xref: /openbmc/qemu/hw/ppc/spapr.c (revision 9f34101db00eabd8f424e98b481c2394e6509198)
1  /*
2   * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3   *
4   * Copyright (c) 2004-2007 Fabrice Bellard
5   * Copyright (c) 2007 Jocelyn Mayer
6   * Copyright (c) 2010 David Gibson, IBM Corporation.
7   *
8   * Permission is hereby granted, free of charge, to any person obtaining a copy
9   * of this software and associated documentation files (the "Software"), to deal
10   * in the Software without restriction, including without limitation the rights
11   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12   * copies of the Software, and to permit persons to whom the Software is
13   * furnished to do so, subject to the following conditions:
14   *
15   * The above copyright notice and this permission notice shall be included in
16   * all copies or substantial portions of the Software.
17   *
18   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24   * THE SOFTWARE.
25   */
26  
27  #include "qemu/osdep.h"
28  #include "qemu-common.h"
29  #include "qemu/datadir.h"
30  #include "qapi/error.h"
31  #include "qapi/visitor.h"
32  #include "sysemu/sysemu.h"
33  #include "sysemu/hostmem.h"
34  #include "sysemu/numa.h"
35  #include "sysemu/qtest.h"
36  #include "sysemu/reset.h"
37  #include "sysemu/runstate.h"
38  #include "qemu/log.h"
39  #include "hw/fw-path-provider.h"
40  #include "elf.h"
41  #include "net/net.h"
42  #include "sysemu/device_tree.h"
43  #include "sysemu/cpus.h"
44  #include "sysemu/hw_accel.h"
45  #include "kvm_ppc.h"
46  #include "migration/misc.h"
47  #include "migration/qemu-file-types.h"
48  #include "migration/global_state.h"
49  #include "migration/register.h"
50  #include "migration/blocker.h"
51  #include "mmu-hash64.h"
52  #include "mmu-book3s-v3.h"
53  #include "cpu-models.h"
54  #include "hw/core/cpu.h"
55  
56  #include "hw/boards.h"
57  #include "hw/ppc/ppc.h"
58  #include "hw/loader.h"
59  
60  #include "hw/ppc/fdt.h"
61  #include "hw/ppc/spapr.h"
62  #include "hw/ppc/spapr_vio.h"
63  #include "hw/qdev-properties.h"
64  #include "hw/pci-host/spapr.h"
65  #include "hw/pci/msi.h"
66  
67  #include "hw/pci/pci.h"
68  #include "hw/scsi/scsi.h"
69  #include "hw/virtio/virtio-scsi.h"
70  #include "hw/virtio/vhost-scsi-common.h"
71  
72  #include "exec/address-spaces.h"
73  #include "exec/ram_addr.h"
74  #include "hw/usb.h"
75  #include "qemu/config-file.h"
76  #include "qemu/error-report.h"
77  #include "trace.h"
78  #include "hw/nmi.h"
79  #include "hw/intc/intc.h"
80  
81  #include "hw/ppc/spapr_cpu_core.h"
82  #include "hw/mem/memory-device.h"
83  #include "hw/ppc/spapr_tpm_proxy.h"
84  #include "hw/ppc/spapr_nvdimm.h"
85  #include "hw/ppc/spapr_numa.h"
86  #include "hw/ppc/pef.h"
87  
88  #include "monitor/monitor.h"
89  
90  #include <libfdt.h>
91  
92  /* SLOF memory layout:
93   *
94   * SLOF raw image loaded at 0, copies its romfs right below the flat
95   * device-tree, then position SLOF itself 31M below that
96   *
97   * So we set FW_OVERHEAD to 40MB which should account for all of that
98   * and more
99   *
100   * We load our kernel at 4M, leaving space for SLOF initial image
101   */
102  #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
103  #define FW_MAX_SIZE             0x400000
104  #define FW_FILE_NAME            "slof.bin"
105  #define FW_OVERHEAD             0x2800000
106  #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
107  
108  #define MIN_RMA_SLOF            (128 * MiB)
109  
110  #define PHANDLE_INTC            0x00001111
111  
112  /* These two functions implement the VCPU id numbering: one to compute them
113   * all and one to identify thread 0 of a VCORE. Any change to the first one
114   * is likely to have an impact on the second one, so let's keep them close.
115   */
116  static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117  {
118      MachineState *ms = MACHINE(spapr);
119      unsigned int smp_threads = ms->smp.threads;
120  
121      assert(spapr->vsmt);
122      return
123          (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124  }
125  static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
126                                        PowerPCCPU *cpu)
127  {
128      assert(spapr->vsmt);
129      return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130  }
131  
132  static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133  {
134      /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135       * and newer QEMUs don't even have them. In both cases, we don't want
136       * to send anything on the wire.
137       */
138      return false;
139  }
140  
141  static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
142      .name = "icp/server",
143      .version_id = 1,
144      .minimum_version_id = 1,
145      .needed = pre_2_10_vmstate_dummy_icp_needed,
146      .fields = (VMStateField[]) {
147          VMSTATE_UNUSED(4), /* uint32_t xirr */
148          VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149          VMSTATE_UNUSED(1), /* uint8_t mfrr */
150          VMSTATE_END_OF_LIST()
151      },
152  };
153  
154  static void pre_2_10_vmstate_register_dummy_icp(int i)
155  {
156      vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
157                       (void *)(uintptr_t) i);
158  }
159  
160  static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161  {
162      vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
163                         (void *)(uintptr_t) i);
164  }
165  
166  int spapr_max_server_number(SpaprMachineState *spapr)
167  {
168      MachineState *ms = MACHINE(spapr);
169  
170      assert(spapr->vsmt);
171      return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172  }
173  
174  static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
175                                    int smt_threads)
176  {
177      int i, ret = 0;
178      uint32_t servers_prop[smt_threads];
179      uint32_t gservers_prop[smt_threads * 2];
180      int index = spapr_get_vcpu_id(cpu);
181  
182      if (cpu->compat_pvr) {
183          ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184          if (ret < 0) {
185              return ret;
186          }
187      }
188  
189      /* Build interrupt servers and gservers properties */
190      for (i = 0; i < smt_threads; i++) {
191          servers_prop[i] = cpu_to_be32(index + i);
192          /* Hack, direct the group queues back to cpu 0 */
193          gservers_prop[i*2] = cpu_to_be32(index + i);
194          gservers_prop[i*2 + 1] = 0;
195      }
196      ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
197                        servers_prop, sizeof(servers_prop));
198      if (ret < 0) {
199          return ret;
200      }
201      ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
202                        gservers_prop, sizeof(gservers_prop));
203  
204      return ret;
205  }
206  
207  static void spapr_dt_pa_features(SpaprMachineState *spapr,
208                                   PowerPCCPU *cpu,
209                                   void *fdt, int offset)
210  {
211      uint8_t pa_features_206[] = { 6, 0,
212          0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213      uint8_t pa_features_207[] = { 24, 0,
214          0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215          0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216          0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217          0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218      uint8_t pa_features_300[] = { 66, 0,
219          /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220          /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221          0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222          /* 6: DS207 */
223          0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224          /* 16: Vector */
225          0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226          /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227          0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228          /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229          0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230          /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231          0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232          /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233          0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234          /* 42: PM, 44: PC RA, 46: SC vec'd */
235          0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236          /* 48: SIMD, 50: QP BFP, 52: String */
237          0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238          /* 54: DecFP, 56: DecI, 58: SHA */
239          0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240          /* 60: NM atomic, 62: RNG */
241          0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242      };
243      uint8_t *pa_features = NULL;
244      size_t pa_size;
245  
246      if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
247          pa_features = pa_features_206;
248          pa_size = sizeof(pa_features_206);
249      }
250      if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
251          pa_features = pa_features_207;
252          pa_size = sizeof(pa_features_207);
253      }
254      if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
255          pa_features = pa_features_300;
256          pa_size = sizeof(pa_features_300);
257      }
258      if (!pa_features) {
259          return;
260      }
261  
262      if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263          /*
264           * Note: we keep CI large pages off by default because a 64K capable
265           * guest provisioned with large pages might otherwise try to map a qemu
266           * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267           * even if that qemu runs on a 4k host.
268           * We dd this bit back here if we are confident this is not an issue
269           */
270          pa_features[3] |= 0x20;
271      }
272      if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
273          pa_features[24] |= 0x80;    /* Transactional memory support */
274      }
275      if (spapr->cas_pre_isa3_guest && pa_size > 40) {
276          /* Workaround for broken kernels that attempt (guest) radix
277           * mode when they can't handle it, if they see the radix bit set
278           * in pa-features. So hide it from them. */
279          pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280      }
281  
282      _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283  }
284  
285  static hwaddr spapr_node0_size(MachineState *machine)
286  {
287      if (machine->numa_state->num_nodes) {
288          int i;
289          for (i = 0; i < machine->numa_state->num_nodes; ++i) {
290              if (machine->numa_state->nodes[i].node_mem) {
291                  return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
292                             machine->ram_size);
293              }
294          }
295      }
296      return machine->ram_size;
297  }
298  
299  static void add_str(GString *s, const gchar *s1)
300  {
301      g_string_append_len(s, s1, strlen(s1) + 1);
302  }
303  
304  static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
305                                  hwaddr start, hwaddr size)
306  {
307      char mem_name[32];
308      uint64_t mem_reg_property[2];
309      int off;
310  
311      mem_reg_property[0] = cpu_to_be64(start);
312      mem_reg_property[1] = cpu_to_be64(size);
313  
314      sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
315      off = fdt_add_subnode(fdt, 0, mem_name);
316      _FDT(off);
317      _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
318      _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
319                        sizeof(mem_reg_property))));
320      spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
321      return off;
322  }
323  
324  static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
325  {
326      MemoryDeviceInfoList *info;
327  
328      for (info = list; info; info = info->next) {
329          MemoryDeviceInfo *value = info->value;
330  
331          if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
332              PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
333  
334              if (addr >= pcdimm_info->addr &&
335                  addr < (pcdimm_info->addr + pcdimm_info->size)) {
336                  return pcdimm_info->node;
337              }
338          }
339      }
340  
341      return -1;
342  }
343  
344  struct sPAPRDrconfCellV2 {
345       uint32_t seq_lmbs;
346       uint64_t base_addr;
347       uint32_t drc_index;
348       uint32_t aa_index;
349       uint32_t flags;
350  } QEMU_PACKED;
351  
352  typedef struct DrconfCellQueue {
353      struct sPAPRDrconfCellV2 cell;
354      QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
355  } DrconfCellQueue;
356  
357  static DrconfCellQueue *
358  spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
359                        uint32_t drc_index, uint32_t aa_index,
360                        uint32_t flags)
361  {
362      DrconfCellQueue *elem;
363  
364      elem = g_malloc0(sizeof(*elem));
365      elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
366      elem->cell.base_addr = cpu_to_be64(base_addr);
367      elem->cell.drc_index = cpu_to_be32(drc_index);
368      elem->cell.aa_index = cpu_to_be32(aa_index);
369      elem->cell.flags = cpu_to_be32(flags);
370  
371      return elem;
372  }
373  
374  static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
375                                        int offset, MemoryDeviceInfoList *dimms)
376  {
377      MachineState *machine = MACHINE(spapr);
378      uint8_t *int_buf, *cur_index;
379      int ret;
380      uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
381      uint64_t addr, cur_addr, size;
382      uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
383      uint64_t mem_end = machine->device_memory->base +
384                         memory_region_size(&machine->device_memory->mr);
385      uint32_t node, buf_len, nr_entries = 0;
386      SpaprDrc *drc;
387      DrconfCellQueue *elem, *next;
388      MemoryDeviceInfoList *info;
389      QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
390          = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
391  
392      /* Entry to cover RAM and the gap area */
393      elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
394                                   SPAPR_LMB_FLAGS_RESERVED |
395                                   SPAPR_LMB_FLAGS_DRC_INVALID);
396      QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
397      nr_entries++;
398  
399      cur_addr = machine->device_memory->base;
400      for (info = dimms; info; info = info->next) {
401          PCDIMMDeviceInfo *di = info->value->u.dimm.data;
402  
403          addr = di->addr;
404          size = di->size;
405          node = di->node;
406  
407          /*
408           * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
409           * area is marked hotpluggable in the next iteration for the bigger
410           * chunk including the NVDIMM occupied area.
411           */
412          if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
413              continue;
414  
415          /* Entry for hot-pluggable area */
416          if (cur_addr < addr) {
417              drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
418              g_assert(drc);
419              elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
420                                           cur_addr, spapr_drc_index(drc), -1, 0);
421              QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
422              nr_entries++;
423          }
424  
425          /* Entry for DIMM */
426          drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
427          g_assert(drc);
428          elem = spapr_get_drconf_cell(size / lmb_size, addr,
429                                       spapr_drc_index(drc), node,
430                                       (SPAPR_LMB_FLAGS_ASSIGNED |
431                                        SPAPR_LMB_FLAGS_HOTREMOVABLE));
432          QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
433          nr_entries++;
434          cur_addr = addr + size;
435      }
436  
437      /* Entry for remaining hotpluggable area */
438      if (cur_addr < mem_end) {
439          drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
440          g_assert(drc);
441          elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
442                                       cur_addr, spapr_drc_index(drc), -1, 0);
443          QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
444          nr_entries++;
445      }
446  
447      buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
448      int_buf = cur_index = g_malloc0(buf_len);
449      *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
450      cur_index += sizeof(nr_entries);
451  
452      QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
453          memcpy(cur_index, &elem->cell, sizeof(elem->cell));
454          cur_index += sizeof(elem->cell);
455          QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
456          g_free(elem);
457      }
458  
459      ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
460      g_free(int_buf);
461      if (ret < 0) {
462          return -1;
463      }
464      return 0;
465  }
466  
467  static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
468                                     int offset, MemoryDeviceInfoList *dimms)
469  {
470      MachineState *machine = MACHINE(spapr);
471      int i, ret;
472      uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
473      uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
474      uint32_t nr_lmbs = (machine->device_memory->base +
475                         memory_region_size(&machine->device_memory->mr)) /
476                         lmb_size;
477      uint32_t *int_buf, *cur_index, buf_len;
478  
479      /*
480       * Allocate enough buffer size to fit in ibm,dynamic-memory
481       */
482      buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
483      cur_index = int_buf = g_malloc0(buf_len);
484      int_buf[0] = cpu_to_be32(nr_lmbs);
485      cur_index++;
486      for (i = 0; i < nr_lmbs; i++) {
487          uint64_t addr = i * lmb_size;
488          uint32_t *dynamic_memory = cur_index;
489  
490          if (i >= device_lmb_start) {
491              SpaprDrc *drc;
492  
493              drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
494              g_assert(drc);
495  
496              dynamic_memory[0] = cpu_to_be32(addr >> 32);
497              dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
498              dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
499              dynamic_memory[3] = cpu_to_be32(0); /* reserved */
500              dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
501              if (memory_region_present(get_system_memory(), addr)) {
502                  dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
503              } else {
504                  dynamic_memory[5] = cpu_to_be32(0);
505              }
506          } else {
507              /*
508               * LMB information for RMA, boot time RAM and gap b/n RAM and
509               * device memory region -- all these are marked as reserved
510               * and as having no valid DRC.
511               */
512              dynamic_memory[0] = cpu_to_be32(addr >> 32);
513              dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
514              dynamic_memory[2] = cpu_to_be32(0);
515              dynamic_memory[3] = cpu_to_be32(0); /* reserved */
516              dynamic_memory[4] = cpu_to_be32(-1);
517              dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
518                                              SPAPR_LMB_FLAGS_DRC_INVALID);
519          }
520  
521          cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
522      }
523      ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
524      g_free(int_buf);
525      if (ret < 0) {
526          return -1;
527      }
528      return 0;
529  }
530  
531  /*
532   * Adds ibm,dynamic-reconfiguration-memory node.
533   * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
534   * of this device tree node.
