xref: /openbmc/qemu/hw/ppc/spapr.c (revision 9f2d175d)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
49 
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
53 
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
60 
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65 
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
73 
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 
78 #include <libfdt.h>
79 
80 /* SLOF memory layout:
81  *
82  * SLOF raw image loaded at 0, copies its romfs right below the flat
83  * device-tree, then position SLOF itself 31M below that
84  *
85  * So we set FW_OVERHEAD to 40MB which should account for all of that
86  * and more
87  *
88  * We load our kernel at 4M, leaving space for SLOF initial image
89  */
90 #define FDT_MAX_SIZE            0x100000
91 #define RTAS_MAX_SIZE           0x10000
92 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE             0x400000
94 #define FW_FILE_NAME            "slof.bin"
95 #define FW_OVERHEAD             0x2800000
96 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
97 
98 #define MIN_RMA_SLOF            128UL
99 
100 #define PHANDLE_XICP            0x00001111
101 
102 /* These two functions implement the VCPU id numbering: one to compute them
103  * all and one to identify thread 0 of a VCORE. Any change to the first one
104  * is likely to have an impact on the second one, so let's keep them close.
105  */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108     assert(spapr->vsmt);
109     return
110         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113                                       PowerPCCPU *cpu)
114 {
115     assert(spapr->vsmt);
116     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118 
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120                                   const char *type_ics,
121                                   int nr_irqs, Error **errp)
122 {
123     Error *local_err = NULL;
124     Object *obj;
125 
126     obj = object_new(type_ics);
127     object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128     object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
129                                    &error_abort);
130     object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
131     if (local_err) {
132         goto error;
133     }
134     object_property_set_bool(obj, true, "realized", &local_err);
135     if (local_err) {
136         goto error;
137     }
138 
139     return ICS_SIMPLE(obj);
140 
141 error:
142     error_propagate(errp, local_err);
143     return NULL;
144 }
145 
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
147 {
148     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149      * and newer QEMUs don't even have them. In both cases, we don't want
150      * to send anything on the wire.
151      */
152     return false;
153 }
154 
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156     .name = "icp/server",
157     .version_id = 1,
158     .minimum_version_id = 1,
159     .needed = pre_2_10_vmstate_dummy_icp_needed,
160     .fields = (VMStateField[]) {
161         VMSTATE_UNUSED(4), /* uint32_t xirr */
162         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163         VMSTATE_UNUSED(1), /* uint8_t mfrr */
164         VMSTATE_END_OF_LIST()
165     },
166 };
167 
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
169 {
170     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171                      (void *)(uintptr_t) i);
172 }
173 
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
175 {
176     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177                        (void *)(uintptr_t) i);
178 }
179 
180 static int xics_max_server_number(sPAPRMachineState *spapr)
181 {
182     assert(spapr->vsmt);
183     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
184 }
185 
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
187 {
188     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
189 
190     if (kvm_enabled()) {
191         if (machine_kernel_irqchip_allowed(machine) &&
192             !xics_kvm_init(spapr, errp)) {
193             spapr->icp_type = TYPE_KVM_ICP;
194             spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
195         }
196         if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
197             error_prepend(errp, "kernel_irqchip requested but unavailable: ");
198             return;
199         }
200     }
201 
202     if (!spapr->ics) {
203         xics_spapr_init(spapr);
204         spapr->icp_type = TYPE_ICP;
205         spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
206         if (!spapr->ics) {
207             return;
208         }
209     }
210 }
211 
212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
213                                   int smt_threads)
214 {
215     int i, ret = 0;
216     uint32_t servers_prop[smt_threads];
217     uint32_t gservers_prop[smt_threads * 2];
218     int index = spapr_get_vcpu_id(cpu);
219 
220     if (cpu->compat_pvr) {
221         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
222         if (ret < 0) {
223             return ret;
224         }
225     }
226 
227     /* Build interrupt servers and gservers properties */
228     for (i = 0; i < smt_threads; i++) {
229         servers_prop[i] = cpu_to_be32(index + i);
230         /* Hack, direct the group queues back to cpu 0 */
231         gservers_prop[i*2] = cpu_to_be32(index + i);
232         gservers_prop[i*2 + 1] = 0;
233     }
234     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235                       servers_prop, sizeof(servers_prop));
236     if (ret < 0) {
237         return ret;
238     }
239     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
240                       gservers_prop, sizeof(gservers_prop));
241 
242     return ret;
243 }
244 
245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
246 {
247     int index = spapr_get_vcpu_id(cpu);
248     uint32_t associativity[] = {cpu_to_be32(0x5),
249                                 cpu_to_be32(0x0),
250                                 cpu_to_be32(0x0),
251                                 cpu_to_be32(0x0),
252                                 cpu_to_be32(cpu->node_id),
253                                 cpu_to_be32(index)};
254 
255     /* Advertise NUMA via ibm,associativity */
256     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
257                           sizeof(associativity));
258 }
259 
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
262                                        PowerPCCPU *cpu,
263                                        void *fdt, int offset,
264                                        bool legacy_guest)
265 {
266     CPUPPCState *env = &cpu->env;
267     uint8_t pa_features_206[] = { 6, 0,
268         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
269     uint8_t pa_features_207[] = { 24, 0,
270         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
271         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
272         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
273         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
274     uint8_t pa_features_300[] = { 66, 0,
275         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
276         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
277         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
278         /* 6: DS207 */
279         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
280         /* 16: Vector */
281         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
282         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
283         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
284         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
285         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
286         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
287         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
288         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
289         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
290         /* 42: PM, 44: PC RA, 46: SC vec'd */
291         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
292         /* 48: SIMD, 50: QP BFP, 52: String */
293         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
294         /* 54: DecFP, 56: DecI, 58: SHA */
295         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
296         /* 60: NM atomic, 62: RNG */
297         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
298     };
299     uint8_t *pa_features = NULL;
300     size_t pa_size;
301 
302     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
303         pa_features = pa_features_206;
304         pa_size = sizeof(pa_features_206);
305     }
306     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
307         pa_features = pa_features_207;
308         pa_size = sizeof(pa_features_207);
309     }
310     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
311         pa_features = pa_features_300;
312         pa_size = sizeof(pa_features_300);
313     }
314     if (!pa_features) {
315         return;
316     }
317 
318     if (env->ci_large_pages) {
319         /*
320          * Note: we keep CI large pages off by default because a 64K capable
321          * guest provisioned with large pages might otherwise try to map a qemu
322          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
323          * even if that qemu runs on a 4k host.
324          * We dd this bit back here if we are confident this is not an issue
325          */
326         pa_features[3] |= 0x20;
327     }
328     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
329         pa_features[24] |= 0x80;    /* Transactional memory support */
330     }
331     if (legacy_guest && pa_size > 40) {
332         /* Workaround for broken kernels that attempt (guest) radix
333          * mode when they can't handle it, if they see the radix bit set
334          * in pa-features. So hide it from them. */
335         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
336     }
337 
338     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
339 }
340 
341 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
342 {
343     int ret = 0, offset, cpus_offset;
344     CPUState *cs;
345     char cpu_model[32];
346     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
347 
348     CPU_FOREACH(cs) {
349         PowerPCCPU *cpu = POWERPC_CPU(cs);
350         DeviceClass *dc = DEVICE_GET_CLASS(cs);
351         int index = spapr_get_vcpu_id(cpu);
352         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
353 
354         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
355             continue;
356         }
357 
358         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
359 
360         cpus_offset = fdt_path_offset(fdt, "/cpus");
361         if (cpus_offset < 0) {
362             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
363             if (cpus_offset < 0) {
364                 return cpus_offset;
365             }
366         }
367         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
368         if (offset < 0) {
369             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
370             if (offset < 0) {
371                 return offset;
372             }
373         }
374 
375         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
376                           pft_size_prop, sizeof(pft_size_prop));
377         if (ret < 0) {
378             return ret;
379         }
380 
381         if (nb_numa_nodes > 1) {
382             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
383             if (ret < 0) {
384                 return ret;
385             }
386         }
387 
388         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
389         if (ret < 0) {
390             return ret;
391         }
392 
393         spapr_populate_pa_features(spapr, cpu, fdt, offset,
394                                    spapr->cas_legacy_guest_workaround);
395     }
396     return ret;
397 }
398 
399 static hwaddr spapr_node0_size(MachineState *machine)
400 {
401     if (nb_numa_nodes) {
402         int i;
403         for (i = 0; i < nb_numa_nodes; ++i) {
404             if (numa_info[i].node_mem) {
405                 return MIN(pow2floor(numa_info[i].node_mem),
406                            machine->ram_size);
407             }
408         }
409     }
410     return machine->ram_size;
411 }
412 
413 static void add_str(GString *s, const gchar *s1)
414 {
415     g_string_append_len(s, s1, strlen(s1) + 1);
416 }
417 
418 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
419                                        hwaddr size)
420 {
421     uint32_t associativity[] = {
422         cpu_to_be32(0x4), /* length */
423         cpu_to_be32(0x0), cpu_to_be32(0x0),
424         cpu_to_be32(0x0), cpu_to_be32(nodeid)
425     };
426     char mem_name[32];
427     uint64_t mem_reg_property[2];
428     int off;
429 
430     mem_reg_property[0] = cpu_to_be64(start);
431     mem_reg_property[1] = cpu_to_be64(size);
432 
433     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
434     off = fdt_add_subnode(fdt, 0, mem_name);
435     _FDT(off);
436     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
437     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
438                       sizeof(mem_reg_property))));
439     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
440                       sizeof(associativity))));
441     return off;
442 }
443 
444 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
445 {
446     MachineState *machine = MACHINE(spapr);
447     hwaddr mem_start, node_size;
448     int i, nb_nodes = nb_numa_nodes;
449     NodeInfo *nodes = numa_info;
450     NodeInfo ramnode;
451 
452     /* No NUMA nodes, assume there is just one node with whole RAM */
453     if (!nb_numa_nodes) {
454         nb_nodes = 1;
455         ramnode.node_mem = machine->ram_size;
456         nodes = &ramnode;
457     }
458 
459     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
460         if (!nodes[i].node_mem) {
461             continue;
462         }
463         if (mem_start >= machine->ram_size) {
464             node_size = 0;
465         } else {
466             node_size = nodes[i].node_mem;
467             if (node_size > machine->ram_size - mem_start) {
468                 node_size = machine->ram_size - mem_start;
469             }
470         }
471         if (!mem_start) {
472             /* spapr_machine_init() checks for rma_size <= node0_size
473              * already */
474             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
475             mem_start += spapr->rma_size;
476             node_size -= spapr->rma_size;
477         }
478         for ( ; node_size; ) {
479             hwaddr sizetmp = pow2floor(node_size);
480 
481             /* mem_start != 0 here */
482             if (ctzl(mem_start) < ctzl(sizetmp)) {
483                 sizetmp = 1ULL << ctzl(mem_start);
484             }
485 
486             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
487             node_size -= sizetmp;
488             mem_start += sizetmp;
489         }
490     }
491 
492     return 0;
493 }
494 
495 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
496                                   sPAPRMachineState *spapr)
497 {
498     PowerPCCPU *cpu = POWERPC_CPU(cs);
499     CPUPPCState *env = &cpu->env;
500     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
501     int index = spapr_get_vcpu_id(cpu);
502     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
503                        0xffffffff, 0xffffffff};
504     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
505         : SPAPR_TIMEBASE_FREQ;
506     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
507     uint32_t page_sizes_prop[64];
508     size_t page_sizes_prop_size;
509     uint32_t vcpus_per_socket = smp_threads * smp_cores;
510     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
511     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
512     sPAPRDRConnector *drc;
513     int drc_index;
514     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
515     int i;
516 
517     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
518     if (drc) {
519         drc_index = spapr_drc_index(drc);
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
521     }
522 
523     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
524     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
525 
526     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
527     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
528                            env->dcache_line_size)));
529     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
530                            env->dcache_line_size)));
531     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
532                            env->icache_line_size)));
533     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
534                            env->icache_line_size)));
535 
536     if (pcc->l1_dcache_size) {
537         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
538                                pcc->l1_dcache_size)));
539     } else {
540         warn_report("Unknown L1 dcache size for cpu");
541     }
542     if (pcc->l1_icache_size) {
543         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
544                                pcc->l1_icache_size)));
545     } else {
546         warn_report("Unknown L1 icache size for cpu");
547     }
548 
549     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
550     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
551     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
552     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
553     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
554     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
555 
556     if (env->spr_cb[SPR_PURR].oea_read) {
557         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
558     }
559 
560     if (env->mmu_model & POWERPC_MMU_1TSEG) {
561         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
562                           segs, sizeof(segs))));
563     }
564 
565     /* Advertise VSX (vector extensions) if available
566      *   1               == VMX / Altivec available
567      *   2               == VSX available
568      *
569      * Only CPUs for which we create core types in spapr_cpu_core.c
570      * are possible, and all of those have VMX */
571     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
572         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
573     } else {
574         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
575     }
576 
577     /* Advertise DFP (Decimal Floating Point) if available
578      *   0 / no property == no DFP
579      *   1               == DFP available */
580     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
581         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
582     }
583 
584     page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
585                                                   sizeof(page_sizes_prop));
586     if (page_sizes_prop_size) {
587         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
588                           page_sizes_prop, page_sizes_prop_size)));
589     }
590 
591     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
592 
593     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
594                            cs->cpu_index / vcpus_per_socket)));
595 
596     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
597                       pft_size_prop, sizeof(pft_size_prop))));
598 
599     if (nb_numa_nodes > 1) {
600         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
601     }
602 
603     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
604 
605     if (pcc->radix_page_info) {
606         for (i = 0; i < pcc->radix_page_info->count; i++) {
607             radix_AP_encodings[i] =
608                 cpu_to_be32(pcc->radix_page_info->entries[i]);
609         }
610         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
611                           radix_AP_encodings,
612                           pcc->radix_page_info->count *
613                           sizeof(radix_AP_encodings[0]))));
614     }
615 }
616 
617 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
618 {
619     CPUState *cs;
620     int cpus_offset;
621     char *nodename;
622 
623     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
624     _FDT(cpus_offset);
625     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
626     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
627 
628     /*
629      * We walk the CPUs in reverse order to ensure that CPU DT nodes
630      * created by fdt_add_subnode() end up in the right order in FDT
631      * for the guest kernel the enumerate the CPUs correctly.
