypertas->str, hypertas->len)); 1082 g_string_free(hypertas, TRUE); 1083 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1084 qemu_hypertas->str, qemu_hypertas->len)); 1085 g_string_free(qemu_hypertas, TRUE); 1086 1087 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1088 refpoints, sizeof(refpoints))); 1089 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1091 maxdomains, sizeof(maxdomains))); 1092 1093 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1094 RTAS_ERROR_LOG_MAX)); 1095 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1096 RTAS_EVENT_SCAN_RATE)); 1097 1098 g_assert(msi_nonbroken); 1099 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1100 1101 /* 1102 * According to PAPR, rtas ibm,os-term does not guarantee a return 1103 * back to the guest cpu. 1104 * 1105 * While an additional ibm,extended-os-term property indicates 1106 * that rtas call return will always occur. Set this property. 1107 */ 1108 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1109 1110 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1111 lrdr_capacity, sizeof(lrdr_capacity))); 1112 1113 spapr_dt_rtas_tokens(fdt, rtas); 1114 } 1115 1116 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 1117 * that the guest may request and thus the valid values for bytes 24..26 of 1118 * option vector 5: */ 1119 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 1120 { 1121 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1122 1123 char val[2 * 4] = { 1124 23, 0x00, /* Xive mode, filled in below. */ 1125 24, 0x00, /* Hash/Radix, filled in below. */ 1126 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1127 26, 0x40, /* Radix options: GTSE == yes. */ 1128 }; 1129 1130 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1131 first_ppc_cpu->compat_pvr)) { 1132 /* If we're in a pre POWER9 compat mode then the guest should do hash */ 1133 val[3] = 0x00; /* Hash */ 1134 } else if (kvm_enabled()) { 1135 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1136 val[3] = 0x80; /* OV5_MMU_BOTH */ 1137 } else if (kvmppc_has_cap_mmu_radix()) { 1138 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1139 } else { 1140 val[3] = 0x00; /* Hash */ 1141 } 1142 } else { 1143 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1144 val[3] = 0xC0; 1145 } 1146 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1147 val, sizeof(val))); 1148 } 1149 1150 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1151 { 1152 MachineState *machine = MACHINE(spapr); 1153 int chosen; 1154 const char *boot_device = machine->boot_order; 1155 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1156 size_t cb = 0; 1157 char *bootlist = get_boot_devices_list(&cb, true); 1158 1159 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1160 1161 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1163 spapr->initrd_base)); 1164 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1165 spapr->initrd_base + spapr->initrd_size)); 1166 1167 if (spapr->kernel_size) { 1168 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1169 cpu_to_be64(spapr->kernel_size) }; 1170 1171 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1172 &kprop, sizeof(kprop))); 1173 if (spapr->kernel_le) { 1174 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1175 } 1176 } 1177 if (boot_menu) { 1178 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1179 } 1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1181 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1182 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1183 1184 if (cb && bootlist) { 1185 int i; 1186 1187 for (i = 0; i < cb; i++) { 1188 if (bootlist[i] == '\n') { 1189 bootlist[i] = ' '; 1190 } 1191 } 1192 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1193 } 1194 1195 if (boot_device && strlen(boot_device)) { 1196 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1197 } 1198 1199 if (!spapr->has_graphics && stdout_path) { 1200 /* 1201 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1202 * kernel. New platforms should only use the "stdout-path" property. Set 1203 * the new property and continue using older property to remain 1204 * compatible with the existing firmware. 1205 */ 1206 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1207 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1208 } 1209 1210 spapr_dt_ov5_platform_support(fdt, chosen); 1211 1212 g_free(stdout_path); 1213 g_free(bootlist); 1214 } 1215 1216 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1217 { 1218 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1219 * KVM to work under pHyp with some guest co-operation */ 1220 int hypervisor; 1221 uint8_t hypercall[16]; 1222 1223 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1224 /* indicate KVM hypercall interface */ 1225 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1226 if (kvmppc_has_cap_fixup_hcalls()) { 1227 /* 1228 * Older KVM versions with older guest kernels were broken 1229 * with the magic page, don't allow the guest to map it. 1230 */ 1231 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1232 sizeof(hypercall))) { 1233 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1234 hypercall, sizeof(hypercall))); 1235 } 1236 } 1237 } 1238 1239 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1240 hwaddr rtas_addr, 1241 hwaddr rtas_size) 1242 { 1243 MachineState *machine = MACHINE(spapr); 1244 MachineClass *mc = MACHINE_GET_CLASS(machine); 1245 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1246 int ret; 1247 void *fdt; 1248 sPAPRPHBState *phb; 1249 char *buf; 1250 1251 fdt = g_malloc0(FDT_MAX_SIZE); 1252 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1253 1254 /* Root node */ 1255 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1256 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1257 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1258 1259 /* 1260 * Add info to guest to indentify which host is it being run on 1261 * and what is the uuid of the guest 1262 */ 1263 if (kvmppc_get_host_model(&buf)) { 1264 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1265 g_free(buf); 1266 } 1267 if (kvmppc_get_host_serial(&buf)) { 1268 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1269 g_free(buf); 1270 } 1271 1272 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1273 1274 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1275 if (qemu_uuid_set) { 1276 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1277 } 1278 g_free(buf); 1279 1280 if (qemu_get_vm_name()) { 1281 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1282 qemu_get_vm_name())); 1283 } 1284 1285 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1286 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1287 1288 /* /interrupt controller */ 1289 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP); 1290 1291 ret = spapr_populate_memory(spapr, fdt); 1292 if (ret < 0) { 1293 error_report("couldn't setup memory nodes in fdt"); 1294 exit(1); 1295 } 1296 1297 /* /vdevice */ 1298 spapr_dt_vdevice(spapr->vio_bus, fdt); 1299 1300 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1301 ret = spapr_rng_populate_dt(fdt); 1302 if (ret < 0) { 1303 error_report("could not set up rng device in the fdt"); 1304 exit(1); 1305 } 1306 } 1307 1308 QLIST_FOREACH(phb, &spapr->phbs, list) { 1309 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1310 if (ret < 0) { 1311 error_report("couldn't setup PCI devices in fdt"); 1312 exit(1); 1313 } 1314 } 1315 1316 /* cpus */ 1317 spapr_populate_cpus_dt_node(fdt, spapr); 1318 1319 if (smc->dr_lmb_enabled) { 1320 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1321 } 1322 1323 if (mc->has_hotpluggable_cpus) { 1324 int offset = fdt_path_offset(fdt, "/cpus"); 1325 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1326 SPAPR_DR_CONNECTOR_TYPE_CPU); 1327 if (ret < 0) { 1328 error_report("Couldn't set up CPU DR device tree properties"); 1329 exit(1); 1330 } 1331 } 1332 1333 /* /event-sources */ 1334 spapr_dt_events(spapr, fdt); 1335 1336 /* /rtas */ 1337 spapr_dt_rtas(spapr, fdt); 1338 1339 /* /chosen */ 1340 spapr_dt_chosen(spapr, fdt); 1341 1342 /* /hypervisor */ 1343 if (kvm_enabled()) { 1344 spapr_dt_hypervisor(spapr, fdt); 1345 } 1346 1347 /* Build memory reserve map */ 1348 if (spapr->kernel_size) { 1349 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1350 } 1351 if (spapr->initrd_size) { 1352 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1353 } 1354 1355 /* ibm,client-architecture-support updates */ 1356 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1357 if (ret < 0) { 1358 error_report("couldn't setup CAS properties fdt"); 1359 exit(1); 1360 } 1361 1362 return fdt; 1363 } 1364 1365 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1366 { 1367 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1368 } 1369 1370 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1371 PowerPCCPU *cpu) 1372 { 1373 CPUPPCState *env = &cpu->env; 1374 1375 /* The TCG path should also be holding the BQL at this point */ 1376 g_assert(qemu_mutex_iothread_locked()); 1377 1378 if (msr_pr) { 1379 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1380 env->gpr[3] = H_PRIVILEGE; 1381 } else { 1382 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1383 } 1384 } 1385 1386 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1387 { 1388 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1389 1390 return spapr->patb_entry; 1391 } 1392 1393 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1394 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1395 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1396 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1397 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1398 1399 /* 1400 * Get the fd to access the kernel htab, re-opening it if necessary 1401 */ 1402 static int get_htab_fd(sPAPRMachineState *spapr) 1403 { 1404 Error *local_err = NULL; 1405 1406 if (spapr->htab_fd >= 0) { 1407 return spapr->htab_fd; 1408 } 1409 1410 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1411 if (spapr->htab_fd < 0) { 1412 error_report_err(local_err); 1413 } 1414 1415 return spapr->htab_fd; 1416 } 1417 1418 void close_htab_fd(sPAPRMachineState *spapr) 1419 { 1420 if (spapr->htab_fd >= 0) { 1421 close(spapr->htab_fd); 1422 } 1423 spapr->htab_fd = -1; 1424 } 1425 1426 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1427 { 1428 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1429 1430 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1431 } 1432 1433 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1434 { 1435 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1436 1437 assert(kvm_enabled()); 1438 1439 if (!spapr->htab) { 1440 return 0; 1441 } 1442 1443 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1444 } 1445 1446 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1447 hwaddr ptex, int n) 1448 { 1449 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1450 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1451 1452 if (!spapr->htab) { 1453 /* 1454 * HTAB is controlled by KVM. Fetch into temporary buffer 1455 */ 1456 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1457 kvmppc_read_hptes(hptes, ptex, n); 1458 return hptes; 1459 } 1460 1461 /* 1462 * HTAB is controlled by QEMU. Just point to the internally 1463 * accessible PTEG. 1464 */ 1465 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1466 } 1467 1468 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1469 const ppc_hash_pte64_t *hptes, 1470 hwaddr ptex, int n) 1471 { 1472 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1473 1474 if (!spapr->htab) { 1475 g_free((void *)hptes); 1476 } 1477 1478 /* Nothing to do for qemu managed HPT */ 1479 } 1480 1481 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1482 uint64_t pte0, uint64_t pte1) 1483 { 1484 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1485 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1486 1487 if (!spapr->htab) { 1488 kvmppc_write_hpte(ptex, pte0, pte1); 1489 } else { 1490 stq_p(spapr->htab + offset, pte0); 1491 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1492 } 1493 } 1494 1495 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1496 { 1497 int shift; 1498 1499 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1500 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1501 * that's much more than is needed for Linux guests */ 1502 shift = ctz64(pow2ceil(ramsize)) - 7; 1503 shift = MAX(shift, 18); /* Minimum architected size */ 1504 shift = MIN(shift, 46); /* Maximum architected size */ 1505 return shift; 1506 } 1507 1508 void spapr_free_hpt(sPAPRMachineState *spapr) 1509 { 1510 g_free(spapr->htab); 1511 spapr->htab = NULL; 1512 spapr->htab_shift = 0; 1513 close_htab_fd(spapr); 1514 } 1515 1516 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1517 Error **errp) 1518 { 1519 long rc; 1520 1521 /* Clean up any HPT info from a previous boot */ 1522 spapr_free_hpt(spapr); 1523 1524 rc = kvmppc_reset_htab(shift); 1525 if (rc < 0) { 1526 /* kernel-side HPT needed, but couldn't allocate one */ 1527 error_setg_errno(errp, errno, 1528 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1529 shift); 1530 /* This is almost certainly fatal, but if the caller really 1531 * wants to carry on with shift == 0, it's welcome to try */ 1532 } else if (rc > 0) { 1533 /* kernel-side HPT allocated */ 1534 if (rc != shift) { 1535 error_setg(errp, 1536 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1537 shift, rc); 1538 } 1539 1540 spapr->htab_shift = shift; 1541 spapr->htab = NULL; 1542 } else { 1543 /* kernel-side HPT not needed, allocate in userspace instead */ 1544 size_t size = 1ULL << shift; 1545 int i; 1546 1547 spapr->htab = qemu_memalign(size, size); 1548 if (!spapr->htab) { 1549 error_setg_errno(errp, errno, 1550 "Could not allocate HPT of order %d", shift); 1551 return; 1552 } 1553 1554 memset(spapr->htab, 0, size); 1555 spapr->htab_shift = shift; 1556 1557 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1558 DIRTY_HPTE(HPTE(spapr->htab, i)); 1559 } 1560 } 1561 /* We're setting up a hash table, so that means we're not radix */ 1562 spapr->patb_entry = 0; 1563 } 1564 1565 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1566 { 1567 int hpt_shift; 1568 1569 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1570 || (spapr->cas_reboot 1571 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1572 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1573 } else { 1574 uint64_t current_ram_size; 1575 1576 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1577 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1578 } 1579 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1580 1581 if (spapr->vrma_adjust) { 1582 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1583 spapr->htab_shift); 1584 } 1585 } 1586 1587 static int spapr_reset_drcs(Object *child, void *opaque) 1588 { 1589 sPAPRDRConnector *drc = 1590 (sPAPRDRConnector *) object_dynamic_cast(child, 1591 TYPE_SPAPR_DR_CONNECTOR); 1592 1593 if (drc) { 1594 spapr_drc_reset(drc); 1595 } 1596 1597 return 0; 1598 } 1599 1600 static void spapr_machine_reset(void) 1601 { 1602 MachineState *machine = MACHINE(qdev_get_machine()); 1603 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1604 PowerPCCPU *first_ppc_cpu; 1605 uint32_t rtas_limit; 1606 hwaddr rtas_addr, fdt_addr; 1607 void *fdt; 1608 int rc; 1609 1610 spapr_caps_reset(spapr); 1611 1612 first_ppc_cpu = POWERPC_CPU(first_cpu); 1613 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1614 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1615 spapr->max_compat_pvr)) { 1616 /* If using KVM with radix mode available, VCPUs can be started 1617 * without a HPT because KVM will start them in radix mode. 1618 * Set the GR bit in PATB so that we know there is no HPT. */ 1619 spapr->patb_entry = PATBE1_GR; 1620 } else { 1621 spapr_setup_hpt_and_vrma(spapr); 1622 } 1623 1624 /* if this reset wasn't generated by CAS, we should reset our 1625 * negotiated options and start from scratch */ 1626 if (!spapr->cas_reboot) { 1627 spapr_ovec_cleanup(spapr->ov5_cas); 1628 spapr->ov5_cas = spapr_ovec_new(); 1629 1630 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1631 } 1632 1633 qemu_devices_reset(); 1634 1635 /* DRC reset may cause a device to be unplugged. This will cause troubles 1636 * if this device is used by another device (eg, a running vhost backend 1637 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1638 * situations, we reset DRCs after all devices have been reset. 1639 */ 1640 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1641 1642 spapr_clear_pending_events(spapr); 1643 1644 /* 1645 * We place the device tree and RTAS just below either the top of the RMA, 1646 * or just below 2GB, whichever is lowere, so that it can be 1647 * processed with 32-bit real mode code if necessary 1648 */ 1649 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1650 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1651 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1652 1653 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1654 1655 spapr_load_rtas(spapr, fdt, rtas_addr); 1656 1657 rc = fdt_pack(fdt); 1658 1659 /* Should only fail if we've built a corrupted tree */ 1660 assert(rc == 0); 1661 1662 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1663 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1664 fdt_totalsize(fdt), FDT_MAX_SIZE); 1665 exit(1); 1666 } 1667 1668 /* Load the fdt */ 1669 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1670 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1671 g_free(fdt); 1672 1673 /* Set up the entry state */ 1674 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1675 first_ppc_cpu->env.gpr[5] = 0; 1676 1677 spapr->cas_reboot = false; 1678 } 1679 1680 static void spapr_create_nvram(sPAPRMachineState *spapr) 1681 { 1682 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1683 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1684 1685 if (dinfo) { 1686 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1687 &error_fatal); 1688 } 1689 1690 qdev_init_nofail(dev); 1691 1692 spapr->nvram = (struct sPAPRNVRAM *)dev; 1693 } 1694 1695 static void spapr_rtc_create(sPAPRMachineState *spapr) 1696 { 1697 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1698 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1699 &error_fatal); 1700 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1701 &error_fatal); 1702 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1703 "date", &error_fatal); 1704 } 1705 1706 /* Returns whether we want to use VGA or not */ 1707 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1708 { 1709 switch (vga_interface_type) { 1710 case VGA_NONE: 1711 return false; 1712 case VGA_DEVICE: 1713 return true; 1714 case VGA_STD: 1715 case VGA_VIRTIO: 1716 return pci_vga_init(pci_bus) != NULL; 1717 default: 1718 error_setg(errp, 1719 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1720 return false; 1721 } 1722 } 1723 1724 static int spapr_pre_load(void *opaque) 1725 { 1726 int rc; 1727 1728 rc = spapr_caps_pre_load(opaque); 1729 if (rc) { 1730 return rc; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static int spapr_post_load(void *opaque, int version_id) 1737 { 1738 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1739 int err = 0; 1740 1741 err = spapr_caps_post_migration(spapr); 1742 if (err) { 1743 return err; 1744 } 1745 1746 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1747 CPUState *cs; 1748 CPU_FOREACH(cs) { 1749 PowerPCCPU *cpu = POWERPC_CPU(cs); 1750 icp_resend(ICP(cpu->intc)); 1751 } 1752 } 1753 1754 /* In earlier versions, there was no separate qdev for the PAPR 1755 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1756 * So when migrating from those versions, poke the incoming offset 1757 * value into the RTC device */ 1758 if (version_id < 3) { 1759 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1760 } 1761 1762 if (kvm_enabled() && spapr->patb_entry) { 1763 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1764 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1765 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1766 1767 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1768 if (err) { 1769 error_report("Process table config unsupported by the host"); 1770 return -EINVAL; 1771 } 1772 } 1773 1774 return err; 1775 } 1776 1777 static int spapr_pre_save(void *opaque) 1778 { 1779 int rc; 1780 1781 rc = spapr_caps_pre_save(opaque); 1782 if (rc) { 1783 return rc; 1784 } 1785 1786 return 0; 1787 } 1788 1789 static bool version_before_3(void *opaque, int version_id) 1790 { 1791 return version_id < 3; 1792 } 1793 1794 static bool spapr_pending_events_needed(void *opaque) 1795 { 1796 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1797 return !QTAILQ_EMPTY(&spapr->pending_events); 1798 } 1799 1800 static const VMStateDescription vmstate_spapr_event_entry = { 1801 .name = "spapr_event_log_entry", 1802 .version_id = 1, 1803 .minimum_version_id = 1, 1804 .fields = (VMStateField[]) { 1805 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1806 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1807 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1808 NULL, extended_length), 1809 VMSTATE_END_OF_LIST() 1810 }, 1811 }; 1812 1813 static const VMStateDescription vmstate_spapr_pending_events = { 1814 .name = "spapr_pending_events", 1815 .version_id = 1, 1816 .minimum_version_id = 1, 1817 .needed = spapr_pending_events_needed, 1818 .fields = (VMStateField[]) { 1819 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1820 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1821 VMSTATE_END_OF_LIST() 1822 }, 1823 }; 1824 1825 static bool spapr_ov5_cas_needed(void *opaque) 1826 { 1827 sPAPRMachineState *spapr = opaque; 1828 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1829 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1830 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1831 bool cas_needed; 1832 1833 /* Prior to the introduction of sPAPROptionVector, we had two option 1834 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1835 * Both of these options encode machine topology into the device-tree 1836 * in such a way that the now-booted OS should still be able to interact 1837 * appropriately with QEMU regardless of what options were actually 1838 * negotiatied on the source side. 1839 * 1840 * As such, we can avoid migrating the CAS-negotiated options if these 1841 * are the only options available on the current machine/platform. 1842 * Since these are the only options available for pseries-2.7 and 1843 * earlier, this allows us to maintain old->new/new->old migration 1844 * compatibility. 1845 * 1846 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1847 * via default pseries-2.8 machines and explicit command-line parameters. 1848 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1849 * of the actual CAS-negotiated values to continue working properly. For 1850 * example, availability of memory unplug depends on knowing whether 1851 * OV5_HP_EVT was negotiated via CAS. 1852 * 1853 * Thus, for any cases where the set of available CAS-negotiatable 1854 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1855 * include the CAS-negotiated options in the migration stream, unless 1856 * if they affect boot time behaviour only. 1857 */ 1858 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1859 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1860 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1861 1862 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1863 * the mask itself since in the future it's possible "legacy" bits may be 1864 * removed via machine options, which could generate a false positive 1865 * that breaks migration. 