535   */
536  static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
537                                                     void *fdt)
538  {
539      MachineState *machine = MACHINE(spapr);
540      int ret, offset;
541      uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
542      uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
543                                  cpu_to_be32(lmb_size & 0xffffffff)};
544      MemoryDeviceInfoList *dimms = NULL;
545  
546      /*
547       * Don't create the node if there is no device memory
548       */
549      if (machine->ram_size == machine->maxram_size) {
550          return 0;
551      }
552  
553      offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
554  
555      ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
556                      sizeof(prop_lmb_size));
557      if (ret < 0) {
558          return ret;
559      }
560  
561      ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
562      if (ret < 0) {
563          return ret;
564      }
565  
566      ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
567      if (ret < 0) {
568          return ret;
569      }
570  
571      /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
572      dimms = qmp_memory_device_list();
573      if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
574          ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
575      } else {
576          ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
577      }
578      qapi_free_MemoryDeviceInfoList(dimms);
579  
580      if (ret < 0) {
581          return ret;
582      }
583  
584      ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
585  
586      return ret;
587  }
588  
589  static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
590  {
591      MachineState *machine = MACHINE(spapr);
592      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
593      hwaddr mem_start, node_size;
594      int i, nb_nodes = machine->numa_state->num_nodes;
595      NodeInfo *nodes = machine->numa_state->nodes;
596  
597      for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
598          if (!nodes[i].node_mem) {
599              continue;
600          }
601          if (mem_start >= machine->ram_size) {
602              node_size = 0;
603          } else {
604              node_size = nodes[i].node_mem;
605              if (node_size > machine->ram_size - mem_start) {
606                  node_size = machine->ram_size - mem_start;
607              }
608          }
609          if (!mem_start) {
610              /* spapr_machine_init() checks for rma_size <= node0_size
611               * already */
612              spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
613              mem_start += spapr->rma_size;
614              node_size -= spapr->rma_size;
615          }
616          for ( ; node_size; ) {
617              hwaddr sizetmp = pow2floor(node_size);
618  
619              /* mem_start != 0 here */
620              if (ctzl(mem_start) < ctzl(sizetmp)) {
621                  sizetmp = 1ULL << ctzl(mem_start);
622              }
623  
624              spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
625              node_size -= sizetmp;
626              mem_start += sizetmp;
627          }
628      }
629  
630      /* Generate ibm,dynamic-reconfiguration-memory node if required */
631      if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
632          int ret;
633  
634          g_assert(smc->dr_lmb_enabled);
635          ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
636          if (ret) {
637              return ret;
638          }
639      }
640  
641      return 0;
642  }
643  
644  static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
645                           SpaprMachineState *spapr)
646  {
647      MachineState *ms = MACHINE(spapr);
648      PowerPCCPU *cpu = POWERPC_CPU(cs);
649      CPUPPCState *env = &cpu->env;
650      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
651      int index = spapr_get_vcpu_id(cpu);
652      uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
653                         0xffffffff, 0xffffffff};
654      uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
655          : SPAPR_TIMEBASE_FREQ;
656      uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
657      uint32_t page_sizes_prop[64];
658      size_t page_sizes_prop_size;
659      unsigned int smp_threads = ms->smp.threads;
660      uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
661      uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
662      int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
663      SpaprDrc *drc;
664      int drc_index;
665      uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
666      int i;
667  
668      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
669      if (drc) {
670          drc_index = spapr_drc_index(drc);
671          _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672      }
673  
674      _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
675      _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
676  
677      _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
678      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
679                             env->dcache_line_size)));
680      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
681                             env->dcache_line_size)));
682      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
683                             env->icache_line_size)));
684      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
685                             env->icache_line_size)));
686  
687      if (pcc->l1_dcache_size) {
688          _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
689                                 pcc->l1_dcache_size)));
690      } else {
691          warn_report("Unknown L1 dcache size for cpu");
692      }
693      if (pcc->l1_icache_size) {
694          _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
695                                 pcc->l1_icache_size)));
696      } else {
697          warn_report("Unknown L1 icache size for cpu");
698      }
699  
700      _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
701      _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
702      _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
703      _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
704      _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
705      _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
706  
707      if (env->spr_cb[SPR_PURR].oea_read) {
708          _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
709      }
710      if (env->spr_cb[SPR_SPURR].oea_read) {
711          _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712      }
713  
714      if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
715          _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
716                            segs, sizeof(segs))));
717      }
718  
719      /* Advertise VSX (vector extensions) if available
720       *   1               == VMX / Altivec available
721       *   2               == VSX available
722       *
723       * Only CPUs for which we create core types in spapr_cpu_core.c
724       * are possible, and all of those have VMX */
725      if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
726          _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
727      } else {
728          _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729      }
730  
731      /* Advertise DFP (Decimal Floating Point) if available
732       *   0 / no property == no DFP
733       *   1               == DFP available */
734      if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
735          _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736      }
737  
738      page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
739                                                        sizeof(page_sizes_prop));
740      if (page_sizes_prop_size) {
741          _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
742                            page_sizes_prop, page_sizes_prop_size)));
743      }
744  
745      spapr_dt_pa_features(spapr, cpu, fdt, offset);
746  
747      _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
748                             cs->cpu_index / vcpus_per_socket)));
749  
750      _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
751                        pft_size_prop, sizeof(pft_size_prop))));
752  
753      if (ms->numa_state->num_nodes > 1) {
754          _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755      }
756  
757      _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
758  
759      if (pcc->radix_page_info) {
760          for (i = 0; i < pcc->radix_page_info->count; i++) {
761              radix_AP_encodings[i] =
762                  cpu_to_be32(pcc->radix_page_info->entries[i]);
763          }
764          _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
765                            radix_AP_encodings,
766                            pcc->radix_page_info->count *
767                            sizeof(radix_AP_encodings[0]))));
768      }
769  
770      /*
771       * We set this property to let the guest know that it can use the large
772       * decrementer and its width in bits.
773       */
774      if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
775          _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
776                                pcc->lrg_decr_bits)));
777  }
778  
779  static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
780  {
781      CPUState **rev;
782      CPUState *cs;
783      int n_cpus;
784      int cpus_offset;
785      int i;
786  
787      cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
788      _FDT(cpus_offset);
789      _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
790      _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
791  
792      /*
793       * We walk the CPUs in reverse order to ensure that CPU DT nodes
794       * created by fdt_add_subnode() end up in the right order in FDT
795       * for the guest kernel the enumerate the CPUs correctly.
796       *
797       * The CPU list cannot be traversed in reverse order, so we need
798       * to do extra work.
799       */
800      n_cpus = 0;
801      rev = NULL;
802      CPU_FOREACH(cs) {
803          rev = g_renew(CPUState *, rev, n_cpus + 1);
804          rev[n_cpus++] = cs;
805      }
806  
807      for (i = n_cpus - 1; i >= 0; i--) {
808          CPUState *cs = rev[i];
809          PowerPCCPU *cpu = POWERPC_CPU(cs);
810          int index = spapr_get_vcpu_id(cpu);
811          DeviceClass *dc = DEVICE_GET_CLASS(cs);
812          g_autofree char *nodename = NULL;
813          int offset;
814  
815          if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
816              continue;
817          }
818  
819          nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
820          offset = fdt_add_subnode(fdt, cpus_offset, nodename);
821          _FDT(offset);
822          spapr_dt_cpu(cs, fdt, offset, spapr);
823      }
824  
825      g_free(rev);
826  }
827  
828  static int spapr_dt_rng(void *fdt)
829  {
830      int node;
831      int ret;
832  
833      node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
834      if (node <= 0) {
835          return -1;
836      }
837      ret = fdt_setprop_string(fdt, node, "device_type",
838                               "ibm,platform-facilities");
839      ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
840      ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841  
842      node = fdt_add_subnode(fdt, node, "ibm,random-v1");
843      if (node <= 0) {
844          return -1;
845      }
846      ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847  
848      return ret ? -1 : 0;
849  }
850  
851  static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852  {
853      MachineState *ms = MACHINE(spapr);
854      int rtas;
855      GString *hypertas = g_string_sized_new(256);
856      GString *qemu_hypertas = g_string_sized_new(256);
857      uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
858          memory_region_size(&MACHINE(spapr)->device_memory->mr);
859      uint32_t lrdr_capacity[] = {
860          cpu_to_be32(max_device_addr >> 32),
861          cpu_to_be32(max_device_addr & 0xffffffff),
862          cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
863          cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
864          cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
865      };
866  
867      _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868  
869      /* hypertas */
870      add_str(hypertas, "hcall-pft");
871      add_str(hypertas, "hcall-term");
872      add_str(hypertas, "hcall-dabr");
873      add_str(hypertas, "hcall-interrupt");
874      add_str(hypertas, "hcall-tce");
875      add_str(hypertas, "hcall-vio");
876      add_str(hypertas, "hcall-splpar");
877      add_str(hypertas, "hcall-join");
878      add_str(hypertas, "hcall-bulk");
879      add_str(hypertas, "hcall-set-mode");
880      add_str(hypertas, "hcall-sprg0");
881      add_str(hypertas, "hcall-copy");
882      add_str(hypertas, "hcall-debug");
883      add_str(hypertas, "hcall-vphn");
884      add_str(qemu_hypertas, "hcall-memop1");
885  
886      if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
887          add_str(hypertas, "hcall-multi-tce");
888      }
889  
890      if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
891          add_str(hypertas, "hcall-hpt-resize");
892      }
893  
894      _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
895                       hypertas->str, hypertas->len));
896      g_string_free(hypertas, TRUE);
897      _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
898                       qemu_hypertas->str, qemu_hypertas->len));
899      g_string_free(qemu_hypertas, TRUE);
900  
901      spapr_numa_write_rtas_dt(spapr, fdt, rtas);
902  
903      /*
904       * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
905       * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
906       *
907       * The system reset requirements are driven by existing Linux and PowerVM
908       * implementation which (contrary to PAPR) saves r3 in the error log
909       * structure like machine check, so Linux expects to find the saved r3
910       * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
911       * does not look at the error value).
912       *
913       * System reset interrupts are not subject to interlock like machine
914       * check, so this memory area could be corrupted if the sreset is
915       * interrupted by a machine check (or vice versa) if it was shared. To
916       * prevent this, system reset uses per-CPU areas for the sreset save
917       * area. A system reset that interrupts a system reset handler could
918       * still overwrite this area, but Linux doesn't try to recover in that
919       * case anyway.
920       *
921       * The extra 8 bytes is required because Linux's FWNMI error log check
922       * is off-by-one.
923       */
924      _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
925  			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
926      _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
927                            RTAS_ERROR_LOG_MAX));
928      _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
929                            RTAS_EVENT_SCAN_RATE));
930  
931      g_assert(msi_nonbroken);
932      _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
933  
934      /*
935       * According to PAPR, rtas ibm,os-term does not guarantee a return
936       * back to the guest cpu.
937       *
938       * While an additional ibm,extended-os-term property indicates
939       * that rtas call return will always occur. Set this property.
940       */
941      _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
942  
943      _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
944                       lrdr_capacity, sizeof(lrdr_capacity)));
945  
946      spapr_dt_rtas_tokens(fdt, rtas);
947  }
948  
949  /*
950   * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
951   * and the XIVE features that the guest may request and thus the valid
952   * values for bytes 23..26 of option vector 5:
953   */
954  static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
955                                            int chosen)
956  {
957      PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
958  
959      char val[2 * 4] = {
960          23, 0x00, /* XICS / XIVE mode */
961          24, 0x00, /* Hash/Radix, filled in below. */
962          25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
963          26, 0x40, /* Radix options: GTSE == yes. */
964      };
965  
966      if (spapr->irq->xics && spapr->irq->xive) {
967          val[1] = SPAPR_OV5_XIVE_BOTH;
968      } else if (spapr->irq->xive) {
969          val[1] = SPAPR_OV5_XIVE_EXPLOIT;
970      } else {
971          assert(spapr->irq->xics);
972          val[1] = SPAPR_OV5_XIVE_LEGACY;
973      }
974  
975      if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
976                            first_ppc_cpu->compat_pvr)) {
977          /*
978           * If we're in a pre POWER9 compat mode then the guest should
979           * do hash and use the legacy interrupt mode
980           */
981          val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
982          val[3] = 0x00; /* Hash */
983      } else if (kvm_enabled()) {
984          if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
985              val[3] = 0x80; /* OV5_MMU_BOTH */
986          } else if (kvmppc_has_cap_mmu_radix()) {
987              val[3] = 0x40; /* OV5_MMU_RADIX_300 */
988          } else {
989              val[3] = 0x00; /* Hash */
990          }
991      } else {
992          /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
993          val[3] = 0xC0;
994      }
995      _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
996                       val, sizeof(val)));
997  }
998  
999  static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1000  {
1001      MachineState *machine = MACHINE(spapr);
1002      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1003      int chosen;
1004  
1005      _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1006  
1007      if (reset) {
1008          const char *boot_device = machine->boot_order;
1009          char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1010          size_t cb = 0;
1011          char *bootlist = get_boot_devices_list(&cb);
1012  
1013          if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1014              _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1015                                      machine->kernel_cmdline));
1016          }
1017  
1018          if (spapr->initrd_size) {
1019              _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1020                                    spapr->initrd_base));
1021              _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1022                                    spapr->initrd_base + spapr->initrd_size));
1023          }
1024  
1025          if (spapr->kernel_size) {
1026              uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1027                                    cpu_to_be64(spapr->kernel_size) };
1028  
1029              _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1030                           &kprop, sizeof(kprop)));
1031              if (spapr->kernel_le) {
1032                  _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1033              }
1034          }
1035          if (boot_menu) {
1036              _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1037          }
1038          _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1039          _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1040          _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1041  
1042          if (cb && bootlist) {
1043              int i;
1044  
1045              for (i = 0; i < cb; i++) {
1046                  if (bootlist[i] == '\n') {
1047                      bootlist[i] = ' ';
1048                  }
1049              }
1050              _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1051          }
1052  
1053          if (boot_device && strlen(boot_device)) {
1054              _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1055          }
1056  
1057          if (!spapr->has_graphics && stdout_path) {
1058              /*
1059               * "linux,stdout-path" and "stdout" properties are
1060               * deprecated by linux kernel. New platforms should only
1061               * use the "stdout-path" property. Set the new property
1062               * and continue using older property to remain compatible
1063               * with the existing firmware.
1064               */
1065              _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1066              _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1067          }
1068  
1069          /*
1070           * We can deal with BAR reallocation just fine, advertise it
1071           * to the guest
1072           */
1073          if (smc->linux_pci_probe) {
1074              _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1075          }
1076  
1077          spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1078  
1079          g_free(stdout_path);
1080          g_free(bootlist);
1081      }
1082  
1083      _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1084  }
1085  
1086  static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1087  {
1088      /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1089       * KVM to work under pHyp with some guest co-operation */
1090      int hypervisor;
1091      uint8_t hypercall[16];
1092  
1093      _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1094      /* indicate KVM hypercall interface */
1095      _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1096      if (kvmppc_has_cap_fixup_hcalls()) {
1097          /*
1098           * Older KVM versions with older guest kernels were broken
1099           * with the magic page, don't allow the guest to map it.
1100           */
1101          if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1102                                    sizeof(hypercall))) {
1103              _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1104                               hypercall, sizeof(hypercall)));
1105          }
1106      }
1107  }
1108  
1109  void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1110  {
1111      MachineState *machine = MACHINE(spapr);
1112      MachineClass *mc = MACHINE_GET_CLASS(machine);
1113      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1114      uint32_t root_drc_type_mask = 0;
1115      int ret;
1116      void *fdt;
1117      SpaprPhbState *phb;
1118      char *buf;
1119  
1120      fdt = g_malloc0(space);
1121      _FDT((fdt_create_empty_tree(fdt, space)));
1122  
1123      /* Root node */
1124      _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1125      _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1126      _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1127  
1128      /* Guest UUID & Name*/
1129      buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1130      _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1131      if (qemu_uuid_set) {
1132          _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1133      }
1134      g_free(buf);
1135  
1136      if (qemu_get_vm_name()) {
1137          _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1138                                  qemu_get_vm_name()));
1139      }
1140  
1141      /* Host Model & Serial Number */
1142      if (spapr->host_model) {
1143          _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1144      } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1145          _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1146          g_free(buf);
1147      }
1148  
1149      if (spapr->host_serial) {
1150          _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1151      } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1152          _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1153          g_free(buf);
1154      }
1155  
1156      _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1157      _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1158  
1159      /* /interrupt controller */
1160      spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1161  
1162      ret = spapr_dt_memory(spapr, fdt);
1163      if (ret < 0) {
1164          error_report("couldn't setup memory nodes in fdt");
1165          exit(1);
1166      }
1167  
1168      /* /vdevice */
1169      spapr_dt_vdevice(spapr->vio_bus, fdt);
1170  
1171      if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1172          ret = spapr_dt_rng(fdt);
1173          if (ret < 0) {
1174              error_report("could not set up rng device in the fdt");
1175              exit(1);
1176          }
1177      }
1178  
1179      QLIST_FOREACH(phb, &spapr->phbs, list) {
1180          ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1181          if (ret < 0) {
1182              error_report("couldn't setup PCI devices in fdt");
1183              exit(1);
1184          }
1185      }
1186  
1187      spapr_dt_cpus(fdt, spapr);
1188  
1189      /* ibm,drc-indexes and friends */
1190      if (smc->dr_lmb_enabled) {
1191          root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1192      }
1193      if (smc->dr_phb_enabled) {
1194          root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1195      }
1196      if (mc->nvdimm_supported) {
1197          root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1198      }
1199      if (root_drc_type_mask) {
1200          _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1201      }
1202  
1203      if (mc->has_hotpluggable_cpus) {
1204          int offset = fdt_path_offset(fdt, "/cpus");
1205          ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1206          if (ret < 0) {
1207              error_report("Couldn't set up CPU DR device tree properties");
1208              exit(1);
1209          }
1210      }
1211  
1212      /* /event-sources */
1213      spapr_dt_events(spapr, fdt);
1214  
1215      /* /rtas */
1216      spapr_dt_rtas(spapr, fdt);
1217  
1218      /* /chosen */
1219      spapr_dt_chosen(spapr, fdt, reset);
1220  
1221      /* /hypervisor */
1222      if (kvm_enabled()) {
1223          spapr_dt_hypervisor(spapr, fdt);
1224      }
1225  
1226      /* Build memory reserve map */
1227      if (reset) {
1228          if (spapr->kernel_size) {
1229              _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1230                                    spapr->kernel_size)));
1231          }
1232          if (spapr->initrd_size) {
1233              _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1234                                    spapr->initrd_size)));
1235          }
1236      }
1237  
1238      /* NVDIMM devices */
1239      if (mc->nvdimm_supported) {
1240          spapr_dt_persistent_memory(spapr, fdt);
1241      }
1242  
1243      return fdt;
1244  }
1245  
1246  static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1247  {
1248      SpaprMachineState *spapr = opaque;
1249  
1250      return (addr & 0x0fffffff) + spapr->kernel_addr;
1251  }
1252  
1253  static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1254                                      PowerPCCPU *cpu)
1255  {
1256      CPUPPCState *env = &cpu->env;
1257  
1258      /* The TCG path should also be holding the BQL at this point */
1259      g_assert(qemu_mutex_iothread_locked());
1260  
1261      if (msr_pr) {
1262          hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1263          env->gpr[3] = H_PRIVILEGE;
1264      } else {
1265          env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1266      }
1267  }
1268  
1269  struct LPCRSyncState {
1270      target_ulong value;
1271      target_ulong mask;
1272  };
1273  
1274  static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1275  {
1276      struct LPCRSyncState *s = arg.host_ptr;
1277      PowerPCCPU *cpu = POWERPC_CPU(cs);
1278      CPUPPCState *env = &cpu->env;
1279      target_ulong lpcr;
1280  
1281      cpu_synchronize_state(cs);
1282      lpcr = env->spr[SPR_LPCR];
1283      lpcr &= ~s->mask;
1284      lpcr |= s->value;
1285      ppc_store_lpcr(cpu, lpcr);
1286  }
1287  
1288  void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1289  {
1290      CPUState *cs;
1291      struct LPCRSyncState s = {
1292          .value = value,
1293          .mask = mask
1294      };
1295      CPU_FOREACH(cs) {
1296          run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1297      }
1298  }
1299  
1300  static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1301  {
1302      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1303  
1304      /* Copy PATE1:GR into PATE0:HR */
1305      entry->dw0 = spapr->patb_entry & PATE0_HR;
1306      entry->dw1 = spapr->patb_entry;
1307  }
1308  
1309  #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1310  #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1311  #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1312  #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1313  #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1314  
1315  /*
1316   * Get the fd to access the kernel htab, re-opening it if necessary
1317   */
1318  static int get_htab_fd(SpaprMachineState *spapr)
1319  {
1320      Error *local_err = NULL;
1321  
1322      if (spapr->htab_fd >= 0) {
1323          return spapr->htab_fd;
1324      }
1325  
1326      spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1327      if (spapr->htab_fd < 0) {
1328          error_report_err(local_err);
1329      }
1330  
1331      return spapr->htab_fd;
1332  }
1333  
1334  void close_htab_fd(SpaprMachineState *spapr)
1335  {
1336      if (spapr->htab_fd >= 0) {
1337          close(spapr->htab_fd);
1338      }
1339      spapr->htab_fd = -1;
1340  }
1341  
1342  static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1343  {
1344      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1345  
1346      return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1347  }
1348  
1349  static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1350  {
1351      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1352  
1353      assert(kvm_enabled());
1354  
1355      if (!spapr->htab) {
1356          return 0;
1357      }
1358  
1359      return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1360  }
1361  
1362  static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1363                                                  hwaddr ptex, int n)
1364  {
1365      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1366      hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1367  
1368      if (!spapr->htab) {
1369          /*
1370           * HTAB is controlled by KVM. Fetch into temporary buffer
1371           */
1372          ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1373          kvmppc_read_hptes(hptes, ptex, n);
1374          return hptes;
1375      }
1376  
1377      /*
1378       * HTAB is controlled by QEMU. Just point to the internally
1379       * accessible PTEG.