632      */
633     CPU_FOREACH_REVERSE(cs) {
634         PowerPCCPU *cpu = POWERPC_CPU(cs);
635         int index = spapr_get_vcpu_id(cpu);
636         DeviceClass *dc = DEVICE_GET_CLASS(cs);
637         int offset;
638 
639         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
640             continue;
641         }
642 
643         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
644         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
645         g_free(nodename);
646         _FDT(offset);
647         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
648     }
649 
650 }
651 
652 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
653 {
654     MemoryDeviceInfoList *info;
655 
656     for (info = list; info; info = info->next) {
657         MemoryDeviceInfo *value = info->value;
658 
659         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
660             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
661 
662             if (pcdimm_info->addr >= addr &&
663                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
664                 return pcdimm_info->node;
665             }
666         }
667     }
668 
669     return -1;
670 }
671 
672 /*
673  * Adds ibm,dynamic-reconfiguration-memory node.
674  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
675  * of this device tree node.
676  */
677 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
678 {
679     MachineState *machine = MACHINE(spapr);
680     int ret, i, offset;
681     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
682     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
683     uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
684     uint32_t nr_lmbs = (spapr->hotplug_memory.base +
685                        memory_region_size(&spapr->hotplug_memory.mr)) /
686                        lmb_size;
687     uint32_t *int_buf, *cur_index, buf_len;
688     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
689     MemoryDeviceInfoList *dimms = NULL;
690 
691     /*
692      * Don't create the node if there is no hotpluggable memory
693      */
694     if (machine->ram_size == machine->maxram_size) {
695         return 0;
696     }
697 
698     /*
699      * Allocate enough buffer size to fit in ibm,dynamic-memory
700      * or ibm,associativity-lookup-arrays
701      */
702     buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
703               * sizeof(uint32_t);
704     cur_index = int_buf = g_malloc0(buf_len);
705 
706     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
707 
708     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
709                     sizeof(prop_lmb_size));
710     if (ret < 0) {
711         goto out;
712     }
713 
714     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
715     if (ret < 0) {
716         goto out;
717     }
718 
719     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
720     if (ret < 0) {
721         goto out;
722     }
723 
724     if (hotplug_lmb_start) {
725         MemoryDeviceInfoList **prev = &dimms;
726         qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
727     }
728 
729     /* ibm,dynamic-memory */
730     int_buf[0] = cpu_to_be32(nr_lmbs);
731     cur_index++;
732     for (i = 0; i < nr_lmbs; i++) {
733         uint64_t addr = i * lmb_size;
734         uint32_t *dynamic_memory = cur_index;
735 
736         if (i >= hotplug_lmb_start) {
737             sPAPRDRConnector *drc;
738 
739             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
740             g_assert(drc);
741 
742             dynamic_memory[0] = cpu_to_be32(addr >> 32);
743             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
744             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
745             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
746             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
747             if (memory_region_present(get_system_memory(), addr)) {
748                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
749             } else {
750                 dynamic_memory[5] = cpu_to_be32(0);
751             }
752         } else {
753             /*
754              * LMB information for RMA, boot time RAM and gap b/n RAM and
755              * hotplug memory region -- all these are marked as reserved
756              * and as having no valid DRC.
757              */
758             dynamic_memory[0] = cpu_to_be32(addr >> 32);
759             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
760             dynamic_memory[2] = cpu_to_be32(0);
761             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
762             dynamic_memory[4] = cpu_to_be32(-1);
763             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
764                                             SPAPR_LMB_FLAGS_DRC_INVALID);
765         }
766 
767         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
768     }
769     qapi_free_MemoryDeviceInfoList(dimms);
770     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
771     if (ret < 0) {
772         goto out;
773     }
774 
775     /* ibm,associativity-lookup-arrays */
776     cur_index = int_buf;
777     int_buf[0] = cpu_to_be32(nr_nodes);
778     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
779     cur_index += 2;
780     for (i = 0; i < nr_nodes; i++) {
781         uint32_t associativity[] = {
782             cpu_to_be32(0x0),
783             cpu_to_be32(0x0),
784             cpu_to_be32(0x0),
785             cpu_to_be32(i)
786         };
787         memcpy(cur_index, associativity, sizeof(associativity));
788         cur_index += 4;
789     }
790     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
791             (cur_index - int_buf) * sizeof(uint32_t));
792 out:
793     g_free(int_buf);
794     return ret;
795 }
796 
797 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
798                                 sPAPROptionVector *ov5_updates)
799 {
800     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
801     int ret = 0, offset;
802 
803     /* Generate ibm,dynamic-reconfiguration-memory node if required */
804     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
805         g_assert(smc->dr_lmb_enabled);
806         ret = spapr_populate_drconf_memory(spapr, fdt);
807         if (ret) {
808             goto out;
809         }
810     }
811 
812     offset = fdt_path_offset(fdt, "/chosen");
813     if (offset < 0) {
814         offset = fdt_add_subnode(fdt, 0, "chosen");
815         if (offset < 0) {
816             return offset;
817         }
818     }
819     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
820                                  "ibm,architecture-vec-5");
821 
822 out:
823     return ret;
824 }
825 
826 static bool spapr_hotplugged_dev_before_cas(void)
827 {
828     Object *drc_container, *obj;
829     ObjectProperty *prop;
830     ObjectPropertyIterator iter;
831 
832     drc_container = container_get(object_get_root(), "/dr-connector");
833     object_property_iter_init(&iter, drc_container);
834     while ((prop = object_property_iter_next(&iter))) {
835         if (!strstart(prop->type, "link<", NULL)) {
836             continue;
837         }
838         obj = object_property_get_link(drc_container, prop->name, NULL);
839         if (spapr_drc_needed(obj)) {
840             return true;
841         }
842     }
843     return false;
844 }
845 
846 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
847                                  target_ulong addr, target_ulong size,
848                                  sPAPROptionVector *ov5_updates)
849 {
850     void *fdt, *fdt_skel;
851     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
852 
853     if (spapr_hotplugged_dev_before_cas()) {
854         return 1;
855     }
856 
857     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
858         error_report("SLOF provided an unexpected CAS buffer size "
859                      TARGET_FMT_lu " (min: %zu, max: %u)",
860                      size, sizeof(hdr), FW_MAX_SIZE);
861         exit(EXIT_FAILURE);
862     }
863 
864     size -= sizeof(hdr);
865 
866     /* Create skeleton */
867     fdt_skel = g_malloc0(size);
868     _FDT((fdt_create(fdt_skel, size)));
869     _FDT((fdt_begin_node(fdt_skel, "")));
870     _FDT((fdt_end_node(fdt_skel)));
871     _FDT((fdt_finish(fdt_skel)));
872     fdt = g_malloc0(size);
873     _FDT((fdt_open_into(fdt_skel, fdt, size)));
874     g_free(fdt_skel);
875 
876     /* Fixup cpu nodes */
877     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
878 
879     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
880         return -1;
881     }
882 
883     /* Pack resulting tree */
884     _FDT((fdt_pack(fdt)));
885 
886     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
887         trace_spapr_cas_failed(size);
888         return -1;
889     }
890 
891     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
892     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
893     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
894     g_free(fdt);
895 
896     return 0;
897 }
898 
899 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
900 {
901     int rtas;
902     GString *hypertas = g_string_sized_new(256);
903     GString *qemu_hypertas = g_string_sized_new(256);
904     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
905     uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
906         memory_region_size(&spapr->hotplug_memory.mr);
907     uint32_t lrdr_capacity[] = {
908         cpu_to_be32(max_hotplug_addr >> 32),
909         cpu_to_be32(max_hotplug_addr & 0xffffffff),
910         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
911         cpu_to_be32(max_cpus / smp_threads),
912     };
913 
914     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
915 
916     /* hypertas */
917     add_str(hypertas, "hcall-pft");
918     add_str(hypertas, "hcall-term");
919     add_str(hypertas, "hcall-dabr");
920     add_str(hypertas, "hcall-interrupt");
921     add_str(hypertas, "hcall-tce");
922     add_str(hypertas, "hcall-vio");
923     add_str(hypertas, "hcall-splpar");
924     add_str(hypertas, "hcall-bulk");
925     add_str(hypertas, "hcall-set-mode");
926     add_str(hypertas, "hcall-sprg0");
927     add_str(hypertas, "hcall-copy");
928     add_str(hypertas, "hcall-debug");
929     add_str(qemu_hypertas, "hcall-memop1");
930 
931     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
932         add_str(hypertas, "hcall-multi-tce");
933     }
934 
935     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
936         add_str(hypertas, "hcall-hpt-resize");
937     }
938 
939     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
940                      hypertas->str, hypertas->len));
941     g_string_free(hypertas, TRUE);
942     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
943                      qemu_hypertas->str, qemu_hypertas->len));
944     g_string_free(qemu_hypertas, TRUE);
945 
946     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
947                      refpoints, sizeof(refpoints)));
948 
949     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
950                           RTAS_ERROR_LOG_MAX));
951     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
952                           RTAS_EVENT_SCAN_RATE));
953 
954     g_assert(msi_nonbroken);
955     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
956 
957     /*
958      * According to PAPR, rtas ibm,os-term does not guarantee a return
959      * back to the guest cpu.
960      *
961      * While an additional ibm,extended-os-term property indicates
962      * that rtas call return will always occur. Set this property.
963      */
964     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
965 
966     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
967                      lrdr_capacity, sizeof(lrdr_capacity)));
968 
969     spapr_dt_rtas_tokens(fdt, rtas);
970 }
971 
972 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
973  * that the guest may request and thus the valid values for bytes 24..26 of
974  * option vector 5: */
975 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
976 {
977     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
978 
979     char val[2 * 4] = {
980         23, 0x00, /* Xive mode, filled in below. */
981         24, 0x00, /* Hash/Radix, filled in below. */
982         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
983         26, 0x40, /* Radix options: GTSE == yes. */
984     };
985 
986     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
987                           first_ppc_cpu->compat_pvr)) {
988         /* If we're in a pre POWER9 compat mode then the guest should do hash */
989         val[3] = 0x00; /* Hash */
990     } else if (kvm_enabled()) {
991         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
992             val[3] = 0x80; /* OV5_MMU_BOTH */
993         } else if (kvmppc_has_cap_mmu_radix()) {
994             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
995         } else {
996             val[3] = 0x00; /* Hash */
997         }
998     } else {
999         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1000         val[3] = 0xC0;
1001     }
1002     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1003                      val, sizeof(val)));
1004 }
1005 
1006 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1007 {
1008     MachineState *machine = MACHINE(spapr);
1009     int chosen;
1010     const char *boot_device = machine->boot_order;
1011     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1012     size_t cb = 0;
1013     char *bootlist = get_boot_devices_list(&cb, true);
1014 
1015     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016 
1017     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1018     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019                           spapr->initrd_base));
1020     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021                           spapr->initrd_base + spapr->initrd_size));
1022 
1023     if (spapr->kernel_size) {
1024         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1025                               cpu_to_be64(spapr->kernel_size) };
1026 
1027         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1028                          &kprop, sizeof(kprop)));
1029         if (spapr->kernel_le) {
1030             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1031         }
1032     }
1033     if (boot_menu) {
1034         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1035     }
1036     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1037     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1038     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1039 
1040     if (cb && bootlist) {
1041         int i;
1042 
1043         for (i = 0; i < cb; i++) {
1044             if (bootlist[i] == '\n') {
1045                 bootlist[i] = ' ';
1046             }
1047         }
1048         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1049     }
1050 
1051     if (boot_device && strlen(boot_device)) {
1052         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1053     }
1054 
1055     if (!spapr->has_graphics && stdout_path) {
1056         /*
1057          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1058          * kernel. New platforms should only use the "stdout-path" property. Set
1059          * the new property and continue using older property to remain
1060          * compatible with the existing firmware.
1061          */
1062         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1063         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1064     }
1065 
1066     spapr_dt_ov5_platform_support(fdt, chosen);
1067 
1068     g_free(stdout_path);
1069     g_free(bootlist);
1070 }
1071 
1072 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1073 {
1074     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1075      * KVM to work under pHyp with some guest co-operation */
1076     int hypervisor;
1077     uint8_t hypercall[16];
1078 
1079     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1080     /* indicate KVM hypercall interface */
1081     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1082     if (kvmppc_has_cap_fixup_hcalls()) {
1083         /*
1084          * Older KVM versions with older guest kernels were broken
1085          * with the magic page, don't allow the guest to map it.