1866 */ 1867 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1868 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1869 1870 spapr_ovec_cleanup(ov5_mask); 1871 spapr_ovec_cleanup(ov5_legacy); 1872 spapr_ovec_cleanup(ov5_removed); 1873 1874 return cas_needed; 1875 } 1876 1877 static const VMStateDescription vmstate_spapr_ov5_cas = { 1878 .name = "spapr_option_vector_ov5_cas", 1879 .version_id = 1, 1880 .minimum_version_id = 1, 1881 .needed = spapr_ov5_cas_needed, 1882 .fields = (VMStateField[]) { 1883 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1884 vmstate_spapr_ovec, sPAPROptionVector), 1885 VMSTATE_END_OF_LIST() 1886 }, 1887 }; 1888 1889 static bool spapr_patb_entry_needed(void *opaque) 1890 { 1891 sPAPRMachineState *spapr = opaque; 1892 1893 return !!spapr->patb_entry; 1894 } 1895 1896 static const VMStateDescription vmstate_spapr_patb_entry = { 1897 .name = "spapr_patb_entry", 1898 .version_id = 1, 1899 .minimum_version_id = 1, 1900 .needed = spapr_patb_entry_needed, 1901 .fields = (VMStateField[]) { 1902 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1903 VMSTATE_END_OF_LIST() 1904 }, 1905 }; 1906 1907 static const VMStateDescription vmstate_spapr = { 1908 .name = "spapr", 1909 .version_id = 3, 1910 .minimum_version_id = 1, 1911 .pre_load = spapr_pre_load, 1912 .post_load = spapr_post_load, 1913 .pre_save = spapr_pre_save, 1914 .fields = (VMStateField[]) { 1915 /* used to be @next_irq */ 1916 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1917 1918 /* RTC offset */ 1919 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1920 1921 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1922 VMSTATE_END_OF_LIST() 1923 }, 1924 .subsections = (const VMStateDescription*[]) { 1925 &vmstate_spapr_ov5_cas, 1926 &vmstate_spapr_patb_entry, 1927 &vmstate_spapr_pending_events, 1928 &vmstate_spapr_cap_htm, 1929 &vmstate_spapr_cap_vsx, 1930 &vmstate_spapr_cap_dfp, 1931 &vmstate_spapr_cap_cfpc, 1932 &vmstate_spapr_cap_sbbc, 1933 &vmstate_spapr_cap_ibs, 1934 NULL 1935 } 1936 }; 1937 1938 static int htab_save_setup(QEMUFile *f, void *opaque) 1939 { 1940 sPAPRMachineState *spapr = opaque; 1941 1942 /* "Iteration" header */ 1943 if (!spapr->htab_shift) { 1944 qemu_put_be32(f, -1); 1945 } else { 1946 qemu_put_be32(f, spapr->htab_shift); 1947 } 1948 1949 if (spapr->htab) { 1950 spapr->htab_save_index = 0; 1951 spapr->htab_first_pass = true; 1952 } else { 1953 if (spapr->htab_shift) { 1954 assert(kvm_enabled()); 1955 } 1956 } 1957 1958 1959 return 0; 1960 } 1961 1962 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1963 int chunkstart, int n_valid, int n_invalid) 1964 { 1965 qemu_put_be32(f, chunkstart); 1966 qemu_put_be16(f, n_valid); 1967 qemu_put_be16(f, n_invalid); 1968 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1969 HASH_PTE_SIZE_64 * n_valid); 1970 } 1971 1972 static void htab_save_end_marker(QEMUFile *f) 1973 { 1974 qemu_put_be32(f, 0); 1975 qemu_put_be16(f, 0); 1976 qemu_put_be16(f, 0); 1977 } 1978 1979 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1980 int64_t max_ns) 1981 { 1982 bool has_timeout = max_ns != -1; 1983 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1984 int index = spapr->htab_save_index; 1985 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1986 1987 assert(spapr->htab_first_pass); 1988 1989 do { 1990 int chunkstart; 1991 1992 /* Consume invalid HPTEs */ 1993 while ((index < htabslots) 1994 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1995 CLEAN_HPTE(HPTE(spapr->htab, index)); 1996 index++; 1997 } 1998 1999 /* Consume valid HPTEs */ 2000 chunkstart = index; 2001 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2002 && HPTE_VALID(HPTE(spapr->htab, index))) { 2003 CLEAN_HPTE(HPTE(spapr->htab, index)); 2004 index++; 2005 } 2006 2007 if (index > chunkstart) { 2008 int n_valid = index - chunkstart; 2009 2010 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2011 2012 if (has_timeout && 2013 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2014 break; 2015 } 2016 } 2017 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2018 2019 if (index >= htabslots) { 2020 assert(index == htabslots); 2021 index = 0; 2022 spapr->htab_first_pass = false; 2023 } 2024 spapr->htab_save_index = index; 2025 } 2026 2027 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2028 int64_t max_ns) 2029 { 2030 bool final = max_ns < 0; 2031 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2032 int examined = 0, sent = 0; 2033 int index = spapr->htab_save_index; 2034 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2035 2036 assert(!spapr->htab_first_pass); 2037 2038 do { 2039 int chunkstart, invalidstart; 2040 2041 /* Consume non-dirty HPTEs */ 2042 while ((index < htabslots) 2043 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2044 index++; 2045 examined++; 2046 } 2047 2048 chunkstart = index; 2049 /* Consume valid dirty HPTEs */ 2050 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2051 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2052 && HPTE_VALID(HPTE(spapr->htab, index))) { 2053 CLEAN_HPTE(HPTE(spapr->htab, index)); 2054 index++; 2055 examined++; 2056 } 2057 2058 invalidstart = index; 2059 /* Consume invalid dirty HPTEs */ 2060 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2061 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2062 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2063 CLEAN_HPTE(HPTE(spapr->htab, index)); 2064 index++; 2065 examined++; 2066 } 2067 2068 if (index > chunkstart) { 2069 int n_valid = invalidstart - chunkstart; 2070 int n_invalid = index - invalidstart; 2071 2072 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2073 sent += index - chunkstart; 2074 2075 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2076 break; 2077 } 2078 } 2079 2080 if (examined >= htabslots) { 2081 break; 2082 } 2083 2084 if (index >= htabslots) { 2085 assert(index == htabslots); 2086 index = 0; 2087 } 2088 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2089 2090 if (index >= htabslots) { 2091 assert(index == htabslots); 2092 index = 0; 2093 } 2094 2095 spapr->htab_save_index = index; 2096 2097 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2098 } 2099 2100 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2101 #define MAX_KVM_BUF_SIZE 2048 2102 2103 static int htab_save_iterate(QEMUFile *f, void *opaque) 2104 { 2105 sPAPRMachineState *spapr = opaque; 2106 int fd; 2107 int rc = 0; 2108 2109 /* Iteration header */ 2110 if (!spapr->htab_shift) { 2111 qemu_put_be32(f, -1); 2112 return 1; 2113 } else { 2114 qemu_put_be32(f, 0); 2115 } 2116 2117 if (!spapr->htab) { 2118 assert(kvm_enabled()); 2119 2120 fd = get_htab_fd(spapr); 2121 if (fd < 0) { 2122 return fd; 2123 } 2124 2125 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2126 if (rc < 0) { 2127 return rc; 2128 } 2129 } else if (spapr->htab_first_pass) { 2130 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2131 } else { 2132 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2133 } 2134 2135 htab_save_end_marker(f); 2136 2137 return rc; 2138 } 2139 2140 static int htab_save_complete(QEMUFile *f, void *opaque) 2141 { 2142 sPAPRMachineState *spapr = opaque; 2143 int fd; 2144 2145 /* Iteration header */ 2146 if (!spapr->htab_shift) { 2147 qemu_put_be32(f, -1); 2148 return 0; 2149 } else { 2150 qemu_put_be32(f, 0); 2151 } 2152 2153 if (!spapr->htab) { 2154 int rc; 2155 2156 assert(kvm_enabled()); 2157 2158 fd = get_htab_fd(spapr); 2159 if (fd < 0) { 2160 return fd; 2161 } 2162 2163 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2164 if (rc < 0) { 2165 return rc; 2166 } 2167 } else { 2168 if (spapr->htab_first_pass) { 2169 htab_save_first_pass(f, spapr, -1); 2170 } 2171 htab_save_later_pass(f, spapr, -1); 2172 } 2173 2174 /* End marker */ 2175 htab_save_end_marker(f); 2176 2177 return 0; 2178 } 2179 2180 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2181 { 2182 sPAPRMachineState *spapr = opaque; 2183 uint32_t section_hdr; 2184 int fd = -1; 2185 Error *local_err = NULL; 2186 2187 if (version_id < 1 || version_id > 1) { 2188 error_report("htab_load() bad version"); 2189 return -EINVAL; 2190 } 2191 2192 section_hdr = qemu_get_be32(f); 2193 2194 if (section_hdr == -1) { 2195 spapr_free_hpt(spapr); 2196 return 0; 2197 } 2198 2199 if (section_hdr) { 2200 /* First section gives the htab size */ 2201 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2202 if (local_err) { 2203 error_report_err(local_err); 2204 return -EINVAL; 2205 } 2206 return 0; 2207 } 2208 2209 if (!spapr->htab) { 2210 assert(kvm_enabled()); 2211 2212 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2213 if (fd < 0) { 2214 error_report_err(local_err); 2215 return fd; 2216 } 2217 } 2218 2219 while (true) { 2220 uint32_t index; 2221 uint16_t n_valid, n_invalid; 2222 2223 index = qemu_get_be32(f); 2224 n_valid = qemu_get_be16(f); 2225 n_invalid = qemu_get_be16(f); 2226 2227 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2228 /* End of Stream */ 2229 break; 2230 } 2231 2232 if ((index + n_valid + n_invalid) > 2233 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2234 /* Bad index in stream */ 2235 error_report( 2236 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2237 index, n_valid, n_invalid, spapr->htab_shift); 2238 return -EINVAL; 2239 } 2240 2241 if (spapr->htab) { 2242 if (n_valid) { 2243 qemu_get_buffer(f, HPTE(spapr->htab, index), 2244 HASH_PTE_SIZE_64 * n_valid); 2245 } 2246 if (n_invalid) { 2247 memset(HPTE(spapr->htab, index + n_valid), 0, 2248 HASH_PTE_SIZE_64 * n_invalid); 2249 } 2250 } else { 2251 int rc; 2252 2253 assert(fd >= 0); 2254 2255 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2256 if (rc < 0) { 2257 return rc; 2258 } 2259 } 2260 } 2261 2262 if (!spapr->htab) { 2263 assert(fd >= 0); 2264 close(fd); 2265 } 2266 2267 return 0; 2268 } 2269 2270 static void htab_save_cleanup(void *opaque) 2271 { 2272 sPAPRMachineState *spapr = opaque; 2273 2274 close_htab_fd(spapr); 2275 } 2276 2277 static SaveVMHandlers savevm_htab_handlers = { 2278 .save_setup = htab_save_setup, 2279 .save_live_iterate = htab_save_iterate, 2280 .save_live_complete_precopy = htab_save_complete, 2281 .save_cleanup = htab_save_cleanup, 2282 .load_state = htab_load, 2283 }; 2284 2285 static void spapr_boot_set(void *opaque, const char *boot_device, 2286 Error **errp) 2287 { 2288 MachineState *machine = MACHINE(opaque); 2289 machine->boot_order = g_strdup(boot_device); 2290 } 2291 2292 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2293 { 2294 MachineState *machine = MACHINE(spapr); 2295 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2296 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2297 int i; 2298 2299 for (i = 0; i < nr_lmbs; i++) { 2300 uint64_t addr; 2301 2302 addr = i * lmb_size + machine->device_memory->base; 2303 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2304 addr / lmb_size); 2305 } 2306 } 2307 2308 /* 2309 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2310 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2311 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2312 */ 2313 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2314 { 2315 int i; 2316 2317 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2318 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2319 " is not aligned to %llu MiB", 2320 machine->ram_size, 2321 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2322 return; 2323 } 2324 2325 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2326 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2327 " is not aligned to %llu MiB", 2328 machine->ram_size, 2329 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2330 return; 2331 } 2332 2333 for (i = 0; i < nb_numa_nodes; i++) { 2334 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2335 error_setg(errp, 2336 "Node %d memory size 0x%" PRIx64 2337 " is not aligned to %llu MiB", 2338 i, numa_info[i].node_mem, 2339 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2340 return; 2341 } 2342 } 2343 } 2344 2345 /* find cpu slot in machine->possible_cpus by core_id */ 2346 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2347 { 2348 int index = id / smp_threads; 2349 2350 if (index >= ms->possible_cpus->len) { 2351 return NULL; 2352 } 2353 if (idx) { 2354 *idx = index; 2355 } 2356 return &ms->possible_cpus->cpus[index]; 2357 } 2358 2359 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2360 { 2361 Error *local_err = NULL; 2362 bool vsmt_user = !!spapr->vsmt; 2363 int kvm_smt = kvmppc_smt_threads(); 2364 int ret; 2365 2366 if (!kvm_enabled() && (smp_threads > 1)) { 2367 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2368 "on a pseries machine"); 2369 goto out; 2370 } 2371 if (!is_power_of_2(smp_threads)) { 2372 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2373 "machine because it must be a power of 2", smp_threads); 2374 goto out; 2375 } 2376 2377 /* Detemine the VSMT mode to use: */ 2378 if (vsmt_user) { 2379 if (spapr->vsmt < smp_threads) { 2380 error_setg(&local_err, "Cannot support VSMT mode %d" 2381 " because it must be >= threads/core (%d)", 2382 spapr->vsmt, smp_threads); 2383 goto out; 2384 } 2385 /* In this case, spapr->vsmt has been set by the command line */ 2386 } else { 2387 /* 2388 * Default VSMT value is tricky, because we need it to be as 2389 * consistent as possible (for migration), but this requires 2390 * changing it for at least some existing cases. We pick 8 as 2391 * the value that we'd get with KVM on POWER8, the 2392 * overwhelmingly common case in production systems. 