1380       */
1381      return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1382  }
1383  
1384  static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1385                                const ppc_hash_pte64_t *hptes,
1386                                hwaddr ptex, int n)
1387  {
1388      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389  
1390      if (!spapr->htab) {
1391          g_free((void *)hptes);
1392      }
1393  
1394      /* Nothing to do for qemu managed HPT */
1395  }
1396  
1397  void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1398                        uint64_t pte0, uint64_t pte1)
1399  {
1400      SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1401      hwaddr offset = ptex * HASH_PTE_SIZE_64;
1402  
1403      if (!spapr->htab) {
1404          kvmppc_write_hpte(ptex, pte0, pte1);
1405      } else {
1406          if (pte0 & HPTE64_V_VALID) {
1407              stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1408              /*
1409               * When setting valid, we write PTE1 first. This ensures
1410               * proper synchronization with the reading code in
1411               * ppc_hash64_pteg_search()
1412               */
1413              smp_wmb();
1414              stq_p(spapr->htab + offset, pte0);
1415          } else {
1416              stq_p(spapr->htab + offset, pte0);
1417              /*
1418               * When clearing it we set PTE0 first. This ensures proper
1419               * synchronization with the reading code in
1420               * ppc_hash64_pteg_search()
1421               */
1422              smp_wmb();
1423              stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1424          }
1425      }
1426  }
1427  
1428  static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1429                               uint64_t pte1)
1430  {
1431      hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1432      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1433  
1434      if (!spapr->htab) {
1435          /* There should always be a hash table when this is called */
1436          error_report("spapr_hpte_set_c called with no hash table !");
1437          return;
1438      }
1439  
1440      /* The HW performs a non-atomic byte update */
1441      stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1442  }
1443  
1444  static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1445                               uint64_t pte1)
1446  {
1447      hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1448      SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1449  
1450      if (!spapr->htab) {
1451          /* There should always be a hash table when this is called */
1452          error_report("spapr_hpte_set_r called with no hash table !");
1453          return;
1454      }
1455  
1456      /* The HW performs a non-atomic byte update */
1457      stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1458  }
1459  
1460  int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1461  {
1462      int shift;
1463  
1464      /* We aim for a hash table of size 1/128 the size of RAM (rounded
1465       * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1466       * that's much more than is needed for Linux guests */
1467      shift = ctz64(pow2ceil(ramsize)) - 7;
1468      shift = MAX(shift, 18); /* Minimum architected size */
1469      shift = MIN(shift, 46); /* Maximum architected size */
1470      return shift;
1471  }
1472  
1473  void spapr_free_hpt(SpaprMachineState *spapr)
1474  {
1475      g_free(spapr->htab);
1476      spapr->htab = NULL;
1477      spapr->htab_shift = 0;
1478      close_htab_fd(spapr);
1479  }
1480  
1481  int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1482  {
1483      ERRP_GUARD();
1484      long rc;
1485  
1486      /* Clean up any HPT info from a previous boot */
1487      spapr_free_hpt(spapr);
1488  
1489      rc = kvmppc_reset_htab(shift);
1490  
1491      if (rc == -EOPNOTSUPP) {
1492          error_setg(errp, "HPT not supported in nested guests");
1493          return -EOPNOTSUPP;
1494      }
1495  
1496      if (rc < 0) {
1497          /* kernel-side HPT needed, but couldn't allocate one */
1498          error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1499                           shift);
1500          error_append_hint(errp, "Try smaller maxmem?\n");
1501          return -errno;
1502      } else if (rc > 0) {
1503          /* kernel-side HPT allocated */
1504          if (rc != shift) {
1505              error_setg(errp,
1506                         "Requested order %d HPT, but kernel allocated order %ld",
1507                         shift, rc);
1508              error_append_hint(errp, "Try smaller maxmem?\n");
1509              return -ENOSPC;
1510          }
1511  
1512          spapr->htab_shift = shift;
1513          spapr->htab = NULL;
1514      } else {
1515          /* kernel-side HPT not needed, allocate in userspace instead */
1516          size_t size = 1ULL << shift;
1517          int i;
1518  
1519          spapr->htab = qemu_memalign(size, size);
1520          memset(spapr->htab, 0, size);
1521          spapr->htab_shift = shift;
1522  
1523          for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1524              DIRTY_HPTE(HPTE(spapr->htab, i));
1525          }
1526      }
1527      /* We're setting up a hash table, so that means we're not radix */
1528      spapr->patb_entry = 0;
1529      spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1530      return 0;
1531  }
1532  
1533  void spapr_setup_hpt(SpaprMachineState *spapr)
1534  {
1535      int hpt_shift;
1536  
1537      if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1538          hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1539      } else {
1540          uint64_t current_ram_size;
1541  
1542          current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1543          hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1544      }
1545      spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1546  
1547      if (kvm_enabled()) {
1548          hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1549  
1550          /* Check our RMA fits in the possible VRMA */
1551          if (vrma_limit < spapr->rma_size) {
1552              error_report("Unable to create %" HWADDR_PRIu
1553                           "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1554                           spapr->rma_size / MiB, vrma_limit / MiB);
1555              exit(EXIT_FAILURE);
1556          }
1557      }
1558  }
1559  
1560  static void spapr_machine_reset(MachineState *machine)
1561  {
1562      SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1563      PowerPCCPU *first_ppc_cpu;
1564      hwaddr fdt_addr;
1565      void *fdt;
1566      int rc;
1567  
1568      pef_kvm_reset(machine->cgs, &error_fatal);
1569      spapr_caps_apply(spapr);
1570  
1571      first_ppc_cpu = POWERPC_CPU(first_cpu);
1572      if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1573          ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1574                                spapr->max_compat_pvr)) {
1575          /*
1576           * If using KVM with radix mode available, VCPUs can be started
1577           * without a HPT because KVM will start them in radix mode.
1578           * Set the GR bit in PATE so that we know there is no HPT.
1579           */
1580          spapr->patb_entry = PATE1_GR;
1581          spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1582      } else {
1583          spapr_setup_hpt(spapr);
1584      }
1585  
1586      qemu_devices_reset();
1587  
1588      spapr_ovec_cleanup(spapr->ov5_cas);
1589      spapr->ov5_cas = spapr_ovec_new();
1590  
1591      ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1592  
1593      /*
1594       * This is fixing some of the default configuration of the XIVE
1595       * devices. To be called after the reset of the machine devices.
1596       */
1597      spapr_irq_reset(spapr, &error_fatal);
1598  
1599      /*
1600       * There is no CAS under qtest. Simulate one to please the code that
1601       * depends on spapr->ov5_cas. This is especially needed to test device
1602       * unplug, so we do that before resetting the DRCs.
1603       */
1604      if (qtest_enabled()) {
1605          spapr_ovec_cleanup(spapr->ov5_cas);
1606          spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1607      }
1608  
1609      /* DRC reset may cause a device to be unplugged. This will cause troubles
1610       * if this device is used by another device (eg, a running vhost backend
1611       * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1612       * situations, we reset DRCs after all devices have been reset.
1613       */
1614      spapr_drc_reset_all(spapr);
1615  
1616      spapr_clear_pending_events(spapr);
1617  
1618      /*
1619       * We place the device tree and RTAS just below either the top of the RMA,
1620       * or just below 2GB, whichever is lower, so that it can be
1621       * processed with 32-bit real mode code if necessary
1622       */
1623      fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1624  
1625      fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1626  
1627      rc = fdt_pack(fdt);
1628  
1629      /* Should only fail if we've built a corrupted tree */
1630      assert(rc == 0);
1631  
1632      /* Load the fdt */
1633      qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1634      cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1635      g_free(spapr->fdt_blob);
1636      spapr->fdt_size = fdt_totalsize(fdt);
1637      spapr->fdt_initial_size = spapr->fdt_size;
1638      spapr->fdt_blob = fdt;
1639  
1640      /* Set up the entry state */
1641      spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1642      first_ppc_cpu->env.gpr[5] = 0;
1643  
1644      spapr->fwnmi_system_reset_addr = -1;
1645      spapr->fwnmi_machine_check_addr = -1;
1646      spapr->fwnmi_machine_check_interlock = -1;
1647  
1648      /* Signal all vCPUs waiting on this condition */
1649      qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1650  
1651      migrate_del_blocker(spapr->fwnmi_migration_blocker);
1652  }
1653  
1654  static void spapr_create_nvram(SpaprMachineState *spapr)
1655  {
1656      DeviceState *dev = qdev_new("spapr-nvram");
1657      DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1658  
1659      if (dinfo) {
1660          qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1661                                  &error_fatal);
1662      }
1663  
1664      qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1665  
1666      spapr->nvram = (struct SpaprNvram *)dev;
1667  }
1668  
1669  static void spapr_rtc_create(SpaprMachineState *spapr)
1670  {
1671      object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1672                                         sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1673                                         &error_fatal, NULL);
1674      qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1675      object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1676                                "date");
1677  }
1678  
1679  /* Returns whether we want to use VGA or not */
1680  static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1681  {
1682      switch (vga_interface_type) {
1683      case VGA_NONE:
1684          return false;
1685      case VGA_DEVICE:
1686          return true;
1687      case VGA_STD:
1688      case VGA_VIRTIO:
1689      case VGA_CIRRUS:
1690          return pci_vga_init(pci_bus) != NULL;
1691      default:
1692          error_setg(errp,
1693                     "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1694          return false;
1695      }
1696  }
1697  
1698  static int spapr_pre_load(void *opaque)
1699  {
1700      int rc;
1701  
1702      rc = spapr_caps_pre_load(opaque);
1703      if (rc) {
1704          return rc;
1705      }
1706  
1707      return 0;
1708  }
1709  
1710  static int spapr_post_load(void *opaque, int version_id)
1711  {
1712      SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1713      int err = 0;
1714  
1715      err = spapr_caps_post_migration(spapr);
1716      if (err) {
1717          return err;
1718      }
1719  
1720      /*
1721       * In earlier versions, there was no separate qdev for the PAPR
1722       * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1723       * So when migrating from those versions, poke the incoming offset
1724       * value into the RTC device
1725       */
1726      if (version_id < 3) {
1727          err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1728          if (err) {
1729              return err;
1730          }
1731      }
1732  
1733      if (kvm_enabled() && spapr->patb_entry) {
1734          PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1735          bool radix = !!(spapr->patb_entry & PATE1_GR);
1736          bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1737  
1738          /*
1739           * Update LPCR:HR and UPRT as they may not be set properly in
1740           * the stream
1741           */
1742          spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1743                              LPCR_HR | LPCR_UPRT);
1744  
1745          err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1746          if (err) {
1747              error_report("Process table config unsupported by the host");
1748              return -EINVAL;
1749          }
1750      }
1751  
1752      err = spapr_irq_post_load(spapr, version_id);
1753      if (err) {
1754          return err;
1755      }
1756  
1757      return err;
1758  }
1759  
1760  static int spapr_pre_save(void *opaque)
1761  {
1762      int rc;
1763  
1764      rc = spapr_caps_pre_save(opaque);
1765      if (rc) {
1766          return rc;
1767      }
1768  
1769      return 0;
1770  }
1771  
1772  static bool version_before_3(void *opaque, int version_id)
1773  {
1774      return version_id < 3;
1775  }
1776  
1777  static bool spapr_pending_events_needed(void *opaque)
1778  {
1779      SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1780      return !QTAILQ_EMPTY(&spapr->pending_events);
1781  }
1782  
1783  static const VMStateDescription vmstate_spapr_event_entry = {
1784      .name = "spapr_event_log_entry",
1785      .version_id = 1,
1786      .minimum_version_id = 1,
1787      .fields = (VMStateField[]) {
1788          VMSTATE_UINT32(summary, SpaprEventLogEntry),
1789          VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1790          VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1791                                       NULL, extended_length),
1792          VMSTATE_END_OF_LIST()
1793      },
1794  };
1795  
1796  static const VMStateDescription vmstate_spapr_pending_events = {
1797      .name = "spapr_pending_events",
1798      .version_id = 1,
1799      .minimum_version_id = 1,
1800      .needed = spapr_pending_events_needed,
1801      .fields = (VMStateField[]) {
1802          VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1803                           vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1804          VMSTATE_END_OF_LIST()
1805      },
1806  };
1807  
1808  static bool spapr_ov5_cas_needed(void *opaque)
1809  {
1810      SpaprMachineState *spapr = opaque;
1811      SpaprOptionVector *ov5_mask = spapr_ovec_new();
1812      bool cas_needed;
1813  
1814      /* Prior to the introduction of SpaprOptionVector, we had two option
1815       * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1816       * Both of these options encode machine topology into the device-tree
1817       * in such a way that the now-booted OS should still be able to interact
1818       * appropriately with QEMU regardless of what options were actually
1819       * negotiatied on the source side.
1820       *
1821       * As such, we can avoid migrating the CAS-negotiated options if these
1822       * are the only options available on the current machine/platform.
1823       * Since these are the only options available for pseries-2.7 and
1824       * earlier, this allows us to maintain old->new/new->old migration
1825       * compatibility.
1826       *
1827       * For QEMU 2.8+, there are additional CAS-negotiatable options available
1828       * via default pseries-2.8 machines and explicit command-line parameters.
1829       * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1830       * of the actual CAS-negotiated values to continue working properly. For
1831       * example, availability of memory unplug depends on knowing whether
1832       * OV5_HP_EVT was negotiated via CAS.
1833       *
1834       * Thus, for any cases where the set of available CAS-negotiatable
1835       * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1836       * include the CAS-negotiated options in the migration stream, unless
1837       * if they affect boot time behaviour only.
1838       */
1839      spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1840      spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1841      spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1842  
1843      /* We need extra information if we have any bits outside the mask
1844       * defined above */
1845      cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1846  
1847      spapr_ovec_cleanup(ov5_mask);
1848  
1849      return cas_needed;
1850  }
1851  
1852  static const VMStateDescription vmstate_spapr_ov5_cas = {
1853      .name = "spapr_option_vector_ov5_cas",
1854      .version_id = 1,
1855      .minimum_version_id = 1,
1856      .needed = spapr_ov5_cas_needed,
1857      .fields = (VMStateField[]) {
1858          VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1859                                   vmstate_spapr_ovec, SpaprOptionVector),
1860          VMSTATE_END_OF_LIST()
1861      },
1862  };
1863  
1864  static bool spapr_patb_entry_needed(void *opaque)
1865  {
1866      SpaprMachineState *spapr = opaque;
1867  
1868      return !!spapr->patb_entry;
1869  }
1870  
1871  static const VMStateDescription vmstate_spapr_patb_entry = {
1872      .name = "spapr_patb_entry",
1873      .version_id = 1,
1874      .minimum_version_id = 1,
1875      .needed = spapr_patb_entry_needed,
1876      .fields = (VMStateField[]) {
1877          VMSTATE_UINT64(patb_entry, SpaprMachineState),
1878          VMSTATE_END_OF_LIST()
1879      },
1880  };
1881  
1882  static bool spapr_irq_map_needed(void *opaque)
1883  {
1884      SpaprMachineState *spapr = opaque;
1885  
1886      return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1887  }
1888  
1889  static const VMStateDescription vmstate_spapr_irq_map = {
1890      .name = "spapr_irq_map",
1891      .version_id = 1,
1892      .minimum_version_id = 1,
1893      .needed = spapr_irq_map_needed,
1894      .fields = (VMStateField[]) {
1895          VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1896          VMSTATE_END_OF_LIST()
1897      },
1898  };
1899  
1900  static bool spapr_dtb_needed(void *opaque)
1901  {
1902      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1903  
1904      return smc->update_dt_enabled;
1905  }
1906  
1907  static int spapr_dtb_pre_load(void *opaque)
1908  {
1909      SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1910  
1911      g_free(spapr->fdt_blob);
1912      spapr->fdt_blob = NULL;
1913      spapr->fdt_size = 0;
1914  
1915      return 0;
1916  }
1917  
1918  static const VMStateDescription vmstate_spapr_dtb = {
1919      .name = "spapr_dtb",
1920      .version_id = 1,
1921      .minimum_version_id = 1,
1922      .needed = spapr_dtb_needed,
1923      .pre_load = spapr_dtb_pre_load,
1924      .fields = (VMStateField[]) {
1925          VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1926          VMSTATE_UINT32(fdt_size, SpaprMachineState),
1927          VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1928                                       fdt_size),
1929          VMSTATE_END_OF_LIST()
1930      },
1931  };
1932  
1933  static bool spapr_fwnmi_needed(void *opaque)
1934  {
1935      SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1936  
1937      return spapr->fwnmi_machine_check_addr != -1;
1938  }
1939  
1940  static int spapr_fwnmi_pre_save(void *opaque)
1941  {
1942      SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1943  
1944      /*
1945       * Check if machine check handling is in progress and print a
1946       * warning message.
