1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/block-backend.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/ppc/xics.h" 59 #include "hw/pci/msi.h" 60 61 #include "hw/pci/pci.h" 62 #include "hw/scsi/scsi.h" 63 #include "hw/virtio/virtio-scsi.h" 64 #include "hw/virtio/vhost-scsi-common.h" 65 66 #include "exec/address-spaces.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "hw/compat.h" 75 #include "qemu/cutils.h" 76 #include "hw/ppc/spapr_cpu_core.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_XICP 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr, 120 const char *type_ics, 121 int nr_irqs, Error **errp) 122 { 123 Error *local_err = NULL; 124 Object *obj; 125 126 obj = object_new(type_ics); 127 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); 128 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), 129 &error_abort); 130 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); 131 if (local_err) { 132 goto error; 133 } 134 object_property_set_bool(obj, true, "realized", &local_err); 135 if (local_err) { 136 goto error; 137 } 138 139 return ICS_SIMPLE(obj); 140 141 error: 142 error_propagate(errp, local_err); 143 return NULL; 144 } 145 146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 147 { 148 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 149 * and newer QEMUs don't even have them. In both cases, we don't want 150 * to send anything on the wire. 151 */ 152 return false; 153 } 154 155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 156 .name = "icp/server", 157 .version_id = 1, 158 .minimum_version_id = 1, 159 .needed = pre_2_10_vmstate_dummy_icp_needed, 160 .fields = (VMStateField[]) { 161 VMSTATE_UNUSED(4), /* uint32_t xirr */ 162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 163 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 164 VMSTATE_END_OF_LIST() 165 }, 166 }; 167 168 static void pre_2_10_vmstate_register_dummy_icp(int i) 169 { 170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 171 (void *)(uintptr_t) i); 172 } 173 174 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 175 { 176 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 177 (void *)(uintptr_t) i); 178 } 179 180 static int xics_max_server_number(sPAPRMachineState *spapr) 181 { 182 assert(spapr->vsmt); 183 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 184 } 185 186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp) 187 { 188 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 189 190 if (kvm_enabled()) { 191 if (machine_kernel_irqchip_allowed(machine) && 192 !xics_kvm_init(spapr, errp)) { 193 spapr->icp_type = TYPE_KVM_ICP; 194 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp); 195 } 196 if (machine_kernel_irqchip_required(machine) && !spapr->ics) { 197 error_prepend(errp, "kernel_irqchip requested but unavailable: "); 198 return; 199 } 200 } 201 202 if (!spapr->ics) { 203 xics_spapr_init(spapr); 204 spapr->icp_type = TYPE_ICP; 205 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp); 206 if (!spapr->ics) { 207 return; 208 } 209 } 210 } 211 212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 213 int smt_threads) 214 { 215 int i, ret = 0; 216 uint32_t servers_prop[smt_threads]; 217 uint32_t gservers_prop[smt_threads * 2]; 218 int index = spapr_get_vcpu_id(cpu); 219 220 if (cpu->compat_pvr) { 221 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 222 if (ret < 0) { 223 return ret; 224 } 225 } 226 227 /* Build interrupt servers and gservers properties */ 228 for (i = 0; i < smt_threads; i++) { 229 servers_prop[i] = cpu_to_be32(index + i); 230 /* Hack, direct the group queues back to cpu 0 */ 231 gservers_prop[i*2] = cpu_to_be32(index + i); 232 gservers_prop[i*2 + 1] = 0; 233 } 234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 235 servers_prop, sizeof(servers_prop)); 236 if (ret < 0) { 237 return ret; 238 } 239 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 240 gservers_prop, sizeof(gservers_prop)); 241 242 return ret; 243 } 244 245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 246 { 247 int index = spapr_get_vcpu_id(cpu); 248 uint32_t associativity[] = {cpu_to_be32(0x5), 249 cpu_to_be32(0x0), 250 cpu_to_be32(0x0), 251 cpu_to_be32(0x0), 252 cpu_to_be32(cpu->node_id), 253 cpu_to_be32(index)}; 254 255 /* Advertise NUMA via ibm,associativity */ 256 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 257 sizeof(associativity)); 258 } 259 260 /* Populate the "ibm,pa-features" property */ 261 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 262 PowerPCCPU *cpu, 263 void *fdt, int offset, 264 bool legacy_guest) 265 { 266 CPUPPCState *env = &cpu->env; 267 uint8_t pa_features_206[] = { 6, 0, 268 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 269 uint8_t pa_features_207[] = { 24, 0, 270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 271 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 274 uint8_t pa_features_300[] = { 66, 0, 275 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 276 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 277 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 278 /* 6: DS207 */ 279 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 280 /* 16: Vector */ 281 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 282 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 283 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 284 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 286 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 287 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 288 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 289 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 290 /* 42: PM, 44: PC RA, 46: SC vec'd */ 291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 292 /* 48: SIMD, 50: QP BFP, 52: String */ 293 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 294 /* 54: DecFP, 56: DecI, 58: SHA */ 295 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 296 /* 60: NM atomic, 62: RNG */ 297 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 298 }; 299 uint8_t *pa_features = NULL; 300 size_t pa_size; 301 302 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 303 pa_features = pa_features_206; 304 pa_size = sizeof(pa_features_206); 305 } 306 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 307 pa_features = pa_features_207; 308 pa_size = sizeof(pa_features_207); 309 } 310 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 311 pa_features = pa_features_300; 312 pa_size = sizeof(pa_features_300); 313 } 314 if (!pa_features) { 315 return; 316 } 317 318 if (env->ci_large_pages) { 319 /* 320 * Note: we keep CI large pages off by default because a 64K capable 321 * guest provisioned with large pages might otherwise try to map a qemu 322 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 323 * even if that qemu runs on a 4k host. 324 * We dd this bit back here if we are confident this is not an issue 325 */ 326 pa_features[3] |= 0x20; 327 } 328 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 329 pa_features[24] |= 0x80; /* Transactional memory support */ 330 } 331 if (legacy_guest && pa_size > 40) { 332 /* Workaround for broken kernels that attempt (guest) radix 333 * mode when they can't handle it, if they see the radix bit set 334 * in pa-features. So hide it from them. */ 335 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 336 } 337 338 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 339 } 340 341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 342 { 343 int ret = 0, offset, cpus_offset; 344 CPUState *cs; 345 char cpu_model[32]; 346 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 347 348 CPU_FOREACH(cs) { 349 PowerPCCPU *cpu = POWERPC_CPU(cs); 350 DeviceClass *dc = DEVICE_GET_CLASS(cs); 351 int index = spapr_get_vcpu_id(cpu); 352 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 353 354 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 355 continue; 356 } 357 358 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 359 360 cpus_offset = fdt_path_offset(fdt, "/cpus"); 361 if (cpus_offset < 0) { 362 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 363 if (cpus_offset < 0) { 364 return cpus_offset; 365 } 366 } 367 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 368 if (offset < 0) { 369 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 370 if (offset < 0) { 371 return offset; 372 } 373 } 374 375 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 376 pft_size_prop, sizeof(pft_size_prop)); 377 if (ret < 0) { 378 return ret; 379 } 380 381 if (nb_numa_nodes > 1) { 382 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 383 if (ret < 0) { 384 return ret; 385 } 386 } 387 388 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 389 if (ret < 0) { 390 return ret; 391 } 392 393 spapr_populate_pa_features(spapr, cpu, fdt, offset, 394 spapr->cas_legacy_guest_workaround); 395 } 396 return ret; 397 } 398 399 static hwaddr spapr_node0_size(MachineState *machine) 400 { 401 if (nb_numa_nodes) { 402 int i; 403 for (i = 0; i < nb_numa_nodes; ++i) { 404 if (numa_info[i].node_mem) { 405 return MIN(pow2floor(numa_info[i].node_mem), 406 machine->ram_size); 407 } 408 } 409 } 410 return machine->ram_size; 411 } 412 413 static void add_str(GString *s, const gchar *s1) 414 { 415 g_string_append_len(s, s1, strlen(s1) + 1); 416 } 417 418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 419 hwaddr size) 420 { 421 uint32_t associativity[] = { 422 cpu_to_be32(0x4), /* length */ 423 cpu_to_be32(0x0), cpu_to_be32(0x0), 424 cpu_to_be32(0x0), cpu_to_be32(nodeid) 425 }; 426 char mem_name[32]; 427 uint64_t mem_reg_property[2]; 428 int off; 429 430 mem_reg_property[0] = cpu_to_be64(start); 431 mem_reg_property[1] = cpu_to_be64(size); 432 433 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 434 off = fdt_add_subnode(fdt, 0, mem_name); 435 _FDT(off); 436 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 437 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 438 sizeof(mem_reg_property)))); 439 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 440 sizeof(associativity)))); 441 return off; 442 } 443 444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 445 { 446 MachineState *machine = MACHINE(spapr); 447 hwaddr mem_start, node_size; 448 int i, nb_nodes = nb_numa_nodes; 449 NodeInfo *nodes = numa_info; 450 NodeInfo ramnode; 451 452 /* No NUMA nodes, assume there is just one node with whole RAM */ 453 if (!nb_numa_nodes) { 454 nb_nodes = 1; 455 ramnode.node_mem = machine->ram_size; 456 nodes = &ramnode; 457 } 458 459 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 460 if (!nodes[i].node_mem) { 461 continue; 462 } 463 if (mem_start >= machine->ram_size) { 464 node_size = 0; 465 } else { 466 node_size = nodes[i].node_mem; 467 if (node_size > machine->ram_size - mem_start) { 468 node_size = machine->ram_size - mem_start; 469 } 470 } 471 if (!mem_start) { 472 /* spapr_machine_init() checks for rma_size <= node0_size 473 * already */ 474 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 475 mem_start += spapr->rma_size; 476 node_size -= spapr->rma_size; 477 } 478 for ( ; node_size; ) { 479 hwaddr sizetmp = pow2floor(node_size); 480 481 /* mem_start != 0 here */ 482 if (ctzl(mem_start) < ctzl(sizetmp)) { 483 sizetmp = 1ULL << ctzl(mem_start); 484 } 485 486 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 487 node_size -= sizetmp; 488 mem_start += sizetmp; 489 } 490 } 491 492 return 0; 493 } 494 495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 496 sPAPRMachineState *spapr) 497 { 498 PowerPCCPU *cpu = POWERPC_CPU(cs); 499 CPUPPCState *env = &cpu->env; 500 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 501 int index = spapr_get_vcpu_id(cpu); 502 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 503 0xffffffff, 0xffffffff}; 504 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 505 : SPAPR_TIMEBASE_FREQ; 506 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 507 uint32_t page_sizes_prop[64]; 508 size_t page_sizes_prop_size; 509 uint32_t vcpus_per_socket = smp_threads * smp_cores; 510 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 511 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 512 sPAPRDRConnector *drc; 513 int drc_index; 514 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 515 int i; 516 517 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 518 if (drc) { 519 drc_index = spapr_drc_index(drc); 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 521 } 522 523 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 524 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 525 526 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 527 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 528 env->dcache_line_size))); 529 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 530 env->dcache_line_size))); 531 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 532 env->icache_line_size))); 533 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 534 env->icache_line_size))); 535 536 if (pcc->l1_dcache_size) { 537 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 538 pcc->l1_dcache_size))); 539 } else { 540 warn_report("Unknown L1 dcache size for cpu"); 541 } 542 if (pcc->l1_icache_size) { 543 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 544 pcc->l1_icache_size))); 545 } else { 546 warn_report("Unknown L1 icache size for cpu"); 547 } 548 549 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 550 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 551 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr))); 552 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr))); 553 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 554 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 555 556 if (env->spr_cb[SPR_PURR].oea_read) { 557 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 558 } 559 560 if (env->mmu_model & POWERPC_MMU_1TSEG) { 561 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 562 segs, sizeof(segs)))); 563 } 564 565 /* Advertise VSX (vector extensions) if available 566 * 1 == VMX / Altivec available 567 * 2 == VSX available 568 * 569 * Only CPUs for which we create core types in spapr_cpu_core.c 570 * are possible, and all of those have VMX */ 571 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 573 } else { 574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 575 } 576 577 /* Advertise DFP (Decimal Floating Point) if available 578 * 0 / no property == no DFP 579 * 1 == DFP available */ 580 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 581 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 582 } 583 584 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop, 585 sizeof(page_sizes_prop)); 586 if (page_sizes_prop_size) { 587 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 588 page_sizes_prop, page_sizes_prop_size))); 589 } 590 591 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 592 593 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 594 cs->cpu_index / vcpus_per_socket))); 595 596 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 597 pft_size_prop, sizeof(pft_size_prop)))); 598 599 if (nb_numa_nodes > 1) { 600 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 601 } 602 603 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 604 605 if (pcc->radix_page_info) { 606 for (i = 0; i < pcc->radix_page_info->count; i++) { 607 radix_AP_encodings[i] = 608 cpu_to_be32(pcc->radix_page_info->entries[i]); 609 } 610 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 611 radix_AP_encodings, 612 pcc->radix_page_info->count * 613 sizeof(radix_AP_encodings[0])))); 614 } 615 } 616 617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 618 { 619 CPUState *cs; 620 int cpus_offset; 621 char *nodename; 622 623 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 624 _FDT(cpus_offset); 625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 626 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 627 628 /* 629 * We walk the CPUs in reverse order to ensure that CPU DT nodes 630 * created by fdt_add_subnode() end up in the right order in FDT 631 * for the guest kernel the enumerate the CPUs correctly. 