2393 */ 2394 spapr->vsmt = MAX(8, smp_threads); 2395 } 2396 2397 /* KVM: If necessary, set the SMT mode: */ 2398 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2399 ret = kvmppc_set_smt_threads(spapr->vsmt); 2400 if (ret) { 2401 /* Looks like KVM isn't able to change VSMT mode */ 2402 error_setg(&local_err, 2403 "Failed to set KVM's VSMT mode to %d (errno %d)", 2404 spapr->vsmt, ret); 2405 /* We can live with that if the default one is big enough 2406 * for the number of threads, and a submultiple of the one 2407 * we want. In this case we'll waste some vcpu ids, but 2408 * behaviour will be correct */ 2409 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2410 warn_report_err(local_err); 2411 local_err = NULL; 2412 goto out; 2413 } else { 2414 if (!vsmt_user) { 2415 error_append_hint(&local_err, 2416 "On PPC, a VM with %d threads/core" 2417 " on a host with %d threads/core" 2418 " requires the use of VSMT mode %d.\n", 2419 smp_threads, kvm_smt, spapr->vsmt); 2420 } 2421 kvmppc_hint_smt_possible(&local_err); 2422 goto out; 2423 } 2424 } 2425 } 2426 /* else TCG: nothing to do currently */ 2427 out: 2428 error_propagate(errp, local_err); 2429 } 2430 2431 static void spapr_init_cpus(sPAPRMachineState *spapr) 2432 { 2433 MachineState *machine = MACHINE(spapr); 2434 MachineClass *mc = MACHINE_GET_CLASS(machine); 2435 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2436 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2437 const CPUArchIdList *possible_cpus; 2438 int boot_cores_nr = smp_cpus / smp_threads; 2439 int i; 2440 2441 possible_cpus = mc->possible_cpu_arch_ids(machine); 2442 if (mc->has_hotpluggable_cpus) { 2443 if (smp_cpus % smp_threads) { 2444 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2445 smp_cpus, smp_threads); 2446 exit(1); 2447 } 2448 if (max_cpus % smp_threads) { 2449 error_report("max_cpus (%u) must be multiple of threads (%u)", 2450 max_cpus, smp_threads); 2451 exit(1); 2452 } 2453 } else { 2454 if (max_cpus != smp_cpus) { 2455 error_report("This machine version does not support CPU hotplug"); 2456 exit(1); 2457 } 2458 boot_cores_nr = possible_cpus->len; 2459 } 2460 2461 /* VSMT must be set in order to be able to compute VCPU ids, ie to 2462 * call xics_max_server_number() or spapr_vcpu_id(). 2463 */ 2464 spapr_set_vsmt_mode(spapr, &error_fatal); 2465 2466 if (smc->pre_2_10_has_unused_icps) { 2467 int i; 2468 2469 for (i = 0; i < xics_max_server_number(spapr); i++) { 2470 /* Dummy entries get deregistered when real ICPState objects 2471 * are registered during CPU core hotplug. 2472 */ 2473 pre_2_10_vmstate_register_dummy_icp(i); 2474 } 2475 } 2476 2477 for (i = 0; i < possible_cpus->len; i++) { 2478 int core_id = i * smp_threads; 2479 2480 if (mc->has_hotpluggable_cpus) { 2481 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2482 spapr_vcpu_id(spapr, core_id)); 2483 } 2484 2485 if (i < boot_cores_nr) { 2486 Object *core = object_new(type); 2487 int nr_threads = smp_threads; 2488 2489 /* Handle the partially filled core for older machine types */ 2490 if ((i + 1) * smp_threads >= smp_cpus) { 2491 nr_threads = smp_cpus - i * smp_threads; 2492 } 2493 2494 object_property_set_int(core, nr_threads, "nr-threads", 2495 &error_fatal); 2496 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2497 &error_fatal); 2498 object_property_set_bool(core, true, "realized", &error_fatal); 2499 } 2500 } 2501 } 2502 2503 /* pSeries LPAR / sPAPR hardware init */ 2504 static void spapr_machine_init(MachineState *machine) 2505 { 2506 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2507 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2508 const char *kernel_filename = machine->kernel_filename; 2509 const char *initrd_filename = machine->initrd_filename; 2510 PCIHostState *phb; 2511 int i; 2512 MemoryRegion *sysmem = get_system_memory(); 2513 MemoryRegion *ram = g_new(MemoryRegion, 1); 2514 hwaddr node0_size = spapr_node0_size(machine); 2515 long load_limit, fw_size; 2516 char *filename; 2517 Error *resize_hpt_err = NULL; 2518 PowerPCCPU *first_ppc_cpu; 2519 2520 msi_nonbroken = true; 2521 2522 QLIST_INIT(&spapr->phbs); 2523 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2524 2525 /* Check HPT resizing availability */ 2526 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2527 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2528 /* 2529 * If the user explicitly requested a mode we should either 2530 * supply it, or fail completely (which we do below). But if 2531 * it's not set explicitly, we reset our mode to something 2532 * that works 2533 */ 2534 if (resize_hpt_err) { 2535 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2536 error_free(resize_hpt_err); 2537 resize_hpt_err = NULL; 2538 } else { 2539 spapr->resize_hpt = smc->resize_hpt_default; 2540 } 2541 } 2542 2543 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2544 2545 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2546 /* 2547 * User requested HPT resize, but this host can't supply it. Bail out 2548 */ 2549 error_report_err(resize_hpt_err); 2550 exit(1); 2551 } 2552 2553 spapr->rma_size = node0_size; 2554 2555 /* With KVM, we don't actually know whether KVM supports an 2556 * unbounded RMA (PR KVM) or is limited by the hash table size 2557 * (HV KVM using VRMA), so we always assume the latter 2558 * 2559 * In that case, we also limit the initial allocations for RTAS 2560 * etc... to 256M since we have no way to know what the VRMA size 2561 * is going to be as it depends on the size of the hash table 2562 * which isn't determined yet. 2563 */ 2564 if (kvm_enabled()) { 2565 spapr->vrma_adjust = 1; 2566 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2567 } 2568 2569 /* Actually we don't support unbounded RMA anymore since we added 2570 * proper emulation of HV mode. The max we can get is 16G which 2571 * also happens to be what we configure for PAPR mode so make sure 2572 * we don't do anything bigger than that 2573 */ 2574 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2575 2576 if (spapr->rma_size > node0_size) { 2577 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2578 spapr->rma_size); 2579 exit(1); 2580 } 2581 2582 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2583 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2584 2585 /* Set up Interrupt Controller before we create the VCPUs */ 2586 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2587 2588 /* Set up containers for ibm,client-architecture-support negotiated options 2589 */ 2590 spapr->ov5 = spapr_ovec_new(); 2591 spapr->ov5_cas = spapr_ovec_new(); 2592 2593 if (smc->dr_lmb_enabled) { 2594 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2595 spapr_validate_node_memory(machine, &error_fatal); 2596 } 2597 2598 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2599 2600 /* advertise support for dedicated HP event source to guests */ 2601 if (spapr->use_hotplug_event_source) { 2602 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2603 } 2604 2605 /* advertise support for HPT resizing */ 2606 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2607 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2608 } 2609 2610 /* advertise support for ibm,dyamic-memory-v2 */ 2611 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2612 2613 /* init CPUs */ 2614 spapr_init_cpus(spapr); 2615 2616 first_ppc_cpu = POWERPC_CPU(first_cpu); 2617 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2618 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 2619 spapr->max_compat_pvr)) { 2620 /* KVM and TCG always allow GTSE with radix... */ 2621 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2622 } 2623 /* ... but not with hash (currently). */ 2624 2625 if (kvm_enabled()) { 2626 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2627 kvmppc_enable_logical_ci_hcalls(); 2628 kvmppc_enable_set_mode_hcall(); 2629 2630 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2631 kvmppc_enable_clear_ref_mod_hcalls(); 2632 } 2633 2634 /* allocate RAM */ 2635 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2636 machine->ram_size); 2637 memory_region_add_subregion(sysmem, 0, ram); 2638 2639 /* always allocate the device memory information */ 2640 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2641 2642 /* initialize hotplug memory address space */ 2643 if (machine->ram_size < machine->maxram_size) { 2644 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2645 /* 2646 * Limit the number of hotpluggable memory slots to half the number 2647 * slots that KVM supports, leaving the other half for PCI and other 2648 * devices. However ensure that number of slots doesn't drop below 32. 2649 */ 2650 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2651 SPAPR_MAX_RAM_SLOTS; 2652 2653 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2654 max_memslots = SPAPR_MAX_RAM_SLOTS; 2655 } 2656 if (machine->ram_slots > max_memslots) { 2657 error_report("Specified number of memory slots %" 2658 PRIu64" exceeds max supported %d", 2659 machine->ram_slots, max_memslots); 2660 exit(1); 2661 } 2662 2663 machine->device_memory->base = ROUND_UP(machine->ram_size, 2664 SPAPR_DEVICE_MEM_ALIGN); 2665 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2666 "device-memory", device_mem_size); 2667 memory_region_add_subregion(sysmem, machine->device_memory->base, 2668 &machine->device_memory->mr); 2669 } 2670 2671 if (smc->dr_lmb_enabled) { 2672 spapr_create_lmb_dr_connectors(spapr); 2673 } 2674 2675 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2676 if (!filename) { 2677 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2678 exit(1); 2679 } 2680 spapr->rtas_size = get_image_size(filename); 2681 if (spapr->rtas_size < 0) { 2682 error_report("Could not get size of LPAR rtas '%s'", filename); 2683 exit(1); 2684 } 2685 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2686 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2687 error_report("Could not load LPAR rtas '%s'", filename); 2688 exit(1); 2689 } 2690 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2691 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2692 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2693 exit(1); 2694 } 2695 g_free(filename); 2696 2697 /* Set up RTAS event infrastructure */ 2698 spapr_events_init(spapr); 2699 2700 /* Set up the RTC RTAS interfaces */ 2701 spapr_rtc_create(spapr); 2702 2703 /* Set up VIO bus */ 2704 spapr->vio_bus = spapr_vio_bus_init(); 2705 2706 for (i = 0; i < serial_max_hds(); i++) { 2707 if (serial_hd(i)) { 2708 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2709 } 2710 } 2711 2712 /* We always have at least the nvram device on VIO */ 2713 spapr_create_nvram(spapr); 2714 2715 /* Set up PCI */ 2716 spapr_pci_rtas_init(); 2717 2718 phb = spapr_create_phb(spapr, 0); 2719 2720 for (i = 0; i < nb_nics; i++) { 2721 NICInfo *nd = &nd_table[i]; 2722 2723 if (!nd->model) { 2724 nd->model = g_strdup("spapr-vlan"); 2725 } 2726 2727 if (g_str_equal(nd->model, "spapr-vlan") || 2728 g_str_equal(nd->model, "ibmveth")) { 2729 spapr_vlan_create(spapr->vio_bus, nd); 2730 } else { 2731 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2732 } 2733 } 2734 2735 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2736 spapr_vscsi_create(spapr->vio_bus); 2737 } 2738 2739 /* Graphics */ 2740 if (spapr_vga_init(phb->bus, &error_fatal)) { 2741 spapr->has_graphics = true; 2742 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2743 } 2744 2745 if (machine->usb) { 2746 if (smc->use_ohci_by_default) { 2747 pci_create_simple(phb->bus, -1, "pci-ohci"); 2748 } else { 2749 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2750 } 2751 2752 if (spapr->has_graphics) { 2753 USBBus *usb_bus = usb_bus_find(-1); 2754 2755 usb_create_simple(usb_bus, "usb-kbd"); 2756 usb_create_simple(usb_bus, "usb-mouse"); 2757 } 2758 } 2759 2760 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2761 error_report( 2762 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2763 MIN_RMA_SLOF); 2764 exit(1); 2765 } 2766 2767 if (kernel_filename) { 2768 uint64_t lowaddr = 0; 2769 2770 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2771 NULL, NULL, &lowaddr, NULL, 1, 2772 PPC_ELF_MACHINE, 0, 0); 2773 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2774 spapr->kernel_size = load_elf(kernel_filename, 2775 translate_kernel_address, NULL, NULL, 2776 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2777 0, 0); 2778 spapr->kernel_le = spapr->kernel_size > 0; 2779 } 2780 if (spapr->kernel_size < 0) { 2781 error_report("error loading %s: %s", kernel_filename, 2782 load_elf_strerror(spapr->kernel_size)); 2783 exit(1); 2784 } 2785 2786 /* load initrd */ 2787 if (initrd_filename) { 2788 /* Try to locate the initrd in the gap