1947       */
1948      if (spapr->fwnmi_machine_check_interlock != -1) {
1949          warn_report("A machine check is being handled during migration. The"
1950                  "handler may run and log hardware error on the destination");
1951      }
1952  
1953      return 0;
1954  }
1955  
1956  static const VMStateDescription vmstate_spapr_fwnmi = {
1957      .name = "spapr_fwnmi",
1958      .version_id = 1,
1959      .minimum_version_id = 1,
1960      .needed = spapr_fwnmi_needed,
1961      .pre_save = spapr_fwnmi_pre_save,
1962      .fields = (VMStateField[]) {
1963          VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1964          VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1965          VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1966          VMSTATE_END_OF_LIST()
1967      },
1968  };
1969  
1970  static const VMStateDescription vmstate_spapr = {
1971      .name = "spapr",
1972      .version_id = 3,
1973      .minimum_version_id = 1,
1974      .pre_load = spapr_pre_load,
1975      .post_load = spapr_post_load,
1976      .pre_save = spapr_pre_save,
1977      .fields = (VMStateField[]) {
1978          /* used to be @next_irq */
1979          VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1980  
1981          /* RTC offset */
1982          VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1983  
1984          VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1985          VMSTATE_END_OF_LIST()
1986      },
1987      .subsections = (const VMStateDescription*[]) {
1988          &vmstate_spapr_ov5_cas,
1989          &vmstate_spapr_patb_entry,
1990          &vmstate_spapr_pending_events,
1991          &vmstate_spapr_cap_htm,
1992          &vmstate_spapr_cap_vsx,
1993          &vmstate_spapr_cap_dfp,
1994          &vmstate_spapr_cap_cfpc,
1995          &vmstate_spapr_cap_sbbc,
1996          &vmstate_spapr_cap_ibs,
1997          &vmstate_spapr_cap_hpt_maxpagesize,
1998          &vmstate_spapr_irq_map,
1999          &vmstate_spapr_cap_nested_kvm_hv,
2000          &vmstate_spapr_dtb,
2001          &vmstate_spapr_cap_large_decr,
2002          &vmstate_spapr_cap_ccf_assist,
2003          &vmstate_spapr_cap_fwnmi,
2004          &vmstate_spapr_fwnmi,
2005          NULL
2006      }
2007  };
2008  
2009  static int htab_save_setup(QEMUFile *f, void *opaque)
2010  {
2011      SpaprMachineState *spapr = opaque;
2012  
2013      /* "Iteration" header */
2014      if (!spapr->htab_shift) {
2015          qemu_put_be32(f, -1);
2016      } else {
2017          qemu_put_be32(f, spapr->htab_shift);
2018      }
2019  
2020      if (spapr->htab) {
2021          spapr->htab_save_index = 0;
2022          spapr->htab_first_pass = true;
2023      } else {
2024          if (spapr->htab_shift) {
2025              assert(kvm_enabled());
2026          }
2027      }
2028  
2029  
2030      return 0;
2031  }
2032  
2033  static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2034                              int chunkstart, int n_valid, int n_invalid)
2035  {
2036      qemu_put_be32(f, chunkstart);
2037      qemu_put_be16(f, n_valid);
2038      qemu_put_be16(f, n_invalid);
2039      qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2040                      HASH_PTE_SIZE_64 * n_valid);
2041  }
2042  
2043  static void htab_save_end_marker(QEMUFile *f)
2044  {
2045      qemu_put_be32(f, 0);
2046      qemu_put_be16(f, 0);
2047      qemu_put_be16(f, 0);
2048  }
2049  
2050  static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2051                                   int64_t max_ns)
2052  {
2053      bool has_timeout = max_ns != -1;
2054      int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2055      int index = spapr->htab_save_index;
2056      int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2057  
2058      assert(spapr->htab_first_pass);
2059  
2060      do {
2061          int chunkstart;
2062  
2063          /* Consume invalid HPTEs */
2064          while ((index < htabslots)
2065                 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2066              CLEAN_HPTE(HPTE(spapr->htab, index));
2067              index++;
2068          }
2069  
2070          /* Consume valid HPTEs */
2071          chunkstart = index;
2072          while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2073                 && HPTE_VALID(HPTE(spapr->htab, index))) {
2074              CLEAN_HPTE(HPTE(spapr->htab, index));
2075              index++;
2076          }
2077  
2078          if (index > chunkstart) {
2079              int n_valid = index - chunkstart;
2080  
2081              htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2082  
2083              if (has_timeout &&
2084                  (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2085                  break;
2086              }
2087          }
2088      } while ((index < htabslots) && !qemu_file_rate_limit(f));
2089  
2090      if (index >= htabslots) {
2091          assert(index == htabslots);
2092          index = 0;
2093          spapr->htab_first_pass = false;
2094      }
2095      spapr->htab_save_index = index;
2096  }
2097  
2098  static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2099                                  int64_t max_ns)
2100  {
2101      bool final = max_ns < 0;
2102      int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2103      int examined = 0, sent = 0;
2104      int index = spapr->htab_save_index;
2105      int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2106  
2107      assert(!spapr->htab_first_pass);
2108  
2109      do {
2110          int chunkstart, invalidstart;
2111  
2112          /* Consume non-dirty HPTEs */
2113          while ((index < htabslots)
2114                 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2115              index++;
2116              examined++;
2117          }
2118  
2119          chunkstart = index;
2120          /* Consume valid dirty HPTEs */
2121          while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2122                 && HPTE_DIRTY(HPTE(spapr->htab, index))
2123                 && HPTE_VALID(HPTE(spapr->htab, index))) {
2124              CLEAN_HPTE(HPTE(spapr->htab, index));
2125              index++;
2126              examined++;
2127          }
2128  
2129          invalidstart = index;
2130          /* Consume invalid dirty HPTEs */
2131          while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2132                 && HPTE_DIRTY(HPTE(spapr->htab, index))
2133                 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2134              CLEAN_HPTE(HPTE(spapr->htab, index));
2135              index++;
2136              examined++;
2137          }
2138  
2139          if (index > chunkstart) {
2140              int n_valid = invalidstart - chunkstart;
2141              int n_invalid = index - invalidstart;
2142  
2143              htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2144              sent += index - chunkstart;
2145  
2146              if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2147                  break;
2148              }
2149          }
2150  
2151          if (examined >= htabslots) {
2152              break;
2153          }
2154  
2155          if (index >= htabslots) {
2156              assert(index == htabslots);
2157              index = 0;
2158          }
2159      } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2160  
2161      if (index >= htabslots) {
2162          assert(index == htabslots);
2163          index = 0;
2164      }
2165  
2166      spapr->htab_save_index = index;
2167  
2168      return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2169  }
2170  
2171  #define MAX_ITERATION_NS    5000000 /* 5 ms */
2172  #define MAX_KVM_BUF_SIZE    2048
2173  
2174  static int htab_save_iterate(QEMUFile *f, void *opaque)
2175  {
2176      SpaprMachineState *spapr = opaque;
2177      int fd;
2178      int rc = 0;
2179  
2180      /* Iteration header */
2181      if (!spapr->htab_shift) {
2182          qemu_put_be32(f, -1);
2183          return 1;
2184      } else {
2185          qemu_put_be32(f, 0);
2186      }
2187  
2188      if (!spapr->htab) {
2189          assert(kvm_enabled());
2190  
2191          fd = get_htab_fd(spapr);
2192          if (fd < 0) {
2193              return fd;
2194          }
2195  
2196          rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2197          if (rc < 0) {
2198              return rc;
2199          }
2200      } else  if (spapr->htab_first_pass) {
2201          htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2202      } else {
2203          rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2204      }
2205  
2206      htab_save_end_marker(f);
2207  
2208      return rc;
2209  }
2210  
2211  static int htab_save_complete(QEMUFile *f, void *opaque)
2212  {
2213      SpaprMachineState *spapr = opaque;
2214      int fd;
2215  
2216      /* Iteration header */
2217      if (!spapr->htab_shift) {
2218          qemu_put_be32(f, -1);
2219          return 0;
2220      } else {
2221          qemu_put_be32(f, 0);
2222      }
2223  
2224      if (!spapr->htab) {
2225          int rc;
2226  
2227          assert(kvm_enabled());
2228  
2229          fd = get_htab_fd(spapr);
2230          if (fd < 0) {
2231              return fd;
2232          }
2233  
2234          rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2235          if (rc < 0) {
2236              return rc;
2237          }
2238      } else {
2239          if (spapr->htab_first_pass) {
2240              htab_save_first_pass(f, spapr, -1);
2241          }
2242          htab_save_later_pass(f, spapr, -1);
2243      }
2244  
2245      /* End marker */
2246      htab_save_end_marker(f);
2247  
2248      return 0;
2249  }
2250  
2251  static int htab_load(QEMUFile *f, void *opaque, int version_id)
2252  {
2253      SpaprMachineState *spapr = opaque;
2254      uint32_t section_hdr;
2255      int fd = -1;
2256      Error *local_err = NULL;
2257  
2258      if (version_id < 1 || version_id > 1) {
2259          error_report("htab_load() bad version");
2260          return -EINVAL;
2261      }
2262  
2263      section_hdr = qemu_get_be32(f);
2264  
2265      if (section_hdr == -1) {
2266          spapr_free_hpt(spapr);
2267          return 0;
2268      }
2269  
2270      if (section_hdr) {
2271          int ret;
2272  
2273          /* First section gives the htab size */
2274          ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2275          if (ret < 0) {
2276              error_report_err(local_err);
2277              return ret;
2278          }
2279          return 0;
2280      }
2281  
2282      if (!spapr->htab) {
2283          assert(kvm_enabled());
2284  
2285          fd = kvmppc_get_htab_fd(true, 0, &local_err);
2286          if (fd < 0) {
2287              error_report_err(local_err);
2288              return fd;
2289          }
2290      }
2291  
2292      while (true) {
2293          uint32_t index;
2294          uint16_t n_valid, n_invalid;
2295  
2296          index = qemu_get_be32(f);
2297          n_valid = qemu_get_be16(f);
2298          n_invalid = qemu_get_be16(f);
2299  
2300          if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2301              /* End of Stream */
2302              break;
2303          }
2304  
2305          if ((index + n_valid + n_invalid) >
2306              (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2307              /* Bad index in stream */
2308              error_report(
2309                  "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2310                  index, n_valid, n_invalid, spapr->htab_shift);
2311              return -EINVAL;
2312          }
2313  
2314          if (spapr->htab) {
2315              if (n_valid) {
2316                  qemu_get_buffer(f, HPTE(spapr->htab, index),
2317                                  HASH_PTE_SIZE_64 * n_valid);
2318              }
2319              if (n_invalid) {
2320                  memset(HPTE(spapr->htab, index + n_valid), 0,
2321                         HASH_PTE_SIZE_64 * n_invalid);
2322              }
2323          } else {
2324              int rc;
2325  
2326              assert(fd >= 0);
2327  
2328              rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2329                                          &local_err);
2330              if (rc < 0) {
2331                  error_report_err(local_err);
2332                  return rc;
2333              }
2334          }
2335      }
2336  
2337      if (!spapr->htab) {
2338          assert(fd >= 0);
2339          close(fd);
2340      }
2341  
2342      return 0;
2343  }
2344  
2345  static void htab_save_cleanup(void *opaque)
2346  {
2347      SpaprMachineState *spapr = opaque;
2348  
2349      close_htab_fd(spapr);
2350  }
2351  
2352  static SaveVMHandlers savevm_htab_handlers = {
2353      .save_setup = htab_save_setup,
2354      .save_live_iterate = htab_save_iterate,
2355      .save_live_complete_precopy = htab_save_complete,
2356      .save_cleanup = htab_save_cleanup,
2357      .load_state = htab_load,
2358  };
2359  
2360  static void spapr_boot_set(void *opaque, const char *boot_device,
2361                             Error **errp)
2362  {
2363      MachineState *machine = MACHINE(opaque);
2364      machine->boot_order = g_strdup(boot_device);
2365  }
2366  
2367  static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2368  {
2369      MachineState *machine = MACHINE(spapr);
2370      uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2371      uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2372      int i;
2373  
2374      for (i = 0; i < nr_lmbs; i++) {
2375          uint64_t addr;
2376  
2377          addr = i * lmb_size + machine->device_memory->base;
2378          spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2379                                 addr / lmb_size);
2380      }
2381  }
2382  
2383  /*
2384   * If RAM size, maxmem size and individual node mem sizes aren't aligned
2385   * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2386   * since we can't support such unaligned sizes with DRCONF_MEMORY.
2387   */
2388  static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2389  {
2390      int i;
2391  
2392      if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2393          error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2394                     " is not aligned to %" PRIu64 " MiB",
2395                     machine->ram_size,
2396                     SPAPR_MEMORY_BLOCK_SIZE / MiB);
2397          return;
2398      }
2399  
2400      if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2401          error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2402                     " is not aligned to %" PRIu64 " MiB",
2403                     machine->ram_size,
2404                     SPAPR_MEMORY_BLOCK_SIZE / MiB);
2405          return;
2406      }
2407  
2408      for (i = 0; i < machine->numa_state->num_nodes; i++) {
2409          if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2410              error_setg(errp,
2411                         "Node %d memory size 0x%" PRIx64
2412                         " is not aligned to %" PRIu64 " MiB",
2413                         i, machine->numa_state->nodes[i].node_mem,
2414                         SPAPR_MEMORY_BLOCK_SIZE / MiB);
2415              return;
2416          }
2417      }
2418  }
2419  
2420  /* find cpu slot in machine->possible_cpus by core_id */
2421  static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2422  {
2423      int index = id / ms->smp.threads;
2424  
2425      if (index >= ms->possible_cpus->len) {
2426          return NULL;
2427      }
2428      if (idx) {
2429          *idx = index;
2430      }
2431      return &ms->possible_cpus->cpus[index];
2432  }
2433  
2434  static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2435  {
2436      MachineState *ms = MACHINE(spapr);
2437      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2438      Error *local_err = NULL;
2439      bool vsmt_user = !!spapr->vsmt;
2440      int kvm_smt = kvmppc_smt_threads();
2441      int ret;
2442      unsigned int smp_threads = ms->smp.threads;
2443  
2444      if (!kvm_enabled() && (smp_threads > 1)) {
2445          error_setg(errp, "TCG cannot support more than 1 thread/core "
2446                     "on a pseries machine");
2447          return;
2448      }
2449      if (!is_power_of_2(smp_threads)) {
2450          error_setg(errp, "Cannot support %d threads/core on a pseries "
2451                     "machine because it must be a power of 2", smp_threads);
2452          return;
2453      }
2454  
2455      /* Detemine the VSMT mode to use: */
2456      if (vsmt_user) {
2457          if (spapr->vsmt < smp_threads) {
2458              error_setg(errp, "Cannot support VSMT mode %d"
2459                         " because it must be >= threads/core (%d)",
2460                         spapr->vsmt, smp_threads);
2461              return;
2462          }
2463          /* In this case, spapr->vsmt has been set by the command line */
2464      } else if (!smc->smp_threads_vsmt) {
2465          /*
2466           * Default VSMT value is tricky, because we need it to be as
2467           * consistent as possible (for migration), but this requires
2468           * changing it for at least some existing cases.  We pick 8 as
2469           * the value that we'd get with KVM on POWER8, the
2470           * overwhelmingly common case in production systems.