632 */ 633 CPU_FOREACH_REVERSE(cs) { 634 PowerPCCPU *cpu = POWERPC_CPU(cs); 635 int index = spapr_get_vcpu_id(cpu); 636 DeviceClass *dc = DEVICE_GET_CLASS(cs); 637 int offset; 638 639 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 640 continue; 641 } 642 643 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 644 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 645 g_free(nodename); 646 _FDT(offset); 647 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 648 } 649 650 } 651 652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 653 { 654 MemoryDeviceInfoList *info; 655 656 for (info = list; info; info = info->next) { 657 MemoryDeviceInfo *value = info->value; 658 659 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 660 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 661 662 if (pcdimm_info->addr >= addr && 663 addr < (pcdimm_info->addr + pcdimm_info->size)) { 664 return pcdimm_info->node; 665 } 666 } 667 } 668 669 return -1; 670 } 671 672 /* 673 * Adds ibm,dynamic-reconfiguration-memory node. 674 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 675 * of this device tree node. 676 */ 677 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 678 { 679 MachineState *machine = MACHINE(spapr); 680 int ret, i, offset; 681 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 682 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 683 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size; 684 uint32_t nr_lmbs = (spapr->hotplug_memory.base + 685 memory_region_size(&spapr->hotplug_memory.mr)) / 686 lmb_size; 687 uint32_t *int_buf, *cur_index, buf_len; 688 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 689 MemoryDeviceInfoList *dimms = NULL; 690 691 /* 692 * Don't create the node if there is no hotpluggable memory 693 */ 694 if (machine->ram_size == machine->maxram_size) { 695 return 0; 696 } 697 698 /* 699 * Allocate enough buffer size to fit in ibm,dynamic-memory 700 * or ibm,associativity-lookup-arrays 701 */ 702 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2) 703 * sizeof(uint32_t); 704 cur_index = int_buf = g_malloc0(buf_len); 705 706 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 707 708 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 709 sizeof(prop_lmb_size)); 710 if (ret < 0) { 711 goto out; 712 } 713 714 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 715 if (ret < 0) { 716 goto out; 717 } 718 719 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 720 if (ret < 0) { 721 goto out; 722 } 723 724 if (hotplug_lmb_start) { 725 MemoryDeviceInfoList **prev = &dimms; 726 qmp_pc_dimm_device_list(qdev_get_machine(), &prev); 727 } 728 729 /* ibm,dynamic-memory */ 730 int_buf[0] = cpu_to_be32(nr_lmbs); 731 cur_index++; 732 for (i = 0; i < nr_lmbs; i++) { 733 uint64_t addr = i * lmb_size; 734 uint32_t *dynamic_memory = cur_index; 735 736 if (i >= hotplug_lmb_start) { 737 sPAPRDRConnector *drc; 738 739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 740 g_assert(drc); 741 742 dynamic_memory[0] = cpu_to_be32(addr >> 32); 743 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 744 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 745 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 746 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 747 if (memory_region_present(get_system_memory(), addr)) { 748 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 749 } else { 750 dynamic_memory[5] = cpu_to_be32(0); 751 } 752 } else { 753 /* 754 * LMB information for RMA, boot time RAM and gap b/n RAM and 755 * hotplug memory region -- all these are marked as reserved 756 * and as having no valid DRC. 757 */ 758 dynamic_memory[0] = cpu_to_be32(addr >> 32); 759 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 760 dynamic_memory[2] = cpu_to_be32(0); 761 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 762 dynamic_memory[4] = cpu_to_be32(-1); 763 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 764 SPAPR_LMB_FLAGS_DRC_INVALID); 765 } 766 767 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 768 } 769 qapi_free_MemoryDeviceInfoList(dimms); 770 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 771 if (ret < 0) { 772 goto out; 773 } 774 775 /* ibm,associativity-lookup-arrays */ 776 cur_index = int_buf; 777 int_buf[0] = cpu_to_be32(nr_nodes); 778 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 779 cur_index += 2; 780 for (i = 0; i < nr_nodes; i++) { 781 uint32_t associativity[] = { 782 cpu_to_be32(0x0), 783 cpu_to_be32(0x0), 784 cpu_to_be32(0x0), 785 cpu_to_be32(i) 786 }; 787 memcpy(cur_index, associativity, sizeof(associativity)); 788 cur_index += 4; 789 } 790 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 791 (cur_index - int_buf) * sizeof(uint32_t)); 792 out: 793 g_free(int_buf); 794 return ret; 795 } 796 797 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 798 sPAPROptionVector *ov5_updates) 799 { 800 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 801 int ret = 0, offset; 802 803 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 804 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 805 g_assert(smc->dr_lmb_enabled); 806 ret = spapr_populate_drconf_memory(spapr, fdt); 807 if (ret) { 808 goto out; 809 } 810 } 811 812 offset = fdt_path_offset(fdt, "/chosen"); 813 if (offset < 0) { 814 offset = fdt_add_subnode(fdt, 0, "chosen"); 815 if (offset < 0) { 816 return offset; 817 } 818 } 819 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 820 "ibm,architecture-vec-5"); 821 822 out: 823 return ret; 824 } 825 826 static bool spapr_hotplugged_dev_before_cas(void) 827 { 828 Object *drc_container, *obj; 829 ObjectProperty *prop; 830 ObjectPropertyIterator iter; 831 832 drc_container = container_get(object_get_root(), "/dr-connector"); 833 object_property_iter_init(&iter, drc_container); 834 while ((prop = object_property_iter_next(&iter))) { 835 if (!strstart(prop->type, "link<", NULL)) { 836 continue; 837 } 838 obj = object_property_get_link(drc_container, prop->name, NULL); 839 if (spapr_drc_needed(obj)) { 840 return true; 841 } 842 } 843 return false; 844 } 845 846 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 847 target_ulong addr, target_ulong size, 848 sPAPROptionVector *ov5_updates) 849 { 850 void *fdt, *fdt_skel; 851 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 852 853 if (spapr_hotplugged_dev_before_cas()) { 854 return 1; 855 } 856 857 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 858 error_report("SLOF provided an unexpected CAS buffer size " 859 TARGET_FMT_lu " (min: %zu, max: %u)", 860 size, sizeof(hdr), FW_MAX_SIZE); 861 exit(EXIT_FAILURE); 862 } 863 864 size -= sizeof(hdr); 865 866 /* Create skeleton */ 867 fdt_skel = g_malloc0(size); 868 _FDT((fdt_create(fdt_skel, size))); 869 _FDT((fdt_begin_node(fdt_skel, ""))); 870 _FDT((fdt_end_node(fdt_skel))); 871 _FDT((fdt_finish(fdt_skel))); 872 fdt = g_malloc0(size); 873 _FDT((fdt_open_into(fdt_skel, fdt, size))); 874 g_free(fdt_skel); 875 876 /* Fixup cpu nodes */ 877 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 878 879 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 880 return -1; 881 } 882 883 /* Pack resulting tree */ 884 _FDT((fdt_pack(fdt))); 885 886 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 887 trace_spapr_cas_failed(size); 888 return -1; 889 } 890 891 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 892 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 893 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 894 g_free(fdt); 895 896 return 0; 897 } 898 899 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 900 { 901 int rtas; 902 GString *hypertas = g_string_sized_new(256); 903 GString *qemu_hypertas = g_string_sized_new(256); 904 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 905 uint64_t max_hotplug_addr = spapr->hotplug_memory.base + 906 memory_region_size(&spapr->hotplug_memory.mr); 907 uint32_t lrdr_capacity[] = { 908 cpu_to_be32(max_hotplug_addr >> 32), 909 cpu_to_be32(max_hotplug_addr & 0xffffffff), 910 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 911 cpu_to_be32(max_cpus / smp_threads), 912 }; 913 914 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 915 916 /* hypertas */ 917 add_str(hypertas, "hcall-pft"); 918 add_str(hypertas, "hcall-term"); 919 add_str(hypertas, "hcall-dabr"); 920 add_str(hypertas, "hcall-interrupt"); 921 add_str(hypertas, "hcall-tce"); 922 add_str(hypertas, "hcall-vio"); 923 add_str(hypertas, "hcall-splpar"); 924 add_str(hypertas, "hcall-bulk"); 925 add_str(hypertas, "hcall-set-mode"); 926 add_str(hypertas, "hcall-sprg0"); 927 add_str(hypertas, "hcall-copy"); 928 add_str(hypertas, "hcall-debug"); 929 add_str(qemu_hypertas, "hcall-memop1"); 930 931 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 932 add_str(hypertas, "hcall-multi-tce"); 933 } 934 935 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 936 add_str(hypertas, "hcall-hpt-resize"); 937 } 938 939 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 940 hypertas->str, hypertas->len)); 941 g_string_free(hypertas, TRUE); 942 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 943 qemu_hypertas->str, qemu_hypertas->len)); 944 g_string_free(qemu_hypertas, TRUE); 945 946 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 947 refpoints, sizeof(refpoints))); 948 949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 950 RTAS_ERROR_LOG_MAX)); 951 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 952 RTAS_EVENT_SCAN_RATE)); 953 954 g_assert(msi_nonbroken); 955 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 956 957 /* 958 * According to PAPR, rtas ibm,os-term does not guarantee a return 959 * back to the guest cpu. 960 * 961 * While an additional ibm,extended-os-term property indicates 962 * that rtas call return will always occur. Set this property. 963 */ 964 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 965 966 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 967 lrdr_capacity, sizeof(lrdr_capacity))); 968 969 spapr_dt_rtas_tokens(fdt, rtas); 970 } 971 972 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features 973 * that the guest may request and thus the valid values for bytes 24..26 of 974 * option vector 5: */ 975 static void spapr_dt_ov5_platform_support(void *fdt, int chosen) 976 { 977 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 978 979 char val[2 * 4] = { 980 23, 0x00, /* Xive mode, filled in below. */ 981 24, 0x00, /* Hash/Radix, filled in below. */ 982 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 983 26, 0x40, /* Radix options: GTSE == yes. */ 984 }; 985 986 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 987 first_ppc_cpu->compat_pvr)) { 988 /* If we're in a pre POWER9 compat mode then the guest should do hash */ 989 val[3] = 0x00; /* Hash */ 990 } else if (kvm_enabled()) { 991 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 992 val[3] = 0x80; /* OV5_MMU_BOTH */ 993 } else if (kvmppc_has_cap_mmu_radix()) { 994 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 995 } else { 996 val[3] = 0x00; /* Hash */ 997 } 998 } else { 999 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1000 val[3] = 0xC0; 1001 } 1002 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1003 val, sizeof(val))); 1004 } 1005 1006 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1007 { 1008 MachineState *machine = MACHINE(spapr); 1009 int chosen; 1010 const char *boot_device = machine->boot_order; 1011 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1012 size_t cb = 0; 1013 char *bootlist = get_boot_devices_list(&cb, true); 1014 1015 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1016 1017 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1018 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1019 spapr->initrd_base)); 1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1021 spapr->initrd_base + spapr->initrd_size)); 1022 1023 if (spapr->kernel_size) { 1024 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1025 cpu_to_be64(spapr->kernel_size) }; 1026 1027 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1028 &kprop, sizeof(kprop))); 1029 if (spapr->kernel_le) { 1030 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1031 } 1032 } 1033 if (boot_menu) { 1034 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1035 } 1036 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1039 1040 if (cb && bootlist) { 1041 int i; 1042 1043 for (i = 0; i < cb; i++) { 1044 if (bootlist[i] == '\n') { 1045 bootlist[i] = ' '; 1046 } 1047 } 1048 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1049 } 1050 1051 if (boot_device && strlen(boot_device)) { 1052 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1053 } 1054 1055 if (!spapr->has_graphics && stdout_path) { 1056 /* 1057 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1058 * kernel. New platforms should only use the "stdout-path" property. Set 1059 * the new property and continue using older property to remain 1060 * compatible with the existing firmware. 1061 */ 1062 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1063 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1064 } 1065 1066 spapr_dt_ov5_platform_support(fdt, chosen); 1067 1068 g_free(stdout_path); 1069 g_free(bootlist); 1070 } 1071 1072 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1073 { 1074 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1075 * KVM to work under pHyp with some guest co-operation */ 1076 int hypervisor; 1077 uint8_t hypercall[16]; 1078 1079 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1080 /* indicate KVM hypercall interface */ 1081 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1082 if (kvmppc_has_cap_fixup_hcalls()) { 1083 /* 1084 * Older KVM versions with older guest kernels were broken 1085 * with the magic page, don't allow the guest to map it. 1086 */ 1087 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1088 sizeof(hypercall))) { 1089 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1090 hypercall, sizeof(hypercall))); 1091 } 1092 } 1093 } 1094 1095 static void *spapr_build_fdt(sPAPRMachineState *spapr, 1096 hwaddr rtas_addr, 1097 hwaddr rtas_size) 1098 { 1099 MachineState *machine = MACHINE(spapr); 1100 MachineClass *mc = MACHINE_GET_CLASS(machine); 1101 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1102 int ret; 1103 void *fdt; 1104 sPAPRPHBState *phb; 1105 char *buf; 1106 1107 fdt = g_malloc0(FDT_MAX_SIZE); 1108 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1109 1110 /* Root node */ 1111 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1112 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1113 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1114 1115 /* 1116 * Add info to guest to indentify which host is it being run on 1117 * and what is the uuid of the guest 1118 */ 1119 if (kvmppc_get_host_model(&buf)) { 1120 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1121 g_free(buf); 1122 } 1123 if (kvmppc_get_host_serial(&buf)) { 1124 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1125 g_free(buf); 1126 } 1127 1128 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1129 1130 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1131 if (qemu_uuid_set) { 1132 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1133 } 1134 g_free(buf); 1135 1136 if (qemu_get_vm_name()) { 1137 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1138 qemu_get_vm_name())); 1139 } 1140 1141 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1142 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1143 1144 /* /interrupt controller */ 1145 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP); 1146 1147 ret = spapr_populate_memory(spapr, fdt); 1148 if (ret < 0) { 1149 error_report("couldn't setup memory nodes in fdt"); 1150 exit(1); 1151 } 1152 1153 /* /vdevice */ 1154 spapr_dt_vdevice(spapr->vio_bus, fdt); 1155 1156 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1157 ret = spapr_rng_populate_dt(fdt); 1158 if (ret < 0) { 1159 error_report("could not set up rng device in the fdt"); 1160 exit(1); 1161 } 1162 } 1163 1164 QLIST_FOREACH(phb, &spapr->phbs, list) { 1165 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); 1166 if (ret < 0) { 1167 error_report("couldn't setup PCI devices in fdt"); 1168 exit(1); 1169 } 1170 } 1171 1172 /* cpus */ 1173 spapr_populate_cpus_dt_node(fdt, spapr); 1174 1175 if (smc->dr_lmb_enabled) { 1176 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1177 } 1178 1179 if (mc->has_hotpluggable_cpus) { 1180 int offset = fdt_path_offset(fdt, "/cpus"); 1181 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1182 SPAPR_DR_CONNECTOR_TYPE_CPU); 1183 if (ret < 0) { 1184 error_report("Couldn't set up CPU DR device tree properties"); 1185 exit(1); 1186 } 1187 } 1188 1189 /* /event-sources */ 1190 spapr_dt_events(spapr, fdt); 1191 1192 /* /rtas */ 1193 spapr_dt_rtas(spapr, fdt); 1194 1195 /* /chosen */ 1196 spapr_dt_chosen(spapr, fdt); 1197 1198 /* /hypervisor */ 1199 if (kvm_enabled()) { 1200 spapr_dt_hypervisor(spapr, fdt); 1201 } 1202 1203 /* Build memory reserve map */ 1204 if (spapr->kernel_size) { 1205 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1206 } 1207 if (spapr->initrd_size) { 1208 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1209 } 1210 1211 /* ibm,client-architecture-support updates */ 1212 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1213 if (ret < 0) { 1214 error_report("couldn't setup CAS properties fdt"); 1215 exit(1); 1216 } 1217 1218 return fdt; 1219 } 1220 1221 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1222 { 1223 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1224 } 1225 1226 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1227 PowerPCCPU *cpu) 1228 { 1229 CPUPPCState *env = &cpu->env; 1230 1231 /* The TCG path should also be holding the BQL at this point */ 1232 g_assert(qemu_mutex_iothread_locked()); 1233 1234 if (msr_pr) { 1235 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1236 env->gpr[3] = H_PRIVILEGE; 1237 } else { 1238 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1239 } 1240 } 1241 1242 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1243 { 1244 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1245 1246 return spapr->patb_entry; 1247 } 1248 1249 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1250 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1251 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1252 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1253 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1254 1255 /* 1256 * Get the fd to access the kernel htab, re-opening it if necessary 1257 */ 1258 static int get_htab_fd(sPAPRMachineState *spapr) 1259 { 1260 Error *local_err = NULL; 1261 1262 if (spapr->htab_fd >= 0) { 1263 return spapr->htab_fd; 1264 } 1265 1266 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1267 if (spapr->htab_fd < 0) { 1268 error_report_err(local_err); 1269 } 1270 1271 return spapr->htab_fd; 1272 } 1273 1274 void close_htab_fd(sPAPRMachineState *spapr) 1275 { 1276 if (spapr->htab_fd >= 0) { 1277 close(spapr->htab_fd); 1278 } 1279 spapr->htab_fd = -1; 1280 } 1281 1282 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1283 { 1284 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1285 1286 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1287 } 1288 1289 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1290 { 1291 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1292 1293 assert(kvm_enabled()); 1294 1295 if (!spapr->htab) { 1296 return 0; 1297 } 1298 1299 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1300 } 1301 1302 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1303 hwaddr ptex, int n) 1304 { 1305 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1306 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1307 1308 if (!spapr->htab) { 1309 /* 1310 * HTAB is controlled by KVM. Fetch into temporary buffer 1311 */ 1312 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1313 kvmppc_read_hptes(hptes, ptex, n); 1314 return hptes; 1315 } 1316 1317 /* 1318 * HTAB is controlled by QEMU. Just point to the internally 1319 * accessible PTEG. 1320 */ 1321 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1322 } 1323 1324 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1325 const ppc_hash_pte64_t *hptes, 1326 hwaddr ptex, int n) 1327 { 1328 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1329 1330 if (!spapr->htab) { 1331 g_free((void *)hptes); 1332 } 1333 1334 /* Nothing to do for qemu managed HPT */ 1335 } 1336 1337 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1338 uint64_t pte0, uint64_t pte1) 1339 { 1340 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1341 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1342 1343 if (!spapr->htab) { 1344 kvmppc_write_hpte(ptex, pte0, pte1); 1345 } else { 1346 stq_p(spapr->htab + offset, pte0); 1347 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1348 } 1349 } 1350 1351 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1352 { 1353 int shift; 1354 1355 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1356 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1357 * that's much more than is needed for Linux guests */ 1358 shift = ctz64(pow2ceil(ramsize)) - 7; 1359 shift = MAX(shift, 18); /* Minimum architected size */ 1360 shift = MIN(shift, 46); /* Maximum architected size */ 1361 return shift; 1362 } 1363 1364 void spapr_free_hpt(sPAPRMachineState *spapr) 1365 { 1366 g_free(spapr->htab); 1367 spapr->htab = NULL; 1368 spapr->htab_shift = 0; 1369 close_htab_fd(spapr); 1370 } 1371 1372 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1373 Error **errp) 1374 { 1375 long rc; 1376 1377 /* Clean up any HPT info from a previous boot */ 1378 spapr_free_hpt(spapr); 1379 1380 rc = kvmppc_reset_htab(shift); 1381 if (rc < 0) { 1382 /* kernel-side HPT needed, but couldn't allocate one */ 1383 error_setg_errno(errp, errno, 1384 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1385 shift); 1386 /* This is almost certainly fatal, but if the caller really 1387 * wants to carry on with shift == 0, it's welcome to try */ 1388 } else if (rc > 0) { 1389 /* kernel-side HPT allocated */ 1390 if (rc != shift) { 1391 error_setg(errp, 1392 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1393 shift, rc); 1394 } 1395 1396 spapr->htab_shift = shift; 1397 spapr->htab = NULL; 1398 } else { 1399 /* kernel-side HPT not needed, allocate in userspace instead */ 1400 size_t size = 1ULL << shift; 1401 int i; 1402 1403 spapr->htab = qemu_memalign(size, size); 1404 if (!spapr->htab) { 1405 error_setg_errno(errp, errno, 1406 "Could not allocate HPT of order %d", shift); 1407 return; 1408 } 1409 1410 memset(spapr->htab, 0, size); 1411 spapr->htab_shift = shift; 1412 1413 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1414 DIRTY_HPTE(HPTE(spapr->htab, i)); 1415 } 1416 } 1417 /* We're setting up a hash table, so that means we're not radix */ 1418 spapr->patb_entry = 0; 1419 } 1420 1421 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1422 { 1423 int hpt_shift; 1424 1425 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1426 || (spapr->cas_reboot 1427 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1428 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1429 } else { 1430 uint64_t current_ram_size; 1431 1432 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1433 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1434 } 1435 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1436 1437 if (spapr->vrma_adjust) { 1438 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1439 spapr->htab_shift); 1440 } 1441 } 1442 1443 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque) 1444 { 1445 bool matched = false; 1446 1447 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 1448 matched = true; 1449 } 1450 1451 if (!matched) { 1452 error_report("Device %s is not supported by this machine yet.", 1453 qdev_fw_name(DEVICE(sbdev))); 1454 exit(1); 1455 } 1456 } 1457 1458 static int spapr_reset_drcs(Object *child, void *opaque) 1459 { 1460 sPAPRDRConnector *drc = 1461 (sPAPRDRConnector *) object_dynamic_cast(child, 1462 TYPE_SPAPR_DR_CONNECTOR); 1463 1464 if (drc) { 1465 spapr_drc_reset(drc); 1466 } 1467 1468 return 0; 1469 } 1470 1471 static void spapr_machine_reset(void) 1472 { 1473 MachineState *machine = MACHINE(qdev_get_machine()); 1474 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1475 PowerPCCPU *first_ppc_cpu; 1476 uint32_t rtas_limit; 1477 hwaddr rtas_addr, fdt_addr; 1478 void *fdt; 1479 int rc; 1480 1481 /* Check for unknown sysbus devices */ 1482 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); 1483 1484 spapr_caps_reset(spapr); 1485 1486 first_ppc_cpu = POWERPC_CPU(first_cpu); 1487 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1488 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1489 spapr->max_compat_pvr)) { 1490 /* If using KVM with radix mode available, VCPUs can be started 1491 * without a HPT because KVM will start them in radix mode. 1492 * Set the GR bit in PATB so that we know there is no HPT. */ 1493 spapr->patb_entry = PATBE1_GR; 1494 } else { 1495 spapr_setup_hpt_and_vrma(spapr); 1496 } 1497 1498 /* if this reset wasn't generated by CAS, we should reset our 1499 * negotiated options and start from scratch */ 1500 if (!spapr->cas_reboot) { 1501 spapr_ovec_cleanup(spapr->ov5_cas); 1502 spapr->ov5_cas = spapr_ovec_new(); 1503 1504 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1505 } 1506 1507 qemu_devices_reset(); 1508 1509 /* DRC reset may cause a device to be unplugged. This will cause troubles 1510 * if this device is used by another device (eg, a running vhost backend 1511 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1512 * situations, we reset DRCs after all devices have been reset. 1513 */ 1514 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1515 1516 spapr_clear_pending_events(spapr); 1517 1518 /* 1519 * We place the device tree and RTAS just below either the top of the RMA, 1520 * or just below 2GB, whichever is lowere, so that it can be 1521 * processed with 32-bit real mode code if necessary 1522 */ 1523 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1524 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1525 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1526 1527 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size); 1528 1529 spapr_load_rtas(spapr, fdt, rtas_addr); 1530 1531 rc = fdt_pack(fdt); 1532 1533 /* Should only fail if we've built a corrupted tree */ 1534 assert(rc == 0); 1535 1536 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1537 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1538 fdt_totalsize(fdt), FDT_MAX_SIZE); 1539 exit(1); 1540 } 1541 1542 /* Load the fdt */ 1543 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1544 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1545 g_free(fdt); 1546 1547 /* Set up the entry state */ 1548 first_ppc_cpu->env.gpr[3] = fdt_addr; 1549 first_ppc_cpu->env.gpr[5] = 0; 1550 first_cpu->halted = 0; 1551 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT; 1552 1553 spapr->cas_reboot = false; 1554 } 1555 1556 static void spapr_create_nvram(sPAPRMachineState *spapr) 1557 { 1558 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1559 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1560 1561 if (dinfo) { 1562 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1563 &error_fatal); 1564 } 1565 1566 qdev_init_nofail(dev); 1567 1568 spapr->nvram = (struct sPAPRNVRAM *)dev; 1569 } 1570 1571 static void spapr_rtc_create(sPAPRMachineState *spapr) 1572 { 1573 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1574 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1575 &error_fatal); 1576 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1577 &error_fatal); 1578 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1579 "date", &error_fatal); 1580 } 1581 1582 /* Returns whether we want to use VGA or not */ 1583 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1584 { 1585 switch (vga_interface_type) { 1586 case VGA_NONE: 1587 return false; 1588 case VGA_DEVICE: 1589 return true; 1590 case VGA_STD: 1591 case VGA_VIRTIO: 1592 return pci_vga_init(pci_bus) != NULL; 1593 default: 1594 error_setg(errp, 1595 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1596 return false; 1597 } 1598 } 1599 1600 static int spapr_pre_load(void *opaque) 1601 { 1602 int rc; 1603 1604 rc = spapr_caps_pre_load(opaque); 1605 if (rc) { 1606 return rc; 1607 } 1608 1609 return 0; 1610 } 1611 1612 static int spapr_post_load(void *opaque, int version_id) 1613 { 1614 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1615 int err = 0; 1616 1617 err = spapr_caps_post_migration(spapr); 1618 if (err) { 1619 return err; 1620 } 1621 1622 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { 1623 CPUState *cs; 1624 CPU_FOREACH(cs) { 1625 PowerPCCPU *cpu = POWERPC_CPU(cs); 1626 icp_resend(ICP(cpu->intc)); 1627 } 1628 } 1629 1630 /* In earlier versions, there was no separate qdev for the PAPR 1631 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1632 * So when migrating from those versions, poke the incoming offset 1633 * value into the RTC device */ 1634 if (version_id < 3) { 1635 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1636 } 1637 1638 if (kvm_enabled() && spapr->patb_entry) { 1639 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1640 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1641 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1642 1643 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1644 if (err) { 1645 error_report("Process table config unsupported by the host"); 1646 return -EINVAL; 1647 } 1648 } 1649 1650 return err; 1651 } 1652 1653 static int spapr_pre_save(void *opaque) 1654 { 1655 int rc; 1656 1657 rc = spapr_caps_pre_save(opaque); 1658 if (rc) { 1659 return rc; 1660 } 1661 1662 return 0; 1663 } 1664 1665 static bool version_before_3(void *opaque, int version_id) 1666 { 1667 return version_id < 3; 1668 } 1669 1670 static bool spapr_pending_events_needed(void *opaque) 1671 { 1672 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1673 return !QTAILQ_EMPTY(&spapr->pending_events); 1674 } 1675 1676 static const VMStateDescription vmstate_spapr_event_entry = { 1677 .name = "spapr_event_log_entry", 1678 .version_id = 1, 1679 .minimum_version_id = 1, 1680 .fields = (VMStateField[]) { 1681 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1682 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1683 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1684 NULL, extended_length), 1685 VMSTATE_END_OF_LIST() 1686 }, 1687 }; 1688 1689 static const VMStateDescription vmstate_spapr_pending_events = { 1690 .name = "spapr_pending_events", 1691 .version_id = 1, 1692 .minimum_version_id = 1, 1693 .needed = spapr_pending_events_needed, 1694 .fields = (VMStateField[]) { 1695 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1696 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1697 VMSTATE_END_OF_LIST() 1698 }, 1699 }; 1700 1701 static bool spapr_ov5_cas_needed(void *opaque) 1702 { 1703 sPAPRMachineState *spapr = opaque; 1704 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1705 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1706 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1707 bool cas_needed; 1708 1709 /* Prior to the introduction of sPAPROptionVector, we had two option 1710 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1711 * Both of these options encode machine topology into the device-tree 1712 * in such a way that the now-booted OS should still be able to interact 1713 * appropriately with QEMU regardless of what options were actually 1714 * negotiatied on the source side. 1715 * 1716 * As such, we can avoid migrating the CAS-negotiated options if these 1717 * are the only options available on the current machine/platform. 