between the kernel 2789 * and the firmware. Add a bit of space just in case 2790 */ 2791 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2792 + 0x1ffff) & ~0xffff; 2793 spapr->initrd_size = load_image_targphys(initrd_filename, 2794 spapr->initrd_base, 2795 load_limit 2796 - spapr->initrd_base); 2797 if (spapr->initrd_size < 0) { 2798 error_report("could not load initial ram disk '%s'", 2799 initrd_filename); 2800 exit(1); 2801 } 2802 } 2803 } 2804 2805 if (bios_name == NULL) { 2806 bios_name = FW_FILE_NAME; 2807 } 2808 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2809 if (!filename) { 2810 error_report("Could not find LPAR firmware '%s'", bios_name); 2811 exit(1); 2812 } 2813 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2814 if (fw_size <= 0) { 2815 error_report("Could not load LPAR firmware '%s'", filename); 2816 exit(1); 2817 } 2818 g_free(filename); 2819 2820 /* FIXME: Should register things through the MachineState's qdev 2821 * interface, this is a legacy from the sPAPREnvironment structure 2822 * which predated MachineState but had a similar function */ 2823 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2824 register_savevm_live(NULL, "spapr/htab", -1, 1, 2825 &savevm_htab_handlers, spapr); 2826 2827 qemu_register_boot_set(spapr_boot_set, spapr); 2828 2829 if (kvm_enabled()) { 2830 /* to stop and start vmclock */ 2831 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2832 &spapr->tb); 2833 2834 kvmppc_spapr_enable_inkernel_multitce(); 2835 } 2836 } 2837 2838 static int spapr_kvm_type(const char *vm_type) 2839 { 2840 if (!vm_type) { 2841 return 0; 2842 } 2843 2844 if (!strcmp(vm_type, "HV")) { 2845 return 1; 2846 } 2847 2848 if (!strcmp(vm_type, "PR")) { 2849 return 2; 2850 } 2851 2852 error_report("Unknown kvm-type specified '%s'", vm_type); 2853 exit(1); 2854 } 2855 2856 /* 2857 * Implementation of an interface to adjust firmware path 2858 * for the bootindex property handling. 2859 */ 2860 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2861 DeviceState *dev) 2862 { 2863 #define CAST(type, obj, name) \ 2864 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2865 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2866 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2867 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2868 2869 if (d) { 2870 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2871 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2872 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2873 2874 if (spapr) { 2875 /* 2876 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2877 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2878 * in the top 16 bits of the 64-bit LUN 2879 */ 2880 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2881 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2882 (uint64_t)id << 48); 2883 } else if (virtio) { 2884 /* 2885 * We use SRP luns of the form 01000000 | (target << 8) | lun 2886 * in the top 32 bits of the 64-bit LUN 2887 * Note: the quote above is from SLOF and it is wrong, 2888 * the actual binding is: 2889 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2890 */ 2891 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2892 if (d->lun >= 256) { 2893 /* Use the LUN "flat space addressing method" */ 2894 id |= 0x4000; 2895 } 2896 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2897 (uint64_t)id << 32); 2898 } else if (usb) { 2899 /* 2900 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2901 * in the top 32 bits of the 64-bit LUN 2902 */ 2903 unsigned usb_port = atoi(usb->port->path); 2904 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2905 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2906 (uint64_t)id << 32); 2907 } 2908 } 2909 2910 /* 2911 * SLOF probes the USB devices, and if it recognizes that the device is a 2912 * storage device, it changes its name to "storage" instead of "usb-host", 2913 * and additionally adds a child node for the SCSI LUN, so the correct 2914 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2915 */ 2916 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2917 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2918 if (usb_host_dev_is_scsi_storage(usbdev)) { 2919 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2920 } 2921 } 2922 2923 if (phb) { 2924 /* Replace "pci" with "pci@800000020000000" */ 2925 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2926 } 2927 2928 if (vsc) { 2929 /* Same logic as virtio above */ 2930 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2931 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2932 } 2933 2934 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2935 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2936 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2937 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2938 } 2939 2940 return NULL; 2941 } 2942 2943 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2944 { 2945 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2946 2947 return g_strdup(spapr->kvm_type); 2948 } 2949 2950 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2951 { 2952 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2953 2954 g_free(spapr->kvm_type); 2955 spapr->kvm_type = g_strdup(value); 2956 } 2957 2958 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2959 { 2960 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2961 2962 return spapr->use_hotplug_event_source; 2963 } 2964 2965 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2966 Error **errp) 2967 { 2968 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2969 2970 spapr->use_hotplug_event_source = value; 2971 } 2972 2973 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 2974 { 2975 return true; 2976 } 2977 2978 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2979 { 2980 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2981 2982 switch (spapr->resize_hpt) { 2983 case SPAPR_RESIZE_HPT_DEFAULT: 2984 return g_strdup("default"); 2985 case SPAPR_RESIZE_HPT_DISABLED: 2986 return g_strdup("disabled"); 2987 case SPAPR_RESIZE_HPT_ENABLED: 2988 return g_strdup("enabled"); 2989 case SPAPR_RESIZE_HPT_REQUIRED: 2990 return g_strdup("required"); 2991 } 2992 g_assert_not_reached(); 2993 } 2994 2995 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 2996 { 2997 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2998 2999 if (strcmp(value, "default") == 0) { 3000 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3001 } else if (strcmp(value, "disabled") == 0) { 3002 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3003 } else if (strcmp(value, "enabled") == 0) { 3004 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3005 } else if (strcmp(value, "required") == 0) { 3006 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3007 } else { 3008 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3009 } 3010 } 3011 3012 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3013 void *opaque, Error **errp) 3014 { 3015 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3016 } 3017 3018 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3019 void *opaque, Error **errp) 3020 { 3021 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3022 } 3023 3024 static void spapr_instance_init(Object *obj) 3025 { 3026 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3027 3028 spapr->htab_fd = -1; 3029 spapr->use_hotplug_event_source = true; 3030 object_property_add_str(obj, "kvm-type", 3031 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3032 object_property_set_description(obj, "kvm-type", 3033 "Specifies the KVM virtualization mode (HV, PR)", 3034 NULL); 3035 object_property_add_bool(obj, "modern-hotplug-events", 3036 spapr_get_modern_hotplug_events, 3037 spapr_set_modern_hotplug_events, 3038 NULL); 3039 object_property_set_description(obj, "modern-hotplug-events", 3040 "Use dedicated hotplug event mechanism in" 3041 " place of standard EPOW events when possible" 3042 " (required for memory hot-unplug support)", 3043 NULL); 3044 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3045 "Maximum permitted CPU compatibility mode", 3046 &error_fatal); 3047 3048 object_property_add_str(obj, "resize-hpt", 3049 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3050 object_property_set_description(obj, "resize-hpt", 3051 "Resizing of the Hash Page Table (enabled, disabled, required)", 3052 NULL); 3053 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3054 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3055 object_property_set_description(obj, "vsmt", 3056 "Virtual SMT: KVM behaves as if this were" 3057 " the host's SMT mode", &error_abort); 3058 object_property_add_bool(obj, "vfio-no-msix-emulation", 3059 spapr_get_msix_emulation, NULL, NULL); 3060 } 3061 3062 static void spapr_machine_finalizefn(Object *obj) 3063 { 3064 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3065 3066 g_free(spapr->kvm_type); 3067 } 3068 3069 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3070 { 3071 cpu_synchronize_state(cs); 3072 ppc_cpu_do_system_reset(cs); 3073 } 3074 3075 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3076 { 3077 CPUState *cs; 3078 3079 CPU_FOREACH(cs) { 3080 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3081 } 3082 } 3083 3084 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3085 uint32_t node, bool dedicated_hp_event_source, 3086 Error **errp) 3087 { 3088 sPAPRDRConnector *drc; 3089 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3090 int i, fdt_offset, fdt_size; 3091 void *fdt; 3092 uint64_t addr = addr_start; 3093 bool hotplugged = spapr_drc_hotplugged(dev); 3094 Error *local_err = NULL; 3095 3096 for (i = 0; i < nr_lmbs; i++) { 3097 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3098 addr / SPAPR_MEMORY_BLOCK_SIZE); 3099 g_assert(drc); 3100 3101 fdt = create_device_tree(&fdt_size); 3102 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3103 SPAPR_MEMORY_BLOCK_SIZE); 3104 3105 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3106 if (local_err) { 3107 while (addr > addr_start) { 3108 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3109 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3110 addr / SPAPR_MEMORY_BLOCK_SIZE); 3111 spapr_drc_detach(drc); 3112 } 3113 g_free(fdt); 3114 error_propagate(errp, local_err); 3115 return; 3116 } 3117 if (!hotplugged) { 3118 spapr_drc_reset(drc); 3119 } 3120 addr += SPAPR_MEMORY_BLOCK_SIZE; 3121 } 3122 /* send hotplug notification to the 3123 * guest only in case of hotplugged memory 3124 */ 3125 if (hotplugged) { 3126 if (dedicated_hp_event_source) { 3127 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3128 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3129 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3130 nr_lmbs, 3131 spapr_drc_index(drc)); 3132 } else { 3133 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3134 nr_lmbs); 3135 } 3136 } 3137 } 3138 3139 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3140 uint32_t node, Error **errp) 3141 { 3142 Error *local_err = NULL; 3143 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3144 PCDIMMDevice *dimm = PC_DIMM(dev); 3145 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3146 MemoryRegion *mr; 3147 uint64_t align, size, addr; 3148 3149 mr = ddc->get_memory_region(dimm, &local_err); 3150 if (local_err) { 3151 goto out; 3152 } 3153 align = memory_region_get_alignment(mr); 3154 size = memory_region_size(mr); 3155 3156 pc_dimm_memory_plug(dev, MACHINE(ms), align, &local_err); 3157 if (local_err) { 3158 goto out; 3159 } 3160 3161 addr = object_property_get_uint(OBJECT(dimm), 3162 PC_DIMM_ADDR_PROP, &local_err); 3163 if (local_err) { 3164 goto out_unplug; 3165 } 3166 3167 spapr_add_lmbs(dev, addr, size, node, 3168 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3169 &local_err); 3170 if (local_err) { 3171 goto out_unplug; 3172 } 3173 3174 return; 3175 3176 out_unplug: 3177 pc_dimm_memory_unplug(dev, MACHINE(ms)); 3178 out: 3179 error_propagate(errp, local_err); 3180 } 3181 3182 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3183 Error **errp) 3184 { 3185 PCDIMMDevice *dimm = PC_DIMM(dev); 3186 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3187 MemoryRegion *mr; 3188 uint64_t size; 3189 char *mem_dev; 3190 3191 mr = ddc->get_memory_region(dimm, errp); 3192 if (!mr) { 3193 return; 3194 } 3195 size = memory_region_size(mr); 3196 3197 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3198 error_setg(errp, "Hotplugged memory size must be a multiple of " 3199 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 3200 return; 3201 } 3202 3203 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 3204 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 3205 error_setg(errp, "Memory backend has bad page size. " 3206 "Use 'memory-backend-file' with correct mem-path."); 3207 goto out; 3208 } 3209 3210 out: 3211 g_free(mem_dev); 3212 } 3213 3214 struct sPAPRDIMMState { 3215 PCDIMMDevice *dimm; 3216 uint32_t nr_lmbs; 3217 QTAILQ_ENTRY(sPAPRDIMMState) next; 3218 }; 3219 3220 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3221 PCDIMMDevice *dimm) 3222 { 3223 sPAPRDIMMState *dimm_state = NULL; 3224 3225 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3226 if (dimm_state->dimm == dimm) { 3227 break; 3228 } 3229 } 3230 return dimm_state; 3231 } 3232 3233 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3234 uint32_t nr_lmbs, 3235 PCDIMMDevice *dimm) 3236 { 3237 sPAPRDIMMState *ds = NULL; 3238 3239 /* 3240 * If this request is for a DIMM whose removal had failed earlier 3241 * (due to guest's refusal to remove the LMBs), we would have this 3242 * dimm already in the pending_dimm_unplugs list. In that 3243 * case don't add again. 