2471           */
2472          spapr->vsmt = MAX(8, smp_threads);
2473      } else {
2474          spapr->vsmt = smp_threads;
2475      }
2476  
2477      /* KVM: If necessary, set the SMT mode: */
2478      if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2479          ret = kvmppc_set_smt_threads(spapr->vsmt);
2480          if (ret) {
2481              /* Looks like KVM isn't able to change VSMT mode */
2482              error_setg(&local_err,
2483                         "Failed to set KVM's VSMT mode to %d (errno %d)",
2484                         spapr->vsmt, ret);
2485              /* We can live with that if the default one is big enough
2486               * for the number of threads, and a submultiple of the one
2487               * we want.  In this case we'll waste some vcpu ids, but
2488               * behaviour will be correct */
2489              if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2490                  warn_report_err(local_err);
2491              } else {
2492                  if (!vsmt_user) {
2493                      error_append_hint(&local_err,
2494                                        "On PPC, a VM with %d threads/core"
2495                                        " on a host with %d threads/core"
2496                                        " requires the use of VSMT mode %d.\n",
2497                                        smp_threads, kvm_smt, spapr->vsmt);
2498                  }
2499                  kvmppc_error_append_smt_possible_hint(&local_err);
2500                  error_propagate(errp, local_err);
2501              }
2502          }
2503      }
2504      /* else TCG: nothing to do currently */
2505  }
2506  
2507  static void spapr_init_cpus(SpaprMachineState *spapr)
2508  {
2509      MachineState *machine = MACHINE(spapr);
2510      MachineClass *mc = MACHINE_GET_CLASS(machine);
2511      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2512      const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2513      const CPUArchIdList *possible_cpus;
2514      unsigned int smp_cpus = machine->smp.cpus;
2515      unsigned int smp_threads = machine->smp.threads;
2516      unsigned int max_cpus = machine->smp.max_cpus;
2517      int boot_cores_nr = smp_cpus / smp_threads;
2518      int i;
2519  
2520      possible_cpus = mc->possible_cpu_arch_ids(machine);
2521      if (mc->has_hotpluggable_cpus) {
2522          if (smp_cpus % smp_threads) {
2523              error_report("smp_cpus (%u) must be multiple of threads (%u)",
2524                           smp_cpus, smp_threads);
2525              exit(1);
2526          }
2527          if (max_cpus % smp_threads) {
2528              error_report("max_cpus (%u) must be multiple of threads (%u)",
2529                           max_cpus, smp_threads);
2530              exit(1);
2531          }
2532      } else {
2533          if (max_cpus != smp_cpus) {
2534              error_report("This machine version does not support CPU hotplug");
2535              exit(1);
2536          }
2537          boot_cores_nr = possible_cpus->len;
2538      }
2539  
2540      if (smc->pre_2_10_has_unused_icps) {
2541          int i;
2542  
2543          for (i = 0; i < spapr_max_server_number(spapr); i++) {
2544              /* Dummy entries get deregistered when real ICPState objects
2545               * are registered during CPU core hotplug.
2546               */
2547              pre_2_10_vmstate_register_dummy_icp(i);
2548          }
2549      }
2550  
2551      for (i = 0; i < possible_cpus->len; i++) {
2552          int core_id = i * smp_threads;
2553  
2554          if (mc->has_hotpluggable_cpus) {
2555              spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2556                                     spapr_vcpu_id(spapr, core_id));
2557          }
2558  
2559          if (i < boot_cores_nr) {
2560              Object *core  = object_new(type);
2561              int nr_threads = smp_threads;
2562  
2563              /* Handle the partially filled core for older machine types */
2564              if ((i + 1) * smp_threads >= smp_cpus) {
2565                  nr_threads = smp_cpus - i * smp_threads;
2566              }
2567  
2568              object_property_set_int(core, "nr-threads", nr_threads,
2569                                      &error_fatal);
2570              object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2571                                      &error_fatal);
2572              qdev_realize(DEVICE(core), NULL, &error_fatal);
2573  
2574              object_unref(core);
2575          }
2576      }
2577  }
2578  
2579  static PCIHostState *spapr_create_default_phb(void)
2580  {
2581      DeviceState *dev;
2582  
2583      dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2584      qdev_prop_set_uint32(dev, "index", 0);
2585      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2586  
2587      return PCI_HOST_BRIDGE(dev);
2588  }
2589  
2590  static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2591  {
2592      MachineState *machine = MACHINE(spapr);
2593      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2594      hwaddr rma_size = machine->ram_size;
2595      hwaddr node0_size = spapr_node0_size(machine);
2596  
2597      /* RMA has to fit in the first NUMA node */
2598      rma_size = MIN(rma_size, node0_size);
2599  
2600      /*
2601       * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2602       * never exceed that
2603       */
2604      rma_size = MIN(rma_size, 1 * TiB);
2605  
2606      /*
2607       * Clamp the RMA size based on machine type.  This is for
2608       * migration compatibility with older qemu versions, which limited
2609       * the RMA size for complicated and mostly bad reasons.
2610       */
2611      if (smc->rma_limit) {
2612          rma_size = MIN(rma_size, smc->rma_limit);
2613      }
2614  
2615      if (rma_size < MIN_RMA_SLOF) {
2616          error_setg(errp,
2617                     "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2618                     "ldMiB guest RMA (Real Mode Area memory)",
2619                     MIN_RMA_SLOF / MiB);
2620          return 0;
2621      }
2622  
2623      return rma_size;
2624  }
2625  
2626  static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2627  {
2628      MachineState *machine = MACHINE(spapr);
2629      int i;
2630  
2631      for (i = 0; i < machine->ram_slots; i++) {
2632          spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2633      }
2634  }
2635  
2636  /* pSeries LPAR / sPAPR hardware init */
2637  static void spapr_machine_init(MachineState *machine)
2638  {
2639      SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2640      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2641      MachineClass *mc = MACHINE_GET_CLASS(machine);
2642      const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2643      const char *kernel_filename = machine->kernel_filename;
2644      const char *initrd_filename = machine->initrd_filename;
2645      PCIHostState *phb;
2646      int i;
2647      MemoryRegion *sysmem = get_system_memory();
2648      long load_limit, fw_size;
2649      char *filename;
2650      Error *resize_hpt_err = NULL;
2651  
2652      /*
2653       * if Secure VM (PEF) support is configured, then initialize it
2654       */
2655      pef_kvm_init(machine->cgs, &error_fatal);
2656  
2657      msi_nonbroken = true;
2658  
2659      QLIST_INIT(&spapr->phbs);
2660      QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2661  
2662      /* Determine capabilities to run with */
2663      spapr_caps_init(spapr);
2664  
2665      kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2666      if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2667          /*
2668           * If the user explicitly requested a mode we should either
2669           * supply it, or fail completely (which we do below).  But if
2670           * it's not set explicitly, we reset our mode to something
2671           * that works
2672           */
2673          if (resize_hpt_err) {
2674              spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2675              error_free(resize_hpt_err);
2676              resize_hpt_err = NULL;
2677          } else {
2678              spapr->resize_hpt = smc->resize_hpt_default;
2679          }
2680      }
2681  
2682      assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2683  
2684      if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2685          /*
2686           * User requested HPT resize, but this host can't supply it.  Bail out
2687           */
2688          error_report_err(resize_hpt_err);
2689          exit(1);
2690      }
2691      error_free(resize_hpt_err);
2692  
2693      spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2694  
2695      /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2696      load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2697  
2698      /*
2699       * VSMT must be set in order to be able to compute VCPU ids, ie to
2700       * call spapr_max_server_number() or spapr_vcpu_id().
2701       */
2702      spapr_set_vsmt_mode(spapr, &error_fatal);
2703  
2704      /* Set up Interrupt Controller before we create the VCPUs */
2705      spapr_irq_init(spapr, &error_fatal);
2706  
2707      /* Set up containers for ibm,client-architecture-support negotiated options
2708       */
2709      spapr->ov5 = spapr_ovec_new();
2710      spapr->ov5_cas = spapr_ovec_new();
2711  
2712      if (smc->dr_lmb_enabled) {
2713          spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2714          spapr_validate_node_memory(machine, &error_fatal);
2715      }
2716  
2717      spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2718  
2719      /* advertise support for dedicated HP event source to guests */
2720      if (spapr->use_hotplug_event_source) {
2721          spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2722      }
2723  
2724      /* advertise support for HPT resizing */
2725      if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2726          spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2727      }
2728  
2729      /* advertise support for ibm,dyamic-memory-v2 */
2730      spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2731  
2732      /* advertise XIVE on POWER9 machines */
2733      if (spapr->irq->xive) {
2734          spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2735      }
2736  
2737      /* init CPUs */
2738      spapr_init_cpus(spapr);
2739  
2740      /*
2741       * check we don't have a memory-less/cpu-less NUMA node
2742       * Firmware relies on the existing memory/cpu topology to provide the
2743       * NUMA topology to the kernel.
2744       * And the linux kernel needs to know the NUMA topology at start
2745       * to be able to hotplug CPUs later.
2746       */
2747      if (machine->numa_state->num_nodes) {
2748          for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2749              /* check for memory-less node */
2750              if (machine->numa_state->nodes[i].node_mem == 0) {
2751                  CPUState *cs;
2752                  int found = 0;
2753                  /* check for cpu-less node */
2754                  CPU_FOREACH(cs) {
2755                      PowerPCCPU *cpu = POWERPC_CPU(cs);
2756                      if (cpu->node_id == i) {
2757                          found = 1;
2758                          break;
2759                      }
2760                  }
2761                  /* memory-less and cpu-less node */
2762                  if (!found) {
2763                      error_report(
2764                         "Memory-less/cpu-less nodes are not supported (node %d)",
2765                                   i);
2766                      exit(1);
2767                  }
2768              }
2769          }
2770  
2771      }
2772  
2773      spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2774  
2775      /* Init numa_assoc_array */
2776      spapr_numa_associativity_init(spapr, machine);
2777  
2778      if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2779          ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2780                                spapr->max_compat_pvr)) {
2781          spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2782          /* KVM and TCG always allow GTSE with radix... */
2783          spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2784      }
2785      /* ... but not with hash (currently). */
2786  
2787      if (kvm_enabled()) {
2788          /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2789          kvmppc_enable_logical_ci_hcalls();
2790          kvmppc_enable_set_mode_hcall();
2791  
2792          /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2793          kvmppc_enable_clear_ref_mod_hcalls();
2794  
2795          /* Enable H_PAGE_INIT */
2796          kvmppc_enable_h_page_init();
2797      }
2798  
2799      /* map RAM */
2800      memory_region_add_subregion(sysmem, 0, machine->ram);
2801  
2802      /* always allocate the device memory information */
2803      machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2804  
2805      /* initialize hotplug memory address space */
2806      if (machine->ram_size < machine->maxram_size) {
2807          ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2808          /*
2809           * Limit the number of hotpluggable memory slots to half the number
2810           * slots that KVM supports, leaving the other half for PCI and other
2811           * devices. However ensure that number of slots doesn't drop below 32.
2812           */
2813          int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2814                             SPAPR_MAX_RAM_SLOTS;
2815  
2816          if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2817              max_memslots = SPAPR_MAX_RAM_SLOTS;
2818          }
2819          if (machine->ram_slots > max_memslots) {
2820              error_report("Specified number of memory slots %"
2821                           PRIu64" exceeds max supported %d",
2822                           machine->ram_slots, max_memslots);
2823              exit(1);
2824          }
2825  
2826          machine->device_memory->base = ROUND_UP(machine->ram_size,
2827                                                  SPAPR_DEVICE_MEM_ALIGN);
2828          memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2829                             "device-memory", device_mem_size);
2830          memory_region_add_subregion(sysmem, machine->device_memory->base,
2831                                      &machine->device_memory->mr);
2832      }
2833  
2834      if (smc->dr_lmb_enabled) {
2835          spapr_create_lmb_dr_connectors(spapr);
2836      }
2837  
2838      if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2839          /* Create the error string for live migration blocker */
2840          error_setg(&spapr->fwnmi_migration_blocker,
2841              "A machine check is being handled during migration. The handler"
2842              "may run and log hardware error on the destination");
2843      }
2844  
2845      if (mc->nvdimm_supported) {
2846          spapr_create_nvdimm_dr_connectors(spapr);
2847      }
2848  
2849      /* Set up RTAS event infrastructure */
2850      spapr_events_init(spapr);
2851  
2852      /* Set up the RTC RTAS interfaces */
2853      spapr_rtc_create(spapr);
2854  
2855      /* Set up VIO bus */
2856      spapr->vio_bus = spapr_vio_bus_init();
2857  
2858      for (i = 0; serial_hd(i); i++) {
2859          spapr_vty_create(spapr->vio_bus, serial_hd(i));
2860      }
2861  
2862      /* We always have at least the nvram device on VIO */
2863      spapr_create_nvram(spapr);
2864  
2865      /*
2866       * Setup hotplug / dynamic-reconfiguration connectors. top-level
2867       * connectors (described in root DT node's "ibm,drc-types" property)
2868       * are pre-initialized here. additional child connectors (such as
2869       * connectors for a PHBs PCI slots) are added as needed during their
2870       * parent's realization.
2871       */
2872      if (smc->dr_phb_enabled) {
2873          for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2874              spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2875          }
2876      }
2877  
2878      /* Set up PCI */
2879      spapr_pci_rtas_init();
2880  
2881      phb = spapr_create_default_phb();
2882  
2883      for (i = 0; i < nb_nics; i++) {
2884          NICInfo *nd = &nd_table[i];
2885  
2886          if (!nd->model) {
2887              nd->model = g_strdup("spapr-vlan");
2888          }
2889  
2890          if (g_str_equal(nd->model, "spapr-vlan") ||
2891              g_str_equal(nd->model, "ibmveth")) {
2892              spapr_vlan_create(spapr->vio_bus, nd);
2893          } else {
2894              pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2895          }
2896      }
2897  
2898      for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2899          spapr_vscsi_create(spapr->vio_bus);
2900      }
2901  
2902      /* Graphics */
2903      if (spapr_vga_init(phb->bus, &error_fatal)) {
2904          spapr->has_graphics = true;
2905          machine->usb |= defaults_enabled() && !machine->usb_disabled;
2906      }
2907  
2908      if (machine->usb) {
2909          if (smc->use_ohci_by_default) {
2910              pci_create_simple(phb->bus, -1, "pci-ohci");
2911          } else {
2912              pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2913          }
2914  
2915          if (spapr->has_graphics) {
2916              USBBus *usb_bus = usb_bus_find(-1);
2917  
2918              usb_create_simple(usb_bus, "usb-kbd");
2919              usb_create_simple(usb_bus, "usb-mouse");
2920          }
2921      }
2922  
2923      if (kernel_filename) {
2924          spapr->kernel_size = load_elf(kernel_filename, NULL,
2925                                        translate_kernel_address, spapr,
2926                                        NULL, NULL, NULL, NULL, 1,
2927                                        PPC_ELF_MACHINE, 0, 0);
2928          if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2929              spapr->kernel_size = load_elf(kernel_filename, NULL,
2930                                            translate_kernel_address, spapr,
2931                                            NULL, NULL, NULL, NULL, 0,
2932                                            PPC_ELF_MACHINE, 0, 0);
2933              spapr->kernel_le = spapr->kernel_size > 0;
2934          }
2935          if (spapr->kernel_size < 0) {
2936              error_report("error loading %s: %s", kernel_filename,
2937                           load_elf_strerror(spapr->kernel_size));
2938              exit(1);
2939          }
2940  
2941          /* load initrd */
2942          if (initrd_filename) {
2943              /* Try to locate the initrd in the gap between the kernel
2944               * and the firmware. Add a bit of space just in case
2945               */
2946              spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2947                                    + 0x1ffff) & ~0xffff;
2948              spapr->initrd_size = load_image_targphys(initrd_filename,
2949                                                       spapr->initrd_base,
2950                                                       load_limit
2951                                                       - spapr->initrd_base);
2952              if (spapr->initrd_size < 0) {
2953                  error_report("could not load initial ram disk '%s'",
2954                               initrd_filename);
2955                  exit(1);
2956              }
2957          }
2958      }
2959  
2960      filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2961      if (!filename) {
2962          error_report("Could not find LPAR firmware '%s'", bios_name);
2963          exit(1);
2964      }
2965      fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2966      if (fw_size <= 0) {
2967          error_report("Could not load LPAR firmware '%s'", filename);
2968          exit(1);
2969      }
2970      g_free(filename);
2971  
2972      /* FIXME: Should register things through the MachineState's qdev
2973       * interface, this is a legacy from the sPAPREnvironment structure
2974       * which predated MachineState but had a similar function */
2975      vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2976      register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2977                           &savevm_htab_handlers, spapr);
2978  
2979      qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2980  
2981      qemu_register_boot_set(spapr_boot_set, spapr);
2982  
2983      /*
2984       * Nothing needs to be done to resume a suspended guest because
2985       * suspending does not change the machine state, so no need for
2986       * a ->wakeup method.
2987       */
2988      qemu_register_wakeup_support();
2989  
2990      if (kvm_enabled()) {
2991          /* to stop and start vmclock */
2992          qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2993                                           &spapr->tb);
2994  
2995          kvmppc_spapr_enable_inkernel_multitce();
2996      }
2997  
2998      qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
2999  }
3000  
3001  #define DEFAULT_KVM_TYPE "auto"
3002  static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3003  {
3004      /*
3005       * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3006       * accomodate the 'HV' and 'PV' formats that exists in the
3007       * wild. The 'auto' mode is being introduced already as
3008       * lower-case, thus we don't need to bother checking for
3009       * "AUTO".
3010       */
3011      if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3012          return 0;
3013      }
3014  
3015      if (!g_ascii_strcasecmp(vm_type, "hv")) {
3016          return 1;
3017      }
3018  
3019      if (!g_ascii_strcasecmp(vm_type, "pr")) {
3020          return 2;
3021      }
3022  
3023      error_report("Unknown kvm-type specified '%s'", vm_type);
3024      exit(1);
3025  }
3026  
3027  /*
3028   * Implementation of an interface to adjust firmware path
3029   * for the bootindex property handling.