1718 * Since these are the only options available for pseries-2.7 and 1719 * earlier, this allows us to maintain old->new/new->old migration 1720 * compatibility. 1721 * 1722 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1723 * via default pseries-2.8 machines and explicit command-line parameters. 1724 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1725 * of the actual CAS-negotiated values to continue working properly. For 1726 * example, availability of memory unplug depends on knowing whether 1727 * OV5_HP_EVT was negotiated via CAS. 1728 * 1729 * Thus, for any cases where the set of available CAS-negotiatable 1730 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1731 * include the CAS-negotiated options in the migration stream. 1732 */ 1733 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1734 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1735 1736 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1737 * the mask itself since in the future it's possible "legacy" bits may be 1738 * removed via machine options, which could generate a false positive 1739 * that breaks migration. 1740 */ 1741 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1742 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1743 1744 spapr_ovec_cleanup(ov5_mask); 1745 spapr_ovec_cleanup(ov5_legacy); 1746 spapr_ovec_cleanup(ov5_removed); 1747 1748 return cas_needed; 1749 } 1750 1751 static const VMStateDescription vmstate_spapr_ov5_cas = { 1752 .name = "spapr_option_vector_ov5_cas", 1753 .version_id = 1, 1754 .minimum_version_id = 1, 1755 .needed = spapr_ov5_cas_needed, 1756 .fields = (VMStateField[]) { 1757 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1758 vmstate_spapr_ovec, sPAPROptionVector), 1759 VMSTATE_END_OF_LIST() 1760 }, 1761 }; 1762 1763 static bool spapr_patb_entry_needed(void *opaque) 1764 { 1765 sPAPRMachineState *spapr = opaque; 1766 1767 return !!spapr->patb_entry; 1768 } 1769 1770 static const VMStateDescription vmstate_spapr_patb_entry = { 1771 .name = "spapr_patb_entry", 1772 .version_id = 1, 1773 .minimum_version_id = 1, 1774 .needed = spapr_patb_entry_needed, 1775 .fields = (VMStateField[]) { 1776 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1777 VMSTATE_END_OF_LIST() 1778 }, 1779 }; 1780 1781 static const VMStateDescription vmstate_spapr = { 1782 .name = "spapr", 1783 .version_id = 3, 1784 .minimum_version_id = 1, 1785 .pre_load = spapr_pre_load, 1786 .post_load = spapr_post_load, 1787 .pre_save = spapr_pre_save, 1788 .fields = (VMStateField[]) { 1789 /* used to be @next_irq */ 1790 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1791 1792 /* RTC offset */ 1793 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1794 1795 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1796 VMSTATE_END_OF_LIST() 1797 }, 1798 .subsections = (const VMStateDescription*[]) { 1799 &vmstate_spapr_ov5_cas, 1800 &vmstate_spapr_patb_entry, 1801 &vmstate_spapr_pending_events, 1802 &vmstate_spapr_cap_htm, 1803 &vmstate_spapr_cap_vsx, 1804 &vmstate_spapr_cap_dfp, 1805 &vmstate_spapr_cap_cfpc, 1806 &vmstate_spapr_cap_sbbc, 1807 &vmstate_spapr_cap_ibs, 1808 NULL 1809 } 1810 }; 1811 1812 static int htab_save_setup(QEMUFile *f, void *opaque) 1813 { 1814 sPAPRMachineState *spapr = opaque; 1815 1816 /* "Iteration" header */ 1817 if (!spapr->htab_shift) { 1818 qemu_put_be32(f, -1); 1819 } else { 1820 qemu_put_be32(f, spapr->htab_shift); 1821 } 1822 1823 if (spapr->htab) { 1824 spapr->htab_save_index = 0; 1825 spapr->htab_first_pass = true; 1826 } else { 1827 if (spapr->htab_shift) { 1828 assert(kvm_enabled()); 1829 } 1830 } 1831 1832 1833 return 0; 1834 } 1835 1836 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 1837 int chunkstart, int n_valid, int n_invalid) 1838 { 1839 qemu_put_be32(f, chunkstart); 1840 qemu_put_be16(f, n_valid); 1841 qemu_put_be16(f, n_invalid); 1842 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 1843 HASH_PTE_SIZE_64 * n_valid); 1844 } 1845 1846 static void htab_save_end_marker(QEMUFile *f) 1847 { 1848 qemu_put_be32(f, 0); 1849 qemu_put_be16(f, 0); 1850 qemu_put_be16(f, 0); 1851 } 1852 1853 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 1854 int64_t max_ns) 1855 { 1856 bool has_timeout = max_ns != -1; 1857 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1858 int index = spapr->htab_save_index; 1859 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1860 1861 assert(spapr->htab_first_pass); 1862 1863 do { 1864 int chunkstart; 1865 1866 /* Consume invalid HPTEs */ 1867 while ((index < htabslots) 1868 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1869 CLEAN_HPTE(HPTE(spapr->htab, index)); 1870 index++; 1871 } 1872 1873 /* Consume valid HPTEs */ 1874 chunkstart = index; 1875 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1876 && HPTE_VALID(HPTE(spapr->htab, index))) { 1877 CLEAN_HPTE(HPTE(spapr->htab, index)); 1878 index++; 1879 } 1880 1881 if (index > chunkstart) { 1882 int n_valid = index - chunkstart; 1883 1884 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 1885 1886 if (has_timeout && 1887 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1888 break; 1889 } 1890 } 1891 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 1892 1893 if (index >= htabslots) { 1894 assert(index == htabslots); 1895 index = 0; 1896 spapr->htab_first_pass = false; 1897 } 1898 spapr->htab_save_index = index; 1899 } 1900 1901 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 1902 int64_t max_ns) 1903 { 1904 bool final = max_ns < 0; 1905 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 1906 int examined = 0, sent = 0; 1907 int index = spapr->htab_save_index; 1908 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1909 1910 assert(!spapr->htab_first_pass); 1911 1912 do { 1913 int chunkstart, invalidstart; 1914 1915 /* Consume non-dirty HPTEs */ 1916 while ((index < htabslots) 1917 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 1918 index++; 1919 examined++; 1920 } 1921 1922 chunkstart = index; 1923 /* Consume valid dirty HPTEs */ 1924 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 1925 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1926 && HPTE_VALID(HPTE(spapr->htab, index))) { 1927 CLEAN_HPTE(HPTE(spapr->htab, index)); 1928 index++; 1929 examined++; 1930 } 1931 1932 invalidstart = index; 1933 /* Consume invalid dirty HPTEs */ 1934 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 1935 && HPTE_DIRTY(HPTE(spapr->htab, index)) 1936 && !HPTE_VALID(HPTE(spapr->htab, index))) { 1937 CLEAN_HPTE(HPTE(spapr->htab, index)); 1938 index++; 1939 examined++; 1940 } 1941 1942 if (index > chunkstart) { 1943 int n_valid = invalidstart - chunkstart; 1944 int n_invalid = index - invalidstart; 1945 1946 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 1947 sent += index - chunkstart; 1948 1949 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 1950 break; 1951 } 1952 } 1953 1954 if (examined >= htabslots) { 1955 break; 1956 } 1957 1958 if (index >= htabslots) { 1959 assert(index == htabslots); 1960 index = 0; 1961 } 1962 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 1963 1964 if (index >= htabslots) { 1965 assert(index == htabslots); 1966 index = 0; 1967 } 1968 1969 spapr->htab_save_index = index; 1970 1971 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 1972 } 1973 1974 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 1975 #define MAX_KVM_BUF_SIZE 2048 1976 1977 static int htab_save_iterate(QEMUFile *f, void *opaque) 1978 { 1979 sPAPRMachineState *spapr = opaque; 1980 int fd; 1981 int rc = 0; 1982 1983 /* Iteration header */ 1984 if (!spapr->htab_shift) { 1985 qemu_put_be32(f, -1); 1986 return 1; 1987 } else { 1988 qemu_put_be32(f, 0); 1989 } 1990 1991 if (!spapr->htab) { 1992 assert(kvm_enabled()); 1993 1994 fd = get_htab_fd(spapr); 1995 if (fd < 0) { 1996 return fd; 1997 } 1998 1999 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2000 if (rc < 0) { 2001 return rc; 2002 } 2003 } else if (spapr->htab_first_pass) { 2004 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2005 } else { 2006 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2007 } 2008 2009 htab_save_end_marker(f); 2010 2011 return rc; 2012 } 2013 2014 static int htab_save_complete(QEMUFile *f, void *opaque) 2015 { 2016 sPAPRMachineState *spapr = opaque; 2017 int fd; 2018 2019 /* Iteration header */ 2020 if (!spapr->htab_shift) { 2021 qemu_put_be32(f, -1); 2022 return 0; 2023 } else { 2024 qemu_put_be32(f, 0); 2025 } 2026 2027 if (!spapr->htab) { 2028 int rc; 2029 2030 assert(kvm_enabled()); 2031 2032 fd = get_htab_fd(spapr); 2033 if (fd < 0) { 2034 return fd; 2035 } 2036 2037 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2038 if (rc < 0) { 2039 return rc; 2040 } 2041 } else { 2042 if (spapr->htab_first_pass) { 2043 htab_save_first_pass(f, spapr, -1); 2044 } 2045 htab_save_later_pass(f, spapr, -1); 2046 } 2047 2048 /* End marker */ 2049 htab_save_end_marker(f); 2050 2051 return 0; 2052 } 2053 2054 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2055 { 2056 sPAPRMachineState *spapr = opaque; 2057 uint32_t section_hdr; 2058 int fd = -1; 2059 Error *local_err = NULL; 2060 2061 if (version_id < 1 || version_id > 1) { 2062 error_report("htab_load() bad version"); 2063 return -EINVAL; 2064 } 2065 2066 section_hdr = qemu_get_be32(f); 2067 2068 if (section_hdr == -1) { 2069 spapr_free_hpt(spapr); 2070 return 0; 2071 } 2072 2073 if (section_hdr) { 2074 /* First section gives the htab size */ 2075 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2076 if (local_err) { 2077 error_report_err(local_err); 2078 return -EINVAL; 2079 } 2080 return 0; 2081 } 2082 2083 if (!spapr->htab) { 2084 assert(kvm_enabled()); 2085 2086 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2087 if (fd < 0) { 2088 error_report_err(local_err); 2089 return fd; 2090 } 2091 } 2092 2093 while (true) { 2094 uint32_t index; 2095 uint16_t n_valid, n_invalid; 2096 2097 index = qemu_get_be32(f); 2098 n_valid = qemu_get_be16(f); 2099 n_invalid = qemu_get_be16(f); 2100 2101 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2102 /* End of Stream */ 2103 break; 2104 } 2105 2106 if ((index + n_valid + n_invalid) > 2107 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2108 /* Bad index in stream */ 2109 error_report( 2110 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2111 index, n_valid, n_invalid, spapr->htab_shift); 2112 return -EINVAL; 2113 } 2114 2115 if (spapr->htab) { 2116 if (n_valid) { 2117 qemu_get_buffer(f, HPTE(spapr->htab, index), 2118 HASH_PTE_SIZE_64 * n_valid); 2119 } 2120 if (n_invalid) { 2121 memset(HPTE(spapr->htab, index + n_valid), 0, 2122 HASH_PTE_SIZE_64 * n_invalid); 2123 } 2124 } else { 2125 int rc; 2126 2127 assert(fd >= 0); 2128 2129 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2130 if (rc < 0) { 2131 return rc; 2132 } 2133 } 2134 } 2135 2136 if (!spapr->htab) { 2137 assert(fd >= 0); 2138 close(fd); 2139 } 2140 2141 return 0; 2142 } 2143 2144 static void htab_save_cleanup(void *opaque) 2145 { 2146 sPAPRMachineState *spapr = opaque; 2147 2148 close_htab_fd(spapr); 2149 } 2150 2151 static SaveVMHandlers savevm_htab_handlers = { 2152 .save_setup = htab_save_setup, 2153 .save_live_iterate = htab_save_iterate, 2154 .save_live_complete_precopy = htab_save_complete, 2155 .save_cleanup = htab_save_cleanup, 2156 .load_state = htab_load, 2157 }; 2158 2159 static void spapr_boot_set(void *opaque, const char *boot_device, 2160 Error **errp) 2161 { 2162 MachineState *machine = MACHINE(opaque); 2163 machine->boot_order = g_strdup(boot_device); 2164 } 2165 2166 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2167 { 2168 MachineState *machine = MACHINE(spapr); 2169 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2170 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2171 int i; 2172 2173 for (i = 0; i < nr_lmbs; i++) { 2174 uint64_t addr; 2175 2176 addr = i * lmb_size + spapr->hotplug_memory.base; 2177 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2178 addr / lmb_size); 2179 } 2180 } 2181 2182 /* 2183 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2184 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2185 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2186 */ 2187 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2188 { 2189 int i; 2190 2191 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2192 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2193 " is not aligned to %llu MiB", 2194 machine->ram_size, 2195 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2196 return; 2197 } 2198 2199 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2200 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2201 " is not aligned to %llu MiB", 2202 machine->ram_size, 2203 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2204 return; 2205 } 2206 2207 for (i = 0; i < nb_numa_nodes; i++) { 2208 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2209 error_setg(errp, 2210 "Node %d memory size 0x%" PRIx64 2211 " is not aligned to %llu MiB", 2212 i, numa_info[i].node_mem, 2213 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 2214 return; 2215 } 2216 } 2217 } 2218 2219 /* find cpu slot in machine->possible_cpus by core_id */ 2220 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2221 { 2222 int index = id / smp_threads; 2223 2224 if (index >= ms->possible_cpus->len) { 2225 return NULL; 2226 } 2227 if (idx) { 2228 *idx = index; 2229 } 2230 return &ms->possible_cpus->cpus[index]; 2231 } 2232 2233 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2234 { 2235 Error *local_err = NULL; 2236 bool vsmt_user = !!spapr->vsmt; 2237 int kvm_smt = kvmppc_smt_threads(); 2238 int ret; 2239 2240 if (!kvm_enabled() && (smp_threads > 1)) { 2241 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2242 "on a pseries machine"); 2243 goto out; 2244 } 2245 if (!is_power_of_2(smp_threads)) { 2246 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2247 "machine because it must be a power of 2", smp_threads); 2248 goto out; 2249 } 2250 2251 /* Detemine the VSMT mode to use: */ 2252 if (vsmt_user) { 2253 if (spapr->vsmt < smp_threads) { 2254 error_setg(&local_err, "Cannot support VSMT mode %d" 2255 " because it must be >= threads/core (%d)", 2256 spapr->vsmt, smp_threads); 2257 goto out; 2258 } 2259 /* In this case, spapr->vsmt has been set by the command line */ 2260 } else { 2261 /* 2262 * Default VSMT value is tricky, because we need it to be as 2263 * consistent as possible (for migration), but this requires 2264 * changing it for at least some existing cases. We pick 8 as 2265 * the value that we'd get with KVM on POWER8, the 2266 * overwhelmingly common case in production systems. 