1086          */
1087         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1088                                   sizeof(hypercall))) {
1089             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1090                              hypercall, sizeof(hypercall)));
1091         }
1092     }
1093 }
1094 
1095 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1096                              hwaddr rtas_addr,
1097                              hwaddr rtas_size)
1098 {
1099     MachineState *machine = MACHINE(spapr);
1100     MachineClass *mc = MACHINE_GET_CLASS(machine);
1101     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1102     int ret;
1103     void *fdt;
1104     sPAPRPHBState *phb;
1105     char *buf;
1106 
1107     fdt = g_malloc0(FDT_MAX_SIZE);
1108     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1109 
1110     /* Root node */
1111     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1112     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1113     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1114 
1115     /*
1116      * Add info to guest to indentify which host is it being run on
1117      * and what is the uuid of the guest
1118      */
1119     if (kvmppc_get_host_model(&buf)) {
1120         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1121         g_free(buf);
1122     }
1123     if (kvmppc_get_host_serial(&buf)) {
1124         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1125         g_free(buf);
1126     }
1127 
1128     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1129 
1130     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1131     if (qemu_uuid_set) {
1132         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1133     }
1134     g_free(buf);
1135 
1136     if (qemu_get_vm_name()) {
1137         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1138                                 qemu_get_vm_name()));
1139     }
1140 
1141     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1142     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1143 
1144     /* /interrupt controller */
1145     spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1146 
1147     ret = spapr_populate_memory(spapr, fdt);
1148     if (ret < 0) {
1149         error_report("couldn't setup memory nodes in fdt");
1150         exit(1);
1151     }
1152 
1153     /* /vdevice */
1154     spapr_dt_vdevice(spapr->vio_bus, fdt);
1155 
1156     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1157         ret = spapr_rng_populate_dt(fdt);
1158         if (ret < 0) {
1159             error_report("could not set up rng device in the fdt");
1160             exit(1);
1161         }
1162     }
1163 
1164     QLIST_FOREACH(phb, &spapr->phbs, list) {
1165         ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1166         if (ret < 0) {
1167             error_report("couldn't setup PCI devices in fdt");
1168             exit(1);
1169         }
1170     }
1171 
1172     /* cpus */
1173     spapr_populate_cpus_dt_node(fdt, spapr);
1174 
1175     if (smc->dr_lmb_enabled) {
1176         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1177     }
1178 
1179     if (mc->has_hotpluggable_cpus) {
1180         int offset = fdt_path_offset(fdt, "/cpus");
1181         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1182                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1183         if (ret < 0) {
1184             error_report("Couldn't set up CPU DR device tree properties");
1185             exit(1);
1186         }
1187     }
1188 
1189     /* /event-sources */
1190     spapr_dt_events(spapr, fdt);
1191 
1192     /* /rtas */
1193     spapr_dt_rtas(spapr, fdt);
1194 
1195     /* /chosen */
1196     spapr_dt_chosen(spapr, fdt);
1197 
1198     /* /hypervisor */
1199     if (kvm_enabled()) {
1200         spapr_dt_hypervisor(spapr, fdt);
1201     }
1202 
1203     /* Build memory reserve map */
1204     if (spapr->kernel_size) {
1205         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1206     }
1207     if (spapr->initrd_size) {
1208         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1209     }
1210 
1211     /* ibm,client-architecture-support updates */
1212     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1213     if (ret < 0) {
1214         error_report("couldn't setup CAS properties fdt");
1215         exit(1);
1216     }
1217 
1218     return fdt;
1219 }
1220 
1221 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1222 {
1223     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1224 }
1225 
1226 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1227                                     PowerPCCPU *cpu)
1228 {
1229     CPUPPCState *env = &cpu->env;
1230 
1231     /* The TCG path should also be holding the BQL at this point */
1232     g_assert(qemu_mutex_iothread_locked());
1233 
1234     if (msr_pr) {
1235         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1236         env->gpr[3] = H_PRIVILEGE;
1237     } else {
1238         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1239     }
1240 }
1241 
1242 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1243 {
1244     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245 
1246     return spapr->patb_entry;
1247 }
1248 
1249 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1250 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1251 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1252 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1253 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1254 
1255 /*
1256  * Get the fd to access the kernel htab, re-opening it if necessary
1257  */
1258 static int get_htab_fd(sPAPRMachineState *spapr)
1259 {
1260     Error *local_err = NULL;
1261 
1262     if (spapr->htab_fd >= 0) {
1263         return spapr->htab_fd;
1264     }
1265 
1266     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1267     if (spapr->htab_fd < 0) {
1268         error_report_err(local_err);
1269     }
1270 
1271     return spapr->htab_fd;
1272 }
1273 
1274 void close_htab_fd(sPAPRMachineState *spapr)
1275 {
1276     if (spapr->htab_fd >= 0) {
1277         close(spapr->htab_fd);
1278     }
1279     spapr->htab_fd = -1;
1280 }
1281 
1282 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1283 {
1284     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1285 
1286     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1287 }
1288 
1289 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1290 {
1291     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292 
1293     assert(kvm_enabled());
1294 
1295     if (!spapr->htab) {
1296         return 0;
1297     }
1298 
1299     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1300 }
1301 
1302 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1303                                                 hwaddr ptex, int n)
1304 {
1305     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1306     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1307 
1308     if (!spapr->htab) {
1309         /*
1310          * HTAB is controlled by KVM. Fetch into temporary buffer
1311          */
1312         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1313         kvmppc_read_hptes(hptes, ptex, n);
1314         return hptes;
1315     }
1316 
1317     /*
1318      * HTAB is controlled by QEMU. Just point to the internally
1319      * accessible PTEG.
1320      */
1321     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1322 }
1323 
1324 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1325                               const ppc_hash_pte64_t *hptes,
1326                               hwaddr ptex, int n)
1327 {
1328     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1329 
1330     if (!spapr->htab) {
1331         g_free((void *)hptes);
1332     }
1333 
1334     /* Nothing to do for qemu managed HPT */
1335 }
1336 
1337 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1338                              uint64_t pte0, uint64_t pte1)
1339 {
1340     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1341     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1342 
1343     if (!spapr->htab) {
1344         kvmppc_write_hpte(ptex, pte0, pte1);
1345     } else {
1346         stq_p(spapr->htab + offset, pte0);
1347         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1348     }
1349 }
1350 
1351 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1352 {
1353     int shift;
1354 
1355     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1356      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1357      * that's much more than is needed for Linux guests */
1358     shift = ctz64(pow2ceil(ramsize)) - 7;
1359     shift = MAX(shift, 18); /* Minimum architected size */
1360     shift = MIN(shift, 46); /* Maximum architected size */
1361     return shift;
1362 }
1363 
1364 void spapr_free_hpt(sPAPRMachineState *spapr)
1365 {
1366     g_free(spapr->htab);
1367     spapr->htab = NULL;
1368     spapr->htab_shift = 0;
1369     close_htab_fd(spapr);
1370 }
1371 
1372 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1373                           Error **errp)
1374 {
1375     long rc;
1376 
1377     /* Clean up any HPT info from a previous boot */
1378     spapr_free_hpt(spapr);
1379 
1380     rc = kvmppc_reset_htab(shift);
1381     if (rc < 0) {
1382         /* kernel-side HPT needed, but couldn't allocate one */
1383         error_setg_errno(errp, errno,
1384                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1385                          shift);
1386         /* This is almost certainly fatal, but if the caller really
1387          * wants to carry on with shift == 0, it's welcome to try */
1388     } else if (rc > 0) {
1389         /* kernel-side HPT allocated */
1390         if (rc != shift) {
1391             error_setg(errp,
1392                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1393                        shift, rc);
1394         }
1395 
1396         spapr->htab_shift = shift;
1397         spapr->htab = NULL;
1398     } else {
1399         /* kernel-side HPT not needed, allocate in userspace instead */
1400         size_t size = 1ULL << shift;
1401         int i;
1402 
1403         spapr->htab = qemu_memalign(size, size);
1404         if (!spapr->htab) {
1405             error_setg_errno(errp, errno,
1406                              "Could not allocate HPT of order %d", shift);
1407             return;
1408         }
1409 
1410         memset(spapr->htab, 0, size);
1411         spapr->htab_shift = shift;
1412 
1413         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1414             DIRTY_HPTE(HPTE(spapr->htab, i));
1415         }
1416     }
1417     /* We're setting up a hash table, so that means we're not radix */
1418     spapr->patb_entry = 0;
1419 }
1420 
1421 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1422 {
1423     int hpt_shift;
1424 
1425     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1426         || (spapr->cas_reboot
1427             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1428         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1429     } else {
1430         uint64_t current_ram_size;
1431 
1432         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1433         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1434     }
1435     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1436 
1437     if (spapr->vrma_adjust) {
1438         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1439                                           spapr->htab_shift);
1440     }
1441 }
1442 
1443 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1444 {
1445     bool matched = false;
1446 
1447     if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1448         matched = true;
1449     }
1450 
1451     if (!matched) {
1452         error_report("Device %s is not supported by this machine yet.",
1453                      qdev_fw_name(DEVICE(sbdev)));
1454         exit(1);
1455     }
1456 }
1457 
1458 static int spapr_reset_drcs(Object *child, void *opaque)
1459 {
1460     sPAPRDRConnector *drc =
1461         (sPAPRDRConnector *) object_dynamic_cast(child,
1462                                                  TYPE_SPAPR_DR_CONNECTOR);
1463 
1464     if (drc) {
1465         spapr_drc_reset(drc);
1466     }
1467 
1468     return 0;
1469 }
1470 
1471 static void spapr_machine_reset(void)
1472 {
1473     MachineState *machine = MACHINE(qdev_get_machine());
1474     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1475     PowerPCCPU *first_ppc_cpu;
1476     uint32_t rtas_limit;
1477     hwaddr rtas_addr, fdt_addr;
1478     void *fdt;
1479     int rc;
1480 
1481     /* Check for unknown sysbus devices */
1482     foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1483 
1484     spapr_caps_reset(spapr);
1485 
1486     first_ppc_cpu = POWERPC_CPU(first_cpu);
1487     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1488         ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1489                          spapr->max_compat_pvr)) {
1490         /* If using KVM with radix mode available, VCPUs can be started
1491          * without a HPT because KVM will start them in radix mode.
1492          * Set the GR bit in PATB so that we know there is no HPT. */
1493         spapr->patb_entry = PATBE1_GR;
1494     } else {
1495         spapr_setup_hpt_and_vrma(spapr);
1496     }
1497 
1498     /* if this reset wasn't generated by CAS, we should reset our
1499      * negotiated options and start from scratch */
1500     if (!spapr->cas_reboot) {
1501         spapr_ovec_cleanup(spapr->ov5_cas);
1502         spapr->ov5_cas = spapr_ovec_new();
1503 
1504         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1505     }
1506 
1507     qemu_devices_reset();
1508 
1509     /* DRC reset may cause a device to be unplugged. This will cause troubles
1510      * if this device is used by another device (eg, a running vhost backend
1511      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1512      * situations, we reset DRCs after all devices have been reset.
1513      */
1514     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1515 
1516     spapr_clear_pending_events(spapr);
1517 
1518     /*
1519      * We place the device tree and RTAS just below either the top of the RMA,
1520      * or just below 2GB, whichever is lowere, so that it can be
1521      * processed with 32-bit real mode code if necessary
1522      */
1523     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1524     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1525     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1526 
1527     fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1528 
1529     spapr_load_rtas(spapr, fdt, rtas_addr);
1530 
1531     rc = fdt_pack(fdt);
1532 
1533     /* Should only fail if we've built a corrupted tree */
1534     assert(rc == 0);
1535 
1536     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1537         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1538                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1539         exit(1);
1540     }
1541 
1542     /* Load the fdt */
1543     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1544     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1545     g_free(fdt);
1546 
1547     /* Set up the entry state */
1548     first_ppc_cpu->env.gpr[3] = fdt_addr;
1549     first_ppc_cpu->env.gpr[5] = 0;
1550     first_cpu->halted = 0;
1551     first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1552 
1553     spapr->cas_reboot = false;
1554 }
1555 
1556 static void spapr_create_nvram(sPAPRMachineState *spapr)
1557 {
1558     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1559     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1560 
1561     if (dinfo) {
1562         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1563                             &error_fatal);
1564     }
1565 
1566     qdev_init_nofail(dev);
1567 
1568     spapr->nvram = (struct sPAPRNVRAM *)dev;
1569 }
1570 
1571 static void spapr_rtc_create(sPAPRMachineState *spapr)
1572 {
1573     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1574     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1575                               &error_fatal);
1576     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1577                               &error_fatal);
1578     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1579                               "date", &error_fatal);
1580 }
1581 
1582 /* Returns whether we want to use VGA or not */
1583 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1584 {
1585     switch (vga_interface_type) {
1586     case VGA_NONE:
1587         return false;
1588     case VGA_DEVICE:
1589         return true;
1590     case VGA_STD:
1591     case VGA_VIRTIO:
1592         return pci_vga_init(pci_bus) != NULL;
1593     default:
1594         error_setg(errp,
1595                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1596         return false;
1597     }
1598 }
1599 
1600 static int spapr_pre_load(void *opaque)
1601 {
1602     int rc;
1603 
1604     rc = spapr_caps_pre_load(opaque);
1605     if (rc) {
1606         return rc;
1607     }
1608 
1609     return 0;
1610 }
1611 
1612 static int spapr_post_load(void *opaque, int version_id)
1613 {
1614     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1615     int err = 0;
1616 
1617     err = spapr_caps_post_migration(spapr);
1618     if (err) {
1619         return err;
1620     }
1621 
1622     if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1623         CPUState *cs;
1624         CPU_FOREACH(cs) {
1625             PowerPCCPU *cpu = POWERPC_CPU(cs);
1626             icp_resend(ICP(cpu->intc));
1627         }
1628     }
1629 
1630     /* In earlier versions, there was no separate qdev for the PAPR
1631      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1632      * So when migrating from those versions, poke the incoming offset
1633      * value into the RTC device */
1634     if (version_id < 3) {
1635         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1636     }
1637 
1638     if (kvm_enabled() && spapr->patb_entry) {
1639         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1640         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1641         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1642 
1643         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1644         if (err) {
1645             error_report("Process table config unsupported by the host");
1646             return -EINVAL;
1647         }
1648     }
1649 
1650     return err;
1651 }
1652 
1653 static int spapr_pre_save(void *opaque)
1654 {
1655     int rc;
1656 
1657     rc = spapr_caps_pre_save(opaque);
1658     if (rc) {
1659         return rc;
1660     }
1661 
1662     return 0;
1663 }
1664 
1665 static bool version_before_3(void *opaque, int version_id)
1666 {
1667     return version_id < 3;
1668 }
1669 
1670 static bool spapr_pending_events_needed(void *opaque)
1671 {
1672     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1673     return !QTAILQ_EMPTY(&spapr->pending_events);
1674 }
1675 
1676 static const VMStateDescription vmstate_spapr_event_entry = {
1677     .name = "spapr_event_log_entry",
1678     .version_id = 1,
1679     .minimum_version_id = 1,
1680     .fields = (VMStateField[]) {
1681         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1682         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1683         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1684                                      NULL, extended_length),
1685         VMSTATE_END_OF_LIST()
1686     },
1687 };
1688 
1689 static const VMStateDescription vmstate_spapr_pending_events = {
1690     .name = "spapr_pending_events",
1691     .version_id = 1,
1692     .minimum_version_id = 1,
1693     .needed = spapr_pending_events_needed,
1694     .fields = (VMStateField[]) {
1695         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1696                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1697         VMSTATE_END_OF_LIST()
1698     },
1699 };
1700 
1701 static bool spapr_ov5_cas_needed(void *opaque)
1702 {
1703     sPAPRMachineState *spapr = opaque;
1704     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1705     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1706     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1707     bool cas_needed;
1708 
1709     /* Prior to the introduction of sPAPROptionVector, we had two option
1710      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1711      * Both of these options encode machine topology into the device-tree
1712      * in such a way that the now-booted OS should still be able to interact
1713      * appropriately with QEMU regardless of what options were actually
1714      * negotiatied on the source side.
1715      *
1716      * As such, we can avoid migrating the CAS-negotiated options if these
1717      * are the only options available on the current machine/platform.
1718      * Since these are the only options available for pseries-2.7 and
1719      * earlier, this allows us to maintain old->new/new->old migration
1720      * compatibility.
1721      *
1722      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1723      * via default pseries-2.8 machines and explicit command-line parameters.
1724      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1725      * of the actual CAS-negotiated values to continue working properly. For
1726      * example, availability of memory unplug depends on knowing whether
1727      * OV5_HP_EVT was negotiated via CAS.
1728      *
1729      * Thus, for any cases where the set of available CAS-negotiatable
1730      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1731      * include the CAS-negotiated options in the migration stream.
1732      */
1733     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1734     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1735 
1736     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1737      * the mask itself since in the future it's possible "legacy" bits may be
1738      * removed via machine options, which could generate a false positive
1739      * that breaks migration.