3030   */
3031  static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3032                                     DeviceState *dev)
3033  {
3034  #define CAST(type, obj, name) \
3035      ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3036      SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3037      SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3038      VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3039      PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3040  
3041      if (d) {
3042          void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3043          VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3044          USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3045  
3046          if (spapr) {
3047              /*
3048               * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3049               * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3050               * 0x8000 | (target << 8) | (bus << 5) | lun
3051               * (see the "Logical unit addressing format" table in SAM5)
3052               */
3053              unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3054              return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3055                                     (uint64_t)id << 48);
3056          } else if (virtio) {
3057              /*
3058               * We use SRP luns of the form 01000000 | (target << 8) | lun
3059               * in the top 32 bits of the 64-bit LUN
3060               * Note: the quote above is from SLOF and it is wrong,
3061               * the actual binding is:
3062               * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3063               */
3064              unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3065              if (d->lun >= 256) {
3066                  /* Use the LUN "flat space addressing method" */
3067                  id |= 0x4000;
3068              }
3069              return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3070                                     (uint64_t)id << 32);
3071          } else if (usb) {
3072              /*
3073               * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3074               * in the top 32 bits of the 64-bit LUN
3075               */
3076              unsigned usb_port = atoi(usb->port->path);
3077              unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3078              return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3079                                     (uint64_t)id << 32);
3080          }
3081      }
3082  
3083      /*
3084       * SLOF probes the USB devices, and if it recognizes that the device is a
3085       * storage device, it changes its name to "storage" instead of "usb-host",
3086       * and additionally adds a child node for the SCSI LUN, so the correct
3087       * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3088       */
3089      if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3090          USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3091          if (usb_host_dev_is_scsi_storage(usbdev)) {
3092              return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3093          }
3094      }
3095  
3096      if (phb) {
3097          /* Replace "pci" with "pci@800000020000000" */
3098          return g_strdup_printf("pci@%"PRIX64, phb->buid);
3099      }
3100  
3101      if (vsc) {
3102          /* Same logic as virtio above */
3103          unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3104          return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3105      }
3106  
3107      if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3108          /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3109          PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3110          return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3111      }
3112  
3113      if (pcidev) {
3114          return spapr_pci_fw_dev_name(pcidev);
3115      }
3116  
3117      return NULL;
3118  }
3119  
3120  static char *spapr_get_kvm_type(Object *obj, Error **errp)
3121  {
3122      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3123  
3124      return g_strdup(spapr->kvm_type);
3125  }
3126  
3127  static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3128  {
3129      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3130  
3131      g_free(spapr->kvm_type);
3132      spapr->kvm_type = g_strdup(value);
3133  }
3134  
3135  static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3136  {
3137      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3138  
3139      return spapr->use_hotplug_event_source;
3140  }
3141  
3142  static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3143                                              Error **errp)
3144  {
3145      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3146  
3147      spapr->use_hotplug_event_source = value;
3148  }
3149  
3150  static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3151  {
3152      return true;
3153  }
3154  
3155  static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3156  {
3157      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3158  
3159      switch (spapr->resize_hpt) {
3160      case SPAPR_RESIZE_HPT_DEFAULT:
3161          return g_strdup("default");
3162      case SPAPR_RESIZE_HPT_DISABLED:
3163          return g_strdup("disabled");
3164      case SPAPR_RESIZE_HPT_ENABLED:
3165          return g_strdup("enabled");
3166      case SPAPR_RESIZE_HPT_REQUIRED:
3167          return g_strdup("required");
3168      }
3169      g_assert_not_reached();
3170  }
3171  
3172  static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3173  {
3174      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3175  
3176      if (strcmp(value, "default") == 0) {
3177          spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3178      } else if (strcmp(value, "disabled") == 0) {
3179          spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3180      } else if (strcmp(value, "enabled") == 0) {
3181          spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3182      } else if (strcmp(value, "required") == 0) {
3183          spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3184      } else {
3185          error_setg(errp, "Bad value for \"resize-hpt\" property");
3186      }
3187  }
3188  
3189  static char *spapr_get_ic_mode(Object *obj, Error **errp)
3190  {
3191      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192  
3193      if (spapr->irq == &spapr_irq_xics_legacy) {
3194          return g_strdup("legacy");
3195      } else if (spapr->irq == &spapr_irq_xics) {
3196          return g_strdup("xics");
3197      } else if (spapr->irq == &spapr_irq_xive) {
3198          return g_strdup("xive");
3199      } else if (spapr->irq == &spapr_irq_dual) {
3200          return g_strdup("dual");
3201      }
3202      g_assert_not_reached();
3203  }
3204  
3205  static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3206  {
3207      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3208  
3209      if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3210          error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3211          return;
3212      }
3213  
3214      /* The legacy IRQ backend can not be set */
3215      if (strcmp(value, "xics") == 0) {
3216          spapr->irq = &spapr_irq_xics;
3217      } else if (strcmp(value, "xive") == 0) {
3218          spapr->irq = &spapr_irq_xive;
3219      } else if (strcmp(value, "dual") == 0) {
3220          spapr->irq = &spapr_irq_dual;
3221      } else {
3222          error_setg(errp, "Bad value for \"ic-mode\" property");
3223      }
3224  }
3225  
3226  static char *spapr_get_host_model(Object *obj, Error **errp)
3227  {
3228      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3229  
3230      return g_strdup(spapr->host_model);
3231  }
3232  
3233  static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3234  {
3235      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236  
3237      g_free(spapr->host_model);
3238      spapr->host_model = g_strdup(value);
3239  }
3240  
3241  static char *spapr_get_host_serial(Object *obj, Error **errp)
3242  {
3243      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244  
3245      return g_strdup(spapr->host_serial);
3246  }
3247  
3248  static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3249  {
3250      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3251  
3252      g_free(spapr->host_serial);
3253      spapr->host_serial = g_strdup(value);
3254  }
3255  
3256  static void spapr_instance_init(Object *obj)
3257  {
3258      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3260      MachineState *ms = MACHINE(spapr);
3261      MachineClass *mc = MACHINE_GET_CLASS(ms);
3262  
3263      /*
3264       * NVDIMM support went live in 5.1 without considering that, in
3265       * other archs, the user needs to enable NVDIMM support with the
3266       * 'nvdimm' machine option and the default behavior is NVDIMM
3267       * support disabled. It is too late to roll back to the standard
3268       * behavior without breaking 5.1 guests.
3269       */
3270      if (mc->nvdimm_supported) {
3271          ms->nvdimms_state->is_enabled = true;
3272      }
3273  
3274      spapr->htab_fd = -1;
3275      spapr->use_hotplug_event_source = true;
3276      spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3277      object_property_add_str(obj, "kvm-type",
3278                              spapr_get_kvm_type, spapr_set_kvm_type);
3279      object_property_set_description(obj, "kvm-type",
3280                                      "Specifies the KVM virtualization mode (auto,"
3281                                      " hv, pr). Defaults to 'auto'. This mode will use"
3282                                      " any available KVM module loaded in the host,"
3283                                      " where kvm_hv takes precedence if both kvm_hv and"
3284                                      " kvm_pr are loaded.");
3285      object_property_add_bool(obj, "modern-hotplug-events",
3286                              spapr_get_modern_hotplug_events,
3287                              spapr_set_modern_hotplug_events);
3288      object_property_set_description(obj, "modern-hotplug-events",
3289                                      "Use dedicated hotplug event mechanism in"
3290                                      " place of standard EPOW events when possible"
3291                                      " (required for memory hot-unplug support)");
3292      ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3293                              "Maximum permitted CPU compatibility mode");
3294  
3295      object_property_add_str(obj, "resize-hpt",
3296                              spapr_get_resize_hpt, spapr_set_resize_hpt);
3297      object_property_set_description(obj, "resize-hpt",
3298                                      "Resizing of the Hash Page Table (enabled, disabled, required)");
3299      object_property_add_uint32_ptr(obj, "vsmt",
3300                                     &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3301      object_property_set_description(obj, "vsmt",
3302                                      "Virtual SMT: KVM behaves as if this were"
3303                                      " the host's SMT mode");
3304  
3305      object_property_add_bool(obj, "vfio-no-msix-emulation",
3306                               spapr_get_msix_emulation, NULL);
3307  
3308      object_property_add_uint64_ptr(obj, "kernel-addr",
3309                                     &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3310      object_property_set_description(obj, "kernel-addr",
3311                                      stringify(KERNEL_LOAD_ADDR)
3312                                      " for -kernel is the default");
3313      spapr->kernel_addr = KERNEL_LOAD_ADDR;
3314      /* The machine class defines the default interrupt controller mode */
3315      spapr->irq = smc->irq;
3316      object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3317                              spapr_set_ic_mode);
3318      object_property_set_description(obj, "ic-mode",
3319                   "Specifies the interrupt controller mode (xics, xive, dual)");
3320  
3321      object_property_add_str(obj, "host-model",
3322          spapr_get_host_model, spapr_set_host_model);
3323      object_property_set_description(obj, "host-model",
3324          "Host model to advertise in guest device tree");
3325      object_property_add_str(obj, "host-serial",
3326          spapr_get_host_serial, spapr_set_host_serial);
3327      object_property_set_description(obj, "host-serial",
3328          "Host serial number to advertise in guest device tree");
3329  }
3330  
3331  static void spapr_machine_finalizefn(Object *obj)
3332  {
3333      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3334  
3335      g_free(spapr->kvm_type);
3336  }
3337  
3338  void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3339  {
3340      SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3341      PowerPCCPU *cpu = POWERPC_CPU(cs);
3342      CPUPPCState *env = &cpu->env;
3343  
3344      cpu_synchronize_state(cs);
3345      /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3346      if (spapr->fwnmi_system_reset_addr != -1) {
3347          uint64_t rtas_addr, addr;
3348  
3349          /* get rtas addr from fdt */
3350          rtas_addr = spapr_get_rtas_addr();
3351          if (!rtas_addr) {
3352              qemu_system_guest_panicked(NULL);
3353              return;
3354          }
3355  
3356          addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3357          stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3358          stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3359          env->gpr[3] = addr;
3360      }
3361      ppc_cpu_do_system_reset(cs);
3362      if (spapr->fwnmi_system_reset_addr != -1) {
3363          env->nip = spapr->fwnmi_system_reset_addr;
3364      }
3365  }
3366  
3367  static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3368  {
3369      CPUState *cs;
3370  
3371      CPU_FOREACH(cs) {
3372          async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3373      }
3374  }
3375  
3376  int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3377                            void *fdt, int *fdt_start_offset, Error **errp)
3378  {
3379      uint64_t addr;
3380      uint32_t node;
3381  
3382      addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3383      node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3384                                      &error_abort);
3385      *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3386                                               SPAPR_MEMORY_BLOCK_SIZE);
3387      return 0;
3388  }
3389  
3390  static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3391                             bool dedicated_hp_event_source)
3392  {
3393      SpaprDrc *drc;
3394      uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3395      int i;
3396      uint64_t addr = addr_start;
3397      bool hotplugged = spapr_drc_hotplugged(dev);
3398  
3399      for (i = 0; i < nr_lmbs; i++) {
3400          drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3401                                addr / SPAPR_MEMORY_BLOCK_SIZE);
3402          g_assert(drc);
3403  
3404          /*
3405           * memory_device_get_free_addr() provided a range of free addresses
3406           * that doesn't overlap with any existing mapping at pre-plug. The
3407           * corresponding LMB DRCs are thus assumed to be all attachable.
3408           */
3409          spapr_drc_attach(drc, dev);
3410          if (!hotplugged) {
3411              spapr_drc_reset(drc);
3412          }
3413          addr += SPAPR_MEMORY_BLOCK_SIZE;
3414      }
3415      /* send hotplug notification to the
3416       * guest only in case of hotplugged memory
3417       */
3418      if (hotplugged) {
3419          if (dedicated_hp_event_source) {
3420              drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3421                                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3422              g_assert(drc);
3423              spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3424                                                     nr_lmbs,
3425                                                     spapr_drc_index(drc));
3426          } else {
3427              spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3428                                             nr_lmbs);
3429          }
3430      }
3431  }
3432  
3433  static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3434  {
3435      SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3436      PCDIMMDevice *dimm = PC_DIMM(dev);
3437      uint64_t size, addr;
3438      int64_t slot;
3439      bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3440  
3441      size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3442  
3443      pc_dimm_plug(dimm, MACHINE(ms));
3444  
3445      if (!is_nvdimm) {
3446          addr = object_property_get_uint(OBJECT(dimm),
3447                                          PC_DIMM_ADDR_PROP, &error_abort);
3448          spapr_add_lmbs(dev, addr, size,
3449                         spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3450      } else {
3451          slot = object_property_get_int(OBJECT(dimm),
3452                                         PC_DIMM_SLOT_PROP, &error_abort);
3453          /* We should have valid slot number at this point */
3454          g_assert(slot >= 0);
3455          spapr_add_nvdimm(dev, slot);
3456      }
3457  }
3458  
3459  static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3460                                    Error **errp)
3461  {
3462      const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3463      SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3464      bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3465      PCDIMMDevice *dimm = PC_DIMM(dev);
3466      Error *local_err = NULL;
3467      uint64_t size;
3468      Object *memdev;
3469      hwaddr pagesize;
3470  
3471      if (!smc->dr_lmb_enabled) {
3472          error_setg(errp, "Memory hotplug not supported for this machine");
3473          return;
3474      }
3475  
3476      size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3477      if (local_err) {
3478          error_propagate(errp, local_err);
3479          return;
3480      }
3481  
3482      if (is_nvdimm) {
3483          if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3484              return;
3485          }
3486      } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3487          error_setg(errp, "Hotplugged memory size must be a multiple of "
3488                     "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3489          return;
3490      }
3491  
3492      memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3493                                        &error_abort);
3494      pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3495      if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3496          return;
3497      }
3498  
3499      pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3500  }
3501  
3502  struct SpaprDimmState {
3503      PCDIMMDevice *dimm;
3504      uint32_t nr_lmbs;
3505      QTAILQ_ENTRY(SpaprDimmState) next;
3506  };
3507  
3508  static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3509                                                         PCDIMMDevice *dimm)
3510  {
3511      SpaprDimmState *dimm_state = NULL;
3512  
3513      QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3514          if (dimm_state->dimm == dimm) {
3515              break;
3516          }
3517      }
3518      return dimm_state;
3519  }
3520  
3521  static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3522                                                        uint32_t nr_lmbs,
3523                                                        PCDIMMDevice *dimm)
3524  {
3525      SpaprDimmState *ds = NULL;
3526  
3527      /*
3528       * If this request is for a DIMM whose removal had failed earlier
3529       * (due to guest's refusal to remove the LMBs), we would have this
3530       * dimm already in the pending_dimm_unplugs list. In that
3531       * case don't add again.
3532       */
3533      ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3534      if (!ds) {
3535          ds = g_malloc0(sizeof(SpaprDimmState));
3536          ds->nr_lmbs = nr_lmbs;
3537          ds->dimm = dimm;
3538          QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3539      }
3540      return ds;
3541  }
3542  
3543  static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3544                                                SpaprDimmState *dimm_state)
3545  {
3546      QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3547      g_free(dimm_state);
3548  }
3549  
3550  static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3551                                                          PCDIMMDevice *dimm)
3552  {
3553      SpaprDrc *drc;
3554      uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3555                                                    &error_abort);
3556      uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3557      uint32_t avail_lmbs = 0;
3558      uint64_t addr_start, addr;
3559      int i;
3560  
3561      addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3562                                            &error_abort);
3563  
3564      addr = addr_start;
3565      for (i = 0; i < nr_lmbs; i++) {
3566          drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3567                                addr / SPAPR_MEMORY_BLOCK_SIZE);
3568          g_assert(drc);
3569          if (drc->dev) {
3570              avail_lmbs++;
3571          }
3572          addr += SPAPR_MEMORY_BLOCK_SIZE;
3573      }
3574  
3575      return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3576  }
3577  
3578  /* Callback to be called during DRC release. */
3579  void spapr_lmb_release(DeviceState *dev)
3580  {
3581      HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3582      SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3583      SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3584  
3585      /* This information will get lost if a migration occurs
3586       * during the unplug process. In this case recover it. */
3587      if (ds == NULL) {
3588          ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3589          g_assert(ds);
3590          /* The DRC being examined by the caller at least must be counted */
3591          g_assert(ds->nr_lmbs);
3592      }
3593  
3594      if (--ds->nr_lmbs) {
3595          return;
3596      }
3597  
3598      /*
3599       * Now that all the LMBs have been removed by the guest, call the
3600       * unplug handler chain. This can never fail.
3601       */
3602      hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3603      object_unparent(OBJECT(dev));
3604  }
3605  
3606  static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3607  {
3608      SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3609      SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3610  
3611      pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3612      qdev_unrealize(dev);
3613      spapr_pending_dimm_unplugs_remove(spapr, ds);
3614  }
3615  
3616  static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3617                                          DeviceState *dev, Error **errp)
3618  {
3619      SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3620      PCDIMMDevice *dimm = PC_DIMM(dev);
3621      uint32_t nr_lmbs;
3622      uint64_t size, addr_start, addr;
3623      int i;
3624      SpaprDrc *drc;
3625  
3626      if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3627          error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3628          return;
3629      }
3630  
3631      size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3632      nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3633  
3634      addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3635                                            &error_abort);
3636  
3637      /*
3638       * An existing pending dimm state for this DIMM means that there is an
3639       * unplug operation in progress, waiting for the spapr_lmb_release
3640       * callback to complete the job (BQL can't cover that far). In this case,
3641       * bail out to avoid detaching DRCs that were already released.