2267 */ 2268 spapr->vsmt = MAX(8, smp_threads); 2269 } 2270 2271 /* KVM: If necessary, set the SMT mode: */ 2272 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2273 ret = kvmppc_set_smt_threads(spapr->vsmt); 2274 if (ret) { 2275 /* Looks like KVM isn't able to change VSMT mode */ 2276 error_setg(&local_err, 2277 "Failed to set KVM's VSMT mode to %d (errno %d)", 2278 spapr->vsmt, ret); 2279 /* We can live with that if the default one is big enough 2280 * for the number of threads, and a submultiple of the one 2281 * we want. In this case we'll waste some vcpu ids, but 2282 * behaviour will be correct */ 2283 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2284 warn_report_err(local_err); 2285 local_err = NULL; 2286 goto out; 2287 } else { 2288 if (!vsmt_user) { 2289 error_append_hint(&local_err, 2290 "On PPC, a VM with %d threads/core" 2291 " on a host with %d threads/core" 2292 " requires the use of VSMT mode %d.\n", 2293 smp_threads, kvm_smt, spapr->vsmt); 2294 } 2295 kvmppc_hint_smt_possible(&local_err); 2296 goto out; 2297 } 2298 } 2299 } 2300 /* else TCG: nothing to do currently */ 2301 out: 2302 error_propagate(errp, local_err); 2303 } 2304 2305 static void spapr_init_cpus(sPAPRMachineState *spapr) 2306 { 2307 MachineState *machine = MACHINE(spapr); 2308 MachineClass *mc = MACHINE_GET_CLASS(machine); 2309 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2310 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2311 const CPUArchIdList *possible_cpus; 2312 int boot_cores_nr = smp_cpus / smp_threads; 2313 int i; 2314 2315 possible_cpus = mc->possible_cpu_arch_ids(machine); 2316 if (mc->has_hotpluggable_cpus) { 2317 if (smp_cpus % smp_threads) { 2318 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2319 smp_cpus, smp_threads); 2320 exit(1); 2321 } 2322 if (max_cpus % smp_threads) { 2323 error_report("max_cpus (%u) must be multiple of threads (%u)", 2324 max_cpus, smp_threads); 2325 exit(1); 2326 } 2327 } else { 2328 if (max_cpus != smp_cpus) { 2329 error_report("This machine version does not support CPU hotplug"); 2330 exit(1); 2331 } 2332 boot_cores_nr = possible_cpus->len; 2333 } 2334 2335 /* VSMT must be set in order to be able to compute VCPU ids, ie to 2336 * call xics_max_server_number() or spapr_vcpu_id(). 2337 */ 2338 spapr_set_vsmt_mode(spapr, &error_fatal); 2339 2340 if (smc->pre_2_10_has_unused_icps) { 2341 int i; 2342 2343 for (i = 0; i < xics_max_server_number(spapr); i++) { 2344 /* Dummy entries get deregistered when real ICPState objects 2345 * are registered during CPU core hotplug. 2346 */ 2347 pre_2_10_vmstate_register_dummy_icp(i); 2348 } 2349 } 2350 2351 for (i = 0; i < possible_cpus->len; i++) { 2352 int core_id = i * smp_threads; 2353 2354 if (mc->has_hotpluggable_cpus) { 2355 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2356 spapr_vcpu_id(spapr, core_id)); 2357 } 2358 2359 if (i < boot_cores_nr) { 2360 Object *core = object_new(type); 2361 int nr_threads = smp_threads; 2362 2363 /* Handle the partially filled core for older machine types */ 2364 if ((i + 1) * smp_threads >= smp_cpus) { 2365 nr_threads = smp_cpus - i * smp_threads; 2366 } 2367 2368 object_property_set_int(core, nr_threads, "nr-threads", 2369 &error_fatal); 2370 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2371 &error_fatal); 2372 object_property_set_bool(core, true, "realized", &error_fatal); 2373 } 2374 } 2375 } 2376 2377 /* pSeries LPAR / sPAPR hardware init */ 2378 static void spapr_machine_init(MachineState *machine) 2379 { 2380 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2381 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2382 const char *kernel_filename = machine->kernel_filename; 2383 const char *initrd_filename = machine->initrd_filename; 2384 PCIHostState *phb; 2385 int i; 2386 MemoryRegion *sysmem = get_system_memory(); 2387 MemoryRegion *ram = g_new(MemoryRegion, 1); 2388 MemoryRegion *rma_region; 2389 void *rma = NULL; 2390 hwaddr rma_alloc_size; 2391 hwaddr node0_size = spapr_node0_size(machine); 2392 long load_limit, fw_size; 2393 char *filename; 2394 Error *resize_hpt_err = NULL; 2395 2396 msi_nonbroken = true; 2397 2398 QLIST_INIT(&spapr->phbs); 2399 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2400 2401 /* Check HPT resizing availability */ 2402 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2403 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2404 /* 2405 * If the user explicitly requested a mode we should either 2406 * supply it, or fail completely (which we do below). But if 2407 * it's not set explicitly, we reset our mode to something 2408 * that works 2409 */ 2410 if (resize_hpt_err) { 2411 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2412 error_free(resize_hpt_err); 2413 resize_hpt_err = NULL; 2414 } else { 2415 spapr->resize_hpt = smc->resize_hpt_default; 2416 } 2417 } 2418 2419 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2420 2421 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2422 /* 2423 * User requested HPT resize, but this host can't supply it. Bail out 2424 */ 2425 error_report_err(resize_hpt_err); 2426 exit(1); 2427 } 2428 2429 /* Allocate RMA if necessary */ 2430 rma_alloc_size = kvmppc_alloc_rma(&rma); 2431 2432 if (rma_alloc_size == -1) { 2433 error_report("Unable to create RMA"); 2434 exit(1); 2435 } 2436 2437 if (rma_alloc_size && (rma_alloc_size < node0_size)) { 2438 spapr->rma_size = rma_alloc_size; 2439 } else { 2440 spapr->rma_size = node0_size; 2441 2442 /* With KVM, we don't actually know whether KVM supports an 2443 * unbounded RMA (PR KVM) or is limited by the hash table size 2444 * (HV KVM using VRMA), so we always assume the latter 2445 * 2446 * In that case, we also limit the initial allocations for RTAS 2447 * etc... to 256M since we have no way to know what the VRMA size 2448 * is going to be as it depends on the size of the hash table 2449 * isn't determined yet. 2450 */ 2451 if (kvm_enabled()) { 2452 spapr->vrma_adjust = 1; 2453 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2454 } 2455 2456 /* Actually we don't support unbounded RMA anymore since we 2457 * added proper emulation of HV mode. The max we can get is 2458 * 16G which also happens to be what we configure for PAPR 2459 * mode so make sure we don't do anything bigger than that 2460 */ 2461 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2462 } 2463 2464 if (spapr->rma_size > node0_size) { 2465 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2466 spapr->rma_size); 2467 exit(1); 2468 } 2469 2470 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2471 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2472 2473 /* Set up Interrupt Controller before we create the VCPUs */ 2474 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal); 2475 2476 /* Set up containers for ibm,client-architecture-support negotiated options 2477 */ 2478 spapr->ov5 = spapr_ovec_new(); 2479 spapr->ov5_cas = spapr_ovec_new(); 2480 2481 if (smc->dr_lmb_enabled) { 2482 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2483 spapr_validate_node_memory(machine, &error_fatal); 2484 } 2485 2486 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2487 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) { 2488 /* KVM and TCG always allow GTSE with radix... */ 2489 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2490 } 2491 /* ... but not with hash (currently). */ 2492 2493 /* advertise support for dedicated HP event source to guests */ 2494 if (spapr->use_hotplug_event_source) { 2495 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2496 } 2497 2498 /* advertise support for HPT resizing */ 2499 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2500 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2501 } 2502 2503 /* init CPUs */ 2504 spapr_init_cpus(spapr); 2505 2506 if (kvm_enabled()) { 2507 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2508 kvmppc_enable_logical_ci_hcalls(); 2509 kvmppc_enable_set_mode_hcall(); 2510 2511 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2512 kvmppc_enable_clear_ref_mod_hcalls(); 2513 } 2514 2515 /* allocate RAM */ 2516 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2517 machine->ram_size); 2518 memory_region_add_subregion(sysmem, 0, ram); 2519 2520 if (rma_alloc_size && rma) { 2521 rma_region = g_new(MemoryRegion, 1); 2522 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma", 2523 rma_alloc_size, rma); 2524 vmstate_register_ram_global(rma_region); 2525 memory_region_add_subregion(sysmem, 0, rma_region); 2526 } 2527 2528 /* initialize hotplug memory address space */ 2529 if (machine->ram_size < machine->maxram_size) { 2530 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size; 2531 /* 2532 * Limit the number of hotpluggable memory slots to half the number 2533 * slots that KVM supports, leaving the other half for PCI and other 2534 * devices. However ensure that number of slots doesn't drop below 32. 2535 */ 2536 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2537 SPAPR_MAX_RAM_SLOTS; 2538 2539 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2540 max_memslots = SPAPR_MAX_RAM_SLOTS; 2541 } 2542 if (machine->ram_slots > max_memslots) { 2543 error_report("Specified number of memory slots %" 2544 PRIu64" exceeds max supported %d", 2545 machine->ram_slots, max_memslots); 2546 exit(1); 2547 } 2548 2549 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size, 2550 SPAPR_HOTPLUG_MEM_ALIGN); 2551 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr), 2552 "hotplug-memory", hotplug_mem_size); 2553 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base, 2554 &spapr->hotplug_memory.mr); 2555 } 2556 2557 if (smc->dr_lmb_enabled) { 2558 spapr_create_lmb_dr_connectors(spapr); 2559 } 2560 2561 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2562 if (!filename) { 2563 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2564 exit(1); 2565 } 2566 spapr->rtas_size = get_image_size(filename); 2567 if (spapr->rtas_size < 0) { 2568 error_report("Could not get size of LPAR rtas '%s'", filename); 2569 exit(1); 2570 } 2571 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2572 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2573 error_report("Could not load LPAR rtas '%s'", filename); 2574 exit(1); 2575 } 2576 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2577 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2578 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2579 exit(1); 2580 } 2581 g_free(filename); 2582 2583 /* Set up RTAS event infrastructure */ 2584 spapr_events_init(spapr); 2585 2586 /* Set up the RTC RTAS interfaces */ 2587 spapr_rtc_create(spapr); 2588 2589 /* Set up VIO bus */ 2590 spapr->vio_bus = spapr_vio_bus_init(); 2591 2592 for (i = 0; i < MAX_SERIAL_PORTS; i++) { 2593 if (serial_hds[i]) { 2594 spapr_vty_create(spapr->vio_bus, serial_hds[i]); 2595 } 2596 } 2597 2598 /* We always have at least the nvram device on VIO */ 2599 spapr_create_nvram(spapr); 2600 2601 /* Set up PCI */ 2602 spapr_pci_rtas_init(); 2603 2604 phb = spapr_create_phb(spapr, 0); 2605 2606 for (i = 0; i < nb_nics; i++) { 2607 NICInfo *nd = &nd_table[i]; 2608 2609 if (!nd->model) { 2610 nd->model = g_strdup("ibmveth"); 2611 } 2612 2613 if (strcmp(nd->model, "ibmveth") == 0) { 2614 spapr_vlan_create(spapr->vio_bus, nd); 2615 } else { 2616 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2617 } 2618 } 2619 2620 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2621 spapr_vscsi_create(spapr->vio_bus); 2622 } 2623 2624 /* Graphics */ 2625 if (spapr_vga_init(phb->bus, &error_fatal)) { 2626 spapr->has_graphics = true; 2627 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2628 } 2629 2630 if (machine->usb) { 2631 if (smc->use_ohci_by_default) { 2632 pci_create_simple(phb->bus, -1, "pci-ohci"); 2633 } else { 2634 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2635 } 2636 2637 if (spapr->has_graphics) { 2638 USBBus *usb_bus = usb_bus_find(-1); 2639 2640 usb_create_simple(usb_bus, "usb-kbd"); 2641 usb_create_simple(usb_bus, "usb-mouse"); 2642 } 2643 } 2644 2645 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { 2646 error_report( 2647 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2648 MIN_RMA_SLOF); 2649 exit(1); 2650 } 2651 2652 if (kernel_filename) { 2653 uint64_t lowaddr = 0; 2654 2655 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address, 2656 NULL, NULL, &lowaddr, NULL, 1, 2657 PPC_ELF_MACHINE, 0, 0); 2658 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2659 spapr->kernel_size = load_elf(kernel_filename, 2660 translate_kernel_address, NULL, NULL, 2661 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2662 0, 0); 2663 spapr->kernel_le = spapr->kernel_size > 0; 2664 } 2665 if (spapr->kernel_size < 0) { 2666 error_report("error loading %s: %s", kernel_filename, 2667 load_elf_strerror(spapr->kernel_size)); 2668 exit(1); 2669 } 2670 2671 /* load initrd */ 2672 if (initrd_filename) { 2673 /* Try to locate the initrd in the gap between the kernel 2674 * and the firmware. Add a bit of space just in case 2675 */ 2676 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2677 + 0x1ffff) & ~0xffff; 2678 spapr->initrd_size = load_image_targphys(initrd_filename, 2679 spapr->initrd_base, 2680 load_limit 2681 - spapr->initrd_base); 2682 if (spapr->initrd_size < 0) { 2683 error_report("could not load initial ram disk '%s'", 2684 initrd_filename); 2685 exit(1); 2686 } 2687 } 2688 } 2689 2690 if (bios_name == NULL) { 2691 bios_name = FW_FILE_NAME; 2692 } 2693 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2694 if (!filename) { 2695 error_report("Could not find LPAR firmware '%s'", bios_name); 2696 exit(1); 2697 } 2698 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2699 if (fw_size <= 0) { 2700 error_report("Could not load LPAR firmware '%s'", filename); 2701 exit(1); 2702 } 2703 g_free(filename); 2704 2705 /* FIXME: Should register things through the MachineState's qdev 2706 * interface, this is a legacy from the sPAPREnvironment structure 2707 * which predated MachineState but had a similar function */ 2708 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2709 register_savevm_live(NULL, "spapr/htab", -1, 1, 2710 &savevm_htab_handlers, spapr); 2711 2712 qemu_register_boot_set(spapr_boot_set, spapr); 2713 2714 if (kvm_enabled()) { 2715 /* to stop and start vmclock */ 2716 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2717 &spapr->tb); 2718 2719 kvmppc_spapr_enable_inkernel_multitce(); 2720 } 2721 } 2722 2723 static int spapr_kvm_type(const char *vm_type) 2724 { 2725 if (!vm_type) { 2726 return 0; 2727 } 2728 2729 if (!strcmp(vm_type, "HV")) { 2730 return 1; 2731 } 2732 2733 if (!strcmp(vm_type, "PR")) { 2734 return 2; 2735 } 2736 2737 error_report("Unknown kvm-type specified '%s'", vm_type); 2738 exit(1); 2739 } 2740 2741 /* 2742 * Implementation of an interface to adjust firmware path 2743 * for the bootindex property handling. 