1740      */
1741     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1742     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1743 
1744     spapr_ovec_cleanup(ov5_mask);
1745     spapr_ovec_cleanup(ov5_legacy);
1746     spapr_ovec_cleanup(ov5_removed);
1747 
1748     return cas_needed;
1749 }
1750 
1751 static const VMStateDescription vmstate_spapr_ov5_cas = {
1752     .name = "spapr_option_vector_ov5_cas",
1753     .version_id = 1,
1754     .minimum_version_id = 1,
1755     .needed = spapr_ov5_cas_needed,
1756     .fields = (VMStateField[]) {
1757         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1758                                  vmstate_spapr_ovec, sPAPROptionVector),
1759         VMSTATE_END_OF_LIST()
1760     },
1761 };
1762 
1763 static bool spapr_patb_entry_needed(void *opaque)
1764 {
1765     sPAPRMachineState *spapr = opaque;
1766 
1767     return !!spapr->patb_entry;
1768 }
1769 
1770 static const VMStateDescription vmstate_spapr_patb_entry = {
1771     .name = "spapr_patb_entry",
1772     .version_id = 1,
1773     .minimum_version_id = 1,
1774     .needed = spapr_patb_entry_needed,
1775     .fields = (VMStateField[]) {
1776         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1777         VMSTATE_END_OF_LIST()
1778     },
1779 };
1780 
1781 static const VMStateDescription vmstate_spapr = {
1782     .name = "spapr",
1783     .version_id = 3,
1784     .minimum_version_id = 1,
1785     .pre_load = spapr_pre_load,
1786     .post_load = spapr_post_load,
1787     .pre_save = spapr_pre_save,
1788     .fields = (VMStateField[]) {
1789         /* used to be @next_irq */
1790         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1791 
1792         /* RTC offset */
1793         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1794 
1795         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1796         VMSTATE_END_OF_LIST()
1797     },
1798     .subsections = (const VMStateDescription*[]) {
1799         &vmstate_spapr_ov5_cas,
1800         &vmstate_spapr_patb_entry,
1801         &vmstate_spapr_pending_events,
1802         &vmstate_spapr_cap_htm,
1803         &vmstate_spapr_cap_vsx,
1804         &vmstate_spapr_cap_dfp,
1805         &vmstate_spapr_cap_cfpc,
1806         &vmstate_spapr_cap_sbbc,
1807         &vmstate_spapr_cap_ibs,
1808         NULL
1809     }
1810 };
1811 
1812 static int htab_save_setup(QEMUFile *f, void *opaque)
1813 {
1814     sPAPRMachineState *spapr = opaque;
1815 
1816     /* "Iteration" header */
1817     if (!spapr->htab_shift) {
1818         qemu_put_be32(f, -1);
1819     } else {
1820         qemu_put_be32(f, spapr->htab_shift);
1821     }
1822 
1823     if (spapr->htab) {
1824         spapr->htab_save_index = 0;
1825         spapr->htab_first_pass = true;
1826     } else {
1827         if (spapr->htab_shift) {
1828             assert(kvm_enabled());
1829         }
1830     }
1831 
1832 
1833     return 0;
1834 }
1835 
1836 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1837                             int chunkstart, int n_valid, int n_invalid)
1838 {
1839     qemu_put_be32(f, chunkstart);
1840     qemu_put_be16(f, n_valid);
1841     qemu_put_be16(f, n_invalid);
1842     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1843                     HASH_PTE_SIZE_64 * n_valid);
1844 }
1845 
1846 static void htab_save_end_marker(QEMUFile *f)
1847 {
1848     qemu_put_be32(f, 0);
1849     qemu_put_be16(f, 0);
1850     qemu_put_be16(f, 0);
1851 }
1852 
1853 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1854                                  int64_t max_ns)
1855 {
1856     bool has_timeout = max_ns != -1;
1857     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1858     int index = spapr->htab_save_index;
1859     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1860 
1861     assert(spapr->htab_first_pass);
1862 
1863     do {
1864         int chunkstart;
1865 
1866         /* Consume invalid HPTEs */
1867         while ((index < htabslots)
1868                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1869             CLEAN_HPTE(HPTE(spapr->htab, index));
1870             index++;
1871         }
1872 
1873         /* Consume valid HPTEs */
1874         chunkstart = index;
1875         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1876                && HPTE_VALID(HPTE(spapr->htab, index))) {
1877             CLEAN_HPTE(HPTE(spapr->htab, index));
1878             index++;
1879         }
1880 
1881         if (index > chunkstart) {
1882             int n_valid = index - chunkstart;
1883 
1884             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1885 
1886             if (has_timeout &&
1887                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1888                 break;
1889             }
1890         }
1891     } while ((index < htabslots) && !qemu_file_rate_limit(f));
1892 
1893     if (index >= htabslots) {
1894         assert(index == htabslots);
1895         index = 0;
1896         spapr->htab_first_pass = false;
1897     }
1898     spapr->htab_save_index = index;
1899 }
1900 
1901 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1902                                 int64_t max_ns)
1903 {
1904     bool final = max_ns < 0;
1905     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1906     int examined = 0, sent = 0;
1907     int index = spapr->htab_save_index;
1908     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1909 
1910     assert(!spapr->htab_first_pass);
1911 
1912     do {
1913         int chunkstart, invalidstart;
1914 
1915         /* Consume non-dirty HPTEs */
1916         while ((index < htabslots)
1917                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1918             index++;
1919             examined++;
1920         }
1921 
1922         chunkstart = index;
1923         /* Consume valid dirty HPTEs */
1924         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1925                && HPTE_DIRTY(HPTE(spapr->htab, index))
1926                && HPTE_VALID(HPTE(spapr->htab, index))) {
1927             CLEAN_HPTE(HPTE(spapr->htab, index));
1928             index++;
1929             examined++;
1930         }
1931 
1932         invalidstart = index;
1933         /* Consume invalid dirty HPTEs */
1934         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1935                && HPTE_DIRTY(HPTE(spapr->htab, index))
1936                && !HPTE_VALID(HPTE(spapr->htab, index))) {
1937             CLEAN_HPTE(HPTE(spapr->htab, index));
1938             index++;
1939             examined++;
1940         }
1941 
1942         if (index > chunkstart) {
1943             int n_valid = invalidstart - chunkstart;
1944             int n_invalid = index - invalidstart;
1945 
1946             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1947             sent += index - chunkstart;
1948 
1949             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1950                 break;
1951             }
1952         }
1953 
1954         if (examined >= htabslots) {
1955             break;
1956         }
1957 
1958         if (index >= htabslots) {
1959             assert(index == htabslots);
1960             index = 0;
1961         }
1962     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1963 
1964     if (index >= htabslots) {
1965         assert(index == htabslots);
1966         index = 0;
1967     }
1968 
1969     spapr->htab_save_index = index;
1970 
1971     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1972 }
1973 
1974 #define MAX_ITERATION_NS    5000000 /* 5 ms */
1975 #define MAX_KVM_BUF_SIZE    2048
1976 
1977 static int htab_save_iterate(QEMUFile *f, void *opaque)
1978 {
1979     sPAPRMachineState *spapr = opaque;
1980     int fd;
1981     int rc = 0;
1982 
1983     /* Iteration header */
1984     if (!spapr->htab_shift) {
1985         qemu_put_be32(f, -1);
1986         return 1;
1987     } else {
1988         qemu_put_be32(f, 0);
1989     }
1990 
1991     if (!spapr->htab) {
1992         assert(kvm_enabled());
1993 
1994         fd = get_htab_fd(spapr);
1995         if (fd < 0) {
1996             return fd;
1997         }
1998 
1999         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2000         if (rc < 0) {
2001             return rc;
2002         }
2003     } else  if (spapr->htab_first_pass) {
2004         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2005     } else {
2006         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2007     }
2008 
2009     htab_save_end_marker(f);
2010 
2011     return rc;
2012 }
2013 
2014 static int htab_save_complete(QEMUFile *f, void *opaque)
2015 {
2016     sPAPRMachineState *spapr = opaque;
2017     int fd;
2018 
2019     /* Iteration header */
2020     if (!spapr->htab_shift) {
2021         qemu_put_be32(f, -1);
2022         return 0;
2023     } else {
2024         qemu_put_be32(f, 0);
2025     }
2026 
2027     if (!spapr->htab) {
2028         int rc;
2029 
2030         assert(kvm_enabled());
2031 
2032         fd = get_htab_fd(spapr);
2033         if (fd < 0) {
2034             return fd;
2035         }
2036 
2037         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2038         if (rc < 0) {
2039             return rc;
2040         }
2041     } else {
2042         if (spapr->htab_first_pass) {
2043             htab_save_first_pass(f, spapr, -1);
2044         }
2045         htab_save_later_pass(f, spapr, -1);
2046     }
2047 
2048     /* End marker */
2049     htab_save_end_marker(f);
2050 
2051     return 0;
2052 }
2053 
2054 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2055 {
2056     sPAPRMachineState *spapr = opaque;
2057     uint32_t section_hdr;
2058     int fd = -1;
2059     Error *local_err = NULL;
2060 
2061     if (version_id < 1 || version_id > 1) {
2062         error_report("htab_load() bad version");
2063         return -EINVAL;
2064     }
2065 
2066     section_hdr = qemu_get_be32(f);
2067 
2068     if (section_hdr == -1) {
2069         spapr_free_hpt(spapr);
2070         return 0;
2071     }
2072 
2073     if (section_hdr) {
2074         /* First section gives the htab size */
2075         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2076         if (local_err) {
2077             error_report_err(local_err);
2078             return -EINVAL;
2079         }
2080         return 0;
2081     }
2082 
2083     if (!spapr->htab) {
2084         assert(kvm_enabled());
2085 
2086         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2087         if (fd < 0) {
2088             error_report_err(local_err);
2089             return fd;
2090         }
2091     }
2092 
2093     while (true) {
2094         uint32_t index;
2095         uint16_t n_valid, n_invalid;
2096 
2097         index = qemu_get_be32(f);
2098         n_valid = qemu_get_be16(f);
2099         n_invalid = qemu_get_be16(f);
2100 
2101         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2102             /* End of Stream */
2103             break;
2104         }
2105 
2106         if ((index + n_valid + n_invalid) >
2107             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2108             /* Bad index in stream */
2109             error_report(
2110                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2111                 index, n_valid, n_invalid, spapr->htab_shift);
2112             return -EINVAL;
2113         }
2114 
2115         if (spapr->htab) {
2116             if (n_valid) {
2117                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2118                                 HASH_PTE_SIZE_64 * n_valid);
2119             }
2120             if (n_invalid) {
2121                 memset(HPTE(spapr->htab, index + n_valid), 0,
2122                        HASH_PTE_SIZE_64 * n_invalid);
2123             }
2124         } else {
2125             int rc;
2126 
2127             assert(fd >= 0);
2128 
2129             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2130             if (rc < 0) {
2131                 return rc;
2132             }
2133         }
2134     }
2135 
2136     if (!spapr->htab) {
2137         assert(fd >= 0);
2138         close(fd);
2139     }
2140 
2141     return 0;
2142 }
2143 
2144 static void htab_save_cleanup(void *opaque)
2145 {
2146     sPAPRMachineState *spapr = opaque;
2147 
2148     close_htab_fd(spapr);
2149 }
2150 
2151 static SaveVMHandlers savevm_htab_handlers = {
2152     .save_setup = htab_save_setup,
2153     .save_live_iterate = htab_save_iterate,
2154     .save_live_complete_precopy = htab_save_complete,
2155     .save_cleanup = htab_save_cleanup,
2156     .load_state = htab_load,
2157 };
2158 
2159 static void spapr_boot_set(void *opaque, const char *boot_device,
2160                            Error **errp)
2161 {
2162     MachineState *machine = MACHINE(opaque);
2163     machine->boot_order = g_strdup(boot_device);
2164 }
2165 
2166 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2167 {
2168     MachineState *machine = MACHINE(spapr);
2169     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2170     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2171     int i;
2172 
2173     for (i = 0; i < nr_lmbs; i++) {
2174         uint64_t addr;
2175 
2176         addr = i * lmb_size + spapr->hotplug_memory.base;
2177         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2178                                addr / lmb_size);
2179     }
2180 }
2181 
2182 /*
2183  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2184  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2185  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2186  */
2187 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2188 {
2189     int i;
2190 
2191     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2192         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2193                    " is not aligned to %llu MiB",
2194                    machine->ram_size,
2195                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2196         return;
2197     }
2198 
2199     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2200         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2201                    " is not aligned to %llu MiB",
2202                    machine->ram_size,
2203                    SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2204         return;
2205     }
2206 
2207     for (i = 0; i < nb_numa_nodes; i++) {
2208         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2209             error_setg(errp,
2210                        "Node %d memory size 0x%" PRIx64
2211                        " is not aligned to %llu MiB",
2212                        i, numa_info[i].node_mem,
2213                        SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2214             return;
2215         }
2216     }
2217 }
2218 
2219 /* find cpu slot in machine->possible_cpus by core_id */
2220 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2221 {
2222     int index = id / smp_threads;
2223 
2224     if (index >= ms->possible_cpus->len) {
2225         return NULL;
2226     }
2227     if (idx) {
2228         *idx = index;
2229     }
2230     return &ms->possible_cpus->cpus[index];
2231 }
2232 
2233 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2234 {
2235     Error *local_err = NULL;
2236     bool vsmt_user = !!spapr->vsmt;
2237     int kvm_smt = kvmppc_smt_threads();
2238     int ret;
2239 
2240     if (!kvm_enabled() && (smp_threads > 1)) {
2241         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2242                      "on a pseries machine");
2243         goto out;
2244     }
2245     if (!is_power_of_2(smp_threads)) {
2246         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2247                      "machine because it must be a power of 2", smp_threads);
2248         goto out;
2249     }
2250 
2251     /* Detemine the VSMT mode to use: */
2252     if (vsmt_user) {
2253         if (spapr->vsmt < smp_threads) {
2254             error_setg(&local_err, "Cannot support VSMT mode %d"
2255                          " because it must be >= threads/core (%d)",
2256                          spapr->vsmt, smp_threads);
2257             goto out;
2258         }
2259         /* In this case, spapr->vsmt has been set by the command line */
2260     } else {
2261         /*
2262          * Default VSMT value is tricky, because we need it to be as
2263          * consistent as possible (for migration), but this requires
2264          * changing it for at least some existing cases.  We pick 8 as
2265          * the value that we'd get with KVM on POWER8, the
2266          * overwhelmingly common case in production systems.