3642       */
3643      if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3644          error_setg(errp, "Memory unplug already in progress for device %s",
3645                     dev->id);
3646          return;
3647      }
3648  
3649      spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3650  
3651      addr = addr_start;
3652      for (i = 0; i < nr_lmbs; i++) {
3653          drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3654                                addr / SPAPR_MEMORY_BLOCK_SIZE);
3655          g_assert(drc);
3656  
3657          spapr_drc_detach(drc);
3658          addr += SPAPR_MEMORY_BLOCK_SIZE;
3659      }
3660  
3661      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3662                            addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3663      g_assert(drc);
3664      spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3665                                                nr_lmbs, spapr_drc_index(drc));
3666  }
3667  
3668  /* Callback to be called during DRC release. */
3669  void spapr_core_release(DeviceState *dev)
3670  {
3671      HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3672  
3673      /* Call the unplug handler chain. This can never fail. */
3674      hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3675      object_unparent(OBJECT(dev));
3676  }
3677  
3678  static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3679  {
3680      MachineState *ms = MACHINE(hotplug_dev);
3681      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3682      CPUCore *cc = CPU_CORE(dev);
3683      CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3684  
3685      if (smc->pre_2_10_has_unused_icps) {
3686          SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3687          int i;
3688  
3689          for (i = 0; i < cc->nr_threads; i++) {
3690              CPUState *cs = CPU(sc->threads[i]);
3691  
3692              pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3693          }
3694      }
3695  
3696      assert(core_slot);
3697      core_slot->cpu = NULL;
3698      qdev_unrealize(dev);
3699  }
3700  
3701  static
3702  void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3703                                 Error **errp)
3704  {
3705      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3706      int index;
3707      SpaprDrc *drc;
3708      CPUCore *cc = CPU_CORE(dev);
3709  
3710      if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3711          error_setg(errp, "Unable to find CPU core with core-id: %d",
3712                     cc->core_id);
3713          return;
3714      }
3715      if (index == 0) {
3716          error_setg(errp, "Boot CPU core may not be unplugged");
3717          return;
3718      }
3719  
3720      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3721                            spapr_vcpu_id(spapr, cc->core_id));
3722      g_assert(drc);
3723  
3724      if (!spapr_drc_unplug_requested(drc)) {
3725          spapr_drc_detach(drc);
3726          spapr_hotplug_req_remove_by_index(drc);
3727      }
3728  }
3729  
3730  int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3731                             void *fdt, int *fdt_start_offset, Error **errp)
3732  {
3733      SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3734      CPUState *cs = CPU(core->threads[0]);
3735      PowerPCCPU *cpu = POWERPC_CPU(cs);
3736      DeviceClass *dc = DEVICE_GET_CLASS(cs);
3737      int id = spapr_get_vcpu_id(cpu);
3738      g_autofree char *nodename = NULL;
3739      int offset;
3740  
3741      nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3742      offset = fdt_add_subnode(fdt, 0, nodename);
3743  
3744      spapr_dt_cpu(cs, fdt, offset, spapr);
3745  
3746      /*
3747       * spapr_dt_cpu() does not fill the 'name' property in the
3748       * CPU node. The function is called during boot process, before
3749       * and after CAS, and overwriting the 'name' property written
3750       * by SLOF is not allowed.
3751       *
3752       * Write it manually after spapr_dt_cpu(). This makes the hotplug
3753       * CPUs more compatible with the coldplugged ones, which have
3754       * the 'name' property. Linux Kernel also relies on this
3755       * property to identify CPU nodes.
3756       */
3757      _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3758  
3759      *fdt_start_offset = offset;
3760      return 0;
3761  }
3762  
3763  static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3764  {
3765      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3766      MachineClass *mc = MACHINE_GET_CLASS(spapr);
3767      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3768      SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3769      CPUCore *cc = CPU_CORE(dev);
3770      CPUState *cs;
3771      SpaprDrc *drc;
3772      CPUArchId *core_slot;
3773      int index;
3774      bool hotplugged = spapr_drc_hotplugged(dev);
3775      int i;
3776  
3777      core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3778      g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3779  
3780      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3781                            spapr_vcpu_id(spapr, cc->core_id));
3782  
3783      g_assert(drc || !mc->has_hotpluggable_cpus);
3784  
3785      if (drc) {
3786          /*
3787           * spapr_core_pre_plug() already buys us this is a brand new
3788           * core being plugged into a free slot. Nothing should already
3789           * be attached to the corresponding DRC.
3790           */
3791          spapr_drc_attach(drc, dev);
3792  
3793          if (hotplugged) {
3794              /*
3795               * Send hotplug notification interrupt to the guest only
3796               * in case of hotplugged CPUs.
3797               */
3798              spapr_hotplug_req_add_by_index(drc);
3799          } else {
3800              spapr_drc_reset(drc);
3801          }
3802      }
3803  
3804      core_slot->cpu = OBJECT(dev);
3805  
3806      /*
3807       * Set compatibility mode to match the boot CPU, which was either set
3808       * by the machine reset code or by CAS. This really shouldn't fail at
3809       * this point.
3810       */
3811      if (hotplugged) {
3812          for (i = 0; i < cc->nr_threads; i++) {
3813              ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3814                             &error_abort);
3815          }
3816      }
3817  
3818      if (smc->pre_2_10_has_unused_icps) {
3819          for (i = 0; i < cc->nr_threads; i++) {
3820              cs = CPU(core->threads[i]);
3821              pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3822          }
3823      }
3824  }
3825  
3826  static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3827                                  Error **errp)
3828  {
3829      MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3830      MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3831      CPUCore *cc = CPU_CORE(dev);
3832      const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3833      const char *type = object_get_typename(OBJECT(dev));
3834      CPUArchId *core_slot;
3835      int index;
3836      unsigned int smp_threads = machine->smp.threads;
3837  
3838      if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3839          error_setg(errp, "CPU hotplug not supported for this machine");
3840          return;
3841      }
3842  
3843      if (strcmp(base_core_type, type)) {
3844          error_setg(errp, "CPU core type should be %s", base_core_type);
3845          return;
3846      }
3847  
3848      if (cc->core_id % smp_threads) {
3849          error_setg(errp, "invalid core id %d", cc->core_id);
3850          return;
3851      }
3852  
3853      /*
3854       * In general we should have homogeneous threads-per-core, but old
3855       * (pre hotplug support) machine types allow the last core to have
3856       * reduced threads as a compatibility hack for when we allowed
3857       * total vcpus not a multiple of threads-per-core.
3858       */
3859      if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3860          error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3861                     smp_threads);
3862          return;
3863      }
3864  
3865      core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3866      if (!core_slot) {
3867          error_setg(errp, "core id %d out of range", cc->core_id);
3868          return;
3869      }
3870  
3871      if (core_slot->cpu) {
3872          error_setg(errp, "core %d already populated", cc->core_id);
3873          return;
3874      }
3875  
3876      numa_cpu_pre_plug(core_slot, dev, errp);
3877  }
3878  
3879  int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3880                            void *fdt, int *fdt_start_offset, Error **errp)
3881  {
3882      SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3883      int intc_phandle;
3884  
3885      intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3886      if (intc_phandle <= 0) {
3887          return -1;
3888      }
3889  
3890      if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3891          error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3892          return -1;
3893      }
3894  
3895      /* generally SLOF creates these, for hotplug it's up to QEMU */
3896      _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3897  
3898      return 0;
3899  }
3900  
3901  static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3902                                 Error **errp)
3903  {
3904      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3905      SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3906      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3907      const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3908      SpaprDrc *drc;
3909  
3910      if (dev->hotplugged && !smc->dr_phb_enabled) {
3911          error_setg(errp, "PHB hotplug not supported for this machine");
3912          return false;
3913      }
3914  
3915      if (sphb->index == (uint32_t)-1) {
3916          error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3917          return false;
3918      }
3919  
3920      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3921      if (drc && drc->dev) {
3922          error_setg(errp, "PHB %d already attached", sphb->index);
3923          return false;
3924      }
3925  
3926      /*
3927       * This will check that sphb->index doesn't exceed the maximum number of
3928       * PHBs for the current machine type.
3929       */
3930      return
3931          smc->phb_placement(spapr, sphb->index,
3932                             &sphb->buid, &sphb->io_win_addr,
3933                             &sphb->mem_win_addr, &sphb->mem64_win_addr,
3934                             windows_supported, sphb->dma_liobn,
3935                             &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3936                             errp);
3937  }
3938  
3939  static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3940  {
3941      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3942      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3943      SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3944      SpaprDrc *drc;
3945      bool hotplugged = spapr_drc_hotplugged(dev);
3946  
3947      if (!smc->dr_phb_enabled) {
3948          return;
3949      }
3950  
3951      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3952      /* hotplug hooks should check it's enabled before getting this far */
3953      assert(drc);
3954  
3955      /* spapr_phb_pre_plug() already checked the DRC is attachable */
3956      spapr_drc_attach(drc, dev);
3957  
3958      if (hotplugged) {
3959          spapr_hotplug_req_add_by_index(drc);
3960      } else {
3961          spapr_drc_reset(drc);
3962      }
3963  }
3964  
3965  void spapr_phb_release(DeviceState *dev)
3966  {
3967      HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3968  
3969      hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3970      object_unparent(OBJECT(dev));
3971  }
3972  
3973  static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3974  {
3975      qdev_unrealize(dev);
3976  }
3977  
3978  static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3979                                       DeviceState *dev, Error **errp)
3980  {
3981      SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3982      SpaprDrc *drc;
3983  
3984      drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3985      assert(drc);
3986  
3987      if (!spapr_drc_unplug_requested(drc)) {
3988          spapr_drc_detach(drc);
3989          spapr_hotplug_req_remove_by_index(drc);
3990      }
3991  }
3992  
3993  static
3994  bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3995                                Error **errp)
3996  {
3997      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3998  
3999      if (spapr->tpm_proxy != NULL) {
4000          error_setg(errp, "Only one TPM proxy can be specified for this machine");
4001          return false;
4002      }
4003  
4004      return true;
4005  }
4006  
4007  static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4008  {
4009      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4010      SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4011  
4012      /* Already checked in spapr_tpm_proxy_pre_plug() */
4013      g_assert(spapr->tpm_proxy == NULL);
4014  
4015      spapr->tpm_proxy = tpm_proxy;
4016  }
4017  
4018  static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4019  {
4020      SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4021  
4022      qdev_unrealize(dev);
4023      object_unparent(OBJECT(dev));
4024      spapr->tpm_proxy = NULL;
4025  }
4026  
4027  static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4028                                        DeviceState *dev, Error **errp)
4029  {
4030      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4031          spapr_memory_plug(hotplug_dev, dev);
4032      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4033          spapr_core_plug(hotplug_dev, dev);
4034      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4035          spapr_phb_plug(hotplug_dev, dev);
4036      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4037          spapr_tpm_proxy_plug(hotplug_dev, dev);
4038      }
4039  }
4040  
4041  static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4042                                          DeviceState *dev, Error **errp)
4043  {
4044      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4045          spapr_memory_unplug(hotplug_dev, dev);
4046      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4047          spapr_core_unplug(hotplug_dev, dev);
4048      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4049          spapr_phb_unplug(hotplug_dev, dev);
4050      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4051          spapr_tpm_proxy_unplug(hotplug_dev, dev);
4052      }
4053  }
4054  
4055  bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4056  {
4057      return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4058          /*
4059           * CAS will process all pending unplug requests.
4060           *
4061           * HACK: a guest could theoretically have cleared all bits in OV5,
4062           * but none of the guests we care for do.
4063           */
4064          spapr_ovec_empty(spapr->ov5_cas);
4065  }
4066  
4067  static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4068                                                  DeviceState *dev, Error **errp)
4069  {
4070      SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4071      MachineClass *mc = MACHINE_GET_CLASS(sms);
4072      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4073  
4074      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4075          if (spapr_memory_hot_unplug_supported(sms)) {
4076              spapr_memory_unplug_request(hotplug_dev, dev, errp);
4077          } else {
4078              error_setg(errp, "Memory hot unplug not supported for this guest");
4079          }
4080      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4081          if (!mc->has_hotpluggable_cpus) {
4082              error_setg(errp, "CPU hot unplug not supported on this machine");
4083              return;
4084          }
4085          spapr_core_unplug_request(hotplug_dev, dev, errp);
4086      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4087          if (!smc->dr_phb_enabled) {
4088              error_setg(errp, "PHB hot unplug not supported on this machine");
4089              return;
4090          }
4091          spapr_phb_unplug_request(hotplug_dev, dev, errp);
4092      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4093          spapr_tpm_proxy_unplug(hotplug_dev, dev);
4094      }
4095  }
4096  
4097  static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4098                                            DeviceState *dev, Error **errp)
4099  {
4100      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4101          spapr_memory_pre_plug(hotplug_dev, dev, errp);
4102      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4103          spapr_core_pre_plug(hotplug_dev, dev, errp);
4104      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4105          spapr_phb_pre_plug(hotplug_dev, dev, errp);
4106      } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4107          spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4108      }
4109  }
4110  
4111  static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4112                                                   DeviceState *dev)
4113  {
4114      if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4115          object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4116          object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4117          object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4118          return HOTPLUG_HANDLER(machine);
4119      }
4120      if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4121          PCIDevice *pcidev = PCI_DEVICE(dev);
4122          PCIBus *root = pci_device_root_bus(pcidev);
4123          SpaprPhbState *phb =
4124              (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4125                                                   TYPE_SPAPR_PCI_HOST_BRIDGE);
4126  
4127          if (phb) {
4128              return HOTPLUG_HANDLER(phb);
4129          }
4130      }
4131      return NULL;
4132  }
4133  
4134  static CpuInstanceProperties
4135  spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4136  {
4137      CPUArchId *core_slot;
4138      MachineClass *mc = MACHINE_GET_CLASS(machine);
4139  
4140      /* make sure possible_cpu are intialized */
4141      mc->possible_cpu_arch_ids(machine);
4142      /* get CPU core slot containing thread that matches cpu_index */
4143      core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4144      assert(core_slot);
4145      return core_slot->props;
4146  }
4147  
4148  static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4149  {
4150      return idx / ms->smp.cores % ms->numa_state->num_nodes;
4151  }
4152  
4153  static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4154  {
4155      int i;
4156      unsigned int smp_threads = machine->smp.threads;
4157      unsigned int smp_cpus = machine->smp.cpus;
4158      const char *core_type;
4159      int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4160      MachineClass *mc = MACHINE_GET_CLASS(machine);
4161  
4162      if (!mc->has_hotpluggable_cpus) {
4163          spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4164      }
4165      if (machine->possible_cpus) {
4166          assert(machine->possible_cpus->len == spapr_max_cores);
4167          return machine->possible_cpus;
4168      }
4169  
4170      core_type = spapr_get_cpu_core_type(machine->cpu_type);
4171      if (!core_type) {
4172          error_report("Unable to find sPAPR CPU Core definition");
4173          exit(1);
4174      }
4175  
4176      machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4177                               sizeof(CPUArchId) * spapr_max_cores);
4178      machine->possible_cpus->len = spapr_max_cores;
4179      for (i = 0; i < machine->possible_cpus->len; i++) {
4180          int core_id = i * smp_threads;
4181  
4182          machine->possible_cpus->cpus[i].type = core_type;
4183          machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4184          machine->possible_cpus->cpus[i].arch_id = core_id;
4185          machine->possible_cpus->cpus[i].props.has_core_id = true;
4186          machine->possible_cpus->cpus[i].props.core_id = core_id;
4187      }
4188      return machine->possible_cpus;
4189  }
4190  
4191  static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4192                                  uint64_t *buid, hwaddr *pio,
4193                                  hwaddr *mmio32, hwaddr *mmio64,
4194                                  unsigned n_dma, uint32_t *liobns,
4195                                  hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4196  {
4197      /*
4198       * New-style PHB window placement.
4199       *
4200       * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4201       * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4202       * windows.
4203       *
4204       * Some guest kernels can't work with MMIO windows above 1<<46
4205       * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4206       *
4207       * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4208       * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4209       * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4210       * 1TiB 64-bit MMIO windows for each PHB.
4211       */
4212      const uint64_t base_buid = 0x800000020000000ULL;
4213      int i;
4214  
4215      /* Sanity check natural alignments */
4216      QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4217      QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4218      QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4219      QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4220      /* Sanity check bounds */
4221      QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4222                        SPAPR_PCI_MEM32_WIN_SIZE);
4223      QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4224                        SPAPR_PCI_MEM64_WIN_SIZE);
4225  
4226      if (index >= SPAPR_MAX_PHBS) {
4227          error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4228                     SPAPR_MAX_PHBS - 1);
4229          return false;
4230      }
4231  
4232      *buid = base_buid + index;
4233      for (i = 0; i < n_dma; ++i) {
4234          liobns[i] = SPAPR_PCI_LIOBN(index, i);
4235      }
4236  
4237      *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4238      *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4239      *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4240  
4241      *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4242      *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4243      return true;
4244  }
4245  
4246  static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4247  {
4248      SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4249  
4250      return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4251  }
4252  
4253  static void spapr_ics_resend(XICSFabric *dev)
4254  {
4255      SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4256  
4257      ics_resend(spapr->ics);
4258  }
4259  
4260  static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4261  {
4262      PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4263  
4264      return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4265  }
4266  
4267  static void spapr_pic_print_info(InterruptStatsProvider *obj,
4268                                   Monitor *mon)
4269  {
4270      SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4271  
4272      spapr_irq_print_info(spapr, mon);
4273      monitor_printf(mon, "irqchip: %s\n",
4274                     kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4275  }
4276  
4277  /*
4278   * This is a XIVE only operation
4279   */
4280  static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4281                             uint8_t nvt_blk, uint32_t nvt_idx,
4282                             bool cam_ignore, uint8_t priority,
4283                             uint32_t logic_serv, XiveTCTXMatch *match)
4284  {
4285      SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4286      XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4287      XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4288      int count;
4289  
4290      count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4291                             priority, logic_serv, match);
4292      if (count < 0) {
4293          return count;
4294      }
4295  
4296      /*
4297       * When we implement the save and restore of the thread interrupt
4298       * contexts in the enter/exit CPU handlers of the machine and the
4299       * escalations in QEMU, we should be able to handle non dispatched
4300       * vCPUs.
4301       *
4302       * Until this is done, the sPAPR machine should find at least one
4303       * matching context always.