2744 */ 2745 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2746 DeviceState *dev) 2747 { 2748 #define CAST(type, obj, name) \ 2749 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2750 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2751 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2752 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2753 2754 if (d) { 2755 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2756 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2757 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2758 2759 if (spapr) { 2760 /* 2761 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2762 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun 2763 * in the top 16 bits of the 64-bit LUN 2764 */ 2765 unsigned id = 0x8000 | (d->id << 8) | d->lun; 2766 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2767 (uint64_t)id << 48); 2768 } else if (virtio) { 2769 /* 2770 * We use SRP luns of the form 01000000 | (target << 8) | lun 2771 * in the top 32 bits of the 64-bit LUN 2772 * Note: the quote above is from SLOF and it is wrong, 2773 * the actual binding is: 2774 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2775 */ 2776 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2777 if (d->lun >= 256) { 2778 /* Use the LUN "flat space addressing method" */ 2779 id |= 0x4000; 2780 } 2781 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2782 (uint64_t)id << 32); 2783 } else if (usb) { 2784 /* 2785 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 2786 * in the top 32 bits of the 64-bit LUN 2787 */ 2788 unsigned usb_port = atoi(usb->port->path); 2789 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 2790 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2791 (uint64_t)id << 32); 2792 } 2793 } 2794 2795 /* 2796 * SLOF probes the USB devices, and if it recognizes that the device is a 2797 * storage device, it changes its name to "storage" instead of "usb-host", 2798 * and additionally adds a child node for the SCSI LUN, so the correct 2799 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 2800 */ 2801 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 2802 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 2803 if (usb_host_dev_is_scsi_storage(usbdev)) { 2804 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 2805 } 2806 } 2807 2808 if (phb) { 2809 /* Replace "pci" with "pci@800000020000000" */ 2810 return g_strdup_printf("pci@%"PRIX64, phb->buid); 2811 } 2812 2813 if (vsc) { 2814 /* Same logic as virtio above */ 2815 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 2816 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 2817 } 2818 2819 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 2820 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 2821 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 2822 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 2823 } 2824 2825 return NULL; 2826 } 2827 2828 static char *spapr_get_kvm_type(Object *obj, Error **errp) 2829 { 2830 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2831 2832 return g_strdup(spapr->kvm_type); 2833 } 2834 2835 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 2836 { 2837 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2838 2839 g_free(spapr->kvm_type); 2840 spapr->kvm_type = g_strdup(value); 2841 } 2842 2843 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 2844 { 2845 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2846 2847 return spapr->use_hotplug_event_source; 2848 } 2849 2850 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 2851 Error **errp) 2852 { 2853 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2854 2855 spapr->use_hotplug_event_source = value; 2856 } 2857 2858 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 2859 { 2860 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2861 2862 switch (spapr->resize_hpt) { 2863 case SPAPR_RESIZE_HPT_DEFAULT: 2864 return g_strdup("default"); 2865 case SPAPR_RESIZE_HPT_DISABLED: 2866 return g_strdup("disabled"); 2867 case SPAPR_RESIZE_HPT_ENABLED: 2868 return g_strdup("enabled"); 2869 case SPAPR_RESIZE_HPT_REQUIRED: 2870 return g_strdup("required"); 2871 } 2872 g_assert_not_reached(); 2873 } 2874 2875 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 2876 { 2877 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2878 2879 if (strcmp(value, "default") == 0) { 2880 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 2881 } else if (strcmp(value, "disabled") == 0) { 2882 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2883 } else if (strcmp(value, "enabled") == 0) { 2884 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 2885 } else if (strcmp(value, "required") == 0) { 2886 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 2887 } else { 2888 error_setg(errp, "Bad value for \"resize-hpt\" property"); 2889 } 2890 } 2891 2892 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 2893 void *opaque, Error **errp) 2894 { 2895 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 2896 } 2897 2898 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 2899 void *opaque, Error **errp) 2900 { 2901 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 2902 } 2903 2904 static void spapr_instance_init(Object *obj) 2905 { 2906 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2907 2908 spapr->htab_fd = -1; 2909 spapr->use_hotplug_event_source = true; 2910 object_property_add_str(obj, "kvm-type", 2911 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 2912 object_property_set_description(obj, "kvm-type", 2913 "Specifies the KVM virtualization mode (HV, PR)", 2914 NULL); 2915 object_property_add_bool(obj, "modern-hotplug-events", 2916 spapr_get_modern_hotplug_events, 2917 spapr_set_modern_hotplug_events, 2918 NULL); 2919 object_property_set_description(obj, "modern-hotplug-events", 2920 "Use dedicated hotplug event mechanism in" 2921 " place of standard EPOW events when possible" 2922 " (required for memory hot-unplug support)", 2923 NULL); 2924 2925 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 2926 "Maximum permitted CPU compatibility mode", 2927 &error_fatal); 2928 2929 object_property_add_str(obj, "resize-hpt", 2930 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 2931 object_property_set_description(obj, "resize-hpt", 2932 "Resizing of the Hash Page Table (enabled, disabled, required)", 2933 NULL); 2934 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 2935 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 2936 object_property_set_description(obj, "vsmt", 2937 "Virtual SMT: KVM behaves as if this were" 2938 " the host's SMT mode", &error_abort); 2939 } 2940 2941 static void spapr_machine_finalizefn(Object *obj) 2942 { 2943 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 2944 2945 g_free(spapr->kvm_type); 2946 } 2947 2948 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 2949 { 2950 cpu_synchronize_state(cs); 2951 ppc_cpu_do_system_reset(cs); 2952 } 2953 2954 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 2955 { 2956 CPUState *cs; 2957 2958 CPU_FOREACH(cs) { 2959 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 2960 } 2961 } 2962 2963 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 2964 uint32_t node, bool dedicated_hp_event_source, 2965 Error **errp) 2966 { 2967 sPAPRDRConnector *drc; 2968 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 2969 int i, fdt_offset, fdt_size; 2970 void *fdt; 2971 uint64_t addr = addr_start; 2972 bool hotplugged = spapr_drc_hotplugged(dev); 2973 Error *local_err = NULL; 2974 2975 for (i = 0; i < nr_lmbs; i++) { 2976 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2977 addr / SPAPR_MEMORY_BLOCK_SIZE); 2978 g_assert(drc); 2979 2980 fdt = create_device_tree(&fdt_size); 2981 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 2982 SPAPR_MEMORY_BLOCK_SIZE); 2983 2984 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 2985 if (local_err) { 2986 while (addr > addr_start) { 2987 addr -= SPAPR_MEMORY_BLOCK_SIZE; 2988 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 2989 addr / SPAPR_MEMORY_BLOCK_SIZE); 2990 spapr_drc_detach(drc); 2991 } 2992 g_free(fdt); 2993 error_propagate(errp, local_err); 2994 return; 2995 } 2996 if (!hotplugged) { 2997 spapr_drc_reset(drc); 2998 } 2999 addr += SPAPR_MEMORY_BLOCK_SIZE; 3000 } 3001 /* send hotplug notification to the 3002 * guest only in case of hotplugged memory 3003 */ 3004 if (hotplugged) { 3005 if (dedicated_hp_event_source) { 3006 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3007 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3008 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3009 nr_lmbs, 3010 spapr_drc_index(drc)); 3011 } else { 3012 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3013 nr_lmbs); 3014 } 3015 } 3016 } 3017 3018 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3019 uint32_t node, Error **errp) 3020 { 3021 Error *local_err = NULL; 3022 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3023 PCDIMMDevice *dimm = PC_DIMM(dev); 3024 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3025 MemoryRegion *mr; 3026 uint64_t align, size, addr; 3027 3028 mr = ddc->get_memory_region(dimm, &local_err); 3029 if (local_err) { 3030 goto out; 3031 } 3032 align = memory_region_get_alignment(mr); 3033 size = memory_region_size(mr); 3034 3035 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err); 3036 if (local_err) { 3037 goto out; 3038 } 3039 3040 addr = object_property_get_uint(OBJECT(dimm), 3041 PC_DIMM_ADDR_PROP, &local_err); 3042 if (local_err) { 3043 goto out_unplug; 3044 } 3045 3046 spapr_add_lmbs(dev, addr, size, node, 3047 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3048 &local_err); 3049 if (local_err) { 3050 goto out_unplug; 3051 } 3052 3053 return; 3054 3055 out_unplug: 3056 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr); 3057 out: 3058 error_propagate(errp, local_err); 3059 } 3060 3061 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3062 Error **errp) 3063 { 3064 PCDIMMDevice *dimm = PC_DIMM(dev); 3065 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3066 MemoryRegion *mr; 3067 uint64_t size; 3068 char *mem_dev; 3069 3070 mr = ddc->get_memory_region(dimm, errp); 3071 if (!mr) { 3072 return; 3073 } 3074 size = memory_region_size(mr); 3075 3076 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3077 error_setg(errp, "Hotplugged memory size must be a multiple of " 3078 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE); 3079 return; 3080 } 3081 3082 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL); 3083 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) { 3084 error_setg(errp, "Memory backend has bad page size. " 3085 "Use 'memory-backend-file' with correct mem-path."); 3086 goto out; 3087 } 3088 3089 out: 3090 g_free(mem_dev); 3091 } 3092 3093 struct sPAPRDIMMState { 3094 PCDIMMDevice *dimm; 3095 uint32_t nr_lmbs; 3096 QTAILQ_ENTRY(sPAPRDIMMState) next; 3097 }; 3098 3099 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3100 PCDIMMDevice *dimm) 3101 { 3102 sPAPRDIMMState *dimm_state = NULL; 3103 3104 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3105 if (dimm_state->dimm == dimm) { 3106 break; 3107 } 3108 } 3109 return dimm_state; 3110 } 3111 3112 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3113 uint32_t nr_lmbs, 3114 PCDIMMDevice *dimm) 3115 { 3116 sPAPRDIMMState *ds = NULL; 3117 3118 /* 3119 * If this request is for a DIMM whose removal had failed earlier 3120 * (due to guest's refusal to remove the LMBs), we would have this 3121 * dimm already in the pending_dimm_unplugs list. In that 3122 * case don't add again. 3123 */ 3124 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3125 if (!ds) { 3126 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3127 ds->nr_lmbs = nr_lmbs; 3128 ds->dimm = dimm; 3129 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3130 } 3131 return ds; 3132 } 3133 3134 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3135 sPAPRDIMMState *dimm_state) 3136 { 3137 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3138 g_free(dimm_state); 3139 } 3140 3141 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3142 PCDIMMDevice *dimm) 3143 { 3144 sPAPRDRConnector *drc; 3145 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3146 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3147 uint64_t size = memory_region_size(mr); 3148 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3149 uint32_t avail_lmbs = 0; 3150 uint64_t addr_start, addr; 3151 int i; 3152 3153 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3154 &error_abort); 3155 3156 addr = addr_start; 3157 for (i = 0; i < nr_lmbs; i++) { 3158 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3159 addr / SPAPR_MEMORY_BLOCK_SIZE); 3160 g_assert(drc); 3161 if (drc->dev) { 3162 avail_lmbs++; 3163 } 3164 addr += SPAPR_MEMORY_BLOCK_SIZE; 3165 } 3166 3167 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3168 } 3169 3170 /* Callback to be called during DRC release. */ 3171 void spapr_lmb_release(DeviceState *dev) 3172 { 3173 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev)); 3174 PCDIMMDevice *dimm = PC_DIMM(dev); 3175 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3176 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort); 3177 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3178 3179 /* This information will get lost if a migration occurs 3180 * during the unplug process. In this case recover it. */ 3181 if (ds == NULL) { 3182 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3183 g_assert(ds); 3184 /* The DRC being examined by the caller at least must be counted */ 3185 g_assert(ds->nr_lmbs); 3186 } 3187 3188 if (--ds->nr_lmbs) { 3189 return; 3190 } 3191 3192 /* 3193 * Now that all the LMBs have been removed by the guest, call the 3194 * pc-dimm unplug handler to cleanup up the pc-dimm device. 3195 */ 3196 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr); 3197 object_unparent(OBJECT(dev)); 3198 spapr_pending_dimm_unplugs_remove(spapr, ds); 3199 } 3200 3201 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3202 DeviceState *dev, Error **errp) 3203 { 3204 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3205 Error *local_err = NULL; 3206 PCDIMMDevice *dimm = PC_DIMM(dev); 3207 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 3208 MemoryRegion *mr; 3209 uint32_t nr_lmbs; 3210 uint64_t size, addr_start, addr; 3211 int i; 3212 sPAPRDRConnector *drc; 3213 3214 mr = ddc->get_memory_region(dimm, &local_err); 3215 if (local_err) { 3216 goto out; 3217 } 3218 size = memory_region_size(mr); 3219 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3220 3221 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3222 &local_err); 3223 if (local_err) { 3224 goto out; 3225 } 3226 3227 /* 3228 * An existing pending dimm state for this DIMM means that there is an 3229 * unplug operation in progress, waiting for the spapr_lmb_release 3230 * callback to complete the job (BQL can't cover that far). In this case, 3231 * bail out to avoid detaching DRCs that were already released. 