2267          */
2268         spapr->vsmt = MAX(8, smp_threads);
2269     }
2270 
2271     /* KVM: If necessary, set the SMT mode: */
2272     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2273         ret = kvmppc_set_smt_threads(spapr->vsmt);
2274         if (ret) {
2275             /* Looks like KVM isn't able to change VSMT mode */
2276             error_setg(&local_err,
2277                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2278                        spapr->vsmt, ret);
2279             /* We can live with that if the default one is big enough
2280              * for the number of threads, and a submultiple of the one
2281              * we want.  In this case we'll waste some vcpu ids, but
2282              * behaviour will be correct */
2283             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2284                 warn_report_err(local_err);
2285                 local_err = NULL;
2286                 goto out;
2287             } else {
2288                 if (!vsmt_user) {
2289                     error_append_hint(&local_err,
2290                                       "On PPC, a VM with %d threads/core"
2291                                       " on a host with %d threads/core"
2292                                       " requires the use of VSMT mode %d.\n",
2293                                       smp_threads, kvm_smt, spapr->vsmt);
2294                 }
2295                 kvmppc_hint_smt_possible(&local_err);
2296                 goto out;
2297             }
2298         }
2299     }
2300     /* else TCG: nothing to do currently */
2301 out:
2302     error_propagate(errp, local_err);
2303 }
2304 
2305 static void spapr_init_cpus(sPAPRMachineState *spapr)
2306 {
2307     MachineState *machine = MACHINE(spapr);
2308     MachineClass *mc = MACHINE_GET_CLASS(machine);
2309     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2310     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2311     const CPUArchIdList *possible_cpus;
2312     int boot_cores_nr = smp_cpus / smp_threads;
2313     int i;
2314 
2315     possible_cpus = mc->possible_cpu_arch_ids(machine);
2316     if (mc->has_hotpluggable_cpus) {
2317         if (smp_cpus % smp_threads) {
2318             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2319                          smp_cpus, smp_threads);
2320             exit(1);
2321         }
2322         if (max_cpus % smp_threads) {
2323             error_report("max_cpus (%u) must be multiple of threads (%u)",
2324                          max_cpus, smp_threads);
2325             exit(1);
2326         }
2327     } else {
2328         if (max_cpus != smp_cpus) {
2329             error_report("This machine version does not support CPU hotplug");
2330             exit(1);
2331         }
2332         boot_cores_nr = possible_cpus->len;
2333     }
2334 
2335     /* VSMT must be set in order to be able to compute VCPU ids, ie to
2336      * call xics_max_server_number() or spapr_vcpu_id().
2337      */
2338     spapr_set_vsmt_mode(spapr, &error_fatal);
2339 
2340     if (smc->pre_2_10_has_unused_icps) {
2341         int i;
2342 
2343         for (i = 0; i < xics_max_server_number(spapr); i++) {
2344             /* Dummy entries get deregistered when real ICPState objects
2345              * are registered during CPU core hotplug.
2346              */
2347             pre_2_10_vmstate_register_dummy_icp(i);
2348         }
2349     }
2350 
2351     for (i = 0; i < possible_cpus->len; i++) {
2352         int core_id = i * smp_threads;
2353 
2354         if (mc->has_hotpluggable_cpus) {
2355             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2356                                    spapr_vcpu_id(spapr, core_id));
2357         }
2358 
2359         if (i < boot_cores_nr) {
2360             Object *core  = object_new(type);
2361             int nr_threads = smp_threads;
2362 
2363             /* Handle the partially filled core for older machine types */
2364             if ((i + 1) * smp_threads >= smp_cpus) {
2365                 nr_threads = smp_cpus - i * smp_threads;
2366             }
2367 
2368             object_property_set_int(core, nr_threads, "nr-threads",
2369                                     &error_fatal);
2370             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2371                                     &error_fatal);
2372             object_property_set_bool(core, true, "realized", &error_fatal);
2373         }
2374     }
2375 }
2376 
2377 /* pSeries LPAR / sPAPR hardware init */
2378 static void spapr_machine_init(MachineState *machine)
2379 {
2380     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2381     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2382     const char *kernel_filename = machine->kernel_filename;
2383     const char *initrd_filename = machine->initrd_filename;
2384     PCIHostState *phb;
2385     int i;
2386     MemoryRegion *sysmem = get_system_memory();
2387     MemoryRegion *ram = g_new(MemoryRegion, 1);
2388     MemoryRegion *rma_region;
2389     void *rma = NULL;
2390     hwaddr rma_alloc_size;
2391     hwaddr node0_size = spapr_node0_size(machine);
2392     long load_limit, fw_size;
2393     char *filename;
2394     Error *resize_hpt_err = NULL;
2395 
2396     msi_nonbroken = true;
2397 
2398     QLIST_INIT(&spapr->phbs);
2399     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2400 
2401     /* Check HPT resizing availability */
2402     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2403     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2404         /*
2405          * If the user explicitly requested a mode we should either
2406          * supply it, or fail completely (which we do below).  But if
2407          * it's not set explicitly, we reset our mode to something
2408          * that works
2409          */
2410         if (resize_hpt_err) {
2411             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2412             error_free(resize_hpt_err);
2413             resize_hpt_err = NULL;
2414         } else {
2415             spapr->resize_hpt = smc->resize_hpt_default;
2416         }
2417     }
2418 
2419     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2420 
2421     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2422         /*
2423          * User requested HPT resize, but this host can't supply it.  Bail out
2424          */
2425         error_report_err(resize_hpt_err);
2426         exit(1);
2427     }
2428 
2429     /* Allocate RMA if necessary */
2430     rma_alloc_size = kvmppc_alloc_rma(&rma);
2431 
2432     if (rma_alloc_size == -1) {
2433         error_report("Unable to create RMA");
2434         exit(1);
2435     }
2436 
2437     if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2438         spapr->rma_size = rma_alloc_size;
2439     } else {
2440         spapr->rma_size = node0_size;
2441 
2442         /* With KVM, we don't actually know whether KVM supports an
2443          * unbounded RMA (PR KVM) or is limited by the hash table size
2444          * (HV KVM using VRMA), so we always assume the latter
2445          *
2446          * In that case, we also limit the initial allocations for RTAS
2447          * etc... to 256M since we have no way to know what the VRMA size
2448          * is going to be as it depends on the size of the hash table
2449          * isn't determined yet.
2450          */
2451         if (kvm_enabled()) {
2452             spapr->vrma_adjust = 1;
2453             spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2454         }
2455 
2456         /* Actually we don't support unbounded RMA anymore since we
2457          * added proper emulation of HV mode. The max we can get is
2458          * 16G which also happens to be what we configure for PAPR
2459          * mode so make sure we don't do anything bigger than that
2460          */
2461         spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2462     }
2463 
2464     if (spapr->rma_size > node0_size) {
2465         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2466                      spapr->rma_size);
2467         exit(1);
2468     }
2469 
2470     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2471     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2472 
2473     /* Set up Interrupt Controller before we create the VCPUs */
2474     xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2475 
2476     /* Set up containers for ibm,client-architecture-support negotiated options
2477      */
2478     spapr->ov5 = spapr_ovec_new();
2479     spapr->ov5_cas = spapr_ovec_new();
2480 
2481     if (smc->dr_lmb_enabled) {
2482         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2483         spapr_validate_node_memory(machine, &error_fatal);
2484     }
2485 
2486     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2487     if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2488         /* KVM and TCG always allow GTSE with radix... */
2489         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2490     }
2491     /* ... but not with hash (currently). */
2492 
2493     /* advertise support for dedicated HP event source to guests */
2494     if (spapr->use_hotplug_event_source) {
2495         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2496     }
2497 
2498     /* advertise support for HPT resizing */
2499     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2500         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2501     }
2502 
2503     /* init CPUs */
2504     spapr_init_cpus(spapr);
2505 
2506     if (kvm_enabled()) {
2507         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2508         kvmppc_enable_logical_ci_hcalls();
2509         kvmppc_enable_set_mode_hcall();
2510 
2511         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2512         kvmppc_enable_clear_ref_mod_hcalls();
2513     }
2514 
2515     /* allocate RAM */
2516     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2517                                          machine->ram_size);
2518     memory_region_add_subregion(sysmem, 0, ram);
2519 
2520     if (rma_alloc_size && rma) {
2521         rma_region = g_new(MemoryRegion, 1);
2522         memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2523                                    rma_alloc_size, rma);
2524         vmstate_register_ram_global(rma_region);
2525         memory_region_add_subregion(sysmem, 0, rma_region);
2526     }
2527 
2528     /* initialize hotplug memory address space */
2529     if (machine->ram_size < machine->maxram_size) {
2530         ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2531         /*
2532          * Limit the number of hotpluggable memory slots to half the number
2533          * slots that KVM supports, leaving the other half for PCI and other
2534          * devices. However ensure that number of slots doesn't drop below 32.
2535          */
2536         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2537                            SPAPR_MAX_RAM_SLOTS;
2538 
2539         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2540             max_memslots = SPAPR_MAX_RAM_SLOTS;
2541         }
2542         if (machine->ram_slots > max_memslots) {
2543             error_report("Specified number of memory slots %"
2544                          PRIu64" exceeds max supported %d",
2545                          machine->ram_slots, max_memslots);
2546             exit(1);
2547         }
2548 
2549         spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2550                                               SPAPR_HOTPLUG_MEM_ALIGN);
2551         memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2552                            "hotplug-memory", hotplug_mem_size);
2553         memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2554                                     &spapr->hotplug_memory.mr);
2555     }
2556 
2557     if (smc->dr_lmb_enabled) {
2558         spapr_create_lmb_dr_connectors(spapr);
2559     }
2560 
2561     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2562     if (!filename) {
2563         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2564         exit(1);
2565     }
2566     spapr->rtas_size = get_image_size(filename);
2567     if (spapr->rtas_size < 0) {
2568         error_report("Could not get size of LPAR rtas '%s'", filename);
2569         exit(1);
2570     }
2571     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2572     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2573         error_report("Could not load LPAR rtas '%s'", filename);
2574         exit(1);
2575     }
2576     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2577         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2578                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2579         exit(1);
2580     }
2581     g_free(filename);
2582 
2583     /* Set up RTAS event infrastructure */
2584     spapr_events_init(spapr);
2585 
2586     /* Set up the RTC RTAS interfaces */
2587     spapr_rtc_create(spapr);
2588 
2589     /* Set up VIO bus */
2590     spapr->vio_bus = spapr_vio_bus_init();
2591 
2592     for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2593         if (serial_hds[i]) {
2594             spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2595         }
2596     }
2597 
2598     /* We always have at least the nvram device on VIO */
2599     spapr_create_nvram(spapr);
2600 
2601     /* Set up PCI */
2602     spapr_pci_rtas_init();
2603 
2604     phb = spapr_create_phb(spapr, 0);
2605 
2606     for (i = 0; i < nb_nics; i++) {
2607         NICInfo *nd = &nd_table[i];
2608 
2609         if (!nd->model) {
2610             nd->model = g_strdup("ibmveth");
2611         }
2612 
2613         if (strcmp(nd->model, "ibmveth") == 0) {
2614             spapr_vlan_create(spapr->vio_bus, nd);
2615         } else {
2616             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2617         }
2618     }
2619 
2620     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2621         spapr_vscsi_create(spapr->vio_bus);
2622     }
2623 
2624     /* Graphics */
2625     if (spapr_vga_init(phb->bus, &error_fatal)) {
2626         spapr->has_graphics = true;
2627         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2628     }
2629 
2630     if (machine->usb) {
2631         if (smc->use_ohci_by_default) {
2632             pci_create_simple(phb->bus, -1, "pci-ohci");
2633         } else {
2634             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2635         }
2636 
2637         if (spapr->has_graphics) {
2638             USBBus *usb_bus = usb_bus_find(-1);
2639 
2640             usb_create_simple(usb_bus, "usb-kbd");
2641             usb_create_simple(usb_bus, "usb-mouse");
2642         }
2643     }
2644 
2645     if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2646         error_report(
2647             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2648             MIN_RMA_SLOF);
2649         exit(1);
2650     }
2651 
2652     if (kernel_filename) {
2653         uint64_t lowaddr = 0;
2654 
2655         spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2656                                       NULL, NULL, &lowaddr, NULL, 1,
2657                                       PPC_ELF_MACHINE, 0, 0);
2658         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2659             spapr->kernel_size = load_elf(kernel_filename,
2660                                           translate_kernel_address, NULL, NULL,
2661                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2662                                           0, 0);
2663             spapr->kernel_le = spapr->kernel_size > 0;
2664         }
2665         if (spapr->kernel_size < 0) {
2666             error_report("error loading %s: %s", kernel_filename,
2667                          load_elf_strerror(spapr->kernel_size));
2668             exit(1);
2669         }
2670 
2671         /* load initrd */
2672         if (initrd_filename) {
2673             /* Try to locate the initrd in the gap between the kernel
2674              * and the firmware. Add a bit of space just in case
2675              */
2676             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2677                                   + 0x1ffff) & ~0xffff;
2678             spapr->initrd_size = load_image_targphys(initrd_filename,
2679                                                      spapr->initrd_base,
2680                                                      load_limit
2681                                                      - spapr->initrd_base);
2682             if (spapr->initrd_size < 0) {
2683                 error_report("could not load initial ram disk '%s'",
2684                              initrd_filename);
2685                 exit(1);
2686             }
2687         }
2688     }
2689 
2690     if (bios_name == NULL) {
2691         bios_name = FW_FILE_NAME;
2692     }
2693     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2694     if (!filename) {
2695         error_report("Could not find LPAR firmware '%s'", bios_name);
2696         exit(1);
2697     }
2698     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2699     if (fw_size <= 0) {
2700         error_report("Could not load LPAR firmware '%s'", filename);
2701         exit(1);
2702     }
2703     g_free(filename);
2704 
2705     /* FIXME: Should register things through the MachineState's qdev
2706      * interface, this is a legacy from the sPAPREnvironment structure
2707      * which predated MachineState but had a similar function */
2708     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2709     register_savevm_live(NULL, "spapr/htab", -1, 1,
2710                          &savevm_htab_handlers, spapr);
2711 
2712     qemu_register_boot_set(spapr_boot_set, spapr);
2713 
2714     if (kvm_enabled()) {
2715         /* to stop and start vmclock */
2716         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2717                                          &spapr->tb);
2718 
2719         kvmppc_spapr_enable_inkernel_multitce();
2720     }
2721 }
2722 
2723 static int spapr_kvm_type(const char *vm_type)
2724 {
2725     if (!vm_type) {
2726         return 0;
2727     }
2728 
2729     if (!strcmp(vm_type, "HV")) {
2730         return 1;
2731     }
2732 
2733     if (!strcmp(vm_type, "PR")) {
2734         return 2;
2735     }
2736 
2737     error_report("Unknown kvm-type specified '%s'", vm_type);
2738     exit(1);
2739 }
2740 
2741 /*
2742  * Implementation of an interface to adjust firmware path
2743  * for the bootindex property handling.