3244 */ 3245 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3246 if (!ds) { 3247 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3248 ds->nr_lmbs = nr_lmbs; 3249 ds->dimm = dimm; 3250 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3251 } 3252 return ds; 3253 } 3254 3255 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3256 sPAPRDIMMState *dimm_state) 3257 { 3258 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3259 g_free(dimm_state); 3260 } 3261 3262 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3263 PCDIMMDevice *dimm) 3264 { 3265 sPAPRDRConnector *drc; 3266 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3267 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3268 uint64_t size = memory_region_size(mr); 3269 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3270 uint32_t avail_lmbs = 0; 3271 uint64_t addr_start, addr; 3272 int i; 3273 3274 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3275 &error_abort); 3276 3277 addr = addr_start; 3278 for (i = 0; i < nr_lmbs; i++) { 3279 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3280 addr / SPAPR_MEMORY_BLOCK_SIZE); 3281 g_assert(drc); 3282 if (drc->dev) { 3283 avail_lmbs++; 3284 } 3285 addr += SPAPR_MEMORY_BLOCK_SIZE; 3286 } 3287 3288 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3289 } 3290 3291 /* Callback to be called during DRC release. */ 3292 void spapr_lmb_release(DeviceState *dev) 3293 { 3294 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev)); 3295 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3296 3297 /* This information will get lost if a migration occurs 3298 * during the unplug process. In this case recover it. */ 3299 if (ds == NULL) { 3300 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3301 g_assert(ds); 3302 /* The DRC being examined by the caller at least must be counted */ 3303 g_assert(ds->nr_lmbs); 3304 } 3305 3306 if (--ds->nr_lmbs) { 3307 return; 3308 } 3309 3310 /* 3311 * Now that all the LMBs have been removed by the guest, call the 3312 * pc-dimm unplug handler to cleanup up the pc-dimm device. 3313 */ 3314 pc_dimm_memory_unplug(dev, MACHINE(spapr)); 3315 object_unparent(OBJECT(dev)); 3316 spapr_pending_dimm_unplugs_remove(spapr, ds); 3317 } 3318 3319 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3320 DeviceState *dev, Error **errp) 3321 { 3322 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3323 Error *local_err = NULL; 3324 PCDIMMDevice *dimm = PC_DIMM(dev); 3325 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3326 MemoryRegion *mr; 3327 uint32_t nr_lmbs; 3328 uint64_t size, addr_start, addr; 3329 int i; 3330 sPAPRDRConnector *drc; 3331 3332 mr = ddc->get_memory_region(dimm, &local_err); 3333 if (local_err) { 3334 goto out; 3335 } 3336 size = memory_region_size(mr); 3337 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3338 3339 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3340 &local_err); 3341 if (local_err) { 3342 goto out; 3343 } 3344 3345 /* 3346 * An existing pending dimm state for this DIMM means that there is an 3347 * unplug operation in progress, waiting for the spapr_lmb_release 3348 * callback to complete the job (BQL can't cover that far). In this case, 3349 * bail out to avoid detaching DRCs that were already released. 3350 */ 3351 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3352 error_setg(&local_err, 3353 "Memory unplug already in progress for device %s", 3354 dev->id); 3355 goto out; 3356 } 3357 3358 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3359 3360 addr = addr_start; 3361 for (i = 0; i < nr_lmbs; i++) { 3362 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3363 addr / SPAPR_MEMORY_BLOCK_SIZE); 3364 g_assert(drc); 3365 3366 spapr_drc_detach(drc); 3367 addr += SPAPR_MEMORY_BLOCK_SIZE; 3368 } 3369 3370 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3371 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3372 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3373 nr_lmbs, spapr_drc_index(drc)); 3374 out: 3375 error_propagate(errp, local_err); 3376 } 3377 3378 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3379 sPAPRMachineState *spapr) 3380 { 3381 PowerPCCPU *cpu = POWERPC_CPU(cs); 3382 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3383 int id = spapr_get_vcpu_id(cpu); 3384 void *fdt; 3385 int offset, fdt_size; 3386 char *nodename; 3387 3388 fdt = create_device_tree(&fdt_size); 3389 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3390 offset = fdt_add_subnode(fdt, 0, nodename); 3391 3392 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3393 g_free(nodename); 3394 3395 *fdt_offset = offset; 3396 return fdt; 3397 } 3398 3399 /* Callback to be called during DRC release. */ 3400 void spapr_core_release(DeviceState *dev) 3401 { 3402 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev)); 3403 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3404 CPUCore *cc = CPU_CORE(dev); 3405 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3406 3407 if (smc->pre_2_10_has_unused_icps) { 3408 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3409 int i; 3410 3411 for (i = 0; i < cc->nr_threads; i++) { 3412 CPUState *cs = CPU(sc->threads[i]); 3413 3414 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3415 } 3416 } 3417 3418 assert(core_slot); 3419 core_slot->cpu = NULL; 3420 object_unparent(OBJECT(dev)); 3421 } 3422 3423 static 3424 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3425 Error **errp) 3426 { 3427 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3428 int index; 3429 sPAPRDRConnector *drc; 3430 CPUCore *cc = CPU_CORE(dev); 3431 3432 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3433 error_setg(errp, "Unable to find CPU core with core-id: %d", 3434 cc->core_id); 3435 return; 3436 } 3437 if (index == 0) { 3438 error_setg(errp, "Boot CPU core may not be unplugged"); 3439 return; 3440 } 3441 3442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3443 spapr_vcpu_id(spapr, cc->core_id)); 3444 g_assert(drc); 3445 3446 spapr_drc_detach(drc); 3447 3448 spapr_hotplug_req_remove_by_index(drc); 3449 } 3450 3451 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3452 Error **errp) 3453 { 3454 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3455 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3456 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3457 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3458 CPUCore *cc = CPU_CORE(dev); 3459 CPUState *cs = CPU(core->threads[0]); 3460 sPAPRDRConnector *drc; 3461 Error *local_err = NULL; 3462 CPUArchId *core_slot; 3463 int index; 3464 bool hotplugged = spapr_drc_hotplugged(dev); 3465 3466 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3467 if (!core_slot) { 3468 error_setg(errp, "Unable to find CPU core with core-id: %d", 3469 cc->core_id); 3470 return; 3471 } 3472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3473 spapr_vcpu_id(spapr, cc->core_id)); 3474 3475 g_assert(drc || !mc->has_hotpluggable_cpus); 3476 3477 if (drc) { 3478 void *fdt; 3479 int fdt_offset; 3480 3481 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3482 3483 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3484 if (local_err) { 3485 g_free(fdt); 3486 error_propagate(errp, local_err); 3487 return; 3488 } 3489 3490 if (hotplugged) { 3491 /* 3492 * Send hotplug notification interrupt to the guest only 3493 * in case of hotplugged CPUs. 3494 */ 3495 spapr_hotplug_req_add_by_index(drc); 3496 } else { 3497 spapr_drc_reset(drc); 3498 } 3499 } 3500 3501 core_slot->cpu = OBJECT(dev); 3502 3503 if (smc->pre_2_10_has_unused_icps) { 3504 int i; 3505 3506 for (i = 0; i < cc->nr_threads; i++) { 3507 cs = CPU(core->threads[i]); 3508 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3509 } 3510 } 3511 } 3512 3513 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3514 Error **errp) 3515 { 3516 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3517 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3518 Error *local_err = NULL; 3519 CPUCore *cc = CPU_CORE(dev); 3520 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3521 const char *type = object_get_typename(OBJECT(dev)); 3522 CPUArchId *core_slot; 3523 int index; 3524 3525 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3526 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3527 goto out; 3528 } 3529 3530 if (strcmp(base_core_type, type)) { 3531 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3532 goto out; 3533 } 3534 3535 if (cc->core_id % smp_threads) { 3536 error_setg(&local_err, "invalid core id %d", cc->core_id); 3537 goto out; 3538 } 3539 3540 /* 3541 * In general we should have homogeneous threads-per-core, but old 3542 * (pre hotplug support) machine types allow the last core to have 3543 * reduced threads as a compatibility hack for when we allowed 3544 * total vcpus not a multiple of threads-per-core. 3545 */ 3546 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3547 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3548 cc->nr_threads, smp_threads); 3549 goto out; 3550 } 3551 3552 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3553 if (!core_slot) { 3554 error_setg(&local_err, "core id %d out of range", cc->core_id); 3555 goto out; 3556 } 3557 3558 if (core_slot->cpu) { 3559 error_setg(&local_err, "core %d already populated", cc->core_id); 3560 goto out; 3561 } 3562 3563 numa_cpu_pre_plug(core_slot, dev, &local_err); 3564 3565 out: 3566 error_propagate(errp, local_err); 3567 } 3568 3569 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3570 DeviceState *dev, Error **errp) 3571 { 3572 MachineState *ms = MACHINE(hotplug_dev); 3573 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3574 3575 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3576 int node; 3577 3578 if (!smc->dr_lmb_enabled) { 3579 error_setg(errp, "Memory hotplug not supported for this machine"); 3580 return; 3581 } 3582 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 3583 if (*errp) { 3584 return; 3585 } 3586 if (node < 0 || node >= MAX_NODES) { 3587 error_setg(errp, "Invaild node %d", node); 3588 return; 3589 } 3590 3591 spapr_memory_plug(hotplug_dev, dev, node, errp); 3592 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3593 spapr_core_plug(hotplug_dev, dev, errp); 3594 } 3595 } 3596 3597 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3598 DeviceState *dev, Error **errp) 3599 { 3600 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3601 MachineClass *mc = MACHINE_GET_CLASS(sms); 3602 3603 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3604 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3605 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3606 } else { 3607 /* NOTE: this means there is a window after guest reset, prior to 3608 * CAS negotiation, where unplug requests will fail due to the 3609 * capability not being detected yet. This is a bit different than 3610 * the case with PCI unplug, where the events will be queued and 3611 * eventually handled by the guest after boot 3612 */ 3613 error_setg(errp, "Memory hot unplug not supported for this guest"); 3614 } 3615 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3616 if (!mc->has_hotpluggable_cpus) { 3617 error_setg(errp, "CPU hot unplug not supported on this machine"); 3618 return; 3619 } 3620 spapr_core_unplug_request(hotplug_dev, dev, errp); 3621 } 3622 } 3623 3624 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3625 DeviceState *dev, Error **errp) 3626 { 3627 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3628 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3629 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3630 spapr_core_pre_plug(hotplug_dev, dev, errp); 3631 } 3632 } 3633 3634 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3635 DeviceState *dev) 3636 { 3637 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3638 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3639 return HOTPLUG_HANDLER(machine); 3640 } 3641 return NULL; 3642 } 3643 3644 static CpuInstanceProperties 3645 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3646 { 3647 CPUArchId *core_slot; 3648 MachineClass *mc = MACHINE_GET_CLASS(machine); 3649 3650 /* make sure possible_cpu are intialized */ 3651 mc->possible_cpu_arch_ids(machine); 3652 /* get CPU core slot containing thread that matches cpu_index */ 3653 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3654 assert(core_slot); 3655 return core_slot->props; 3656 } 3657 3658 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3659 { 3660 return idx / smp_cores % nb_numa_nodes; 3661 } 3662 3663 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3664 { 3665 int i; 3666 const char *core_type; 3667 int spapr_max_cores = max_cpus / smp_threads; 3668 MachineClass *mc = MACHINE_GET_CLASS(machine); 3669 3670 if (!mc->has_hotpluggable_cpus) { 3671 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3672 } 3673 if (machine->possible_cpus) { 3674 assert(machine->possible_cpus->len == spapr_max_cores); 3675 return machine->possible_cpus; 3676 } 3677 3678 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3679 if (!core_type) { 3680 error_report("Unable to find sPAPR CPU Core definition"); 3681 exit(1); 3682 } 3683 3684 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3685 sizeof(CPUArchId) * spapr_max_cores); 3686 machine->possible_cpus->len = spapr_max_cores; 3687 for (i = 0; i < machine->possible_cpus->len; i++) { 3688 int core_id = i * smp_threads; 3689 3690 machine->possible_cpus->cpus[i].type = core_type; 3691 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3692 machine->possible_cpus->cpus[i].arch_id = core_id; 3693 machine->possible_cpus->cpus[i].props.has_core_id = true; 3694 machine->possible_cpus->cpus[i].props.core_id = core_id; 3695 } 3696 return machine->possible_cpus; 3697 } 3698 3699 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3700 uint64_t *buid, hwaddr *pio, 3701 hwaddr *mmio32, hwaddr *mmio64, 3702 unsigned n_dma, uint32_t *liobns, Error **errp) 3703 { 3704 /* 3705 * New-style PHB window placement. 3706 * 3707 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3708 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3709 * windows. 3710 * 3711 * Some guest kernels can't work with MMIO windows above 1<<46 3712 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3713 * 3714 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3715 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3716 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3717 * 1TiB 64-bit MMIO windows for each PHB. 3718 */ 3719 const uint64_t base_buid = 0x800000020000000ULL; 3720 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3721 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3722 int i; 3723 3724 /* Sanity check natural alignments */ 3725 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3726 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3727 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3728 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3729 /* Sanity check bounds */ 3730 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3731 SPAPR_PCI_MEM32_WIN_SIZE); 3732 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3733 SPAPR_PCI_MEM64_WIN_SIZE); 3734 3735 if (index >= SPAPR_MAX_PHBS) { 3736 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3737 SPAPR_MAX_PHBS - 1); 3738 return; 3739 } 3740 3741 *buid = base_buid + index; 3742 for (i = 0; i < n_dma; ++i) { 3743 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3744 } 3745 3746 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3747 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3748 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3749 } 3750 3751 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3752 { 3753 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3754 3755 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3756 } 3757 3758 static void spapr_ics_resend(XICSFabric *dev) 3759 { 3760 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3761 3762 ics_resend(spapr->ics); 3763 } 3764 3765 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3766 { 3767 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3768 3769 return cpu ? ICP(cpu->intc) : NULL; 3770 } 3771 3772 #define ICS_IRQ_FREE(ics, srcno) \ 3773 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK))) 3774 3775 static int ics_find_free_block(ICSState *ics, int num, int alignnum) 3776 { 3777 int first, i; 3778 3779 for (first = 0; first < ics->nr_irqs; first += alignnum) { 3780 if (num > (ics->nr_irqs - first)) { 3781 return -1; 3782 } 3783 for (i = first; i < first + num; ++i) { 3784 if (!ICS_IRQ_FREE(ics, i)) { 3785 break; 3786 } 3787 } 3788 if (i == (first + num)) { 3789 return first; 3790 } 3791 } 3792 3793 return -1; 3794 } 3795 3796 /* 3797 * Allocate the IRQ number and set the IRQ type, LSI or MSI 3798 */ 3799 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi) 3800 { 3801 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi); 3802 } 3803 3804 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi, 3805 Error **errp) 3806 { 3807 ICSState *ics = spapr->ics; 3808 int irq; 3809 3810 assert(ics); 3811 3812 if (irq_hint) { 3813 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) { 3814 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint); 3815 return -1; 3816 } 3817 irq = irq_hint; 3818 } else { 3819 irq = ics_find_free_block(ics, 1, 1); 3820 if (irq < 0) { 3821 error_setg(errp, "can't allocate IRQ: no IRQ left"); 3822 return -1; 3823 } 3824 irq += ics->offset; 3825 } 3826 3827 spapr_irq_set_lsi(spapr, irq, lsi); 3828 trace_spapr_irq_alloc(irq); 3829 3830 return irq; 3831 } 3832 3833 /* 3834 * Allocate block of consecutive IRQs, and return the number of the first IRQ in 3835 * the block. If align==true, aligns the first IRQ number to num. 3836 */ 3837 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi, 3838 bool align, Error **errp) 3839 { 3840 ICSState *ics = spapr->ics; 3841 int i, first = -1; 3842 3843 assert(ics); 3844 3845 /* 3846 * MSIMesage::data is used for storing VIRQ so 3847 * it has to be aligned to num to support multiple 3848 * MSI vectors. MSI-X is not affected by this. 3849 * The hint is used for the first IRQ, the rest should 3850 * be allocated continuously. 3851 */ 3852 if (align) { 3853 assert((num == 1) || (num == 2) || (num == 4) || 3854 (num == 8) || (num == 16) || (num == 32)); 3855 first = ics_find_free_block(ics, num, num); 3856 } else { 3857 first = ics_find_free_block(ics, num, 1); 3858 } 3859 if (first < 0) { 3860 error_setg(errp, "can't find a free %d-IRQ block", num); 3861 return -1; 3862 } 3863 3864 first += ics->offset; 3865 for (i = first; i < first + num; ++i) { 3866 spapr_irq_set_lsi(spapr, i, lsi); 3867 } 3868 3869 trace_spapr_irq_alloc_block(first, num, lsi, align); 3870 3871 return first; 3872 } 3873 3874 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num) 3875 { 3876 ICSState *ics = spapr->ics; 3877 int srcno = irq - ics->offset; 3878 int i; 3879 3880 if (ics_valid_irq(ics, irq)) { 3881 trace_spapr_irq_free(0, irq, num); 3882 for (i = srcno; i < srcno + num; ++i) { 3883 if (ICS_IRQ_FREE(ics, i)) { 3884 trace_spapr_irq_free_warn(0, i + ics->offset); 3885 } 3886 memset(&ics->irqs[i], 0, sizeof(ICSIRQState)); 3887 } 3888 } 3889 } 3890 3891 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq) 3892 { 3893 ICSState *ics = spapr->ics; 3894 3895 if (ics_valid_irq(ics, irq)) { 3896 return ics->qirqs[irq - ics->offset]; 3897 } 3898 3899 return NULL; 3900 } 3901 3902 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3903 Monitor *mon) 3904 { 3905 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3906 CPUState *cs; 3907 3908 CPU_FOREACH(cs) { 3909 PowerPCCPU *cpu = POWERPC_CPU(cs); 3910 3911 icp_pic_print_info(ICP(cpu->intc), mon); 3912 } 3913 3914 ics_pic_print_info(spapr->ics, mon); 3915 } 3916 3917 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3918 { 3919 return cpu->vcpu_id; 3920 } 3921 3922 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3923 { 3924 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3925 int vcpu_id; 3926 3927 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3928 3929 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3930 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3931 error_append_hint(errp, "Adjust the number of cpus to %d " 3932 "or try to raise the number of threads per core\n", 3933 vcpu_id * smp_threads / spapr->vsmt); 3934 return; 3935 } 3936 3937 cpu->vcpu_id = vcpu_id; 3938 } 3939 3940 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3941 { 3942 CPUState *cs; 3943 3944 CPU_FOREACH(cs) { 3945 PowerPCCPU *cpu = POWERPC_CPU(cs); 3946 3947 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 3948 return cpu; 3949 } 3950 } 3951 3952 return NULL; 3953 } 3954 3955 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3956 { 3957 MachineClass *mc = MACHINE_CLASS(oc); 3958 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3959 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3960 NMIClass *nc = NMI_CLASS(oc); 3961 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3962 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3963 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3964 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3965 3966 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3967 3968 /* 3969 * We set up the default / latest behaviour here. The class_init 3970 * functions for the specific versioned machine types can override 3971 * these details for backwards compatibility 3972 */ 3973 mc->init = spapr_machine_init; 3974 mc->reset = spapr_machine_reset; 3975 mc->block_default_type = IF_SCSI; 3976 mc->max_cpus = 1024; 3977 mc->no_parallel = 1; 3978 mc->default_boot_order = ""; 3979 mc->default_ram_size = 512 * M_BYTE; 3980 mc->kvm_type = spapr_kvm_type; 3981 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 3982 mc->pci_allow_0_address = true; 3983 assert(!mc->get_hotplug_handler); 3984 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3985 hc->pre_plug = spapr_machine_device_pre_plug; 3986 hc->plug = spapr_machine_device_plug; 3987 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3988 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3989 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3990 hc->unplug_request = spapr_machine_device_unplug_request; 3991 3992 smc->dr_lmb_enabled = true; 3993 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3994 mc->has_hotpluggable_cpus = true; 3995 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3996 fwc->get_dev_path = spapr_get_fw_dev_path; 3997 nc->nmi_monitor_handler = spapr_nmi; 3998 smc->phb_placement = spapr_phb_placement; 3999 vhc->hypercall = emulate_spapr_hypercall; 4000 vhc->hpt_mask = spapr_hpt_mask; 4001 vhc->map_hptes = spapr_map_hptes; 4002 vhc->unmap_hptes = spapr_unmap_hptes; 4003 vhc->store_hpte = spapr_store_hpte; 4004 vhc->get_patbe = spapr_get_patbe; 4005 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4006 xic->ics_get = spapr_ics_get; 4007 xic->ics_resend = spapr_ics_resend; 4008 xic->icp_get = spapr_icp_get; 4009 ispc->print_info = spapr_pic_print_info; 4010 /* Force NUMA node memory size to be a multiple of 4011 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4012 * in which LMBs are represented and hot-added 4013 */ 4014 mc->numa_mem_align_shift = 28; 4015 4016 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4017 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4018 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4019 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4020 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4021 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4022 spapr_caps_add_properties(smc, &error_abort); 4023 } 4024 4025 static const TypeInfo spapr_machine_info = { 4026 .name = TYPE_SPAPR_MACHINE, 4027 .parent = TYPE_MACHINE, 4028 .abstract = true, 4029 .instance_size = sizeof(sPAPRMachineState), 4030 .instance_init = spapr_instance_init, 4031 .instance_finalize = spapr_machine_finalizefn, 4032 .class_size = sizeof(sPAPRMachineClass), 4033 .class_init = spapr_machine_class_init, 4034 .interfaces = (InterfaceInfo[]) { 4035 { TYPE_FW_PATH_PROVIDER }, 4036 { TYPE_NMI }, 4037 { TYPE_HOTPLUG_HANDLER }, 4038 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4039 { TYPE_XICS_FABRIC }, 4040 { TYPE_INTERRUPT_STATS_PROVIDER }, 4041 { } 4042 }, 4043 }; 4044 4045 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4046 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4047 void *data) \ 4048 { \ 4049 MachineClass *mc = MACHINE_CLASS(oc); \ 4050 spapr_machine_##suffix##_class_options(mc); \ 4051 if (latest) { \ 4052 mc->alias = "pseries"; \ 4053 mc->is_default = 1; \ 4054 } \ 4055 } \ 4056 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 4057 { \ 4058 MachineState *machine = MACHINE(obj); \ 4059 spapr_machine_##suffix##_instance_options(machine); \ 4060 } \ 4061 static const TypeInfo spapr_machine_##suffix##_info = { \ 4062 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4063 .parent = TYPE_SPAPR_MACHINE, \ 4064 .class_init = spapr_machine_##suffix##_class_init, \ 4065 .instance_init = spapr_machine_##suffix##_instance_init, \ 4066 }; \ 4067 static void spapr_machine_register_##suffix(void) \ 4068 { \ 4069 type_register(&spapr_machine_##suffix##_info); \ 4070 } \ 4071 type_init(spapr_machine_register_##suffix) 4072 4073 /* 4074 * pseries-2.13 4075 */ 4076 static void spapr_machine_2_13_instance_options(MachineState *machine) 4077 { 4078 } 4079 4080 static void spapr_machine_2_13_class_options(MachineClass *mc) 4081 { 4082 /* Defaults for the latest behaviour inherited from the base class */ 4083 } 4084 4085 DEFINE_SPAPR_MACHINE(2_13, "2.13", true); 4086 4087 /* 4088 * pseries-2.12 4089 */ 4090 #define SPAPR_COMPAT_2_12 \ 4091 HW_COMPAT_2_12 \ 4092 { \ 4093 .driver = TYPE_POWERPC_CPU, \ 4094 .property = "pre-2.13-migration", \ 4095 .value = "on", \ 4096 }, 4097 4098 static void spapr_machine_2_12_instance_options(MachineState *machine) 4099 { 4100 spapr_machine_2_13_instance_options(machine); 4101 } 4102 4103 static void spapr_machine_2_12_class_options(MachineClass *mc) 4104 { 4105 spapr_machine_2_13_class_options(mc); 4106 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12); 4107 } 4108 4109 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4110 4111 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine) 4112 { 4113 spapr_machine_2_12_instance_options(machine); 4114 } 4115 4116 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4117 { 4118 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4119 4120 spapr_machine_2_12_class_options(mc); 4121 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4122 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4123 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4124 } 4125 4126 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4127 4128 /* 4129 * pseries-2.11 4130 */ 4131 #define SPAPR_COMPAT_2_11 \ 4132 HW_COMPAT_2_11 4133 4134 static void spapr_machine_2_11_instance_options(MachineState *machine) 4135 { 4136 spapr_machine_2_12_instance_options(machine); 4137 } 4138 4139 static void spapr_machine_2_11_class_options(MachineClass *mc) 4140 { 4141 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4142 4143 spapr_machine_2_12_class_options(mc); 4144 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4145 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); 4146 } 4147 4148 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4149 4150 /* 4151 * pseries-2.10 4152 */ 4153 #define SPAPR_COMPAT_2_10 \ 4154 HW_COMPAT_2_10 4155 4156 static void spapr_machine_2_10_instance_options(MachineState *machine) 4157 { 4158 spapr_machine_2_11_instance_options(machine); 4159 } 4160 4161 static void spapr_machine_2_10_class_options(MachineClass *mc) 4162 { 4163 spapr_machine_2_11_class_options(mc); 4164 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 4165 } 4166 4167 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4168 4169 /* 4170 * pseries-2.9 4171 */ 4172 #define SPAPR_COMPAT_2_9 \ 4173 HW_COMPAT_2_9 \ 4174 { \ 4175 .driver = TYPE_POWERPC_CPU, \ 4176 .property = "pre-2.10-migration", \ 4177 .value = "on", \ 4178 }, \ 4179 4180 static void spapr_machine_2_9_instance_options(MachineState *machine) 4181 { 4182 spapr_machine_2_10_instance_options(machine); 4183 } 4184 4185 static void spapr_machine_2_9_class_options(MachineClass *mc) 4186 { 4187 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4188 4189 spapr_machine_2_10_class_options(mc); 4190 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 4191 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4192 smc->pre_2_10_has_unused_icps = true; 4193 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4194 } 4195 4196 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4197 4198 /* 4199 * pseries-2.8 4200 */ 4201 #define SPAPR_COMPAT_2_8 \ 4202 HW_COMPAT_2_8 \ 4203 { \ 4204 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4205 .property = "pcie-extended-configuration-space", \ 4206 .value = "off", \ 4207 }, 4208 4209 static void spapr_machine_2_8_instance_options(MachineState *machine) 4210 { 4211 spapr_machine_2_9_instance_options(machine); 4212 } 4213 4214 static void spapr_machine_2_8_class_options(MachineClass *mc) 4215 { 4216 spapr_machine_2_9_class_options(mc); 4217 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 4218 mc->numa_mem_align_shift = 23; 4219 } 4220 4221 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4222 4223 /* 4224 * pseries-2.7 4225 */ 4226 #define SPAPR_COMPAT_2_7 \ 4227 HW_COMPAT_2_7 \ 4228 { \ 4229 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4230 .property = "mem_win_size", \ 4231 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 4232 }, \ 4233 { \ 4234 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4235 .property = "mem64_win_size", \ 4236 .value = "0", \ 4237 }, \ 4238 { \ 4239 .driver = TYPE_POWERPC_CPU, \ 4240 .property = "pre-2.8-migration", \ 4241 .value = "on", \ 4242 }, \ 4243 { \ 4244 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4245 .property = "pre-2.8-migration", \ 4246 .value = "on", \ 4247 }, 4248 4249 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4250 uint64_t *buid, hwaddr *pio, 4251 hwaddr *mmio32, hwaddr *mmio64, 4252 unsigned n_dma, uint32_t *liobns, Error **errp) 4253 { 4254 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4255 const uint64_t base_buid = 0x800000020000000ULL; 4256 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4257 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4258 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4259 const uint32_t max_index = 255; 4260 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4261 4262 uint64_t ram_top = MACHINE(spapr)->ram_size; 4263 hwaddr phb0_base, phb_base; 4264 int i; 4265 4266 /* Do we have device memory? */ 4267 if (MACHINE(spapr)->maxram_size > ram_top) { 4268 /* Can't just use maxram_size, because there may be an 4269 * alignment gap between normal and device memory regions 4270 */ 4271 ram_top = MACHINE(spapr)->device_memory->base + 4272 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4273 } 4274 4275 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4276 4277 if (index > max_index) { 4278 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4279 max_index); 4280 return; 4281 } 4282 4283 *buid = base_buid + index; 4284 for (i = 0; i < n_dma; ++i) { 4285 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4286 } 4287 4288 phb_base = phb0_base + index * phb_spacing; 4289 *pio = phb_base + pio_offset; 4290 *mmio32 = phb_base + mmio_offset; 4291 /* 4292 * We don't set the 64-bit MMIO window, relying on the PHB's 4293 * fallback behaviour of automatically splitting a large "32-bit" 4294 * window into contiguous 32-bit and 64-bit windows 4295 */ 4296 } 4297 4298 static void spapr_machine_2_7_instance_options(MachineState *machine) 4299 { 4300 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 4301 4302 spapr_machine_2_8_instance_options(machine); 4303 spapr->use_hotplug_event_source = false; 4304 } 4305 4306 static void spapr_machine_2_7_class_options(MachineClass *mc) 4307 { 4308 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4309 4310 spapr_machine_2_8_class_options(mc); 4311 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4312 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 4313 smc->phb_placement = phb_placement_2_7; 4314 } 4315 4316 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4317 4318 /* 4319 * pseries-2.6 4320 */ 4321 #define SPAPR_COMPAT_2_6 \ 4322 HW_COMPAT_2_6 \ 4323 { \ 4324 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4325 .property = "ddw",\ 4326 .value = stringify(off),\ 4327 }, 4328 4329 static void spapr_machine_2_6_instance_options(MachineState *machine) 4330 { 4331 spapr_machine_2_7_instance_options(machine); 4332 } 4333 4334 static void spapr_machine_2_6_class_options(MachineClass *mc) 4335 { 4336 spapr_machine_2_7_class_options(mc); 4337 mc->has_hotpluggable_cpus = false; 4338 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 4339 } 4340 4341 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4342 4343 /* 4344 * pseries-2.5 4345 */ 4346 #define SPAPR_COMPAT_2_5 \ 4347 HW_COMPAT_2_5 \ 4348 { \ 4349 .driver = "spapr-vlan", \ 4350 .property = "use-rx-buffer-pools", \ 4351 .value = "off", \ 4352 }, 4353 4354 static void spapr_machine_2_5_instance_options(MachineState *machine) 4355 { 4356 spapr_machine_2_6_instance_options(machine); 4357 } 4358 4359 static void spapr_machine_2_5_class_options(MachineClass *mc) 4360 { 4361 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4362 4363 spapr_machine_2_6_class_options(mc); 4364 smc->use_ohci_by_default = true; 4365 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 4366 } 4367 4368 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4369 4370 /* 4371 * pseries-2.4 4372 */ 4373 #define SPAPR_COMPAT_2_4 \ 4374 HW_COMPAT_2_4 4375 4376 static void spapr_machine_2_4_instance_options(MachineState *machine) 4377 { 4378 spapr_machine_2_5_instance_options(machine); 4379 } 4380 4381 static void spapr_machine_2_4_class_options(MachineClass *mc) 4382 { 4383 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4384 4385 spapr_machine_2_5_class_options(mc); 4386 smc->dr_lmb_enabled = false; 4387 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 4388 } 4389 4390 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4391 4392 /* 4393 * pseries-2.3 4394 */ 4395 #define SPAPR_COMPAT_2_3 \ 4396 HW_COMPAT_2_3 \ 4397 {\ 4398 .driver = "spapr-pci-host-bridge",\ 4399 .property = "dynamic-reconfiguration",\ 4400 .value = "off",\ 4401 }, 4402 4403 static void spapr_machine_2_3_instance_options(MachineState *machine) 4404 { 4405 spapr_machine_2_4_instance_options(machine); 4406 } 4407 4408 static void spapr_machine_2_3_class_options(MachineClass *mc) 4409 { 4410 spapr_machine_2_4_class_options(mc); 4411 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 4412 } 4413 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4414 4415 /* 4416 * pseries-2.2 4417 */ 4418 4419 #define SPAPR_COMPAT_2_2 \ 4420 HW_COMPAT_2_2 \ 4421 {\ 4422 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4423 .property = "mem_win_size",\ 4424 .value = "0x20000000",\ 4425 }, 4426 4427 static void spapr_machine_2_2_instance_options(MachineState *machine) 4428 { 4429 spapr_machine_2_3_instance_options(machine); 4430 machine->suppress_vmdesc = true; 4431 } 4432 4433 static void spapr_machine_2_2_class_options(MachineClass *mc) 4434 { 4435 spapr_machine_2_3_class_options(mc); 4436 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 4437 } 4438 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4439 4440 /* 4441 * pseries-2.1 4442 */ 4443 #define SPAPR_COMPAT_2_1 \ 4444 HW_COMPAT_2_1 4445 4446 static void spapr_machine_2_1_instance_options(MachineState *machine) 4447 { 4448 spapr_machine_2_2_instance_options(machine); 4449 } 4450 4451 static void spapr_machine_2_1_class_options(MachineClass *mc) 4452 { 4453 spapr_machine_2_2_class_options(mc); 4454 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4455 } 4456 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4457 4458 static void spapr_machine_register_types(void) 4459 { 4460 type_register_static(&spapr_machine_info); 4461 } 4462 4463 type_init(spapr_machine_register_types) 4464