4304       */
4305      if (count == 0) {
4306          qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4307                        nvt_blk, nvt_idx);
4308      }
4309  
4310      return count;
4311  }
4312  
4313  int spapr_get_vcpu_id(PowerPCCPU *cpu)
4314  {
4315      return cpu->vcpu_id;
4316  }
4317  
4318  bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4319  {
4320      SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4321      MachineState *ms = MACHINE(spapr);
4322      int vcpu_id;
4323  
4324      vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4325  
4326      if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4327          error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4328          error_append_hint(errp, "Adjust the number of cpus to %d "
4329                            "or try to raise the number of threads per core\n",
4330                            vcpu_id * ms->smp.threads / spapr->vsmt);
4331          return false;
4332      }
4333  
4334      cpu->vcpu_id = vcpu_id;
4335      return true;
4336  }
4337  
4338  PowerPCCPU *spapr_find_cpu(int vcpu_id)
4339  {
4340      CPUState *cs;
4341  
4342      CPU_FOREACH(cs) {
4343          PowerPCCPU *cpu = POWERPC_CPU(cs);
4344  
4345          if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4346              return cpu;
4347          }
4348      }
4349  
4350      return NULL;
4351  }
4352  
4353  static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4354  {
4355      SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4356  
4357      /* These are only called by TCG, KVM maintains dispatch state */
4358  
4359      spapr_cpu->prod = false;
4360      if (spapr_cpu->vpa_addr) {
4361          CPUState *cs = CPU(cpu);
4362          uint32_t dispatch;
4363  
4364          dispatch = ldl_be_phys(cs->as,
4365                                 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4366          dispatch++;
4367          if ((dispatch & 1) != 0) {
4368              qemu_log_mask(LOG_GUEST_ERROR,
4369                            "VPA: incorrect dispatch counter value for "
4370                            "dispatched partition %u, correcting.\n", dispatch);
4371              dispatch++;
4372          }
4373          stl_be_phys(cs->as,
4374                      spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4375      }
4376  }
4377  
4378  static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4379  {
4380      SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4381  
4382      if (spapr_cpu->vpa_addr) {
4383          CPUState *cs = CPU(cpu);
4384          uint32_t dispatch;
4385  
4386          dispatch = ldl_be_phys(cs->as,
4387                                 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4388          dispatch++;
4389          if ((dispatch & 1) != 1) {
4390              qemu_log_mask(LOG_GUEST_ERROR,
4391                            "VPA: incorrect dispatch counter value for "
4392                            "preempted partition %u, correcting.\n", dispatch);
4393              dispatch++;
4394          }
4395          stl_be_phys(cs->as,
4396                      spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4397      }
4398  }
4399  
4400  static void spapr_machine_class_init(ObjectClass *oc, void *data)
4401  {
4402      MachineClass *mc = MACHINE_CLASS(oc);
4403      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4404      FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4405      NMIClass *nc = NMI_CLASS(oc);
4406      HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4407      PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4408      XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4409      InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4410      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4411  
4412      mc->desc = "pSeries Logical Partition (PAPR compliant)";
4413      mc->ignore_boot_device_suffixes = true;
4414  
4415      /*
4416       * We set up the default / latest behaviour here.  The class_init
4417       * functions for the specific versioned machine types can override
4418       * these details for backwards compatibility
4419       */
4420      mc->init = spapr_machine_init;
4421      mc->reset = spapr_machine_reset;
4422      mc->block_default_type = IF_SCSI;
4423      mc->max_cpus = 1024;
4424      mc->no_parallel = 1;
4425      mc->default_boot_order = "";
4426      mc->default_ram_size = 512 * MiB;
4427      mc->default_ram_id = "ppc_spapr.ram";
4428      mc->default_display = "std";
4429      mc->kvm_type = spapr_kvm_type;
4430      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4431      mc->pci_allow_0_address = true;
4432      assert(!mc->get_hotplug_handler);
4433      mc->get_hotplug_handler = spapr_get_hotplug_handler;
4434      hc->pre_plug = spapr_machine_device_pre_plug;
4435      hc->plug = spapr_machine_device_plug;
4436      mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4437      mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4438      mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4439      hc->unplug_request = spapr_machine_device_unplug_request;
4440      hc->unplug = spapr_machine_device_unplug;
4441  
4442      smc->dr_lmb_enabled = true;
4443      smc->update_dt_enabled = true;
4444      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4445      mc->has_hotpluggable_cpus = true;
4446      mc->nvdimm_supported = true;
4447      smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4448      fwc->get_dev_path = spapr_get_fw_dev_path;
4449      nc->nmi_monitor_handler = spapr_nmi;
4450      smc->phb_placement = spapr_phb_placement;
4451      vhc->hypercall = emulate_spapr_hypercall;
4452      vhc->hpt_mask = spapr_hpt_mask;
4453      vhc->map_hptes = spapr_map_hptes;
4454      vhc->unmap_hptes = spapr_unmap_hptes;
4455      vhc->hpte_set_c = spapr_hpte_set_c;
4456      vhc->hpte_set_r = spapr_hpte_set_r;
4457      vhc->get_pate = spapr_get_pate;
4458      vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4459      vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4460      vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4461      xic->ics_get = spapr_ics_get;
4462      xic->ics_resend = spapr_ics_resend;
4463      xic->icp_get = spapr_icp_get;
4464      ispc->print_info = spapr_pic_print_info;
4465      /* Force NUMA node memory size to be a multiple of
4466       * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4467       * in which LMBs are represented and hot-added
4468       */
4469      mc->numa_mem_align_shift = 28;
4470      mc->auto_enable_numa = true;
4471  
4472      smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4473      smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4474      smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4475      smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4476      smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4477      smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4478      smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4479      smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4480      smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4481      smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4482      smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4483      spapr_caps_add_properties(smc);
4484      smc->irq = &spapr_irq_dual;
4485      smc->dr_phb_enabled = true;
4486      smc->linux_pci_probe = true;
4487      smc->smp_threads_vsmt = true;
4488      smc->nr_xirqs = SPAPR_NR_XIRQS;
4489      xfc->match_nvt = spapr_match_nvt;
4490  }
4491  
4492  static const TypeInfo spapr_machine_info = {
4493      .name          = TYPE_SPAPR_MACHINE,
4494      .parent        = TYPE_MACHINE,
4495      .abstract      = true,
4496      .instance_size = sizeof(SpaprMachineState),
4497      .instance_init = spapr_instance_init,
4498      .instance_finalize = spapr_machine_finalizefn,
4499      .class_size    = sizeof(SpaprMachineClass),
4500      .class_init    = spapr_machine_class_init,
4501      .interfaces = (InterfaceInfo[]) {
4502          { TYPE_FW_PATH_PROVIDER },
4503          { TYPE_NMI },
4504          { TYPE_HOTPLUG_HANDLER },
4505          { TYPE_PPC_VIRTUAL_HYPERVISOR },
4506          { TYPE_XICS_FABRIC },
4507          { TYPE_INTERRUPT_STATS_PROVIDER },
4508          { TYPE_XIVE_FABRIC },
4509          { }
4510      },
4511  };
4512  
4513  static void spapr_machine_latest_class_options(MachineClass *mc)
4514  {
4515      mc->alias = "pseries";
4516      mc->is_default = true;
4517  }
4518  
4519  #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4520      static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4521                                                      void *data)      \
4522      {                                                                \
4523          MachineClass *mc = MACHINE_CLASS(oc);                        \
4524          spapr_machine_##suffix##_class_options(mc);                  \
4525          if (latest) {                                                \
4526              spapr_machine_latest_class_options(mc);                  \
4527          }                                                            \
4528      }                                                                \
4529      static const TypeInfo spapr_machine_##suffix##_info = {          \
4530          .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4531          .parent = TYPE_SPAPR_MACHINE,                                \
4532          .class_init = spapr_machine_##suffix##_class_init,           \
4533      };                                                               \
4534      static void spapr_machine_register_##suffix(void)                \
4535      {                                                                \
4536          type_register(&spapr_machine_##suffix##_info);               \
4537      }                                                                \
4538      type_init(spapr_machine_register_##suffix)
4539  
4540  /*
4541   * pseries-6.0
4542   */
4543  static void spapr_machine_6_0_class_options(MachineClass *mc)
4544  {
4545      /* Defaults for the latest behaviour inherited from the base class */
4546  }
4547  
4548  DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4549  
4550  /*
4551   * pseries-5.2
4552   */
4553  static void spapr_machine_5_2_class_options(MachineClass *mc)
4554  {
4555      spapr_machine_6_0_class_options(mc);
4556      compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4557  }
4558  
4559  DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4560  
4561  /*
4562   * pseries-5.1
4563   */
4564  static void spapr_machine_5_1_class_options(MachineClass *mc)
4565  {
4566      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4567  
4568      spapr_machine_5_2_class_options(mc);
4569      compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4570      smc->pre_5_2_numa_associativity = true;
4571  }
4572  
4573  DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4574  
4575  /*
4576   * pseries-5.0
4577   */
4578  static void spapr_machine_5_0_class_options(MachineClass *mc)
4579  {
4580      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4581      static GlobalProperty compat[] = {
4582          { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4583      };
4584  
4585      spapr_machine_5_1_class_options(mc);
4586      compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4587      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4588      mc->numa_mem_supported = true;
4589      smc->pre_5_1_assoc_refpoints = true;
4590  }
4591  
4592  DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4593  
4594  /*
4595   * pseries-4.2
4596   */
4597  static void spapr_machine_4_2_class_options(MachineClass *mc)
4598  {
4599      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4600  
4601      spapr_machine_5_0_class_options(mc);
4602      compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4603      smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4604      smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4605      smc->rma_limit = 16 * GiB;
4606      mc->nvdimm_supported = false;
4607  }
4608  
4609  DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4610  
4611  /*
4612   * pseries-4.1
4613   */
4614  static void spapr_machine_4_1_class_options(MachineClass *mc)
4615  {
4616      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4617      static GlobalProperty compat[] = {
4618          /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4619          { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4620      };
4621  
4622      spapr_machine_4_2_class_options(mc);
4623      smc->linux_pci_probe = false;
4624      smc->smp_threads_vsmt = false;
4625      compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4626      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4627  }
4628  
4629  DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4630  
4631  /*
4632   * pseries-4.0
4633   */
4634  static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4635                                uint64_t *buid, hwaddr *pio,
4636                                hwaddr *mmio32, hwaddr *mmio64,
4637                                unsigned n_dma, uint32_t *liobns,
4638                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4639  {
4640      if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4641                               liobns, nv2gpa, nv2atsd, errp)) {
4642          return false;
4643      }
4644  
4645      *nv2gpa = 0;
4646      *nv2atsd = 0;
4647      return true;
4648  }
4649  static void spapr_machine_4_0_class_options(MachineClass *mc)
4650  {
4651      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4652  
4653      spapr_machine_4_1_class_options(mc);
4654      compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4655      smc->phb_placement = phb_placement_4_0;
4656      smc->irq = &spapr_irq_xics;
4657      smc->pre_4_1_migration = true;
4658  }
4659  
4660  DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4661  
4662  /*
4663   * pseries-3.1
4664   */
4665  static void spapr_machine_3_1_class_options(MachineClass *mc)
4666  {
4667      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668  
4669      spapr_machine_4_0_class_options(mc);
4670      compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4671  
4672      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4673      smc->update_dt_enabled = false;
4674      smc->dr_phb_enabled = false;
4675      smc->broken_host_serial_model = true;
4676      smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4677      smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4678      smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4679      smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4680  }
4681  
4682  DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4683  
4684  /*
4685   * pseries-3.0
4686   */
4687  
4688  static void spapr_machine_3_0_class_options(MachineClass *mc)
4689  {
4690      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4691  
4692      spapr_machine_3_1_class_options(mc);
4693      compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4694  
4695      smc->legacy_irq_allocation = true;
4696      smc->nr_xirqs = 0x400;
4697      smc->irq = &spapr_irq_xics_legacy;
4698  }
4699  
4700  DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4701  
4702  /*
4703   * pseries-2.12
4704   */
4705  static void spapr_machine_2_12_class_options(MachineClass *mc)
4706  {
4707      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4708      static GlobalProperty compat[] = {
4709          { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4710          { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4711      };
4712  
4713      spapr_machine_3_0_class_options(mc);
4714      compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4715      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4716  
4717      /* We depend on kvm_enabled() to choose a default value for the
4718       * hpt-max-page-size capability. Of course we can't do it here
4719       * because this is too early and the HW accelerator isn't initialzed
4720       * yet. Postpone this to machine init (see default_caps_with_cpu()).
4721       */
4722      smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4723  }
4724  
4725  DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4726  
4727  static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4728  {
4729      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4730  
4731      spapr_machine_2_12_class_options(mc);
4732      smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4733      smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4734      smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4735  }
4736  
4737  DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4738  
4739  /*
4740   * pseries-2.11
4741   */
4742  
4743  static void spapr_machine_2_11_class_options(MachineClass *mc)
4744  {
4745      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4746  
4747      spapr_machine_2_12_class_options(mc);
4748      smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4749      compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4750  }
4751  
4752  DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4753  
4754  /*
4755   * pseries-2.10
4756   */
4757  
4758  static void spapr_machine_2_10_class_options(MachineClass *mc)
4759  {
4760      spapr_machine_2_11_class_options(mc);
4761      compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4762  }
4763  
4764  DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4765  
4766  /*
4767   * pseries-2.9
4768   */
4769  
4770  static void spapr_machine_2_9_class_options(MachineClass *mc)
4771  {
4772      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4773      static GlobalProperty compat[] = {
4774          { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4775      };
4776  
4777      spapr_machine_2_10_class_options(mc);
4778      compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4779      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4780      smc->pre_2_10_has_unused_icps = true;
4781      smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4782  }
4783  
4784  DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4785  
4786  /*
4787   * pseries-2.8
4788   */
4789  
4790  static void spapr_machine_2_8_class_options(MachineClass *mc)
4791  {
4792      static GlobalProperty compat[] = {
4793          { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4794      };
4795  
4796      spapr_machine_2_9_class_options(mc);
4797      compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4798      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4799      mc->numa_mem_align_shift = 23;
4800  }
4801  
4802  DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4803  
4804  /*
4805   * pseries-2.7
4806   */
4807  
4808  static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4809                                uint64_t *buid, hwaddr *pio,
4810                                hwaddr *mmio32, hwaddr *mmio64,
4811                                unsigned n_dma, uint32_t *liobns,
4812                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4813  {
4814      /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4815      const uint64_t base_buid = 0x800000020000000ULL;
4816      const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4817      const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4818      const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4819      const uint32_t max_index = 255;
4820      const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4821  
4822      uint64_t ram_top = MACHINE(spapr)->ram_size;
4823      hwaddr phb0_base, phb_base;
4824      int i;
4825  
4826      /* Do we have device memory? */
4827      if (MACHINE(spapr)->maxram_size > ram_top) {
4828          /* Can't just use maxram_size, because there may be an
4829           * alignment gap between normal and device memory regions
4830           */
4831          ram_top = MACHINE(spapr)->device_memory->base +
4832              memory_region_size(&MACHINE(spapr)->device_memory->mr);
4833      }
4834  
4835      phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4836  
4837      if (index > max_index) {
4838          error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4839                     max_index);
4840          return false;
4841      }
4842  
4843      *buid = base_buid + index;
4844      for (i = 0; i < n_dma; ++i) {
4845          liobns[i] = SPAPR_PCI_LIOBN(index, i);
4846      }
4847  
4848      phb_base = phb0_base + index * phb_spacing;
4849      *pio = phb_base + pio_offset;
4850      *mmio32 = phb_base + mmio_offset;
4851      /*
4852       * We don't set the 64-bit MMIO window, relying on the PHB's
4853       * fallback behaviour of automatically splitting a large "32-bit"
4854       * window into contiguous 32-bit and 64-bit windows
4855       */
4856  
4857      *nv2gpa = 0;
4858      *nv2atsd = 0;
4859      return true;
4860  }
4861  
4862  static void spapr_machine_2_7_class_options(MachineClass *mc)
4863  {
4864      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4865      static GlobalProperty compat[] = {
4866          { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4867          { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4868          { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4869          { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4870      };
4871  
4872      spapr_machine_2_8_class_options(mc);
4873      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4874      mc->default_machine_opts = "modern-hotplug-events=off";
4875      compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4876      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4877      smc->phb_placement = phb_placement_2_7;
4878  }
4879  
4880  DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4881  
4882  /*
4883   * pseries-2.6
4884   */
4885  
4886  static void spapr_machine_2_6_class_options(MachineClass *mc)
4887  {
4888      static GlobalProperty compat[] = {
4889          { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4890      };
4891  
4892      spapr_machine_2_7_class_options(mc);
4893      mc->has_hotpluggable_cpus = false;
4894      compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4895      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4896  }
4897  
4898  DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4899  
4900  /*
4901   * pseries-2.5
4902   */
4903  
4904  static void spapr_machine_2_5_class_options(MachineClass *mc)
4905  {
4906      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4907      static GlobalProperty compat[] = {
4908          { "spapr-vlan", "use-rx-buffer-pools", "off" },
4909      };
4910  
4911      spapr_machine_2_6_class_options(mc);
4912      smc->use_ohci_by_default = true;
4913      compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4914      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4915  }
4916  
4917  DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4918  
4919  /*
4920   * pseries-2.4
4921   */
4922  
4923  static void spapr_machine_2_4_class_options(MachineClass *mc)
4924  {
4925      SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4926  
4927      spapr_machine_2_5_class_options(mc);
4928      smc->dr_lmb_enabled = false;
4929      compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4930  }
4931  
4932  DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4933  
4934  /*
4935   * pseries-2.3
4936   */
4937  
4938  static void spapr_machine_2_3_class_options(MachineClass *mc)
4939  {
4940      static GlobalProperty compat[] = {
4941          { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4942      };
4943      spapr_machine_2_4_class_options(mc);
4944      compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4945      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4946  }
4947  DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4948  
4949  /*
4950   * pseries-2.2
4951   */
4952  
4953  static void spapr_machine_2_2_class_options(MachineClass *mc)
4954  {
4955      static GlobalProperty compat[] = {
4956          { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4957      };
4958  
4959      spapr_machine_2_3_class_options(mc);
4960      compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4961      compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4962      mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4963  }
4964  DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4965  
4966  /*
4967   * pseries-2.1
4968   */
4969  
4970  static void spapr_machine_2_1_class_options(MachineClass *mc)
4971  {
4972      spapr_machine_2_2_class_options(mc);
4973      compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4974  }
4975  DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4976  
4977  static void spapr_machine_register_types(void)
4978  {
4979      type_register_static(&spapr_machine_info);
4980  }
4981  
4982  type_init(spapr_machine_register_types)
4983