2744  */
2745 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2746                                    DeviceState *dev)
2747 {
2748 #define CAST(type, obj, name) \
2749     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2750     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2751     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2752     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2753 
2754     if (d) {
2755         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2756         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2757         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2758 
2759         if (spapr) {
2760             /*
2761              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2762              * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2763              * in the top 16 bits of the 64-bit LUN
2764              */
2765             unsigned id = 0x8000 | (d->id << 8) | d->lun;
2766             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2767                                    (uint64_t)id << 48);
2768         } else if (virtio) {
2769             /*
2770              * We use SRP luns of the form 01000000 | (target << 8) | lun
2771              * in the top 32 bits of the 64-bit LUN
2772              * Note: the quote above is from SLOF and it is wrong,
2773              * the actual binding is:
2774              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2775              */
2776             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2777             if (d->lun >= 256) {
2778                 /* Use the LUN "flat space addressing method" */
2779                 id |= 0x4000;
2780             }
2781             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2782                                    (uint64_t)id << 32);
2783         } else if (usb) {
2784             /*
2785              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2786              * in the top 32 bits of the 64-bit LUN
2787              */
2788             unsigned usb_port = atoi(usb->port->path);
2789             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2790             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2791                                    (uint64_t)id << 32);
2792         }
2793     }
2794 
2795     /*
2796      * SLOF probes the USB devices, and if it recognizes that the device is a
2797      * storage device, it changes its name to "storage" instead of "usb-host",
2798      * and additionally adds a child node for the SCSI LUN, so the correct
2799      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2800      */
2801     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2802         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2803         if (usb_host_dev_is_scsi_storage(usbdev)) {
2804             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2805         }
2806     }
2807 
2808     if (phb) {
2809         /* Replace "pci" with "pci@800000020000000" */
2810         return g_strdup_printf("pci@%"PRIX64, phb->buid);
2811     }
2812 
2813     if (vsc) {
2814         /* Same logic as virtio above */
2815         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2816         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2817     }
2818 
2819     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2820         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2821         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2822         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2823     }
2824 
2825     return NULL;
2826 }
2827 
2828 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2829 {
2830     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2831 
2832     return g_strdup(spapr->kvm_type);
2833 }
2834 
2835 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2836 {
2837     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2838 
2839     g_free(spapr->kvm_type);
2840     spapr->kvm_type = g_strdup(value);
2841 }
2842 
2843 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2844 {
2845     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2846 
2847     return spapr->use_hotplug_event_source;
2848 }
2849 
2850 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2851                                             Error **errp)
2852 {
2853     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2854 
2855     spapr->use_hotplug_event_source = value;
2856 }
2857 
2858 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2859 {
2860     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2861 
2862     switch (spapr->resize_hpt) {
2863     case SPAPR_RESIZE_HPT_DEFAULT:
2864         return g_strdup("default");
2865     case SPAPR_RESIZE_HPT_DISABLED:
2866         return g_strdup("disabled");
2867     case SPAPR_RESIZE_HPT_ENABLED:
2868         return g_strdup("enabled");
2869     case SPAPR_RESIZE_HPT_REQUIRED:
2870         return g_strdup("required");
2871     }
2872     g_assert_not_reached();
2873 }
2874 
2875 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2876 {
2877     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2878 
2879     if (strcmp(value, "default") == 0) {
2880         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2881     } else if (strcmp(value, "disabled") == 0) {
2882         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2883     } else if (strcmp(value, "enabled") == 0) {
2884         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2885     } else if (strcmp(value, "required") == 0) {
2886         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2887     } else {
2888         error_setg(errp, "Bad value for \"resize-hpt\" property");
2889     }
2890 }
2891 
2892 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2893                                    void *opaque, Error **errp)
2894 {
2895     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2896 }
2897 
2898 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2899                                    void *opaque, Error **errp)
2900 {
2901     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2902 }
2903 
2904 static void spapr_instance_init(Object *obj)
2905 {
2906     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2907 
2908     spapr->htab_fd = -1;
2909     spapr->use_hotplug_event_source = true;
2910     object_property_add_str(obj, "kvm-type",
2911                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2912     object_property_set_description(obj, "kvm-type",
2913                                     "Specifies the KVM virtualization mode (HV, PR)",
2914                                     NULL);
2915     object_property_add_bool(obj, "modern-hotplug-events",
2916                             spapr_get_modern_hotplug_events,
2917                             spapr_set_modern_hotplug_events,
2918                             NULL);
2919     object_property_set_description(obj, "modern-hotplug-events",
2920                                     "Use dedicated hotplug event mechanism in"
2921                                     " place of standard EPOW events when possible"
2922                                     " (required for memory hot-unplug support)",
2923                                     NULL);
2924 
2925     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2926                             "Maximum permitted CPU compatibility mode",
2927                             &error_fatal);
2928 
2929     object_property_add_str(obj, "resize-hpt",
2930                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2931     object_property_set_description(obj, "resize-hpt",
2932                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
2933                                     NULL);
2934     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2935                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2936     object_property_set_description(obj, "vsmt",
2937                                     "Virtual SMT: KVM behaves as if this were"
2938                                     " the host's SMT mode", &error_abort);
2939 }
2940 
2941 static void spapr_machine_finalizefn(Object *obj)
2942 {
2943     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2944 
2945     g_free(spapr->kvm_type);
2946 }
2947 
2948 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2949 {
2950     cpu_synchronize_state(cs);
2951     ppc_cpu_do_system_reset(cs);
2952 }
2953 
2954 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2955 {
2956     CPUState *cs;
2957 
2958     CPU_FOREACH(cs) {
2959         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2960     }
2961 }
2962 
2963 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2964                            uint32_t node, bool dedicated_hp_event_source,
2965                            Error **errp)
2966 {
2967     sPAPRDRConnector *drc;
2968     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2969     int i, fdt_offset, fdt_size;
2970     void *fdt;
2971     uint64_t addr = addr_start;
2972     bool hotplugged = spapr_drc_hotplugged(dev);
2973     Error *local_err = NULL;
2974 
2975     for (i = 0; i < nr_lmbs; i++) {
2976         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2977                               addr / SPAPR_MEMORY_BLOCK_SIZE);
2978         g_assert(drc);
2979 
2980         fdt = create_device_tree(&fdt_size);
2981         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2982                                                 SPAPR_MEMORY_BLOCK_SIZE);
2983 
2984         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2985         if (local_err) {
2986             while (addr > addr_start) {
2987                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2988                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2989                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
2990                 spapr_drc_detach(drc);
2991             }
2992             g_free(fdt);
2993             error_propagate(errp, local_err);
2994             return;
2995         }
2996         if (!hotplugged) {
2997             spapr_drc_reset(drc);
2998         }
2999         addr += SPAPR_MEMORY_BLOCK_SIZE;
3000     }
3001     /* send hotplug notification to the
3002      * guest only in case of hotplugged memory
3003      */
3004     if (hotplugged) {
3005         if (dedicated_hp_event_source) {
3006             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3007                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3008             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3009                                                    nr_lmbs,
3010                                                    spapr_drc_index(drc));
3011         } else {
3012             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3013                                            nr_lmbs);
3014         }
3015     }
3016 }
3017 
3018 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3019                               uint32_t node, Error **errp)
3020 {
3021     Error *local_err = NULL;
3022     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3023     PCDIMMDevice *dimm = PC_DIMM(dev);
3024     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3025     MemoryRegion *mr;
3026     uint64_t align, size, addr;
3027 
3028     mr = ddc->get_memory_region(dimm, &local_err);
3029     if (local_err) {
3030         goto out;
3031     }
3032     align = memory_region_get_alignment(mr);
3033     size = memory_region_size(mr);
3034 
3035     pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3036     if (local_err) {
3037         goto out;
3038     }
3039 
3040     addr = object_property_get_uint(OBJECT(dimm),
3041                                     PC_DIMM_ADDR_PROP, &local_err);
3042     if (local_err) {
3043         goto out_unplug;
3044     }
3045 
3046     spapr_add_lmbs(dev, addr, size, node,
3047                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3048                    &local_err);
3049     if (local_err) {
3050         goto out_unplug;
3051     }
3052 
3053     return;
3054 
3055 out_unplug:
3056     pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3057 out:
3058     error_propagate(errp, local_err);
3059 }
3060 
3061 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3062                                   Error **errp)
3063 {
3064     PCDIMMDevice *dimm = PC_DIMM(dev);
3065     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3066     MemoryRegion *mr;
3067     uint64_t size;
3068     char *mem_dev;
3069 
3070     mr = ddc->get_memory_region(dimm, errp);
3071     if (!mr) {
3072         return;
3073     }
3074     size = memory_region_size(mr);
3075 
3076     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3077         error_setg(errp, "Hotplugged memory size must be a multiple of "
3078                       "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3079         return;
3080     }
3081 
3082     mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3083     if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3084         error_setg(errp, "Memory backend has bad page size. "
3085                    "Use 'memory-backend-file' with correct mem-path.");
3086         goto out;
3087     }
3088 
3089 out:
3090     g_free(mem_dev);
3091 }
3092 
3093 struct sPAPRDIMMState {
3094     PCDIMMDevice *dimm;
3095     uint32_t nr_lmbs;
3096     QTAILQ_ENTRY(sPAPRDIMMState) next;
3097 };
3098 
3099 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3100                                                        PCDIMMDevice *dimm)
3101 {
3102     sPAPRDIMMState *dimm_state = NULL;
3103 
3104     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3105         if (dimm_state->dimm == dimm) {
3106             break;
3107         }
3108     }
3109     return dimm_state;
3110 }
3111 
3112 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3113                                                       uint32_t nr_lmbs,
3114                                                       PCDIMMDevice *dimm)
3115 {
3116     sPAPRDIMMState *ds = NULL;
3117 
3118     /*
3119      * If this request is for a DIMM whose removal had failed earlier
3120      * (due to guest's refusal to remove the LMBs), we would have this
3121      * dimm already in the pending_dimm_unplugs list. In that
3122      * case don't add again.
3123      */
3124     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3125     if (!ds) {
3126         ds = g_malloc0(sizeof(sPAPRDIMMState));
3127         ds->nr_lmbs = nr_lmbs;
3128         ds->dimm = dimm;
3129         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3130     }
3131     return ds;
3132 }
3133 
3134 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3135                                               sPAPRDIMMState *dimm_state)
3136 {
3137     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3138     g_free(dimm_state);
3139 }
3140 
3141 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3142                                                         PCDIMMDevice *dimm)
3143 {
3144     sPAPRDRConnector *drc;
3145     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3146     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3147     uint64_t size = memory_region_size(mr);
3148     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3149     uint32_t avail_lmbs = 0;
3150     uint64_t addr_start, addr;
3151     int i;
3152 
3153     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3154                                          &error_abort);
3155 
3156     addr = addr_start;
3157     for (i = 0; i < nr_lmbs; i++) {
3158         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3159                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3160         g_assert(drc);
3161         if (drc->dev) {
3162             avail_lmbs++;
3163         }
3164         addr += SPAPR_MEMORY_BLOCK_SIZE;
3165     }
3166 
3167     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3168 }
3169 
3170 /* Callback to be called during DRC release. */
3171 void spapr_lmb_release(DeviceState *dev)
3172 {
3173     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3174     PCDIMMDevice *dimm = PC_DIMM(dev);
3175     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3176     MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3177     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3178 
3179     /* This information will get lost if a migration occurs
3180      * during the unplug process. In this case recover it. */
3181     if (ds == NULL) {
3182         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3183         g_assert(ds);
3184         /* The DRC being examined by the caller at least must be counted */
3185         g_assert(ds->nr_lmbs);
3186     }
3187 
3188     if (--ds->nr_lmbs) {
3189         return;
3190     }
3191 
3192     /*
3193      * Now that all the LMBs have been removed by the guest, call the
3194      * pc-dimm unplug handler to cleanup up the pc-dimm device.
3195      */
3196     pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3197     object_unparent(OBJECT(dev));
3198     spapr_pending_dimm_unplugs_remove(spapr, ds);
3199 }
3200 
3201 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3202                                         DeviceState *dev, Error **errp)
3203 {
3204     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3205     Error *local_err = NULL;
3206     PCDIMMDevice *dimm = PC_DIMM(dev);
3207     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3208     MemoryRegion *mr;
3209     uint32_t nr_lmbs;
3210     uint64_t size, addr_start, addr;
3211     int i;
3212     sPAPRDRConnector *drc;
3213 
3214     mr = ddc->get_memory_region(dimm, &local_err);
3215     if (local_err) {
3216         goto out;
3217     }
3218     size = memory_region_size(mr);
3219     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3220 
3221     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3222                                          &local_err);
3223     if (local_err) {
3224         goto out;
3225     }
3226 
3227     /*
3228      * An existing pending dimm state for this DIMM means that there is an
3229      * unplug operation in progress, waiting for the spapr_lmb_release
3230      * callback to complete the job (BQL can't cover that far). In this case,
3231      * bail out to avoid detaching DRCs that were already released.
3232      */
3233     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3234         error_setg(&local_err,
3235                    "Memory unplug already in progress for device %s",
3236                    dev->id);
3237         goto out;
3238     }
3239 
3240     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3241 
3242     addr = addr_start;
3243     for (i = 0; i < nr_lmbs; i++) {
3244         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3245                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3246         g_assert(drc);
3247 
3248         spapr_drc_detach(drc);
3249         addr += SPAPR_MEMORY_BLOCK_SIZE;
3250     }
3251 
3252     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3253                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3254     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3255                                               nr_lmbs, spapr_drc_index(drc));
3256 out:
3257     error_propagate(errp, local_err);
3258 }
3259 
3260 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3261                                            sPAPRMachineState *spapr)
3262 {
3263     PowerPCCPU *cpu = POWERPC_CPU(cs);
3264     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3265     int id = spapr_get_vcpu_id(cpu);
3266     void *fdt;
3267     int offset, fdt_size;
3268     char *nodename;
3269 
3270     fdt = create_device_tree(&fdt_size);
3271     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3272     offset = fdt_add_subnode(fdt, 0, nodename);
3273 
3274     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3275     g_free(nodename);
3276 
3277     *fdt_offset = offset;
3278     return fdt;
3279 }
3280 
3281 /* Callback to be called during DRC release. */
3282 void spapr_core_release(DeviceState *dev)
3283 {
3284     MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3285     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3286     CPUCore *cc = CPU_CORE(dev);
3287     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3288 
3289     if (smc->pre_2_10_has_unused_icps) {
3290         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3291         int i;
3292 
3293         for (i = 0; i < cc->nr_threads; i++) {
3294             CPUState *cs = CPU(sc->threads[i]);
3295 
3296             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3297         }
3298     }
3299 
3300     assert(core_slot);
3301     core_slot->cpu = NULL;
3302     object_unparent(OBJECT(dev));
3303 }
3304 
3305 static
3306 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3307                                Error **errp)
3308 {
3309     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3310     int index;
3311     sPAPRDRConnector *drc;
3312     CPUCore *cc = CPU_CORE(dev);
3313 
3314     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3315         error_setg(errp, "Unable to find CPU core with core-id: %d",
3316                    cc->core_id);
3317         return;
3318     }
3319     if (index == 0) {
3320         error_setg(errp, "Boot CPU core may not be unplugged");
3321         return;
3322     }
3323 
3324     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3325                           spapr_vcpu_id(spapr, cc->core_id));
3326     g_assert(drc);
3327 
3328     spapr_drc_detach(drc);
3329 
3330     spapr_hotplug_req_remove_by_index(drc);
3331 }
3332 
3333 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3334                             Error **errp)
3335 {
3336     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3337     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3338     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3339     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3340     CPUCore *cc = CPU_CORE(dev);
3341     CPUState *cs = CPU(core->threads[0]);
3342     sPAPRDRConnector *drc;
3343     Error *local_err = NULL;
3344     CPUArchId *core_slot;
3345     int index;
3346     bool hotplugged = spapr_drc_hotplugged(dev);
3347 
3348     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3349     if (!core_slot) {
3350         error_setg(errp, "Unable to find CPU core with core-id: %d",
3351                    cc->core_id);
3352         return;
3353     }
3354     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3355                           spapr_vcpu_id(spapr, cc->core_id));
3356 
3357     g_assert(drc || !mc->has_hotpluggable_cpus);
3358 
3359     if (drc) {
3360         void *fdt;
3361         int fdt_offset;
3362 
3363         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3364 
3365         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3366         if (local_err) {
3367             g_free(fdt);
3368             error_propagate(errp, local_err);
3369             return;
3370         }
3371 
3372         if (hotplugged) {
3373             /*
3374              * Send hotplug notification interrupt to the guest only
3375              * in case of hotplugged CPUs.