3232 */ 3233 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3234 error_setg(&local_err, 3235 "Memory unplug already in progress for device %s", 3236 dev->id); 3237 goto out; 3238 } 3239 3240 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3241 3242 addr = addr_start; 3243 for (i = 0; i < nr_lmbs; i++) { 3244 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3245 addr / SPAPR_MEMORY_BLOCK_SIZE); 3246 g_assert(drc); 3247 3248 spapr_drc_detach(drc); 3249 addr += SPAPR_MEMORY_BLOCK_SIZE; 3250 } 3251 3252 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3253 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3254 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3255 nr_lmbs, spapr_drc_index(drc)); 3256 out: 3257 error_propagate(errp, local_err); 3258 } 3259 3260 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3261 sPAPRMachineState *spapr) 3262 { 3263 PowerPCCPU *cpu = POWERPC_CPU(cs); 3264 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3265 int id = spapr_get_vcpu_id(cpu); 3266 void *fdt; 3267 int offset, fdt_size; 3268 char *nodename; 3269 3270 fdt = create_device_tree(&fdt_size); 3271 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3272 offset = fdt_add_subnode(fdt, 0, nodename); 3273 3274 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3275 g_free(nodename); 3276 3277 *fdt_offset = offset; 3278 return fdt; 3279 } 3280 3281 /* Callback to be called during DRC release. */ 3282 void spapr_core_release(DeviceState *dev) 3283 { 3284 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev)); 3285 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3286 CPUCore *cc = CPU_CORE(dev); 3287 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3288 3289 if (smc->pre_2_10_has_unused_icps) { 3290 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3291 int i; 3292 3293 for (i = 0; i < cc->nr_threads; i++) { 3294 CPUState *cs = CPU(sc->threads[i]); 3295 3296 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3297 } 3298 } 3299 3300 assert(core_slot); 3301 core_slot->cpu = NULL; 3302 object_unparent(OBJECT(dev)); 3303 } 3304 3305 static 3306 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3307 Error **errp) 3308 { 3309 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3310 int index; 3311 sPAPRDRConnector *drc; 3312 CPUCore *cc = CPU_CORE(dev); 3313 3314 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3315 error_setg(errp, "Unable to find CPU core with core-id: %d", 3316 cc->core_id); 3317 return; 3318 } 3319 if (index == 0) { 3320 error_setg(errp, "Boot CPU core may not be unplugged"); 3321 return; 3322 } 3323 3324 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3325 spapr_vcpu_id(spapr, cc->core_id)); 3326 g_assert(drc); 3327 3328 spapr_drc_detach(drc); 3329 3330 spapr_hotplug_req_remove_by_index(drc); 3331 } 3332 3333 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3334 Error **errp) 3335 { 3336 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3337 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3338 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3339 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3340 CPUCore *cc = CPU_CORE(dev); 3341 CPUState *cs = CPU(core->threads[0]); 3342 sPAPRDRConnector *drc; 3343 Error *local_err = NULL; 3344 CPUArchId *core_slot; 3345 int index; 3346 bool hotplugged = spapr_drc_hotplugged(dev); 3347 3348 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3349 if (!core_slot) { 3350 error_setg(errp, "Unable to find CPU core with core-id: %d", 3351 cc->core_id); 3352 return; 3353 } 3354 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3355 spapr_vcpu_id(spapr, cc->core_id)); 3356 3357 g_assert(drc || !mc->has_hotpluggable_cpus); 3358 3359 if (drc) { 3360 void *fdt; 3361 int fdt_offset; 3362 3363 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3364 3365 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3366 if (local_err) { 3367 g_free(fdt); 3368 error_propagate(errp, local_err); 3369 return; 3370 } 3371 3372 if (hotplugged) { 3373 /* 3374 * Send hotplug notification interrupt to the guest only 3375 * in case of hotplugged CPUs. 3376 */ 3377 spapr_hotplug_req_add_by_index(drc); 3378 } else { 3379 spapr_drc_reset(drc); 3380 } 3381 } 3382 3383 core_slot->cpu = OBJECT(dev); 3384 3385 if (smc->pre_2_10_has_unused_icps) { 3386 int i; 3387 3388 for (i = 0; i < cc->nr_threads; i++) { 3389 cs = CPU(core->threads[i]); 3390 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3391 } 3392 } 3393 } 3394 3395 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3396 Error **errp) 3397 { 3398 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3399 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3400 Error *local_err = NULL; 3401 CPUCore *cc = CPU_CORE(dev); 3402 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3403 const char *type = object_get_typename(OBJECT(dev)); 3404 CPUArchId *core_slot; 3405 int index; 3406 3407 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3408 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3409 goto out; 3410 } 3411 3412 if (strcmp(base_core_type, type)) { 3413 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3414 goto out; 3415 } 3416 3417 if (cc->core_id % smp_threads) { 3418 error_setg(&local_err, "invalid core id %d", cc->core_id); 3419 goto out; 3420 } 3421 3422 /* 3423 * In general we should have homogeneous threads-per-core, but old 3424 * (pre hotplug support) machine types allow the last core to have 3425 * reduced threads as a compatibility hack for when we allowed 3426 * total vcpus not a multiple of threads-per-core. 3427 */ 3428 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3429 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3430 cc->nr_threads, smp_threads); 3431 goto out; 3432 } 3433 3434 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3435 if (!core_slot) { 3436 error_setg(&local_err, "core id %d out of range", cc->core_id); 3437 goto out; 3438 } 3439 3440 if (core_slot->cpu) { 3441 error_setg(&local_err, "core %d already populated", cc->core_id); 3442 goto out; 3443 } 3444 3445 numa_cpu_pre_plug(core_slot, dev, &local_err); 3446 3447 out: 3448 error_propagate(errp, local_err); 3449 } 3450 3451 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3452 DeviceState *dev, Error **errp) 3453 { 3454 MachineState *ms = MACHINE(hotplug_dev); 3455 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3456 3457 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3458 int node; 3459 3460 if (!smc->dr_lmb_enabled) { 3461 error_setg(errp, "Memory hotplug not supported for this machine"); 3462 return; 3463 } 3464 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp); 3465 if (*errp) { 3466 return; 3467 } 3468 if (node < 0 || node >= MAX_NODES) { 3469 error_setg(errp, "Invaild node %d", node); 3470 return; 3471 } 3472 3473 /* 3474 * Currently PowerPC kernel doesn't allow hot-adding memory to 3475 * memory-less node, but instead will silently add the memory 3476 * to the first node that has some memory. This causes two 3477 * unexpected behaviours for the user. 3478 * 3479 * - Memory gets hotplugged to a different node than what the user 3480 * specified. 3481 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs 3482 * to memory-less node, a reboot will set things accordingly 3483 * and the previously hotplugged memory now ends in the right node. 3484 * This appears as if some memory moved from one node to another. 3485 * 3486 * So until kernel starts supporting memory hotplug to memory-less 3487 * nodes, just prevent such attempts upfront in QEMU. 3488 */ 3489 if (nb_numa_nodes && !numa_info[node].node_mem) { 3490 error_setg(errp, "Can't hotplug memory to memory-less node %d", 3491 node); 3492 return; 3493 } 3494 3495 spapr_memory_plug(hotplug_dev, dev, node, errp); 3496 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3497 spapr_core_plug(hotplug_dev, dev, errp); 3498 } 3499 } 3500 3501 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3502 DeviceState *dev, Error **errp) 3503 { 3504 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3505 MachineClass *mc = MACHINE_GET_CLASS(sms); 3506 3507 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3508 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3509 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3510 } else { 3511 /* NOTE: this means there is a window after guest reset, prior to 3512 * CAS negotiation, where unplug requests will fail due to the 3513 * capability not being detected yet. This is a bit different than 3514 * the case with PCI unplug, where the events will be queued and 3515 * eventually handled by the guest after boot 3516 */ 3517 error_setg(errp, "Memory hot unplug not supported for this guest"); 3518 } 3519 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3520 if (!mc->has_hotpluggable_cpus) { 3521 error_setg(errp, "CPU hot unplug not supported on this machine"); 3522 return; 3523 } 3524 spapr_core_unplug_request(hotplug_dev, dev, errp); 3525 } 3526 } 3527 3528 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3529 DeviceState *dev, Error **errp) 3530 { 3531 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3532 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3533 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3534 spapr_core_pre_plug(hotplug_dev, dev, errp); 3535 } 3536 } 3537 3538 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3539 DeviceState *dev) 3540 { 3541 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3542 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3543 return HOTPLUG_HANDLER(machine); 3544 } 3545 return NULL; 3546 } 3547 3548 static CpuInstanceProperties 3549 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3550 { 3551 CPUArchId *core_slot; 3552 MachineClass *mc = MACHINE_GET_CLASS(machine); 3553 3554 /* make sure possible_cpu are intialized */ 3555 mc->possible_cpu_arch_ids(machine); 3556 /* get CPU core slot containing thread that matches cpu_index */ 3557 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3558 assert(core_slot); 3559 return core_slot->props; 3560 } 3561 3562 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3563 { 3564 return idx / smp_cores % nb_numa_nodes; 3565 } 3566 3567 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3568 { 3569 int i; 3570 const char *core_type; 3571 int spapr_max_cores = max_cpus / smp_threads; 3572 MachineClass *mc = MACHINE_GET_CLASS(machine); 3573 3574 if (!mc->has_hotpluggable_cpus) { 3575 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3576 } 3577 if (machine->possible_cpus) { 3578 assert(machine->possible_cpus->len == spapr_max_cores); 3579 return machine->possible_cpus; 3580 } 3581 3582 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3583 if (!core_type) { 3584 error_report("Unable to find sPAPR CPU Core definition"); 3585 exit(1); 3586 } 3587 3588 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3589 sizeof(CPUArchId) * spapr_max_cores); 3590 machine->possible_cpus->len = spapr_max_cores; 3591 for (i = 0; i < machine->possible_cpus->len; i++) { 3592 int core_id = i * smp_threads; 3593 3594 machine->possible_cpus->cpus[i].type = core_type; 3595 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3596 machine->possible_cpus->cpus[i].arch_id = core_id; 3597 machine->possible_cpus->cpus[i].props.has_core_id = true; 3598 machine->possible_cpus->cpus[i].props.core_id = core_id; 3599 } 3600 return machine->possible_cpus; 3601 } 3602 3603 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3604 uint64_t *buid, hwaddr *pio, 3605 hwaddr *mmio32, hwaddr *mmio64, 3606 unsigned n_dma, uint32_t *liobns, Error **errp) 3607 { 3608 /* 3609 * New-style PHB window placement. 3610 * 3611 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3612 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3613 * windows. 3614 * 3615 * Some guest kernels can't work with MMIO windows above 1<<46 3616 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3617 * 3618 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3619 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3620 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3621 * 1TiB 64-bit MMIO windows for each PHB. 3622 */ 3623 const uint64_t base_buid = 0x800000020000000ULL; 3624 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \ 3625 SPAPR_PCI_MEM64_WIN_SIZE - 1) 3626 int i; 3627 3628 /* Sanity check natural alignments */ 3629 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3630 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3631 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3632 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3633 /* Sanity check bounds */ 3634 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3635 SPAPR_PCI_MEM32_WIN_SIZE); 3636 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3637 SPAPR_PCI_MEM64_WIN_SIZE); 3638 3639 if (index >= SPAPR_MAX_PHBS) { 3640 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3641 SPAPR_MAX_PHBS - 1); 3642 return; 3643 } 3644 3645 *buid = base_buid + index; 3646 for (i = 0; i < n_dma; ++i) { 3647 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3648 } 3649 3650 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3651 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3652 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3653 } 3654 3655 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3656 { 3657 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3658 3659 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3660 } 3661 3662 static void spapr_ics_resend(XICSFabric *dev) 3663 { 3664 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3665 3666 ics_resend(spapr->ics); 3667 } 3668 3669 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3670 { 3671 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3672 3673 return cpu ? ICP(cpu->intc) : NULL; 3674 } 3675 3676 #define ICS_IRQ_FREE(ics, srcno) \ 3677 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK))) 3678 3679 static int ics_find_free_block(ICSState *ics, int num, int alignnum) 3680 { 3681 int first, i; 3682 3683 for (first = 0; first < ics->nr_irqs; first += alignnum) { 3684 if (num > (ics->nr_irqs - first)) { 3685 return -1; 3686 } 3687 for (i = first; i < first + num; ++i) { 3688 if (!ICS_IRQ_FREE(ics, i)) { 3689 break; 3690 } 3691 } 3692 if (i == (first + num)) { 3693 return first; 3694 } 3695 } 3696 3697 return -1; 3698 } 3699 3700 /* 3701 * Allocate the IRQ number and set the IRQ type, LSI or MSI 3702 */ 3703 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi) 3704 { 3705 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi); 3706 } 3707 3708 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi, 3709 Error **errp) 3710 { 3711 ICSState *ics = spapr->ics; 3712 int irq; 3713 3714 if (!ics) { 3715 return -1; 3716 } 3717 if (irq_hint) { 3718 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) { 3719 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint); 3720 return -1; 3721 } 3722 irq = irq_hint; 3723 } else { 3724 irq = ics_find_free_block(ics, 1, 1); 3725 if (irq < 0) { 3726 error_setg(errp, "can't allocate IRQ: no IRQ left"); 3727 return -1; 3728 } 3729 irq += ics->offset; 3730 } 3731 3732 spapr_irq_set_lsi(spapr, irq, lsi); 3733 trace_spapr_irq_alloc(irq); 3734 3735 return irq; 3736 } 3737 3738 /* 3739 * Allocate block of consecutive IRQs, and return the number of the first IRQ in 3740 * the block. If align==true, aligns the first IRQ number to num. 3741 */ 3742 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi, 3743 bool align, Error **errp) 3744 { 3745 ICSState *ics = spapr->ics; 3746 int i, first = -1; 3747 3748 if (!ics) { 3749 return -1; 3750 } 3751 3752 /* 3753 * MSIMesage::data is used for storing VIRQ so 3754 * it has to be aligned to num to support multiple 3755 * MSI vectors. MSI-X is not affected by this. 3756 * The hint is used for the first IRQ, the rest should 3757 * be allocated continuously. 