3376              */
3377             spapr_hotplug_req_add_by_index(drc);
3378         } else {
3379             spapr_drc_reset(drc);
3380         }
3381     }
3382 
3383     core_slot->cpu = OBJECT(dev);
3384 
3385     if (smc->pre_2_10_has_unused_icps) {
3386         int i;
3387 
3388         for (i = 0; i < cc->nr_threads; i++) {
3389             cs = CPU(core->threads[i]);
3390             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3391         }
3392     }
3393 }
3394 
3395 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3396                                 Error **errp)
3397 {
3398     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3399     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3400     Error *local_err = NULL;
3401     CPUCore *cc = CPU_CORE(dev);
3402     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3403     const char *type = object_get_typename(OBJECT(dev));
3404     CPUArchId *core_slot;
3405     int index;
3406 
3407     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3408         error_setg(&local_err, "CPU hotplug not supported for this machine");
3409         goto out;
3410     }
3411 
3412     if (strcmp(base_core_type, type)) {
3413         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3414         goto out;
3415     }
3416 
3417     if (cc->core_id % smp_threads) {
3418         error_setg(&local_err, "invalid core id %d", cc->core_id);
3419         goto out;
3420     }
3421 
3422     /*
3423      * In general we should have homogeneous threads-per-core, but old
3424      * (pre hotplug support) machine types allow the last core to have
3425      * reduced threads as a compatibility hack for when we allowed
3426      * total vcpus not a multiple of threads-per-core.
3427      */
3428     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3429         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3430                    cc->nr_threads, smp_threads);
3431         goto out;
3432     }
3433 
3434     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3435     if (!core_slot) {
3436         error_setg(&local_err, "core id %d out of range", cc->core_id);
3437         goto out;
3438     }
3439 
3440     if (core_slot->cpu) {
3441         error_setg(&local_err, "core %d already populated", cc->core_id);
3442         goto out;
3443     }
3444 
3445     numa_cpu_pre_plug(core_slot, dev, &local_err);
3446 
3447 out:
3448     error_propagate(errp, local_err);
3449 }
3450 
3451 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3452                                       DeviceState *dev, Error **errp)
3453 {
3454     MachineState *ms = MACHINE(hotplug_dev);
3455     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3456 
3457     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3458         int node;
3459 
3460         if (!smc->dr_lmb_enabled) {
3461             error_setg(errp, "Memory hotplug not supported for this machine");
3462             return;
3463         }
3464         node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3465         if (*errp) {
3466             return;
3467         }
3468         if (node < 0 || node >= MAX_NODES) {
3469             error_setg(errp, "Invaild node %d", node);
3470             return;
3471         }
3472 
3473         /*
3474          * Currently PowerPC kernel doesn't allow hot-adding memory to
3475          * memory-less node, but instead will silently add the memory
3476          * to the first node that has some memory. This causes two
3477          * unexpected behaviours for the user.
3478          *
3479          * - Memory gets hotplugged to a different node than what the user
3480          *   specified.
3481          * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3482          *   to memory-less node, a reboot will set things accordingly
3483          *   and the previously hotplugged memory now ends in the right node.
3484          *   This appears as if some memory moved from one node to another.
3485          *
3486          * So until kernel starts supporting memory hotplug to memory-less
3487          * nodes, just prevent such attempts upfront in QEMU.
3488          */
3489         if (nb_numa_nodes && !numa_info[node].node_mem) {
3490             error_setg(errp, "Can't hotplug memory to memory-less node %d",
3491                        node);
3492             return;
3493         }
3494 
3495         spapr_memory_plug(hotplug_dev, dev, node, errp);
3496     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3497         spapr_core_plug(hotplug_dev, dev, errp);
3498     }
3499 }
3500 
3501 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3502                                                 DeviceState *dev, Error **errp)
3503 {
3504     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3505     MachineClass *mc = MACHINE_GET_CLASS(sms);
3506 
3507     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3508         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3509             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3510         } else {
3511             /* NOTE: this means there is a window after guest reset, prior to
3512              * CAS negotiation, where unplug requests will fail due to the
3513              * capability not being detected yet. This is a bit different than
3514              * the case with PCI unplug, where the events will be queued and
3515              * eventually handled by the guest after boot
3516              */
3517             error_setg(errp, "Memory hot unplug not supported for this guest");
3518         }
3519     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3520         if (!mc->has_hotpluggable_cpus) {
3521             error_setg(errp, "CPU hot unplug not supported on this machine");
3522             return;
3523         }
3524         spapr_core_unplug_request(hotplug_dev, dev, errp);
3525     }
3526 }
3527 
3528 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3529                                           DeviceState *dev, Error **errp)
3530 {
3531     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3532         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3533     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3534         spapr_core_pre_plug(hotplug_dev, dev, errp);
3535     }
3536 }
3537 
3538 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3539                                                  DeviceState *dev)
3540 {
3541     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3542         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3543         return HOTPLUG_HANDLER(machine);
3544     }
3545     return NULL;
3546 }
3547 
3548 static CpuInstanceProperties
3549 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3550 {
3551     CPUArchId *core_slot;
3552     MachineClass *mc = MACHINE_GET_CLASS(machine);
3553 
3554     /* make sure possible_cpu are intialized */
3555     mc->possible_cpu_arch_ids(machine);
3556     /* get CPU core slot containing thread that matches cpu_index */
3557     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3558     assert(core_slot);
3559     return core_slot->props;
3560 }
3561 
3562 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3563 {
3564     return idx / smp_cores % nb_numa_nodes;
3565 }
3566 
3567 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3568 {
3569     int i;
3570     const char *core_type;
3571     int spapr_max_cores = max_cpus / smp_threads;
3572     MachineClass *mc = MACHINE_GET_CLASS(machine);
3573 
3574     if (!mc->has_hotpluggable_cpus) {
3575         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3576     }
3577     if (machine->possible_cpus) {
3578         assert(machine->possible_cpus->len == spapr_max_cores);
3579         return machine->possible_cpus;
3580     }
3581 
3582     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3583     if (!core_type) {
3584         error_report("Unable to find sPAPR CPU Core definition");
3585         exit(1);
3586     }
3587 
3588     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3589                              sizeof(CPUArchId) * spapr_max_cores);
3590     machine->possible_cpus->len = spapr_max_cores;
3591     for (i = 0; i < machine->possible_cpus->len; i++) {
3592         int core_id = i * smp_threads;
3593 
3594         machine->possible_cpus->cpus[i].type = core_type;
3595         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3596         machine->possible_cpus->cpus[i].arch_id = core_id;
3597         machine->possible_cpus->cpus[i].props.has_core_id = true;
3598         machine->possible_cpus->cpus[i].props.core_id = core_id;
3599     }
3600     return machine->possible_cpus;
3601 }
3602 
3603 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3604                                 uint64_t *buid, hwaddr *pio,
3605                                 hwaddr *mmio32, hwaddr *mmio64,
3606                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3607 {
3608     /*
3609      * New-style PHB window placement.
3610      *
3611      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3612      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3613      * windows.
3614      *
3615      * Some guest kernels can't work with MMIO windows above 1<<46
3616      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3617      *
3618      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3619      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3620      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3621      * 1TiB 64-bit MMIO windows for each PHB.
3622      */
3623     const uint64_t base_buid = 0x800000020000000ULL;
3624 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3625                         SPAPR_PCI_MEM64_WIN_SIZE - 1)
3626     int i;
3627 
3628     /* Sanity check natural alignments */
3629     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3630     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3631     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3632     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3633     /* Sanity check bounds */
3634     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3635                       SPAPR_PCI_MEM32_WIN_SIZE);
3636     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3637                       SPAPR_PCI_MEM64_WIN_SIZE);
3638 
3639     if (index >= SPAPR_MAX_PHBS) {
3640         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3641                    SPAPR_MAX_PHBS - 1);
3642         return;
3643     }
3644 
3645     *buid = base_buid + index;
3646     for (i = 0; i < n_dma; ++i) {
3647         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3648     }
3649 
3650     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3651     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3652     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3653 }
3654 
3655 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3656 {
3657     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3658 
3659     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3660 }
3661 
3662 static void spapr_ics_resend(XICSFabric *dev)
3663 {
3664     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3665 
3666     ics_resend(spapr->ics);
3667 }
3668 
3669 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3670 {
3671     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3672 
3673     return cpu ? ICP(cpu->intc) : NULL;
3674 }
3675 
3676 #define ICS_IRQ_FREE(ics, srcno)   \
3677     (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3678 
3679 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3680 {
3681     int first, i;
3682 
3683     for (first = 0; first < ics->nr_irqs; first += alignnum) {
3684         if (num > (ics->nr_irqs - first)) {
3685             return -1;
3686         }
3687         for (i = first; i < first + num; ++i) {
3688             if (!ICS_IRQ_FREE(ics, i)) {
3689                 break;
3690             }
3691         }
3692         if (i == (first + num)) {
3693             return first;
3694         }
3695     }
3696 
3697     return -1;
3698 }
3699 
3700 /*
3701  * Allocate the IRQ number and set the IRQ type, LSI or MSI
3702  */
3703 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3704 {
3705     ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3706 }
3707 
3708 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3709                     Error **errp)
3710 {
3711     ICSState *ics = spapr->ics;
3712     int irq;
3713 
3714     if (!ics) {
3715         return -1;
3716     }
3717     if (irq_hint) {
3718         if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3719             error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3720             return -1;
3721         }
3722         irq = irq_hint;
3723     } else {
3724         irq = ics_find_free_block(ics, 1, 1);
3725         if (irq < 0) {
3726             error_setg(errp, "can't allocate IRQ: no IRQ left");
3727             return -1;
3728         }
3729         irq += ics->offset;
3730     }
3731 
3732     spapr_irq_set_lsi(spapr, irq, lsi);
3733     trace_spapr_irq_alloc(irq);
3734 
3735     return irq;
3736 }
3737 
3738 /*
3739  * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3740  * the block. If align==true, aligns the first IRQ number to num.
3741  */
3742 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3743                           bool align, Error **errp)
3744 {
3745     ICSState *ics = spapr->ics;
3746     int i, first = -1;
3747 
3748     if (!ics) {
3749         return -1;
3750     }
3751 
3752     /*
3753      * MSIMesage::data is used for storing VIRQ so
3754      * it has to be aligned to num to support multiple
3755      * MSI vectors. MSI-X is not affected by this.
3756      * The hint is used for the first IRQ, the rest should
3757      * be allocated continuously.
3758      */
3759     if (align) {
3760         assert((num == 1) || (num == 2) || (num == 4) ||
3761                (num == 8) || (num == 16) || (num == 32));
3762         first = ics_find_free_block(ics, num, num);
3763     } else {
3764         first = ics_find_free_block(ics, num, 1);
3765     }
3766     if (first < 0) {
3767         error_setg(errp, "can't find a free %d-IRQ block", num);
3768         return -1;
3769     }
3770 
3771     first += ics->offset;
3772     for (i = first; i < first + num; ++i) {
3773         spapr_irq_set_lsi(spapr, i, lsi);
3774     }
3775 
3776     trace_spapr_irq_alloc_block(first, num, lsi, align);
3777 
3778     return first;
3779 }
3780 
3781 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3782 {
3783     ICSState *ics = spapr->ics;
3784     int srcno = irq - ics->offset;
3785     int i;
3786 
3787     if (ics_valid_irq(ics, irq)) {
3788         trace_spapr_irq_free(0, irq, num);
3789         for (i = srcno; i < srcno + num; ++i) {
3790             if (ICS_IRQ_FREE(ics, i)) {
3791                 trace_spapr_irq_free_warn(0, i + ics->offset);
3792             }
3793             memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3794         }
3795     }
3796 }
3797 
3798 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3799 {
3800     ICSState *ics = spapr->ics;
3801 
3802     if (ics_valid_irq(ics, irq)) {
3803         return ics->qirqs[irq - ics->offset];
3804     }
3805 
3806     return NULL;
3807 }
3808 
3809 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3810                                  Monitor *mon)
3811 {
3812     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3813     CPUState *cs;
3814 
3815     CPU_FOREACH(cs) {
3816         PowerPCCPU *cpu = POWERPC_CPU(cs);
3817 
3818         icp_pic_print_info(ICP(cpu->intc), mon);
3819     }
3820 
3821     ics_pic_print_info(spapr->ics, mon);
3822 }
3823 
3824 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3825 {
3826     return cpu->vcpu_id;
3827 }
3828 
3829 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3830 {
3831     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3832     int vcpu_id;
3833 
3834     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3835 
3836     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3837         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3838         error_append_hint(errp, "Adjust the number of cpus to %d "
3839                           "or try to raise the number of threads per core\n",
3840                           vcpu_id * smp_threads / spapr->vsmt);
3841         return;
3842     }
3843 
3844     cpu->vcpu_id = vcpu_id;
3845 }
3846 
3847 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3848 {
3849     CPUState *cs;
3850 
3851     CPU_FOREACH(cs) {
3852         PowerPCCPU *cpu = POWERPC_CPU(cs);
3853 
3854         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3855             return cpu;
3856         }
3857     }
3858 
3859     return NULL;
3860 }
3861 
3862 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3863 {
3864     MachineClass *mc = MACHINE_CLASS(oc);
3865     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3866     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3867     NMIClass *nc = NMI_CLASS(oc);
3868     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3869     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3870     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3871     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3872 
3873     mc->desc = "pSeries Logical Partition (PAPR compliant)";
3874 
3875     /*
3876      * We set up the default / latest behaviour here.  The class_init
3877      * functions for the specific versioned machine types can override
3878      * these details for backwards compatibility
3879      */
3880     mc->init = spapr_machine_init;
3881     mc->reset = spapr_machine_reset;
3882     mc->block_default_type = IF_SCSI;
3883     mc->max_cpus = 1024;
3884     mc->no_parallel = 1;
3885     mc->default_boot_order = "";
3886     mc->default_ram_size = 512 * M_BYTE;
3887     mc->kvm_type = spapr_kvm_type;
3888     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3889     mc->pci_allow_0_address = true;
3890     mc->get_hotplug_handler = spapr_get_hotplug_handler;
3891     hc->pre_plug = spapr_machine_device_pre_plug;
3892     hc->plug = spapr_machine_device_plug;
3893     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3894     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3895     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3896     hc->unplug_request = spapr_machine_device_unplug_request;
3897 
3898     smc->dr_lmb_enabled = true;
3899     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3900     mc->has_hotpluggable_cpus = true;
3901     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3902     fwc->get_dev_path = spapr_get_fw_dev_path;
3903     nc->nmi_monitor_handler = spapr_nmi;
3904     smc->phb_placement = spapr_phb_placement;
3905     vhc->hypercall = emulate_spapr_hypercall;
3906     vhc->hpt_mask = spapr_hpt_mask;
3907     vhc->map_hptes = spapr_map_hptes;
3908     vhc->unmap_hptes = spapr_unmap_hptes;
3909     vhc->store_hpte = spapr_store_hpte;
3910     vhc->get_patbe = spapr_get_patbe;
3911     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3912     xic->ics_get = spapr_ics_get;
3913     xic->ics_resend = spapr_ics_resend;
3914     xic->icp_get = spapr_icp_get;
3915     ispc->print_info = spapr_pic_print_info;
3916     /* Force NUMA node memory size to be a multiple of
3917      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3918      * in which LMBs are represented and hot-added
3919      */
3920     mc->numa_mem_align_shift = 28;
3921 
3922     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3923     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3924     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3925     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3926     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3927     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3928     spapr_caps_add_properties(smc, &error_abort);
3929 }
3930 
3931 static const TypeInfo spapr_machine_info = {
3932     .name          = TYPE_SPAPR_MACHINE,
3933     .parent        = TYPE_MACHINE,
3934     .abstract      = true,
3935     .instance_size = sizeof(sPAPRMachineState),
3936     .instance_init = spapr_instance_init,
3937     .instance_finalize = spapr_machine_finalizefn,
3938     .class_size    = sizeof(sPAPRMachineClass),
3939     .class_init    = spapr_machine_class_init,
3940     .interfaces = (InterfaceInfo[]) {
3941         { TYPE_FW_PATH_PROVIDER },
3942         { TYPE_NMI },
3943         { TYPE_HOTPLUG_HANDLER },
3944         { TYPE_PPC_VIRTUAL_HYPERVISOR },
3945         { TYPE_XICS_FABRIC },
3946         { TYPE_INTERRUPT_STATS_PROVIDER },
3947         { }
3948     },
3949 };
3950 
3951 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
3952     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3953                                                     void *data)      \
3954     {                                                                \
3955         MachineClass *mc = MACHINE_CLASS(oc);                        \
3956         spapr_machine_##suffix##_class_options(mc);                  \
3957         if (latest) {                                                \
3958             mc->alias = "pseries";                                   \
3959             mc->is_default = 1;                                      \
3960         }                                                            \
3961     }                                                                \
3962     static void spapr_machine_##suffix##_instance_init(Object *obj)  \
3963     {                                                                \
3964         MachineState *machine = MACHINE(obj);                        \
3965         spapr_machine_##suffix##_instance_options(machine);          \
3966     }                                                                \
3967     static const TypeInfo spapr_machine_##suffix##_info = {          \
3968         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
3969         .parent = TYPE_SPAPR_MACHINE,                                \
3970         .class_init = spapr_machine_##suffix##_class_init,           \
3971         .instance_init = spapr_machine_##suffix##_instance_init,     \
3972     };                                                               \
3973     static void spapr_machine_register_##suffix(void)                \
3974     {                                                                \
3975         type_register(&spapr_machine_##suffix##_info);               \
3976     }                                                                \
3977     type_init(spapr_machine_register_##suffix)
3978 
3979 /*
3980  * pseries-2.12
3981  */
3982 static void spapr_machine_2_12_instance_options(MachineState *machine)
3983 {
3984 }
3985 
3986 static void spapr_machine_2_12_class_options(MachineClass *mc)
3987 {
3988     /* Defaults for the latest behaviour inherited from the base class */
3989 }
3990 
3991 DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3992 
3993 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
3994 {
3995     spapr_machine_2_12_instance_options(machine);
3996 }
3997 
3998 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
3999 {
4000     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4001 
4002     spapr_machine_2_12_class_options(mc);
4003     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4004     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4005     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4006 }
4007 
4008 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4009 
4010 /*
4011  * pseries-2.11
4012  */
4013 #define SPAPR_COMPAT_2_11                                              \
4014     HW_COMPAT_2_11
4015 
4016 static void spapr_machine_2_11_instance_options(MachineState *machine)
4017 {
4018     spapr_machine_2_12_instance_options(machine);
4019 }
4020 
4021 static void spapr_machine_2_11_class_options(MachineClass *mc)
4022 {
4023     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4024 
4025     spapr_machine_2_12_class_options(mc);
4026     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4027     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4028 }
4029 
4030 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4031 
4032 /*
4033  * pseries-2.10
4034  */
4035 #define SPAPR_COMPAT_2_10                                              \
4036     HW_COMPAT_2_10
4037 
4038 static void spapr_machine_2_10_instance_options(MachineState *machine)
4039 {
4040     spapr_machine_2_11_instance_options(machine);
4041 }
4042 
4043 static void spapr_machine_2_10_class_options(MachineClass *mc)
4044 {
4045     spapr_machine_2_11_class_options(mc);
4046     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4047 }
4048 
4049 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4050 
4051 /*
4052  * pseries-2.9
4053  */
4054 #define SPAPR_COMPAT_2_9                                               \
4055     HW_COMPAT_2_9                                                      \
4056     {                                                                  \
4057         .driver = TYPE_POWERPC_CPU,                                    \
4058         .property = "pre-2.10-migration",                              \
4059         .value    = "on",                                              \
4060     },                                                                 \
4061 
4062 static void spapr_machine_2_9_instance_options(MachineState *machine)
4063 {
4064     spapr_machine_2_10_instance_options(machine);
4065 }
4066 
4067 static void spapr_machine_2_9_class_options(MachineClass *mc)
4068 {
4069     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4070 
4071     spapr_machine_2_10_class_options(mc);
4072     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4073     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4074     smc->pre_2_10_has_unused_icps = true;
4075     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4076 }
4077 
4078 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4079 
4080 /*
4081  * pseries-2.8
4082  */
4083 #define SPAPR_COMPAT_2_8                                        \
4084     HW_COMPAT_2_8                                               \
4085     {                                                           \
4086         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
4087         .property = "pcie-extended-configuration-space",        \
4088         .value    = "off",                                      \
4089     },
4090 
4091 static void spapr_machine_2_8_instance_options(MachineState *machine)
4092 {
4093     spapr_machine_2_9_instance_options(machine);
4094 }
4095 
4096 static void spapr_machine_2_8_class_options(MachineClass *mc)
4097 {
4098     spapr_machine_2_9_class_options(mc);
4099     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4100     mc->numa_mem_align_shift = 23;
4101 }
4102 
4103 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4104 
4105 /*
4106  * pseries-2.7
4107  */
4108 #define SPAPR_COMPAT_2_7                            \
4109     HW_COMPAT_2_7                                   \
4110     {                                               \
4111         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4112         .property = "mem_win_size",                 \
4113         .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4114     },                                              \
4115     {                                               \
4116         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
4117         .property = "mem64_win_size",               \
4118         .value    = "0",                            \
4119     },                                              \
4120     {                                               \
4121         .driver = TYPE_POWERPC_CPU,                 \
4122         .property = "pre-2.8-migration",            \
4123         .value    = "on",                           \
4124     },                                              \
4125     {                                               \
4126         .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
4127         .property = "pre-2.8-migration",            \
4128         .value    = "on",                           \
4129     },
4130 
4131 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4132                               uint64_t *buid, hwaddr *pio,
4133                               hwaddr *mmio32, hwaddr *mmio64,
4134                               unsigned n_dma, uint32_t *liobns, Error **errp)
4135 {
4136     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4137     const uint64_t base_buid = 0x800000020000000ULL;
4138     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4139     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4140     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4141     const uint32_t max_index = 255;
4142     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4143 
4144     uint64_t ram_top = MACHINE(spapr)->ram_size;
4145     hwaddr phb0_base, phb_base;
4146     int i;
4147 
4148     /* Do we have hotpluggable memory? */
4149     if (MACHINE(spapr)->maxram_size > ram_top) {
4150         /* Can't just use maxram_size, because there may be an
4151          * alignment gap between normal and hotpluggable memory
4152          * regions */
4153         ram_top = spapr->hotplug_memory.base +
4154             memory_region_size(&spapr->hotplug_memory.mr);
4155     }
4156 
4157     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4158 
4159     if (index > max_index) {
4160         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4161                    max_index);
4162         return;
4163     }
4164 
4165     *buid = base_buid + index;
4166     for (i = 0; i < n_dma; ++i) {
4167         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4168     }
4169 
4170     phb_base = phb0_base + index * phb_spacing;
4171     *pio = phb_base + pio_offset;
4172     *mmio32 = phb_base + mmio_offset;
4173     /*
4174      * We don't set the 64-bit MMIO window, relying on the PHB's
4175      * fallback behaviour of automatically splitting a large "32-bit"
4176      * window into contiguous 32-bit and 64-bit windows
4177      */
4178 }
4179 
4180 static void spapr_machine_2_7_instance_options(MachineState *machine)
4181 {
4182     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4183 
4184     spapr_machine_2_8_instance_options(machine);
4185     spapr->use_hotplug_event_source = false;
4186 }
4187 
4188 static void spapr_machine_2_7_class_options(MachineClass *mc)
4189 {
4190     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4191 
4192     spapr_machine_2_8_class_options(mc);
4193     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4194     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4195     smc->phb_placement = phb_placement_2_7;
4196 }
4197 
4198 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4199 
4200 /*
4201  * pseries-2.6
4202  */
4203 #define SPAPR_COMPAT_2_6 \
4204     HW_COMPAT_2_6 \
4205     { \
4206         .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4207         .property = "ddw",\
4208         .value    = stringify(off),\
4209     },
4210 
4211 static void spapr_machine_2_6_instance_options(MachineState *machine)
4212 {
4213     spapr_machine_2_7_instance_options(machine);
4214 }
4215 
4216 static void spapr_machine_2_6_class_options(MachineClass *mc)
4217 {
4218     spapr_machine_2_7_class_options(mc);
4219     mc->has_hotpluggable_cpus = false;
4220     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4221 }
4222 
4223 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4224 
4225 /*
4226  * pseries-2.5
4227  */
4228 #define SPAPR_COMPAT_2_5 \
4229     HW_COMPAT_2_5 \
4230     { \
4231         .driver   = "spapr-vlan", \
4232         .property = "use-rx-buffer-pools", \
4233         .value    = "off", \
4234     },
4235 
4236 static void spapr_machine_2_5_instance_options(MachineState *machine)
4237 {
4238     spapr_machine_2_6_instance_options(machine);
4239 }
4240 
4241 static void spapr_machine_2_5_class_options(MachineClass *mc)
4242 {
4243     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4244 
4245     spapr_machine_2_6_class_options(mc);
4246     smc->use_ohci_by_default = true;
4247     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4248 }
4249 
4250 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4251 
4252 /*
4253  * pseries-2.4
4254  */
4255 #define SPAPR_COMPAT_2_4 \
4256         HW_COMPAT_2_4
4257 
4258 static void spapr_machine_2_4_instance_options(MachineState *machine)
4259 {
4260     spapr_machine_2_5_instance_options(machine);
4261 }
4262 
4263 static void spapr_machine_2_4_class_options(MachineClass *mc)
4264 {
4265     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4266 
4267     spapr_machine_2_5_class_options(mc);
4268     smc->dr_lmb_enabled = false;
4269     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4270 }
4271 
4272 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4273 
4274 /*
4275  * pseries-2.3
4276  */
4277 #define SPAPR_COMPAT_2_3 \
4278         HW_COMPAT_2_3 \
4279         {\
4280             .driver   = "spapr-pci-host-bridge",\
4281             .property = "dynamic-reconfiguration",\
4282             .value    = "off",\
4283         },
4284 
4285 static void spapr_machine_2_3_instance_options(MachineState *machine)
4286 {
4287     spapr_machine_2_4_instance_options(machine);
4288 }
4289 
4290 static void spapr_machine_2_3_class_options(MachineClass *mc)
4291 {
4292     spapr_machine_2_4_class_options(mc);
4293     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4294 }
4295 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4296 
4297 /*
4298  * pseries-2.2
4299  */
4300 
4301 #define SPAPR_COMPAT_2_2 \
4302         HW_COMPAT_2_2 \
4303         {\
4304             .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4305             .property = "mem_win_size",\
4306             .value    = "0x20000000",\
4307         },
4308 
4309 static void spapr_machine_2_2_instance_options(MachineState *machine)
4310 {
4311     spapr_machine_2_3_instance_options(machine);
4312     machine->suppress_vmdesc = true;
4313 }
4314 
4315 static void spapr_machine_2_2_class_options(MachineClass *mc)
4316 {
4317     spapr_machine_2_3_class_options(mc);
4318     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4319 }
4320 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4321 
4322 /*
4323  * pseries-2.1
4324  */
4325 #define SPAPR_COMPAT_2_1 \
4326         HW_COMPAT_2_1
4327 
4328 static void spapr_machine_2_1_instance_options(MachineState *machine)
4329 {
4330     spapr_machine_2_2_instance_options(machine);
4331 }
4332 
4333 static void spapr_machine_2_1_class_options(MachineClass *mc)
4334 {
4335     spapr_machine_2_2_class_options(mc);
4336     SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4337 }
4338 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4339 
4340 static void spapr_machine_register_types(void)
4341 {
4342     type_register_static(&spapr_machine_info);
4343 }
4344 
4345 type_init(spapr_machine_register_types)
4346