3758 */ 3759 if (align) { 3760 assert((num == 1) || (num == 2) || (num == 4) || 3761 (num == 8) || (num == 16) || (num == 32)); 3762 first = ics_find_free_block(ics, num, num); 3763 } else { 3764 first = ics_find_free_block(ics, num, 1); 3765 } 3766 if (first < 0) { 3767 error_setg(errp, "can't find a free %d-IRQ block", num); 3768 return -1; 3769 } 3770 3771 first += ics->offset; 3772 for (i = first; i < first + num; ++i) { 3773 spapr_irq_set_lsi(spapr, i, lsi); 3774 } 3775 3776 trace_spapr_irq_alloc_block(first, num, lsi, align); 3777 3778 return first; 3779 } 3780 3781 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num) 3782 { 3783 ICSState *ics = spapr->ics; 3784 int srcno = irq - ics->offset; 3785 int i; 3786 3787 if (ics_valid_irq(ics, irq)) { 3788 trace_spapr_irq_free(0, irq, num); 3789 for (i = srcno; i < srcno + num; ++i) { 3790 if (ICS_IRQ_FREE(ics, i)) { 3791 trace_spapr_irq_free_warn(0, i + ics->offset); 3792 } 3793 memset(&ics->irqs[i], 0, sizeof(ICSIRQState)); 3794 } 3795 } 3796 } 3797 3798 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq) 3799 { 3800 ICSState *ics = spapr->ics; 3801 3802 if (ics_valid_irq(ics, irq)) { 3803 return ics->qirqs[irq - ics->offset]; 3804 } 3805 3806 return NULL; 3807 } 3808 3809 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3810 Monitor *mon) 3811 { 3812 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3813 CPUState *cs; 3814 3815 CPU_FOREACH(cs) { 3816 PowerPCCPU *cpu = POWERPC_CPU(cs); 3817 3818 icp_pic_print_info(ICP(cpu->intc), mon); 3819 } 3820 3821 ics_pic_print_info(spapr->ics, mon); 3822 } 3823 3824 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3825 { 3826 return cpu->vcpu_id; 3827 } 3828 3829 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3830 { 3831 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3832 int vcpu_id; 3833 3834 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3835 3836 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3837 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3838 error_append_hint(errp, "Adjust the number of cpus to %d " 3839 "or try to raise the number of threads per core\n", 3840 vcpu_id * smp_threads / spapr->vsmt); 3841 return; 3842 } 3843 3844 cpu->vcpu_id = vcpu_id; 3845 } 3846 3847 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3848 { 3849 CPUState *cs; 3850 3851 CPU_FOREACH(cs) { 3852 PowerPCCPU *cpu = POWERPC_CPU(cs); 3853 3854 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 3855 return cpu; 3856 } 3857 } 3858 3859 return NULL; 3860 } 3861 3862 static void spapr_machine_class_init(ObjectClass *oc, void *data) 3863 { 3864 MachineClass *mc = MACHINE_CLASS(oc); 3865 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 3866 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 3867 NMIClass *nc = NMI_CLASS(oc); 3868 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 3869 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 3870 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 3871 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 3872 3873 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 3874 3875 /* 3876 * We set up the default / latest behaviour here. The class_init 3877 * functions for the specific versioned machine types can override 3878 * these details for backwards compatibility 3879 */ 3880 mc->init = spapr_machine_init; 3881 mc->reset = spapr_machine_reset; 3882 mc->block_default_type = IF_SCSI; 3883 mc->max_cpus = 1024; 3884 mc->no_parallel = 1; 3885 mc->default_boot_order = ""; 3886 mc->default_ram_size = 512 * M_BYTE; 3887 mc->kvm_type = spapr_kvm_type; 3888 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 3889 mc->pci_allow_0_address = true; 3890 mc->get_hotplug_handler = spapr_get_hotplug_handler; 3891 hc->pre_plug = spapr_machine_device_pre_plug; 3892 hc->plug = spapr_machine_device_plug; 3893 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 3894 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 3895 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 3896 hc->unplug_request = spapr_machine_device_unplug_request; 3897 3898 smc->dr_lmb_enabled = true; 3899 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 3900 mc->has_hotpluggable_cpus = true; 3901 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 3902 fwc->get_dev_path = spapr_get_fw_dev_path; 3903 nc->nmi_monitor_handler = spapr_nmi; 3904 smc->phb_placement = spapr_phb_placement; 3905 vhc->hypercall = emulate_spapr_hypercall; 3906 vhc->hpt_mask = spapr_hpt_mask; 3907 vhc->map_hptes = spapr_map_hptes; 3908 vhc->unmap_hptes = spapr_unmap_hptes; 3909 vhc->store_hpte = spapr_store_hpte; 3910 vhc->get_patbe = spapr_get_patbe; 3911 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 3912 xic->ics_get = spapr_ics_get; 3913 xic->ics_resend = spapr_ics_resend; 3914 xic->icp_get = spapr_icp_get; 3915 ispc->print_info = spapr_pic_print_info; 3916 /* Force NUMA node memory size to be a multiple of 3917 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 3918 * in which LMBs are represented and hot-added 3919 */ 3920 mc->numa_mem_align_shift = 28; 3921 3922 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 3923 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 3924 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 3925 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 3926 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 3927 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 3928 spapr_caps_add_properties(smc, &error_abort); 3929 } 3930 3931 static const TypeInfo spapr_machine_info = { 3932 .name = TYPE_SPAPR_MACHINE, 3933 .parent = TYPE_MACHINE, 3934 .abstract = true, 3935 .instance_size = sizeof(sPAPRMachineState), 3936 .instance_init = spapr_instance_init, 3937 .instance_finalize = spapr_machine_finalizefn, 3938 .class_size = sizeof(sPAPRMachineClass), 3939 .class_init = spapr_machine_class_init, 3940 .interfaces = (InterfaceInfo[]) { 3941 { TYPE_FW_PATH_PROVIDER }, 3942 { TYPE_NMI }, 3943 { TYPE_HOTPLUG_HANDLER }, 3944 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 3945 { TYPE_XICS_FABRIC }, 3946 { TYPE_INTERRUPT_STATS_PROVIDER }, 3947 { } 3948 }, 3949 }; 3950 3951 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 3952 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 3953 void *data) \ 3954 { \ 3955 MachineClass *mc = MACHINE_CLASS(oc); \ 3956 spapr_machine_##suffix##_class_options(mc); \ 3957 if (latest) { \ 3958 mc->alias = "pseries"; \ 3959 mc->is_default = 1; \ 3960 } \ 3961 } \ 3962 static void spapr_machine_##suffix##_instance_init(Object *obj) \ 3963 { \ 3964 MachineState *machine = MACHINE(obj); \ 3965 spapr_machine_##suffix##_instance_options(machine); \ 3966 } \ 3967 static const TypeInfo spapr_machine_##suffix##_info = { \ 3968 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 3969 .parent = TYPE_SPAPR_MACHINE, \ 3970 .class_init = spapr_machine_##suffix##_class_init, \ 3971 .instance_init = spapr_machine_##suffix##_instance_init, \ 3972 }; \ 3973 static void spapr_machine_register_##suffix(void) \ 3974 { \ 3975 type_register(&spapr_machine_##suffix##_info); \ 3976 } \ 3977 type_init(spapr_machine_register_##suffix) 3978 3979 /* 3980 * pseries-2.12 3981 */ 3982 static void spapr_machine_2_12_instance_options(MachineState *machine) 3983 { 3984 } 3985 3986 static void spapr_machine_2_12_class_options(MachineClass *mc) 3987 { 3988 /* Defaults for the latest behaviour inherited from the base class */ 3989 } 3990 3991 DEFINE_SPAPR_MACHINE(2_12, "2.12", true); 3992 3993 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine) 3994 { 3995 spapr_machine_2_12_instance_options(machine); 3996 } 3997 3998 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 3999 { 4000 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4001 4002 spapr_machine_2_12_class_options(mc); 4003 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4004 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4005 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4006 } 4007 4008 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4009 4010 /* 4011 * pseries-2.11 4012 */ 4013 #define SPAPR_COMPAT_2_11 \ 4014 HW_COMPAT_2_11 4015 4016 static void spapr_machine_2_11_instance_options(MachineState *machine) 4017 { 4018 spapr_machine_2_12_instance_options(machine); 4019 } 4020 4021 static void spapr_machine_2_11_class_options(MachineClass *mc) 4022 { 4023 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4024 4025 spapr_machine_2_12_class_options(mc); 4026 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4027 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11); 4028 } 4029 4030 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4031 4032 /* 4033 * pseries-2.10 4034 */ 4035 #define SPAPR_COMPAT_2_10 \ 4036 HW_COMPAT_2_10 4037 4038 static void spapr_machine_2_10_instance_options(MachineState *machine) 4039 { 4040 spapr_machine_2_11_instance_options(machine); 4041 } 4042 4043 static void spapr_machine_2_10_class_options(MachineClass *mc) 4044 { 4045 spapr_machine_2_11_class_options(mc); 4046 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10); 4047 } 4048 4049 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4050 4051 /* 4052 * pseries-2.9 4053 */ 4054 #define SPAPR_COMPAT_2_9 \ 4055 HW_COMPAT_2_9 \ 4056 { \ 4057 .driver = TYPE_POWERPC_CPU, \ 4058 .property = "pre-2.10-migration", \ 4059 .value = "on", \ 4060 }, \ 4061 4062 static void spapr_machine_2_9_instance_options(MachineState *machine) 4063 { 4064 spapr_machine_2_10_instance_options(machine); 4065 } 4066 4067 static void spapr_machine_2_9_class_options(MachineClass *mc) 4068 { 4069 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4070 4071 spapr_machine_2_10_class_options(mc); 4072 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9); 4073 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4074 smc->pre_2_10_has_unused_icps = true; 4075 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4076 } 4077 4078 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4079 4080 /* 4081 * pseries-2.8 4082 */ 4083 #define SPAPR_COMPAT_2_8 \ 4084 HW_COMPAT_2_8 \ 4085 { \ 4086 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4087 .property = "pcie-extended-configuration-space", \ 4088 .value = "off", \ 4089 }, 4090 4091 static void spapr_machine_2_8_instance_options(MachineState *machine) 4092 { 4093 spapr_machine_2_9_instance_options(machine); 4094 } 4095 4096 static void spapr_machine_2_8_class_options(MachineClass *mc) 4097 { 4098 spapr_machine_2_9_class_options(mc); 4099 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8); 4100 mc->numa_mem_align_shift = 23; 4101 } 4102 4103 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4104 4105 /* 4106 * pseries-2.7 4107 */ 4108 #define SPAPR_COMPAT_2_7 \ 4109 HW_COMPAT_2_7 \ 4110 { \ 4111 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4112 .property = "mem_win_size", \ 4113 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\ 4114 }, \ 4115 { \ 4116 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4117 .property = "mem64_win_size", \ 4118 .value = "0", \ 4119 }, \ 4120 { \ 4121 .driver = TYPE_POWERPC_CPU, \ 4122 .property = "pre-2.8-migration", \ 4123 .value = "on", \ 4124 }, \ 4125 { \ 4126 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \ 4127 .property = "pre-2.8-migration", \ 4128 .value = "on", \ 4129 }, 4130 4131 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4132 uint64_t *buid, hwaddr *pio, 4133 hwaddr *mmio32, hwaddr *mmio64, 4134 unsigned n_dma, uint32_t *liobns, Error **errp) 4135 { 4136 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4137 const uint64_t base_buid = 0x800000020000000ULL; 4138 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4139 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4140 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4141 const uint32_t max_index = 255; 4142 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4143 4144 uint64_t ram_top = MACHINE(spapr)->ram_size; 4145 hwaddr phb0_base, phb_base; 4146 int i; 4147 4148 /* Do we have hotpluggable memory? */ 4149 if (MACHINE(spapr)->maxram_size > ram_top) { 4150 /* Can't just use maxram_size, because there may be an 4151 * alignment gap between normal and hotpluggable memory 4152 * regions */ 4153 ram_top = spapr->hotplug_memory.base + 4154 memory_region_size(&spapr->hotplug_memory.mr); 4155 } 4156 4157 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4158 4159 if (index > max_index) { 4160 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4161 max_index); 4162 return; 4163 } 4164 4165 *buid = base_buid + index; 4166 for (i = 0; i < n_dma; ++i) { 4167 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4168 } 4169 4170 phb_base = phb0_base + index * phb_spacing; 4171 *pio = phb_base + pio_offset; 4172 *mmio32 = phb_base + mmio_offset; 4173 /* 4174 * We don't set the 64-bit MMIO window, relying on the PHB's 4175 * fallback behaviour of automatically splitting a large "32-bit" 4176 * window into contiguous 32-bit and 64-bit windows 4177 */ 4178 } 4179 4180 static void spapr_machine_2_7_instance_options(MachineState *machine) 4181 { 4182 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 4183 4184 spapr_machine_2_8_instance_options(machine); 4185 spapr->use_hotplug_event_source = false; 4186 } 4187 4188 static void spapr_machine_2_7_class_options(MachineClass *mc) 4189 { 4190 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4191 4192 spapr_machine_2_8_class_options(mc); 4193 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4194 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7); 4195 smc->phb_placement = phb_placement_2_7; 4196 } 4197 4198 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4199 4200 /* 4201 * pseries-2.6 4202 */ 4203 #define SPAPR_COMPAT_2_6 \ 4204 HW_COMPAT_2_6 \ 4205 { \ 4206 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4207 .property = "ddw",\ 4208 .value = stringify(off),\ 4209 }, 4210 4211 static void spapr_machine_2_6_instance_options(MachineState *machine) 4212 { 4213 spapr_machine_2_7_instance_options(machine); 4214 } 4215 4216 static void spapr_machine_2_6_class_options(MachineClass *mc) 4217 { 4218 spapr_machine_2_7_class_options(mc); 4219 mc->has_hotpluggable_cpus = false; 4220 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6); 4221 } 4222 4223 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4224 4225 /* 4226 * pseries-2.5 4227 */ 4228 #define SPAPR_COMPAT_2_5 \ 4229 HW_COMPAT_2_5 \ 4230 { \ 4231 .driver = "spapr-vlan", \ 4232 .property = "use-rx-buffer-pools", \ 4233 .value = "off", \ 4234 }, 4235 4236 static void spapr_machine_2_5_instance_options(MachineState *machine) 4237 { 4238 spapr_machine_2_6_instance_options(machine); 4239 } 4240 4241 static void spapr_machine_2_5_class_options(MachineClass *mc) 4242 { 4243 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4244 4245 spapr_machine_2_6_class_options(mc); 4246 smc->use_ohci_by_default = true; 4247 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5); 4248 } 4249 4250 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4251 4252 /* 4253 * pseries-2.4 4254 */ 4255 #define SPAPR_COMPAT_2_4 \ 4256 HW_COMPAT_2_4 4257 4258 static void spapr_machine_2_4_instance_options(MachineState *machine) 4259 { 4260 spapr_machine_2_5_instance_options(machine); 4261 } 4262 4263 static void spapr_machine_2_4_class_options(MachineClass *mc) 4264 { 4265 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4266 4267 spapr_machine_2_5_class_options(mc); 4268 smc->dr_lmb_enabled = false; 4269 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4); 4270 } 4271 4272 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4273 4274 /* 4275 * pseries-2.3 4276 */ 4277 #define SPAPR_COMPAT_2_3 \ 4278 HW_COMPAT_2_3 \ 4279 {\ 4280 .driver = "spapr-pci-host-bridge",\ 4281 .property = "dynamic-reconfiguration",\ 4282 .value = "off",\ 4283 }, 4284 4285 static void spapr_machine_2_3_instance_options(MachineState *machine) 4286 { 4287 spapr_machine_2_4_instance_options(machine); 4288 } 4289 4290 static void spapr_machine_2_3_class_options(MachineClass *mc) 4291 { 4292 spapr_machine_2_4_class_options(mc); 4293 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3); 4294 } 4295 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4296 4297 /* 4298 * pseries-2.2 4299 */ 4300 4301 #define SPAPR_COMPAT_2_2 \ 4302 HW_COMPAT_2_2 \ 4303 {\ 4304 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\ 4305 .property = "mem_win_size",\ 4306 .value = "0x20000000",\ 4307 }, 4308 4309 static void spapr_machine_2_2_instance_options(MachineState *machine) 4310 { 4311 spapr_machine_2_3_instance_options(machine); 4312 machine->suppress_vmdesc = true; 4313 } 4314 4315 static void spapr_machine_2_2_class_options(MachineClass *mc) 4316 { 4317 spapr_machine_2_3_class_options(mc); 4318 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2); 4319 } 4320 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4321 4322 /* 4323 * pseries-2.1 4324 */ 4325 #define SPAPR_COMPAT_2_1 \ 4326 HW_COMPAT_2_1 4327 4328 static void spapr_machine_2_1_instance_options(MachineState *machine) 4329 { 4330 spapr_machine_2_2_instance_options(machine); 4331 } 4332 4333 static void spapr_machine_2_1_class_options(MachineClass *mc) 4334 { 4335 spapr_machine_2_2_class_options(mc); 4336 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1); 4337 } 4338 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4339 4340 static void spapr_machine_register_types(void) 4341 { 4342 type_register_static(&spapr_machine_info); 4343 } 4344 4345 type_init(spapr_machine_register_types) 4346